WorldWideScience

Sample records for densely interconnected regulatory

  1. Regulatory Issues Surrounding Merchant Interconnection

    International Nuclear Information System (INIS)

    Kuijlaars, Kees-Jan; Zwart, Gijsbert

    2003-11-01

    We discussed various issues concerning the regulatory perspective on private investment in interconnectors. One might claim that leaving investment in transmission infrastructure to competing market parties is more efficient than relying on regulated investment only (especially in the case of long (DC) lines connecting previously unconnected parts of the grids, so that externalities from e.g. loop flows do not play a significant role). We considered that some aspects of interconnection might reduce these market benefits. In particular, the large fixed costs of interconnection construction may lead to significant under investment (due to both first mover monopoly power and the fact that part of generation cost efficiencies realised by interconnection are not captured by the investor itself, and remain external to the investment decision). Second, merchant ownership restricts future opportunities for adaptation of regulation, as would be required e.g. for introduction of potentially more sophisticated methods of congestion management or market splitting. Some of the disadvantages of merchant investment may be mitigated however by a suitable regulatory framework, and we discussed some views in this direction. The issues we discussed are not intended to give a complete framework, and detailed regulation will certainly involve many more specific requirements. Areas we did not touch upon include e.g. the treatment of deep connection costs, rules for operation and maintenance of the line, and impact on availability of capacity on other interconnections

  2. Regulatory Issues Surrounding Merchant Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Kuijlaars, Kees-Jan; Zwart, Gijsbert [Office for Energy Regulation (DTe), The Hague (Netherlands)

    2003-11-01

    We discussed various issues concerning the regulatory perspective on private investment in interconnectors. One might claim that leaving investment in transmission infrastructure to competing market parties is more efficient than relying on regulated investment only (especially in the case of long (DC) lines connecting previously unconnected parts of the grids, so that externalities from e.g. loop flows do not play a significant role). We considered that some aspects of interconnection might reduce these market benefits. In particular, the large fixed costs of interconnection construction may lead to significant under investment (due to both first mover monopoly power and the fact that part of generation cost efficiencies realised by interconnection are not captured by the investor itself, and remain external to the investment decision). Second, merchant ownership restricts future opportunities for adaptation of regulation, as would be required e.g. for introduction of potentially more sophisticated methods of congestion management or market splitting. Some of the disadvantages of merchant investment may be mitigated however by a suitable regulatory framework, and we discussed some views in this direction. The issues we discussed are not intended to give a complete framework, and detailed regulation will certainly involve many more specific requirements. Areas we did not touch upon include e.g. the treatment of deep connection costs, rules for operation and maintenance of the line, and impact on availability of capacity on other interconnections.

  3. Detection of the dominant direction of information flow and feedback links in densely interconnected regulatory networks

    Directory of Open Access Journals (Sweden)

    Ispolatov Iaroslav

    2008-10-01

    Full Text Available Abstract Background Finding the dominant direction of flow of information in densely interconnected regulatory or signaling networks is required in many applications in computational biology and neuroscience. This is achieved by first identifying and removing links which close up feedback loops in the original network and hierarchically arranging nodes in the remaining network. In mathematical language this corresponds to a problem of making a graph acyclic by removing as few links as possible and thus altering the original graph in the least possible way. The exact solution of this problem requires enumeration of all cycles and combinations of removed links, which, as an NP-hard problem, is computationally prohibitive even for modest-size networks. Results We introduce and compare two approximate numerical algorithms for solving this problem: the probabilistic one based on a simulated annealing of the hierarchical layout of the network which minimizes the number of "backward" links going from lower to higher hierarchical levels, and the deterministic, "greedy" algorithm that sequentially cuts the links that participate in the largest number of feedback cycles. We find that the annealing algorithm outperforms the deterministic one in terms of speed, memory requirement, and the actual number of removed links. To further improve a visual perception of the layout produced by the annealing algorithm, we perform an additional minimization of the length of hierarchical links while keeping the number of anti-hierarchical links at their minimum. The annealing algorithm is then tested on several examples of regulatory and signaling networks/pathways operating in human cells. Conclusion The proposed annealing algorithm is powerful enough to performs often optimal layouts of protein networks in whole organisms, consisting of around ~104 nodes and ~105 links, while the applicability of the greedy algorithm is limited to individual pathways with ~100

  4. Barriers and drivers of new interconnections between EU and non-EU electricity systems. Economic and regulatory aspects

    International Nuclear Information System (INIS)

    Van Werven, M.J.N.; Van Oostvoorn, F.

    2006-05-01

    Interconnection of different electricity systems offers several advantages and benefits. In the first place it provides reliability and increases the robustness of the system. Furthermore, it increases economic efficiency and reduces the possibility to abuse market power. Price differences are the signal that efficiency gains can be obtained. To make a sound decision whether to invest in new interconnection capacity, the causes behind the price differences should be well understood. Price differences must originate from structural, long-term causes. Differences in primary resources, fuel mix and load patterns are such causes. It is important to note that price differences that result from the difference between regulatory structures (lack of level playing field) may not be structural and therefore may not justify investment in interconnection capacity. Next to advantages and benefits, interconnection is faced with costs and barriers. Firstly, there are investment costs, which are high for building new interconnections, and there are energy losses that are caused by transporting electricity. A third possible barrier is congestion within the EU, which impedes the imported electricity to freely flow to demand areas (and hinders the export of electricity to neighbouring regions). Furthermore, interconnection may create loop flows. In addition, interconnection could lead to an increasing import dependency, which may create political resistance. And finally, there may be opposition from residents in the areas where the transmission and interconnection lines have to be built. Concerning regulatory issues, trade between markets is more likely to be impeded or distorted if market designs and rules between countries/regions differ substantially. Regulatory issues that are of relevance comprise rules concerning the timing of gate closure, imbalance arrangements, the firmness of transmission access rights, the type of tariff regulation, unbundling, the ownership of

  5. 18 CFR 292.306 - Interconnection costs.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any electric...

  6. High-density hybrid interconnect methodologies

    International Nuclear Information System (INIS)

    John, J.; Zimmermann, L.; Moor, P.De; Hoof, C.Van

    2003-01-01

    Full text: The presentation gives an overview of the state-of-the-art of hybrid integration and in particular the IMEC technological approaches that will be able to address future hybrid detector needs. The dense hybrid flip-chip integration of an array of detectors and its dedicated readout electronics can be achieved with a variety of solderbump techniques such as pure Indium or Indium alloys, Ph-In, Ni/PbSn, but also conducting polymers... Particularly for cooled applications or ultra-high density applications, Indium solderbump technology (electroplated or evaporated) is the method of choice. The state-of-the-art of solderbump technologies that are to a high degree independent of the underlying detector material will be presented and examples of interconnect densities between 5x1E4cm-2 and 1x1E6 cm-2 will be demonstrated. For several classes of detectors, flip-chip integration is not allowed since the detectors have to be illuminated from the top. This applies to image sensors for EUV applications such as GaN/AlGaN based detectors and to MEMS-based sensors. In such cases, the only viable interconnection method has to be through the (thinned) detector wafer followed by a solderbump-based integration. The approaches for dense and ultra-dense through-the-wafer interconnect 'vias' will be presented and wafer thinning approaches will be shown

  7. Manufacturing of planar ceramic interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  8. Stabilized copper plating method by programmed electroplated current: Accumulation of densely packed copper grains in the interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Li-Chi; Hsu, Li-Hsuan; Brahma, Sanjaya; Huang, Bo-Chia; Liu, Chun-Chu; Lo, Kuang-Yao, E-mail: kuanglo@mail.ncku.edu.tw

    2016-12-01

    Highlights: • Actual Cu interconnect experiences many times of annealing and then cause the stress. • Stack Cu grains with varying grain size successively to enhance packed density. • XRD and PBR analyze the residual stress of local and average area of plated Cu film. • High packed Cu grain with stable stress proved by texture of Cu(1 1 1) and Cu(2 0 0). - Abstract: In this work, we programmed the plating current to stack the different size of copper (Cu) grain and analyzed the relation between the sequence of different Cu grain size and the stability of the residual stress. The residual stress was measured with varying times of annealing process in order to reach the purpose of simulating the actual Cu interconnect process. We found that varied plating strategy will make different stabilization condition of residual stress through the proof of X-ray diffraction (XRD) and optical parallel beams reflection (PBR) method. The accumulation of Cu grains, formed by Cu grain with successive variation in grain size, would enhance the packing density better than only single grain size in the finite space. The high density of the grain boundary in the electroplated Cu film will be eliminated through annealing process and it will help to suppress the void formation in further interconnect process. The electroplated Cu film with the plating current of saw tooth wave can soon reach a stable tensile stress through annealing since the Cu grains with high packing density will be quickly eliminated to approach the minimum of the strain energy which reflects to variation in the texture of Cu (2 0 0). The result of this work illustrates the importance of how to stack different size of Cu grain, for achieving a densely packed Cu film which close to the Cu bulk.

  9. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  10. Regulate or deregulate. Influencing network interconnection charges

    Energy Technology Data Exchange (ETDEWEB)

    Van De Wielle, B.

    2003-06-01

    We study the choice between regulating interconnection charges or delegating their determination to the operators, both in a non-mature and a mature market. Three regulatory regimes are considered: full, cost-based and bill-and-keep. Delegation corresponds to bargaining about the interconnection charges using the regulatory schemes as disagreement outcomes. Applying regulation benefits the consumers. Under full regulation, access charges account for asymmetries and allow a unique Ramsey price. Delegation benefits the operators. In a mature market delegation robs the government of any market influence. In a non-mature market government preferences coincide with those of the largest operator and are disadvantageous for entry.

  11. 76 FR 16405 - Notice of Attendance at PJM INterconnection, L.L.C., Meetings

    Science.gov (United States)

    2011-03-23

    ... INterconnection, L.L.C., Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C., (PJM...: Docket No. EL05-121, PJM Interconnection, L.L.C. Docket No. ER06-456, PJM Interconnection, L.L.C. Docket...

  12. 78 FR 19259 - Notice of Attendance at PJM Interconnection, L.L.C. Meetings

    Science.gov (United States)

    2013-03-29

    ... Interconnection, L.L.C. Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C. (PJM... proceedings: Docket No. EL05-121, PJM Interconnection, L.L.C. Docket No. EL08-14, Black Oak Energy LLC, et al...

  13. 76 FR 42534 - Mandatory Reliability Standards for Interconnection Reliability Operating Limits; System...

    Science.gov (United States)

    2011-07-19

    ... Reliability Operating Limits; System Restoration Reliability Standards AGENCY: Federal Energy Regulatory... data necessary to analyze and monitor Interconnection Reliability Operating Limits (IROL) within its... Interconnection Reliability Operating Limits, Order No. 748, 134 FERC ] 61,213 (2011). \\2\\ The term ``Wide-Area...

  14. 77 FR 10505 - Notice of Attendance at PJM Interconnection, L.L.C. Meetings

    Science.gov (United States)

    2012-02-22

    ... Interconnection, L.L.C. Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C. (PJM..., PJM Interconnection, L.L.C. Docket Nos. ER06-456, ER06-880, ER06-954, ER06-1271, EL07-57, ER07-424...

  15. Assessment of on-farm anaerobic digester grid interconnections

    International Nuclear Information System (INIS)

    Ruhnke, W.

    2006-01-01

    While several anaerobic digestion (AD) pilot plants have recently been built in Canada, early reports suggest that interconnection barriers are delaying their widescale implementation. This paper examined grid interconnection experiences from the perspectives of farmers, local distributing companies (LDCs) and other stakeholders. The aim of the paper was to identify challenges to the implementation of AD systems. Case studies included an Ontario Dairy Herd AD system generating 50 kW; a Saskatchewan hog farm AD system generating 120 kW and an Alberta outdoor beef feedlot AD system generating 1000 kW. Two survey forms were created for project operators, and LDCs. The following 3 category barriers were identified: (1) technical concerns over islanding conditions, power quality requirements, power flow studies and other engineering analyses; (2) business practices barriers such as a lack of response after initial utility contact; and (3) regulatory barriers including the unavailability of fair buy-back rates, the lack of net metering programs, restrictive net metering programs, and pricing issues. It was suggested that collaborative efforts among all stakeholders are needed to resolve barriers quickly. Recommendations included the adoption of uniform technical standards for connecting generators to the grid, as well as adopting standard commercial practices for any required LDC interconnection review. It was also suggested that standard business terms for interconnection agreements should be established. Regulatory principles should be compatible with distributed power choices in regulated and unregulated markets. It was concluded that resolving interconnection barriers is a critical step towards realizing market opportunities available for AD technologies. refs., tabs., figs

  16. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    Science.gov (United States)

    Siaw, Fei-Lu

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%. PMID:24453823

  17. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Fei-Lu Siaw

    2013-01-01

    Full Text Available This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells’ voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  18. A systematic method of interconnection optimization for dense-array concentrator photovoltaic system.

    Science.gov (United States)

    Siaw, Fei-Lu; Chong, Kok-Keong

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  19. Optoelectronic interconnects for 3D wafer stacks

    Science.gov (United States)

    Ludwig, David; Carson, John C.; Lome, Louis S.

    1996-01-01

    Wafer and chip stacking are envisioned as means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper will provide definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies will be discussed.

  20. Method of bonding an interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Pal, Uday B.; Isenberg, Arnold O.; Folser, George R.

    1992-01-01

    An electrochemical cell containing an air electrode (16), contacting electrolyte and electronically conductive interconnection layer (26), and a fuel electrode, has the interconnection layer (26) attached by: (A) applying a thin, closely packed, discrete layer of LaCrO.sub.3 particles (30), doped with an element selected from the group consisting of Ca, Sr, Co, Ba, Mg and their mixtures on a portion of the air electrode, and then (B) electrochemical vapor depositing a dense skeletal structure (32) between and around the doped LaCrO.sub.3 particles (30).

  1. New organization scheme for the energy supply in the not interconnected zones of Colombia

    International Nuclear Information System (INIS)

    Zapata, Josue; Bayona Lugdy

    2001-01-01

    The paper shows a new scheme of solutions in the financial institutional environment and regulatory, in this sense it thinks about the creation from a support unit to the rural energy administration that takes charge of to identify energy solutions and the technical and organizational support of the service of a foundation that manage the obtained resources and a interconnected scheme to the current conditions of the NIZ. In Colombia the not interconnected zones NIZ corresponds those of the country that don't receive electric power service through the national interconnected system, and who interconnection is not economically feasible

  2. Comparing Germany's and California's Interconnection Processes for PV Systems (White Paper)

    Energy Technology Data Exchange (ETDEWEB)

    Tweedie, A.; Doris, E.

    2011-07-01

    Establishing interconnection to the grid is a recognized barrier to the deployment of distributed energy generation. This report compares interconnection processes for photovoltaic projects in California and Germany. This report summarizes the steps of the interconnection process for developers and utilities, the average length of time utilities take to process applications, and paperwork required of project developers. Based on a review of the available literature, this report finds that while the interconnection procedures and timelines are similar in California and Germany, differences in the legal and regulatory frameworks are substantial.

  3. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Kuo, Lewis J. H.; Vora, Shailesh D.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.

  4. Interconnectivity: Benefits and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Access to affordable and reliable electricity supplies is a basic prerequisite for economic and social development, prosperity, health, education and all other aspects of modern society. Electricity can be generated both near and far from the consumption areas as transmission lines, grid interconnections and distribution systems can transport it to the final consumer. In the vast majority of countries, the electricity sector used to be owned and run by the state. The wave of privatisation and market introduction in a number of countries and regions which started in the late 1980's has in many cases involved unbundling of generation from transmission and distribution (T and D). This has nearly everywhere exposed transmission bottlenecks limiting the development of well-functioning markets. Transmission on average accounts for about 10-15% of total final kWh cost paid by the end-user but it is becoming a key issue for effective operation of liberalised markets and for their further development. An integrated and adequate transmission infrastructure is of utmost importance for ensuring the delivery of the most competitively priced electricity, including externalities, to customers, both near and far from the power generating facilities. In this report, the role of interconnectivity in the development of energy systems is examined with the associated socio-economic, environmental, financial and regulatory aspects that must be taken into account for successful interconnection projects.

  5. Generation adequacy and transmission interconnection in regional electricity markets

    International Nuclear Information System (INIS)

    Cepeda, Mauricio; Saguan, Marcelo; Finon, Dominique; Pignon, Virginie

    2009-01-01

    The power system capacity adequacy has public good features that cannot be entirely solved by electricity markets. Regulatory intervention is then necessary and established methods have been used to assess adequacy and help regulators to fix this market failure. In regional electricity markets, transmission interconnections play an important role in contributing to adequacy. However, the adequacy problem and related policy are typically considered at a national level. This paper presents a simple model to study how the interconnection capacity interacts with generation adequacy. First results indicate that increasing interconnection capacity between systems improves adequacy up to a certain level; further increases do not procure additional adequacy improvements. Furthermore, besides adequacy improvement, increasing transmission capacity under asymmetric adequacy criteria or national system characteristics could create several concerns about externalities. These results imply that regional coordination of national adequacy policies is essential to internalise adequacy of cross-border effects.

  6. Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Spengler, Charles J.; Folser, George R.; Vora, Shailesh D.; Kuo, Lewis; Richards, Von L.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.

  7. CWDM for very-short-reach and optical-backplane interconnections

    Science.gov (United States)

    Laha, Michael J.

    2002-06-01

    Course Wavelength Division Multiplexing (CWDM) provides access to next generation optical interconnect data rates by utilizing conventional electro-optical components that are widely available in the market today. This is achieved through the use of CWDM multiplexers and demultiplexers that integrate commodity type active components, lasers and photodiodes, into small optical subassemblies. In contrast to dense wavelength division multiplexing (DWDM), in which multiple serial data streams are combined to create aggregate data pipes perhaps 100s of gigabits wide, CWDM uses multiple laser sources contained in one module to create a serial equivalent data stream. For example, four 2.5 Gb/s lasers are multiplexed to create a 10 Gb/s data pipe. The advantages of CWDM over traditional serial optical interconnects include lower module power consumption, smaller packaging, and a superior electrical interface. This discussion will detail the concept of CWDM and design parameters that are considered when productizing a CWDM module into an industry standard optical interconnect. Additionally, a scalable parallel CWDM hybrid architecture will be described that allows the transport of large amounts of data from rack to rack in an economical fashion. This particular solution is targeted at solving optical backplane bottleneck problems predicted for the next generation terabit and petabit routers.

  8. National Offshore Wind Energy Grid Interconnection Study

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  9. Making connections: Case studies of interconnection barriers and their impact on distributed power projects

    Energy Technology Data Exchange (ETDEWEB)

    Alderfer, B.; Eldridge, M.; Starrs, T.

    2000-07-25

    Distributed power is modular electric generation or storage located close to the point of use. Based on interviews of distributed generation project proponents, this report reviews the barriers that distributed generators of electricity are encountering when attempting to interconnect to the electrical grid. Descriptions of 26 of 65 case studies are included in the report. The survey found and the report describes a wide range of technical, business-practice, and regulatory barriers to interconnection. An action plan for reducing the impact of these barriers is also included.

  10. Interconnection Guidelines

    Science.gov (United States)

    The Interconnection Guidelines provide general guidance on the steps involved with connecting biogas recovery systems to the utility electrical power grid. Interconnection best practices including time and cost estimates are discussed.

  11. Methodology for assessing the impacts of distributed generation interconnection

    Directory of Open Access Journals (Sweden)

    Luis E. Luna

    2011-06-01

    Full Text Available This paper proposes a methodology for identifying and assessing the impact of distributed generation interconnection on distribution systems using Monte Carlo techniques. This methodology consists of two analysis schemes: a technical analysis, which evaluates the reliability conditions of the distribution system; on the other hand, an economic analysis that evaluates the financial impacts on the electric utility and its customers, according to the system reliability level. The proposed methodology was applied to an IEEE test distribution system, considering different operation schemes for the distributed generation interconnection. The application of each one of these schemes provided significant improvements regarding the reliability and important economic benefits for the electric utility. However, such schemes resulted in negative profitability levels for certain customers, therefore, regulatory measures and bilateral contracts were proposed which would provide a solution for this kind of problem.

  12. Transurban interconnectivities

    DEFF Research Database (Denmark)

    Jørgensen, Claus Møller

    2012-01-01

    This essay discusses the interpretation of the revolutionary situations of 1848 in light of recent debates on interconnectivity in history. The concept of transurban interconnectivities is proposed as the most precise concept to capture the nature of interconnectivity in 1848. It is argued....... It is argued that circulating political communication accounts for similarities with respect to political agenda, organisational form and political repertoire evident in urban settings across Europe. This argument is supported by a series of examples of local organisation and local appropriations of liberalism...

  13. Optical interconnects

    CERN Document Server

    Chen, Ray T

    2006-01-01

    This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical

  14. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    Science.gov (United States)

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  15. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    International Nuclear Information System (INIS)

    Sabourin, D; Snakenborg, D; Dufva, M

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observation. The interconnection block method is scalable, flexible and supports high interconnection density. The average pressure limit of the interconnection block was near 5.5 bar and all individual results were well above the 2 bar threshold considered applicable to most microfluidic applications

  16. 78 FR 21928 - Demand Response Coalition v. PJM Interconnection, L.L.C.; Notice of Complaint

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-57-000] Demand Response... Demand Response Coalition \\1\\ (Complainant) filed a formal complaint against the PJM Interconnection, L.L... Plan Enhancements'') violate section 205 of the FPA and are therefore unenforceable. \\1\\ The Demand...

  17. High Density Interconnect Microstrip Patch Antenna for 5G Base Stations with Integrated Filtering Performance

    Directory of Open Access Journals (Sweden)

    Marco Salucci

    2018-04-01

    Full Text Available The elementary radiator of a planar array for next generation millimeter-wave (mm-wave 5G base stations is described. The antenna is designed for high density interconnect (HDI manufacturing for yielding a compact, densely-interconnected, and highly-integrable stacked structure. The layout of the single element is determined by directly optimizing key radiation features of the whole planar arrangement according to specific application-driven requirements. In addition, thanks to the exploitation of a spline-shaped modelling of the radiator, suitable performance in terms of impedance matching, realized gain, half-power beamwidth (HPBW, polarization purity, and inter-element isolation are achieved within the 28-GHz pass-band. Moreover, integrated out-of-band filtering capabilities are obtained in selected and wide non-contiguous stop-bands without additional circuitry.

  18. Photovoltaic sub-cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne

    2017-05-09

    Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.

  19. Interconnection blocks with minimal dead volumes permitting planar interconnection to thin microfluidic devices

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Martin

    2010-01-01

    We have previously described 'Interconnection Blocks' which are re-usable, non-integrated PDMS blocks which allowing multiple, aligned and planar microfluidic interconnections. Here, we describe Interconnection Block versions with zero dead volumes that allow fluidic interfacing to flat or thin s...

  20. Interconnection policy: a theoretical survey

    Directory of Open Access Journals (Sweden)

    César Mattos

    2003-01-01

    Full Text Available This article surveys the theoretical foundations of interconnection policy. The requirement of an interconnection policy should not be taken for granted in all circumstances, even considering the issue of network externalities. On the other hand, when it is required, an encompassing interconnection policy is usually justified. We provide an overview of the theory on interconnection pricing that results in several different prescriptions depending on which problem the regulator aims to address. We also present a survey on the literature on two-way interconnection.

  1. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Hans Martin

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observ...

  2. Interconnected networks

    CERN Document Server

    2016-01-01

    This volume provides an introduction to and overview of the emerging field of interconnected networks which include multi layer or multiplex networks, as well as networks of networks. Such networks present structural and dynamical features quite different from those observed in isolated networks. The presence of links between different networks or layers of a network typically alters the way such interconnected networks behave – understanding the role of interconnecting links is therefore a crucial step towards a more accurate description of real-world systems. While examples of such dissimilar properties are becoming more abundant – for example regarding diffusion, robustness and competition – the root of such differences remains to be elucidated. Each chapter in this topical collection is self-contained and can be read on its own, thus making it also suitable as reference for experienced researchers wishing to focus on a particular topic.

  3. Interconnection of Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Emerson [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-19

    This is a presentation on interconnection of distributed energy resources, including the relationships between different aspects of interconnection, best practices and lessons learned from different areas of the U.S., and an update on technical advances and standards for interconnection.

  4. A metallic buried interconnect process for through-wafer interconnection

    International Nuclear Information System (INIS)

    Ji, Chang-Hyeon; Herrault, Florian; Allen, Mark G

    2008-01-01

    In this paper, we present the design, fabrication process and experimental results of electroplated metal interconnects buried at the bottom of deep silicon trenches with vertical sidewalls. A manual spray-coating process along with a unique trench-formation process has been developed for the electroplating of a metal interconnection structure at the bottom surface of the deep trenches. The silicon etch process combines the isotropic dry etch process and conventional Bosch process to fabricate a deep trench with angled top-side edges and vertical sidewalls. The resulting trench structure, in contrast to the trenches fabricated by wet anisotropic etching, enables spray-coated photoresist patterning with good sidewall and top-side edge coverage while maintaining the ability to form a high-density array of deep trenches without excessive widening of the trench opening. A photoresist spray-coating process was developed and optimized for the formation of electroplating mold at the bottom of 300 µm deep trenches having vertical sidewalls. A diluted positive tone photoresist with relatively high solid content and multiple coating with baking between coating steps has been experimentally proven to provide high quality sidewall and edge coverage. To validate the buried interconnect approach, a three-dimensional daisy chain structure having a buried interconnect as the bottom connector and traces on the wafer surface as the top conductor has been designed and fabricated

  5. Benefits of transmission interconnections

    International Nuclear Information System (INIS)

    Lyons, D.

    2006-01-01

    The benefits of new power transmission interconnections from Alberta were discussed with reference to the challenges and measures needed to move forward. Alberta's electricity system has had a long period of sustained growth in generation and demand and this trend is expected to continue. However, no new interconnections have been built since 1985 because the transmission network has not expanded in consequence with the growth in demand. As such, Alberta remains weakly interconnected with the rest of the western region. The benefits of stronger transmission interconnections include improved reliability, long-term generation capability, hydrothermal synergies, a more competitive market, system efficiencies and fuel diversity. It was noted that the more difficult challenges are not technical. Rather, the difficult challenges lie in finding an appropriate business model that recognizes different market structures. It was emphasized that additional interconnections are worthwhile and will require significant collaboration among market participants and governments. It was concluded that interties enable resource optimization between systems and their benefits far exceed their costs. tabs., figs

  6. Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plug 'n' play functionality

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Bundgaard, Frederik; Geschke, Oliver

    2008-01-01

    A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution for interconn...... external metal ferrules and the system. Theoretical calculations are made to dimension and model the integrated fluidic interconnection. Leakage tests are performed on the interconnections, in order to experimentally confirm the model, and detect its limits....

  7. In-memory interconnect protocol configuration registers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  8. In-memory interconnect protocol configuration registers

    Science.gov (United States)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  9. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  10. Empirical Bayes conditional independence graphs for regulatory network recovery

    Science.gov (United States)

    Mahdi, Rami; Madduri, Abishek S.; Wang, Guoqing; Strulovici-Barel, Yael; Salit, Jacqueline; Hackett, Neil R.; Crystal, Ronald G.; Mezey, Jason G.

    2012-01-01

    Motivation: Computational inference methods that make use of graphical models to extract regulatory networks from gene expression data can have difficulty reconstructing dense regions of a network, a consequence of both computational complexity and unreliable parameter estimation when sample size is small. As a result, identification of hub genes is of special difficulty for these methods. Methods: We present a new algorithm, Empirical Light Mutual Min (ELMM), for large network reconstruction that has properties well suited for recovery of graphs with high-degree nodes. ELMM reconstructs the undirected graph of a regulatory network using empirical Bayes conditional independence testing with a heuristic relaxation of independence constraints in dense areas of the graph. This relaxation allows only one gene of a pair with a putative relation to be aware of the network connection, an approach that is aimed at easing multiple testing problems associated with recovering densely connected structures. Results: Using in silico data, we show that ELMM has better performance than commonly used network inference algorithms including GeneNet, ARACNE, FOCI, GENIE3 and GLASSO. We also apply ELMM to reconstruct a network among 5492 genes expressed in human lung airway epithelium of healthy non-smokers, healthy smokers and individuals with chronic obstructive pulmonary disease assayed using microarrays. The analysis identifies dense sub-networks that are consistent with known regulatory relationships in the lung airway and also suggests novel hub regulatory relationships among a number of genes that play roles in oxidative stress and secretion. Availability and implementation: Software for running ELMM is made available at http://mezeylab.cb.bscb.cornell.edu/Software.aspx. Contact: ramimahdi@yahoo.com or jgm45@cornell.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22685074

  11. Policy issues in interconnecting networks

    Science.gov (United States)

    Leiner, Barry M.

    1989-01-01

    To support the activities of the Federal Research Coordinating Committee (FRICC) in creating an interconnected set of networks to serve the research community, two workshops were held to address the technical support of policy issues that arise when interconnecting such networks. The workshops addressed the required and feasible technologies and architectures that could be used to satisfy the desired policies for interconnection. The results of the workshop are documented.

  12. Multi-net optimization of VLSI interconnect

    CERN Document Server

    Moiseev, Konstantin; Wimer, Shmuel

    2015-01-01

    This book covers layout design and layout migration methodologies for optimizing multi-net wire structures in advanced VLSI interconnects. Scaling-dependent models for interconnect power, interconnect delay and crosstalk noise are covered in depth, and several design optimization problems are addressed, such as minimization of interconnect power under delay constraints, or design for minimal delay in wire bundles within a given routing area. A handy reference or a guide for design methodologies and layout automation techniques, this book provides a foundation for physical design challenges of interconnect in advanced integrated circuits.  • Describes the evolution of interconnect scaling and provides new techniques for layout migration and optimization, focusing on multi-net optimization; • Presents research results that provide a level of design optimization which does not exist in commercially-available design automation software tools; • Includes mathematical properties and conditions for optimal...

  13. Optical interconnects based on VCSELs and low-loss silicon photonics

    Science.gov (United States)

    Aalto, Timo; Harjanne, Mikko; Karppinen, Mikko; Cherchi, Matteo; Sitomaniemi, Aila; Ollila, Jyrki; Malacarne, Antonio; Neumeyr, Christian

    2018-02-01

    Silicon photonics with micron-scale Si waveguides offers most of the benefits of submicron SOI technology while avoiding most of its limitations. In particular, thick silicon-on-insulator (SOI) waveguides offer 0.1 dB/cm propagation loss, polarization independency, broadband single-mode (SM) operation from 1.2 to >4 µm wavelength and ability to transmit high optical powers (>1 W). Here we describe the feasibility of Thick-SOI technology for advanced optical interconnects. With 12 μm SOI waveguides we demonstrate efficient coupling between standard single-mode fibers, vertical-cavity surface-emitting lasers (VCSELs) and photodetectors (PDs), as well as wavelength multiplexing in small footprint. Discrete VCSELs and PDs already support 28 Gb/s on-off keying (OOK), which shows a path towards 50-100 Gb/s bandwidth per wavelength by using more advanced modulation formats like PAM4. Directly modulated VCSELs enable very power-efficient optical interconnects for up to 40 km distance. Furthermore, with 3 μm SOI waveguides we demonstrate extremely dense and low-loss integration of numerous optical functions, such as multiplexers, filters, switches and delay lines. Also polarization independent and athermal operation is demonstrated. The latter is achieved by using short polymer waveguides to compensate for the thermo-optic effect in silicon. New concepts for isolator integration and polarization rotation are also explained.

  14. Decentralised output feedback control of Markovian jump interconnected systems with unknown interconnections

    Science.gov (United States)

    Li, Li-Wei; Yang, Guang-Hong

    2017-07-01

    The problem of decentralised output feedback control is addressed for Markovian jump interconnected systems with unknown interconnections and general transition rates (TRs) allowed to be unknown or known with uncertainties. A class of decentralised dynamic output feedback controllers are constructed, and a cyclic-small-gain condition is exploited to dispose the unknown interconnections so that the resultant closed-loop system is stochastically stable and satisfies an H∞ performance. With slack matrices to cope with the nonlinearities incurred by unknown and uncertain TRs in control synthesis, a novel controller design condition is developed in linear matrix inequality formalism. Compared with the existing works, the proposed approach leads to less conservatism. Finally, two examples are used to illustrate the effectiveness of the new results.

  15. Essays on optimal capacity and optimal regulation of interconnection infrastructures

    Science.gov (United States)

    Boffa, Federico

    The integration between geographically differentiated markets or between vertically related industries generate effects on welfare that depend on the structure of the underlying markets. My thesis investigates the impact of geographical interconnection on welfare, and illustrates welfare-enhancing modes of regulation of vertically integrated industries and of geographically integrated markets. The first chapter analyzes the effects of interconnection between two formerly fully-separated markets under the assumptions that producers in the two markets are capacity-constrained, and tacitly collude whenever it is rational for them to do so. I find that there exists a set of assumptions under which interconnection brings about greater collusion, hence it reduces overall welfare. The second chapter analyzes the optimal interconnection capacity allocation mechanism for a benevolent electricity regulator when generation is not competitive. The regulator's intervention should not only ensure that interconnection capacity is efficiently allocated to the most efficient firms, but it should also induce a higher welfare in the upstream generation market. In a two-node setting, with one firm per node, I show that the regulatory intervention becomes more effective as the cost asymmetries between the two firms become more pronounced. The third chapter illustrates a regulation mechanism for vertically related industries. Ownership shares of the upstream industry (that displays economies of scale) are allocated to the downstream (competitive) firms in proportion to their shares in the final goods market. I show that the mechanism combines the benefits of vertical integration with those of vertical separation. The advantages of vertical integration consist in avoiding double marginalization, and in internalizing the reduction in average cost resulting from the upstream increase in output; on the other hand, vertical separation allows to preserve the competitiveness of the downstream

  16. Asymmetric ZnO panel-like hierarchical architectures with highly interconnected pathways for free-electron transport and photovoltaic improvements.

    Science.gov (United States)

    Shi, Yantao; Zhu, Chao; Wang, Lin; Li, Wei; Fung, Kwok Kwong; Wang, Ning

    2013-01-02

    Through a rapid and template-free precipitation approach, we synthesized an asymmetric panel-like ZnO hierarchical architecture (PHA) for photoanodes of dye-sensitized solar cells (DSCs). The two sides of the PHA are constructed differently using densely interconnected, mono-crystalline and ultrathin ZnO nanosheets. By mixing these PHAs with ZnO nanoparticles (NPs), we developed an effective and feasible strategy to improve the electrical transport and photovoltaic performance of the composite photoanodes of DSCs. The highly crystallized and interconnected ZnO nanosheets largely minimized the total grain boundaries within the composite photoanodes and thus served as direct pathways for the transport and effective collection of free electrons. Through low-temperature (200 °C) annealing, these novel composite photoanodes achieved high conversion efficiencies of up to 5.59% for ZnO-based quasi-solid DSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fuel cell system with interconnect

    Science.gov (United States)

    Goettler, Richard; Liu, Zhien

    2017-12-12

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  18. Variation Tolerant On-Chip Interconnects

    CERN Document Server

    Nigussie, Ethiopia Enideg

    2012-01-01

    This book presents design techniques, analysis and implementation of high performance and power efficient, variation tolerant on-chip interconnects.  Given the design paradigm shift to multi-core, interconnect-centric designs and the increase in sources of variability and their impact in sub-100nm technologies, this book will be an invaluable reference for anyone concerned with the design of next generation, high-performance electronics systems. Provides comprehensive, circuit-level explanation of high-performance, energy-efficient, variation-tolerant on-chip interconnect; Describes design techniques to mitigate problems caused by variation; Includes techniques for design and implementation of self-timed on-chip interconnect, delay variation insensitive communication protocols, high speed signaling techniques and circuits, bit-width independent completion detection and process, voltage and temperature variation tolerance.                          

  19. Universal Interconnection Technology Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Sheaffer, P.; Lemar, P.; Honton, E. J.; Kime, E.; Friedman, N. R.; Kroposki, B.; Galdo, J.

    2002-10-01

    The Universal Interconnection Technology (UIT) Workshop - sponsored by the U.S. Department of Energy, Distributed Energy and Electric Reliability (DEER) Program, and Distribution and Interconnection R&D - was held July 25-26, 2002, in Chicago, Ill., to: (1) Examine the need for a modular universal interconnection technology; (2) Identify UIT functional and technical requirements; (3) Assess the feasibility of and potential roadblocks to UIT; (4) Create an action plan for UIT development. These proceedings begin with an overview of the workshop. The body of the proceedings provides a series of industry representative-prepared papers on UIT functions and features, present interconnection technology, approaches to modularization and expandability, and technical issues in UIT development as well as detailed summaries of group discussions. Presentations, a list of participants, a copy of the agenda, and contact information are provided in the appendices of this document.

  20. Low power interconnect design

    CERN Document Server

    Saini, Sandeep

    2015-01-01

    This book provides practical solutions for delay and power reduction for on-chip interconnects and buses.  It provides an in depth description of the problem of signal delay and extra power consumption, possible solutions for delay and glitch removal, while considering the power reduction of the total system.  Coverage focuses on use of the Schmitt Trigger as an alternative approach to buffer insertion for delay and power reduction in VLSI interconnects. In the last section of the book, various bus coding techniques are discussed to minimize delay and power in address and data buses.   ·         Provides practical solutions for delay and power reduction for on-chip interconnects and buses; ·         Focuses on Deep Sub micron technology devices and interconnects; ·         Offers in depth analysis of delay, including details regarding crosstalk and parasitics;  ·         Describes use of the Schmitt Trigger as a versatile alternative approach to buffer insertion for del...

  1. Epidemics spreading in interconnected complex networks

    International Nuclear Information System (INIS)

    Wang, Y.; Xiao, G.

    2012-01-01

    We study epidemic spreading in two interconnected complex networks. It is found that in our model the epidemic threshold of the interconnected network is always lower than that in any of the two component networks. Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. Theoretical analysis and simulation results show that, generally speaking, the epidemic size is not significantly affected by the inter-network correlation. In interdependent networks which can be viewed as a special case of interconnected networks, however, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant. -- Highlights: ► We study epidemic spreading in two interconnected complex networks. ► The epidemic threshold is lower than that in any of the two networks. And Interconnection correlation has impacts on threshold and average outbreak size. ► Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. ► We demonstrated and proved that Interconnection correlation does not affect epidemic size significantly. ► In interdependent networks, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant.

  2. Epidemics spreading in interconnected complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of High Performance Computing, Agency for Science, Technology and Research (A-STAR), Singapore 138632 (Singapore); Xiao, G., E-mail: egxxiao@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2012-09-03

    We study epidemic spreading in two interconnected complex networks. It is found that in our model the epidemic threshold of the interconnected network is always lower than that in any of the two component networks. Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. Theoretical analysis and simulation results show that, generally speaking, the epidemic size is not significantly affected by the inter-network correlation. In interdependent networks which can be viewed as a special case of interconnected networks, however, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant. -- Highlights: ► We study epidemic spreading in two interconnected complex networks. ► The epidemic threshold is lower than that in any of the two networks. And Interconnection correlation has impacts on threshold and average outbreak size. ► Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. ► We demonstrated and proved that Interconnection correlation does not affect epidemic size significantly. ► In interdependent networks, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant.

  3. Comprehensive evaluation of global energy interconnection development index

    Science.gov (United States)

    Liu, Lin; Zhang, Yi

    2018-04-01

    Under the background of building global energy interconnection and realizing green and low-carbon development, this article constructed the global energy interconnection development index system which based on the current situation of global energy interconnection development. Through using the entropy method for the weight analysis of global energy interconnection development index, and then using gray correlation method to analyze the selected countries, this article got the global energy interconnection development index ranking and level classification.

  4. Interconnect fatigue design for terrestrial photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-03-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  5. Integrated Optical Interconnect Architectures for Embedded Systems

    CERN Document Server

    Nicolescu, Gabriela

    2013-01-01

    This book provides a broad overview of current research in optical interconnect technologies and architectures. Introductory chapters on high-performance computing and the associated issues in conventional interconnect architectures, and on the fundamental building blocks for integrated optical interconnect, provide the foundations for the bulk of the book which brings together leading experts in the field of optical interconnect architectures for data communication. Particular emphasis is given to the ways in which the photonic components are assembled into architectures to address the needs of data-intensive on-chip communication, and to the performance evaluation of such architectures for specific applications.   Provides state-of-the-art research on the use of optical interconnects in Embedded Systems; Begins with coverage of the basics for high-performance computing and optical interconnect; Includes a variety of on-chip optical communication topologies; Features coverage of system integration and opti...

  6. Recent Development of SOFC Metallic Interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  7. Misalignment corrections in optical interconnects

    Science.gov (United States)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or

  8. Report on electricity interconnection management and use. June 2008

    International Nuclear Information System (INIS)

    2008-06-01

    regarding cross-border trades to the national regulatory authorities - or to the Agency for the Cooperation of Energy Regulators (ACER)? - How can Switzerland be integrated effectively into the regional market integration process? - What status should the organised markets be given in future, taking account of the crucial role they have to play in cross-border trades and eventually in the construction of the European electricity market? - How can the projects to be developed within the four Regional Initiatives in which France is taking part be prioritised? - How can the calculation of interconnection capacities be improved and how can we prevent cross-border trades from being discriminated against in favour of flows within a country? - How can the quality of access to interconnections be improved, and particularly the firmness with which capacity is offered by the TSOs, without affecting the level of capacity made available to the market? - How can the TSOs be incentivised to speed up integration of the markets, especially of the balancing markets, which are the foundation of national market design? The publication of this second report by CRE concerning electricity interconnection management and use provides an opportunity to launch the debate on all these crucial issues and consider together the responses that can be applied to make market integration a success

  9. Development and operation of interconnections in a restructuring context

    International Nuclear Information System (INIS)

    2003-01-01

    In many countries the electrical network is not fully interconnected and the best technical solution to achieve interconnection has to be found. At the same time the electricity industry is being restructured and interconnecting independent energy markets presents technical challenges. It is therefore timely to consider interconnection development and operation options: examine the benefits of interconnecting electrical networks and the development strategies, review the interconnection design options and the technologies available, identify the operational issues, the security problems of large interconnected systems, the protection issues, consider the impact of the restructuring of the electrical supply industry, assess the political, environmental and social implications of interconnections. reorganized in slovenia from 5-7 april 2004. (author)

  10. Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms

    Science.gov (United States)

    Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)

    1996-01-01

    A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  11. Deconstructing the pluripotency gene regulatory network

    KAUST Repository

    Li, Mo

    2018-04-04

    Pluripotent stem cells can be isolated from embryos or derived by reprogramming. Pluripotency is stabilized by an interconnected network of pluripotency genes that cooperatively regulate gene expression. Here we describe the molecular principles of pluripotency gene function and highlight post-transcriptional controls, particularly those induced by RNA-binding proteins and alternative splicing, as an important regulatory layer of pluripotency. We also discuss heterogeneity in pluripotency regulation, alternative pluripotency states and future directions of pluripotent stem cell research.

  12. Deconstructing the pluripotency gene regulatory network

    KAUST Repository

    Li, Mo; Belmonte, Juan Carlos Izpisua

    2018-01-01

    Pluripotent stem cells can be isolated from embryos or derived by reprogramming. Pluripotency is stabilized by an interconnected network of pluripotency genes that cooperatively regulate gene expression. Here we describe the molecular principles of pluripotency gene function and highlight post-transcriptional controls, particularly those induced by RNA-binding proteins and alternative splicing, as an important regulatory layer of pluripotency. We also discuss heterogeneity in pluripotency regulation, alternative pluripotency states and future directions of pluripotent stem cell research.

  13. 47 CFR 90.477 - Interconnected systems.

    Science.gov (United States)

    2010-10-01

    ... part and medical emergency systems in the 450-470 MHz band, interconnection will be permitted only... operating on frequencies in the bands below 800 MHz are not subject to the interconnection provisions of...

  14. Carbon nanotubes for interconnects process, design and applications

    CERN Document Server

    Dijon, Jean; Maffucci, Antonio

    2017-01-01

    This book provides a single-source reference on the use of carbon nanotubes (CNTs) as interconnect material for horizontal, on-chip and 3D interconnects. The authors demonstrate the uses of bundles of CNTs, as innovative conducting material to fabricate interconnect through-silicon vias (TSVs), in order to improve the performance, reliability and integration of 3D integrated circuits (ICs). This book will be first to provide a coherent overview of exploiting carbon nanotubes for 3D interconnects covering aspects from processing, modeling, simulation, characterization and applications. Coverage also includes a thorough presentation of the application of CNTs as horizontal on-chip interconnects which can potentially revolutionize the nanoelectronics industry. This book is a must-read for anyone interested in the state-of-the-art on exploiting carbon nanotubes for interconnects for both 2D and 3D integrated circuits. Provides a single-source reference on carbon nanotubes for interconnect applications; Includes c...

  15. Geometrical optics of dense aerosols: forming dense plasma slabs.

    Science.gov (United States)

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  16. Interconnecting heterogeneous database management systems

    Science.gov (United States)

    Gligor, V. D.; Luckenbaugh, G. L.

    1984-01-01

    It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.

  17. An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering

    International Nuclear Information System (INIS)

    Zhu Zhang-Ming; Hao Bao-Tian; En Yun-Fei; Yang Yin-Tang; Li Yue-Jin

    2011-01-01

    On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses. (interdisciplinary physics and related areas of science and technology)

  18. Optimal interconnection and renewable targets for north-west Europe

    International Nuclear Information System (INIS)

    Lynch, Muireann Á.; Tol, Richard S.J.; O'Malley, Mark J.

    2012-01-01

    We present a mixed-integer, linear programming model for determining optimal interconnection for a given level of renewable generation using a cost minimisation approach. Optimal interconnection and capacity investment decisions are determined under various targets for renewable penetration. The model is applied to a test system for eight regions in Northern Europe. It is found that considerations on the supply side dominate demand side considerations when determining optimal interconnection investment: interconnection is found to decrease generation capacity investment and total costs only when there is a target for renewable generation. Higher wind integration costs see a concentration of wind in high-wind regions with interconnection to other regions. - Highlights: ► We use mixed-integer linear programming to determine optimal interconnection locations for given renewable targets. ► The model is applied to a test system for eight regions in Northern Europe. ► Interconnection reduces costs only when there is a renewable target. ► Wind integration costs affect the interconnection portfolio.

  19. The Interconnections of the LHC Cryomagnets

    CERN Document Server

    Jacquemod, A; Skoczen, Blazej; Tock, J P

    2001-01-01

    The main components of the LHC, the next world-class facility in high-energy physics, are the twin-aperture high-field superconducting cryomagnets to be installed in the existing 26.7-km long tunnel. After installation and alignment, the cryomagnets have to be interconnected. The interconnections must ensure the continuity of several functions: vacuum enclosures, beam pipe image currents (RF contacts), cryogenic circuits, electrical power supply, and thermal insulation. In the machine, about 1700 interconnections between cryomagnets are necessary. The interconnections constitute a unique system that is nearly entirely assembled in the tunnel. For each of them, various operations must be done: TIG welding of cryogenic channels (~ 50 000 welds), induction soldering of main superconducting cables (~ 10 000 joints), ultrasonic welding of auxiliary superconducting cables (~ 20 000 welds), mechanical assembly of various elements, and installation of the multi-layer insulation (~ 200 000 m2). Defective junctions cou...

  20. Epidemics in interconnected small-world networks.

    Science.gov (United States)

    Liu, Meng; Li, Daqing; Qin, Pengju; Liu, Chaoran; Wang, Huijuan; Wang, Feilong

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS) model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.

  1. Epidemics in interconnected small-world networks.

    Directory of Open Access Journals (Sweden)

    Meng Liu

    Full Text Available Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.

  2. Solar-cell interconnect design for terrestrial photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1984-01-01

    Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.

  3. Self-Rerouting and Curative Interconnect Technology (SERCUIT)

    Science.gov (United States)

    2017-12-01

    SPECIAL REPORT RDMR-CS-17-01 SELF-REROUTING AND CURATIVE INTERCONNECT TECHNOLOGY (SERCUIT) Shiv Joshi Concepts to Systems, Inc...Final 4. TITLE AND SUBTITLE Self-Rerouting and Curative Interconnect Technology (SERCUIT) 5. FUNDING NUMBERS 6. AUTHOR(S) Shiv Joshi...concepts2systems.com (p) 434-207-5189 x (f) Click to view full size Title Contract Number SELF-REROUTING AND CURATIVE INTERCONNECT TECHNOLOGY (SERCUIT) W911W6-17-C-0029

  4. Network interconnections: an architectural reference model

    NARCIS (Netherlands)

    Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.

    1985-01-01

    One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for

  5. Epidemics in interconnected small-world networks

    NARCIS (Netherlands)

    Liu, M.; Li, D.; Qin, P.; Liu, C.; Wang, H.; Wang, F.

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks

  6. Interconnect rise time in superconducting integrating circuits

    International Nuclear Information System (INIS)

    Preis, D.; Shlager, K.

    1988-01-01

    The influence of resistive losses on the voltage rise time of an integrated-circuit interconnection is reported. A distribution-circuit model is used to present the interconnect. Numerous parametric curves are presented based on numerical evaluation of the exact analytical expression for the model's transient response. For the superconducting case in which the series resistance of the interconnect approaches zero, the step-response rise time is longer but signal strength increases significantly

  7. 76 FR 39870 - PJM Interconnection, LLC; PJM Power Providers Group v. PJM Interconnection, LLC; Notice of Date...

    Science.gov (United States)

    2011-07-07

    .... EL11-20-001] PJM Interconnection, LLC; PJM Power Providers Group v. PJM Interconnection, LLC; Notice of... Sell Offers for Planned Generation Capacity Resources submitted into PJM's Reliability Pricing Model... presents an opportunity to exercise buyer market power; (2) whether the Fixed Resource Requirement (FRR...

  8. On the stability of the interface between dense plasma and liquid under electrical pulse discharge in liquid medium

    International Nuclear Information System (INIS)

    Starchyk, P.D.; Porytskyy, P.V.

    2005-01-01

    It is shown that the most important influence on the plasma of electrical pulse discharges in liquid have the processes in a zone of its contact with condensed medium. The investigations of growth of corrugations are conducted which arise on an interface between both the plasma channels of electrical pulse discharges and limiting it liquid. It is shown that the growth of perturbations caused by Rayleigh-Taylor instability are nonlinearly saturated. It is established the interconnection between both the pointed perturbations and the parameters of a dense plasma of discharge channel

  9. Optical Interconnects for Future Data Center Networks

    CERN Document Server

    Bergman, Keren; Tomkos, Ioannis

    2013-01-01

    Optical Interconnects for Future Data Center Networks covers optical networks and how they can provide high bandwidth, energy efficient interconnects with increased communication bandwidth. This volume, with contributions from leading researchers in the field, presents an integrated view of the expected future requirements of data centers and serves as a reference for some of the most advanced and promising solutions proposed by researchers from leading universities, research labs, and companies. The work also includes several novel architectures, each demonstrating different technologies such as optical circuits, optical switching, MIMO optical OFDM, and others. Additionally, Optical Interconnects for Future Data Center Networks provides invaluable insights into the benefits and advantages of optical interconnects and how they can be a promising alternative for future data center networks.

  10. Crosstalk in modern on-chip interconnects a FDTD approach

    CERN Document Server

    Kaushik, B K; Patnaik, Amalendu

    2016-01-01

    The book provides accurate FDTD models for on-chip interconnects, covering most recent advancements in materials and design. Furthermore, depending on the geometry and physical configurations, different electrical equivalent models for CNT and GNR based interconnects are presented. Based on the electrical equivalent models the performance comparison among the Cu, CNT and GNR-based interconnects are also discussed in the book. The proposed models are validated with the HSPICE simulations. The book introduces the current research scenario in the modeling of on-chip interconnects. It presents the structure, properties, and characteristics of graphene based on-chip interconnects and the FDTD modeling of Cu based on-chip interconnects. The model considers the non-linear effects of CMOS driver as well as the transmission line effects of interconnect line that includes coupling capacitance and mutual inductance effects. In a more realistic manner, the proposed model includes the effect of width-dependent MFP of the ...

  11. Review of Interconnection Practices and Costs in the Western States

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Volpi, Christina M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Manning, David [Western Interstate Energy Board (WIEB); McAllister, Richard [Western Interstate Energy Board (WIEB)

    2018-04-27

    The objective of this report is to evaluate the nature of barriers to interconnecting distributed PV, assess costs of interconnection, and compare interconnection practices across various states in the Western Interconnection. The report addresses practices for interconnecting both residential and commercial-scale PV systems to the distribution system. This study is part of a larger, joint project between the Western Interstate Energy Board (WIEB) and the National Renewable Energy Laboratory (NREL), funded by the U.S. Department of Energy, to examine barriers to distributed PV in the 11 states wholly within the Western Interconnection.

  12. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    Directory of Open Access Journals (Sweden)

    Recep Colak

    2010-10-01

    Full Text Available Computational prediction of functionally related groups of genes (functional modules from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented.We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB, by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples.We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely

  13. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    Science.gov (United States)

    Colak, Recep; Moser, Flavia; Chu, Jeffrey Shih-Chieh; Schönhuth, Alexander; Chen, Nansheng; Ester, Martin

    2010-10-25

    Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense) regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented. We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB), by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples. We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely available large

  14. Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej; Pers, Tune Hannes; Pinho Soares, Simao Pedro

    2010-01-01

    mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets...... with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites—metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment...... factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic...

  15. Identifying influential spreaders in interconnected networks

    International Nuclear Information System (INIS)

    Zhao, Dawei; Li, Lixiang; Huo, Yujia; Yang, Yixian; Li, Shudong

    2014-01-01

    Identifying the most influential spreaders in spreading dynamics is of the utmost importance for various purposes for understanding or controlling these processes. The existing relevant works are limited to a single network. Most real networks are actually not isolated, but typically coupled and affected by others. The properties of epidemic spreading have recently been found to have some significant differences in interconnected networks from those in a single network. In this paper, we focus on identifying the influential spreaders in interconnected networks. We find that the well-known k-shell index loses effectiveness; some insignificant spreaders in a single network become the influential spreaders in the whole interconnected networks while some influential spreaders become no longer important. The simulation results show that the spreading capabilities of the nodes not only depend on their influence for the network topology, but also are dramatically influenced by the spreading rate. Based on this perception, a novel index is proposed for measuring the influential spreaders in interconnected networks. We then support the efficiency of this index with numerical simulations. (paper)

  16. Free-Space Optical Interconnect Employing VCSEL Diodes

    Science.gov (United States)

    Simons, Rainee N.; Savich, Gregory R.; Torres, Heidi

    2009-01-01

    Sensor signal processing is widely used on aircraft and spacecraft. The scheme employs multiple input/output nodes for data acquisition and CPU (central processing unit) nodes for data processing. To connect 110 nodes and CPU nodes, scalable interconnections such as backplanes are desired because the number of nodes depends on requirements of each mission. An optical backplane consisting of vertical-cavity surface-emitting lasers (VCSELs), VCSEL drivers, photodetectors, and transimpedance amplifiers is the preferred approach since it can handle several hundred megabits per second data throughput.The next generation of satellite-borne systems will require transceivers and processors that can handle several Gb/s of data. Optical interconnects have been praised for both their speed and functionality with hopes that light can relieve the electrical bottleneck predicted for the near future. Optoelectronic interconnects provide a factor of ten improvement over electrical interconnects.

  17. Brookhaven segment interconnect

    International Nuclear Information System (INIS)

    Morse, W.M.; Benenson, G.; Leipuner, L.B.

    1983-01-01

    We have performed a high energy physics experiment using a multisegment Brookhaven FASTBUS system. The system was composed of three crate segments and two cable segments. We discuss the segment interconnect module which permits communication between the various segments

  18. MnCo{sub 2}O{sub 4} spinel chromium barrier coatings for SOFC interconnect by HVOF

    Energy Technology Data Exchange (ETDEWEB)

    Lagerbom, J.; Varis, T.; Pihlatie, M.; Himanen, O.; Saarinen, V.; Kiviaho, J.; Turunen, E. [VTT Technical Research Centre of Finland, Espoo (Finland); Puranen, J. [Tampere Univ. of Technology (Finland). Inst. of Materials Science

    2010-07-01

    Chromia released from steel parts used for interconnect plates by evaporation and condensation can quickly degrade the cell (cathode) performance in solid oxide fuel cell SOFC. Coatings on top of the IC plate can work as a chromium evaporation barrier. The coating material should have good electrical conductivity, high temperature stability and nearly the same coefficient of thermal expansion as the cell materials. One candidate for the coating material is MnCo{sub 2}O{sub 4} spinel because of its suitable properties. High velocity oxy fuel (HVOF) spraying was used for the coating application on Crofer 22 APU steel samples. Using commercial and self made spray dried powders together with an HV2000 spray gun it was possible to successfully manufacture, well adhering, dense and reasonably uniform coatings. The samples were tested in oxidation exposure tests in air followed by post analysis in SEM. Powders and coatings microstructures are presented here, both before and after exposure. It was found out that together with spraying parameters the powder characteristics used influence clearly to the coating quality. Especially as very thin coatings was aimed with dense structure fine powders was found to be essential. (orig.)

  19. Core Transcriptional Regulatory Circuit Controlled by the TAL1 Complex in Human T Cell Acute Lymphoblastic Leukemia

    OpenAIRE

    Sanda, Takaomi; Lawton, Lee N.; Barrasa, M. Inmaculada; Fan, Zi Peng; Kohlhammer, Holger; Gutierrez, Alejandro; Ma, Wenxue; Tatarek, Jessica; Ahn, Yebin; Kelliher, Michelle A.; Jamieson, Catriona H.M.; Staudt, Louis M.; Young, Richard A.; Look, A. Thomas

    2012-01-01

    The oncogenic transcription factor TAL1/SCL is aberrantly expressed in over 40% of cases of human T-cell acute lymphoblastic leukemia (T-ALL), emphasizing its importance in the molecular pathogenesis of T-ALL. Here we identify the core transcriptional regulatory circuit controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3 and RUNX1. We show that TAL1 forms a positive interconnected auto-regulatory loop with GATA3 and RUNX1, and that the TAL1 complex directly activates the MY...

  20. Confining but chirally symmetric dense and cold matter

    International Nuclear Information System (INIS)

    Glozman, L. Ya.

    2012-01-01

    The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.

  1. Optical backplane interconnect switch for data processors and computers

    Science.gov (United States)

    Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.

    1989-01-01

    An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.

  2. 76 FR 45248 - PJM Interconnection, L.L.C., PJM Power Providers Group v. PJM Interconnection, L.L.C...

    Science.gov (United States)

    2011-07-28

    ...-002; Docket No. EL11-20-001] PJM Interconnection, L.L.C., PJM Power Providers Group v. PJM Interconnection, L.L.C.; Supplemental Notice of Staff Technical Conference On June 13, 2011, the Commission issued... Resources Services, Inc., Maryland Public Service Commission, Monitoring Analytics, L.L.C., National Rural...

  3. SSC [Superconducting Super Collider] magnet mechanical interconnections

    International Nuclear Information System (INIS)

    Bossert, R.C.; Niemann, R.C.; Carson, J.A.; Ramstein, W.L.; Reynolds, M.P.; Engler, N.H.

    1989-03-01

    Installation of superconducting accelerator dipole and quadrupole magnets and spool pieces in the SSC tunnel requires the interconnection of the cryostats. The connections are both of an electrical and mechanical nature. The details of the mechanical connections are presented. The connections include piping, thermal shields and insulation. There are seven piping systems to be connected. These systems must carry cryogenic fluids at various pressures or maintain vacuum and must be consistently leak tight. The interconnection region must be able to expand and contract as magnets change in length while cooling and warming. The heat leak characteristics of the interconnection region must be comparable to that of the body of the magnet. Rapid assembly and disassembly is required. The magnet cryostat development program is discussed. Results of quality control testing are reported. Results of making full scale interconnections under magnet test situations are reviewed. 11 figs., 4 tabs

  4. Electro-optic techniques for VLSI interconnect

    Science.gov (United States)

    Neff, J. A.

    1985-03-01

    A major limitation to achieving significant speed increases in very large scale integration (VLSI) lies in the metallic interconnects. They are costly not only from the charge transport standpoint but also from capacitive loading effects. The Defense Advanced Research Projects Agency, in pursuit of the fifth generation supercomputer, is investigating alternatives to the VLSI metallic interconnects, especially the use of optical techniques to transport the information either inter or intrachip. As the on chip performance of VLSI continues to improve via the scale down of the logic elements, the problems associated with transferring data off and onto the chip become more severe. The use of optical carriers to transfer the information within the computer is very appealing from several viewpoints. Besides the potential for gigabit propagation rates, the conversion from electronics to optics conveniently provides a decoupling of the various circuits from one another. Significant gains will also be realized in reducing cross talk between the metallic routings, and the interconnects need no longer be constrained to the plane of a thin film on the VLSI chip. In addition, optics can offer an increased programming flexibility for restructuring the interconnect network.

  5. Fusion-bonded fluidic interconnects

    International Nuclear Information System (INIS)

    Fazal, I; Elwenspoek, M C

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are discussed in terms of the homogeneity and strength of fusion bond. High pressure testing shows that the bond strength is large enough for most applications of fluidic interconnects. The bond strength for 525 µm thick silicon, with glass tubes having an outer diameter of 6 mm and with a wall thickness of 2 mm, is more than 60 bars after annealing at a temperature of 800 °C

  6. A one-semester course in modeling of VSLI interconnections

    CERN Document Server

    Goel, Ashok

    2015-01-01

    Quantitative understanding of the parasitic capacitances and inductances, and the resultant propagation delays and crosstalk phenomena associated with the metallic interconnections on the very large scale integrated (VLSI) circuits has become extremely important for the optimum design of the state-of-the-art integrated circuits. More than 65 percent of the delays on the integrated circuit chip occur in the interconnections and not in the transistors on the chip. Mathematical techniques to model the parasitic capacitances, inductances, propagation delays, crosstalk noise, and electromigration-induced failure associated with the interconnections in the realistic high-density environment on a chip will be discussed. A One-Semester Course in Modeling of VLSI Interconnections also includes an overview of the future interconnection technologies for the nanotechnology circuits.

  7. Colligation, Or the Logical Inference of Interconnection

    DEFF Research Database (Denmark)

    Falster, Peter

    1998-01-01

    laws or assumptions. Yet interconnection as an abstract concept seems to be without scientific underpinning in pure logic. Adopting a historical viewpoint, our aim is to show that the reasoning of interconnection may be identified with a neglected kind of logical inference, called "colligation...

  8. Colligation or, The Logical Inference of Interconnection

    DEFF Research Database (Denmark)

    Franksen, Ole Immanuel; Falster, Peter

    2000-01-01

    laws or assumptions. Yet interconnection as an abstract concept seems to be without scientific underpinning in oure logic. Adopting a historical viewpoint, our aim is to show that the reasoning of interconnection may be identified with a neglected kind of logical inference, called "colligation...

  9. Adapting Memory Hierarchies for Emerging Datacenter Interconnects

    Institute of Scientific and Technical Information of China (English)

    江涛; 董建波; 侯锐; 柴琳; 张立新; 孙凝晖; 田斌

    2015-01-01

    Efficient resource utilization requires that emerging datacenter interconnects support both high performance communication and efficient remote resource sharing. These goals require that the network be more tightly coupled with the CPU chips. Designing a new interconnection technology thus requires considering not only the interconnection itself, but also the design of the processors that will rely on it. In this paper, we study memory hierarchy implications for the design of high-speed datacenter interconnects—particularly as they affect remote memory access—and we use PCIe as the vehicle for our investigations. To that end, we build three complementary platforms: a PCIe-interconnected prototype server with which we measure and analyze current bottlenecks; a software simulator that lets us model microarchitectural and cache hierarchy changes;and an FPGA prototype system with a streamlined switchless customized protocol Thunder with which we study hardware optimizations outside the processor. We highlight several architectural modifications to better support remote memory access and communication, and quantify their impact and limitations.

  10. Laser printing of 3D metallic interconnects

    Science.gov (United States)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  11. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Bastidas, D. M.

    2006-01-01

    Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation. (Author) 66 refs

  12. Driving Interconnected Networks to Supercriticality

    Directory of Open Access Journals (Sweden)

    Filippo Radicchi

    2014-04-01

    Full Text Available Networks in the real world do not exist as isolated entities, but they are often part of more complicated structures composed of many interconnected network layers. Recent studies have shown that such mutual dependence makes real networked systems potentially exposed to atypical structural and dynamical behaviors, and thus there is an urgent necessity to better understand the mechanisms at the basis of these anomalies. Previous research has mainly focused on the emergence of atypical properties in relation to the moments of the intra- and interlayer degree distributions. In this paper, we show that an additional ingredient plays a fundamental role for the possible scenario that an interconnected network can face: the correlation between intra- and interlayer degrees. For sufficiently high amounts of correlation, an interconnected network can be tuned, by varying the moments of the intra- and interlayer degree distributions, in distinct topological and dynamical regimes. When instead the correlation between intra- and interlayer degrees is lower than a critical value, the system enters in a supercritical regime where dynamical and topological phases are no longer distinguishable.

  13. Financial viability of the Sonora-Baja California interconnection line

    International Nuclear Information System (INIS)

    Alonso, G.; Ortega, G.

    2017-09-01

    In the Development Program of the National Electricity Sector 2015-2029, an electric interconnection line between Sonora and Baja California (Mexico) is proposed, this study analyzes the financial viability of this interconnection line based on the maximum hourly and seasonal energy demand between both regions and proposes alternatives for the supply of electric power that supports the economic convenience of this interconnection line. The results show that additional capacity is required in Sonora to cover the maximum demands of both regions since in the current condition of the National Electric System the interconnection line is not justified. (Author)

  14. Laser printed interconnects for flexible electronics

    Science.gov (United States)

    Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas

    Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  15. Carbon nanotube and graphene nanoribbon interconnects

    CERN Document Server

    Das, Debaprasad

    2014-01-01

    "The book, Caron Nanotube and Graphene Nanoribbon Interconnects, authored by Drs. Debapraad Das and Hafizur Rahaman serves as a good source of material on CNT and GNR interconnects for readers who wish to get into this area and also for practicing engineers who would like to be updated in advances of this field."-Prof. Ashok Srivastava, Louisiana State University, Baton Rouge, USA"Mathematical analysis included in each and every chapter is the main strength of the materials. ... The book is very precise and useful for those who are working in this area. ... highly focused, very compact, and easy to apply. ... This book depicts a detailed analysis and modelling of carbon nanotube and graphene nanoribbon interconnects. The book also covers the electrical circuit modelling of carbon nanotubes and graphene nanoribbons."-Prof. Chandan Kumar Sarkar, Jadavpur University, Kolkata, India.

  16. Packaging and interconnection for superconductive circuitry

    International Nuclear Information System (INIS)

    Anacker, W.

    1976-01-01

    A three dimensional microelectronic module packaged for reduced signal propagation delay times including a plurality of circuit carrying means, which may comprise unbacked chips, with integrated superconductive circuitry thereon is described. The circuit carrying means are supported on their edges and have contact lands in the vicinity of, or at, the edges to provide for interconnecting circuitry. The circuit carrying means are supported by supporting means which include slots to provide a path for interconnection wiring to contact the lands of the circuit carrying means. Further interconnecting wiring may take the form of integrated circuit wiring on the reverse side of the supporting means. The low heat dissipation of the superconductive circuitry allows the circuit carrying means to be spaced approximately no less than 30 mils apart. The three dimensional arrangement provides lower random propagation delays than would a planar array of circuits

  17. Economic and environmental benefits of interconnected systems. The Spanish example

    International Nuclear Information System (INIS)

    Chicharro, A.S.; Dios Alija, R. de

    1996-01-01

    The interconnected systems provide large technical and economic benefits which, evaluated and contrasted with the associated network investment cost, usually produce important net savings. There are continental electrical systems formed by many interconnected subsystems. The optimal size of an interconnection should be defined within an economic background. It is necessary to take into account the global environmental effects. The approach and results of studies carried out by Red Electrica is presented, in order to analyse both economic and environmental benefits resulting from an increase in the present Spanish interconnection capacities. From both economic and environmental points of view, the development of the interconnected systems is highly positive. (author)

  18. Interconnection issues in Ontario : a status check

    International Nuclear Information System (INIS)

    Helbronner, V.

    2010-01-01

    This PowerPoint presentation discussed wind and renewable energy interconnection issues in Ontario. The province's Green Energy Act established a feed-in tariff (FIT) program and provided priority connection access to the electricity system for renewable energy generation facilities that meet regulatory requirements. As a result of the province's initiatives, Hydro One has identified 20 priority transmission expansion projects and is focusing on servicing renewable resource clusters. As of October 2010, the Ontario Power Authority (OPA) has received 1469 MW of FIT contracts executed for wind projects. A further 5953 MW of wind projects are awaiting approval. A Korean consortium is now planning to develop 2500 MW of renewable energy projects in the province. The OPA has also been asked to develop an updated transmission expansion plan. Transmission/distribution availability tests (TAT/DAT) have been established to determine if there is sufficient connection availability for FIT application projects. Economic connection tests (ECTs) are conducted to assess whether grid upgrade costs to enable additional FIT capacity are justifiable. When projects pass the ECT, grid upgrades needed for the connection included in grid expansion plans. Ontario's long term energy plan was also reviewed. tabs., figs.

  19. Cellular structures with interconnected microchannels

    Science.gov (United States)

    Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian

    2018-01-30

    A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to melt infiltration.

  20. WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE

    International Nuclear Information System (INIS)

    Shinnaga, Hiroko; Phillips, Thomas G.; Furuya, Ray S.; Kitamura, Yoshimi

    2009-01-01

    In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (∼30-70 K), extended (radius of ∼2400 AU), dense (a few times 10 5 cm -3 ) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, 'warm-in-cold core stage (WICCS)', i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.

  1. Cross-border versus cross-sector interconnectivity in renewable energy systems

    International Nuclear Information System (INIS)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2017-01-01

    In the transition to renewable energy systems, fluctuating renewable energy, such as wind and solar power, plays a large and important role. This creates a challenge in terms of meeting demands, as the energy production fluctuates based on weather patterns. To utilise high amounts of fluctuating renewable energy, the energy system has to be more flexible in terms of decoupling demand and production. This paper investigates two potential ways to increase flexibility. The first is the interconnection between energy systems, for instance between two countries, labelled as cross-border interconnection, and the second is cross-sector interconnection, i.e., the integration between different parts of an energy system, for instance heat and electricity. This paper seeks to compare the types of interconnectivity and discuss to which extent they are mutually beneficial. To do this, the study investigates two energy systems that represent Northern and Southern Europe. Both systems go through three developmental steps that increase the cross-sector interconnectivity. At each developmental step an increasing level of transmission capacities is examined to identify the benefits of cross-border interconnectivity. The results show that while both measures increase the system utilisation of renewable energy and the system efficiency, the cross-sector interconnection gives the best system performance. To analyse the possible interaction between cross-sector and cross-border interconnectivity, two main aspects have to be clarified. The first part defines the approach and the second is the construction of the two archetypes. - Highlights: • A method to investigate system integration and system interconnection is suggested. • The implementation is investigated across a Northern and Southern energy system. • The study identifies benefits of system integration and system interconnection. • The performance of the energy system benefits most from system integration.

  2. Fuel cell electrode interconnect contact material encapsulation and method

    Science.gov (United States)

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  3. Electrode and interconnect for miniature fuel cells using direct methanol feed

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor)

    2004-01-01

    An improved system for interconnects in a fuel cell. In one embodiment, the membranes are located in parallel with one another, and current flow between them is facilitated by interconnects. In another embodiment, all of the current flow is through the interconnects which are located on the membranes. The interconnects are located between two electrodes.

  4. Current Solutions: Recent Experience in Interconnecting Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.

    2003-09-01

    This report catalogues selected real-world technical experiences of utilities and customers that have interconnected distributed energy assets with the electric grid. This study was initiated to assess the actual technical practices for interconnecting distributed generation and had a particular focus on the technical issues covered under the Institute of Electrical and Electronics Engineers (IEEE) 1547(TM) Standard for Interconnecting Distributed Resources With Electric Power Systems.

  5. Signal Integrity Analysis in Single and Bundled Carbon Nanotube Interconnects

    International Nuclear Information System (INIS)

    Majumder, M.K.; Pandya, N.D.; Kaushik, B.K.; Manhas, S.K.

    2013-01-01

    Carbon nanotube (CN T) can be considered as an emerging interconnect material in current nano scale regime. They are more promising than other interconnect materials such as Al or Cu because of their robustness to electromigration. This research paper aims to address the crosstalk-related issues (signal integrity) in interconnect lines. Different analytical models of single- (SWCNT), double- (DWCNT), and multiwalled CNTs (MWCNT) are studied to analyze the crosstalk delay at global interconnect lengths. A capacitively coupled three-line bus architecture employing CMOS driver is used for accurate estimation of crosstalk delay. Each line in bus architecture is represented with the equivalent RLC models of single and bundled SWCNT, DWCNT, and MWCNT interconnects. Crosstalk delay is observed at middle line (victim) when it switches in opposite direction with respect to the other two lines (aggressors). Using the data predicted by ITRS 2012, a comparative analysis on the basis of crosstalk delay is performed for bundled SWCNT/DWCNT and single MWCNT interconnects. It is observed that the overall crosstalk delay is improved by 40.92% and 21.37% for single MWCNT in comparison to bundled SWCNT and bundled DWCNT interconnects, respectively.

  6. The effect of long-distance interconnection on wind power variability

    International Nuclear Information System (INIS)

    Fertig, Emily; Apt, Jay; Jaramillo, Paulina; Katzenstein, Warren

    2012-01-01

    We use time- and frequency-domain techniques to quantify the extent to which long-distance interconnection of wind plants in the United States would reduce the variability of wind power output. Previous work has shown that interconnection of just a few wind plants across moderate distances could greatly reduce the ratio of fast- to slow-ramping generators in the balancing portfolio. We find that interconnection of aggregate regional wind plants would not reduce this ratio further but would reduce variability at all frequencies examined. Further, interconnection of just a few wind plants reduces the average hourly change in power output, but interconnection across regions provides little further reduction. Interconnection also reduces the magnitude of low-probability step changes and doubles firm power output (capacity available at least 92% of the time) compared with a single region. First-order analysis indicates that balancing wind and providing firm power with local natural gas turbines would be more cost-effective than with transmission interconnection. For net load, increased wind capacity would require more balancing resources but in the same proportions by frequency as currently, justifying the practice of treating wind as negative load. (letter)

  7. The effect of temperature on the crystallization of α-Fe2O3 particles from dense β-FeOOH suspensions

    International Nuclear Information System (INIS)

    Zic, Mark; Ristic, Mira; Music, Svetozar

    2010-01-01

    The effect of temperature on the crystallization of α-Fe 2 O 3 particles from dense β-FeOOH suspensions was monitored by 57 Fe Moessbauer spectroscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive spectroscopy. Dense suspensions of very long laterally arranged β-FeOOH fibrils were obtained at 90 deg. C. Crystallization at 120 deg. C between 18 and 72 h yielded monodisperse α-Fe 2 O 3 particles of a shape close to that of double spheres with ring. The double spheres with ring showed two narrow particle size distributions. In these particles a substructure was detected, i.e., the spheres consisted of the linear chains of interconnected α-Fe 2 O 3 subparticles. With further rise in the crystallization temperature the increase in α-Fe 2 O 3 particles and porosity became pronounced. Obviously, the aggregation mechanism played an important role in the formation of α-Fe 2 O 3 particles.

  8. Cost based interconnection charges as a way to induce competition

    DEFF Research Database (Denmark)

    Falch, Morten

    The objective of this paper is to analyse the relationship between regulation of interconnection charges and the level of competition. One of the most important issues in the debate on interconnect regulation has been use of forward looking costs for setting of interconnection charges. This debat...... has been ongoing within the EU as well as in US. This paper discusses the European experiences and in particular the Danish experiences with use of cost based interconnection charges, and their impact on competition in the telecom market....

  9. Cross-border versus cross-sector interconnectivity in renewable energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2017-01-01

    renewable energy, the energy system has to be more flexible in terms of decoupling demand and production. This paper investigates two potential ways to increase flexibility. The first is the interconnection between energy systems, for instance between two countries, labelled as cross-border interconnection...... systems that represent Northern and Southern Europe. Both systems go through three developmental steps that increase the cross-sector interconnectivity. At each developmental step an increasing level of transmission capacities is examined to identify the benefits of cross-border interconnectivity...

  10. Digital optical interconnects for photonic computing

    Science.gov (United States)

    Guilfoyle, Peter S.; Stone, Richard V.; Zeise, Frederick F.

    1994-05-01

    A 32-bit digital optical computer (DOC II) has been implemented in hardware utilizing 8,192 free-space optical interconnects. The architecture exploits parallel interconnect technology by implementing microcode at the primitive level. A burst mode of 0.8192 X 1012 binary operations per sec has been reliably demonstrated. The prototype has been successful in demonstrating general purpose computation. In addition to emulating the RISC instruction set within the UNIX operating environment, relational database text search operations have been implemented on DOC II.

  11. Analysis of interconnecting energy systems over a synchronized life cycle

    International Nuclear Information System (INIS)

    Nian, Victor

    2016-01-01

    Highlights: • A methodology is developed for evaluating a life cycle of interconnected systems. • A new concept of partial temporal boundary is introduced via quantitative formulation. • The interconnecting systems are synchronized through the partial temporal boundary. • A case study on the life cycle of the coal–uranium system is developed. - Abstract: Life cycle analysis (LCA) using the process chain analysis (PCA) approach has been widely applied to energy systems. When applied to an individual energy system, such as coal or nuclear electricity generation, an LCA–PCA methodology can yield relatively accurate results with its detailed process representation based on engineering data. However, there are fundamental issues when applying conventional LCA–PCA methodology to a more complex life cycle, namely, a synchronized life cycle of interconnected energy systems. A synchronized life cycle of interconnected energy systems is established through direct interconnections among the processes of different energy systems, and all interconnecting systems are bounded within the same timeframe. Under such a life cycle formation, there are some major complications when applying conventional LCA–PCA methodology to evaluate the interconnecting energy systems. Essentially, the conventional system and boundary formulations developed for a life cycle of individual energy system cannot be directly applied to a life cycle of interconnected energy systems. To address these inherent issues, a new LCA–PCA methodology is presented in this paper, in which a new concept of partial temporal boundary is introduced to synchronize the interconnecting energy systems. The importance and advantages of these new developments are demonstrated through a case study on the life cycle of the coal–uranium system.

  12. Multilevel Dual Damascene copper interconnections

    Science.gov (United States)

    Lakshminarayanan, S.

    Copper has been acknowledged as the interconnect material for future generations of ICs to overcome the bottlenecks on speed and reliability present with the current Al based wiring. A new set of challenges brought to the forefront when copper replaces aluminum, have to be met and resolved to make it a viable option. Unit step processes related to copper technology have been under development for the last few years. In this work, the application of copper as the interconnect material in multilevel structures with SiO2 as the interlevel dielectric has been explored, with emphasis on integration issues and complete process realization. Interconnect definition was achieved by the Dual Damascene approach using chemical mechanical polishing of oxide and copper. The choice of materials used as adhesion promoter/diffusion barrier included Ti, Ta and CVD TiN. Two different polish chemistries (NH4OH or HNO3 based) were used to form the interconnects. The diffusion barrier was removed during polishing (in the case of TiN) or by a post CMP etch (as with Ti or Ta). Copper surface passivation was performed using boron implantation and PECVD nitride encapsulation. The interlevel dielectric way composed of a multilayer stack of PECVD SiO2 and SixNy. A baseline process sequence which ensured the mechanical and thermal compatibility of the different unit steps was first created. A comprehensive test vehicle was designed and test structures were fabricated using the process flow developed. Suitable modifications were subsequently introduced in the sequence as and when processing problems were encountered. Electrical characterization was performed on the fabricated devices, interconnects, contacts and vias. The structures were subjected to thermal stressing to assess their stability and performance. The measurement of interconnect sheet resistances revealed lower copper loss due to dishing on samples polished using HNO3 based slurry. Interconnect resistances remained stable upto 400o

  13. Distributed Energy Resources Interconnection Systems: Technology Review and Research Needs

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, N. R.

    2002-09-01

    Interconnecting distributed energy resources (DER) to the electric utility grid (or Area Electric Power System, Area EPS) involves system engineering, safety, and reliability considerations. This report documents US DOE Distribution and Interconnection R&D (formerly Distributed Power Program) activities, furthering the development and safe and reliable integration of DER interconnected with our nation's electric power systems. The key to that is system integration and technology development of the interconnection devices that perform the functions necessary to maintain the safety, power quality, and reliability of the EPS when DER are connected to it.

  14. Interconnecting with VIPs

    Science.gov (United States)

    Collins, Robert

    2013-01-01

    Interconnectedness changes lives. It can even save lives. Recently the author got to witness and be part of something in his role as a teacher of primary science that has changed lives: it may even have saved lives. It involved primary science teaching--and the climate. Robert Collins describes how it is all interconnected. The "Toilet…

  15. On-chip photonic interconnects a computer architect's perspective

    CERN Document Server

    Nitta, Christopher J; Akella, Venkatesh

    2013-01-01

    As the number of cores on a chip continues to climb, architects will need to address both bandwidth and power consumption issues related to the interconnection network. Electrical interconnects are not likely to scale well to a large number of processors for energy efficiency reasons, and the problem is compounded by the fact that there is a fixed total power budget for a die, dictated by the amount of heat that can be dissipated without special (and expensive) cooling and packaging techniques. Thus, there is a need to seek alternatives to electrical signaling for on-chip interconnection appli

  16. 14 CFR 29.957 - Flow between interconnected tanks.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...

  17. Architecture for on-die interconnect

    Science.gov (United States)

    Khare, Surhud; More, Ankit; Somasekhar, Dinesh; Dunning, David S.

    2016-03-15

    In an embodiment, an apparatus includes: a plurality of islands configured on a semiconductor die, each of the plurality of islands having a plurality of cores; and a plurality of network switches configured on the semiconductor die and each associated with one of the plurality of islands, where each network switch includes a plurality of output ports, a first set of the output ports are each to couple to the associated network switch of an island via a point-to-point interconnect and a second set of the output ports are each to couple to the associated network switches of a plurality of islands via a point-to-multipoint interconnect. Other embodiments are described and claimed.

  18. Next generation space interconnect research and development in space communications

    Science.gov (United States)

    Collier, Charles Patrick

    2017-11-01

    Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.

  19. The Enhanced Segment Interconnect for FASTBUS data communications

    International Nuclear Information System (INIS)

    Machen, D.R.; Downing, R.W.; Kirsten, F.A.; Nelson, R.O.

    1987-01-01

    The Enhanced Segment Interconnect concept (ESI) for improved FASTBUS data communications is a development supported by the U.S. Department of Energy under the Small Business Innovation Research (SBIR) program. The ESI will contain both the Segment Interconnect (SI) Tyhpe S-1 and an optional buffered interconnect for store-and-forward data communications; fiber-optic-coupled serial ports will provide optional data paths. The ESI can be applied in large FASTBUS-implemented physics experiments whose data-set or data-transmission distance requirements dictate alternate approaches to data communications. This paper describes the functions of the ESI and the status of its development, now 25% complete

  20. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennock, Ken [AWS Truepower, Albany, NY (United States); Reed, Gregory [Univ. of Pittsburgh, PA (United States); Hanes, Spencer [Duke Energy, Charlotte, NC (United States)

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  1. National Offshore Wind Energy Grid Interconnection Study Full Report

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennock, Ken [AWS Truepower, Albany, NY (United States); Reed, Gregory [Univ. of Pittsburgh, PA (United States); Hanes, Spencer [Duke Energy, Charlotte, NC (United States)

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  2. Optics vs copper: from the perspective of "Thunderbolt" interconnect technology

    Science.gov (United States)

    Cheng, Hengju; Krause, Christine; Ko, Jamyuen; Gao, Miaobin; Liu, Guobin; Wu, Huichin; Qi, Mike; Lam, Chun-Chit

    2013-02-01

    Interconnect technology has been progressed at a very fast pace for the past decade. The signaling rates have steadily increased from 100:Mb/s to 25Gb/s. In every generation of interconnect technology evolution, optics always seems to take over at first, however, at the end, the cost advantage of copper wins over. Because of this, optical interconnects are limited to longer distance links where the attenuation in copper cable is too large for the integrated circuits to compensate. Optical interconnect has long been viewed as the premier solution in compared with copper interconnect. With the release of Thunderbolt technology, we are entering a new era in consumer electronics that runs at 10Gb/s line rate (20Gb/s throughput per connector interface). Thunderbolt interconnect technology includes both active copper cables and active optical cables as the transmission media which have very different physical characteristics. In order for optics to succeed in consumer electronics, several technology hurdles need to be cleared. For example, the optical cable needs to handle the consumer abuses such as pinch and bend. Also, the optical engine used in the active optical cable needs to be physically very small so that we don't change the looks and feels of the cable/connector. Most importantly, the cost of optics needs to come down significantly to effectively compete with the copper solution. Two interconnect technologies are compared and discussed on the relative cost, power consumption, form factor, density, and future scalability.

  3. Fusion-bonded fluidic interconnects

    NARCIS (Netherlands)

    Fazal, I.; Elwenspoek, Michael Curt

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are

  4. All-zigzag graphene nanoribbons for planar interconnect application

    Science.gov (United States)

    Chen, Po-An; Chiang, Meng-Hsueh; Hsu, Wei-Chou

    2017-07-01

    A feasible "lightning-shaped" zigzag graphene nanoribbon (ZGNR) structure for planar interconnects is proposed. Based on the density functional theory and non-equilibrium Green's function, the electron transport properties are evaluated. The lightning-shaped structure increases significantly the conductance of the graphene interconnect with an odd number of zigzag chains. This proposed technique can effectively utilize the linear I-V characteristic of asymmetric ZGNRs for interconnect application. Variability study accounting for width/length variation and the edge effect is also included. The transmission spectra, transmission eigenstates, and transmission pathways are analyzed to gain the physical insights. This lightning-shaped ZGNR enables all 2D material-based devices and circuits on flexible and transparent substrates.

  5. Optical interconnect for large-scale systems

    Science.gov (United States)

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  6. Combination of the deterministic and probabilistic approaches for risk-informed decision-making in US NRC regulatory guides

    International Nuclear Information System (INIS)

    Patrik, M.; Babic, P.

    2001-06-01

    The report responds to the trend where probabilistic safety analyses are attached, on a voluntary basis (as yet), to the mandatory deterministic assessment of modifications of NPP systems or operating procedures, resulting in risk-informed type documents. It contains a nearly complete Czech translation of US NRC Regulatory Guide 1.177 and presents some suggestions for improving a) PSA study applications; b) the development of NPP documents for the regulatory body; and c) the interconnection between PSA and traditional deterministic analyses as contained in the risk-informed approach. (P.A.)

  7. Kesterite Cu2ZnSnS4 compounds via electrospinning: A facile route to mesoporous fibers and dense films

    International Nuclear Information System (INIS)

    Mu, Chunhong; Song, Yuanqiang; Wang, Xiaoning; Wu, Peng

    2015-01-01

    Highlights: • CZTS fibers, mesporous films and dense films are fabricated via electrospinning. • Controllable micromorphologies can be obtained. • Band gap decrease from 1.49 eV to 1.44 eV with the morphology changing. - Abstract: Kesterite Cu 2 ZnSnS 4 (CZTS) layers composed of either mesoporous fibers or dense films were successfully synthesized by electrospinning following sulfurization at high temperature. CZTS layers were characterized using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), Raman and X-ray photoelectronic spectroscopy (XPS), and X-ray diffraction (XRD). The optical properties were also recorded by UV–vis absorption spectroscopy. The results showed that, with the increasing of sulfurization temperature from 450 to 600 °C, the electrospun precursor fibers evolved from isolated CZTS fibers to interconnected fibers, and finally forming a compact films composing of sub-micro crystal flakes, just by simply adjusting the solutes concentration and sulfurization parameters. All the synthesized CZTS samples had a single phase, good crystallinity and a stoichiometric composition. Moreover, the band gap evolved from 1.49 eV to 1.44 eV with the morphology changing from porous microfibers to compact films. This work puts forward a facile route to both CZTS fibers and dense films, and would be meaningful for exploiting CZTS-based solar cells

  8. Opto-Electronic and Interconnects Hierarchical Design Automation System (OE-IDEAS)

    National Research Council Canada - National Science Library

    Turowski, M

    2004-01-01

    As microelectronics technology continues to advance, the associated electrical interconnection technology is not likely to keep pace, due to many parasitic effects appearing in metallic interconnections...

  9. A model-based prognostic approach to predict interconnect failure using impedance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Dae Il; Yoon, Jeong Ah [Dept. of System Design and Control Engineering. Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-10-15

    The reliability of electronic assemblies is largely affected by the health of interconnects, such as solder joints, which provide mechanical, electrical and thermal connections between circuit components. During field lifecycle conditions, interconnects are often subjected to a DC open circuit, one of the most common interconnect failure modes, due to cracking. An interconnect damaged by cracking is sometimes extremely hard to detect when it is a part of a daisy-chain structure, neighboring with other healthy interconnects that have not yet cracked. This cracked interconnect may seem to provide a good electrical contact due to the compressive load applied by the neighboring healthy interconnects, but it can cause the occasional loss of electrical continuity under operational and environmental loading conditions in field applications. Thus, cracked interconnects can lead to the intermittent failure of electronic assemblies and eventually to permanent failure of the product or the system. This paper introduces a model-based prognostic approach to quantitatively detect and predict interconnect failure using impedance analysis and particle filtering. Impedance analysis was previously reported as a sensitive means of detecting incipient changes at the surface of interconnects, such as cracking, based on the continuous monitoring of RF impedance. To predict the time to failure, particle filtering was used as a prognostic approach using the Paris model to address the fatigue crack growth. To validate this approach, mechanical fatigue tests were conducted with continuous monitoring of RF impedance while degrading the solder joints under test due to fatigue cracking. The test results showed the RF impedance consistently increased as the solder joints were degraded due to the growth of cracks, and particle filtering predicted the time to failure of the interconnects similarly to their actual timesto- failure based on the early sensitivity of RF impedance.

  10. Stability Analysis of Interconnected Fuzzy Systems Using the Fuzzy Lyapunov Method

    Directory of Open Access Journals (Sweden)

    Ken Yeh

    2010-01-01

    Full Text Available The fuzzy Lyapunov method is investigated for use with a class of interconnected fuzzy systems. The interconnected fuzzy systems consist of J interconnected fuzzy subsystems, and the stability analysis is based on Lyapunov functions. Based on traditional Lyapunov stability theory, we further propose a fuzzy Lyapunov method for the stability analysis of interconnected fuzzy systems. The fuzzy Lyapunov function is defined in fuzzy blending quadratic Lyapunov functions. Some stability conditions are derived through the use of fuzzy Lyapunov functions to ensure that the interconnected fuzzy systems are asymptotically stable. Common solutions can be obtained by solving a set of linear matrix inequalities (LMIs that are numerically feasible. Finally, simulations are performed in order to verify the effectiveness of the proposed stability conditions in this paper.

  11. 75 FR 40815 - PJM Interconnection, L.L.C.; Notice of Filing

    Science.gov (United States)

    2010-07-14

    ... Interconnection, L.L.C.; Notice of Filing July 7, 2010. Take notice that on July 1, 2010, PJM Interconnection, L.L.C. (PJM) filed revised sheets to Schedule 1 of the Amended and Restated Operating Agreement of PJM Interconnection, L.L.C. (Operating Agreement) and the parallel provisions of Attachment K--Appendix of the PJM...

  12. 75 FR 22773 - PJM Interconnection, L.L.C.; Notice of Filing

    Science.gov (United States)

    2010-04-30

    ... Interconnection, L.L.C.; Notice of Filing April 23, 2010. Take notice that on April 22, 2010, PJM Interconnection, L.L.C. (PJM) filed revised tariff sheets to its Schedule 1 of the Amended and Restated Operating... (Commission) March 23, 2010 Order on Compliance Filing, PJM Interconnection, L.L.C., 130 FERC ] 61,230 (2010...

  13. 77 FR 34378 - PJM Interconnection, L.L.C.; Notice of Complaint

    Science.gov (United States)

    2012-06-11

    ... Interconnection, L.L.C.; Notice of Complaint Take notice that on June 1, 2012, pursuant to section 206 of the Federal Power Act (FPA), 16 U.S.C. 824(e), PJM Interconnection, L.L.C. (PJM) filed proposed revisions to the Amended and Restated Operating Agreement of PJM Interconnection L.L.C. (Operating Agreement) to...

  14. Circuit and interconnect design for high bit-rate applications

    NARCIS (Netherlands)

    Veenstra, H.

    2006-01-01

    This thesis presents circuit and interconnect design techniques and design flows that address the most difficult and ill-defined aspects of the design of ICs for high bit-rate applications. Bottlenecks in interconnect design, circuit design and on-chip signal distribution for high bit-rate

  15. Energy Zones Study: A Comprehensive Web-Based Mapping Tool to Identify and Analyze Clean Energy Zones in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Koritarov, V.; Kuiper, J.; Hlava, K.; Orr, A.; Rollins, K.; Brunner, D.; Green, H.; Makar, J.; Ayers, A.; Holm, M.; Simunich, K.; Wang, J.; Augustine, C.; Heimiller, D.; Hurlbut, D. J.; Milbrandt, A.; Schneider, T. R.; et al.

    2013-09-01

    and is publicly available at http://eispctools.anl.gov. In addition to enabling EISPC members and other stakeholders to identify areas with a high concentration of clean energy resources that could provide significant power generation in the future, another objective of the study was to promote open and transparent collaboration among state-level energy planning and regulatory agencies and to foster consistent and coordinated direction for regional and interconnection-level electricity analyses and planning. Funding for the project was provided by DOE’s Office of Electricity Delivery and Energy Reliability (DOE/OE) under the American Recovery and Reinvestment Act. Page

  16. Welfare and competition effects of electricity interconnection between Ireland and Great Britain

    International Nuclear Information System (INIS)

    Malaguzzi Valeri, Laura

    2009-01-01

    This study analyzes the effects of additional interconnection on welfare and competition in the Irish electricity market. I simulate the wholesale electricity markets of the island of Ireland and Great Britain for 2005. I find that in order for the two markets to be integrated in 2005, additional interconnection would have to be large. The amount of interconnection decreases for high costs of carbon, since this causes the markets to become more similar. This suggests that in the absence of strategic behavior of firms, most of the gains from trade derive not from differences in size between countries, but from technology differences and are strongly influenced by fuel and carbon costs. Social welfare increases with interconnection, although at a decreasing rate. As the amount of interconnection increases, there are also positive effects on competition in Ireland, the less competitive of the two markets. Finally, it is unlikely that private investors will pay for the optimal amount of interconnection since their returns are significantly smaller than the total social benefit of interconnection. (author)

  17. Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Directory of Open Access Journals (Sweden)

    Salman Shafqat

    2017-09-01

    Full Text Available The exciting field of stretchable electronics (SE promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS-type process recipes using bulk integrated circuit (IC microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.

  18. Interconnection network architectures based on integrated orbital angular momentum emitters

    Science.gov (United States)

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  19. Global On-Chip Differential Interconnects with Optimally-Placed Twists

    NARCIS (Netherlands)

    Mensink, E.; Schinkel, Daniel; Klumperink, Eric A.M.; van Tuijl, Adrianus Johannes Maria; Nauta, Bram

    2005-01-01

    Global on-chip communication is receiving quite some attention as global interconnects are rapidly becoming a speed, power and reliability bottleneck for digital CMOS systems. Recently, we proposed a bus-transceiver test chip in 0.13 μm CMOS using 10 mm long uninterrupted differential interconnects

  20. Time Domain Analysis of Graphene Nanoribbon Interconnects Based on Transmission Line ‎Model

    Directory of Open Access Journals (Sweden)

    S. Haji Nasiri

    2012-03-01

    Full Text Available Time domain analysis of multilayer graphene nanoribbon (MLGNR interconnects, based on ‎transmission line modeling (TLM using a six-order linear parametric expression, has been ‎presented for the first time. We have studied the effects of interconnect geometry along with ‎its contact resistance on its step response and Nyquist stability. It is shown that by increasing ‎interconnects dimensions their propagation delays are increased and accordingly the system ‎becomes relatively more stable. In addition, we have compared time responses and Nyquist ‎stabilities of MLGNR and SWCNT bundle interconnects, with the same external dimensions. ‎The results show that under the same conditions, the propagation delays for MLGNR ‎interconnects are smaller than those of SWCNT bundle interconnects are. Hence, SWCNT ‎bundle interconnects are relatively more stable than their MLGNR rivals.‎

  1. Electromagnetism and interconnections

    CERN Document Server

    Charruau, S

    2009-01-01

    This book covers the theoretical problems of modeling electrical behavior of the interconnections encountered in everyday electronic products. The coverage shows the theoretical tools of waveform prediction at work in the design of a complex and high-speed digital electronic system. Scientists, research engineers, and postgraduate students interested in electromagnetism, microwave theory, electrical engineering, or the development of simulation tools software for high speed electronic system design automation will find this book an illuminating resource.

  2. The L1495-B218 filaments in Taurus seen in NH3 & CCS and Dynamical Stability of Filaments and Dense Cores

    Science.gov (United States)

    Seo, Youngmin

    2016-01-01

    We present deep NH3 map of L1495-B218 filaments and the dense cores embedded within the filaments in Taurus. The L1495-B218 filaments form an interconnected, nearby, large complex extending 8 pc. We observed the filaments in NH3 (1,1) & (2,2) and CCS 21-10 with spectral resolution of 0.038 km/s and spatial resolution of 31". The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithm, identifies 39 leaves and 16 branches in NH3 (1,1). Applying a virial analysis for the 39 NH3 leaves, we find only 9 out of 39 leaves are gravitationally bound, and 12 out of 30 gravitationally unbound leaves are pressure-confined. Our analysis suggests that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and then undergo collapse to form a protostar (Seo et al. 2015).We also present more realistic dynamic stability conditions for dense cores with converging motions and under the influence of radiation pressure. The critical Bonnor-Ebert sphere and the isothermal cylinder have been widely used to test stability of dense cores and filaments; however, these assume a quiescent environment while actual star forming regions are turbulent and illuminated by radiation. In a new analysis of stability conditions we account for converging motions which have been modeled toward starless cores (Seo et al. 2011) and the effect of radiation fields into account. We find that the critical size of a dense core having a homologous converging motion with its peak speed being the sound speed is roughly half of the critical size of the Bonnor-Ebert sphere (Seo et al. 2013). We also find that the critical mass/line density of a dense core/filament irradiated by radiation are considerably smaller than that of the Bonnor-Ebert sphere/isothermal cylinder when the radiation pressure is stronger than the central gas pressure of dense core/isothermal cylinder. For inner Galactic regions and regions near OB associations, the critical

  3. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Science.gov (United States)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  4. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2017-04-04

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  5. CAISSON: Interconnect Network Simulator

    Science.gov (United States)

    Springer, Paul L.

    2006-01-01

    Cray response to HPCS initiative. Model future petaflop computer interconnect. Parallel discrete event simulation techniques for large scale network simulation. Built on WarpIV engine. Run on laptop and Altix 3000. Can be sized up to 1000 simulated nodes per host node. Good parallel scaling characteristics. Flexible: multiple injectors, arbitration strategies, queue iterators, network topologies.

  6. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs

  7. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  8. One-step fabrication of microfluidic chips with in-plane, adhesive-free interconnections

    International Nuclear Information System (INIS)

    Sabourin, D; Dufva, M; Jensen, T; Kutter, J; Snakenborg, D

    2010-01-01

    A simple method for creating interconnections to a common microfluidic device material, poly(methyl methacrylate) (PMMA), is presented. A press-fit interconnection is created between oversized, deformable tubing and complementary, undersized semi-circular ports fabricated into PMMA bonding surfaces by direct micromilling. Upon UV-assisted bonding the tubing is trapped in the ports of the PMMA chip and forms an integrated, in-plane and adhesive-free interconnection. The interconnections support the average pressure of 6.1 bar and can be made with small dead volumes. A comparison is made to a similar interconnection approach which uses tubing to act as a gasket between a needle and port on the microfluidic chip. (technical note)

  9. Cross-border versus cross-sector interconnectivity in renewable energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2017-01-01

    . The results show that while both measures increase the system utilisation of renewable energy and the system efficiency, the cross-sector interconnection gives the best system performance. To analyse the possible interaction between cross-sector and cross-border interconnectivity, two main aspects have......In the transition to renewable energy systems, fluctuating renewable energy, such as wind and solar power, plays a large and important role. This creates a challenge in terms of meeting demands, as the energy production fluctuates based on weather patterns. To utilise high amounts of fluctuating...... renewable energy, the energy system has to be more flexible in terms of decoupling demand and production. This paper investigates two potential ways to increase flexibility. The first is the interconnection between energy systems, for instance between two countries, labelled as cross-border interconnection...

  10. The rise of regulatory capitalism and the decline of auditor independence: A critical and experimental examination of auditors' conflicts of interests

    DEFF Research Database (Denmark)

    Warming-Rasmussen, Bent

    2009-01-01

    This study investigates the decline of auditor independence coinciding with the rise of regulatory capitalism. A critical analysis supported by experimental evidence reveals regulatory capitalism's influence on auditor independence. Regulatory capitalism began in the United States during the 1970s...... that now promote and diffuse regulatory capitalism worldwide. Regulatory capitalism is further facilitated by the Sarbanes-Oxley Act and the PCAOB that provide interconnections of powerful non-democratic private regulators such as the IFAC and IAASB. An experiment reveals auditors' ethical predisposition...... to provide consistently high quality independence judgments required by IFAC's code of ethics. The majority of this sample of 174 Danish auditors was not consistently independent in the context of client economic factors, indicating that the code of ethics' appeal to auditors' altruistic behavior has failed...

  11. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III - Grid Interconnection System Evaluator

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, B.; Shirazi, M.; Coddington, M.; Kroposki, B.

    2013-01-01

    This paper describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1. The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.

  12. Interconnected Power Systems Mexico-Guatemala financed by BID

    International Nuclear Information System (INIS)

    Martinez, Veronica

    2003-01-01

    The article describes the plans for the interconnection of the electric power systems of Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, Panama and Mexico within the project Plan Pueba Panama. The objective of the interconnection is to create an electric market in the region that contributes to reduce costs and prices. The project will receive a financing of $37.5 millions of US dollars from the Banco Intrameramericano de Desarrollo (BID)

  13. Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits

    Science.gov (United States)

    Strickland, S. M.; Hester, J. D.; Gowan, A. K.; Montgomery, R. K.; Geist, D. L.; Blanche, J. F.; McGuire, G. D.; Nash, T. S.

    2011-01-01

    As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified.

  14. Dense-gas dispersion advection-diffusion model

    International Nuclear Information System (INIS)

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments

  15. Si micro photonics for optical interconnection

    International Nuclear Information System (INIS)

    Wada, K.; Ahn, D.H.; Lim, D.R.; Michel, J.; Kimerling, L.C.

    2006-01-01

    This paper reviews current status of silicon microphotonics and the recent prototype of on-chip optical interconnection. Si microphotonics pursues complementary metal oxide semiconductor (CMOS)-compatibility of photonic devices to reduce the materials diversity eventually to integrate on Si chips. Fractal optical H-trees have been implemented on a chip and found to be a technology breakthrough beyond metal interconnection. It has shown that large RC time constants associated with metal can be eliminated at least long distant data communication on a chip, and eventually improve yield and power issues. This has become the world's first electronic and photonic integrated circuits (EPICs) and the possibility of at least 10 GHz clocking for personal computers has been demonstrated

  16. Robert Aymar seals the last interconnect in the LHC

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    The LHC completes the circle. On 7 November, in a brief ceremony in the LHC tunnel, CERN Director General Robert Aymar (Photo 1) sealed the last interconnect between the main magnets of the Large Hadron Collider (LHC). Jean-Philippe Tock, leader of the Interconnections team, tightens the last bolt (Photos 4-8).

  17. Optical interconnection networks for high-performance computing systems

    International Nuclear Information System (INIS)

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  18. The variability of interconnected wind plants

    International Nuclear Information System (INIS)

    Katzenstein, Warren; Fertig, Emily; Apt, Jay

    2010-01-01

    We present the first frequency-dependent analyses of the geographic smoothing of wind power's variability, analyzing the interconnected measured output of 20 wind plants in Texas. Reductions in variability occur at frequencies corresponding to times shorter than ∼24 h and are quantified by measuring the departure from a Kolmogorov spectrum. At a frequency of 2.8x10 -4 Hz (corresponding to 1 h), an 87% reduction of the variability of a single wind plant is obtained by interconnecting 4 wind plants. Interconnecting the remaining 16 wind plants produces only an additional 8% reduction. We use step change analyses and correlation coefficients to compare our results with previous studies, finding that wind power ramps up faster than it ramps down for each of the step change intervals analyzed and that correlation between the power output of wind plants 200 km away is half that of co-located wind plants. To examine variability at very low frequencies, we estimate yearly wind energy production in the Great Plains region of the United States from automated wind observations at airports covering 36 years. The estimated wind power has significant inter-annual variability and the severity of wind drought years is estimated to be about half that observed nationally for hydroelectric power.

  19. An RLC interconnect analyzable crosstalk model considering self-heating effect

    International Nuclear Information System (INIS)

    Zhu Zhang-Ming; Liu Shu-Bin

    2012-01-01

    According to the thermal profile of actual multilevel interconnects, in this paper we propose a temperature distribution model of multilevel interconnects and derive an analytical crosstalk model for the distributed resistance—inductance—capacitance (RLC) interconnect considering effect of thermal profile. According to the 65-nm complementary metal—oxide semiconductor (CMOS) process, we compare the proposed RLC analytical crosstalk model with the Hspice simulation results for different interconnect coupling conditions and the absolute error is within 6.5%. The computed results of the proposed analytical crosstalk model show that RCL crosstalk decreases with the increase of current density and increases with the increase of insulator thickness. This analytical crosstalk model can be applied to the electronic design automation (EDA) and the design optimization for nanometer CMOS integrated circuits. (interdisciplinary physics and related areas of science and technology)

  20. Carbon nanotube based VLSI interconnects analysis and design

    CERN Document Server

    Kaushik, Brajesh Kumar

    2015-01-01

    The brief primarily focuses on the performance analysis of CNT based interconnects in current research scenario. Different CNT structures are modeled on the basis of transmission line theory. Performance comparison for different CNT structures illustrates that CNTs are more promising than Cu or other materials used in global VLSI interconnects. The brief is organized into five chapters which mainly discuss: (1) an overview of current research scenario and basics of interconnects; (2) unique crystal structures and the basics of physical properties of CNTs, and the production, purification and applications of CNTs; (3) a brief technical review, the geometry and equivalent RLC parameters for different single and bundled CNT structures; (4) a comparative analysis of crosstalk and delay for different single and bundled CNT structures; and (5) various unique mixed CNT bundle structures and their equivalent electrical models.

  1. Effects of advanced process approaches on electromigration degradation of Cu on-chip interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.A.

    2007-07-12

    This thesis provides a methodology for the investigation of electromigration (EM) in Cu-based interconnects. An experimental framework based on in-situ scanning electron microscopy (SEM) investigations was developed for that purpose. It is capable to visualize the EM-induced void formation and evolution in multi-level test structures in real time. Different types of interconnects were investigated. Furthermore, stressed and unstressed samples were studied applying advanced physical analysis techniques in order to obtain additional information about the microstructure of the interconnects as well as interfaces and grain boundaries. These data were correlated to the observed degradation phenomena. Correlations of the experimental results to recently established theoretical models were highlighted. Three types of Cu-based interconnects were studied. Pure Cu interconnects were compared to Al-alloyed (CuAl) and CoWP-coated interconnects. The latter two represent potential approaches that address EM-related reliability concerns. It was found that in such interconnects the dominant diffusion path is no longer the Cu/capping layer interface for interconnects as in pure Cu interconnects. Instead, void nucleation occurs at the bottom Cu/barrier interface with significant effects from grain boundaries. Moreover, the in-situ investigations revealed that the initial void nucleation does not occur at the cathode end of the lines but several micrometers away from it. The mean times-to-failure of CuAl and CoWP-coated interconnects were increased by at least one order of magnitude compared to Cu interconnects. The improvements were attributed to the presence of foreign metal atoms at the Cu/capping layer interface. Post-mortem EBSD investigations were used to reveal the microstructure of the tested samples. The data were correlated to the in-situ observations. (orig.)

  2. Cascade-robustness optimization of coupling preference in interconnected networks

    International Nuclear Information System (INIS)

    Zhang, Xue-Jun; Xu, Guo-Qiang; Zhu, Yan-Bo; Xia, Yong-Xiang

    2016-01-01

    Highlights: • A specific memetic algorithm was proposed to optimize coupling links. • A small toy model was investigated to examine the underlying mechanism. • The MA optimized strategy exhibits a moderate assortative pattern. • A novel coupling coefficient index was proposed to quantify coupling preference. - Abstract: Recently, the robustness of interconnected networks has attracted extensive attentions, one of which is to investigate the influence of coupling preference. In this paper, the memetic algorithm (MA) is employed to optimize the coupling links of interconnected networks. Afterwards, a comparison is made between MA optimized coupling strategy and traditional assortative, disassortative and random coupling preferences. It is found that the MA optimized coupling strategy with a moderate assortative value shows an outstanding performance against cascading failures on both synthetic scale-free interconnected networks and real-world networks. We then provide an explanation for this phenomenon from a micro-scope point of view and propose a coupling coefficient index to quantify the coupling preference. Our work is helpful for the design of robust interconnected networks.

  3. The first LHC sector is fully interconnected

    CERN Multimedia

    2006-01-01

    Sector 7-8 is the first sector of the LHC to become fully operational. All the magnets, cryogenic line, vacuum chambers and services are interconnected. The cool down of this sector can soon commence. LHC project leader Lyn Evans, the teams from CERN's AT/MCS, AT/VAC and AT/MEL groups, and the members of the IEG consortium celebrate the completion of the first LHC sector. The 10th of November was a red letter day for the LHC accelerator teams, marking the completion of the first sector of the machine. The magnets of sector 7-8, together with the cryogenic line, the vacuum chambers and the distribution feedboxes (DFBs) are now all completely interconnected. Sector 7-8 has thus been closed and is the first LHC sector to become operational. The interconnection work required several thousand electrical, cryogenic and insulating connections to be made on the 210 interfaces between the magnets in the arc, the 30 interfaces between the special magnets and the interfaces with the cryogenic line. 'This represent...

  4. Kesterite Cu{sub 2}ZnSnS{sub 4} compounds via electrospinning: A facile route to mesoporous fibers and dense films

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Chunhong; Song, Yuanqiang, E-mail: yuanqiangsong@uestc.edu.cn; Wang, Xiaoning; Wu, Peng

    2015-10-05

    Highlights: • CZTS fibers, mesporous films and dense films are fabricated via electrospinning. • Controllable micromorphologies can be obtained. • Band gap decrease from 1.49 eV to 1.44 eV with the morphology changing. - Abstract: Kesterite Cu{sub 2}ZnSnS{sub 4} (CZTS) layers composed of either mesoporous fibers or dense films were successfully synthesized by electrospinning following sulfurization at high temperature. CZTS layers were characterized using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), Raman and X-ray photoelectronic spectroscopy (XPS), and X-ray diffraction (XRD). The optical properties were also recorded by UV–vis absorption spectroscopy. The results showed that, with the increasing of sulfurization temperature from 450 to 600 °C, the electrospun precursor fibers evolved from isolated CZTS fibers to interconnected fibers, and finally forming a compact films composing of sub-micro crystal flakes, just by simply adjusting the solutes concentration and sulfurization parameters. All the synthesized CZTS samples had a single phase, good crystallinity and a stoichiometric composition. Moreover, the band gap evolved from 1.49 eV to 1.44 eV with the morphology changing from porous microfibers to compact films. This work puts forward a facile route to both CZTS fibers and dense films, and would be meaningful for exploiting CZTS-based solar cells.

  5. System interconnection studies using WASP

    Energy Technology Data Exchange (ETDEWEB)

    Bayrak, Y [Turkish Electricity Generation and Transmission Corp., Ankara (Turkey)

    1997-09-01

    The aim of this paper is to describe the application of WASP as a modelling tool for determining the development of two electric systems with interconnections. A case study has been carried out to determine the possibilities of transfer of baseload energy between Turkey and a neighboring country. The objective of this case study is to determine the amount of energy that can be transferred, variations of Loss Probability (LOLP) and unserved energy, and the cost of additional generation with interconnection. The break-even cost will be determined to obtain the minimum charge rate at which TEAS (Turkish Electricity Generation-Transmission Corp.) needs to sell the energy in order to recover the costs. The minimum charge rate for both capacity and energy will be estimated without considering extra capacity additions, except for the ones needed by the Turkish system alone. (author). 2 figs, 3 tabs.

  6. Probabilistic interconnection between interdependent networks promotes cooperation in the public goods game

    International Nuclear Information System (INIS)

    Wang, Baokui; Chen, Xiaojie; Wang, Long

    2012-01-01

    Most previous works study the evolution of cooperation in a structured population by commonly employing an isolated single network. However, realistic systems are composed of many interdependent networks coupled with each other, rather than an isolated single one. In this paper, we consider a system including two interacting networks with the same size, entangled with each other by the introduction of probabilistic interconnections. We introduce the public goods game into such a system, and study how the probabilistic interconnection influences the evolution of cooperation of the whole system and the coupling effect between two layers of interdependent networks. Simulation results show that there exists an intermediate region of interconnection probability leading to the maximum cooperation level in the whole system. Interestingly, we find that at the optimal interconnection probability the fraction of internal links between cooperators in two layers is maximal. Also, even if initially there are no cooperators in one layer of interdependent networks, cooperation can still be promoted by probabilistic interconnection, and the cooperation levels in both layers can more easily reach an agreement at the intermediate interconnection probability. Our results may be helpful in understanding cooperative behavior in some realistic interdependent networks and thus highlight the importance of probabilistic interconnection on the evolution of cooperation. (paper)

  7. Updating Small Generator Interconnection Procedures for New Market Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Fox, K.; Stanfield, S.; Varnado, L.; Culley, T.; Sheehan, M.

    2012-12-01

    Federal and state regulators are faced with the challenge of keeping interconnection procedures updated against a backdrop of evolving technology, new codes and standards, and considerably transformed market conditions. This report is intended to educate policymakers and stakeholders on beneficial reforms that will keep interconnection processes efficient and cost-effective while maintaining a safe and reliable power system.

  8. Ground rules of the pluripotency gene regulatory network.

    KAUST Repository

    Li, Mo

    2017-01-03

    Pluripotency is a state that exists transiently in the early embryo and, remarkably, can be recapitulated in vitro by deriving embryonic stem cells or by reprogramming somatic cells to become induced pluripotent stem cells. The state of pluripotency, which is stabilized by an interconnected network of pluripotency-associated genes, integrates external signals and exerts control over the decision between self-renewal and differentiation at the transcriptional, post-transcriptional and epigenetic levels. Recent evidence of alternative pluripotency states indicates the regulatory flexibility of this network. Insights into the underlying principles of the pluripotency network may provide unprecedented opportunities for studying development and for regenerative medicine.

  9. Ground rules of the pluripotency gene regulatory network.

    KAUST Repository

    Li, Mo; Belmonte, Juan Carlos Izpisua

    2017-01-01

    Pluripotency is a state that exists transiently in the early embryo and, remarkably, can be recapitulated in vitro by deriving embryonic stem cells or by reprogramming somatic cells to become induced pluripotent stem cells. The state of pluripotency, which is stabilized by an interconnected network of pluripotency-associated genes, integrates external signals and exerts control over the decision between self-renewal and differentiation at the transcriptional, post-transcriptional and epigenetic levels. Recent evidence of alternative pluripotency states indicates the regulatory flexibility of this network. Insights into the underlying principles of the pluripotency network may provide unprecedented opportunities for studying development and for regenerative medicine.

  10. Electric network interconnection of Mashreq Arab Countries

    International Nuclear Information System (INIS)

    El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-01-01

    Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabia power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking

  11. Challenges for modeling global gene regulatory networks during development: insights from Drosophila.

    Science.gov (United States)

    Wilczynski, Bartek; Furlong, Eileen E M

    2010-04-15

    Development is regulated by dynamic patterns of gene expression, which are orchestrated through the action of complex gene regulatory networks (GRNs). Substantial progress has been made in modeling transcriptional regulation in recent years, including qualitative "coarse-grain" models operating at the gene level to very "fine-grain" quantitative models operating at the biophysical "transcription factor-DNA level". Recent advances in genome-wide studies have revealed an enormous increase in the size and complexity or GRNs. Even relatively simple developmental processes can involve hundreds of regulatory molecules, with extensive interconnectivity and cooperative regulation. This leads to an explosion in the number of regulatory functions, effectively impeding Boolean-based qualitative modeling approaches. At the same time, the lack of information on the biophysical properties for the majority of transcription factors within a global network restricts quantitative approaches. In this review, we explore the current challenges in moving from modeling medium scale well-characterized networks to more poorly characterized global networks. We suggest to integrate coarse- and find-grain approaches to model gene regulatory networks in cis. We focus on two very well-studied examples from Drosophila, which likely represent typical developmental regulatory modules across metazoans. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  12. FttC-Based Fronthaul for 5G Dense/Ultra-Dense Access Network: Performance and Costs in Realistic Scenarios

    Directory of Open Access Journals (Sweden)

    Franco Mazzenga

    2017-10-01

    Full Text Available One distinctive feature of the next 5G systems is the presence of a dense/ultra-dense wireless access network with a large number of access points (or nodes at short distances from each other. Dense/ultra-dense access networks allow for providing very high transmission capacity to terminals. However, the deployment of dense/ultra-dense networks is slowed down by the cost of the fiber-based infrastructure required to connect radio nodes to the central processing units and then to the core network. In this paper, we investigate the possibility for existing FttC access networks to provide fronthaul capabilities for dense/ultra-dense 5G wireless networks. The analysis is realistic in that it is carried out considering an actual access network scenario, i.e., the Italian FttC deployment. It is assumed that access nodes are connected to the Cabinets and to the corresponding distributors by a number of copper pairs. Different types of cities grouped in terms of population have been considered. Results focus on fronthaul transport capacity provided by the FttC network and have been expressed in terms of the available fronthaul bit rate per node and of the achievable coverage.

  13. Local Network Wideband Interconnection Alternatives.

    Science.gov (United States)

    1984-01-01

    signal. 3.2.2 Limitations Although satellites offer the advantages of insensitivity to distance, point-to-multipoint communication capability and...Russell, the CATV franchisee for the town of Bedford, has not yit set rates for leasing channels on their network. If this network were interconnected

  14. Back-end interconnection. A generic concept for high volume manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Bosman, J.; Budel, T.; De Kok, C.J.G.M.

    2013-10-15

    The general method to realize series connection in thin film PV modules is monolithical interconnection through a sequence of laser scribes (P1, P2 and P3) and layer depositions. This method however implies that the deposition processes are interrupted several times, an undesirable situation in high volume processing. In order to eliminate this drawback we focus our developments on the so called 'back-end interconnection concept' in which series interconnection takes place AFTER the deposition of the functional layers of the thin film PV device. The process of making a back-end interconnection combines laser scribing, curing, sintering and inkjet processes. These different processes interacts with each other and are investigated in order to create processing strategies that are robust to ensure high volume production. The generic approach created a technology base that can be applied to any thin film PV technology.

  15. Copper Nanowire Production for Interconnect Applications

    Science.gov (United States)

    Han, Jin-Woo (Inventor); Meyyappan, Meyya (Inventor)

    2014-01-01

    A method of fabricating metallic Cu nanowires with lengths up to about 25 micrometers and diameters in a range 20-100 nanometers, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 micrometers), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nanometers. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).

  16. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC’s model interconnection and net metering procedures.

  17. Cross-border effects of capacity mechanisms in interconnected power systems

    NARCIS (Netherlands)

    Bhagwat, P.C.; Richstein, J.C.; Chappin, E.J.L.; Iychettira, K.K.; de Vries, L.J.

    2017-01-01

    The cross-border effects of a capacity market and a strategic reserve in interconnected electricity markets are modeled using an agent-based modeling methodology. Both capacity mechanisms improve the security of supply and reduce consumer costs. Our results indicate that interconnections do not

  18. Performance of WCN diffusion barrier for Cu multilevel interconnects

    Science.gov (United States)

    Lee, Seung Yeon; Ju, Byeong-Kwon; Kim, Yong Tae

    2018-04-01

    The electrical and thermal properties of a WCN diffusion barrier have been studied for Cu multilevel interconnects. The WCN has been prepared using an atomic layer deposition system with WF6-CH4-NH3-H2 gases and has a very low resistivity of 100 µΩ cm and 96.9% step coverage on the high-aspect-ratio vias. The thermally stable WCN maintains an amorphous state at 800 °C and Cu/WCN contact resistance remains within a 10% deviation from the initial value after 700 °C. The mean time to failure suggests that the Cu/WCN interconnects have a longer lifetime than Cu/TaN and Cu/WN interconnects because WCN prevents Cu migration owing to the stress evolution from tensile to compressive.

  19. Quantum dense key distribution

    International Nuclear Information System (INIS)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2004-01-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility

  20. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  1. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  2. U.S. Laws and Regulations for Renewable Energy Grid Interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Mackay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Geller, Nina [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    Rapidly declining costs of wind and solar energy technologies, increasing concerns about the environmental and climate change impacts of fossil fuels, and sustained investment in renewable energy projects all point to a not-so-distant future in which renewable energy plays a pivotal role in the electric power system of the 21st century. In light of public pressures and market factors that hasten the transition towards a low-carbon system, power system planners and regulators are preparing to integrate higher levels of variable renewable generation into the grid. Updating the regulations that govern generator interconnections and operations is crucial to ensure system reliability while creating an enabling environment for renewable energy development. This report presents a chronological review of energy laws and regulations concerning grid interconnection procedures in the United States, highlighting the consequences of policies for renewable energy interconnections. Where appropriate, this report places interconnection policies and their impacts on renewable energy within the broader context of power market reform.

  3. Dense image correspondences for computer vision

    CERN Document Server

    Liu, Ce

    2016-01-01

    This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems.   ·         Provides i...

  4. Planning and design of the Gulf States interconnection

    International Nuclear Information System (INIS)

    Al Alawi, J.; Sud, S.; McGillis, D.

    1994-01-01

    On May 25, 1981, the six Arab state of Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates (UAE) formally ratified the charter of the organization named Co-operation Council for the Arab States of the Gulf. This has become more popularly known as the Gulf Cooperation Council (GCC). In the mid 1980s, the integration of the electric systems study in the GCC was initiated, and several possible interconnection schemes to provide for reserve sharing and generally more economic and flexible operation of the networks were proposed. The GCC subsequently asked for an update of this study and a recommended interconnection scheme. this update study was completed in 1990, and a definite scheme was proposed, which met with the approval of all GCC members. This presentation describes the proposed interconnection, the studies that led to its selection, and the associated management structure required for its implementation. the population of the GCC states, and their load, generating capacity, and the transmission systems are shown

  5. Dense module enumeration in biological networks

    Science.gov (United States)

    Tsuda, Koji; Georgii, Elisabeth

    2009-12-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  6. Dense module enumeration in biological networks

    International Nuclear Information System (INIS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-01-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  7. Load shedding scheme in the south/southeastern interconnected system

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Filho, Xisto; Couri, J J.G.; Gomes, P; Almeida, P C [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    1988-12-31

    This paper presents some characteristics of the Brazilian interconnected system and discusses the load shedding scheme in its different stages considering the beginning of operation of the Itaipu power plant. The present situation of the South and Southeastern load shedding scheme combination is also commented. Finally, the interconnected system evolution and the effects on the load shedding schemes are discussed. 4 refs., 5 figs., 2 tabs.

  8. Synthesis and Characterization of Three Dimensional Nanostructures Based on Interconnected Carbon Nanomaterials

    Science.gov (United States)

    Koizumi, Ryota

    This thesis addresses various types of synthetic methods for novel three dimensional nanomaterials and nanostructures based on interconnected carbon nanomaterials using solution chemistry and chemical vapor deposition (CVD) methods. Carbon nanotube (CNT) spheres with porous and scaffold structures consisting of interconnected CNTs were synthesized by solution chemistry followed by freeze-drying, which have high elasticity under nano-indentation tests. This allows the CNT spheres to be potentially applied to mechanical dampers. CNTs were also grown on two dimensional materials--such as reduced graphene oxide (rGO) and hexagonal boron nitride (h-BN)--by CVD methods, which are chemically interconnected. CNTs on rGO and h-BN interconnected structures performed well as electrodes for supercapacitors. Furthermore, unique interconnected flake structures of alpha-phase molybdenum carbide were developed by a CVD method. The molybdenum carbide can be used for a catalyst of hydrogen evolution reaction activity as well as an electrode for supercapacitors.

  9. Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop: Part III -- Grid Interconnection System Evaluator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, B.; Shirazi, M.; Coddington, M.; Kroposki, B.

    2013-01-01

    This paper, presented at the IEEE Green Technologies Conference 2013, describes a Grid Interconnection System Evaluator (GISE) that leverages hardware-in-the-loop (HIL) simulation techniques to rapidly evaluate the grid interconnection standard conformance of an ICS according to the procedures in IEEE Std 1547.1 (TM). The architecture and test sequencing of this evaluation tool, along with a set of representative ICS test results from three different photovoltaic (PV) inverters, are presented. The GISE adds to the National Renewable Energy Laboratory's (NREL) evaluation platform that now allows for rapid development of ICS control algorithms using controller HIL (CHIL) techniques, the ability to test the dc input characteristics of PV-based ICSs through the use of a PV simulator capable of simulating real-world dynamics using power HIL (PHIL), and evaluation of ICS grid interconnection conformance.

  10. Design of a highly parallel board-level-interconnection with 320 Gbps capacity

    Science.gov (United States)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.; Bauer, H.

    2012-01-01

    A parallel board-level interconnection design is presented consisting of 32 channels, each operating at 10 Gbps. The hardware uses available optoelectronic components (VCSEL, TIA, pin-diodes) and a combination of planarintegrated free-space optics, fiber-bundles and available MEMS-components, like the DMD™ from Texas Instruments. As a specific feature, we present a new modular inter-board interconnect, realized by 3D fiber-matrix connectors. The performance of the interconnect is evaluated with regard to optical properties and power consumption. Finally, we discuss the application of the interconnect for strongly distributed system architectures, as, for example, in high performance embedded computing systems and data centers.

  11. Unified approach to dense matter

    International Nuclear Information System (INIS)

    Park, Byung-Yoon; Lee, Hee-Jung; Vento, Vicente; Kim, Joon-Il; Min, Dong-Pil; Rho, Mannque

    2005-01-01

    We apply the Skyrme model to dense hadronic matter, which provides a unified approach to high density, valid in the large N c limit. In our picture, dense hadronic matter is described by the classical soliton configuration with minimum energy for the given baryon number density. By incorporating the meson fluctuations on such ground state we obtain an effective Lagrangian for meson dynamics in a dense medium. Our starting point has been the Skyrme model defined in terms of pions, thereafter we have extended and improved the model by incorporating other degrees of freedom such as dilaton, kaons and vector mesons

  12. At the speed of light? electricity interconnections for Europe

    International Nuclear Information System (INIS)

    Nies, S.

    2010-01-01

    Electricity moves almost at the speed of light: 273,000 km per second. The speed of electricity makes it the ultimate 'just in time' commodity. A problem anywhere can be transmitted every where in a nanosecond. Electricity interconnection is a prominent issue in the news, sometimes even featured as a panacea for the shortcomings of the European electricity market - a panacea that will ensure security o supply, solidarity and pave the way for a promising use of renewables in the future. The present study is devoted to electricity interconnections in Europe, their current state and the projects concerning them. The study addresses the following questions: - What is the role of interconnections in the development of a sustainable grid that can emerge from the existing pieces, make optimum use of existing generation capacity, ensure energy security, and offer economies of scales? What is their role in the process of building a different energy concept, one that would be concerned with climate change and thus in favour of the use of renewables? - How are existing interconnections exploited and governed, and how can their exploitation be improved? Does the EU need more and new interconnections; and if so, where and why, and who is going to finance them? Prominent projects as such as Desertec, the debate on DC or AC lines, or the limits of synchronization, as well as the state of a potential East-West electricity linkage between Former Soviet Union and EU, termed UCTE-UPS/IPS, are discussed in the volume. Part I develops definitions and basic notions necessary for the understanding of the subject. It also addresses the independent variables that influence interconnections (here the dependent variable), and recounts the historical legacies and their enduring impact on today's grid. Part II is devoted to the EU legal framework and to the complex landscape of governance and its current state of transition. Part III addresses the management of existing interconnections and

  13. Compact models and performance investigations for subthreshold interconnects

    CERN Document Server

    Dhiman, Rohit

    2014-01-01

    The book provides a detailed analysis of issues related to sub-threshold interconnect performance from the perspective of analytical approach and design techniques. Particular emphasis is laid on the performance analysis of coupling noise and variability issues in sub-threshold domain to develop efficient compact models. The proposed analytical approach gives physical insight of the parameters affecting the transient behavior of coupled interconnects. Remedial design techniques are also suggested to mitigate the effect of coupling noise. The effects of wire width, spacing between the wires, wi

  14. Analysis of the trade-offs between conventional and superconducting interconnections

    International Nuclear Information System (INIS)

    Frye, R.

    1989-01-01

    Superconductivity can now be achieved at temperatures compatible with semiconductor device operation. This raises the interesting possibility of using the new, high-temperature superconducting ceramics for interconnections in electronic systems. This paper examines some of the consequences of a resistance-free interconnection medium. A problem with conventional conductors in electronic systems is that the resistance of wires increases quadratically as the wire dimensions are scaled down. Below some minimum cross-sectional area, determined by the metal resistivity and wire length, the resistance in these lines begins to severely limit their bandwidth. Superconductors, on the other hand, are not constrained by the same scaling rules. They provide a high bandwidth interconnection at all sizes and lengths. The limitations for superconductors are set by their critical current densities. If line dimensions become too small, a superconductor will no longer support an adequate flow of current. An analysis is presented examining the performance trade-offs for conventional and superconducting interconnections in applications ranging from printed wiring boards to chips. For most semiconductor device-based applications, the potential gains in wiring density offered by superconductors are probably more important than the bandwidth improvements. An important result of the analysis is that it determines the values of critical current density above which superconductors outperform conventional wires in systems of various physical sizes. This identifies particular interconnection technologies for which high-temperature superconductors show the most promise

  15. The BC-Alberta intertie : impact of regulatory change

    International Nuclear Information System (INIS)

    Christian, J.; Hughes, K.

    2004-01-01

    The interconnected electricity system between the provinces of British Columbia (BC) and Alberta was discussed with reference to the Cranbrook-Langdon 500 kV line and two 138 kV transmission lines. The lines in British Columbia are owned by BC Hydro and operated by the BC Transmission Corporation, while the lines in Alberta are owned by AltaLink and operated by the Alberta Electric Systems Operator (AESO). The operating terms and conditions are established by an Interconnection Agreement between all parties. The Alberta-BC Intertie was designed to operate at an operating transfer capacity of 1200 MW from BC to Alberta, and 1000 MW from Alberta to BC. The operational limits on Intertie capacity were imposed due to voltage constraints within Alberta during high load periods resulting from insufficient transmission support. It was noted that available capacity is often under-utilized because sometimes it is not economical to schedule into or out of Alberta due to better market conditions in the Pacific Northwest. Transmission users in BC have explicit transmission rights which must be purchased on an hourly basis. However, transmission rights in Alberta follow dispatch of generation through Power Pool bidding. The impact of an under-utilized transmission capacity is higher wholesale prices in both Alberta and in the Pacific Northwest because ratepayers end up paying for the under-used capacity. This presentation also outlined regulatory change in Alberta with reference to consolidation of Alberta's Transmission Administrator, Power Pool Administrator and system controller functions; Alberta's new transmission policy; and, the enhanced role of market surveillance administrator. It also outlined the regulatory change in British Columbia with reference to the creation of the BC Transmission Corporation; the Heritage Contract; and, stepped rates and retail access. The effect of changes on intertie usage in both Alberta and British Columbia were also outlined. 31 refs

  16. Chip-package nano-structured copper and nickel interconnections with metallic and polymeric bonding interfaces

    Science.gov (United States)

    Aggarwal, Ankur

    With the semiconductor industry racing toward a historic transition, nano chips with less than 45 nm features demand I/Os in excess of 20,000 that support computing speed in terabits per second, with multi-core processors aggregately providing highest bandwidth at lowest power. On the other hand, emerging mixed signal systems are driving the need for 3D packaging with embedded active components and ultra-short interconnections. Decreasing I/O pitch together with low cost, high electrical performance and high reliability are the key technological challenges identified by the 2005 International Technology Roadmap for Semiconductors (ITRS). Being able to provide several fold increase in the chip-to-package vertical interconnect density is essential for garnering the true benefits of nanotechnology that will utilize nano-scale devices. Electrical interconnections are multi-functional materials that must also be able to withstand complex, sustained and cyclic thermo-mechanical loads. In addition, the materials must be environmentally-friendly, corrosion resistant, thermally stable over a long time, and resistant to electro-migration. A major challenge is also to develop economic processes that can be integrated into back end of the wafer foundry, i.e. with wafer level packaging. Device-to-system board interconnections are typically accomplished today with either wire bonding or solders. Both of these are incremental and run into either electrical or mechanical barriers as they are extended to higher density of interconnections. Downscaling traditional solder bump interconnect will not satisfy the thermo-mechanical reliability requirements at very fine pitches of the order of 30 microns and less. Alternate interconnection approaches such as compliant interconnects typically require lengthy connections and are therefore limited in terms of electrical properties, although expected to meet the mechanical requirements. A novel chip-package interconnection technology is

  17. Vertically aligned multiwalled carbon nanotubes as electronic interconnects

    Science.gov (United States)

    Gopee, Vimal Chandra

    The drive for miniaturisation of electronic circuits provides new materials challenges for the electronics industry. Indeed, the continued downscaling of transistor dimensions, described by Moore’s Law, has led to a race to find suitable replacements for current interconnect materials to replace copper. Carbon nanotubes have been studied as a suitable replacement for copper due to its superior electrical, thermal and mechanical properties. One of the advantages of using carbon nanotubes is their high current carrying capacity which has been demonstrated to be three orders of magnitude greater than that of copper. Most approaches in the implementation of carbon nanotubes have so far focused on the growth in vias which limits their application. In this work, a process is described for the transfer of carbon nanotubes to substrates allowing their use for more varied applications. Arrays of vertically aligned multiwalled carbon nanotubes were synthesised by photo-thermal chemical vapour deposition with high growth rates. Raman spectroscopy was used to show that the synthesised carbon nanotubes were of high quality. The carbon nanotubes were exposed to an oxygen plasma and the nature of the functional groups present was determined using X-ray photoelectron spectroscopy. Functional groups, such as carboxyl, carbonyl and hydroxyl groups, were found to be present on the surface of the multiwalled carbon nanotubes after the functionalisation process. The multiwalled carbon nanotubes were metallised after the functionalisation process using magnetron sputtering. Two materials, solder and sintered silver, were chosen to bind carbon nanotubes to substrates so as to enable their transfer and also to make electrical contact. The wettability of solder to carbon nanotubes was investigated and it was demonstrated that both functionalisation and metallisation were required in order for solder to bond with the carbon nanotubes. Similarly, functionalisation followed by metallisation

  18. The myth of interconnected plastids and related phenomena.

    Science.gov (United States)

    Schattat, Martin H; Barton, Kiah A; Mathur, Jaideep

    2015-01-01

    Studies spread over nearly two and a half centuries have identified the primary plastid in autotrophic algae and plants as a pleomorphic, multifunctional organelle comprising of a double-membrane envelope enclosing an organization of internal membranes submerged in a watery stroma. All plastid units have been observed extending and retracting thin stroma-filled tubules named stromules sporadically. Observations on living plant cells often convey the impression that stromules connect two or more independent plastids with each other. When photo-bleaching techniques were used to suggest that macromolecules such as the green fluorescent protein could flow between already interconnected plastids, for many people this impression changed to conviction. However, it was noticed only recently that the concept of protein flow between plastids rests solely on the words "interconnected plastids" for which details have never been provided. We have critically reviewed botanical literature dating back to the 1880s for understanding this term and the phenomena that have become associated with it. We find that while meticulously detailed ontogenic studies spanning nearly 150 years have established the plastid as a singular unit organelle, there is no experimental support for the idea that interconnected plastids exist under normal conditions of growth and development. In this review, while we consider several possibilities that might allow a single elongated plastid to be misinterpreted as two or more interconnected plastids, our final conclusion is that the concept of direct protein flow between plastids is based on an unfounded assumption.

  19. Ceria based protective coatings for steel interconnects prepared by spray pyrolysis

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Molin, Sebastian; Chen, Ming

    2014-01-01

    Stainless steels can be used in solid oxide fuel/electrolysis stacks as interconnects. For successful long term operation they require protective coatings, that lower the corrosion rate and block chemical reactions between the interconnect and adjacent layers of the oxygen or the hydrogen electrode....... One of the promising coating materials for the hydrogen side is ceria. Using standard sintering techniques, ceria sinters at around 1400°C which even for a very short exposure would destroy the interconnect. Therefore in this paper a low temperature deposition method, i.e. spray pyrolysis, is used...

  20. IC layout adjustment method and tool for improving dielectric reliability at interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Kahng, Andrew B.; Chan, Tuck Boon

    2018-03-20

    Method for adjusting a layout used in making an integrated circuit includes one or more interconnects in the layout that are susceptible to dielectric breakdown are selected. One or more selected interconnects are adjusted to increase via to wire spacing with respect to at least one via and one wire of the one or more selected interconnects. Preferably, the selecting analyzes signal patterns of interconnects, and estimates the stress ratio based on state probability of routed signal nets in the layout. An annotated layout is provided that describes distances by which one or more via or wire segment edges are to be shifted. Adjustments can include thinning and shifting of wire segments, and rotation of vias.

  1. Decentralized automatic generation control of interconnected power systems incorporating asynchronous tie-lines.

    Science.gov (United States)

    Ibraheem; Hasan, Naimul; Hussein, Arkan Ahmed

    2014-01-01

    This Paper presents the design of decentralized automatic generation controller for an interconnected power system using PID, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The designed controllers are tested on identical two-area interconnected power systems consisting of thermal power plants. The area interconnections between two areas are considered as (i) AC tie-line only (ii) Asynchronous tie-line. The dynamic response analysis is carried out for 1% load perturbation. The performance of the intelligent controllers based on GA and PSO has been compared with the conventional PID controller. The investigations of the system dynamic responses reveal that PSO has the better dynamic response result as compared with PID and GA controller for both type of area interconnection.

  2. Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise.

    Science.gov (United States)

    Thirupathi, Anand; de Souza, Claudio Teodoro

    2017-11-01

    Transcriptional factors are easily susceptible to any stimuli, including exercise. Exercise can significantly influence PGC-1 α and AMPK-SIRT1 pathway, as it is involved in the regulation of energy metabolism and mitochondrial biogenesis. Exercise is a major energy deprivation process by which many of transcription factors get tuned positively. However, how transcription factors help to boost the antioxidant defense system at cellular level is elusive. It is well known that physical exercise can induce reactive oxygen species, but how these reactive oxygen species can help to regulate multiple transcription factors during exercise is an important area to be discussed yet. This review mainly focuses on interconnecting role of PGC-1 α and AMPK-SIRT1 pathway during exercise and how these proteins are getting tuned by reactive oxygen species in exercise condition.

  3. FDTD technique based crosstalk analysis of bundled SWCNT interconnects

    International Nuclear Information System (INIS)

    Duksh, Yograj Singh; Kaushik, Brajesh Kumar; Agarwal, Rajendra P.

    2015-01-01

    The equivalent electrical circuit model of a bundled single-walled carbon nanotube based distributed RLC interconnects is employed for the crosstalk analysis. The accurate time domain analysis and crosstalk effect in the VLSI interconnect has emerged as an essential design criteria. This paper presents a brief description of the numerical method based finite difference time domain (FDTD) technique that is intended for estimation of voltages and currents on coupled transmission lines. For the FDTD implementation, the stability of the proposed model is strictly restricted by the Courant condition. This method is used for the estimation of crosstalk induced propagation delay and peak voltage in lossy RLC interconnects. Both functional and dynamic crosstalk effects are analyzed in the coupled transmission line. The effect of line resistance on crosstalk induced delay, and peak voltage under dynamic and functional crosstalk is also evaluated. The FDTD analysis and the SPICE simulations are carried out at 32 nm technology node for the global interconnects. It is observed that the analytical results obtained using the FDTD technique are in good agreement with the SPICE simulation results. The crosstalk induced delay, propagation delay, and peak voltage obtained using the FDTD technique shows average errors of 4.9%, 3.4% and 0.46%, respectively, in comparison to SPICE. (paper)

  4. 77 FR 3766 - PJM Interconnection, L.L.C.; Notice of Staff Technical Conference

    Science.gov (United States)

    2012-01-25

    ... Interconnection, L.L.C.; Notice of Staff Technical Conference On December 14, 2011, the Commission issued an order... Interconnection, L.L.C.'s (PJM) filing.\\1\\ Take notice that the technical conference will be held on February 14...\\ PJM Interconnection, L.L.C., 137 FERC ] 61,204 (2011) (December 14 Order). All interested parties are...

  5. Bi cluster-assembled interconnects produced using SU8 templates

    International Nuclear Information System (INIS)

    Partridge, J G; Matthewson, T; Brown, S A

    2007-01-01

    Bi clusters with an average diameter of 25 nm have been deposited from an inert gas aggregation source and assembled into thin-film interconnects which are formed between planar electrical contacts and supported on Si substrates passivated with Si 3 N 4 or thermally grown oxide. A layer of SU8 (a negative photoresist based on EPON SU-8 epoxy resin) is patterned using optical or electron-beam lithography, and it defines the position and dimensions of the cluster film. The conduction between the contacts is monitored throughout the deposition/assembly process, and subsequent I(V) characterization is performed in situ. Bi cluster-assembled interconnects have been fabricated with nanoscale widths and with up to 1:1 thickness:width aspect ratios. The conductivity of these interconnects has been increased, post-deposition, using a simple thermal annealing process

  6. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  7. Chip-Level Electromigration Reliability for Cu Interconnects

    International Nuclear Information System (INIS)

    Gall, M.; Oh, C.; Grinshpon, A.; Zolotov, V.; Panda, R.; Demircan, E.; Mueller, J.; Justison, P.; Ramakrishna, K.; Thrasher, S.; Hernandez, R.; Herrick, M.; Fox, R.; Boeck, B.; Kawasaki, H.; Haznedar, H.; Ku, P.

    2004-01-01

    Even after the successful introduction of Cu-based metallization, the electromigration (EM) failure risk has remained one of the most important reliability concerns for most advanced process technologies. Ever increasing operating current densities and the introduction of low-k materials in the backend process scheme are some of the issues that threaten reliable, long-term operation at elevated temperatures. The traditional method of verifying EM reliability only through current density limit checks is proving to be inadequate in general, or quite expensive at the best. A Statistical EM Budgeting (SEB) methodology has been proposed to assess more realistic chip-level EM reliability from the complex statistical distribution of currents in a chip. To be valuable, this approach requires accurate estimation of currents for all interconnect segments in a chip. However, no efficient technique to manage the complexity of such a task for very large chip designs is known. We present an efficient method to estimate currents exhaustively for all interconnects in a chip. The proposed method uses pre-characterization of cells and macros, and steps to identify and filter out symmetrically bi-directional interconnects. We illustrate the strength of the proposed approach using a high-performance microprocessor design for embedded applications as a case study

  8. Energetic diversification in the interconnected electric system

    International Nuclear Information System (INIS)

    Villanueva M, C.; Beltran M, H.; Serrano G, J.A.

    2007-01-01

    In the interconnected electric system of Mexico the demanded electricity in different timetable periods it is synthesized in the annual curve of load duration, which is characterized by three regions. The energy in every period is quantified according to the under curve areas in each region, which depend of the number of hours in that the power demand exceeds the minimum and the intermediate demands respectively that are certain percentages of the yearly maximum demand. In that context, the generating power stations are dispatched according to the marginal costs of the produced electricity and the electric power to be generated every year by each type of central it is located in some of the regions of the curve of load duration, as they are their marginal costs and their operation characteristic techniques. By strategic reasons it is desirable to diversify the primary energy sources that are used in the national interconnected system to generate the electricity that demand the millions of consumers that there are in Mexico. On one hand, when intensifying the use of renewable sources and of nucleo electric centrals its decrease the import volumes of natural gas, which has very volatile prices and it is a fuel when burning in the power stations produces hothouse gases that are emitted to the atmosphere. On the other hand, when diversifying the installed capacity of the different central types in the interconnected system, a better adaptation of the produced electricity volumes is achieved by each type to the timetable variation, daily, weekly and seasonal of the electric demand, as one manifests this in the curve of load duration. To exemplify a possible diversification plan of the installed capacity in the national interconnected system that includes nucleo electric centrals and those that use renewable energy, charts are presented that project of 2005 at 2015 the capacity, energy and ost of the electricity of different central types, located in each one of the

  9. Hadrons in dense matter. Proceedings

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2000-03-01

    The following topics were dealt with: Elementary hadronic reactions, Delta dynamics in nuclei, in-medium s-wave ππ-correlations, strangeness in hot and dense matter, medium modifications of vector mesons and dilepton production, medium modifications of charmonium, thermal properties of hot and dense hadronic matter, nuclear matter, spectral functions and QCD sum rules

  10. Nanophotonic Devices for Optical Interconnect

    DEFF Research Database (Denmark)

    Van Thourhout, D.; Spuesens, T.; Selvaraja, S.K.

    2010-01-01

    We review recent progress in nanophotonic devices for compact optical interconnect networks. We focus on microdisk-laser-based transmitters and discuss improved design and advanced functionality including all-optical wavelength conversion and flip-flops. Next we discuss the fabrication uniformity...... of the passive routing circuits and their thermal tuning. Finally, we discuss the performance of a wavelength selective detector....

  11. Impact of Bundle Structure on Performance of on-Chip CNT Interconnects

    International Nuclear Information System (INIS)

    Kuruvilla, N.; Raina, J.P

    2014-01-01

    CNTs are proposed as a promising candidate against copper in deep submicron IC interconnects. Still this technology is in its infancy. Most available literatures on performance predictions of CNT interconnects, have focused only on interconnect geometries using segregated CNTs. Yet during the manufacturing phase, CNTs are obtained usually as a mixture of single-walled and multi-walled CNTs (SWCNTs and MWCNTs). Especially in case of SWCNTs; it is usually available as a mixture of both Semi conducting CNTs and metallic CNTs. This paper attempts to answer whether segregation is inevitable before using them to construct interconnects. This paper attempt to compare the performance variations of bundled CNT interconnects, where bundles are made of segregated CNTs versus mixed CNTs, for future technology nodes using electrical model based analysis. Also a proportionate mixing of different CNTs has been introduced so as to yield a set of criteria to aid the industry in selection of an appropriate bundle structure for use in a specific application with optimum performance. It was found that even the worst case performance of geometries using a mixture of SWCNTs and MWCNTs was better than copper. These results also reveal that, for extracting optimum performance vide cost matrix, the focus should be more on diameter controlled synthesis than on segregation.

  12. Two-dimensional optoelectronic interconnect-processor and its operational bit error rate

    Science.gov (United States)

    Liu, J. Jiang; Gollsneider, Brian; Chang, Wayne H.; Carhart, Gary W.; Vorontsov, Mikhail A.; Simonis, George J.; Shoop, Barry L.

    2004-10-01

    Two-dimensional (2-D) multi-channel 8x8 optical interconnect and processor system were designed and developed using complementary metal-oxide-semiconductor (CMOS) driven 850-nm vertical-cavity surface-emitting laser (VCSEL) arrays and the photodetector (PD) arrays with corresponding wavelengths. We performed operation and bit-error-rate (BER) analysis on this free-space integrated 8x8 VCSEL optical interconnects driven by silicon-on-sapphire (SOS) circuits. Pseudo-random bit stream (PRBS) data sequence was used in operation of the interconnects. Eye diagrams were measured from individual channels and analyzed using a digital oscilloscope at data rates from 155 Mb/s to 1.5 Gb/s. Using a statistical model of Gaussian distribution for the random noise in the transmission, we developed a method to compute the BER instantaneously with the digital eye-diagrams. Direct measurements on this interconnects were also taken on a standard BER tester for verification. We found that the results of two methods were in the same order and within 50% accuracy. The integrated interconnects were investigated in an optoelectronic processing architecture of digital halftoning image processor. Error diffusion networks implemented by the inherently parallel nature of photonics promise to provide high quality digital halftoned images.

  13. Green interconnecting materials for semiconductor industry

    NARCIS (Netherlands)

    Matin, M.A.; Vellinga, W.P.; Geers, M.G.D.; Sawada, K.; Ishida, M.

    2009-01-01

    Interconnecting materials experience a complex thermo-mechanical load in applications. This may lead to the formation of macroscopic cracks resulting from induced stresses of the differences in thermal expansion coefficients on a sample scale (since different materials are involved) and on a grain

  14. An architectural model for network interconnection

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Vissers, C.A.; Kalin, T.

    1983-01-01

    This paper presents a technique of successive decomposition of a common users' activity to illustrate the problems of network interconnection. The criteria derived from this approach offer a structuring principle which is used to develop an architectural model that embeds heterogeneous subnetworks

  15. Nominate an Organization | Distributed Generation Interconnection

    Science.gov (United States)

    Collaborative | NREL Nominate an Organization Nominate an Organization Do you know of an organization doing high-quality, innovative work on the interconnection of distributed generation? Want to practices by nominating an organization to be profiled in an online case study! Please include your

  16. Toxoplasma gondii: Biochemical and biophysical characterization of recombinant soluble dense granule proteins GRA2 and GRA6

    International Nuclear Information System (INIS)

    Bittame, Amina; Effantin, Grégory; Pètre, Graciane; Ruffiot, Pauline; Travier, Laetitia; Schoehn, Guy; Weissenhorn, Winfried; Cesbron-Delauw, Marie-France; Gagnon, Jean; Mercier, Corinne

    2015-01-01

    The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6–8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8–15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. - Highlights: • Toxoplasma gondii: soluble GRA2 forms 2 populations of particles. • T. gondii: the dense granule protein GRA2 folds intrinsically as an alpha-helix. • T. gondii: monomeric soluble GRA6 forms particles of 6–8 nm in diameter. • T. gondii: monomeric soluble GRA6 is random coiled. • Unusual biophysical properties of the dense granule protein GRA2 from T. gondii

  17. Toxoplasma gondii: Biochemical and biophysical characterization of recombinant soluble dense granule proteins GRA2 and GRA6

    Energy Technology Data Exchange (ETDEWEB)

    Bittame, Amina [CNRS, UMR 5163, 38042 Grenoble (France); Université Grenoble Alpes, 38042 Grenoble (France); Effantin, Grégory [Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Unit for Virus Host-Cell Interactions (UVHCI), UMI 3265 (UJF-EMBL-CNRS), 38027 Grenoble (France); Pètre, Graciane; Ruffiot, Pauline; Travier, Laetitia [CNRS, UMR 5163, 38042 Grenoble (France); Université Grenoble Alpes, 38042 Grenoble (France); Schoehn, Guy; Weissenhorn, Winfried [Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Unit for Virus Host-Cell Interactions (UVHCI), UMI 3265 (UJF-EMBL-CNRS), 38027 Grenoble (France); Cesbron-Delauw, Marie-France; Gagnon, Jean [CNRS, UMR 5163, 38042 Grenoble (France); Université Grenoble Alpes, 38042 Grenoble (France); Mercier, Corinne, E-mail: corinne.mercier@ujf-grenoble.fr [CNRS, UMR 5163, 38042 Grenoble (France); Université Grenoble Alpes, 38042 Grenoble (France)

    2015-03-27

    The most prominent structural feature of the parasitophorous vacuole (PV) in which the intracellular parasite Toxoplasma gondii proliferates is a membranous nanotubular network (MNN), which interconnects the parasites and the PV membrane. The MNN function remains unclear. The GRA2 and GRA6 proteins secreted from the parasite dense granules into the PV have been implicated in the MNN biogenesis. Amphipathic alpha-helices (AAHs) predicted in GRA2 and an alpha-helical hydrophobic domain predicted in GRA6 have been proposed to be responsible for their membrane association, thereby potentially molding the MMN in its structure. Here we report an analysis of the recombinant proteins (expressed in detergent-free conditions) by circular dichroism, which showed that full length GRA2 displays an alpha-helical secondary structure while recombinant GRA6 and GRA2 truncated of its AAHs are mainly random coiled. Dynamic light scattering and transmission electron microscopy showed that recombinant GRA6 and truncated GRA2 constitute a homogenous population of small particles (6–8 nm in diameter) while recombinant GRA2 corresponds to 2 populations of particles (∼8–15 nm and up to 40 nm in diameter, respectively). The unusual properties of GRA2 due to its AAHs are discussed. - Highlights: • Toxoplasma gondii: soluble GRA2 forms 2 populations of particles. • T. gondii: the dense granule protein GRA2 folds intrinsically as an alpha-helix. • T. gondii: monomeric soluble GRA6 forms particles of 6–8 nm in diameter. • T. gondii: monomeric soluble GRA6 is random coiled. • Unusual biophysical properties of the dense granule protein GRA2 from T. gondii.

  18. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air......A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...

  19. Comparative Analysis and Considerations for PV Interconnection Standards in the United States and China

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-01

    The main objectives of this report are to evaluate China's photovoltaic (PV) interconnection standards and the U.S. counterparts and to propose recommendations for future revisions to these standards. This report references the 2013 report Comparative Study of Standards for Grid-Connected PV System in China, the U.S. and European Countries, which compares U.S., European, and China's PV grid interconnection standards; reviews various metrics for the characterization of distribution network with PV; and suggests modifications to China's PV interconnection standards and requirements. The recommendations are accompanied by assessments of four high-penetration PV grid interconnection cases in the United States to illustrate solutions implemented to resolve issues encountered at different sites. PV penetration in China and in the United States has significantly increased during the past several years, presenting comparable challenges depending on the conditions of the grid at the point of interconnection; solutions are generally unique to each interconnected PV installation or PV plant.

  20. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Bastidas, D. M.

    2006-12-01

    Full Text Available Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. Coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation

    El uso de interconectores metálicos en pilas de combustible de óxido sólido (SOFC en sustitución de materiales cerámicos ha sido posible gracias a la investigación y desarrollo de nuevos materiales metálicos. Inicialmente, el uso de interconectores metálicos fue limitado, debido a la elevada temperatura de trabajo, ocasionando de forma rápida la degradación del material, lo que impedía que fuesen una alternativa. A medida que la temperatura de trabajo de las SOFC descendió, el uso de interconectores metálicos demostró ser una buena alternativa, dado que son más fáciles de fabricar y más baratos que los interconectores cerámicos. Sin embargo, los interconectores metálicos continúan degradándose a pesar de descender la temperatura a la que operan las SOFC y, asimismo, los productos de corrosión favorecen las pérdidas eléctricas de la pila de combustible. Recubrimientos de níquel, cromo, aluminio, zinc, manganeso, itrio y lantano entre el interconector y los electrodos reduce dichas pérdidas eléctricas.

  1. Communication Requirements and Interconnect Optimization forHigh-End Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kamil, Shoaib; Oliker, Leonid; Pinar, Ali; Shalf, John

    2007-11-12

    The path towards realizing peta-scale computing isincreasingly dependent on building supercomputers with unprecedentednumbers of processors. To prevent the interconnect from dominating theoverall cost of these ultra-scale systems, there is a critical need forhigh-performance network solutions whose costs scale linearly with systemsize. This work makes several unique contributions towards attaining thatgoal. First, we conduct one of the broadest studies to date of high-endapplication communication requirements, whose computational methodsinclude: finite-difference, lattice-bolzmann, particle in cell, sparselinear algebra, particle mesh ewald, and FFT-based solvers. Toefficiently collect this data, we use the IPM (Integrated PerformanceMonitoring) profiling layer to gather detailed messaging statistics withminimal impact to code performance. Using the derived communicationcharacterizations, we next present fit-trees interconnects, a novelapproach for designing network infrastructure at a fraction of thecomponent cost of traditional fat-tree solutions. Finally, we propose theHybrid Flexibly Assignable Switch Topology (HFAST) infrastructure, whichuses both passive (circuit) and active (packet) commodity switchcomponents to dynamically reconfigure interconnects to suit thetopological requirements of scientific applications. Overall ourexploration leads to a promising directions for practically addressingthe interconnect requirements of future peta-scale systems.

  2. Simple and reusable fibre-to-chip interconnect with adjustable coupling eficiency

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Parriaux, Olivier M.; Kley, Ernst-Bernhard

    1997-01-01

    A simple, efficient and reusable fiber-to-chip interconnect is presented. The interconnect is based on a V-groove (wet- chemically etched) in silicon, combined with a loose-mode Si3N4-channel waveguide. The loose-mode waveguide is adiabatically tapered to the integrated optical (sensor) circuitry.

  3. Investigation of performance degradation of SOFC using chromium-containing alloy interconnects

    DEFF Research Database (Denmark)

    Beeaff, D.R.; Dinesen, A.; Hendriksen, Peter Vang

    2007-01-01

    The long-term aging of a stack element (fuel cell, current collectors, and interconnect materials) was studied. A pair of tests were made in which one sample contained an interconnect, a high-temperature stainless steel (Crofer 22 APU), treated with an LSMC coating applied to the cathode-side int...

  4. Robust design of head interconnect for hard disk drive

    Science.gov (United States)

    Gao, X. K.; Liu, Q. H.; Liu, Z. J.

    2005-05-01

    Design of head interconnect is one of the important issues for hard disk drives with higher data rate and storage capacity. The impedance of interconnect and electromagnetic coupling influence the quality level of data communication. Thus an insightful study on how the trace configuration affects the impedance and crosstalk is necessary. An effective design approach based on Taguchi's robust design method is employed therefore in an attempt to realize impedance matching and crosstalk minimization with the effects of uncontrollable sources taken into consideration.

  5. Next Generation Space Interconnect Standard (NGSIS): a modular open standards approach for high performance interconnects for space

    Science.gov (United States)

    Collier, Charles Patrick

    2017-04-01

    The Next Generation Space Interconnect Standard (NGSIS) effort is a Government-Industry collaboration effort to define a set of standards for interconnects between space system components with the goal of cost effectively removing bandwidth as a constraint for future space systems. The NGSIS team has selected the ANSI/VITA 65 OpenVPXTM standard family for the physical baseline. The RapidIO protocol has been selected as the basis for the digital data transport. The NGSIS standards are developed to provide sufficient flexibility to enable users to implement a variety of system configurations, while meeting goals for interoperability and robustness for space. The NGSIS approach and effort represents a radical departure from past approaches to achieve a Modular Open System Architecture (MOSA) for space systems and serves as an exemplar for the civil, commercial, and military Space communities as well as a broader high reliability terrestrial market.

  6. Interference Coordination for Dense Wireless Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.; Jørgensen, Niels T.K.

    2015-01-01

    and dense deployment in Tokyo are compared. Evolution to DenseNets offers new opportunities for further development of downlink interference cooperation techniques. Various mechanisms in LTE and LTE-Advanced are revisited. Some techniques try to anticipate the future in a proactive way, whereas others......The promise of ubiquitous and super-fast connectivity for the upcoming years will be in large part fulfilled by the addition of base stations and spectral aggregation. The resulting very dense networks (DenseNets) will face a number of technical challenges. Among others, the interference emerges...... as an old acquaintance with new significance. As a matter of fact, the interference conditions and the role of aggressor and victim depend to a large extent on the density and the scenario. To illustrate this, downlink interference statistics for different 3GPP simulation scenarios and a more irregular...

  7. Regulação dos setores em rede para além dos valores econômicos: uma análise das políticas de interconexão IP para suporte a serviços de voz na União Europeia a partir das Teorias do Interesse Público / Regulating Network Industries beyond Economic Theories: An Analysis of IP Interconnection Policies to Support Voice Services in the EU from the perspective of Public Interest Theories

    Directory of Open Access Journals (Sweden)

    Victor Oliveira Fernandes

    2017-04-01

    Full Text Available Purpose – The study aims to analyze the extent to which economic theories of network industries could anticipate the behavior of regulators regarding the promotion of network access and interconnection policies in telecommunication markets. Methodology/approach/design – The paper first analyzes the main economic arguments for regulating network industries, in order to highlight the regulatory metalinguistics they contain. Then, the study indicates some critiques to economic rationality addressed by Public Interest Theories of Regulation. At last, it verifies how well economic theories of network industries explain IP interconnection policies recently developed in two European countries, namely, France and Germany. Findings – European regulator's decisions of imposing IP interconnection obligations on fixed network operators suggest that regulatory intervention on such fields is strongly influenced by non-economic values, such as effective competition and technological neutrality.

  8. Report on the use of the French-German interconnection in 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    For years, most of the European electricity interconnections were managed using administrative mechanisms (priority lists or pro-rata), and a priority of access was granted to long-term contracts between incumbent operators. With the liberalization process, cross-border power flows tended to increase, and congestions occurred more frequently, calling for efficient congestion management methods. Furthermore, the European Regulation 1228/2003 on conditions for access to the network for cross-border exchanges in electricity came into force. Among other issues, it stipulated that 'network congestion problems shall be addressed with non-discriminatory market based solutions which give efficient economic signals to the market participants and transmission system operators involved'. In other words, cross-border capacity auctions had to be implemented. Due to repeated critical situations in December 2004 the past pro-rata procedure used for Germany to France exports was replaced as from 5 April 2005 by the introduction of a one-sided explicit auction for the day-ahead capacities by RWE Transportnetz Strom GmbH and EnBW Transportnetze AG. In addition the capacities have been auctioned quarterly and monthly since 1 July 2005. During the summer of 2005, the Federal Network Agency and the Commission de Regulation de l'energie (CRE) set the priority for further developing the auctions in 2006 by having a coordinated congestion management mechanism for both directions. The general principles of the auction design were publicly consulted by the regulators together with further questions on cross-border exchanges in the autumn of 2005. The market participants' statements were assessed by the regulatory authorities and considered through the development of a common Road-map for the congestion management methods at the French-German border, published on 3 November 2005. In addition to the implementation of explicit auctions, this road-map included the

  9. Report on the use of the French-German interconnection in 2006

    International Nuclear Information System (INIS)

    2007-01-01

    For years, most of the European electricity interconnections were managed using administrative mechanisms (priority lists or pro-rata), and a priority of access was granted to long-term contracts between incumbent operators. With the liberalization process, cross-border power flows tended to increase, and congestions occurred more frequently, calling for efficient congestion management methods. Furthermore, the European Regulation 1228/2003 on conditions for access to the network for cross-border exchanges in electricity came into force. Among other issues, it stipulated that 'network congestion problems shall be addressed with non-discriminatory market based solutions which give efficient economic signals to the market participants and transmission system operators involved'. In other words, cross-border capacity auctions had to be implemented. Due to repeated critical situations in December 2004 the past pro-rata procedure used for Germany to France exports was replaced as from 5 April 2005 by the introduction of a one-sided explicit auction for the day-ahead capacities by RWE Transportnetz Strom GmbH and EnBW Transportnetze AG. In addition the capacities have been auctioned quarterly and monthly since 1 July 2005. During the summer of 2005, the Federal Network Agency and the Commission de Regulation de l'energie (CRE) set the priority for further developing the auctions in 2006 by having a coordinated congestion management mechanism for both directions. The general principles of the auction design were publicly consulted by the regulators together with further questions on cross-border exchanges in the autumn of 2005. The market participants' statements were assessed by the regulatory authorities and considered through the development of a common Road-map for the congestion management methods at the French-German border, published on 3 November 2005. In addition to the implementation of explicit auctions, this road-map included the establishment of a secondary

  10. Thermo-electric Analysis of the Interconnection of the LHC main Superconducting Bus Bars

    CERN Document Server

    Granieri, P P; Casali, M; Bottura, L; Siemko, A

    2013-01-01

    Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A deep insight of the underlying mechanisms is required to ensure the protection of the accelerator against undesired effects of resistive transitions. This is especially important in case of defective interconnections which can jeopardize the operation of the whole LHC. In this paper we present a numerical model of the interconnections between the main dipole and quadrupole magnets, validated against experimental tests of an interconnection sample with a purposely built-in defect. We consider defective interconnections featuring a lack of bonding among the superconducting cables and the copper stabilizer components, such as those that could be present in the machine. We evaluate the critical defect length limiting the maximum allowable current for powering th...

  11. Implementation of interconnect simulation tools in spice

    Science.gov (United States)

    Satsangi, H.; Schutt-Aine, J. E.

    1993-01-01

    Accurate computer simulation of high speed digital computer circuits and communication circuits requires a multimode approach to simulate both the devices and the interconnects between devices. Classical circuit analysis algorithms (lumped parameter) are needed for circuit devices and the network formed by the interconnected devices. The interconnects, however, have to be modeled as transmission lines which incorporate electromagnetic field analysis. An approach to writing a multimode simulator is to take an existing software package which performs either lumped parameter analysis or field analysis and add the missing type of analysis routines to the package. In this work a traditionally lumped parameter simulator, SPICE, is modified so that it will perform lossy transmission line analysis using a different model approach. Modifying SPICE3E2 or any other large software package is not a trivial task. An understanding of the programming conventions used, simulation software, and simulation algorithms is required. This thesis was written to clarify the procedure for installing a device into SPICE3E2. The installation of three devices is documented and the installations of the first two provide a foundation for installation of the lossy line which is the third device. The details of discussions are specific to SPICE, but the concepts will be helpful when performing installations into other circuit analysis packages.

  12. Structure-dependent behavior of stress-induced voiding in Cu interconnects

    International Nuclear Information System (INIS)

    Wu Zhenyu; Yang Yintang; Chai Changchun; Li Yuejin; Wang Jiayou; Li Bin; Liu Jing

    2010-01-01

    Stress modeling and cross-section failure analysis by focused-ion-beam have been used to investigate stress-induced voiding phenomena in Cu interconnects. The voiding mechanism and the effect of the interconnect structure on the stress migration have been studied. The results show that the most concentrated tensile stress appears and voids form at corners of vias on top surfaces of Cu M1 lines. A simple model of stress induced voiding in which vacancies arise due to the increase of the chemical potential under tensile stress and diffuse under the force of stress gradient along the main diffusing path indicates that stress gradient rather than stress itself determines the voiding rate. Cu interconnects with larger vias show less resistance to stress-induced voiding due to larger stress gradient at corners of vias.

  13. Reliability of spring interconnects for high channel-count polyimide electrode arrays

    Science.gov (United States)

    Khan, Sharif; Ordonez, Juan Sebastian; Stieglitz, Thomas

    2018-05-01

    Active neural implants with a high channel-count need robust and reliable operational assembly for the targeted environment in order to be classified as viable fully implantable systems. The discrete functionality of the electrode array and the implant electronics is vital for intact assembly. A critical interface exists at the interconnection sites between the electrode array and the implant electronics, especially in hybrid assemblies (e.g. retinal implants) where electrodes and electronics are not on the same substrate. Since the interconnects in such assemblies cannot be hermetically sealed, reliable protection against the physiological environment is essential for delivering high insulation resistance and low defusibility of salt ions, which are limited in complexity by current assembly techniques. This work reports on a combination of spring-type interconnects on a polyimide array with silicone rubber gasket insulation for chronically active implantable systems. The spring design of the interconnects on the backend of the electrode array compensates for the uniform thickness of the sandwiched gasket during bonding in assembly and relieves the propagation of extrinsic stresses to the bulk polyimide substrate. The contact resistance of the microflex-bonded spring interconnects with the underlying metallized ceramic test vehicles and insulation through the gasket between adjacent contacts was investigated against the MIL883 standard. The contact and insulation resistances remained stable in the exhausting environmental conditions.

  14. Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory.

    Science.gov (United States)

    McDonald, Alexander J; Mott, David D

    2017-03-01

    The amygdalar nuclear complex and hippocampal/parahippocampal region are key components of the limbic system that play a critical role in emotional learning and memory. This Review discusses what is currently known about the neuroanatomy and neurotransmitters involved in amygdalo-hippocampal interconnections, their functional roles in learning and memory, and their involvement in mnemonic dysfunctions associated with neuropsychiatric and neurological diseases. Tract tracing studies have shown that the interconnections between discrete amygdalar nuclei and distinct layers of individual hippocampal/parahippocampal regions are robust and complex. Although it is well established that glutamatergic pyramidal cells in the amygdala and hippocampal region are the major players mediating interconnections between these regions, recent studies suggest that long-range GABAergic projection neurons are also involved. Whereas neuroanatomical studies indicate that the amygdala only has direct interconnections with the ventral hippocampal region, electrophysiological studies and behavioral studies investigating fear conditioning and extinction, as well as amygdalar modulation of hippocampal-dependent mnemonic functions, suggest that the amygdala interacts with dorsal hippocampal regions via relays in the parahippocampal cortices. Possible pathways for these indirect interconnections, based on evidence from previous tract tracing studies, are discussed in this Review. Finally, memory disorders associated with dysfunction or damage to the amygdala, hippocampal region, and/or their interconnections are discussed in relation to Alzheimer's disease, posttraumatic stress disorder (PTSD), and temporal lobe epilepsy. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Reliability analysis of magnetic logic interconnect wire subjected to magnet edge imperfections

    Science.gov (United States)

    Zhang, Bin; Yang, Xiaokuo; Liu, Jiahao; Li, Weiwei; Xu, Jie

    2018-02-01

    Nanomagnet logic (NML) devices have been proposed as one of the best candidates for the next generation of integrated circuits thanks to its substantial advantages of nonvolatility, radiation hardening and potentially low power. In this article, errors of nanomagnetic interconnect wire subjected to magnet edge imperfections have been evaluated for the purpose of reliable logic propagation. The missing corner defects of nanomagnet in the wire are modeled with a triangle, and the interconnect fabricated with various magnetic materials is thoroughly investigated by micromagnetic simulations under different corner defect amplitudes and device spacings. The results show that as the defect amplitude increases, the success rate of logic propagation in the interconnect decreases. More results show that from the interconnect wire fabricated with materials, iron demonstrates the best defect tolerance ability among three representative and frequently used NML materials, also logic transmission errors can be mitigated by adjusting spacing between nanomagnets. These findings can provide key technical guides for designing reliable interconnects. Project supported by the National Natural Science Foundation of China (No. 61302022) and the Scientific Research Foundation for Postdoctor of Air Force Engineering University (Nos. 2015BSKYQD03, 2016KYMZ06).

  16. Construction of programmable interconnected 3D microfluidic networks

    International Nuclear Information System (INIS)

    Hunziker, Patrick R; Wolf, Marc P; Wang, Xueya; Zhang, Bei; Marsch, Stephan; Salieb-Beugelaar, Georgette B

    2015-01-01

    Microfluidic systems represent a key-enabling platform for novel diagnostic tools for use at the point-of-care in clinical contexts as well as for evolving single cell diagnostics. The design of 3D microfluidic systems is an active field of development, but construction of true interconnected 3D microfluidic networks is still a challenge, in particular when the goal is rapid prototyping, accurate design and flexibility. We report a novel approach for the construction of programmable 3D microfluidic systems consisting of modular 3D template casting of interconnected threads to allow user-programmable flow paths and examine its structural characteristics and its modular function. To overcome problems with thread template casting reported in the literature, low-surface-energy polymer threads were used, that allow solvent-free production. Connected circular channels with excellent roundness and low diameter variability were created. Variable channel termination allowed programming a flow path on-the-fly, thus rendering the resulting 3D microfluidic systems highly customizable even after production. Thus, construction of programmable/reprogrammable fully 3D microfluidic systems by template casting of a network of interconnecting threads is feasible, leads to high-quality and highly reproducible, complex 3D geometries. (paper)

  17. Accurate Modeling Method for Cu Interconnect

    Science.gov (United States)

    Yamada, Kenta; Kitahara, Hiroshi; Asai, Yoshihiko; Sakamoto, Hideo; Okada, Norio; Yasuda, Makoto; Oda, Noriaki; Sakurai, Michio; Hiroi, Masayuki; Takewaki, Toshiyuki; Ohnishi, Sadayuki; Iguchi, Manabu; Minda, Hiroyasu; Suzuki, Mieko

    This paper proposes an accurate modeling method of the copper interconnect cross-section in which the width and thickness dependence on layout patterns and density caused by processes (CMP, etching, sputtering, lithography, and so on) are fully, incorporated and universally expressed. In addition, we have developed specific test patterns for the model parameters extraction, and an efficient extraction flow. We have extracted the model parameters for 0.15μm CMOS using this method and confirmed that 10%τpd error normally observed with conventional LPE (Layout Parameters Extraction) was completely dissolved. Moreover, it is verified that the model can be applied to more advanced technologies (90nm, 65nm and 55nm CMOS). Since the interconnect delay variations due to the processes constitute a significant part of what have conventionally been treated as random variations, use of the proposed model could enable one to greatly narrow the guardbands required to guarantee a desired yield, thereby facilitating design closure.

  18. LHC beampipe interconnection

    CERN Document Server

    Particle beams circulate for around 10 hours in the Large Hadron Collider (LHC). During this time, the particles make four hundred million revolutions of the machine, travelling a distance equivalent to the diameter of the solar system. The beams must travel in a pipe which is emptied of air, to avoid collisions between the particles and air molecules (which are considerably bigger than protons). The beam pipes are pumped down to an air pressure similar to that on the surface of the moon. Much of the LHC runs at 1.9 degrees above absolute zero. When material is cooled, it contracts. The interconnections must absorb this contraction whilst maintaining electrical connectivity.

  19. Reliable, Low Cost Distributed Generator/Utility System Interconnect: 2001 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2003-08-01

    This report details a research program to develop requirements that support the definition, design, and demonstration of a distributed generation-electric power system interconnection interface concept that allows distributed generation to be interconnected to the electric power system in a manner that provides value to end users without compromising reliability and performance.

  20. Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects

    DEFF Research Database (Denmark)

    Chen, Ming; Alimadadi, Hossein; Molin, Sebastian

    2017-01-01

    Ferritic stainless steel interconnect plates are widely used in planar solid oxide fuel cell and electrolysis cell stacks. During stack production and operation, nickel from the Ni/yttria stabilized zirconia fuel electrode or from the Ni contact component layer diffuses into the interconnect plate......, causing transformation of the ferritic phase into an austenitic phase in the interface region. This is accompanied with changes in volume, and in mechanical and corrosion properties of the interconnect plates. In this work, kinetic modeling of the inter-diffusion between Ni and FeCr based ferritic...

  1. One-step fabrication of microfluidic chips with in-plane, adhesive-free interconnections

    DEFF Research Database (Denmark)

    Sabourin, David; Dufva, Martin; Jensen, Thomas Glasdam

    2010-01-01

    A simple method for creating interconnections to a common microfluidic device material, poly(methyl methacrylate) (PMMA), is presented. A press-fit interconnection is created between oversized, deformable tubing and complementary, undersized semi-circular ports fabricated into PMMA bonding surfac...

  2. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  3. EEG simulation by 2D interconnected chaotic oscillators

    International Nuclear Information System (INIS)

    Kubany, Adam; Mhabary, Ziv; Gontar, Vladimir

    2011-01-01

    Research highlights: → ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. → An inverse problem solution (PRCGA) is proposed. → Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  4. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Sanda, Takaomi; Lawton, Lee N; Barrasa, M Inmaculada; Fan, Zi Peng; Kohlhammer, Holger; Gutierrez, Alejandro; Ma, Wenxue; Tatarek, Jessica; Ahn, Yebin; Kelliher, Michelle A; Jamieson, Catriona H M; Staudt, Louis M; Young, Richard A; Look, A Thomas

    2012-08-14

    The oncogenic transcription factor TAL1/SCL is aberrantly expressed in over 40% of cases of human T cell acute lymphoblastic leukemia (T-ALL), emphasizing its importance in the molecular pathogenesis of T-ALL. Here we identify the core transcriptional regulatory circuit controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. We show that TAL1 forms a positive interconnected autoregulatory loop with GATA3 and RUNX1 and that the TAL1 complex directly activates the MYB oncogene, forming a positive feed-forward regulatory loop that reinforces and stabilizes the TAL1-regulated oncogenic program. One of the critical downstream targets in this circuitry is the TRIB2 gene, which is oppositely regulated by TAL1 and E2A/HEB and is essential for the survival of T-ALL cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Modular cryogenic interconnects for multi-qubit devices

    Energy Technology Data Exchange (ETDEWEB)

    Colless, J. I.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-11-15

    We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with −3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements.

  6. Dynamical theory of dense groups of galaxies

    Science.gov (United States)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  7. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2016-12-10

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.

  8. Visualizing interconnections among climate risks

    Science.gov (United States)

    Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.

    2015-12-01

    It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is

  9. Traffic Load on Interconnection Lines of Generalized Double Ring Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Riaz, Muhammad Tahir; Madsen, Ole Brun

    2004-01-01

    Generalized Double Ring (N2R) network structures possess a number of good properties, but being not planar they are hard to physically embed in communication networks. However, if some of the lines, the interconnection lines, are implemented by wireless technologies, the remaining structure...... consists of two planar rings, which are easily embedded by fiber or other wired solutions. It is shown that for large N2R structures, the interconnection lines carry notably lower loads than the other lines if shortest-path routing is used, and the effects of two other routing schemes are explored, leading...... to lower load on interconnection lines at the price of larger efficient average distance and diameter....

  10. Interconnecting Microgrids via the Energy Router with Smart Energy Management

    Directory of Open Access Journals (Sweden)

    Yingshu Liu

    2017-08-01

    Full Text Available A novel and flexible interconnecting framework for microgrids and corresponding energy management strategies are presented, in response to the situation of increasing renewable-energy penetration and the need to alleviate dependency on energy storage equipment. The key idea is to establish complementary energy exchange between adjacent microgrids through a multiport electrical energy router, according to the consideration that adjacent microgrids may differ substantially in terms of their patterns of energy production and consumption, which can be utilized to compensate for each other’s instant energy deficit. Based on multiport bidirectional voltage source converters (VSCs and a shared direct current (DC power line, the energy router serves as an energy hub, and enables flexible energy flow among the adjacent microgrids and the main grid. The analytical model is established for the whole system, including the energy router, the interconnected microgrids and the main grid. Various operational modes of the interconnected microgrids, facilitated by the energy router, are analyzed, and the corresponding control strategies are developed. Simulations are carried out on the Matlab/Simulink platform, and the results have demonstrated the validity and reliability of the idea for microgrid interconnection as well as the corresponding control strategies for flexible energy flow.

  11. Electrohydrodynamic direct—writing of conductor—insulator-conductor multi-layer interconnection

    International Nuclear Information System (INIS)

    Zheng Gao-Feng; Pei Yan-Bo; Wang Xiang; Zheng Jian-Yi; Sun Dao-Heng

    2014-01-01

    A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor—insulator—conductor multi-layer interconnection structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is utilized to fabricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained results show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10 −7 Ω·m and 1.39 × 10 −7 Ω·m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor—insulator—conductor multi-layer interconnections in the electronic industry

  12. Fundamentals of reliability engineering applications in multistage interconnection networks

    CERN Document Server

    Gunawan, Indra

    2014-01-01

    This book presents fundamentals of reliability engineering with its applications in evaluating reliability of multistage interconnection networks. In the first part of the book, it introduces the concept of reliability engineering, elements of probability theory, probability distributions, availability and data analysis.  The second part of the book provides an overview of parallel/distributed computing, network design considerations, and more.  The book covers a comprehensive reliability engineering methods and its practical aspects in the interconnection network systems. Students, engineers, researchers, managers will find this book as a valuable reference source.

  13. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem

    2017-11-21

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  14. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem; Khan, S. M.; Nour, Maha A.; Rehman, M. U.; Rojas, J. P.; Hussain, Muhammad Mustafa

    2017-01-01

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  15. Nonfragile Guaranteed Cost Control and Optimization for Interconnected Systems of Neutral Type

    Directory of Open Access Journals (Sweden)

    Heli Hu

    2013-01-01

    Full Text Available The design and optimization problems of the nonfragile guaranteed cost control are investigated for a class of interconnected systems of neutral type. A novel scheme, viewing the interconnections with time-varying delays as effective information but not disturbances, is developed to decrease the conservatism. Many techniques on decomposing and magnifying the matrices are utilized to obtain the guaranteed cost of the considered system. Also, an algorithm is proposed to solve the nonlinear problem of the interconnected matrices. Based on this algorithm, the minimization of the guaranteed cost of the considered system is obtained by optimization. Further, the state feedback control is extended to the case in which the underlying system is dependent on uncertain parameters. Finally, two numerical examples are given to illustrate the proposed method, and some comparisons are made to show the advantages of the schemes of dealing with the interconnections.

  16. Does the conductivity of interconnect coatings matter for solid oxide fuel cell applications?

    Science.gov (United States)

    Goebel, Claudia; Fefekos, Alexander G.; Svensson, Jan-Erik; Froitzheim, Jan

    2018-04-01

    The present work aims to quantify the influence of typical interconnect coatings used for solid oxide fuel cells (SOFC) on area specific resistance (ASR). To quantify the effect of the coating, the dependency of coating thickness on the ASR is examined on Crofer 22 APU at 600 °C. Three different Co coating thicknesses are investigated, 600 nm, 1500 nm, and 3000 nm. Except for the reference samples, the material is pre-oxidized prior to coating to mitigate the outward diffusion of iron and consequent formation of poorly conducting (Co,Fe)3O4 spinel. Exposures are carried out at 600 °C in stagnant laboratory air for 500 h and subsequent ASR measurements are performed. Additionally the microstructure is investigated with scanning electron microscopy (SEM). On all pre-oxidized samples, a homogenous dense Co3O4 top layer is observed beneath which a thin layer of Cr2O3 is present. As the ASR values range between 7 and 12 mΩcm2 for all pre-oxidized samples, even though different Co3O4 thicknesses are observed, the results strongly suggest that for most applicable cases the impact of the coating on ASR is negligible and the main contributor is Cr2O3.

  17. Optimal super dense coding over memory channels

    OpenAIRE

    Shadman, Zahra; Kampermann, Hermann; Macchiavello, Chiara; Bruß, Dagmar

    2011-01-01

    We study the super dense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and non-unitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The super dense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where non-unitary encoding leads to an improvement in the super dense coding capacity.

  18. On the Distribution of Lightning Current among Interconnected Grounding Systems in Medium Voltage Grids

    Directory of Open Access Journals (Sweden)

    Guido Ala

    2018-03-01

    Full Text Available This paper presents the results of a first investigation on the effects of lightning stroke on medium voltage installations’ grounding systems, interconnected with the metal shields of the Medium Voltage (MV distribution grid cables or with bare buried copper ropes. The study enables us to evaluate the distribution of the lightning current among interconnected ground electrodes in order to estimate if the interconnection, usually created to reduce ground potential rise during a single-line-to-ground fault, can give place to dangerous situations far from the installation hit by the lightning stroke. Four different case studies of direct lightning stroke are presented and discussed: (1 two secondary substations interconnected by the cables’ shields; (2 two secondary substations interconnected by a bare buried conductor; (3 a high voltage/medium voltage station connected with a secondary substation by the medium voltage cables’ shields; (4 a high voltage/medium voltage station connected with a secondary substation by a bare buried conductor. The results of the simulations show that a higher peak-lowering action on the lighting-stroke current occurs due to the use of bare conductors as interconnection elements in comparison to the cables’ shields.

  19. A flood-based information flow analysis and network minimization method for gene regulatory networks.

    Science.gov (United States)

    Pavlogiannis, Andreas; Mozhayskiy, Vadim; Tagkopoulos, Ilias

    2013-04-24

    Biological networks tend to have high interconnectivity, complex topologies and multiple types of interactions. This renders difficult the identification of sub-networks that are involved in condition- specific responses. In addition, we generally lack scalable methods that can reveal the information flow in gene regulatory and biochemical pathways. Doing so will help us to identify key participants and paths under specific environmental and cellular context. This paper introduces the theory of network flooding, which aims to address the problem of network minimization and regulatory information flow in gene regulatory networks. Given a regulatory biological network, a set of source (input) nodes and optionally a set of sink (output) nodes, our task is to find (a) the minimal sub-network that encodes the regulatory program involving all input and output nodes and (b) the information flow from the source to the sink nodes of the network. Here, we describe a novel, scalable, network traversal algorithm and we assess its potential to achieve significant network size reduction in both synthetic and E. coli networks. Scalability and sensitivity analysis show that the proposed method scales well with the size of the network, and is robust to noise and missing data. The method of network flooding proves to be a useful, practical approach towards information flow analysis in gene regulatory networks. Further extension of the proposed theory has the potential to lead in a unifying framework for the simultaneous network minimization and information flow analysis across various "omics" levels.

  20. Development of Interconnect Technologies for Particle Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Mani [Univ. of California, Davis, CA (United States)

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  1. Interconnected porous hydroxyapatite ceramics for bone tissue engineering

    Science.gov (United States)

    Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira

    2008-01-01

    Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the ‘foam-gel’ technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 μm, porosity 75%), which were interconnected by window-like holes (average diameter 40 μm), and also demonstrated adequate compression strength (10–12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field. PMID:19106069

  2. Enhancing Ecoefficiency in Shrimp Farming through Interconnected Ponds

    Directory of Open Access Journals (Sweden)

    Ramón Héctor Barraza-Guardado

    2015-01-01

    Full Text Available The future development of shrimp farming needs to improve its ecoefficiency. The purpose of this study was to evaluate water quality, flows, and nitrogen balance and production parameters on a farm with interconnected pond design to improve the efficiency of the semi-intensive culture of Litopenaeus vannamei ponds. The study was conducted in 21 commercial culture ponds during 180 days at densities of 30–35 ind m−2 and daily water exchange <2%. Our study provides evidence that by interconnecting ponds nutrient recycling is favored by promoting the growth of primary producers of the pond as chlorophyll a. Based on the mass balance and flow of nutrients this culture system reduces the flow of solid, particulate organic matter, and nitrogen compounds to the environment and significantly increases the efficiency of water (5 to 6.5 m3 kg−1 cycle−1, when compared with traditional culture systems. With this culture system it is possible to recover up to 34% of the total nitrogen entering the system, with production in excess of 4,000 kg ha−1 shrimp. We believe that the production system with interconnected ponds is a technically feasible model to improve ecoefficiency production of shrimp farming.

  3. A Methodology for Physical Interconnection Decisions of Next Generation Transport Networks

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Madsen, Ole Brun

    2011-01-01

    of possibilities when designing the physical network interconnection. This paper develops and presents a methodology in order to deal with aspects related to the interconnection problem of optical transport networks. This methodology is presented as independent puzzle pieces, covering diverse topics going from......The physical interconnection for optical transport networks has critical relevance in the overall network performance and deployment costs. As telecommunication services and technologies evolve, the provisioning of higher capacity and reliability levels is becoming essential for the proper...... development of Next Generation Networks. Currently, there is a lack of specific procedures that describe the basic guidelines to design such networks better than "best possible performance for the lowest investment". Therefore, the research from different points of view will allow a broader space...

  4. Patterned electrodeposition of interconnects using microcontact printing

    NARCIS (Netherlands)

    Hovestad, A.; Rendering, H.; Maijenburg, A.W.

    2012-01-01

    Microcontact printing combined with electroless deposition is a potential low cost technique to make electrical interconnects for opto-electronic devices. Microcontact printed inhibitors locally prevent electroless deposition resulting in a pre-defined pattern of metal tracks. The inhibition of

  5. High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects

    Science.gov (United States)

    Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.

    2002-01-01

    As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

  6. Mining connected global and local dense subgraphs for bigdata

    Science.gov (United States)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  7. Transport properties of dense matter

    International Nuclear Information System (INIS)

    Itoh, Naoki; Mitake, Shinichi; Iyetomi, Hiroshi; Ichimaru, Setsuo

    1983-01-01

    Transport coefficients, electrical and thermal conductivities in particular, are essential physical quantities for the theories of stellar structure. Since the discoveries of pulsars and X-ray stars, an accurate evaluation of the transport coefficients in the dense matter has become indispensable to the quantitative understanding of the observed neutron stars. The authors present improved calculations of the electrical and thermal conductivities of the dense matter in the liquid metal phase, appropriate to white dwarfs and neutron stars. (Auth.)

  8. Roll and pitch independently tuned interconnected suspension: modelling and dynamic analysis

    Science.gov (United States)

    Xu, Guangzhong; Zhang, Nong; Roser, Holger M.

    2015-12-01

    In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.

  9. Opto-VLSI-based reconfigurable free-space optical interconnects architecture

    DEFF Research Database (Denmark)

    Aljada, Muhsen; Alameh, Kamal; Chung, Il-Sug

    2007-01-01

    is the Opto-VLSI processor which can be driven by digital phase steering and multicasting holograms that reconfigure the optical interconnects between the input and output ports. The optical interconnects architecture is experimentally demonstrated at 2.5 Gbps using high-speed 1×3 VCSEL array and 1......×3 photoreceiver array in conjunction with two 1×4096 pixel Opto-VLSI processors. The minimisation of the crosstalk between the output ports is achieved by appropriately aligning the VCSEL and PD elements with respect to the Opto-VLSI processors and driving the latter with optimal steering phase holograms....

  10. Finding dense locations in indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2014-01-01

    for semi-constrained indoor movement, and then uses this to map raw tracking records into mapping records representing object entry and exit times in particular locations. Then, an efficient indexing structure, the Dense Location Time Index (DLT-Index) is proposed for indexing the time intervals...... of the mapping table, along with associated construction, query processing, and pruning techniques. The DLT-Index supports very efficient aggregate point queries, interval queries, and dense location queries. A comprehensive experimental study with real data shows that the proposed techniques can efficiently......Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based model...

  11. Thermo-electric analysis of the interconnection of the LHC main superconducting bus bars

    Science.gov (United States)

    Granieri, P. P.; Breschi, M.; Casali, M.; Bottura, L.; Siemko, A.

    2013-01-01

    Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A deep insight of the underlying mechanisms is required to ensure the protection of the accelerator against undesired effects of resistive transitions. This is especially important in case of defective interconnections which can jeopardize the operation of the whole LHC. In this paper we present a numerical model of the interconnections between the main dipole and quadrupole magnets, validated against experimental tests of an interconnection sample with a purposely built-in defect. We consider defective interconnections featuring a lack of bonding among the superconducting cables and the copper stabilizer components, such as those that could be present in the machine. We evaluate the critical defect length limiting the maximum allowable current for powering the magnets. We determine the dependence of the critical defect length on different parameters as the heat transfer towards the cooling helium bath, the quality of manufacturing, the operating conditions and the protection system parameters, and discuss the relevant mechanisms.

  12. Regulatory peptides in the upper respiratory system and oral cavity of man. An immunocytochemical and radioimmunological study

    International Nuclear Information System (INIS)

    Hauser-Kronberger, C.

    1992-01-01

    In the present study a dense network of peptide-immunoreactive nerve fibres in the upper respiratory system and the oral cavity of man was investigated. The occurrence, distribution and concentrations of regulatory peptide immunoreactivities in human nasal mucosa, soft palate, ventricular fold, vocal cord, epiglottis, subglottis, glandula submandibularis and glandula parotis were investigated using highly efficient immunocytochemical and radio-immunological methods. In the tissues investigated vasoactive intestinal polypeptide (VIP) and other derivatives from the VIP-precursor (peptide histidine methionine = PHM), prepro VIP (111-122)), neuropeptide tyrosine (NPY) and its C-flanking peptide (CPON), calcitonin gene-related peptide (CGRP), substance P, neurokinin A, bombesin-flanking peptide and somatostatin were detected. The regulatory peptides demonstrated also included the recently isolated peptides helospectin and pituitary adenylate cyclase activating peptide (PACAP). Single endocrine-like cells were for the first time demonstrated within the respiratory epithelium and in the lamina propria of the nasal mucosa and soft palate and in groups within ducts. Ultrastructural immunelectronmicroscopy was performed using an ABC-pre-embedding method. In addition, semithin Epon resin sections were immunostained. The concentrations of VIP, NPY, CGRP, substance P and neurokinin A were measured using radioimmunological methods. The peptide immunoreactivities demonstrated in a dense network of neuronal structures and endocrine cells give indication for the presence of a complex regulatory system with potent physiological mechanisms in the upper respiratory system and allocated tissues of man

  13. Construction of the Database for Tomorrow's Regulatory Activities

    International Nuclear Information System (INIS)

    Lee, Il S.; Kim, Min C.; Kim, Sang J.; Yu, Seon O.; Lee, Kyung W.; Kim, Ji T.; Koo, Bon H.; Lee, Durk H.

    2010-01-01

    KINS has launched a top brand project since early 2007, which called the 'Tracking System for the Implementation of Nuclear Regulation: RTRACER' The one of main contents of RTRACER is promoting nuclear safety by interconnecting the information of the events and that of safety review and regulatory inspection. R-TRACER is composed of three parts. One is the CATS(Corrective Action Tracking System) to carry out the related affairs and to exchange information between organizations concerned efficiently. Another is the SIMS(Safety Issue Management System) to coordinate the safety issues program and to implement the operating experience feedback in a real-time basis. And the other is the DIOS to supply above both systems with core information. This paper is focused on the database structure of the DIOS

  14. Integrated optoelectronic materials and circuits for optical interconnects

    International Nuclear Information System (INIS)

    Hutcheson, L.D.

    1988-01-01

    Conventional interconnect and switching technology is rapidly becoming a critical issue in the realization of systems using high speed silicon and GaAs based technologies. In recent years clock speeds and on-chip density for VLSI/VHSIC technology has made packaging these high speed chips extremely difficult. A strong case can be made for using optical interconnects for on-chip/on-wafer, chip-to-chip and board-to-board high speed communications. GaAs integrated optoelectronic circuits (IOC's) are being developed in a number of laboratories for performing Input/Output functions at all levels. In this paper integrated optoelectronic materials, electronics and optoelectronic devices are presented. IOC's are examined from the standpoint of what it takes to fabricate the devices and what performance can be expected

  15. Dense Breasts: Answers to Commonly Asked Questions

    Science.gov (United States)

    ... Cancer Prevention Genetics of Breast & Gynecologic Cancers Breast Cancer Screening Research Dense Breasts: Answers to Commonly Asked Questions What are dense breasts? Breasts contain glandular, connective, and fat tissue. Breast density is a term that describes the ...

  16. Individual pore and interconnection size analysis of macroporous ceramic scaffolds using high-resolution X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jerban, Saeed, E-mail: saeed.jerban@usherbrooke.ca; Elkoun, Saïd, E-mail: Said.Elkoun@usherbrooke.ca

    2016-08-15

    The pore interconnection size of β-tricalcium phosphate scaffolds plays an essential role in the bone repair process. Although, the μCT technique is widely used in the biomaterial community, it is rarely used to measure the interconnection size because of the lack of algorithms. In addition, discrete nature of the μCT introduces large systematic errors due to the convex geometry of interconnections. We proposed, verified and validated a novel pore-level algorithm to accurately characterize the individual pores and interconnections. Specifically, pores and interconnections were isolated, labeled, and individually analyzed with high accuracy. The technique was verified thoroughly by visually inspecting and verifying over 3474 properties of randomly selected pores. This extensive verification process has passed a one-percent accuracy criterion. Scanning errors inherent in the discretization, which lead to both dummy and significantly overestimated interconnections, have been examined using computer-based simulations and additional high-resolution scanning. Then accurate correction charts were developed and used to reduce the scanning errors. Only after the corrections, both the μCT and SEM-based results converged, and the novel algorithm was validated. Material scientists with access to all geometrical properties of individual pores and interconnections, using the novel algorithm, will have a more-detailed and accurate description of the substitute architecture and a potentially deeper understanding of the link between the geometric and biological interaction. - Highlights: •An algorithm is developed to analyze individually all pores and interconnections. •After pore isolating, the discretization errors in interconnections were corrected. •Dummy interconnections and overestimated sizes were due to thin material walls. •The isolating algorithm was verified through visual inspection (99% accurate). •After correcting for the systematic errors, algorithm was

  17. 75 FR 6020 - Electrical Interconnection of the Lower Snake River Wind Energy Project

    Science.gov (United States)

    2010-02-05

    ... DEPARTMENT OF ENERGY Bonneville Power Administration Electrical Interconnection of the Lower Snake River Wind Energy Project AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE... (BPA) has decided to offer Puget Sound Energy Inc., a Large Generator Interconnection Agreement for...

  18. Determining optimal interconnection capacity on the basis of hourly demand and supply functions of electricity

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Meunier, William; Coquentin, Alexandre

    2017-01-01

    Interconnections for cross-border electricity flows are at the heart of the project to create a common European electricity market. At the time, increase in production from variable renewables clustered during a limited numbers of hours reduces the availability of existing transport infrastructures. This calls for higher levels of optimal interconnection capacity than in the past. In complement to existing scenario-building exercises such as the TYNDP that respond to the challenge of determining optimal levels of infrastructure provision, the present paper proposes a new empirically-based methodology to perform Cost-Benefit analysis for the determination of optimal interconnection capacity, using as an example the French-German cross-border trade. Using a very fine dataset of hourly supply and demand curves (aggregated auction curves) for the year 2014 from the EPEX Spot market, it constructs linearized net export (NEC) and net import demand curves (NIDC) for both countries. This allows assessing hour by hour the welfare impacts for incremental increases in interconnection capacity. Summing these welfare increases over the 8 760 hours of the year, this provides the annual total for each step increase of interconnection capacity. Confronting welfare benefits with the annual cost of augmenting interconnection capacity indicated the socially optimal increase in interconnection capacity between France and Germany on the basis of empirical market micro-data. (authors)

  19. Systems theory of interconnected port contact systems

    NARCIS (Netherlands)

    Eberard, D.; Maschke, B.M.; Schaft, A.J. van der

    2005-01-01

    Port-based network modeling of a large class of complex physical systems leads to dynamical systems known as port-Hamiltonian systems. The key ingredient of any port-Hamiltonian system is a power-conserving interconnection structure (mathematically formalized by the geometric notion of a Dirac

  20. Ultra-precision fabrication of high density micro-optical backbone interconnections for data center and mobile application

    Science.gov (United States)

    Lohmann, U.; Jahns, J.; Wagner, T.; Werner, C.

    2012-10-01

    A microoptical 3D interconnection scheme and fabricated samples of this fiberoptical multi-channel interconnec- tion with an actual capacity of 144 channels were shown. Additionally the aspects of micrometer-fabrication of such microoptical interconnection modules in the view of alignment-tolerances were considered. For the realiza- tion of the interconnection schemes, the approach of planar-integrated free space optics (PIFSO) is used with its well known advantages. This approach offers the potential for complex interconnectivity, and yet compact size.

  1. Overvoltages related to distributed generation-power system interconnection transformer

    Energy Technology Data Exchange (ETDEWEB)

    Zamanillo, G.R.; Gomez, J.C.; Florena, E.F. [Rio Cuarto National University (IPSEP/UNRC), Cordoba (Argentina). Electric Power Systems Protection Institute], Email: jcgomez@ing.unrc.edu.ar

    2009-07-01

    The energy crisis that experiences the world drives to carry to an extreme, the use of all energy sources which are available. The sources need to be connected to the electric network in their next point, requiring of electric-electronic interfaces. The traditional electric power systems are changing their characteristics, in what concerns to structure, operation and on overvoltage generation. This change is not taking place in coordinated form among the involved sectors. The interconnection of a Distributed Generator (DG) directly with the power system is objectionable and risky. It is required of an interconnection transformer which performs several functions. Rigid specifications do not exist in this respect, for the variety of systems in use in the world, nevertheless there are utilities recommendations. Overvoltages caused by the DG, which arise due to the change of structure of the electric system, are explained. The transformer connection selection, presents positive and negative aspects that impact the utility and the user in a different or many times in an antagonistic way. The phenomenon of balanced and unbalanced ferroresonance overvoltage is studied. This phenomenon can takes place when using DG, either with synchronous or asynchronous generator, and for any type of connection of the transformer. The necessary conditions so that the phenomenon appears are presented. Eight interconnection transformer connection ways were studied. It is concluded that the solutions to reach by means of the employment of the DG, offer technical-economic advantages so much to the utility as to the user. It is also concluded in this work that the more advisable interconnection type is function of the system connection type. (author)

  2. X-Ray Microdiffraction as a Probe to Reveal Flux Divergences in Interconnects

    Science.gov (United States)

    Spolenak, R.; Tamura, N.; Patel, J. R.

    2006-02-01

    Most reliability issues in interconnect systems occur at a local scale and many of them include the local build-up of stresses. Typical failure mechanisms are electromigration and stress voiding in interconnect lines and fatigue in surface acoustic wave devices. Thus a local probe is required for the investigation of these phenomena. In this paper the application of the Laue microdiffraction technique to investigate flux divergences in interconnect systems will be described. The deviatoric strain tensor of single grains can be correlated with the local microstructure, orientation and defect density. Especially the latter led to recent results about the correlation of stress build-up and orientation in Cu lines and electromigration-induced grain rotation in Cu and Al lines.

  3. Natural gas and electrical interconnections in the Mediterranean Basin

    International Nuclear Information System (INIS)

    Grenon, M.

    1992-01-01

    Intermediate and long term socio-economical and energetic scenarios have shown that mediterranean basin countries will know a great growth of energy demand, particularly power demand. The first part of this paper describes the main projects for the establishment of interconnected natural gas systems through Mediterranean sea, by pipelines (Algeria-Tunisia-Libya project, Algeria-Morocco-Spain project, Libya-Italy project). The second part describes the main projects of electrical networks with the establishment of undersea links between Spain and Morocco, and between Italy and Tunisia; beefing up the interconnections between the North African countries; and developing ties in the Near East (from Egypt to Turkey)

  4. Supplemental Information for New York State Standardized Interconnection Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narang, David J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mather, Barry A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kroposki, Benjamin D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-24

    This document is intended to aid in the understanding and application of the New York State Standardized Interconnection Requirements (SIR) and Application Process for New Distributed Generators 5 MW or Less Connected in Parallel with Utility Distribution Systems, and it aims to provide supplemental information and discussion on selected topics relevant to the SIR. This guide focuses on technical issues that have to date resulted in the majority of utility findings within the context of interconnecting photovoltaic (PV) inverters. This guide provides background on the overall issue and related mitigation measures for selected topics, including substation backfeeding, anti-islanding and considerations for monitoring and controlling distributed energy resources (DER).

  5. Exploring the miRNA regulatory network using evolutionary correlations.

    Directory of Open Access Journals (Sweden)

    Benedikt Obermayer

    2014-10-01

    Full Text Available Post-transcriptional regulation by miRNAs is a widespread and highly conserved phenomenon in metazoans, with several hundreds to thousands of conserved binding sites for each miRNA, and up to two thirds of all genes under miRNA regulation. At the same time, the effect of miRNA regulation on mRNA and protein levels is usually quite modest and associated phenotypes are often weak or subtle. This has given rise to the notion that the highly interconnected miRNA regulatory network exerts its function less through any individual link and more via collective effects that lead to a functional interdependence of network links. We present a Bayesian framework to quantify conservation of miRNA target sites using vertebrate whole-genome alignments. The increased statistical power of our phylogenetic model allows detection of evolutionary correlation in the conservation patterns of site pairs. Such correlations could result from collective functions in the regulatory network. For instance, co-conservation of target site pairs supports a selective benefit of combinatorial regulation by multiple miRNAs. We find that some miRNA families are under pronounced co-targeting constraints, indicating a high connectivity in the regulatory network, while others appear to function in a more isolated way. By analyzing coordinated targeting of different curated gene sets, we observe distinct evolutionary signatures for protein complexes and signaling pathways that could reflect differences in control strategies. Our method is easily scalable to analyze upcoming larger data sets, and readily adaptable to detect high-level selective constraints between other genomic loci. We thus provide a proof-of-principle method to understand regulatory networks from an evolutionary perspective.

  6. Warm Dense Matter: An Overview

    International Nuclear Information System (INIS)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-01-01

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities. The conclusion of this

  7. EUROPEAN ENERGY INTERCONNECTION EFFECTS ON THE ROMANIAN ECONOMY

    Directory of Open Access Journals (Sweden)

    Ionescu Mihaela

    2014-07-01

    Full Text Available In this paper the author wants to exemplify the extent to which economic growth in Romania is influenced by the current power system infrastructure investments in Europe. Electricity transmission infrastructure in Romania is at a turning point. The high level of security of supply, delivery efficiency in a competitive internal market are dependent on significant investment, both within the country and across borders. Since the economic crisis makes investment financing is increasingly difficult, it is necessary that they be targeted as well. The European Union has initiated the “Connecting Europe” through which investments are allocated to European energy network interconnection of energy. The action plan for this strategy will put a greater emphasis on investments that require hundreds of billions of euro in new technologies, infrastructure, improve energy intensity, low carbon energy technologies. Romania's energy challenge will depend on the new interconnection modern and smart, both within the country and other European countries, energy saving practices and technologies. This challenge is particularly important as Romania has recovered severe gaps in the level of economic performance compared to developed countries. Such investment will have a significant impact on transmission costs, especially electricity, while network tariffs will rise slightly. Some costs will be higher due to support programs in renewable energy nationwide.Measures are more economically sustainable to maintain or even reinforce the electricity market, which system can be flexible in order to address any issues of adequacy. These measures include investments in border infrastructure (the higher the network, so it is easier to evenly distribute energy from renewable sources, to measure demand response and energy storage solutions.An integrated European infrastructure will ensure economic growth in countries interconnected and thus Romania. Huge energy potential of

  8. Knowledge Access in Rural Inter-connected Areas Network ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Knowledge Access in Rural Inter-connected Areas Network (KariaNet) - Phase II ... the existing network to include two thematic networks on food security and rural ... Woman conquering male business in Yemen : Waleya's micro-enterprise.

  9. Knowledge Access in Rural Inter-connected Areas Network ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Knowledge Access in Rural Inter-connected Areas Network (KariaNet) - Phase II ... poor by sharing innovations, best practices and indigenous knowledge using ... A third thematic network - on knowledge management strategies - will play an ...

  10. Survival of density subpopulations of rabbit platelets: use of 51Cr-or 111In-labeled platelets to measure survival of least dense and most dense platelets concurrently

    International Nuclear Information System (INIS)

    Rand, M.L.; Packham, M.A.; Mustard, J.F.

    1983-01-01

    The origin of the density heterogeneity of platelets was studied by measuring the survival of density subpopulations of rabbit platelets separated by discontinuous Stractan density gradient centrifugation. When a total population of 51 Cr-labelled platelets was injected into recipient rabbits, the relative specific radioactivity of the most dense platelets decreased rapidly. In contrast, that of the least dense platelets had not changed 24 hr after injection, and then decreased slowly. To distinguish between the possibilities that most dense platelets are cleared from the circulation more quickly than least dense platelets or that platelets decrease in density as they age in the circulation, the concurrent survival of least dense and most dense platelets, labelled with either 51 Cr or 111 In-labelled total platelet populations, determined concurrently in the same rabbits, are identical, calculated from 1 hr values as 100%. However, the 1-hr recovery of 111 In-labelled platelets was slightly but significantly less than that of 51 Cr-labelled platelets. Therefore, researchers studied the survival of 51 Cr-labelled least dense and 111 In-labelled most dense platelets as well as that of 111 In-labelled least dense and 51 Cr-labelled most dense platelets. Mean 1-hr recovery of least dense platelets, labelled with either isotope (78% +/- 7%, SD) was similar to that of most dense platelets, labelled with either isotope (77% +/- 8%; SD). Mean survival of least dense platelets was 47.3 +/- 18.7 hr (SD), which was significantly less than that of most dense platelets (76.1 +/- 21.6 hr; SD) (p less than 0.0025). These results indicate that platelets decrease in buoyant density as they age in the circulation and that most dense platelets are enriched in young platelets, and least dense in old

  11. Security analysis of interconnected AC/DC systems

    DEFF Research Database (Denmark)

    Eriksson, Robert

    2015-01-01

    This paper analyses N-1 security in an interconnected ac/dc transmission system using power transfer distribution factors (PTDFs). In the case of a dc converter outage the power needs to be redistributed among the remaining converter to maintain power balance and operation of the dc grid...... any line or transformer limits. Simulations were performed in a model of the Nordic power system where a dc grid is placed on top. The simulation supports the method as a tool to consider transfer limits in the grid to avoid violate the same and increase the security after a converter outage........ The redistribution of power has a sudden effect on the power-flow in the interconnected ac system. This may cause overloading of lines and transformers resulting in disconnection of equipment, and as a consequence cascading failure. The PTDF is used as a method to analyze and avoid violating limits by in the dc...

  12. Minimum short-circuit ratios for grid interconnection of wind farms with induction generators

    Energy Technology Data Exchange (ETDEWEB)

    Reginatto, Romeu; Rocha, Carlos [Western Parana State University (UNIOESTE), Foz do Iguacu, PR (Brazil). Center for Engineering and Exact Sciences], Emails: romeu@unioeste.br, croberto@unioeste.br

    2009-07-01

    This paper concerns the problem of determining the minimum value for the short-circuit ratio which is adequate for the interconnection of a given wind farms to a given grid point. First, a set of 3 criteria is defined in order to characterize the quality/safety of the interconnection: acceptable terminal voltage variations, a minimum active power margin, and an acceptable range for the internal voltage angle. Then, the minimum short circuit ratio requirement is determined for 6 different induction generator based wind turbines, both fixed-speed (with and without reactive power compensation) and variable-speed (with the following control policies: reactive power, power factor, and terminal voltage regulation). The minimum short-circuit ratio is determined and shown in graphical results for the 6 wind turbines considered, for X/R in the range 0-15, also analyzing the effect of more/less stringent tolerances for the interconnection criteria. It is observed that the tighter the tolerances the larger the minimum short-circuit ratio required. For the same tolerances in the interconnection criteria, a comparison of the minimum short circuit ratio required for the interconnection of both squirrel-cage and doubly-fed induction generators is presented, showing that the last requires much smaller values for the short-circuit ratio. (author)

  13. Data-driven integration of genome-scale regulatory and metabolic network models

    Science.gov (United States)

    Imam, Saheed; Schäuble, Sascha; Brooks, Aaron N.; Baliga, Nitin S.; Price, Nathan D.

    2015-01-01

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert—a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system. PMID:25999934

  14. Dense Deposit Disease Mimicking a Renal Small Vessel Vasculitis

    Science.gov (United States)

    Singh, Lavleen; Bhardwaj, Swati; Sinha, Aditi; Bagga, Arvind; Dinda, Amit

    2016-01-01

    Dense deposit disease is caused by fluid-phase dysregulation of the alternative complement pathway and frequently deviates from the classic membranoproliferative pattern of injury on light microscopy. Other patterns of injury described for dense deposit disease include mesangioproliferative, acute proliferative/exudative, and crescentic GN. Regardless of the histologic pattern, C3 glomerulopathy, which includes dense deposit disease and C3 GN, is defined by immunofluorescence intensity of C3c two or more orders of magnitude greater than any other immune reactant (on a 0–3 scale). Ultrastructural appearances distinguish dense deposit disease and C3 GN. Focal and segmental necrotizing glomerular lesions with crescents, mimicking a small vessel vasculitis such as ANCA-associated GN, are a very rare manifestation of dense deposit disease. We describe our experience with this unusual histologic presentation and distinct clinical course of dense deposit disease, discuss the pitfalls in diagnosis, examine differential diagnoses, and review the relevant literature. PMID:26361799

  15. Thermoelectric Coolers with Sintered Silver Interconnects

    Science.gov (United States)

    Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2014-06-01

    The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.

  16. 78 FR 73239 - Small Generator Interconnection Agreements and Procedures

    Science.gov (United States)

    2013-12-05

    ... Electronics Engineers (IEEE) Standard 1547 for Interconnecting Distributed Resources with Electric Power... discriminatory manner.\\38\\ \\37\\ The Electricity Consumers Resource Council, American Chemistry Council, American...

  17. Study of complete interconnect reliability for a GaAs MMIC power amplifier

    Science.gov (United States)

    Lin, Qian; Wu, Haifeng; Chen, Shan-ji; Jia, Guoqing; Jiang, Wei; Chen, Chao

    2018-05-01

    By combining the finite element analysis (FEA) and artificial neural network (ANN) technique, the complete prediction of interconnect reliability for a monolithic microwave integrated circuit (MMIC) power amplifier (PA) at the both of direct current (DC) and alternating current (AC) operation conditions is achieved effectively in this article. As a example, a MMIC PA is modelled to study the electromigration failure of interconnect. This is the first time to study the interconnect reliability for an MMIC PA at the conditions of DC and AC operation simultaneously. By training the data from FEA, a high accuracy ANN model for PA reliability is constructed. Then, basing on the reliability database which is obtained from the ANN model, it can give important guidance for improving the reliability design for IC.

  18. Interconnecting PV on New York City's Secondary Network Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K; Coddington, M; Burman, K; Hayter, S; Kroposki, B; Watson, and A

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and

  19. Viewing Integrated-Circuit Interconnections By SEM

    Science.gov (United States)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  20. SDN Data Center Performance Evaluation of Torus and Hypercube Interconnecting Schemes

    DEFF Research Database (Denmark)

    Andrus, Bogdan-Mihai; Vegas Olmos, Juan José; Mehmeri, Victor

    2015-01-01

    — By measuring throughput, delay, loss-rate and jitter, we present how SDN framework yields a 45% performance increase in highly interconnected topologies like torus and hypercube compared to current Layer2 switching technologies, applied to data center architectures......— By measuring throughput, delay, loss-rate and jitter, we present how SDN framework yields a 45% performance increase in highly interconnected topologies like torus and hypercube compared to current Layer2 switching technologies, applied to data center architectures...

  1. DIMACS Workshop on Interconnection Networks and Mapping, and Scheduling Parallel Computations

    CERN Document Server

    Rosenberg, Arnold L; Sotteau, Dominique; NSF Science and Technology Center in Discrete Mathematics and Theoretical Computer Science; Interconnection networks and mapping and scheduling parallel computations

    1995-01-01

    The interconnection network is one of the most basic components of a massively parallel computer system. Such systems consist of hundreds or thousands of processors interconnected to work cooperatively on computations. One of the central problems in parallel computing is the task of mapping a collection of processes onto the processors and routing network of a parallel machine. Once this mapping is done, it is critical to schedule computations within and communication among processor from universities and laboratories, as well as practitioners involved in the design, implementation, and application of massively parallel systems. Focusing on interconnection networks of parallel architectures of today and of the near future , the book includes topics such as network topologies,network properties, message routing, network embeddings, network emulation, mappings, and efficient scheduling. inputs for a process are available where and when the process is scheduled to be computed. This book contains the refereed pro...

  2. TEM sample preparation by FIB for carbon nanotube interconnects

    International Nuclear Information System (INIS)

    Ke, Xiaoxing; Bals, Sara; Romo Negreira, Ainhoa; Hantschel, Thomas; Bender, Hugo; Van Tendeloo, Gustaaf

    2009-01-01

    A powerful method to study carbon nanotubes (CNTs) grown in patterned substrates for potential interconnects applications is transmission electron microscopy (TEM). However, high-quality TEM samples are necessary for such a study. Here, TEM specimen preparation by focused ion beam (FIB) has been used to obtain lamellae of patterned samples containing CNTs grown inside contact holes. A dual-cap Pt protection layer and an extensive 5 kV cleaning procedure are applied in order to preserve the CNTs and avoid deterioration during milling. TEM results show that the inner shell structure of the carbon nanotubes has been preserved, which proves that focused ion beam is a useful technique to prepare TEM samples of CNT interconnects.

  3. TEM sample preparation by FIB for carbon nanotube interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Xiaoxing, E-mail: xiaoxing.ke@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Bals, Sara [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Romo Negreira, Ainhoa [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Metallurgy and Materials Engineering Department, KU Leuven, Kasteelpark Arenberg 44, Leuven B-3001 (Belgium); Hantschel, Thomas; Bender, Hugo [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Van Tendeloo, Gustaaf [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2009-10-15

    A powerful method to study carbon nanotubes (CNTs) grown in patterned substrates for potential interconnects applications is transmission electron microscopy (TEM). However, high-quality TEM samples are necessary for such a study. Here, TEM specimen preparation by focused ion beam (FIB) has been used to obtain lamellae of patterned samples containing CNTs grown inside contact holes. A dual-cap Pt protection layer and an extensive 5 kV cleaning procedure are applied in order to preserve the CNTs and avoid deterioration during milling. TEM results show that the inner shell structure of the carbon nanotubes has been preserved, which proves that focused ion beam is a useful technique to prepare TEM samples of CNT interconnects.

  4. Conductive polymer/metal composites for interconnect of flexible devices

    Science.gov (United States)

    Kawakita, Jin; Hashimoto Shinoda, Yasuo; Shuto, Takanori; Chikyow, Toyohiro

    2015-06-01

    An interconnect of flexible and foldable devices based on advanced electronics requires high electrical conductivity, flexibility, adhesiveness on a plastic substrate, and efficient productivity. In this study, we investigated the applicability of a conductive polymer/metal composite to the interconnect of flexible devices. By combining an inkjet process and a photochemical reaction, micropatterns of a polypyrrole/silver composite were formed on flexible plastic substrates with an average linewidth of approximately 70 µm within 10 min. The conductivity of the composite was improved to 6.0 × 102 Ω-1·cm-1. From these results, it is expected that the conducting polymer/metal composite can be applied to the microwiring of flexible electronic devices.

  5. Regulatory agencies and regulatory risk

    OpenAIRE

    Knieps, Günter; Weiß, Hans-Jörg

    2008-01-01

    The aim of this paper is to show that regulatory risk is due to the discretionary behaviour of regulatory agencies, caused by a too extensive regulatory mandate provided by the legislator. The normative point of reference and a behavioural model of regulatory agencies based on the positive theory of regulation are presented. Regulatory risk with regard to the future behaviour of regulatory agencies is modelled as the consequence of the ex ante uncertainty about the relative influence of inter...

  6. Ultra-stretchable Interconnects for high-density stretchable electronics

    NARCIS (Netherlands)

    Shafqat, S.; Hoefnagels, J.P.M.; Savov, A.; Joshi, S.; Dekker, R.; Geers, M.G.D.

    2017-01-01

    The exciting field of stretchable electronics (SE) promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for

  7. Power System Study for Renewable Energy Interconnection in Malaysia

    International Nuclear Information System (INIS)

    Askar, O F; Ramachandaramurthy, V K

    2013-01-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  8. Power System Study for Renewable Energy Interconnection in Malaysia

    Science.gov (United States)

    Askar, O. F.; Ramachandaramurthy, V. K.

    2013-06-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  9. Composite systems of dilute and dense couplings

    International Nuclear Information System (INIS)

    Raymond, J R; Saad, D

    2008-01-01

    Composite systems, where couplings are of two types, a combination of strong dilute and weak dense couplings of Ising spins, are examined through the replica method. The dilute and dense parts are considered to have independent canonical disordered or uniform bond distributions; mixing the models by variation of a parameter γ alongside inverse temperature β we analyse the respective thermodynamic solutions. We describe the variation in high temperature transitions as mixing occurs; in the vicinity of these transitions we exactly analyse the competing effects of the dense and sparse models. By using the replica symmetric ansatz and population dynamics we described the low temperature behaviour of mixed systems

  10. Report on the use of the French-German interconnection in 2006

    International Nuclear Information System (INIS)

    2007-01-01

    For years, most of the European electricity interconnections were managed using administrative mechanisms (priority lists or pro-rata), and a priority of access was granted to long-term contracts between incumbent operators. With the liberalisation process, cross-border power flows tended to increase, and congestions occurred more frequently, calling for efficient congestion management methods. Therefore, cross-border capacity auctions were implemented and the past pro-rata procedure used for Germany to France exports was replaced by the introduction of a one-sided explicit auction for the day-ahead capacities by RWE Transportnetz Strom GmbH and EnBW Transportnetze AG. In addition the capacities have been auctioned quarterly and monthly since 1 July 2005. Then, the Federal Network Agency and the Commission de Regulation de l'energie (CRE) set the priority for further developing the auctions in 2006 by having a coordinated congestion management mechanism for both directions. A common road-map for the congestion management methods at the French-German border was published on 3 November 2005. In addition to the implementation of explicit auctions, this road-map included the establishment of a secondary market, a further coordination of the intra-day exchanges, the development of a coordinated model for calculating the transmission capacity and the investigation of further coordination possibilities. The two German TSOs operating the inter-connectors to France and the French TSO RTE therefore developed common capacity auction rules. The road-map also announced that an annual report would be published by the regulatory authorities to give feed-back to market participants on how explicit auctions methods operate. As a result the TSOs have provided monthly extensive data on the auctions to the regulatory authorities since January 2006. These data forms the basis of the analyses presented in this report. The important work carried out by regulators and TSOs within the

  11. Constitutive law of dense granular matter

    International Nuclear Information System (INIS)

    Hatano, Takahiro

    2010-01-01

    The frictional properties of dense granular matter under steady shear flow are investigated using numerical simulation. Shear flow tends to localize near the driving boundary unless the coefficient of restitution is close to zero and the driving velocity is small. The bulk friction coefficient is independent of shear rate in dense and slow flow, whereas it is an increasing function of shear rate in rapid flow. The coefficient of restitution affects the friction coefficient only in such rapid flow. Contrastingly, in dense and slow regime, the friction coefficient is independent of the coefficient of restitution and mainly determined by the elementary friction coefficient and the rotation of grains. It is found that the mismatch between the vorticity of flow and the angular frequency of grains plays a key role to the frictional properties of sheared granular matter.

  12. Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate

    International Nuclear Information System (INIS)

    Fu, Haoran; Xu, Sheng; Rogers, John A.; Xu, Renxiao; Huang, Yonggang; Jiang, Jianqun; Zhang, Yihui

    2015-01-01

    Fractal-inspired designs for interconnects that join rigid, functional devices can ensure mechanical integrity in stretchable electronic systems under extreme deformations. The bonding configuration of such interconnects with the elastomer substrate is crucial to the resulting deformation modes, and therefore the stretchability of the entire system. In this study, both theoretical and experimental analyses are performed for postbuckling of fractal serpentine interconnects partially bonded to the substrate. The deformation behaviors and the elastic stretchability of such systems are systematically explored, and compared to counterparts that are not bonded at all to the substrate

  13. Dynamics of dense particle disks

    International Nuclear Information System (INIS)

    Araki, S.; Tremaine, S.; Toronto Univ., Canada)

    1986-01-01

    The present investigation of mechanical equilibrium and collisional transport processes in dense, differentially rotating particle disks is based on the Enskog (1922) theory of dense, hard sphere gases, with the single exception that the spheres are inelastic. The viscous instability suggested as a source of Saturn B ring structure does not arise in the models presented, although the ring may be subject to a phase transition analogous to the liquid-solid transition observed in molecular dynamics simulations of elastic hard spheres. In such a case, the ring would alternately exhibit zero-shear, or solid, and high shear, or liquid, zones. 29 references

  14. Experimental demonstration of titanium nitride plasmonic interconnects

    DEFF Research Database (Denmark)

    Kinsey, N.; Ferrera, M.; Naik, G. V.

    2014-01-01

    An insulator-metal-insulator plasmonic interconnect using TiN, a CMOS-compatible material, is proposed and investigated experimentally at the telecommunication wavelength of 1.55 mu m. The TiN waveguide was shown to obtain propagation losses less than 0.8 dB/mm with a mode size of 9.8 mu m...

  15. Scandinavian interconnections as a means for an integrated and sustainable European system

    International Nuclear Information System (INIS)

    Hedenstedt, A.; Hansson, B.

    1996-01-01

    After the national grids had been established the comprehensive integration of the Nordic countries took place during a 20 year's period that started in early 1960's. A characteristic feature of the interconnection of the Nordic electric power systems is the need for long HVDC submarine cables for several of the interconnection links. Today the Nordel system is almost considered as one system. At present there are several ongoing, actively considered and planned projects for the integration of the Nordel system and the UCPTE system. The interconnection links offer a number of benefits for both the systems. One very important benefit is the stabilisation effect on the power supply security and the price for electricity. This is of special importance in view of the expected de-regulation of the electricity market. (author)

  16. Finding dense locations in symbolic indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2017-01-01

    presents two graph-based models for constrained and semi-constrained indoor movement, respectively, and then uses the models to map raw tracking records into mapping records that represent object entry and exit times in particular locations. Subsequently, an efficient indexing structure called Hierarchical...... Dense Location Time Index (HDLT-Index) is proposed for indexing the time intervals of the mapping table, along with index construction, query processing, and pruning techniques. The HDLT-Index supports very efficient aggregate point, interval, and duration queries as well as dense location queries......Finding the dense locations in large indoor spaces is very useful for many applications such as overloaded area detection, security control, crowd management, indoor navigation, and so on. Indoor tracking data can be enormous and are not immediately ready for finding dense locations. This paper...

  17. Knowledge Access in Rural Inter-connected Areas Network ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Knowledge Access in Rural Inter-connected Areas Network (KariaNet) - Phase II ... and indigenous knowledge using information and communication technologies (ICTs) ... for research proposals on the aforementioned topics, action-research projects, ... Evaluating knowledge-sharing methods to improve land utilization and ...

  18. Interconnection France-England; Interconnexion France-Angleterre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    These documents defines the interconnection France-England rules for the 2000 MW DC submarine cable directly linking the transmission networks of England and Wales and France. Rights to use Interconnector capacity from 1 April 2001 are to be offered through competitive tenders and auctions, full details of which are set out in the Rules. The contract and a guide to the application form are provided. (A.L.B.)

  19. Cross-border electricity exchanges. Use and management of interconnections in 2012

    International Nuclear Information System (INIS)

    2013-06-01

    This report provides an overview of the use and management of interconnections between the French power transmission system and those in its border countries. This report measures the effectiveness of existing mechanisms and intends to provide an overview of the role of interconnections in the European Electricity Market and the manner in which they are actually used. Furthermore, this document provides an opportunity to reiterate recent and upcoming progress towards the implementation of target-models. Part 1 presents a set of indicators used to provide a general overview of capacities available on the market, the manner in which they are acquired and used by market players and the consequences of this use in terms of congestion income. Part 2 sets out a more detailed approach for each capacity acquisition time frame. It highlights the differences between mechanisms at each of the French interconnections and, more importantly, confirms the relevance of the target-models

  20. MATL : Canada's first merchant power transmission interconnection : experiences and future outlook

    International Nuclear Information System (INIS)

    Wilson, L.

    2006-01-01

    The current status of the Montana Alberta Tie Ltd. (MATL) merchant transmission project was outlined with reference to the business concept, the advantages of the project and market opportunities. Some of the challenges facing the project were discussed along with lessons learned and accomplishments thus far. MATL is preparing to construct a privately funded transmission line between Lethbridge, Alberta and Great Falls, Montana. The project represents the first direct power transmission inter-connection between Montana and Alberta. The 346 km, 230 kV AC transmission line with phase shifting transformer and 300 MW transfer capacity will be a synchronous interconnection and will improve the reliability of the entire electric systems in both Montana and Alberta. The benefits of the interconnected power system include increased reliability and stability of the existing power grids; better import/export capabilities; more competition and options in the marketplace; greater flexibility in scheduling generator maintenance; and, optimal allocation of generation resources. tabs., figs

  1. LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Song, Rak-Hyun; Shin, Dong Ryul [Korea Institute of Energy Research, Taejon (Korea, Republic of); Dokiya, Masayuki [National Institute of Materials and Chemical Research, Ibaraki (Japan)

    1996-12-31

    In the planar SOFC, the interconnect materials plays two roles as an electrical connection and as a gas separation plate in a cell stack. The interconnect materials must be chemically stable in reducing and oxidizing environments, and have high electronic conductivity, high thermal conductivity, matching thermal expansion with an electrolyte, high mechanical strength, good fabricability, and gas tightness. Lanthanum chromite so far has been mainly used as interconnect materials in planar SOFC. However, the ceramic materials are very weak in mechanical strength and have poor machining property as compared with metal. Also the metallic materials have high electronic conductivity and high thermal conductivity. Recently some researchers have studied metallic interconnects such as Al{sub 2}O{sub 3}/Inconel 600 cermet, Ni-20Cr coated with (LaSr)CoO{sub 3}, and Y{sub 2}O{sub 3-} or La{sub 2}O{sub 3}-dispersed Cr alloy. These alloys have still some problems because Ni-based alloys have high thermal expansion, the added Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3} and La{sub 2}O{sub 3} to metals have no electronic conductivity, and the oxide formed on the surface of Cr alloy has high volatility. To solve these problems, in this study, LaCrO{sub 3}-dispersed Cr for metallic interconnect of planar SOFC was investigated. The LaCrO{sub 3}-dispersed Cr can be one candidate of metallic interconnect because LaCrO{sub 3} possesses electronic conductivity and Cr metal has relatively low thermal expansion. The content of 25 vol.% LaCrO{sub 3} Was selected on the basis of a theoretically calculated thermal expansion. The thermal expansion, electrical and oxidation properties were examined and the results were discussed as related to SOFC requirements.

  2. Integrated Circuit Interconnect Lines on Lossy Silicon Substrate with Finite Element Method

    OpenAIRE

    Sarhan M. Musa,; Matthew N. O. Sadiku

    2014-01-01

    The silicon substrate has a significant effect on the inductance parameter of a lossy interconnect line on integrated circuit. It is essential to take this into account in determining the transmission line electrical parameters. In this paper, a new quasi-TEM capacitance and inductance analysis of multiconductor multilayer interconnects is successfully demonstrated using finite element method (FEM). We specifically illustrate the electrostatic modeling of single and coupled in...

  3. Kinetic chemistry of dense interstellar clouds

    International Nuclear Information System (INIS)

    Graedel, T.E.; Langer, W.D.; Frerking, M.A.

    1982-01-01

    A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded

  4. Towards energy aware optical networks and interconnects

    Science.gov (United States)

    Glesk, Ivan; Osadola, Tolulope; Idris, Siti

    2013-10-01

    In a today's world, information technology has been identified as one of the major factors driving economic prosperity. Datacenters businesses have been growing significantly in the past few years. The equipments in these datacenters need to be efficiently connected to each other and also to the outside world in order to enable effective exchange of information. This is why there is need for highly scalable, energy savvy and reliable network connectivity infrastructure that is capable of accommodating the large volume of data being exchanged at any time within the datacenter network and the outside network in general. These devices that can ensure such effective connectivity currently require large amount of energy in order to meet up with these increasing demands. In this paper, an overview of works being done towards realizing energy aware optical networks and interconnects for datacenters is presented. Also an OCDMA approach is discussed as potential multiple access technique for future optical network interconnections. We also presented some challenges that might inhibit effective implementation of the OCDMA multiplexing scheme.

  5. Strategic siting and regional grid interconnections key to low-carbon futures in African countries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Grace C. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). International Energy Studies Group; Deshmukh, Ranjit [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). International Energy Studies Group; Ndhlukula, Kudakwashe [Namibia Univ. of Science and Technology, Windhoek, (Namibia). Southern Africa Development Community (SADC) Centre for Renewable Energy and Energy Efficiency; Radojicic, Tijana [International Renewable Energy Agency, Masdar City, Abu Dhabi (United Arab Emirates); Reilly-Moman, Jessica [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). International Energy Studies Group; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). International Energy Studies Group; Kammen, Daniel M. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; Callaway, Duncan S. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group

    2017-03-27

    Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental– impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quickly served with “no-regrets” options—or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6–20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. In conclusion, the overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation.

  6. Strategic siting and regional grid interconnections key to low-carbon futures in African countries.

    Science.gov (United States)

    Wu, Grace C; Deshmukh, Ranjit; Ndhlukula, Kudakwashe; Radojicic, Tijana; Reilly-Moman, Jessica; Phadke, Amol; Kammen, Daniel M; Callaway, Duncan S

    2017-04-11

    Recent forecasts suggest that African countries must triple their current electricity generation by 2030. Our multicriteria assessment of wind and solar potential for large regions of Africa shows how economically competitive and low-environmental-impact renewable resources can significantly contribute to meeting this demand. We created the Multicriteria Analysis for Planning Renewable Energy (MapRE) framework to map and characterize solar and wind energy zones in 21 countries in the Southern African Power Pool (SAPP) and the Eastern Africa Power Pool (EAPP) and find that potential is several times greater than demand in many countries. Significant fractions of demand can be quickly served with "no-regrets" options-or zones that are low-cost, low-environmental impact, and highly accessible. Because no-regrets options are spatially heterogeneous, international interconnections are necessary to help achieve low-carbon development for the region as a whole, and interconnections that support the best renewable options may differ from those planned for hydropower expansion. Additionally, interconnections and selecting wind sites to match demand reduce the need for SAPP-wide conventional generation capacity by 9.5% in a high-wind scenario, resulting in a 6-20% cost savings, depending on the avoided conventional technology. Strategic selection of low-impact and accessible zones is more cost effective with interconnections compared with solutions without interconnections. Overall results are robust to multiple load growth scenarios. Together, results show that multicriteria site selection and deliberate planning of interconnections may significantly increase the economic and environmental competitiveness of renewable alternatives relative to conventional generation.

  7. On Interconnections of Infinite-dimensional Port-Hamiltonian Systems

    NARCIS (Netherlands)

    Pasumarthy, Ramkrishna; Schaft, Arjan J. van der

    2004-01-01

    Network modeling of complex physical systems leads to a class of nonlinear systems called port-Hamiltonian systems, which are defined with respect to a Dirac structure (a geometric structure which formalizes the power-conserving interconnection structure of the system). A power conserving

  8. On interconnections of infinite-dimensional port-Hamiltonian systems

    NARCIS (Netherlands)

    Ramkrishna Pasumarthy, R.P.; van der Schaft, Arjan

    2004-01-01

    Network modeling of complex physical systems leads to a class of nonlinear systems called port-Hamiltonian systems, which are defined with respect to a Dirac structure (a geometric structure which formalizes the power-conserving interconnection structure of the system). A power conserving

  9. Optimal interconnect ATPG under a ground-bounce constraint

    NARCIS (Netherlands)

    Hollmann, H.D.L.; Marinissen, E.J.; Vermeulen, B.

    In order to prevent ground bounce, Automatic Test Pattern Generation (ATPG) algorithms for wire interconnects have recently been extended with the capability to restrict the maximal Hamming distance between any two consecutive test patterns to a user-defined integer, referred to as the

  10. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  11. Optical interconnect technologies for high-bandwidth ICT systems

    Science.gov (United States)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  12. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    International Nuclear Information System (INIS)

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-01-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni 2 P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni 2 P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni 2 P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni 2 P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni 2 P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni 2 P was postulated and discussed in detail. To investigate its catalytic properties, SiO 2 supported three-dimensional Ni 2 P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni 2 P/SiO 2

  13. Carbon Nanotubes and Graphene Nanoribbons: Potentials for Nanoscale Electrical Interconnects

    Directory of Open Access Journals (Sweden)

    Swastik Kar

    2013-08-01

    Full Text Available Carbon allotropes have generated much interest among different scientific communities due to their peculiar properties and potential applications in a variety of fields. Carbon nanotubes and more recently graphene have shown very interesting electrical properties along with the possibility of being grown and/or deposited at a desired location. In this Review, we will focus our attention on carbon-based nanostructures (in particular, carbon nanotubes and graphene nanoribbons which could play an important role in the technological quest to replace copper/low-k for interconnect applications. We will provide the reader with a number of possible architectures, including single-wall as well as multi-wall carbon nanotubes, arranged in horizontal and vertical arrays, regarded as individual objects as well as bundles. Modification of their functional properties in order to fulfill interconnect applications requirements are also presented. Then, in the second part of the Review, recently discovered graphene and in particular graphene and few-graphene layers nanoribbons are introduced. Different architectures involving nanostructured carbon are presented and discussed in light of interconnect application in terms of length, chirality, edge configuration and more.

  14. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    Science.gov (United States)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  15. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    Science.gov (United States)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  16. Security challenges for cooperative and interconnected mobility systems

    NARCIS (Netherlands)

    Bijlsma, T.; Kievit, S. de; Sluis, H.J.D. van de; Nunen, E. van; Passchier, I.; Luiijf, H.A.M.

    2013-01-01

    Software is becoming an important part of the innovation for vehicles. In addition, the systems in vehicles become interconnected and also get external connections, to the internet and Vehicular Ad hoc NETworks (VANETs). These trends form a combined security and safety threat, because recent

  17. Ultra High Intensity laser produced fast electron transport in under-dense and over-dense matter

    International Nuclear Information System (INIS)

    Manclossi, Mauro

    2006-01-01

    This thesis is related to inertial fusion research, and particularly concerns the approach to fast ignition, which is based on the use of ultra-intense laser pulses to ignite the thermonuclear fuel. Until now, the feasibility of this scheme has not been proven and depends on many fundamental aspects of the underlying physics, which are not yet fully understood and which are also very far from controls. The main purpose of this thesis is the experimental study of transport processes in the material over-dense (solid) and under-dense (gas jet) of a beam of fast electrons produced by pulse laser at a intensity of some 10 19 Wcm -2 . (author)

  18. Scalability analysis methodology for passive optical interconnects in data center networks using PAM

    Science.gov (United States)

    Lin, R.; Szczerba, Krzysztof; Agrell, Erik; Wosinska, Lena; Tang, M.; Liu, D.; Chen, J.

    2017-11-01

    A framework is developed for modeling the fundamental impairments in optical datacenter interconnects, i.e., the power loss and the receiver noises. This framework makes it possible, to analyze the trade-offs between data rates, modulation order, and number of ports that can be supported in optical interconnect architectures, while guaranteeing that the required signal-to-noise ratios are satisfied. To the best of our knowledge, this important assessment methodology is not yet available. As a case study, the trade-offs are investigated for three coupler-based top-of-rack interconnect architectures, which suffer from serious insertion loss. The results show that using single-port transceivers with 10 GHz bandwidth, avalanche photodiode detectors, and quadratical pulse amplitude modulation, more than 500 ports can be supported.

  19. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    Science.gov (United States)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  20. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.

    Science.gov (United States)

    Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C

    2008-04-01

    Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary.

  1. Construction of the Database for Tomorrow's Regulatory Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Il S.; Kim, Min C.; Kim, Sang J.; Yu, Seon O.; Lee, Kyung W.; Kim, Ji T.; Koo, Bon H.; Lee, Durk H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2010-10-15

    KINS has launched a top brand project since early 2007, which called the 'Tracking System for the Implementation of Nuclear Regulation: RTRACER' The one of main contents of RTRACER is promoting nuclear safety by interconnecting the information of the events and that of safety review and regulatory inspection. R-TRACER is composed of three parts. One is the CATS(Corrective Action Tracking System) to carry out the related affairs and to exchange information between organizations concerned efficiently. Another is the SIMS(Safety Issue Management System) to coordinate the safety issues program and to implement the operating experience feedback in a real-time basis. And the other is the DIOS to supply above both systems with core information. This paper is focused on the database structure of the DIOS

  2. A reference model for space data system interconnection services

    Science.gov (United States)

    Pietras, John; Theis, Gerhard

    1993-01-01

    The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).

  3. Dense chlorinated solvents and other DNAPLs in groundwater

    DEFF Research Database (Denmark)

    Broholm, K.

    1996-01-01

    Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996......Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996...

  4. Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides.

    Science.gov (United States)

    Kang, Minsu; Park, Junghyun; Lee, Il-Min; Lee, Byoungho

    2009-01-19

    A simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect. Otherwise, only small fluctuation occurs due to the Fabry-Pérot effect. In addition, light beating happens when the slab bridge is relatively short. In the wave-coupling part, on the other hand, gap-assisted transmission occurs at each overlapping region as a consequence of mode hybridization. Periodic dependency on the length of the overlap region also appears due to the MMI effect. According to these results, we propose design principles for achieving both high transmission efficiency and stability with respect to the variation of the interconnection distance, and we show how to obtain the transmission efficiency of 68.3% for the 1mm-long interconnection.

  5. Is dense codeswitching complex?

    NARCIS (Netherlands)

    Dorleijn, M.

    In this paper the question is raised to what extent dense code switching can be considered complex. Psycholinguistic experiments indicate that code switching involves cognitive costs, both in production and comprehension, a conclusion that could indicate that code switching is indeed complex. In

  6. Design and Training of Limited-Interconnect Architectures

    Science.gov (United States)

    1991-07-16

    and signal processing. Neuromorphic (brain like) models, allow an alternative for achieving real-time operation tor such tasks, while having a...compact and robust architecture. Neuromorphic models consist of interconnections of simple computational nodes. In this approach, each node computes a...operational performance. I1. Research Objectives The research objectives were: 1. Development of on- chip local training rules specifically designed for

  7. Health and the environment: Examining some interconnections

    International Nuclear Information System (INIS)

    Nair, G.; Castelino, J.; Parr, R.M.

    1994-01-01

    In various ways, the IAEA is working with national and international agencies to broaden scientific understanding of the interconnections between the environment and human health. Often nuclear and related technologies are applied in the search for answers to complex and puzzling questions. This article highlights some of that work, illustrating the dimensions of both the problems and the potential solutions

  8. Astrophysics Laboratory-Based Lecture Material Development of Solarscope with Integration and Interconnection

    Directory of Open Access Journals (Sweden)

    Asih Melati

    2015-12-01

    Full Text Available The development of laboratory-based lecture materials with integrated and interconnected value is a requirement for study and practical materials and in line with the vision and mission of UIN Sunan Kalijaga. As a result, the optimization of laboratory’s equipment is urgently needed. Although UIN Sunan Kalijaga Laboratory have had Solarscope telescope – which have a guidebook in German language – for six years, it was not optimally used even it can be used to satisfy the desires to observe astronomical objects economically, accurately and easy to operate. Based on above, this research propose to create a lab-work module for Solarscope with integration and interconnection value. This research used 4D methodology (Define, Design, Develop and Disseminate and have passed the assessment and validation phase from material, media and integrated-interconnected value experts. The data analysis of the module which was mapped by Sukarja into 5 scale mark resulted in good grade in the module assessment by material experts with 80% from the ideal mark with most of the complaint is in the formula typing which is not clear in its derivative. The module assessment by media experts scored very good grade with 88.89% from the ideal mark regarding the content and the figures of the module. Lastly, from the integrated-interconnected value experts marked in good grade with 73.50% from the ideal mark and suggested the addition of supported Al-Qur’an verses and relevant exclamation of the Al-Qur’an’s passages. With all of these assessment results, this module can be used as the material of astrophysics lab-work and for supporting students’ researches with integration-interconnection value and enhance the university’s book collection which will support the vision and mission of UIN Sunan Kalijaga

  9. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas

    International Nuclear Information System (INIS)

    Ichimaru, S.; Tajima, T.

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas

  10. Interconnection of psychology, color and design

    OpenAIRE

    Minchuk, A. M.; Kudryashova, Aleksandra Vladimirovna

    2016-01-01

    The paper presents the direct interconnection between color, design and psychology on the basis of theoretical and historical analysis. It describes the peculiarities of how peopleperceive color. In the paper some of the historical details concerning the way our ancestors used color are presented and the modern scientific discoveries in the field of psychology, which give the evidence of the great psychological, emotional and physical influence of color on a person are shown as well. The pape...

  11. Multi-gigabit optical interconnects for next-generation on-board digital equipment

    Science.gov (United States)

    Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques

    2017-11-01

    Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.

  12. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Seshadhri, Comandur [The Ohio State Univ., Columbus, OH (United States); Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sariyuce, Ahmet Erdem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Catalyurek, Umit [The Ohio State Univ., Columbus, OH (United States)

    2014-11-01

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account for overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.

  13. Management and use of electric interconnections in 2008

    International Nuclear Information System (INIS)

    2009-07-01

    Major progress was made throughout 2008 in border congestion management and market integration. A number of projects were carried out, including the creation of a single auction platform for the Central-West region (CASC-CWE) and the first centre for regional coordination (Coreso SA) to better control real-time flow, thus laying the foundations for future network management on a regional scale. Such progress encourages more improvements still, which should take effect some time in 2009 and should constitute an important stage in creating an integrated European electricity market. The more significant expected advances notably include the implementation of a single, harmonised set of bidding rules covering the entire Central-West region, which would include introducing the principle of automatic resale of capacity (use-it-or-sell-it); the launch of the second phase of the BALIT project for reciprocal adjusting exchanges between France and England; the introduction of a compensation scheme for curtailments of capacity based on the differences in pricing at Power Exchanges over the France-Spain interconnection; and finally the elaboration of the very first regional reports by regulators on the management and use of interconnections. The launch of the market coupling in the Central-West region, planned for March 2010, will unquestionably be a key event in market integration. In addition to substantially improving the use of the region's interconnections, it will offer significant new perspectives in market organisation (such as the future role and status of organised markets as regards day-ahead activity). The work of network operators on the flow-based aspect of the project will also enable improvements in transparency and coordination when calculating interconnection capacities, and could, in the long-run, open debates on changing the market design. However, of the issues raised in CRE's second report on management and use of interconnections, several have

  14. 77 FR 63757 - Extension of the Commission's Rules Regarding Outage Reporting to Interconnected Voice Over...

    Science.gov (United States)

    2012-10-17

    ... telephone subscriptions in the United States were users of interconnected VoIP providers--an increase of 21... Commission's Rules Regarding Outage Reporting to Interconnected Voice Over Internet Protocol Service Providers and Broadband Internet Service Providers AGENCY: Federal Communications Commission. ACTION: Final...

  15. Data-driven integration of genome-scale regulatory and metabolic network models

    Directory of Open Access Journals (Sweden)

    Saheed eImam

    2015-05-01

    Full Text Available Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription and signaling have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert – a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  16. Epidemic spreading on interconnected networks.

    Science.gov (United States)

    Saumell-Mendiola, Anna; Serrano, M Ángeles; Boguñá, Marián

    2012-08-01

    Many real networks are not isolated from each other but form networks of networks, often interrelated in nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even though the epidemics is not able to propagate on each network separately and even when the number of coupling connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.

  17. Electricity and gas interconnections in France. A tool for the construction of an integrated European market

    International Nuclear Information System (INIS)

    2016-06-01

    The French Energy Regulator (CRE) is publishing its report on French electricity and gas interconnections. The report makes two main conclusions: French electricity and natural gas networks are well interconnected with their counterparts in neighbouring countries and the use of interconnections has been significantly improved over the last 10 years. In terms of electricity, France's average export capacity is 13.5 GW, i.e. more than 10% of its production capacity. France is very well integrated in the European gas market and is a transit country to Spain and Italy. It has boosted its interconnection capacity in gas by 40% in 10 years. Interconnections are vital to the internal energy market and help trade between Member States. They enable European consumers to benefit from cost-effective energy by diversifying sources of supply. Since it was created, the CRE has played a leading role in this area, by fostering the development of interconnections at the French borders and by making them more efficiently used. After major efforts, the question of creating new interconnections (which constitute complex and costly projects) is now being raised. In terms of gas, the Midcat Project (a new gas interconnection between France and Spain) provides a good illustration of this question. The project will cost almost 3 billion Euros, two billion of which is being funded by France, and the decision to launch it should not be taken lightly without robust cost-benefit analyses. These studies must, in particular, identify and quantify the benefits for each country concerned as well as for the European Union, and organise the project funding in relation to these benefits. As concerns the interconnection project in the Bay of Biscay between France and Spain, overcoming technical uncertainties is an essential prerequisite before commenting on the opportunities it offers in terms of the costs and benefits that it might generate. In compliance with the law, the CRE acts on behalf of

  18. Dense ceramic articles

    International Nuclear Information System (INIS)

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  19. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S., E-mail: shahid.ali@ncp.edu.p [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); IPFN, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ahmed, Z. [COMSATS Institute of Information Technology, Department of Physics, Wah Campus (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, I. [COMSATS Institute of Information Technology, Department of Physics, Islamabad Campus (Pakistan)

    2009-08-10

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  20. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    International Nuclear Information System (INIS)

    Ali, S.; Ahmed, Z.; Mirza, Arshad M.; Ahmad, I.

    2009-01-01

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  1. Fast Solvers for Dense Linear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kauers, Manuel [Research Institute for Symbolic Computation (RISC), Altenbergerstrasse 69, A4040 Linz (Austria)

    2008-10-15

    It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination over the rationals.

  2. Highly graphitized laterally interconnected SWCNT network synthesis via a sandwich-grown method

    International Nuclear Information System (INIS)

    Teng, I-Ju; Chen, Kai-Ling; Wang, Li-Chun; Kuo, Cheng-Tzu; Hsu, Hui-Lin; Jian, Sheng-Rui; Chen, Jung-Hsuan; Wang, Wei-Hsiang

    2011-01-01

    We present a sandwich-grown method for growing laterally interconnected single-walled carbon nanotube (SWCNT) networks with a high degree of graphitization by microwave plasma chemical vapour deposition (MPCVD). An Al 2 O 3 -supported Fe catalyst precursor layer deposited on an oxidized Si substrate with an upper Si cover is first pretreated in pure hydrogen, and then exposed to a gas mixture of methane/hydrogen for growth process at a lower growth temperature and a faster rate. The effects of various parameters, such as catalyst film thickness, gas flow rate, working pressure, growth time and plasma power, on the morphologies and structural characteristics of the SWCNT networks are investigated, and therefore provide the essential conditions for direct growth of laterally interconnected SWCNT networks. Analytical results demonstrate that the SWCNT-based lateral architecture comprises a mixture of graphene-sheet-wrapped catalyst particles and laterally interconnected nanotubes, isolated or branched or assembled into bundles. The results also show that the formation of the laterally interconnected SWCNT networks is related to the sandwich-like stack approach and the addition of an Al 2 O 3 layer in the MPCVD process. The successful growth of lateral SWCNT networks provides new experimental information for simply and efficiently preparing lateral SWCNTs on unpatterned substrates, and opens a pathway to create network-structured nanotube-based devices.

  3. Encoded low swing for ultra low power interconnect

    NARCIS (Netherlands)

    Krishnan, R.; Pineda de Gyvez, J.

    2003-01-01

    We present a novel encoded-low swing technique for ultra low power interconnect. Using this technique and an efficient circuit implementation, we achieve an average of 45.7% improvement in the power-delay product over the schemes utilizing low swing techniques alone, for random bit streams. Also, we

  4. OH megamasers: dense gas & the infrared radiation field

    Science.gov (United States)

    Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie

    2018-06-01

    To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.

  5. Testing of Ni-plated ferritic steel interconnect in SOFC stacks

    DEFF Research Database (Denmark)

    Nielsen, K.A.; Dinesen, A.R.; Korcakova, L.

    2006-01-01

    heating to 1,030 °C. During this time, 20–70 μm thick surface layers of austenitic steel were formed, which were covered by a 1–4 μm chromia layer on the anode side and by a layer of mixed Cr-Fe-Ni-spinels over a 1–4 μm chromia layer on the cathode side. The microstructure and composition...... of the protective scale on the cathode side was susceptible to pitting-type corrosion patterns, which may limit the life expectancy to less than 2,000 hours for the 200 μm thick interconnect tested. The initial area-specific resistances (ASR) at the interconnect/cathode current collector interface...

  6. Decentralized H∞ Control of Interconnected Systems with Time-varying Delays

    Directory of Open Access Journals (Sweden)

    Amal Zouhri

    2017-01-01

    Full Text Available This paper focuses on the problem of delay dependent stability/stabilization of interconnected systems with time-varying delays. The approach is based on a new Lyapunov-Krasovskii functional. A decentralized delay-dependent stability analysis is performed to characterize linear matrix inequalities (LMIs based on the conditions under which every local subsystem of the linear interconnected delay system is asymptotically stable. Then we design a decentralized state-feedback stabilization scheme such that the family of closedloop feedback subsystems enjoys the delay-dependent asymptotic stability for each subsystem. The decentralized feedback gains are determined by convex optimization over LMIs. All the developed results are tested on a representative example and compared with some recent previous ones.

  7. Automated Motion Estimation for 2D Cine DENSE MRI

    Science.gov (United States)

    Gilliam, Andrew D.; Epstein, Frederick H.

    2013-01-01

    Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this article, we present the first fully automated solution for the estimation of tissue motion and strain from 2D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method. PMID:22575669

  8. Interconnected ponds operation for flood hazard distribution

    Science.gov (United States)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  9. Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model

    Science.gov (United States)

    Xu, Hui-Yun; Yang, Guo-Hui

    2017-09-01

    By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.

  10. Interconnections and market integration in the Irish Single Electricity Market

    International Nuclear Information System (INIS)

    Nepal, Rabindra; Jamasb, Tooraj

    2012-01-01

    Interconnections can be an effective way to increase competition and improve market integration in concentrated wholesale electricity markets with limited number of participants. This paper examines the potential for interconnections and increasing market integration in the Irish Single Electricity Market (SEM). We use a time-varying Kalman filter technique to assess the degree of market integration between SEM and other large, mature and interconnected wholesale electricity markets in Europe including Great Britain (GB). The results indicate no market integration between SEM and other European markets except for Elspot and GB. We show that the current state of market integration between SEM and GB is just 17% indicating potential to improve market integration via increased interconnector capacity. The results indicate that liquidity of wholesale markets might be a crucial factor in the market integration process while our results remain inconclusive in determining whether increased trade of renewables can improve market integration. - Highlights: ► We assess the degree of market integration between SEM and other EU electricity markets. ► Our results indicate no market integration between SEM and other European markets except for Elspot and GB. ► We show that the current state of market integration between SEM and GB is just 17%.

  11. Fabrication of interconnected microporous biomaterials with high hydroxyapatite nanoparticle loading

    International Nuclear Information System (INIS)

    Zhang Wei; Yao Donggang; Zhang Qingwei; Lelkes, Peter I; Zhou, Jack G

    2010-01-01

    Hydroxyapatite (HA) is known to promote osteogenicity and enhance the mechanical properties of biopolymers. However, incorporating a large amount of HA into a porous biopolymer still remains a challenge. In the present work, a new method was developed to produce interconnected microporous poly(glycolic-co-lactic acid) (PLGA) with high HA nanoparticle loading. First, a ternary blend comprising PLGA/PS (polystyrene)/HA (40/40/20 wt%) was prepared by melt blending under conditions for formation of a co-continuous phase structure. Next, a dynamic annealing stage under small-strain oscillation was applied to the blend to facilitate nanoparticle redistribution. Finally, the PS phase was sacrificially extracted, leaving a porous matrix. The results from different characterizations suggested that the applied small-strain oscillation substantially accelerated the migration of HA nanoparticles during annealing from the PS phase to the PLGA phase; nearly all HA particles were uniformly presented in the PLGA phase after a short period of annealing. After dissolution of the PS phase, a PLGA material with interconnected microporous structure was successfully produced, with a high HA loading above 30 wt%. The mechanisms beneath the experimental observations, particularly on the enhanced particle migration process, were discussed, and strategies for producing highly particle loaded biopolymers with interconnected microporous structures were proposed.

  12. A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration

    Directory of Open Access Journals (Sweden)

    Jianwen Ren

    2018-04-01

    Full Text Available This paper proposes a distributed robust dispatch approach to solve the economic dispatch problem of the interconnected systems with a high proportion of wind power penetration. First of all, the basic principle of synchronous alternating direction method of multipliers (SADMM is introduced to solve the economic dispatch problem of the two interconnected regions. Next, the polyhedron set of the robust optimization method is utilized to describe the wind power output. To adjust the conservativeness of the polyhedron set, an adjustment factor of robust conservativeness is introduced. Subsequently, considering the operation characteristics of the DC tie line between the interconnected regions, an economic dispatch model with a high proportion of wind power penetration is established and parallel iteration based on SADMM is used to solve the model. In each iteration, the optimized power of DC tie lines is exchanged between the regions without requiring the participation of the superior dispatch center. Finally, the validity of the proposed model is verified by the examples of the 2-area 6-node interconnected system and the interconnection of several modified New England 39-node systems. The results show that the proposed model can meet the needs of the independent dispatch of regional power grids, effectively deal with the uncertainty of wind power output, and maximize the wind power consumption under the condition of ensuring the safe operation of the interconnected systems.

  13. Unavailability of critical SCADA communication links interconnecting a power grid and a Telco network

    International Nuclear Information System (INIS)

    Bobbio, A.; Bonanni, G.; Ciancamerla, E.; Clemente, R.; Iacomini, A.; Minichino, M.; Scarlatti, A.; Terruggia, R.; Zendri, E.

    2010-01-01

    The availability of power supply to power grid customers depends upon the availability of services of supervision, control and data acquisition (SCADA) system, which constitutes the nervous system of a power grid. In turn, SCADA services depend on the availability of the interconnected networks supporting such services. We propose a service oriented stochastic modelling methodology to investigate the availability of large interconnected networks, based on the hierarchical application of different modelling formalisms to different parts of the networks. Interconnected networks are decomposed according to the specific services delivered until the failure and repair mechanisms of the decomposed elementary blocks can be identified. We represent each network by a convenient stochastic modelling formalism, able to capture the main technological issues and to cope with realistic assumptions about failure and recovery mechanisms. This procedure confines the application of the more intensive computational techniques to those subsystems that actually require it. The paper concentrates on an actual failure scenario, occurred in Rome in January 2004 that involved the outage of critical SCADA communication links, interconnecting a power grid and a Telco network.

  14. Unavailability of critical SCADA communication links interconnecting a power grid and a Telco network

    Energy Technology Data Exchange (ETDEWEB)

    Bobbio, A. [Dipartimento di Informatica, Universita del Piemonte Orientale, Viale Michel 11, 15121 Alessandria (Italy); Bonanni, G.; Ciancamerla, E. [ENEA - CRE Casaccia, Via Anguillarese 301, 00060 Roma (Italy); Clemente, R. [Telecom Italia Mobile, Via Isonzo112, 10141 Torino (Italy); Iacomini, A. [ACEA, Pl. Ostiense 2, 00154 Roma (Italy); Minichino, M., E-mail: minichino@casaccia.enea.i [ENEA - CRE Casaccia, Via Anguillarese 301, 00060 Roma (Italy); Scarlatti, A. [ACEA, Pl. Ostiense 2, 00154 Roma (Italy); Terruggia, R. [Dipartimento di Informatica, Universita del Piemonte Orientale, Viale Michel 11, 15121 Alessandria (Italy); Zendri, E. [ACEA, Pl. Ostiense 2, 00154 Roma (Italy)

    2010-12-15

    The availability of power supply to power grid customers depends upon the availability of services of supervision, control and data acquisition (SCADA) system, which constitutes the nervous system of a power grid. In turn, SCADA services depend on the availability of the interconnected networks supporting such services. We propose a service oriented stochastic modelling methodology to investigate the availability of large interconnected networks, based on the hierarchical application of different modelling formalisms to different parts of the networks. Interconnected networks are decomposed according to the specific services delivered until the failure and repair mechanisms of the decomposed elementary blocks can be identified. We represent each network by a convenient stochastic modelling formalism, able to capture the main technological issues and to cope with realistic assumptions about failure and recovery mechanisms. This procedure confines the application of the more intensive computational techniques to those subsystems that actually require it. The paper concentrates on an actual failure scenario, occurred in Rome in January 2004 that involved the outage of critical SCADA communication links, interconnecting a power grid and a Telco network.

  15. Nano/CMOS architectures using a field-programmable nanowire interconnect

    International Nuclear Information System (INIS)

    Snider, Gregory S; Williams, R Stanley

    2007-01-01

    A field-programmable nanowire interconnect (FPNI) enables a family of hybrid nano/CMOS circuit architectures that generalizes the CMOL (CMOS/molecular hybrid) approach proposed by Strukov and Likharev, allowing for simpler fabrication, more conservative process parameters, and greater flexibility in the choice of nanoscale devices. The FPNI improves on a field-programmable gate array (FPGA) architecture by lifting the configuration bit and associated components out of the semiconductor plane and replacing them in the interconnect with nonvolatile switches, which decreases both the area and power consumption of the circuit. This is an example of a more comprehensive strategy for improving the efficiency of existing semiconductor technology: placing a level of intelligence and configurability in the interconnect can have a profound effect on integrated circuit performance, and can be used to significantly extend Moore's law without having to shrink the transistors. Compilation of standard benchmark circuits onto FPNI chip models shows reduced area (8 x to 25 x), reduced power, slightly lower clock speeds, and high defect tolerance-an FPNI chip with 20% defective junctions and 20% broken nanowires has an effective yield of 75% with no significant slowdown along the critical path, compared to a defect-free chip. Simulations show that the density and power improvements continue as both CMOS and nano fabrication parameters scale down, although the maximum clock rate decreases due to the high resistance of very small (<10 nm) metallic nanowires

  16. Photons in dense nuclear matter: Random-phase approximation

    Science.gov (United States)

    Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay

    2018-04-01

    We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.

  17. Collective dynamics in dense fluid mixtures

    International Nuclear Information System (INIS)

    Sinha, S.

    1992-01-01

    This thesis deals with the short wavelength collective dynamics of dense binary fluid mixtures. The analysis shows that at the level of linearized generalized hydrodynamics, the longitudinal modes of the system separates essentially into two parts - one involves the coupling of partial density fluctuations of the two species and the other involves coupling of longitudinal momentum and temperature fluctuations. The authors have shown that the coupling of longitudinal momentum and temperature fluctuations leads to an adequate description of sound propagation in such systems. In particular, they show that structural disorder controls the trapping of sound waves in dense mixtures. The coupling of the partial density fluctuations of the two species leads to a simple description of the partial dynamic structure factors. The results are in agreement with the molecular dynamics simulations of soft sphere mixtures. The partial density fluctuations are the slowest decaying fluctuations on molecular length scales and it turns out that nonlinear coupling of these slow modes leads to important corrections to the long time behavior of the time correlation functions determining the shear viscosity in dense mixtures

  18. Simulation of dense colloids

    NARCIS (Netherlands)

    Herrmann, H.J.; Harting, J.D.R.; Hecht, M.; Ben-Naim, E.

    2008-01-01

    We present in this proceeding recent large scale simulations of dense colloids. On one hand we simulate model clay consisting of nanometric aluminum oxide spheres in water using realistic DLVO potentials and a combination of MD and SRD. We find pronounced cluster formation and retrieve the shear

  19. 77 FR 9225 - Allegheny Electric Cooperative, Inc., et al. v. PJM Interconnection, L.L.C.; Organization of PJM...

    Science.gov (United States)

    2012-02-16

    ...-58-010] Allegheny Electric Cooperative, Inc., et al. v. PJM Interconnection, L.L.C.; Organization of PJM States, Inc., et al. v. PJM Interconnection, L.L.C.; Notice of Filing Take notice that on February... by section 18.17.4 of the Amended and Restated Operating Agreement of PJM Interconnection, L.L.C. and...

  20. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1987-01-01

    This paper covers some aspects of the theory of atomic processes in dense plasmas. Because the topic is very broad, a few general rules which give useful guidance about the typical behavior of dense plasmas have been selected. These rules are illustrated by semiclassical estimates, scaling laws and appeals to more elaborate calculations. Included in the paper are several previously unpublished results including a new mechanism for electron-ion heat exchange (section II), and an approximate expression for oscillator-strengths of highly charged ions (section V). However the main emphasis is not upon practical formulas but rather on questions of fundamental theory, the structural ingredients which must be used in building a model for plasma events. What are the density effects and how does one represent them? Which are most important? How does one identify an incorrect theory? The general rules help to answer these questions. 106 references, 23 figures, 2 tables

  1. Suprathermal viscosity of dense matter

    International Nuclear Information System (INIS)

    Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai

    2010-01-01

    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.

  2. Numerical simulation of CTE mismatch and thermal-structural stresses in the design of interconnects

    Science.gov (United States)

    Peter, Geoffrey John M.

    With the ever-increasing chip complexity, interconnects have to be designed to meet the new challenges. Advances in optical lithography have made chip feature sizes available today at 70 nm dimensions. With advances in Extreme Ultraviolet Lithography, X-ray Lithography, and Ion Projection Lithography it is expected that the line width will further decrease to 20 nm or less. With the decrease in feature size, the number of active devices on the chip increases. With higher levels of circuit integration, the challenge is to dissipate the increased heat flux from the chip surface area. Thermal management considerations include coefficient of thermal expansion (CTE) matching to prevent failure between the chip and the board. This in turn calls for improved system performance and reliability of the electronic structural systems. Experience has shown that in most electronic systems, failures are mostly due to CTE mismatch between the chip, board, and the solder joint (solder interconnect). The resulting high thermal-structural stress and strain due to CTE mismatch produces cracks in the solder joints with eventual failure of the electronic component. In order to reduce the thermal stress between the chip, board, and the solder joint, this dissertation examines the effect of inserting wire bundle (wire interconnect) between the chip and the board. The flexibility of the wires or fibers would reduce the stress at the rigid joints. Numerical simulations of two, and three-dimensional models of the solder and wire interconnects are examined. The numerical simulation is linear in nature and is based on linear isotropic material properties. The effect of different wire material properties is examined. The effect of varying the wire diameter is studied by changing the wire diameter. A major cause of electronic equipment failure is due to fatigue failure caused by thermal cycling, and vibrations. A two-dimensional modal and harmonic analysis was simulated for the wire interconnect

  3. Coalescence preference in dense packing of bubbles

    Science.gov (United States)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  4. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.; Loczi, Lajos; Jangabylova, Aliya; Kusmanov, Adil

    2016-01-01

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step

  5. Economic Valuation of Reserves on Cross Border Interconnections; A Danish Case Study

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa; Rather, Zakir Hussain; Hu, Weihao

    2014-01-01

    regions that plan for high penetration of intermittent renewables. Extreme intermittency in the nature of wind power imposes elevated risk levels to power system operation. This every day challenge of wind dominant power systems necessitate the crucial role of operating reserves. In this paper, we propose...... benefit of reserve provision provided by cross border interconnections. The focus here will be on reserve services from abundant hydropower resource in Norway, taking advantage of fast VSC-based HVDC interconnection that is expected to be commissioned in immediate coming years....

  6. Study on application of a high-speed trigger-type SFCL (TSFCL) for interconnection of power systems with different reliabilities

    International Nuclear Information System (INIS)

    Kim, Hye Ji; Yoon, Yong Tae

    2016-01-01

    Highlights: • Application of TSFCL to interconnect systems with different reliabilities is proposed. • TSFCL protects a grid by preventing detrimental effects from being delivered through the interconnection line. • A high-speed TSFCL with high impedance for transmission systems is required to be developed. - Abstract: Interconnection of power systems is one effective way to improve power supply reliability. However, differences in the reliability of each power system create a greater obstacle for the stable interconnection of power systems, as after interconnection a high-reliability system is affected by frequent faults in low reliability side systems. Several power system interconnection methods, such as the back-to-back method and the installation of either transformers or series reactors, have been investigated to counteract the damage caused by faults in the other neighboring systems. However, these methods are uneconomical and require complex operational management plans. In this work, a high-speed trigger-type superconducting fault current limiter (TSFCL) with large-impedance is proposed as a solution to maintain reliability and power quality when a high reliability power system is interconnected with a low reliability power system. Through analysis of the reliability index for the numerical examples obtained from a PSCAD/EMTDC simulator, a high-speed TSFCL with a large-impedance is confirmed to be effective for the interconnection between power systems with different reliabilities.

  7. The economic impacts of a submarine HVDC interconnection between Norway and Great Britain

    International Nuclear Information System (INIS)

    Doorman, Gerard L.; Frøystad, Dag Martin

    2013-01-01

    In the present paper we analyze the profitability of different HVDC interconnection alternatives between Norway and Great Britain for present and future scenarios. The analysis is done from a merchant and a social welfare perspective. The analyses include interconnections between Norway and Scotland and Southern Great Britain, respectively, as well as an alternative link to a future offshore wind farm. From a social welfare perspective the northern interconnection alternative is profitable under all sets of assumptions. The southern alternative is profitable under present conditions, but less than the northern alternative. The alternative link to the offshore wind park is not profitable, but this result is highly dependent on market conditions. From a merchant perspective none of the alternatives is profitable, clearly illustrating that leaving investments to commercial parties does not realize all projects that increase social welfare. - Highlights: • Profitability of interconnection between Norway and GB is analyzed using simulation. • The Northern alternative increases social welfare under all assumptions. • None of the alternatives is profitable from a merchant perspective. • A link to a prospective wind farm 200 km from the GB coast is not profitable. • Social welfare increasing infrastructure may not be built on commercial conditions

  8. 14 CFR 25.957 - Flow between interconnected tanks.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  9. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  10. Lyapunov-based Stability of Feedback Interconnections of Negative Imaginary Systems

    KAUST Repository

    Ghallab, Ahmed G.

    2017-10-19

    Feedback control systems using sensors and actuators such as piezoelectric sensors and actuators, micro-electro-mechanical systems (MEMS) sensors and opto-mechanical sensors, are allowing new advances in designing such high precision technologies. The negative imaginary control systems framework allows for robust control design for such high precision systems in the face of uncertainties due to unmodelled dynamics. The stability of the feedback interconnection of negative imaginary systems has been well established in the literature. However, the proofs of stability feedback interconnection which are used in some previous papers have a shortcoming due to a matrix inevitability issue. In this paper, we provide a new and correct Lyapunov-based proof of one such result and show that the result is still true.

  11. Lyapunov-based Stability of Feedback Interconnections of Negative Imaginary Systems

    KAUST Repository

    Ghallab, Ahmed G.; Mabrok, Mohamed; Petersen, Ian R.

    2017-01-01

    Feedback control systems using sensors and actuators such as piezoelectric sensors and actuators, micro-electro-mechanical systems (MEMS) sensors and opto-mechanical sensors, are allowing new advances in designing such high precision technologies. The negative imaginary control systems framework allows for robust control design for such high precision systems in the face of uncertainties due to unmodelled dynamics. The stability of the feedback interconnection of negative imaginary systems has been well established in the literature. However, the proofs of stability feedback interconnection which are used in some previous papers have a shortcoming due to a matrix inevitability issue. In this paper, we provide a new and correct Lyapunov-based proof of one such result and show that the result is still true.

  12. Hybrid-Based Dense Stereo Matching

    Science.gov (United States)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  13. High Speed PAM -8 Optical Interconnects with Digital Equalization based on Neural Network

    DEFF Research Database (Denmark)

    Gaiarin, Simone; Pang, Xiaodan; Ozolins, Oskars

    2016-01-01

    We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission.......We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission....

  14. An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response

    Directory of Open Access Journals (Sweden)

    Katherine M. Buckley

    2017-10-01

    Full Text Available The gut epithelium is an ancient site of complex communication between the animal immune system and the microbial world. While elements of self-non-self receptors and effector mechanisms differ greatly among animal phyla, some aspects of recognition, regulation, and response are broadly conserved. A gene regulatory network (GRN approach provides a means to investigate the nature of this conservation and divergence even as more peripheral functional details remain incompletely understood. The sea urchin embryo is an unparalleled experimental model for detangling the GRNs that govern embryonic development. By applying this theoretical framework to the free swimming, feeding larval stage of the purple sea urchin, it is possible to delineate the conserved regulatory circuitry that regulates the gut-associated immune response. This model provides a morphologically simple system in which to efficiently unravel regulatory connections that are phylogenetically relevant to immunity in vertebrates. Here, we review the organism-wide cellular and transcriptional immune response of the sea urchin larva. A large set of transcription factors and signal systems, including epithelial expression of interleukin 17 (IL17, are important mediators in the activation of the early gut-associated response. Many of these have homologs that are active in vertebrate immunity, while others are ancient in animals but absent in vertebrates or specific to echinoderms. This larval model provides a means to experimentally characterize immune function encoded in the sea urchin genome and the regulatory interconnections that control immune response and resolution across the tissues of the organism.

  15. Breast cancer screening in Korean woman with dense breast tissue

    International Nuclear Information System (INIS)

    Shin, Hee Jung; Ko, Eun Sook; Yi, Ann

    2015-01-01

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results

  16. Breast cancer screening in Korean woman with dense breast tissue

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Jung [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ko, Eun Sook [Dept. of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Yi, Ann [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-11-15

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results.

  17. Arbitrary electron acoustic waves in degenerate dense plasmas

    Science.gov (United States)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  18. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation

    Science.gov (United States)

    Bruhn, D.; Groebner, N.; Kohlstedt, D. L.

    2000-01-01

    The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  19. Superconducting Multilayer High-Density Flexible Printed Circuit Board for Very High Thermal Resistance Interconnections

    Science.gov (United States)

    de la Broïse, Xavier; Le Coguie, Alain; Sauvageot, Jean-Luc; Pigot, Claude; Coppolani, Xavier; Moreau, Vincent; d'Hollosy, Samuel; Knarosovski, Timur; Engel, Andreas

    2018-05-01

    We have successively developed two superconducting flexible PCBs for cryogenic applications. The first one is monolayer, includes 552 tracks (10 µm wide, 20 µm spacing), and receives 24 wire-bonded integrated circuits. The second one is multilayer, with one track layer between two shielding layers interconnected by microvias, includes 37 tracks, and can be interconnected at both ends by wire bonding or by connectors. The first cold measurements have been performed and show good performances. The novelty of these products is, for the first one, the association of superconducting materials with very narrow pitch and bonded integrated circuits and, for the second one, the introduction of a superconducting multilayer structure interconnected by vias which is, to our knowledge, a world-first.

  20. Exploring the interconnections between gender, health and nature.

    Science.gov (United States)

    MacBride-Stewart, S; Gong, Y; Antell, J

    2016-12-01

    Public health has recognized that nature is good for health but there are calls for a review of its gendered aspects. This review attempts to develop and explore a broad analytical theme - the differing interconnections between gender, health and nature. The paper summarizes the interconnections that have been subject to extensive academic enquiry between gender and health, health and space, and gender and space. A combination of key terms including place; gender; health; outdoor space; green space; natural environment; national parks; femininity; masculinity; recreation; physical activity; sustainability; ecofeminism; feminism; environmental degradation; and environmental justice were used to search the electronic databases Sociological Abstracts, Web of Science and Scopus to identify relevant articles. We took two approaches for this review to provide an overview and analysis of the range of research in the field, and to present a framework of research that is an analysis of the intersection of gender, health and nature. Four dimensions are distinguished: (1) evaluations of health benefits and 'toxicities' of nature; (2) dimensions and qualities of nature/space; (3) environmental justice including accessibility, availability and usability; and (4) identification of boundaries (symbolic/material) that construct differential relationships between nature, gender and health. This paper offers an understanding of how environmental and social conditions may differentially shape the health of women and men. The dimensions direct analytical attention to the diverse linkages that constitute overlapping and inseparable domains of knowledge and practice, to identify complex interconnections between gender, health and nature. This review therefore analyses assumptions about the health benefits of nature, and its risks, for gender from an in-depth, analytical perspective that can be used to inform policy. Copyright © 2016 The Royal Society for Public Health. Published by

  1. Early resistance change and stress/electromigrationmodeling in aluminium interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Schoenmaker, W.

    1997-01-01

    A complete description for early resistance change and two dimensional simulation of mechanical stress evolution in confined Al interconnects, related to the electromigration, is given in this paper. The model, combines the stress/ vacancy concentration evolution with the early resistance change of

  2. Incorporation of in-plane interconnects to reflow bonding for electrical functionality

    International Nuclear Information System (INIS)

    Moğulkoç, B; Jansen, H V; Ter Brake, H J M; Elwenspoek, M C

    2011-01-01

    Incorporation of in-plane electrical interconnects to reflow bonding is studied to provide electrical functionality to lab-on-a-chip or microfluidic devices. Reflow bonding is the packaging technology, in which glass tubes are joined to silicon substrates at elevated temperatures. The tubes are used to interface the silicon-based fluidic devices and are directly compatible with standard Swagelok® connectors. After the bonding, the electrically conductive lines will allow probing into the volume confined by the tube, where the fluidic device operates. Therefore methods for fabricating electrical interconnects that survive the bonding procedure at elevated temperature and do not alter the properties of the bond interface are investigated

  3. Decentralized adaptive control of interconnected nonlinear systems with unknown control directions.

    Science.gov (United States)

    Huang, Jiangshuai; Wang, Qing-Guo

    2018-03-01

    In this paper, we propose a decentralized adaptive control scheme for a class of interconnected strict-feedback nonlinear systems without a priori knowledge of subsystems' control directions. To address this problem, a novel Nussbaum-type function is proposed and a key theorem is drawn which involves quantifying the interconnections of multiple Nussbaum-type functions of the subsystems with different control directions in a single inequality. Global stability of the closed-loop system and asymptotic stabilization of subsystems' output are proved and a simulation example is given to illustrate the effectiveness of the proposed control scheme. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A proposed holistic approach to on-chip, off-chip, test, and package interconnections

    Science.gov (United States)

    Bartelink, Dirk J.

    1998-11-01

    The term interconnection has traditionally implied a `robust' connection from a transistor or a group of transistors in an IC to the outside world, usually a PC board. Optimum system utilization is done from outside the IC. As an alternative, this paper addresses `unimpeded' transistor-to-transistor interconnection aimed at reaching the high circuit densities and computational capabilities of neighboring IC's. In this view, interconnections are not made to some human-centric place outside the IC world requiring robustness—except for system input and output connections. This unimpeded interconnect style is currently available only through intra-chip signal traces in `system-on-a-chip' implementations, as exemplified by embedded DRAMs. Because the traditional off-chip penalty in performance and wiring density is so large, a merging of complex process technologies is the only option today. It is suggested that, for system integration to move forward, the traditional robustness requirement inherited from conventional packaging interconnect and IC manufacturing test must be discarded. Traditional system assembly from vendor parts requires robustness under shipping, inspection and assembly. The trend toward systems on a chip signifies willingness by semiconductor companies to design and fabricate whole systems in house, so that `in-house' chip-to-chip assembly is not beyond reach. In this scenario, bare chips never leave the controlled environment of the IC fabricator while the two major contributors to off-chip signal penalty, ESD protection and the need to source a 50-ohm test head, are avoided. With in-house assembly, ESD protection can be eliminated with the precautions already familiar in plasma etching. Test interconnection impacts the fundamentals of IC manufacturing, particularly with clock speeds approaching 1GHz, and cannot be an afterthought. It should be an integral part of the chip-to-chip interconnection bandwidth optimization, because—as we must

  5. Understanding price discovery in interconnected markets: Generalized Langevin process approach and simulation

    Science.gov (United States)

    Schenck, Natalya A.; Horvath, Philip A.; Sinha, Amit K.

    2018-02-01

    While the literature on price discovery process and information flow between dominant and satellite market is exhaustive, most studies have applied an approach that can be traced back to Hasbrouck (1995) or Gonzalo and Granger (1995). In this paper, however, we propose a Generalized Langevin process with asymmetric double-well potential function, with co-integrated time series and interconnected diffusion processes to model the information flow and price discovery process in two, a dominant and a satellite, interconnected markets. A simulated illustration of the model is also provided.

  6. Open system LANs and their global interconnection electronics and communications reference series

    CERN Document Server

    Houldsworth, Jack; Caves, Keith; Mazda, FF

    2014-01-01

    Open System LANs and Their Global Interconnection focuses on the OSI layer 1 to 4 standards (the OSI bearer service) and also introduces TCP/IP and some of the proprietary PC Local Area Network (LAN) standards.The publication first provides an introduction to Local Area Networks (LANs) and Wide Area Networks (WANs), Open Systems Interconnection (OSI), and LAN standards. Discussions focus on MAC bridging, token bus, slotted ring, MAC constraints and design considerations, OSI functional standards, OSI model, value of the transport model, benefits and origins of OSI, and significance of the tran

  7. Development of Readout Interconnections for the Si-W Calorimeter of SiD

    Energy Technology Data Exchange (ETDEWEB)

    Woods, M.; Fields, R.G.; Holbrook, B.; Lander, R.L.; Moskaleva, A.; Neher, C.; Pasner, J.; Tripathi, M.; /UC, Davis; Brau, J.E.; Frey, R.E.; Strom, D.; /Oregon U.; Breidenbach, M.; Freytag, D.; Haller, G.; Herbst, R.; Nelson, T.; /SLAC; Schier, S.; Schumm, B.; /UC, Santa Cruz

    2012-09-14

    The SiD collaboration is developing a Si-W sampling electromagnetic calorimeter, with anticipated application for the International Linear Collider. Assembling the modules for such a detector will involve special bonding technologies for the interconnections, especially for attaching a silicon detector wafer to a flex cable readout bus. We review the interconnect technologies involved, including oxidation removal processes, pad surface preparation, solder ball selection and placement, and bond quality assurance. Our results show that solder ball bonding is a promising technique for the Si-W ECAL, and unresolved issues are being addressed.

  8. Fractal Characteristics Analysis of Blackouts in Interconnected Power Grid

    DEFF Research Database (Denmark)

    Wang, Feng; Li, Lijuan; Li, Canbing

    2018-01-01

    The power failure models are a key to understand the mechanism of large scale blackouts. In this letter, the similarity of blackouts in interconnected power grids (IPGs) and their sub-grids is discovered by the fractal characteristics analysis to simplify the failure models of the IPG. The distri......The power failure models are a key to understand the mechanism of large scale blackouts. In this letter, the similarity of blackouts in interconnected power grids (IPGs) and their sub-grids is discovered by the fractal characteristics analysis to simplify the failure models of the IPG....... The distribution characteristics of blackouts in various sub-grids are demonstrated based on the Kolmogorov-Smirnov (KS) test. The fractal dimensions (FDs) of the IPG and its sub-grids are then obtained by using the KS test and the maximum likelihood estimation (MLE). The blackouts data in China were used...

  9. Greenhouse gas emission factors of purchased electricity from interconnected grids

    International Nuclear Information System (INIS)

    Ji, Ling; Liang, Sai; Qu, Shen; Zhang, Yanxia; Xu, Ming; Jia, Xiaoping; Jia, Yingtao; Niu, Dongxiao; Yuan, Jiahai; Hou, Yong; Wang, Haikun; Chiu, Anthony S.F.; Hu, Xiaojun

    2016-01-01

    Highlights: • A new accounting framework is proposed for GHG emission factors of power grids. • Three cases are used to demonstrate the proposed framework. • Comparisons with previous system boundaries approve the necessity. - Abstract: Electricity trade among power grids leads to difficulties in measuring greenhouse gas (GHG) emission factors of purchased electricity. Traditional methods assume either electricity purchased from a grid is entirely produced locally (Boundary I) or imported electricity is entirely produced by the exporting grid (Boundary II) (in fact a blend of electricity produced by many grids). Both methods ignore the fact that electricity can be indirectly traded between grids. Failing to capture such indirect electricity trade can underestimate or overestimate GHG emissions of purchased electricity in interconnected grid networks, potentially leading to incorrectly accounting for the effects of emission reduction policies involving purchased electricity. We propose a “Boundary III” framework to account for emissions both directly and indirectly caused by purchased electricity in interconnected gird networks. We use three case studies on a national grid network, an Eurasian Continent grid network, and North Europe grid network to demonstrate the proposed Boundary III emission factors. We found that the difference on GHG emissions of purchased electricity estimated using different emission factors can be considerably large. We suggest to standardize the choice of different emission factors based on how interconnected the local grid is with other grids.

  10. 32 x 16 CMOS smart pixel array for optical interconnects

    Science.gov (United States)

    Kim, Jongwoo; Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Choquette, Kent D.; Kiamilev, Fouad E.

    2000-05-01

    Free space optical interconnects can increase throughput capacities and eliminate much of the energy consumption required for `all electronic' systems. High speed optical interconnects can be achieved by integrating optoelectronic devices with conventional electronics. Smart pixel arrays have been developed which use optical interconnects. An individual smart pixel cell is composed of a vertical cavity surface emitting laser (VCSEL), a photodetector, an optical receiver, a laser driver, and digital logic circuitry. Oxide-confined VCSELs are being developed to operate at 850 nm with a threshold current of approximately 1 mA. Multiple quantum well photodetectors are being fabricated from AlGaAs for use with the 850 nm VCSELs. The VCSELs and photodetectors are being integrated with complementary metal oxide semiconductor (CMOS) circuitry using flip-chip bonding. CMOS circuitry is being integrated with a 32 X 16 smart pixel array. The 512 smart pixels are serially linked. Thus, an entire data stream may be clocked through the chip and output electrically by the last pixel. Electrical testing is being performed on the CMOS smart pixel array. Using an on-chip pseudo random number generator, a digital data sequence was cycled through the chip verifying operation of the digital circuitry. Although, the prototype chip was fabricated in 1.2 micrometers technology, simulations have demonstrated that the array can operate at 1 Gb/s per pixel using 0.5 micrometers technology.

  11. Ontario's intertie capacity and electricity trade in the interconnected system

    International Nuclear Information System (INIS)

    Dorey, S.

    2002-01-01

    Hydro One's capacity of existing interconnections were described. The Ontario utility is within reach of about 320 GW electricity markets in neighbouring Quebec, New York, Michigan, Minnesota, and Manitoba. It is also within reach of 50 million customers, and 30 per cent of total U.S. energy consumption. The author emphasized the need for expanded interties and new interconnections. The status of new interconnections was described along with the rules regarding electric power import, export and wheeling. It was noted that compared to the United States, Canada has a higher proportion of clean hydro and nuclear power plants in its mix of power generation. Markets across North America are adopting electricity restructuring and open competition. However, the transmission grids were not designed to support market-driven electricity trading. Most transmission grids were built when utilities were tightly regulated and provided service only within their assigned regions. The current energy infrastructure is not equipped for large-scale swapping of power in competitive markets. It was also noted that growth in US power flows is outpacing transmission investment. This paper addressed the issue of license requirements, transmitter proposals for regulated investments, and non-rate base transmitter investments. It was concluded that while market rules are flexible enough to encourage inter-jurisdictional trade, the rules have to facilitate and encourage transmission investment. 8 figs

  12. Actual issues concerning nuclear power plants and interconnected grid

    International Nuclear Information System (INIS)

    Medjimorec, D.; Brkic, S.

    2004-01-01

    Nuclear power plants and transmission grid have always been mutually of special relevance. In countries and/or regions where nuclear power plants are located they are almost as a rule counted among strongest nodes of the grid. Hence, they are treated as such from grid point of view in various aspects (operational, planning). In interconnected high-voltage transmission grid of European mainland, usually called UCTE interconnected system, this importance could be shown in a range of issues and several cases, particularly under present situation in which there are numerous demanding and challenging tasks put on transmission system operators, largely due to the opening of electricity markets in the most of European countries. Among these issues definitely worth of mentioning is relevant influence to both commercial paths and physical power flows, and also to exchange programmes between control areas and blocks. In this context there is also relation to cross-border transactions and mechanism applied to them. In respect to security of supply issues and future of nuclear power generation under present regulative framework of most European countries it is needed to comply with connecting conditions (and other stipulations) from national grid codes where different approaches could be observed. Furthermore, nuclear issues significantly influence approach to extension of UCTE system. In certain extent this also applies to pending re-connection of present two synchronous zones of UCTE, particularly to area of broader region directly affected with this complex process. Some of these also reflect to Croatian high-voltage transmission grid as a part of UCTE interconnected system with certain peculiarities.(author)

  13. Two Novel Rab2 Interactors Regulate Dense-core Vesicle Maturation

    Science.gov (United States)

    Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q.; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M.

    2014-01-01

    Summary Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi, and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1 and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a new pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274

  14. High-speed VCSEL-based optical interconnects

    Science.gov (United States)

    Ishak, Waguih S.

    2001-11-01

    Vertical Cavity Surface Emitting Lasers (VCSEL) have made significant inroads into commercial realization especially in the area of data communications. Single VCSEL devices are key components in Gb Ethernet Transceivers. A multi-element VCSEL array is the key enabling technology for high-speed multi Gb/s parallel optical interconnect modules. In 1996, several companies introduced a new generation of fiber optic products based VCSEL technology such as multimode fiber transceivers for the ANSI Fiber Channel and Gigabit Ethernet IEEE 802.3 standards. VCSELs offer unique advantages over its edge-emitting counterparts in several areas. These include low-cost (LED-like) manufacturability, low current operation and array integrability. As data rates continue to increase, VCSELs offer the advantage of being able to provide the highest modulation bandwidth per milliamp of modulation current. Currently, most of the VCSEL-based products use short (780 - 980 nm) wavelength lasers. However, significant research efforts are taking place at universities and industrial research labs around the world to develop reliable, manufacturable and high-power long (1300 - 1550 nm) wavelength VCSELs. These lasers will allow longer (several km) transmission distances and will help alleviate some of the eye-safety issues. Perhaps, the most important advantage of VCSELs is the ability to form two-dimensional arrays much easier than in the case of edge-emitting lasers. These arrays (single and two-dimensional) will allow a whole new family of applications, specifically in very high-speed computer and switch interconnects.

  15. Dense power-law networks and simplicial complexes

    Science.gov (United States)

    Courtney, Owen T.; Bianconi, Ginestra

    2018-05-01

    There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.

  16. Analysis of Defective Interconnections of the 13 kA LHC Superconducting Bus Bars

    CERN Document Server

    Granieri, P P; Bianchi, M; Breschi, M; Bottura, L; Willering, G

    2012-01-01

    The interconnections between Large Hadron Collider (LHC) main dipole and quadrupole magnets are made of soldered joints of two superconducting cables stabilized by a copper bus bar. The 2008 incident revealed the possible presence of defects in the interconnections of the 13 kA circuits that could lead to unprotected resistive transitions. Since then thorough experimental and numerical investigations were undertaken to determine the safe operating conditions for the LHC. This paper reports the analysis of experimental tests reproducing defective interconnections between main quadrupole magnets. A thermo-electromagnetic model was developed taking into account the complicated sample geometry. Close attention was paid to the physical description of the heat transfer towards helium, one of the main unknown parameters. The simulation results are reported in comparison with the measurements in case of static He I cooling bath. The outcome of this study constitutes a useful input to improve the stability assessment ...

  17. Load frequency control of three area interconnected hydro-thermal ...

    African Journals Online (AJOL)

    This paper present analysis on dynamic performance of Load Frequency Control (LFC) of three area interconnected hydrothermal reheat power system by the use of Artificial Intelligent and PI Controller. In the proposed scheme, control methodology developed using conventional PI controller, Artificial Neural Network ...

  18. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects

    DEFF Research Database (Denmark)

    Karinou, Fotini; Borkowski, Robert; Zibar, Darko

    2013-01-01

    We experimentally assess the performance of a 64 × 64 optical switch fabric used for ns-speed optical cell switching in supercomputer optical interconnects. More specifically, we study four alternative modulation formats and detection schemes, namely, 10-Gb/s nonreturn-to-zero differential phase-...

  19. Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling.

    Directory of Open Access Journals (Sweden)

    Masanao Sato

    Full Text Available Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible responses to pathogen attack, is such a complex network. We studied the Arabidopsis immune signaling network upon challenge with a strain of the bacterial pathogen Pseudomonas syringae expressing the effector protein AvrRpt2 (Pto DC3000 AvrRpt2. This bacterial strain feeds multiple inputs into the signaling network, allowing many parts of the network to be activated at once. mRNA profiles for 571 immune response genes of 22 Arabidopsis immunity mutants and wild type were collected 6 hours after inoculation with Pto DC3000 AvrRpt2. The mRNA profiles were analyzed as detailed descriptions of changes in the network state resulting from the genetic perturbations. Regulatory relationships among the genes corresponding to the mutations were inferred by recursively applying a non-linear dimensionality reduction procedure to the mRNA profile data. The resulting static network model accurately predicted 23 of 25 regulatory relationships reported in the literature, suggesting that predictions of novel regulatory relationships are also accurate. The network model revealed two striking features: (i the components of the network are highly interconnected; and (ii negative regulatory relationships are common between signaling sectors. Complex regulatory relationships, including a novel negative regulatory relationship between the early microbe-associated molecular pattern-triggered signaling sectors and the salicylic acid sector, were further validated. We propose that prevalent negative regulatory relationships among the signaling sectors make the plant immune signaling network a "sector

  20. Interconnectivity and the Electronic Academic Library

    Directory of Open Access Journals (Sweden)

    Donald E. Riggs

    1988-03-01

    Full Text Available 無Due to the emphasis on the use of computing networks on campuses and to the very nature of more information being accessible to library users only via electronic means, we are witnessing a migration to electronic academic libraries. this new type of library is being required to have interconnections with the campus' other online information/data systems. Arizona State University libraries have been provided the opportunity to develop an electronic library that will be the focal point of a campus-wide information/data network.

  1. Opportunities and Benefits for Increasing Transmission Capacity between the US Eastern and Western Interconnections

    Science.gov (United States)

    Figueroa-Acevedo, Armando L.

    Historically, the primary justification for building wide-area transmission lines in the US and around the world has been based on reliability and economic criteria. Today, the influence of renewable portfolio standards (RPS), Environmental Protection Agency (EPA) regulations, transmission needs, load diversity, and grid flexibility requirements drives interest in high capacity wide-area transmission. By making use of an optimization model to perform long-term (15 years) co-optimized generation and transmission expansion planning, this work explored the benefits of increasing transmission capacity between the US Eastern and Western Interconnections under different policy and futures assumptions. The model assessed tradeoffs between investments in cross-interconnection HVDC transmission, AC transmission needs within each interconnection, generation investment costs, and operational costs, while satisfying different policy compliance constraints. Operational costs were broken down into the following market products: energy, up-/down regulation reserve, and contingency reserve. In addition, the system operating flexibility requirements were modeled as a function of net-load variability so that the flexibility of the non-wind/non-solar resources increases with increased wind and solar investment. In addition, planning reserve constraints are imposed under the condition that they be deliverable to the load. Thus, the model allows existing and candidate generation resources for both operating reserves and deliverable planning reserves to be shared throughout the interconnections, a feature which significantly drives identification of least-cost investments. This model is used with a 169-bus representation of the North American power grid to design four different high-capacity wide-area transmission infrastructures. Results from this analysis suggest that, under policy that imposes a high-renewable future, the benefits of high capacity transmission between the Eastern and

  2. Installation and Quality Assurance of the Interconnections between Cryo-assemblies of the LHC Long Straight Sections

    CERN Document Server

    Garion, C; Tock, J P

    2006-01-01

    The interconnections between the cryomagnets and cryogenic utilities in the LHC long Straight Sections constitute the last machine installation activity. They are ensuring continuity of the beam and insulation vacuum systems, cryogenic fluid and electrical circuits and thermal insulation. The assembly is carried out in a constraining tunnel environment with restricted space. Therefore, the assembly sequence has to be well defined and specific tests have to be performed during the interconnection work to secure the reliability of the system and thus to ensure the global accelerator availability. The LHC has 8 long straight insertion zones composed of special cryomagnets involving specific interconnection procedures and QA plans. The aim of this paper is to present the installation and quality assurance procedures implemented for the LHC LSS interconnections. Technologies such as manual and automatic welding and resistive soldering will be described as well as the different quality controls, such as visual and ...

  3. Eculizumab for dense deposit disease and C3 glomerulonephritis.

    Science.gov (United States)

    Bomback, Andrew S; Smith, Richard J; Barile, Gaetano R; Zhang, Yuzhou; Heher, Eliot C; Herlitz, Leal; Stokes, M Barry; Markowitz, Glen S; D'Agati, Vivette D; Canetta, Pietro A; Radhakrishnan, Jai; Appel, Gerald B

    2012-05-01

    The principle defect in dense deposit disease and C3 glomerulonephritis is hyperactivity of the alternative complement pathway. Eculizumab, a monoclonal antibody that binds to C5 to prevent formation of the membrane attack complex, may prove beneficial. In this open-label, proof of concept efficacy and safety study, six subjects with dense deposit disease or C3 glomerulonephritis were treated with eculizumab every other week for 1 year. All had proteinuria >1 g/d and/or AKI at enrollment. Subjects underwent biopsy before enrollment and repeat biopsy at the 1-year mark. The subjects included three patients with dense deposit disease (including one patient with recurrent dense deposit disease in allograft) and three patients with C3 glomerulonephritis (including two patients with recurrent C3 glomerulonephritis in allograft). Genetic and complement function testing revealed a mutation in CFH and MCP in one subject each, C3 nephritic factor in three subjects, and elevated levels of serum membrane attack complex in three subjects. After 12 months, two subjects showed significantly reduced serum creatinine, one subject achieved marked reduction in proteinuria, and one subject had stable laboratory parameters but histopathologic improvements. Elevated serum membrane attack complex levels normalized on therapy and paralleled improvements in creatinine and proteinuria. Clinical and histopathologic data suggest a response to eculizumab in some but not all subjects with dense deposit disease and C3 glomerulonephritis. Elevation of serum membrane attack complex before treatment may predict response. Additional research is needed to define the subgroup of dense deposit disease/C3 glomerulonephritis patients in whom eculizumab therapy can be considered.

  4. Electromigration in integrated circuit interconnects studied by X-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, G. E-mail: gschnei1@gwdg.de; Denbeaux, G.; Anderson, E.; Bates, W.; Salmassi, F.; Nachimuthu, P.; Pearson, A.; Richardson, D.; Hambach, D.; Hoffmann, N.; Hasse, W.; Hoffmann, K

    2003-01-01

    To study mass transport phenomena in advanced microelectronic devices with X-rays requires penetration of dielectric and Si layers up to 30 {mu}m thick. X-ray imaging at 1.8 keV photon energy provides a high amplitude contrast between Cu or Al interconnects and dielectric layers and can penetrate through the required thickness. To perform X-ray microscopy at 1.8 keV, a new Ru/Si multilayer was designed for the transmission X-ray microscope XM-1 installed at the Advanced Light Source in Berkeley. The mass flow in a passivated Cu interconnect was studied at current densities up to 10{sup 7} A/cm{sup 2}. In addition, we demonstrated the high material contrast from different elements in integrated circuits with a resolution of about 40 nm.

  5. Electromigration in integrated circuit interconnects studied by X-ray microscopy

    CERN Document Server

    Schneider, G; Anderson, E; Bates, W; Salmassi, F; Nachimuthu, P; Pearson, A; Richardson, D; Hambach, D; Hoffmann, N; Hasse, W; Hoffmann, K

    2003-01-01

    To study mass transport phenomena in advanced microelectronic devices with X-rays requires penetration of dielectric and Si layers up to 30 mu m thick. X-ray imaging at 1.8 keV photon energy provides a high amplitude contrast between Cu or Al interconnects and dielectric layers and can penetrate through the required thickness. To perform X-ray microscopy at 1.8 keV, a new Ru/Si multilayer was designed for the transmission X-ray microscope XM-1 installed at the Advanced Light Source in Berkeley. The mass flow in a passivated Cu interconnect was studied at current densities up to 10 sup 7 A/cm sup 2. In addition, we demonstrated the high material contrast from different elements in integrated circuits with a resolution of about 40 nm.

  6. Computer simulation of electromigration in microelectronics interconnect

    OpenAIRE

    Zhu, Xiaoxin

    2014-01-01

    Electromigration (EM) is a phenomenon that occurs in metal conductor carrying high density electric current. EM causes voids and hillocks that may lead to open or short circuits in electronic devices. Avoiding these failures therefore is a major challenge in semiconductor device and packaging design and manufacturing, and it will become an even greater challenge for the semiconductor assembly and packaging industry as electronics components and interconnects get smaller and smaller. According...

  7. Three-dimensional crossbar interconnection using planar-integrated free-space optics and digital mirror-device

    Science.gov (United States)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.

    2011-01-01

    We consider the implementation of a dynamic crossbar interconnect using planar-integrated free-space optics (PIFSO) and a digital mirror-device™ (DMD). Because of the 3D nature of free-space optics, this approach is able to solve geometrical problems with crossings of the signal paths that occur in waveguide optical and electrical interconnection, especially for large number of connections. The DMD device allows one to route the signals dynamically. Due to the large number of individual mirror elements in the DMD, different optical path configurations are possible, thus offering the chance for optimizing the network configuration. The optimization is achieved by using an evolutionary algorithm for finding best values for a skewless parallel interconnection. Here, we present results and experimental examples for the use of the PIFSO/DMD-setup.

  8. Examination of Critical Length Effect in Copper Interconnects With Oxide and Low-k Dielectrics

    International Nuclear Information System (INIS)

    Thrasher, Stacye; Gall, Martin; Justison, Patrick; Hernandez, Richard; Kawasaki, Hisao; Capasso, Cristiano; Nguyen, Timothy

    2004-01-01

    As technology moves toward faster microelectronic devices with smaller feature sizes, copper is replacing aluminum-copper alloy and low-k dielectric is replacing oxide as the materials of choice for advanced interconnect integrations. Copper not only brings to the table the advantage of lower resistivity, but also exhibits better electromigration performance when compared to Al(Cu). Low-k dielectric materials are advantageous because they reduce power consumption and improve signal delay. Due to these advantages, the industry trend is moving towards integrating copper and low-k dielectric for high performance interconnects. The purpose of this study is to evaluate the critical length effect in single-inlaid copper interconnects and determine the critical product (jl)c, for a variety of integrations, examining the effect of ILD (oxide vs. low-k), geometry, and stress temperature

  9. Regulatory Oversight of Safety Culture in Finland: A Systemic Approach to Safety

    International Nuclear Information System (INIS)

    Oedewald, P.; Väisäsvaara, J.

    2016-01-01

    In Finland the Radiation and Nuclear Safety Authority STUK specifies detailed regulatory requirements for good safety culture. Both the requirements and the practical safety culture oversight activities reflect a systemic approach to safety: the interconnections between the technical, human and organizational factors receive special attention. The conference paper aims to show how the oversight of safety culture can be integrated into everyday oversight activities. The paper also emphasises that the scope of the safety culture oversight is not specific safety culture activities of the licencees, but rather the overall functioning of the licence holder or the new build project organization from safety point of view. The regulatory approach towards human and organizational factors and safety culture has evolved throughout the years of nuclear energy production in Finland. Especially the recent new build projects have highlighted the need to systematically pay attention to the non-technical aspects of safety as it has become obvious how the HOF issues can affect the design processes and quality of construction work. Current regulatory guides include a set of safety culture related requirements. The requirements are binding to the licence holders and they set both generic and specific demands on the licencee to understand, monitor and to develop safety culture of their own organization but also that of their supplier network. The requirements set for the licence holders has facilitated the need to develop the regulator’s safety culture oversight practices towards a proactive and systemic approach.

  10. Dilute and dense axion stars

    Science.gov (United States)

    Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank

    2018-02-01

    Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.

  11. Impact of Isothermal Aging and Testing Temperature on Large Flip-Chip BGA Interconnect Mechanical Shock Performance

    Science.gov (United States)

    Lee, Tae-Kyu; Chen, Zhiqiang; Guirguis, Cherif; Akinade, Kola

    2017-10-01

    The stability of solder interconnects in a mechanical shock environment is crucial for large body size flip-chip ball grid array (FCBGA) electronic packages. Additionally, the junction temperature increases with higher electric power condition, which brings the component into an elevated temperature environment, thus introducing another consideration factor for mechanical stability of interconnection joints. Since most of the shock performance data available were produced at room temperature, the effect of elevated temperature is of interest to ensure the reliability of the device in a mechanical shock environment. To achieve a stable␣interconnect in a dynamic shock environment, the interconnections must tolerate mechanical strain, which is induced by the shock wave input and reaches the particular component interconnect joint. In this study, large body size (52.5 × 52.5 mm2) FCBGA components assembled on 2.4-mm-thick boards were tested with various isothermal pre-conditions and testing conditions. With a heating element embedded in the test board, a test temperature range from room temperature to 100°C was established. The effects of elevated temperature on mechanical shock performance were investigated. Failure and degradation mechanisms are identified and discussed based on the microstructure evolution and grain structure transformations.

  12. POEM: Identifying joint additive effects on regulatory circuits

    Directory of Open Access Journals (Sweden)

    Maya eBotzman

    2016-04-01

    Full Text Available Motivation: Expression Quantitative Trait Locus (eQTL mapping tackles the problem of identifying variation in DNA sequence that have an effect on the transcriptional regulatory network. Major computational efforts are aimed at characterizing the joint effects of several eQTLs acting in concert to govern the expression of the same genes. Yet, progress towards a comprehensive prediction of such joint effects is limited. For example, existing eQTL methods commonly discover interacting loci affecting the expression levels of a module of co-regulated genes. Such ‘modularization’ approaches, however, are focused on epistatic relations and thus have limited utility for the case of additive (non-epistatic effects.Results: Here we present POEM (Pairwise effect On Expression Modules, a methodology for identifying pairwise eQTL effects on gene modules. POEM is specifically designed to achieve high performance in the case of additive joint effects. We applied POEM to transcription profiles measured in bone marrow-derived dendritic cells across a population of genotyped mice. Our study reveals widespread additive, trans-acting pairwise effects on gene modules, characterizes their organizational principles, and highlights high-order interconnections between modules within the immune signaling network. These analyses elucidate the central role of additive pairwise effect in regulatory circuits, and provide computational tools for future investigations into the interplay between eQTLs.Availability: The software described in this article is available at csgi.tau.ac.il/POEM/.

  13. Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects.

    Science.gov (United States)

    Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Schaller, Vanessa; Wirths, Stephan; Moselund, Kirsten; Luisier, Mathieu; Karg, Siegfried; Riel, Heike

    2017-04-12

    Coherent interconnection of quantum bits remains an ongoing challenge in quantum information technology. Envisioned hardware to achieve this goal is based on semiconductor nanowire (NW) circuits, comprising individual NW devices that are linked through ballistic interconnects. However, maintaining the sensitive ballistic conduction and confinement conditions across NW intersections is a nontrivial problem. Here, we go beyond the characterization of a single NW device and demonstrate ballistic one-dimensional (1D) quantum transport in InAs NW cross-junctions, monolithically integrated on Si. Characteristic 1D conductance plateaus are resolved in field-effect measurements across up to four NW-junctions in series. The 1D ballistic transport and sub-band splitting is preserved for both crossing-directions. We show that the 1D modes of a single injection terminal can be distributed into multiple NW branches. We believe that NW cross-junctions are well-suited as cross-directional communication links for the reliable transfer of quantum information as required for quantum computational systems.

  14. Neutrinos and Nucleosynthesis in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, George [Univ. of California, San Diego, CA (United States)

    2016-01-14

    The Topical Collaboration for Neutrinos and Nucleosynthesis in Hot and Dense matter brought together researchers from a variety of nuclear science specialties and a number of institutions to address nuclear physics and neutrino physics problems associated with dense matter and the origin of the elements. See attached final technical reports for (1) the UCSD award and (2) a copy of the report for the whole TC

  15. Financial viability of the Sonora-Baja California interconnection line; Viabilidad financiera de la linea de interconexion Sonora-Baja California

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, G. [ININ, Carretera Mexico-Touca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Ortega, G., E-mail: gustavo.alonso@inin.gob.mx [Comision Federal de Electricidad, Rio Rodano No. 14, Col. Cuauhtemoc, 06500 Ciudad de Mexico (Mexico)

    2017-09-15

    In the Development Program of the National Electricity Sector 2015-2029, an electric interconnection line between Sonora and Baja California (Mexico) is proposed, this study analyzes the financial viability of this interconnection line based on the maximum hourly and seasonal energy demand between both regions and proposes alternatives for the supply of electric power that supports the economic convenience of this interconnection line. The results show that additional capacity is required in Sonora to cover the maximum demands of both regions since in the current condition of the National Electric System the interconnection line is not justified. (Author)

  16. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary

    Science.gov (United States)

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002

  17. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary

    Directory of Open Access Journals (Sweden)

    Saishu Yoshida

    2016-01-01

    Full Text Available The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche and the dense cell clusters scattering in the parenchyma (parenchymal-niche. However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes.

  18. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    Science.gov (United States)

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2015-01-01

    In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes. PMID:26703750

  19. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    Directory of Open Access Journals (Sweden)

    Mythili Prakasam

    2015-12-01

    Full Text Available In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes.

  20. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    Science.gov (United States)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  1. A first-principles analysis of ballistic conductance, grain boundary scattering and vertical resistance in aluminum interconnects

    Science.gov (United States)

    Zhou, Tianji; Lanzillo, Nicholas A.; Bhosale, Prasad; Gall, Daniel; Quon, Roger

    2018-05-01

    We present an ab initio evaluation of electron scattering mechanisms in Al interconnects from a back-end-of-line (BEOL) perspective. We consider the ballistic conductance as a function of nanowire size, as well as the impact of surface oxidation on electron transport. We also consider several representative twin grain boundaries and calculate the specific resistivity and reflection coefficients for each case. Lastly, we calculate the vertical resistance across the Al/Ta(N)/Al and Cu/Ta(N)/Cu interfaces, which are representative of typical vertical interconnect structures with diffusion barriers. Despite a high ballistic conductance, the calculated specific resistivities at grain boundaries are 70-100% higher in Al than in Cu, and the vertical resistance across Ta(N) diffusion barriers are 60-100% larger for Al than for Cu. These results suggest that in addition to the well-known electromigration limitations in Al interconnects, electron scattering represents a major problem in achieving low interconnect line resistance at fine dimensions.

  2. Compact Interconnection Networks Based on Quantum Dots

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

    2003-01-01

    Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary

  3. Development of pore interconnectivity/morphology in porous silica films investigated by cyclic voltammetry and slow positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Tang, Xiuqin; Xiong, Bangyun; Li, Qichao; Mao, Wenfeng; Xiao, Wei; Fang, Pengfei; He, Chunqing

    2015-01-01

    Highlights: •Porous silica films were studied by cyclic voltammetry and positron annihilation. •Highly interconnected pores were formed in the film fabricated with more CTAB. •Aligned nanochannels were observed in the porous flim prepared with 25 wt.% CTAB. •I − and Ps diffusion in the films was governed by pore interconnectivity/morphology. •Cyclic voltammetry is feasible to explore pore interconnectivity/morphology. -- Abstract: Cyclic voltammetry and positronium (Ps) 3γ-annihilation spectroscopy were applied to investigate pore interconnectivity/morphology of porous silica films fabricated with various loading of cetyltrimethyl ammonium bromide (CTAB). With increasing the ratio of CTAB up to 15 wt.%, the total charge Q, resulted from I − diffusion across the silica films, increased remarkably, indicative of formation of highly interconnected pores in the films prepared with more porogen. However, it decreased dramatically with further loading CTAB of 25 wt.%. Interestingly, 3γ-annihilation fraction I 3γ due to a triplet-state Ps (ortho-positronium, o-Ps) emission from the silica films showed a similar behavior as a function of CTAB loading. The abnormal decrement in Q and I 3γ in the film fabricated with 25 wt.% CTAB was well explained by formation of long nanochannels aligning parallel to the film surface. The results indicated that the total charge Q and Ps 3γ-annihilation fraction were closely associated with I − and Ps diffusion governed by the pore interconnectivity/morphology of the silica films, which made cyclic voltammetry possible to be a feasible tool to characterize pore interconnectivity/morphology of porous thin films

  4. Fiber bundle probes for interconnecting miniaturized medical imaging devices

    Science.gov (United States)

    Zamora, Vanessa; Hofmann, Jens; Marx, Sebastian; Herter, Jonas; Nguyen, Dennis; Arndt-Staufenbiel, Norbert; Schröder, Henning

    2017-02-01

    Miniaturization of medical imaging devices will significantly improve the workflow of physicians in hospitals. Photonic integrated circuit (PIC) technologies offer a high level of miniaturization. However, they need fiber optic interconnection solutions for their functional integration. As part of European funded project (InSPECT) we investigate fiber bundle probes (FBPs) to be used as multi-mode (MM) to single-mode (SM) interconnections for PIC modules. The FBP consists of a set of four or seven SM fibers hexagonally distributed and assembled into a holder that defines a multicore connection. Such a connection can be used to connect MM fibers, while each SM fiber is attached to the PIC module. The manufacturing of these probes is explored by using well-established fiber fusion, epoxy adhesive, innovative adhesive and polishing techniques in order to achieve reliable, low-cost and reproducible samples. An innovative hydrofluoric acid-free fiber etching technology has been recently investigated. The preliminary results show that the reduction of the fiber diameter shows a linear behavior as a function of etching time. Different etch rate values from 0.55 μm/min to 2.3 μm/min were found. Several FBPs with three different type of fibers have been optically interrogated at wavelengths of 630nm and 1550nm. Optical losses are found of approx. 35dB at 1550nm for FBPs composed by 80μm fibers. Although FBPs present moderate optical losses, they might be integrated using different optical fibers, covering a broad spectral range required for imaging applications. Finally, we show the use of FBPs as promising MM-to-SM interconnects for real-world interfacing to PIC's.

  5. Dense time discretization technique for verification of real time systems

    International Nuclear Information System (INIS)

    Makackas, Dalius; Miseviciene, Regina

    2016-01-01

    Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate

  6. About chiral models of dense matter and its magnetic properties

    International Nuclear Information System (INIS)

    Kutschera, M.

    1990-12-01

    The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)

  7. Rheology of dense suspensions of non colloidal particles

    OpenAIRE

    Guazzelli , Elisabeth

    2017-01-01

    International audience; Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liq...

  8. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    Science.gov (United States)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  9. Superconducting Thin-Film Interconnects for Cryogenic Photon Detector Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced imaging spectrometers for x-ray astronomy will require significant improvements in the high density interconnects between the detector arrays and the first...

  10. As to achieve regulatory action, regulatory approaches

    International Nuclear Information System (INIS)

    Cid, R.; Encinas, D.

    2014-01-01

    The achievement of the effectiveness in the performance of a nuclear regulatory body has been a permanent challenge in the recent history of nuclear regulation. In the post-Fukushima era this challenge is even more important. This article addresses the subject from two complementary points of view: the characteristics of an effective regulatory body and the regulatory approaches. This work is based on the most recent studies carried out by the Committee on Nuclear Regulatory Activities, CNRA (OECD/NEA), as well as on the experience of the Consejo de Seguridad Nuclear, CSN, the Spanish regulatory body. Rafael Cid is the representative of CSN in these project: Diego Encinas has participated in the study on regulatory approaches. (Author)

  11. The numerical simulation study of hemodynamics of the new dense-mesh stent

    Science.gov (United States)

    Ma, Jiali; Yuan, Zhishan; Yu, Xuebao; Feng, Zhaowei; Miao, Weidong; Xu, Xueli; Li, Juntao

    2017-09-01

    The treatment of aortic aneurysm in new dense mesh stent is based on the principle of hemodynamic changes. But the mechanism is not yet very clear. This paper analyzed and calculated the hemodynamic situation before and after the new dense mesh stent implanting by the method of numerical simulation. The results show the dense mesh stent changed and impacted the blood flow in the aortic aneurysm. The changes include significant decrement of blood velocity, pressure and shear forces, while ensuring blood can supply branches, which means the new dense mesh stent's hemodynamic mechanism in the treatment of aortic aneurysm is clearer. It has very important significance in developing new dense mesh stent in order to cure aortic aneurysm.

  12. Optical Interconnection Via Computer-Generated Holograms

    Science.gov (United States)

    Liu, Hua-Kuang; Zhou, Shaomin

    1995-01-01

    Method of free-space optical interconnection developed for data-processing applications like parallel optical computing, neural-network computing, and switching in optical communication networks. In method, multiple optical connections between multiple sources of light in one array and multiple photodetectors in another array made via computer-generated holograms in electrically addressed spatial light modulators (ESLMs). Offers potential advantages of massive parallelism, high space-bandwidth product, high time-bandwidth product, low power consumption, low cross talk, and low time skew. Also offers advantage of programmability with flexibility of reconfiguration, including variation of strengths of optical connections in real time.

  13. Epidemics on interconnected networks

    Science.gov (United States)

    Dickison, Mark; Havlin, S.; Stanley, H. E.

    2012-06-01

    Populations are seldom completely isolated from their environment. Individuals in a particular geographic or social region may be considered a distinct network due to strong local ties but will also interact with individuals in other networks. We study the susceptible-infected-recovered process on interconnected network systems and find two distinct regimes. In strongly coupled network systems, epidemics occur simultaneously across the entire system at a critical infection strength βc, below which the disease does not spread. In contrast, in weakly coupled network systems, a mixed phase exists below βc of the coupled network system, where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.

  14. Warm dense matter and Thomson scattering at FLASH

    International Nuclear Information System (INIS)

    Faeustlin, Roland Rainer

    2010-05-01

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  15. Warm dense matter and Thomson scattering at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faeustlin, Roland Rainer

    2010-05-15

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  16. A GA-fuzzy automatic generation controller for interconnected power system

    CSIR Research Space (South Africa)

    Boesack, CD

    2011-10-01

    Full Text Available This paper presents a GA-Fuzzy Automatic Generation Controller for large interconnected power systems. The design of Fuzzy Logic Controllers by means of expert knowledge have typically been the traditional design norm, however, this may not yield...

  17. Smart hospitality—Interconnectivity and interoperability towards an ecosystem

    OpenAIRE

    Buhalis, Dimitrios; Leung, Rosanna

    2018-01-01

    The Internet and cloud computing changed the way business operate. Standardised web-based applications simplify data interchange which allow internal applications and business partners systems to become interconnected and interoperable. This study conceptualises the smart and agile hospitality enterprises of the future, and proposes a smart hospitality ecosystem that adds value to all stakeholders. Internal data from applications among all stakeholders, consolidated with external environment ...

  18. The critical thickness of liners of Cu interconnects

    International Nuclear Information System (INIS)

    Jiang, Q; Zhang, S H; Li, J C

    2004-01-01

    A model for the size-dependence of activation energy is developed. With the model and Fick's second law, relationships among the liner thickness, the working life and the working temperature of a TaN liner for Cu interconnects are predicted. The predicted results of the TaN liner are in good agreement with the experimental results. Moreover, the critical thicknesses of liners of some elements are calculated

  19. Synthesis of micro-sized interconnected Si-C composites

    Science.gov (United States)

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0

  20. Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Jason (General Electric, Schenectady, NY); Walling, Reigh (General Electric, Schenectady, NY); Peter, William (SunPower, Richmond, CA); Von Engeln, Edi (NV Energy, Reno, NV); Seymour, Eric (AEI, Fort Collins, CO); Nelson, Robert (Siemens Wind Turbines, Orlando, FL); Casey, Leo (Satcon, Boston, MA); Ellis, Abraham; Barker, Chris. (SunPower, Richmond, CA)

    2012-02-01

    Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

  1. Operational parameters of an opto-electronic neural network employing fixed planar holographic interconnects

    Science.gov (United States)

    Keller, P. E.; Gmitro, A. F.

    1993-07-01

    A prototype neutral network system of multifaceted, planar interconnection holograms and opto-electronic neurons is analyzed. This analysis shows that a hologram fabricated with electron-beam lithography has the capacity to connect 6700 neuron outputs to 6700 neuron inputs, and that, the encoded synaptic weights have a precision of approximately 5 bits. Higher interconnection densities can be achieved by accepting a lower synaptic weight accuracy. For systems employing laser diodes at the outputs of the neurons, processing rates in the range of 45 to 720 trillion connections per second can potentially be achieved.

  2. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Univ. of Tennessee, Knoxville, TN (United States); Gracia, Jose R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadley, Stanton W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  3. Architecture-Level Exploration of Alternative Interconnection Schemes Targeting 3D FPGAs: A Software-Supported Methodology

    Directory of Open Access Journals (Sweden)

    Kostas Siozios

    2008-01-01

    Full Text Available In current reconfigurable architectures, the interconnection structures increasingly contribute more to the delay and power consumption. The demand for increased clock frequencies and logic density (smaller area footprint makes the problem even more important. Three-dimensional (3D architectures are able to alleviate this problem by accommodating a number of functional layers, each of which might be fabricated in different technology. However, the benefits of such integration technology have not been sufficiently explored yet. In this paper, we propose a software-supported methodology for exploring and evaluating alternative interconnection schemes for 3D FPGAs. In order to support the proposed methodology, three new CAD tools were developed (part of the 3D MEANDER Design Framework. During our exploration, we study the impact of vertical interconnection between functional layers in a number of design parameters. More specifically, the average gains in operation frequency, power consumption, and wirelength are 35%, 32%, and 13%, respectively, compared to existing 2D FPGAs with identical logic resources. Also, we achieve higher utilization ratio for the vertical interconnections compared to existing approaches by 8% for designing 3D FPGAs, leading to cheaper and more reliable devices.

  4. Rheology of dense suspensions of non colloidal particles

    OpenAIRE

    Guazzelli Élisabeth

    2017-01-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical co...

  5. Switching Fabric Based on Multi-Level LVDS Compatible Interconnect, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Switching fabric (SF) is the key component of the next generation of back plane interconnects. Low power, TID and SEU resistant and high bandwidth upgradeable...

  6. 75 FR 71613 - Mandatory Reliability Standards for Interconnection Reliability Operating Limits

    Science.gov (United States)

    2010-11-24

    ... Interconnection to relieve overloads on the facilities modeled in the Interchange Distribution Calculator (IDC... for other SOLs. But the Functional Model assigns a much broader role to the reliability coordinator to...

  7. Seismic qualification of multiple interconnected safety-related cabinets in a high seismic zone

    International Nuclear Information System (INIS)

    Khan, M.R.; Chen, W.H.W.; Wang, T.Y.

    1993-01-01

    Certain safety-related multiple, interconnected electrical cabinets and the devices contained therein are required to perform their intended safety functions during and after a design basis seismic event. In general, seismic testing is performed to ensure the structural integrity of the cabinets and the functionality of their associated devices. Constrained by the shake table capacity, seismic testing is usually performed only for a limited number of interconnected cabinets. Also, original shake table tests performed usually did not provide detailed response information at various locations inside the cabinets. For operational and maintenance purposes, doors and panels of some cabinets may need to be opened while the adjacent cabinets are required to remain functional. In addition, in-cabinet response spectra need to be generated for the seismic qualification of new devices and the replacement parts. Consequently, seismic analysis of safety-related multiple, interconnected cabinets is frequently required for configurations which are different from the original tested conditions. This paper presents results of seismic tests of three interconnected safety-related cabinets and finite element analyses performed to compare the analytical results with those obtained from the cabinet seismic tests. Parametric analyses are performed to determine how many panels and doors can be opened while the adjacent cabinets still remain functional. The study indicates that for cabinets located in a high seismic zone, the critical damping of the cabinet is significantly higher than 5% to 7% typically used in qualifying electrical equipment. For devices mounted on the cabinet doors to performed their intended safety function, it requires stiffening of doors and that these doors be properly bolted to the cabinet frame. It also shows that even though doors and panels bolted to the cabinet frame are the primary seismic resistant element of the cabinet, opening of a limited number of them

  8. Dense Descriptors for Optical Flow Estimation: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ahmadreza Baghaie

    2017-02-01

    Full Text Available Estimating the displacements of intensity patterns between sequential frames is a very well-studied problem, which is usually referred to as optical flow estimation. The first assumption among many of the methods in the field is the brightness constancy during movements of pixels between frames. This assumption is proven to be not true in general, and therefore, the use of photometric invariant constraints has been studied in the past. One other solution can be sought by use of structural descriptors rather than pixels for estimating the optical flow. Unlike sparse feature detection/description techniques and since the problem of optical flow estimation tries to find a dense flow field, a dense structural representation of individual pixels and their neighbors is computed and then used for matching and optical flow estimation. Here, a comparative study is carried out by extending the framework of SIFT-flow to include more dense descriptors, and comprehensive comparisons are given. Overall, the work can be considered as a baseline for stimulating more interest in the use of dense descriptors for optical flow estimation.

  9. Production and characterization of SLID interconnected n-in-p pixel modules with 75 micron thin silicon sensors

    CERN Document Server

    Andricek, L; Macchiolo, A; Moser, H.G; Nisius, R; Richter, R.H; Terzo, S; Weigell, P

    2014-01-01

    The performance of pixel modules built from 75 micrometer thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 micrometer thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tuning characteristics, charge collection, cluster sizes and hit efficiencies. T...

  10. Production and Characterisation of SLID Interconnected n-in-p Pixel Modules with 75 Micrometer Thin Silicon Sensors

    CERN Document Server

    Andricek, L; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R.H.; Terzo, S.; Weigell, P.

    2014-01-01

    The performance of pixel modules built from 75 micrometer thin silicon sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion (SLID) interconnection technology is presented. This technology, developed by the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It allows for stacking of different interconnected chip and sensor layers without destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs) this paves the way for vertical integration. Both technologies are combined in a pixel module concept which is the basis for the modules discussed in this paper. Mechanical and electrical parameters of pixel modules employing both SLID interconnections and sensors of 75 micrometer thickness are covered. The mechanical features discussed include the interconnection efficiency, alignment precision and mechanical strength. The electrical properties comprise the leakage currents, tunability, charge collection, cluster sizes and hit efficiencies. Targeting at ...

  11. Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%

    Energy Technology Data Exchange (ETDEWEB)

    Arafat, Yeasir; Dutta, Indranath; Panat, Rahul, E-mail: Rahul.panat@wsu.edu [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99163 (United States)

    2015-08-24

    Metal interconnects in flexible and wearable devices are heterogeneous metal-polymer systems that are expected to sustain large deformation without failure. The principal strategy to make strain tolerant interconnect lines on flexible substrates has comprised of creating serpentine structures of metal films with either in-plane or out-of-plane waves, using porous substrates, or using highly ductile materials such as gold. The wavy and helical serpentine patterns preclude high-density packing of interconnect lines on devices, while ductile materials such as Au are cost prohibitive for real world applications. Ductile copper films can be stretched if bonded to the substrate, but show high level of cracking beyond few tens of % strain. In this paper, we demonstrate a material system consisting of Indium metal film over an elastomer (PDMS) with a discontinuous Cr layer such that the metal interconnect can be stretched to extremely high linear strain (up to 100%) without any visible cracks. Such linear strain in metal interconnects exceeds that reported in literature and is obtained without the use of any geometrical manipulations or porous substrates. Systematic experimentation is carried out to explain the mechanisms that allow the Indium film to sustain the high strain level without failure. The islands forming the discontinuous Cr layer are shown to move apart from each other during stretching without delamination, providing strong adhesion to the Indium film while accommodating the large strain in the system. The Indium film is shown to form surface wrinkles upon release from the large strain, confirming its strong adhesion to PDMS. A model is proposed based upon the observations that can explain the high level of stretch-ability of the Indium metal film over the PDMS substrate.

  12. Efficient modeling of metallic interconnects for thermo-mechanical simulation of SOFC stacks: homogenized behaviors and effect of contact

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kwok, Kawai; Frandsen, Henrik Lund

    2016-01-01

    temperature, deformations involving the elastic, creep as well as effect of changes in the geometry due to contact should be accounted for. The constitutive law can be applied using 3D modeling, but for simple presentation of the theory, 2D plane strain formulation is used to model the corrugated metallic......Currently thermo-mechanical analysis of the entire solid oxide fuel cell (SOFC) stack at operational conditions is computationally challenging if the geometry of metallic interconnects is considered explicitly. This is particularly the case when creep deformations in the interconnect are considered...... model to calculate the homogenized mechanical response of corrugated metallic interconnects at high temperatures.Thereafter, a constitutive law for the homogenized structure (effective material law) is developed. In order to properly describe the mechanical behavior of the interconnect at high...

  13. Distributed Robustness Analysis of Interconnected Uncertain Systems Using Chordal Decomposition

    DEFF Research Database (Denmark)

    Pakazad, Sina Khoshfetrat; Hansson, Anders; Andersen, Martin Skovgaard

    2014-01-01

    Large-scale interconnected uncertain systems commonly have large state and uncertainty dimensions. Aside from the heavy computational cost of performing robust stability analysis in a centralized manner, privacy requirements in the network can also introduce further issues. In this paper, we util...

  14. Area analysis of interconnection networks implemented on the honeycomb architecture

    Energy Technology Data Exchange (ETDEWEB)

    Milutinovic, D

    1996-12-31

    The are utilization of interconnection networks for parallel processing on one form of uniform parallel architecture of cellular type is analyzed. Formulae for the number of cells necessity to realize a networks and the efficiency factor of the system are derived. 15 refs.

  15. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  16. Interconnect patterns for printed organic thermoelectric devices with large fill factors

    Science.gov (United States)

    Gordiz, Kiarash; Menon, Akanksha K.; Yee, Shannon K.

    2017-09-01

    Organic materials can be printed into thermoelectric (TE) devices for low temperature energy harvesting applications. The output voltage of printed devices is often limited by (i) small temperature differences across the active materials attributed to small leg lengths and (ii) the lower Seebeck coefficient of organic materials compared to their inorganic counterparts. To increase the voltage, a large number of p- and n-type leg pairs is required for organic TEs; this, however, results in an increased interconnect resistance, which then limits the device output power. In this work, we discuss practical concepts to address this problem by positioning TE legs in a hexagonal closed-packed layout. This helps achieve higher fill factors (˜91%) than conventional inorganic devices (˜25%), which ultimately results in higher voltages and power densities due to lower interconnect resistances. In addition, wiring the legs following a Hilbert spacing-filling pattern allows for facile load matching to each application. This is made possible by leveraging the fractal nature of the Hilbert interconnect pattern, which results in identical sub-modules. Using the Hilbert design, sub-modules can better accommodate non-uniform temperature distributions because they naturally self-localize. These device design concepts open new avenues for roll-to-roll printing and custom TE module shapes, thereby enabling organic TE modules for self-powered sensors and wearable electronic applications.

  17. Interconnection test framework for the CMS level-1 trigger system

    International Nuclear Information System (INIS)

    Hammer, J.; Magrans de Abril, M.; Wulz, C.E.

    2012-01-01

    The Level-1 Trigger Control and Monitoring System is a software package designed to configure, monitor and test the Level-1 Trigger System of the Compact Muon Solenoid (CMS) experiment at CERN's Large Hadron Collider. It is a large and distributed system that runs over 50 PCs and controls about 200 hardware units. The objective of this paper is to describe and evaluate the architecture of a distributed testing framework - the Interconnection Test Framework (ITF). This generic and highly flexible framework for creating and executing hardware tests within the Level-1 Trigger environment is meant to automate testing of the 13 major subsystems interconnected with more than 1000 links. Features include a web interface to create and execute tests, modeling using finite state machines, dependency management, automatic configuration, and loops. Furthermore, the ITF will replace the existing heterogeneous testing procedures and help reducing both maintenance and complexity of operation tasks. (authors)

  18. Holographic Renormalization in Dense Medium

    International Nuclear Information System (INIS)

    Park, Chanyong

    2014-01-01

    The holographic renormalization of a charged black brane with or without a dilaton field, whose dual field theory describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space

  19. Final Technical Report for Automated Manufacturing of Innovative CPV/PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Okawa, David [Cogenra Solar, Fremont, CA (United States)

    2017-12-15

    Cogenra’s Dense Cell Interconnect system was designed to use traditional front-contact cells and string them together into high efficiency and high reliability “supercells”. This novel stringer allows one to take advantage of the ~100 GW/year of existing cell production capacity and create a solar product for the customer that will produce more power and last longer than traditional PV products. The goal for this program was for Cogenra Solar to design and develop a first-of-kind automated solar manufacturing line that produces strings of overlapping cells or “supercells” based on Cogenra’s Dense Cell Interconnect (DCI) technology for their Low Concentration Photovoltaic (LCPV) systems. This will enable the commercialization of DCI technology to improve the efficiency, reliability and economics for their Low Concentration Photovoltaic systems. In this program, Cogenra Solar very successfully designed, developed, built, installed, and started up the ground-breaking manufacturing tools required to assemble supercells. Cogenra then successfully demonstrated operation of the integrated line at high yield and throughput far exceeding expectations. The development of a supercell production line represents a critical step toward a high volume and low cost Low Concentration Photovoltaic Module with Dense Cell Interconnect technology and has enabled the evaluation of the technology for reliability and yield. Unfortunately, performance and cost headwinds on Low Concentration Photovoltaics systems including lack of diffuse capture (10-15% hit) and more expensive tracker requirements resulted in a move away from LCPV technology. Fortunately, the versatility of Dense Cell Interconnect technology allows for application to flat plate module technology as well and Cogenra has worked with the DOE to utilize the learning from this grant to commercialize DCI technology for the solar market through the on-going grant: Catalyzing PV Manufacturing in the US With Cogenra

  20. Status of the segment interconnect, cable segment ancillary logic, and the cable segment hybrid driver projects

    International Nuclear Information System (INIS)

    Swoboda, C.; Barsotti, E.; Chappa, S.; Downing, R.; Goeransson, G.; Lensy, D.; Moore, G.; Rotolo, C.; Urish, J.

    1985-01-01

    The FASTBUS Segment Interconnect (SI) provides a communication path between two otherwise independent, asynchronous bus segments. In particular, the Segment Interconnect links a backplane crate segment to a cable segment. All standard FASTBUS address and data transactions can be passed through the SI or any number of SIs and segments in a path. Thus systems of arbitrary connection complexity can be formed, allowing simultaneous independent processing, yet still permitting devices associated with one segment to be accessed from others. The model S1 Segment Interconnect and the Cable Segment Ancillary Logic covered in this report comply with all the mandatory features stated in the FASTBUS specification document DOE/ER-0189. A block diagram of the SI is shown