WorldWideScience

Sample records for densely interconnected regulatory

  1. Detection of the dominant direction of information flow and feedback links in densely interconnected regulatory networks

    Directory of Open Access Journals (Sweden)

    Ispolatov Iaroslav

    2008-10-01

    Full Text Available Abstract Background Finding the dominant direction of flow of information in densely interconnected regulatory or signaling networks is required in many applications in computational biology and neuroscience. This is achieved by first identifying and removing links which close up feedback loops in the original network and hierarchically arranging nodes in the remaining network. In mathematical language this corresponds to a problem of making a graph acyclic by removing as few links as possible and thus altering the original graph in the least possible way. The exact solution of this problem requires enumeration of all cycles and combinations of removed links, which, as an NP-hard problem, is computationally prohibitive even for modest-size networks. Results We introduce and compare two approximate numerical algorithms for solving this problem: the probabilistic one based on a simulated annealing of the hierarchical layout of the network which minimizes the number of "backward" links going from lower to higher hierarchical levels, and the deterministic, "greedy" algorithm that sequentially cuts the links that participate in the largest number of feedback cycles. We find that the annealing algorithm outperforms the deterministic one in terms of speed, memory requirement, and the actual number of removed links. To further improve a visual perception of the layout produced by the annealing algorithm, we perform an additional minimization of the length of hierarchical links while keeping the number of anti-hierarchical links at their minimum. The annealing algorithm is then tested on several examples of regulatory and signaling networks/pathways operating in human cells. Conclusion The proposed annealing algorithm is powerful enough to performs often optimal layouts of protein networks in whole organisms, consisting of around ~104 nodes and ~105 links, while the applicability of the greedy algorithm is limited to individual pathways with ~100

  2. Regulatory Issues Surrounding Merchant Interconnection

    International Nuclear Information System (INIS)

    Kuijlaars, Kees-Jan; Zwart, Gijsbert

    2003-11-01

    We discussed various issues concerning the regulatory perspective on private investment in interconnectors. One might claim that leaving investment in transmission infrastructure to competing market parties is more efficient than relying on regulated investment only (especially in the case of long (DC) lines connecting previously unconnected parts of the grids, so that externalities from e.g. loop flows do not play a significant role). We considered that some aspects of interconnection might reduce these market benefits. In particular, the large fixed costs of interconnection construction may lead to significant under investment (due to both first mover monopoly power and the fact that part of generation cost efficiencies realised by interconnection are not captured by the investor itself, and remain external to the investment decision). Second, merchant ownership restricts future opportunities for adaptation of regulation, as would be required e.g. for introduction of potentially more sophisticated methods of congestion management or market splitting. Some of the disadvantages of merchant investment may be mitigated however by a suitable regulatory framework, and we discussed some views in this direction. The issues we discussed are not intended to give a complete framework, and detailed regulation will certainly involve many more specific requirements. Areas we did not touch upon include e.g. the treatment of deep connection costs, rules for operation and maintenance of the line, and impact on availability of capacity on other interconnections

  3. Regulatory Issues Surrounding Merchant Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Kuijlaars, Kees-Jan; Zwart, Gijsbert [Office for Energy Regulation (DTe), The Hague (Netherlands)

    2003-11-01

    We discussed various issues concerning the regulatory perspective on private investment in interconnectors. One might claim that leaving investment in transmission infrastructure to competing market parties is more efficient than relying on regulated investment only (especially in the case of long (DC) lines connecting previously unconnected parts of the grids, so that externalities from e.g. loop flows do not play a significant role). We considered that some aspects of interconnection might reduce these market benefits. In particular, the large fixed costs of interconnection construction may lead to significant under investment (due to both first mover monopoly power and the fact that part of generation cost efficiencies realised by interconnection are not captured by the investor itself, and remain external to the investment decision). Second, merchant ownership restricts future opportunities for adaptation of regulation, as would be required e.g. for introduction of potentially more sophisticated methods of congestion management or market splitting. Some of the disadvantages of merchant investment may be mitigated however by a suitable regulatory framework, and we discussed some views in this direction. The issues we discussed are not intended to give a complete framework, and detailed regulation will certainly involve many more specific requirements. Areas we did not touch upon include e.g. the treatment of deep connection costs, rules for operation and maintenance of the line, and impact on availability of capacity on other interconnections.

  4. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    Science.gov (United States)

    Siaw, Fei-Lu

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%. PMID:24453823

  5. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Fei-Lu Siaw

    2013-01-01

    Full Text Available This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells’ voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  6. A systematic method of interconnection optimization for dense-array concentrator photovoltaic system.

    Science.gov (United States)

    Siaw, Fei-Lu; Chong, Kok-Keong

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  7. Stabilized copper plating method by programmed electroplated current: Accumulation of densely packed copper grains in the interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Li-Chi; Hsu, Li-Hsuan; Brahma, Sanjaya; Huang, Bo-Chia; Liu, Chun-Chu; Lo, Kuang-Yao, E-mail: kuanglo@mail.ncku.edu.tw

    2016-12-01

    Highlights: • Actual Cu interconnect experiences many times of annealing and then cause the stress. • Stack Cu grains with varying grain size successively to enhance packed density. • XRD and PBR analyze the residual stress of local and average area of plated Cu film. • High packed Cu grain with stable stress proved by texture of Cu(1 1 1) and Cu(2 0 0). - Abstract: In this work, we programmed the plating current to stack the different size of copper (Cu) grain and analyzed the relation between the sequence of different Cu grain size and the stability of the residual stress. The residual stress was measured with varying times of annealing process in order to reach the purpose of simulating the actual Cu interconnect process. We found that varied plating strategy will make different stabilization condition of residual stress through the proof of X-ray diffraction (XRD) and optical parallel beams reflection (PBR) method. The accumulation of Cu grains, formed by Cu grain with successive variation in grain size, would enhance the packing density better than only single grain size in the finite space. The high density of the grain boundary in the electroplated Cu film will be eliminated through annealing process and it will help to suppress the void formation in further interconnect process. The electroplated Cu film with the plating current of saw tooth wave can soon reach a stable tensile stress through annealing since the Cu grains with high packing density will be quickly eliminated to approach the minimum of the strain energy which reflects to variation in the texture of Cu (2 0 0). The result of this work illustrates the importance of how to stack different size of Cu grain, for achieving a densely packed Cu film which close to the Cu bulk.

  8. Barriers and drivers of new interconnections between EU and non-EU electricity systems. Economic and regulatory aspects

    International Nuclear Information System (INIS)

    Van Werven, M.J.N.; Van Oostvoorn, F.

    2006-05-01

    Interconnection of different electricity systems offers several advantages and benefits. In the first place it provides reliability and increases the robustness of the system. Furthermore, it increases economic efficiency and reduces the possibility to abuse market power. Price differences are the signal that efficiency gains can be obtained. To make a sound decision whether to invest in new interconnection capacity, the causes behind the price differences should be well understood. Price differences must originate from structural, long-term causes. Differences in primary resources, fuel mix and load patterns are such causes. It is important to note that price differences that result from the difference between regulatory structures (lack of level playing field) may not be structural and therefore may not justify investment in interconnection capacity. Next to advantages and benefits, interconnection is faced with costs and barriers. Firstly, there are investment costs, which are high for building new interconnections, and there are energy losses that are caused by transporting electricity. A third possible barrier is congestion within the EU, which impedes the imported electricity to freely flow to demand areas (and hinders the export of electricity to neighbouring regions). Furthermore, interconnection may create loop flows. In addition, interconnection could lead to an increasing import dependency, which may create political resistance. And finally, there may be opposition from residents in the areas where the transmission and interconnection lines have to be built. Concerning regulatory issues, trade between markets is more likely to be impeded or distorted if market designs and rules between countries/regions differ substantially. Regulatory issues that are of relevance comprise rules concerning the timing of gate closure, imbalance arrangements, the firmness of transmission access rights, the type of tariff regulation, unbundling, the ownership of

  9. Interconnection Guidelines

    Science.gov (United States)

    The Interconnection Guidelines provide general guidance on the steps involved with connecting biogas recovery systems to the utility electrical power grid. Interconnection best practices including time and cost estimates are discussed.

  10. Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise.

    Science.gov (United States)

    Thirupathi, Anand; de Souza, Claudio Teodoro

    2017-11-01

    Transcriptional factors are easily susceptible to any stimuli, including exercise. Exercise can significantly influence PGC-1 α and AMPK-SIRT1 pathway, as it is involved in the regulation of energy metabolism and mitochondrial biogenesis. Exercise is a major energy deprivation process by which many of transcription factors get tuned positively. However, how transcription factors help to boost the antioxidant defense system at cellular level is elusive. It is well known that physical exercise can induce reactive oxygen species, but how these reactive oxygen species can help to regulate multiple transcription factors during exercise is an important area to be discussed yet. This review mainly focuses on interconnecting role of PGC-1 α and AMPK-SIRT1 pathway during exercise and how these proteins are getting tuned by reactive oxygen species in exercise condition.

  11. Transurban interconnectivities

    DEFF Research Database (Denmark)

    Jørgensen, Claus Møller

    2012-01-01

    This essay discusses the interpretation of the revolutionary situations of 1848 in light of recent debates on interconnectivity in history. The concept of transurban interconnectivities is proposed as the most precise concept to capture the nature of interconnectivity in 1848. It is argued....... It is argued that circulating political communication accounts for similarities with respect to political agenda, organisational form and political repertoire evident in urban settings across Europe. This argument is supported by a series of examples of local organisation and local appropriations of liberalism...

  12. Optical interconnects

    CERN Document Server

    Chen, Ray T

    2006-01-01

    This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical

  13. 18 CFR 292.306 - Interconnection costs.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any electric...

  14. Interconnected networks

    CERN Document Server

    2016-01-01

    This volume provides an introduction to and overview of the emerging field of interconnected networks which include multi layer or multiplex networks, as well as networks of networks. Such networks present structural and dynamical features quite different from those observed in isolated networks. The presence of links between different networks or layers of a network typically alters the way such interconnected networks behave – understanding the role of interconnecting links is therefore a crucial step towards a more accurate description of real-world systems. While examples of such dissimilar properties are becoming more abundant – for example regarding diffusion, robustness and competition – the root of such differences remains to be elucidated. Each chapter in this topical collection is self-contained and can be read on its own, thus making it also suitable as reference for experienced researchers wishing to focus on a particular topic.

  15. Interconnectivity: Benefits and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Access to affordable and reliable electricity supplies is a basic prerequisite for economic and social development, prosperity, health, education and all other aspects of modern society. Electricity can be generated both near and far from the consumption areas as transmission lines, grid interconnections and distribution systems can transport it to the final consumer. In the vast majority of countries, the electricity sector used to be owned and run by the state. The wave of privatisation and market introduction in a number of countries and regions which started in the late 1980's has in many cases involved unbundling of generation from transmission and distribution (T and D). This has nearly everywhere exposed transmission bottlenecks limiting the development of well-functioning markets. Transmission on average accounts for about 10-15% of total final kWh cost paid by the end-user but it is becoming a key issue for effective operation of liberalised markets and for their further development. An integrated and adequate transmission infrastructure is of utmost importance for ensuring the delivery of the most competitively priced electricity, including externalities, to customers, both near and far from the power generating facilities. In this report, the role of interconnectivity in the development of energy systems is examined with the associated socio-economic, environmental, financial and regulatory aspects that must be taken into account for successful interconnection projects.

  16. Manufacturing of planar ceramic interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  17. 76 FR 16405 - Notice of Attendance at PJM INterconnection, L.L.C., Meetings

    Science.gov (United States)

    2011-03-23

    ... INterconnection, L.L.C., Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C., (PJM...: Docket No. EL05-121, PJM Interconnection, L.L.C. Docket No. ER06-456, PJM Interconnection, L.L.C. Docket...

  18. Regulate or deregulate. Influencing network interconnection charges

    Energy Technology Data Exchange (ETDEWEB)

    Van De Wielle, B.

    2003-06-01

    We study the choice between regulating interconnection charges or delegating their determination to the operators, both in a non-mature and a mature market. Three regulatory regimes are considered: full, cost-based and bill-and-keep. Delegation corresponds to bargaining about the interconnection charges using the regulatory schemes as disagreement outcomes. Applying regulation benefits the consumers. Under full regulation, access charges account for asymmetries and allow a unique Ramsey price. Delegation benefits the operators. In a mature market delegation robs the government of any market influence. In a non-mature market government preferences coincide with those of the largest operator and are disadvantageous for entry.

  19. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  20. High-density hybrid interconnect methodologies

    International Nuclear Information System (INIS)

    John, J.; Zimmermann, L.; Moor, P.De; Hoof, C.Van

    2003-01-01

    Full text: The presentation gives an overview of the state-of-the-art of hybrid integration and in particular the IMEC technological approaches that will be able to address future hybrid detector needs. The dense hybrid flip-chip integration of an array of detectors and its dedicated readout electronics can be achieved with a variety of solderbump techniques such as pure Indium or Indium alloys, Ph-In, Ni/PbSn, but also conducting polymers... Particularly for cooled applications or ultra-high density applications, Indium solderbump technology (electroplated or evaporated) is the method of choice. The state-of-the-art of solderbump technologies that are to a high degree independent of the underlying detector material will be presented and examples of interconnect densities between 5x1E4cm-2 and 1x1E6 cm-2 will be demonstrated. For several classes of detectors, flip-chip integration is not allowed since the detectors have to be illuminated from the top. This applies to image sensors for EUV applications such as GaN/AlGaN based detectors and to MEMS-based sensors. In such cases, the only viable interconnection method has to be through the (thinned) detector wafer followed by a solderbump-based integration. The approaches for dense and ultra-dense through-the-wafer interconnect 'vias' will be presented and wafer thinning approaches will be shown

  1. Brookhaven segment interconnect

    International Nuclear Information System (INIS)

    Morse, W.M.; Benenson, G.; Leipuner, L.B.

    1983-01-01

    We have performed a high energy physics experiment using a multisegment Brookhaven FASTBUS system. The system was composed of three crate segments and two cable segments. We discuss the segment interconnect module which permits communication between the various segments

  2. 78 FR 19259 - Notice of Attendance at PJM Interconnection, L.L.C. Meetings

    Science.gov (United States)

    2013-03-29

    ... Interconnection, L.L.C. Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C. (PJM... proceedings: Docket No. EL05-121, PJM Interconnection, L.L.C. Docket No. EL08-14, Black Oak Energy LLC, et al...

  3. Benefits of transmission interconnections

    International Nuclear Information System (INIS)

    Lyons, D.

    2006-01-01

    The benefits of new power transmission interconnections from Alberta were discussed with reference to the challenges and measures needed to move forward. Alberta's electricity system has had a long period of sustained growth in generation and demand and this trend is expected to continue. However, no new interconnections have been built since 1985 because the transmission network has not expanded in consequence with the growth in demand. As such, Alberta remains weakly interconnected with the rest of the western region. The benefits of stronger transmission interconnections include improved reliability, long-term generation capability, hydrothermal synergies, a more competitive market, system efficiencies and fuel diversity. It was noted that the more difficult challenges are not technical. Rather, the difficult challenges lie in finding an appropriate business model that recognizes different market structures. It was emphasized that additional interconnections are worthwhile and will require significant collaboration among market participants and governments. It was concluded that interties enable resource optimization between systems and their benefits far exceed their costs. tabs., figs

  4. Low power interconnect design

    CERN Document Server

    Saini, Sandeep

    2015-01-01

    This book provides practical solutions for delay and power reduction for on-chip interconnects and buses.  It provides an in depth description of the problem of signal delay and extra power consumption, possible solutions for delay and glitch removal, while considering the power reduction of the total system.  Coverage focuses on use of the Schmitt Trigger as an alternative approach to buffer insertion for delay and power reduction in VLSI interconnects. In the last section of the book, various bus coding techniques are discussed to minimize delay and power in address and data buses.   ·         Provides practical solutions for delay and power reduction for on-chip interconnects and buses; ·         Focuses on Deep Sub micron technology devices and interconnects; ·         Offers in depth analysis of delay, including details regarding crosstalk and parasitics;  ·         Describes use of the Schmitt Trigger as a versatile alternative approach to buffer insertion for del...

  5. Interconnecting with VIPs

    Science.gov (United States)

    Collins, Robert

    2013-01-01

    Interconnectedness changes lives. It can even save lives. Recently the author got to witness and be part of something in his role as a teacher of primary science that has changed lives: it may even have saved lives. It involved primary science teaching--and the climate. Robert Collins describes how it is all interconnected. The "Toilet…

  6. CAISSON: Interconnect Network Simulator

    Science.gov (United States)

    Springer, Paul L.

    2006-01-01

    Cray response to HPCS initiative. Model future petaflop computer interconnect. Parallel discrete event simulation techniques for large scale network simulation. Built on WarpIV engine. Run on laptop and Altix 3000. Can be sized up to 1000 simulated nodes per host node. Good parallel scaling characteristics. Flexible: multiple injectors, arbitration strategies, queue iterators, network topologies.

  7. Photovoltaic sub-cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne

    2017-05-09

    Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.

  8. Electromagnetism and interconnections

    CERN Document Server

    Charruau, S

    2009-01-01

    This book covers the theoretical problems of modeling electrical behavior of the interconnections encountered in everyday electronic products. The coverage shows the theoretical tools of waveform prediction at work in the design of a complex and high-speed digital electronic system. Scientists, research engineers, and postgraduate students interested in electromagnetism, microwave theory, electrical engineering, or the development of simulation tools software for high speed electronic system design automation will find this book an illuminating resource.

  9. Interconnection of Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Emerson [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-19

    This is a presentation on interconnection of distributed energy resources, including the relationships between different aspects of interconnection, best practices and lessons learned from different areas of the U.S., and an update on technical advances and standards for interconnection.

  10. Interconnection policy: a theoretical survey

    Directory of Open Access Journals (Sweden)

    César Mattos

    2003-01-01

    Full Text Available This article surveys the theoretical foundations of interconnection policy. The requirement of an interconnection policy should not be taken for granted in all circumstances, even considering the issue of network externalities. On the other hand, when it is required, an encompassing interconnection policy is usually justified. We provide an overview of the theory on interconnection pricing that results in several different prescriptions depending on which problem the regulator aims to address. We also present a survey on the literature on two-way interconnection.

  11. Optoelectronic interconnects for 3D wafer stacks

    Science.gov (United States)

    Ludwig, David; Carson, John C.; Lome, Louis S.

    1996-01-01

    Wafer and chip stacking are envisioned as means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper will provide definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies will be discussed.

  12. LHC beampipe interconnection

    CERN Document Server

    Particle beams circulate for around 10 hours in the Large Hadron Collider (LHC). During this time, the particles make four hundred million revolutions of the machine, travelling a distance equivalent to the diameter of the solar system. The beams must travel in a pipe which is emptied of air, to avoid collisions between the particles and air molecules (which are considerably bigger than protons). The beam pipes are pumped down to an air pressure similar to that on the surface of the moon. Much of the LHC runs at 1.9 degrees above absolute zero. When material is cooled, it contracts. The interconnections must absorb this contraction whilst maintaining electrical connectivity.

  13. Fuel cell system with interconnect

    Science.gov (United States)

    Goettler, Richard; Liu, Zhien

    2017-12-12

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  14. Policy issues in interconnecting networks

    Science.gov (United States)

    Leiner, Barry M.

    1989-01-01

    To support the activities of the Federal Research Coordinating Committee (FRICC) in creating an interconnected set of networks to serve the research community, two workshops were held to address the technical support of policy issues that arise when interconnecting such networks. The workshops addressed the required and feasible technologies and architectures that could be used to satisfy the desired policies for interconnection. The results of the workshop are documented.

  15. Epidemics on interconnected networks

    Science.gov (United States)

    Dickison, Mark; Havlin, S.; Stanley, H. E.

    2012-06-01

    Populations are seldom completely isolated from their environment. Individuals in a particular geographic or social region may be considered a distinct network due to strong local ties but will also interact with individuals in other networks. We study the susceptible-infected-recovered process on interconnected network systems and find two distinct regimes. In strongly coupled network systems, epidemics occur simultaneously across the entire system at a critical infection strength βc, below which the disease does not spread. In contrast, in weakly coupled network systems, a mixed phase exists below βc of the coupled network system, where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.

  16. 77 FR 10505 - Notice of Attendance at PJM Interconnection, L.L.C. Meetings

    Science.gov (United States)

    2012-02-22

    ... Interconnection, L.L.C. Meetings The Federal Energy Regulatory Commission (Commission) hereby gives notice that members of the Commission and Commission staff may attend upcoming PJM Interconnection, L.L.C. (PJM..., PJM Interconnection, L.L.C. Docket Nos. ER06-456, ER06-880, ER06-954, ER06-1271, EL07-57, ER07-424...

  17. 76 FR 42534 - Mandatory Reliability Standards for Interconnection Reliability Operating Limits; System...

    Science.gov (United States)

    2011-07-19

    ... Reliability Operating Limits; System Restoration Reliability Standards AGENCY: Federal Energy Regulatory... data necessary to analyze and monitor Interconnection Reliability Operating Limits (IROL) within its... Interconnection Reliability Operating Limits, Order No. 748, 134 FERC ] 61,213 (2011). \\2\\ The term ``Wide-Area...

  18. Location constrained resource interconnection

    International Nuclear Information System (INIS)

    Hawkins, D.

    2008-01-01

    This presentation discussed issues related to wind integration from the perspective of the California Independent System Operator (ISO). Issues related to transmission, reliability, and forecasting were reviewed. Renewable energy sources currently used by the ISO were listed, and details of a new transmission financing plan designed to address the location constraints of renewable energy sources and provide for new transmission infrastructure was presented. The financing mechanism will be financed by participating transmission owners through revenue requirements. New transmission interconnections will include network facilities and generator tie-lines. Tariff revisions have also been implemented to recover the costs of new facilities and generators. The new transmission project will permit wholesale transmission access to areas where there are significant energy resources that are not transportable. A rate impact cap of 15 per cent will be imposed on transmission owners to mitigate short-term costs to ratepayers. The presentation also outlined energy resource area designation plans, renewable energy forecasts, and new wind technologies. Ramping issues were also discussed. It was concluded that the ISO expects to ensure that 20 per cent of its energy will be derived from renewable energy sources. tabs., figs

  19. Area array interconnection handbook

    CERN Document Server

    Totta, Paul A

    2012-01-01

    Microelectronic packaging has been recognized as an important "enabler" for the solid­ state revolution in electronics which we have witnessed in the last third of the twentieth century. Packaging has provided the necessary external wiring and interconnection capability for transistors and integrated circuits while they have gone through their own spectacular revolution from discrete device to gigascale integration. At IBM we are proud to have created the initial, simple concept of flip chip with solder bump connections at a time when a better way was needed to boost the reliability and improve the manufacturability of semiconductors. The basic design which was chosen for SLT (Solid Logic Technology) in the 1960s was easily extended to integrated circuits in the '70s and VLSI in the '80s and '90s. Three I/O bumps have grown to 3000 with even more anticipated for the future. The package families have evolved from thick-film (SLT) to thin-film (metallized ceramic) to co-fired multi-layer ceramic. A later famil...

  20. New organization scheme for the energy supply in the not interconnected zones of Colombia

    International Nuclear Information System (INIS)

    Zapata, Josue; Bayona Lugdy

    2001-01-01

    The paper shows a new scheme of solutions in the financial institutional environment and regulatory, in this sense it thinks about the creation from a support unit to the rural energy administration that takes charge of to identify energy solutions and the technical and organizational support of the service of a foundation that manage the obtained resources and a interconnected scheme to the current conditions of the NIZ. In Colombia the not interconnected zones NIZ corresponds those of the country that don't receive electric power service through the national interconnected system, and who interconnection is not economically feasible

  1. Interconnecting heterogeneous database management systems

    Science.gov (United States)

    Gligor, V. D.; Luckenbaugh, G. L.

    1984-01-01

    It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.

  2. Universal Interconnection Technology Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Sheaffer, P.; Lemar, P.; Honton, E. J.; Kime, E.; Friedman, N. R.; Kroposki, B.; Galdo, J.

    2002-10-01

    The Universal Interconnection Technology (UIT) Workshop - sponsored by the U.S. Department of Energy, Distributed Energy and Electric Reliability (DEER) Program, and Distribution and Interconnection R&D - was held July 25-26, 2002, in Chicago, Ill., to: (1) Examine the need for a modular universal interconnection technology; (2) Identify UIT functional and technical requirements; (3) Assess the feasibility of and potential roadblocks to UIT; (4) Create an action plan for UIT development. These proceedings begin with an overview of the workshop. The body of the proceedings provides a series of industry representative-prepared papers on UIT functions and features, present interconnection technology, approaches to modularization and expandability, and technical issues in UIT development as well as detailed summaries of group discussions. Presentations, a list of participants, a copy of the agenda, and contact information are provided in the appendices of this document.

  3. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs

  4. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  5. Generation adequacy and transmission interconnection in regional electricity markets

    International Nuclear Information System (INIS)

    Cepeda, Mauricio; Saguan, Marcelo; Finon, Dominique; Pignon, Virginie

    2009-01-01

    The power system capacity adequacy has public good features that cannot be entirely solved by electricity markets. Regulatory intervention is then necessary and established methods have been used to assess adequacy and help regulators to fix this market failure. In regional electricity markets, transmission interconnections play an important role in contributing to adequacy. However, the adequacy problem and related policy are typically considered at a national level. This paper presents a simple model to study how the interconnection capacity interacts with generation adequacy. First results indicate that increasing interconnection capacity between systems improves adequacy up to a certain level; further increases do not procure additional adequacy improvements. Furthermore, besides adequacy improvement, increasing transmission capacity under asymmetric adequacy criteria or national system characteristics could create several concerns about externalities. These results imply that regional coordination of national adequacy policies is essential to internalise adequacy of cross-border effects.

  6. Misalignment corrections in optical interconnects

    Science.gov (United States)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or

  7. National Offshore Wind Energy Grid Interconnection Study

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  8. Quantum dense key distribution

    International Nuclear Information System (INIS)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2004-01-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility

  9. A metallic buried interconnect process for through-wafer interconnection

    International Nuclear Information System (INIS)

    Ji, Chang-Hyeon; Herrault, Florian; Allen, Mark G

    2008-01-01

    In this paper, we present the design, fabrication process and experimental results of electroplated metal interconnects buried at the bottom of deep silicon trenches with vertical sidewalls. A manual spray-coating process along with a unique trench-formation process has been developed for the electroplating of a metal interconnection structure at the bottom surface of the deep trenches. The silicon etch process combines the isotropic dry etch process and conventional Bosch process to fabricate a deep trench with angled top-side edges and vertical sidewalls. The resulting trench structure, in contrast to the trenches fabricated by wet anisotropic etching, enables spray-coated photoresist patterning with good sidewall and top-side edge coverage while maintaining the ability to form a high-density array of deep trenches without excessive widening of the trench opening. A photoresist spray-coating process was developed and optimized for the formation of electroplating mold at the bottom of 300 µm deep trenches having vertical sidewalls. A diluted positive tone photoresist with relatively high solid content and multiple coating with baking between coating steps has been experimentally proven to provide high quality sidewall and edge coverage. To validate the buried interconnect approach, a three-dimensional daisy chain structure having a buried interconnect as the bottom connector and traces on the wafer surface as the top conductor has been designed and fabricated

  10. Cellular structures with interconnected microchannels

    Science.gov (United States)

    Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian

    2018-01-30

    A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to melt infiltration.

  11. Fusion-bonded fluidic interconnects

    NARCIS (Netherlands)

    Fazal, I.; Elwenspoek, Michael Curt

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are

  12. Nanophotonic Devices for Optical Interconnect

    DEFF Research Database (Denmark)

    Van Thourhout, D.; Spuesens, T.; Selvaraja, S.K.

    2010-01-01

    We review recent progress in nanophotonic devices for compact optical interconnect networks. We focus on microdisk-laser-based transmitters and discuss improved design and advanced functionality including all-optical wavelength conversion and flip-flops. Next we discuss the fabrication uniformity...... of the passive routing circuits and their thermal tuning. Finally, we discuss the performance of a wavelength selective detector....

  13. Local Network Wideband Interconnection Alternatives.

    Science.gov (United States)

    1984-01-01

    signal. 3.2.2 Limitations Although satellites offer the advantages of insensitivity to distance, point-to-multipoint communication capability and...Russell, the CATV franchisee for the town of Bedford, has not yit set rates for leasing channels on their network. If this network were interconnected

  14. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Hans Martin

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observ...

  15. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    International Nuclear Information System (INIS)

    Sabourin, D; Snakenborg, D; Dufva, M

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observation. The interconnection block method is scalable, flexible and supports high interconnection density. The average pressure limit of the interconnection block was near 5.5 bar and all individual results were well above the 2 bar threshold considered applicable to most microfluidic applications

  16. Assessment of on-farm anaerobic digester grid interconnections

    International Nuclear Information System (INIS)

    Ruhnke, W.

    2006-01-01

    While several anaerobic digestion (AD) pilot plants have recently been built in Canada, early reports suggest that interconnection barriers are delaying their widescale implementation. This paper examined grid interconnection experiences from the perspectives of farmers, local distributing companies (LDCs) and other stakeholders. The aim of the paper was to identify challenges to the implementation of AD systems. Case studies included an Ontario Dairy Herd AD system generating 50 kW; a Saskatchewan hog farm AD system generating 120 kW and an Alberta outdoor beef feedlot AD system generating 1000 kW. Two survey forms were created for project operators, and LDCs. The following 3 category barriers were identified: (1) technical concerns over islanding conditions, power quality requirements, power flow studies and other engineering analyses; (2) business practices barriers such as a lack of response after initial utility contact; and (3) regulatory barriers including the unavailability of fair buy-back rates, the lack of net metering programs, restrictive net metering programs, and pricing issues. It was suggested that collaborative efforts among all stakeholders are needed to resolve barriers quickly. Recommendations included the adoption of uniform technical standards for connecting generators to the grid, as well as adopting standard commercial practices for any required LDC interconnection review. It was also suggested that standard business terms for interconnection agreements should be established. Regulatory principles should be compatible with distributed power choices in regulated and unregulated markets. It was concluded that resolving interconnection barriers is a critical step towards realizing market opportunities available for AD technologies. refs., tabs., figs

  17. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  18. Is dense codeswitching complex?

    NARCIS (Netherlands)

    Dorleijn, M.

    In this paper the question is raised to what extent dense code switching can be considered complex. Psycholinguistic experiments indicate that code switching involves cognitive costs, both in production and comprehension, a conclusion that could indicate that code switching is indeed complex. In

  19. Simulation of dense colloids

    NARCIS (Netherlands)

    Herrmann, H.J.; Harting, J.D.R.; Hecht, M.; Ben-Naim, E.

    2008-01-01

    We present in this proceeding recent large scale simulations of dense colloids. On one hand we simulate model clay consisting of nanometric aluminum oxide spheres in water using realistic DLVO potentials and a combination of MD and SRD. We find pronounced cluster formation and retrieve the shear

  20. 47 CFR 90.477 - Interconnected systems.

    Science.gov (United States)

    2010-10-01

    ... part and medical emergency systems in the 450-470 MHz band, interconnection will be permitted only... operating on frequencies in the bands below 800 MHz are not subject to the interconnection provisions of...

  1. Fusion-bonded fluidic interconnects

    International Nuclear Information System (INIS)

    Fazal, I; Elwenspoek, M C

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are discussed in terms of the homogeneity and strength of fusion bond. High pressure testing shows that the bond strength is large enough for most applications of fluidic interconnects. The bond strength for 525 µm thick silicon, with glass tubes having an outer diameter of 6 mm and with a wall thickness of 2 mm, is more than 60 bars after annealing at a temperature of 800 °C

  2. System interconnection studies using WASP

    Energy Technology Data Exchange (ETDEWEB)

    Bayrak, Y [Turkish Electricity Generation and Transmission Corp., Ankara (Turkey)

    1997-09-01

    The aim of this paper is to describe the application of WASP as a modelling tool for determining the development of two electric systems with interconnections. A case study has been carried out to determine the possibilities of transfer of baseload energy between Turkey and a neighboring country. The objective of this case study is to determine the amount of energy that can be transferred, variations of Loss Probability (LOLP) and unserved energy, and the cost of additional generation with interconnection. The break-even cost will be determined to obtain the minimum charge rate at which TEAS (Turkish Electricity Generation-Transmission Corp.) needs to sell the energy in order to recover the costs. The minimum charge rate for both capacity and energy will be estimated without considering extra capacity additions, except for the ones needed by the Turkish system alone. (author). 2 figs, 3 tabs.

  3. Multilevel Dual Damascene copper interconnections

    Science.gov (United States)

    Lakshminarayanan, S.

    Copper has been acknowledged as the interconnect material for future generations of ICs to overcome the bottlenecks on speed and reliability present with the current Al based wiring. A new set of challenges brought to the forefront when copper replaces aluminum, have to be met and resolved to make it a viable option. Unit step processes related to copper technology have been under development for the last few years. In this work, the application of copper as the interconnect material in multilevel structures with SiO2 as the interlevel dielectric has been explored, with emphasis on integration issues and complete process realization. Interconnect definition was achieved by the Dual Damascene approach using chemical mechanical polishing of oxide and copper. The choice of materials used as adhesion promoter/diffusion barrier included Ti, Ta and CVD TiN. Two different polish chemistries (NH4OH or HNO3 based) were used to form the interconnects. The diffusion barrier was removed during polishing (in the case of TiN) or by a post CMP etch (as with Ti or Ta). Copper surface passivation was performed using boron implantation and PECVD nitride encapsulation. The interlevel dielectric way composed of a multilayer stack of PECVD SiO2 and SixNy. A baseline process sequence which ensured the mechanical and thermal compatibility of the different unit steps was first created. A comprehensive test vehicle was designed and test structures were fabricated using the process flow developed. Suitable modifications were subsequently introduced in the sequence as and when processing problems were encountered. Electrical characterization was performed on the fabricated devices, interconnects, contacts and vias. The structures were subjected to thermal stressing to assess their stability and performance. The measurement of interconnect sheet resistances revealed lower copper loss due to dishing on samples polished using HNO3 based slurry. Interconnect resistances remained stable upto 400o

  4. Comparing Germany's and California's Interconnection Processes for PV Systems (White Paper)

    Energy Technology Data Exchange (ETDEWEB)

    Tweedie, A.; Doris, E.

    2011-07-01

    Establishing interconnection to the grid is a recognized barrier to the deployment of distributed energy generation. This report compares interconnection processes for photovoltaic projects in California and Germany. This report summarizes the steps of the interconnection process for developers and utilities, the average length of time utilities take to process applications, and paperwork required of project developers. Based on a review of the available literature, this report finds that while the interconnection procedures and timelines are similar in California and Germany, differences in the legal and regulatory frameworks are substantial.

  5. Driving Interconnected Networks to Supercriticality

    Directory of Open Access Journals (Sweden)

    Filippo Radicchi

    2014-04-01

    Full Text Available Networks in the real world do not exist as isolated entities, but they are often part of more complicated structures composed of many interconnected network layers. Recent studies have shown that such mutual dependence makes real networked systems potentially exposed to atypical structural and dynamical behaviors, and thus there is an urgent necessity to better understand the mechanisms at the basis of these anomalies. Previous research has mainly focused on the emergence of atypical properties in relation to the moments of the intra- and interlayer degree distributions. In this paper, we show that an additional ingredient plays a fundamental role for the possible scenario that an interconnected network can face: the correlation between intra- and interlayer degrees. For sufficiently high amounts of correlation, an interconnected network can be tuned, by varying the moments of the intra- and interlayer degree distributions, in distinct topological and dynamical regimes. When instead the correlation between intra- and interlayer degrees is lower than a critical value, the system enters in a supercritical regime where dynamical and topological phases are no longer distinguishable.

  6. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1987-01-01

    This paper covers some aspects of the theory of atomic processes in dense plasmas. Because the topic is very broad, a few general rules which give useful guidance about the typical behavior of dense plasmas have been selected. These rules are illustrated by semiclassical estimates, scaling laws and appeals to more elaborate calculations. Included in the paper are several previously unpublished results including a new mechanism for electron-ion heat exchange (section II), and an approximate expression for oscillator-strengths of highly charged ions (section V). However the main emphasis is not upon practical formulas but rather on questions of fundamental theory, the structural ingredients which must be used in building a model for plasma events. What are the density effects and how does one represent them? Which are most important? How does one identify an incorrect theory? The general rules help to answer these questions. 106 references, 23 figures, 2 tables

  7. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  8. Methodology for assessing the impacts of distributed generation interconnection

    Directory of Open Access Journals (Sweden)

    Luis E. Luna

    2011-06-01

    Full Text Available This paper proposes a methodology for identifying and assessing the impact of distributed generation interconnection on distribution systems using Monte Carlo techniques. This methodology consists of two analysis schemes: a technical analysis, which evaluates the reliability conditions of the distribution system; on the other hand, an economic analysis that evaluates the financial impacts on the electric utility and its customers, according to the system reliability level. The proposed methodology was applied to an IEEE test distribution system, considering different operation schemes for the distributed generation interconnection. The application of each one of these schemes provided significant improvements regarding the reliability and important economic benefits for the electric utility. However, such schemes resulted in negative profitability levels for certain customers, therefore, regulatory measures and bilateral contracts were proposed which would provide a solution for this kind of problem.

  9. In-memory interconnect protocol configuration registers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  10. In-memory interconnect protocol configuration registers

    Science.gov (United States)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  11. Epidemic spreading on interconnected networks.

    Science.gov (United States)

    Saumell-Mendiola, Anna; Serrano, M Ángeles; Boguñá, Marián

    2012-08-01

    Many real networks are not isolated from each other but form networks of networks, often interrelated in nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even though the epidemics is not able to propagate on each network separately and even when the number of coupling connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.

  12. Interconnection issues in Ontario : a status check

    International Nuclear Information System (INIS)

    Helbronner, V.

    2010-01-01

    This PowerPoint presentation discussed wind and renewable energy interconnection issues in Ontario. The province's Green Energy Act established a feed-in tariff (FIT) program and provided priority connection access to the electricity system for renewable energy generation facilities that meet regulatory requirements. As a result of the province's initiatives, Hydro One has identified 20 priority transmission expansion projects and is focusing on servicing renewable resource clusters. As of October 2010, the Ontario Power Authority (OPA) has received 1469 MW of FIT contracts executed for wind projects. A further 5953 MW of wind projects are awaiting approval. A Korean consortium is now planning to develop 2500 MW of renewable energy projects in the province. The OPA has also been asked to develop an updated transmission expansion plan. Transmission/distribution availability tests (TAT/DAT) have been established to determine if there is sufficient connection availability for FIT application projects. Economic connection tests (ECTs) are conducted to assess whether grid upgrade costs to enable additional FIT capacity are justifiable. When projects pass the ECT, grid upgrades needed for the connection included in grid expansion plans. Ontario's long term energy plan was also reviewed. tabs., figs.

  13. Method of bonding an interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Pal, Uday B.; Isenberg, Arnold O.; Folser, George R.

    1992-01-01

    An electrochemical cell containing an air electrode (16), contacting electrolyte and electronically conductive interconnection layer (26), and a fuel electrode, has the interconnection layer (26) attached by: (A) applying a thin, closely packed, discrete layer of LaCrO.sub.3 particles (30), doped with an element selected from the group consisting of Ca, Sr, Co, Ba, Mg and their mixtures on a portion of the air electrode, and then (B) electrochemical vapor depositing a dense skeletal structure (32) between and around the doped LaCrO.sub.3 particles (30).

  14. Dense ceramic articles

    International Nuclear Information System (INIS)

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  15. DENSE MEDIUM CYCLONE OPTIMIZATON

    Energy Technology Data Exchange (ETDEWEB)

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  16. Interconnect fatigue design for terrestrial photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-03-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  17. Integrated Optical Interconnect Architectures for Embedded Systems

    CERN Document Server

    Nicolescu, Gabriela

    2013-01-01

    This book provides a broad overview of current research in optical interconnect technologies and architectures. Introductory chapters on high-performance computing and the associated issues in conventional interconnect architectures, and on the fundamental building blocks for integrated optical interconnect, provide the foundations for the bulk of the book which brings together leading experts in the field of optical interconnect architectures for data communication. Particular emphasis is given to the ways in which the photonic components are assembled into architectures to address the needs of data-intensive on-chip communication, and to the performance evaluation of such architectures for specific applications.   Provides state-of-the-art research on the use of optical interconnects in Embedded Systems; Begins with coverage of the basics for high-performance computing and optical interconnect; Includes a variety of on-chip optical communication topologies; Features coverage of system integration and opti...

  18. Multi-net optimization of VLSI interconnect

    CERN Document Server

    Moiseev, Konstantin; Wimer, Shmuel

    2015-01-01

    This book covers layout design and layout migration methodologies for optimizing multi-net wire structures in advanced VLSI interconnects. Scaling-dependent models for interconnect power, interconnect delay and crosstalk noise are covered in depth, and several design optimization problems are addressed, such as minimization of interconnect power under delay constraints, or design for minimal delay in wire bundles within a given routing area. A handy reference or a guide for design methodologies and layout automation techniques, this book provides a foundation for physical design challenges of interconnect in advanced integrated circuits.  • Describes the evolution of interconnect scaling and provides new techniques for layout migration and optimization, focusing on multi-net optimization; • Presents research results that provide a level of design optimization which does not exist in commercially-available design automation software tools; • Includes mathematical properties and conditions for optimal...

  19. Visualizing interconnections among climate risks

    Science.gov (United States)

    Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.

    2015-12-01

    It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is

  20. Interconnect rise time in superconducting integrating circuits

    International Nuclear Information System (INIS)

    Preis, D.; Shlager, K.

    1988-01-01

    The influence of resistive losses on the voltage rise time of an integrated-circuit interconnection is reported. A distribution-circuit model is used to present the interconnect. Numerous parametric curves are presented based on numerical evaluation of the exact analytical expression for the model's transient response. For the superconducting case in which the series resistance of the interconnect approaches zero, the step-response rise time is longer but signal strength increases significantly

  1. 78 FR 21928 - Demand Response Coalition v. PJM Interconnection, L.L.C.; Notice of Complaint

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-57-000] Demand Response... Demand Response Coalition \\1\\ (Complainant) filed a formal complaint against the PJM Interconnection, L.L... Plan Enhancements'') violate section 205 of the FPA and are therefore unenforceable. \\1\\ The Demand...

  2. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  3. Hyperons in dense matter

    International Nuclear Information System (INIS)

    Dapo, Haris

    2009-01-01

    The hyperon-nucleon YN low momentum effective interaction (V low k ) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V low k can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V low k one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V low k potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three-body force with a density-dependent interaction. This

  4. Geometrical optics of dense aerosols: forming dense plasma slabs.

    Science.gov (United States)

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  5. Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plug 'n' play functionality

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Bundgaard, Frederik; Geschke, Oliver

    2008-01-01

    A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution for interconn...... external metal ferrules and the system. Theoretical calculations are made to dimension and model the integrated fluidic interconnection. Leakage tests are performed on the interconnections, in order to experimentally confirm the model, and detect its limits....

  6. Interconnection blocks with minimal dead volumes permitting planar interconnection to thin microfluidic devices

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Martin

    2010-01-01

    We have previously described 'Interconnection Blocks' which are re-usable, non-integrated PDMS blocks which allowing multiple, aligned and planar microfluidic interconnections. Here, we describe Interconnection Block versions with zero dead volumes that allow fluidic interfacing to flat or thin s...

  7. Network interconnections: an architectural reference model

    NARCIS (Netherlands)

    Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.

    1985-01-01

    One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for

  8. Epidemics in interconnected small-world networks

    NARCIS (Netherlands)

    Liu, M.; Li, D.; Qin, P.; Liu, C.; Wang, H.; Wang, F.

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks

  9. Colligation, Or the Logical Inference of Interconnection

    DEFF Research Database (Denmark)

    Falster, Peter

    1998-01-01

    laws or assumptions. Yet interconnection as an abstract concept seems to be without scientific underpinning in pure logic. Adopting a historical viewpoint, our aim is to show that the reasoning of interconnection may be identified with a neglected kind of logical inference, called "colligation...

  10. Colligation or, The Logical Inference of Interconnection

    DEFF Research Database (Denmark)

    Franksen, Ole Immanuel; Falster, Peter

    2000-01-01

    laws or assumptions. Yet interconnection as an abstract concept seems to be without scientific underpinning in oure logic. Adopting a historical viewpoint, our aim is to show that the reasoning of interconnection may be identified with a neglected kind of logical inference, called "colligation...

  11. Mercury's Densely Cratered Surface

    Science.gov (United States)

    1974-01-01

    Mariner 10 took this picture (FDS 27465) of the densely cratered surface of Mercury when the spacecraft was 18,200 kilometers (8085 miles) from the planet on March 29. The dark line across top of picture is a 'dropout' of a few TV lines of data. At lower left, a portion of a 61 kilometer (38 mile) crater shows a flow front extending across the crater floor and filling more than half of the crater. The smaller, fresh crater at center is about 25 kilometers (15 miles) in diameter. Craters as small as one kilometer (about one-half mile) across are visible in the picture.The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.Image Credit: NASA/JPL/Northwestern University

  12. Ultra-low crosstalk, CMOS compatible waveguide crossings for densely integrated photonic interconnection networks.

    Science.gov (United States)

    Jones, Adam M; DeRose, Christopher T; Lentine, Anthony L; Trotter, Douglas C; Starbuck, Andrew L; Norwood, Robert A

    2013-05-20

    We explore the design space for optimizing CMOS compatible waveguide crossings on a silicon photonics platform. This paper presents simulated and experimental excess loss and crosstalk suppression data for vertically integrated silicon nitride over silicon-on-insulator waveguide crossings. Experimental results show crosstalk suppression exceeding -49/-44 dB with simulation results as low as -65/-60 dB for the TE/TM mode in a waveguide crossing with a 410 nm vertical gap.

  13. Hadrons in dense matter. Proceedings

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2000-03-01

    The following topics were dealt with: Elementary hadronic reactions, Delta dynamics in nuclei, in-medium s-wave ππ-correlations, strangeness in hot and dense matter, medium modifications of vector mesons and dilepton production, medium modifications of charmonium, thermal properties of hot and dense hadronic matter, nuclear matter, spectral functions and QCD sum rules

  14. Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Kuo, Lewis J. H.; Vora, Shailesh D.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an electrode structure of an electrochemical cell by: (A) providing an electrode structure; (B) forming on a selected portion of the electrode surface, an interconnection layer having the general formula La.sub.1-x M.sub.x Cr.sub.1-y N.sub.y O.sub.3, where M is a dopant selected from the group of Ca, Sr, Ba, and mixtures thereof, and where N is a dopant selected from the group of Mg, Co, Ni, Al, and mixtures thereof, and where x and y are each independently about 0.075-0.25, by thermally spraying, preferably plasma arc spraying, a flux added interconnection spray powder, preferably agglomerated, the flux added powder comprising flux particles, preferably including dopant, preferably (CaO).sub.12. (Al.sub.2 O.sub.3).sub.7 flux particles including Ca and Al dopant, and LaCrO.sub.3 interconnection particles, preferably undoped LaCrO.sub.3, to form a dense and substantially gas-tight interconnection material bonded to the electrode structure by a single plasma spraying step; and, (C) heat treating the interconnection layer at from about 1200.degree. to 1350.degree. C. to further densify and heal the micro-cracks and macro-cracks of the thermally sprayed interconnection layer. The result is a substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode structure. The electrode structure can be an air electrode, and a solid electrolyte layer can be applied to the unselected portion of the air electrode, and further a fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell for generation of electrical power.

  15. Institutional distributed energy interconnection barriers

    International Nuclear Information System (INIS)

    Castelaz, S.A.

    2002-01-01

    This PowerPoint presentation provided an introduction to Encorp Inc., a leading provider of network technology and infrastructure management solutions for the distributed energy market. Encorp develops and markets software and hardware technology solutions for communications, control and networking of distributed energy. It is developing and implementing real-time, distributed energy-focused solutions for a wide variety of applications through new products and services which are technology neutral, and easily networked. Encorp controls more than 500 MW of distributed power with a total of 127 customers. This paper reviewed 3 barriers (regulatory, contractual/tariffs, and business practices) based on US experience. The challenge remaining is to determine if microgrids can be used effectively, and to determine the limitations of bi-directional power flows. The key issues regarding how end-users can share the costs and maximize on the benefits of distributed energy resources include: standby service charges, departing load charges, regulatory uncertainty, rate class degradation, lack of incentives for utility cost reduction, and lack of ability to create experimental tariffs. tabs., figs

  16. Making connections: Case studies of interconnection barriers and their impact on distributed power projects

    Energy Technology Data Exchange (ETDEWEB)

    Alderfer, B.; Eldridge, M.; Starrs, T.

    2000-07-25

    Distributed power is modular electric generation or storage located close to the point of use. Based on interviews of distributed generation project proponents, this report reviews the barriers that distributed generators of electricity are encountering when attempting to interconnect to the electrical grid. Descriptions of 26 of 65 case studies are included in the report. The survey found and the report describes a wide range of technical, business-practice, and regulatory barriers to interconnection. An action plan for reducing the impact of these barriers is also included.

  17. Essays on optimal capacity and optimal regulation of interconnection infrastructures

    Science.gov (United States)

    Boffa, Federico

    The integration between geographically differentiated markets or between vertically related industries generate effects on welfare that depend on the structure of the underlying markets. My thesis investigates the impact of geographical interconnection on welfare, and illustrates welfare-enhancing modes of regulation of vertically integrated industries and of geographically integrated markets. The first chapter analyzes the effects of interconnection between two formerly fully-separated markets under the assumptions that producers in the two markets are capacity-constrained, and tacitly collude whenever it is rational for them to do so. I find that there exists a set of assumptions under which interconnection brings about greater collusion, hence it reduces overall welfare. The second chapter analyzes the optimal interconnection capacity allocation mechanism for a benevolent electricity regulator when generation is not competitive. The regulator's intervention should not only ensure that interconnection capacity is efficiently allocated to the most efficient firms, but it should also induce a higher welfare in the upstream generation market. In a two-node setting, with one firm per node, I show that the regulatory intervention becomes more effective as the cost asymmetries between the two firms become more pronounced. The third chapter illustrates a regulation mechanism for vertically related industries. Ownership shares of the upstream industry (that displays economies of scale) are allocated to the downstream (competitive) firms in proportion to their shares in the final goods market. I show that the mechanism combines the benefits of vertical integration with those of vertical separation. The advantages of vertical integration consist in avoiding double marginalization, and in internalizing the reduction in average cost resulting from the upstream increase in output; on the other hand, vertical separation allows to preserve the competitiveness of the downstream

  18. SSC [Superconducting Super Collider] magnet mechanical interconnections

    International Nuclear Information System (INIS)

    Bossert, R.C.; Niemann, R.C.; Carson, J.A.; Ramstein, W.L.; Reynolds, M.P.; Engler, N.H.

    1989-03-01

    Installation of superconducting accelerator dipole and quadrupole magnets and spool pieces in the SSC tunnel requires the interconnection of the cryostats. The connections are both of an electrical and mechanical nature. The details of the mechanical connections are presented. The connections include piping, thermal shields and insulation. There are seven piping systems to be connected. These systems must carry cryogenic fluids at various pressures or maintain vacuum and must be consistently leak tight. The interconnection region must be able to expand and contract as magnets change in length while cooling and warming. The heat leak characteristics of the interconnection region must be comparable to that of the body of the magnet. Rapid assembly and disassembly is required. The magnet cryostat development program is discussed. Results of quality control testing are reported. Results of making full scale interconnections under magnet test situations are reviewed. 11 figs., 4 tabs

  19. Optical Interconnects for Future Data Center Networks

    CERN Document Server

    Bergman, Keren; Tomkos, Ioannis

    2013-01-01

    Optical Interconnects for Future Data Center Networks covers optical networks and how they can provide high bandwidth, energy efficient interconnects with increased communication bandwidth. This volume, with contributions from leading researchers in the field, presents an integrated view of the expected future requirements of data centers and serves as a reference for some of the most advanced and promising solutions proposed by researchers from leading universities, research labs, and companies. The work also includes several novel architectures, each demonstrating different technologies such as optical circuits, optical switching, MIMO optical OFDM, and others. Additionally, Optical Interconnects for Future Data Center Networks provides invaluable insights into the benefits and advantages of optical interconnects and how they can be a promising alternative for future data center networks.

  20. Variation Tolerant On-Chip Interconnects

    CERN Document Server

    Nigussie, Ethiopia Enideg

    2012-01-01

    This book presents design techniques, analysis and implementation of high performance and power efficient, variation tolerant on-chip interconnects.  Given the design paradigm shift to multi-core, interconnect-centric designs and the increase in sources of variability and their impact in sub-100nm technologies, this book will be an invaluable reference for anyone concerned with the design of next generation, high-performance electronics systems. Provides comprehensive, circuit-level explanation of high-performance, energy-efficient, variation-tolerant on-chip interconnect; Describes design techniques to mitigate problems caused by variation; Includes techniques for design and implementation of self-timed on-chip interconnect, delay variation insensitive communication protocols, high speed signaling techniques and circuits, bit-width independent completion detection and process, voltage and temperature variation tolerance.                          

  1. The Interconnections of the LHC Cryomagnets

    CERN Document Server

    Jacquemod, A; Skoczen, Blazej; Tock, J P

    2001-01-01

    The main components of the LHC, the next world-class facility in high-energy physics, are the twin-aperture high-field superconducting cryomagnets to be installed in the existing 26.7-km long tunnel. After installation and alignment, the cryomagnets have to be interconnected. The interconnections must ensure the continuity of several functions: vacuum enclosures, beam pipe image currents (RF contacts), cryogenic circuits, electrical power supply, and thermal insulation. In the machine, about 1700 interconnections between cryomagnets are necessary. The interconnections constitute a unique system that is nearly entirely assembled in the tunnel. For each of them, various operations must be done: TIG welding of cryogenic channels (~ 50 000 welds), induction soldering of main superconducting cables (~ 10 000 joints), ultrasonic welding of auxiliary superconducting cables (~ 20 000 welds), mechanical assembly of various elements, and installation of the multi-layer insulation (~ 200 000 m2). Defective junctions cou...

  2. Recent Development of SOFC Metallic Interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  3. Epidemics in interconnected small-world networks.

    Science.gov (United States)

    Liu, Meng; Li, Daqing; Qin, Pengju; Liu, Chaoran; Wang, Huijuan; Wang, Feilong

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS) model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.

  4. Epidemics in interconnected small-world networks.

    Directory of Open Access Journals (Sweden)

    Meng Liu

    Full Text Available Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.

  5. Unified approach to dense matter

    International Nuclear Information System (INIS)

    Park, Byung-Yoon; Lee, Hee-Jung; Vento, Vicente; Kim, Joon-Il; Min, Dong-Pil; Rho, Mannque

    2005-01-01

    We apply the Skyrme model to dense hadronic matter, which provides a unified approach to high density, valid in the large N c limit. In our picture, dense hadronic matter is described by the classical soliton configuration with minimum energy for the given baryon number density. By incorporating the meson fluctuations on such ground state we obtain an effective Lagrangian for meson dynamics in a dense medium. Our starting point has been the Skyrme model defined in terms of pions, thereafter we have extended and improved the model by incorporating other degrees of freedom such as dilaton, kaons and vector mesons

  6. Epidemics spreading in interconnected complex networks

    International Nuclear Information System (INIS)

    Wang, Y.; Xiao, G.

    2012-01-01

    We study epidemic spreading in two interconnected complex networks. It is found that in our model the epidemic threshold of the interconnected network is always lower than that in any of the two component networks. Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. Theoretical analysis and simulation results show that, generally speaking, the epidemic size is not significantly affected by the inter-network correlation. In interdependent networks which can be viewed as a special case of interconnected networks, however, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant. -- Highlights: ► We study epidemic spreading in two interconnected complex networks. ► The epidemic threshold is lower than that in any of the two networks. And Interconnection correlation has impacts on threshold and average outbreak size. ► Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. ► We demonstrated and proved that Interconnection correlation does not affect epidemic size significantly. ► In interdependent networks, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant.

  7. Epidemics spreading in interconnected complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of High Performance Computing, Agency for Science, Technology and Research (A-STAR), Singapore 138632 (Singapore); Xiao, G., E-mail: egxxiao@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2012-09-03

    We study epidemic spreading in two interconnected complex networks. It is found that in our model the epidemic threshold of the interconnected network is always lower than that in any of the two component networks. Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. Theoretical analysis and simulation results show that, generally speaking, the epidemic size is not significantly affected by the inter-network correlation. In interdependent networks which can be viewed as a special case of interconnected networks, however, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant. -- Highlights: ► We study epidemic spreading in two interconnected complex networks. ► The epidemic threshold is lower than that in any of the two networks. And Interconnection correlation has impacts on threshold and average outbreak size. ► Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. ► We demonstrated and proved that Interconnection correlation does not affect epidemic size significantly. ► In interdependent networks, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant.

  8. Transport properties of dense matter

    International Nuclear Information System (INIS)

    Itoh, Naoki; Mitake, Shinichi; Iyetomi, Hiroshi; Ichimaru, Setsuo

    1983-01-01

    Transport coefficients, electrical and thermal conductivities in particular, are essential physical quantities for the theories of stellar structure. Since the discoveries of pulsars and X-ray stars, an accurate evaluation of the transport coefficients in the dense matter has become indispensable to the quantitative understanding of the observed neutron stars. The authors present improved calculations of the electrical and thermal conductivities of the dense matter in the liquid metal phase, appropriate to white dwarfs and neutron stars. (Auth.)

  9. Interconnect mechanisms in microelectronic packaging

    Science.gov (United States)

    Roma, Maria Penafrancia C.

    alloy showed differences in adhesion strength and IMC formation. Bond strength by wire pull testing showed the 95Ag alloy with higher values while shear bond testing showed the 88Ag higher bond strength. Use of Cu pillars in flip chips and eutectic bonding in wafer level chip scale packages are direct consequences of diminishing interconnect dimension as a result of the drive for miniaturization. The combination of Cu-Sn interdiffusion, Kirkendall mechanism and heterogeneous vacancy precipitation are the main causes of IMC and void formation in Cu pillar - Sn solder - Cu lead frame sandwich structure. However, adding a Ni barrier agent showed less porous IMC layer as well as void formation as a result of the modified Cu and Sn movement well as the void formation. Direct die to die bonding using Al-Ge eutectic bonds is necessary when 3D integration is needed to reduce the footprint of a package. Hermeticity and adhesion strength are a function of the Al/Ge thickness ratio, bonding pressure, temperature and time. Scanning Electron Microscope (SEM) and Focused Ion Beam (FIB) allowed imaging of interfacial microstructures, porosity, grain morphology while Scanning Transmission Electron microscope (STEM) provided diffusion profile and confirmed interdiffusion. Ion polishing technique provided information on porosity and when imaged using backscattered mode, grain structure confirmed mechanical deformation of the bonds. Measurements of the interfacial bond strength are made by wire pull tests and ball shear tests based on existing industry standard tests. However, for the Al-Ge eutectic bonds, no standard strength is available so a test is developed using the stud pull test method using the Dage 4000 Plus to yield consistent results. Adhesion strengths of 30-40 MPa are found for eutectic bonded packages however, as low as 20MPa was measured in low temperature bonded areas.

  10. Report on electricity interconnection management and use. June 2008

    International Nuclear Information System (INIS)

    2008-06-01

    regarding cross-border trades to the national regulatory authorities - or to the Agency for the Cooperation of Energy Regulators (ACER)? - How can Switzerland be integrated effectively into the regional market integration process? - What status should the organised markets be given in future, taking account of the crucial role they have to play in cross-border trades and eventually in the construction of the European electricity market? - How can the projects to be developed within the four Regional Initiatives in which France is taking part be prioritised? - How can the calculation of interconnection capacities be improved and how can we prevent cross-border trades from being discriminated against in favour of flows within a country? - How can the quality of access to interconnections be improved, and particularly the firmness with which capacity is offered by the TSOs, without affecting the level of capacity made available to the market? - How can the TSOs be incentivised to speed up integration of the markets, especially of the balancing markets, which are the foundation of national market design? The publication of this second report by CRE concerning electricity interconnection management and use provides an opportunity to launch the debate on all these crucial issues and consider together the responses that can be applied to make market integration a success

  11. Comprehensive evaluation of global energy interconnection development index

    Science.gov (United States)

    Liu, Lin; Zhang, Yi

    2018-04-01

    Under the background of building global energy interconnection and realizing green and low-carbon development, this article constructed the global energy interconnection development index system which based on the current situation of global energy interconnection development. Through using the entropy method for the weight analysis of global energy interconnection development index, and then using gray correlation method to analyze the selected countries, this article got the global energy interconnection development index ranking and level classification.

  12. Carbon nanotube and graphene nanoribbon interconnects

    CERN Document Server

    Das, Debaprasad

    2014-01-01

    "The book, Caron Nanotube and Graphene Nanoribbon Interconnects, authored by Drs. Debapraad Das and Hafizur Rahaman serves as a good source of material on CNT and GNR interconnects for readers who wish to get into this area and also for practicing engineers who would like to be updated in advances of this field."-Prof. Ashok Srivastava, Louisiana State University, Baton Rouge, USA"Mathematical analysis included in each and every chapter is the main strength of the materials. ... The book is very precise and useful for those who are working in this area. ... highly focused, very compact, and easy to apply. ... This book depicts a detailed analysis and modelling of carbon nanotube and graphene nanoribbon interconnects. The book also covers the electrical circuit modelling of carbon nanotubes and graphene nanoribbons."-Prof. Chandan Kumar Sarkar, Jadavpur University, Kolkata, India.

  13. Packaging and interconnection for superconductive circuitry

    International Nuclear Information System (INIS)

    Anacker, W.

    1976-01-01

    A three dimensional microelectronic module packaged for reduced signal propagation delay times including a plurality of circuit carrying means, which may comprise unbacked chips, with integrated superconductive circuitry thereon is described. The circuit carrying means are supported on their edges and have contact lands in the vicinity of, or at, the edges to provide for interconnecting circuitry. The circuit carrying means are supported by supporting means which include slots to provide a path for interconnection wiring to contact the lands of the circuit carrying means. Further interconnecting wiring may take the form of integrated circuit wiring on the reverse side of the supporting means. The low heat dissipation of the superconductive circuitry allows the circuit carrying means to be spaced approximately no less than 30 mils apart. The three dimensional arrangement provides lower random propagation delays than would a planar array of circuits

  14. Laser printing of 3D metallic interconnects

    Science.gov (United States)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  15. Optical interconnect for large-scale systems

    Science.gov (United States)

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  16. Digital optical interconnects for photonic computing

    Science.gov (United States)

    Guilfoyle, Peter S.; Stone, Richard V.; Zeise, Frederick F.

    1994-05-01

    A 32-bit digital optical computer (DOC II) has been implemented in hardware utilizing 8,192 free-space optical interconnects. The architecture exploits parallel interconnect technology by implementing microcode at the primitive level. A burst mode of 0.8192 X 1012 binary operations per sec has been reliably demonstrated. The prototype has been successful in demonstrating general purpose computation. In addition to emulating the RISC instruction set within the UNIX operating environment, relational database text search operations have been implemented on DOC II.

  17. Regulatory agencies and regulatory risk

    OpenAIRE

    Knieps, Günter; Weiß, Hans-Jörg

    2008-01-01

    The aim of this paper is to show that regulatory risk is due to the discretionary behaviour of regulatory agencies, caused by a too extensive regulatory mandate provided by the legislator. The normative point of reference and a behavioural model of regulatory agencies based on the positive theory of regulation are presented. Regulatory risk with regard to the future behaviour of regulatory agencies is modelled as the consequence of the ex ante uncertainty about the relative influence of inter...

  18. Dynamics of dense particle disks

    International Nuclear Information System (INIS)

    Araki, S.; Tremaine, S.; Toronto Univ., Canada)

    1986-01-01

    The present investigation of mechanical equilibrium and collisional transport processes in dense, differentially rotating particle disks is based on the Enskog (1922) theory of dense, hard sphere gases, with the single exception that the spheres are inelastic. The viscous instability suggested as a source of Saturn B ring structure does not arise in the models presented, although the ring may be subject to a phase transition analogous to the liquid-solid transition observed in molecular dynamics simulations of elastic hard spheres. In such a case, the ring would alternately exhibit zero-shear, or solid, and high shear, or liquid, zones. 29 references

  19. High Density Interconnect Microstrip Patch Antenna for 5G Base Stations with Integrated Filtering Performance

    Directory of Open Access Journals (Sweden)

    Marco Salucci

    2018-04-01

    Full Text Available The elementary radiator of a planar array for next generation millimeter-wave (mm-wave 5G base stations is described. The antenna is designed for high density interconnect (HDI manufacturing for yielding a compact, densely-interconnected, and highly-integrable stacked structure. The layout of the single element is determined by directly optimizing key radiation features of the whole planar arrangement according to specific application-driven requirements. In addition, thanks to the exploitation of a spline-shaped modelling of the radiator, suitable performance in terms of impedance matching, realized gain, half-power beamwidth (HPBW, polarization purity, and inter-element isolation are achieved within the 28-GHz pass-band. Moreover, integrated out-of-band filtering capabilities are obtained in selected and wide non-contiguous stop-bands without additional circuitry.

  20. Dense Crowds of Virtual Humans

    NARCIS (Netherlands)

    Stüvel, S.A.

    2016-01-01

    This thesis presents a novel crowd simulation method `Torso Crowds', aimed at the simulation of dense crowds. The method is based on the results of user studies and a motion capture experiment, which are also described in this thesis. Torso Crowds introduces a capsule shape to represent people in

  1. Green interconnecting materials for semiconductor industry

    NARCIS (Netherlands)

    Matin, M.A.; Vellinga, W.P.; Geers, M.G.D.; Sawada, K.; Ishida, M.

    2009-01-01

    Interconnecting materials experience a complex thermo-mechanical load in applications. This may lead to the formation of macroscopic cracks resulting from induced stresses of the differences in thermal expansion coefficients on a sample scale (since different materials are involved) and on a grain

  2. Electric network interconnection of Mashreq Arab Countries

    International Nuclear Information System (INIS)

    El-Amin, I.M.; Al-Shehri, A.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-01-01

    Power system interconnection is a well established practice for a variety of technical and economical reasons. Several interconnected networks exist worldwide for a number of factors. Some of these networks cross international boundaries. This presentation discusses the future developments of the power systems of Mashreq Arab Countries (MAC). MAC consists of Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, United Arab Emirates (UAE), and Yemen. Mac power systems are operated by government or semigovernment bodies. Many of these countries have national or regional electric grids but are generally isolated from each other. With the exception of Saudi Arabia power systems, which employ 60 Hz, all other MAC utilities use 50 Hz frequency. Each country is served by one utility, except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi Consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The energy resources in MAC are varied. Countries such as Egypt, Iraq, and Syria have significant hydro resources.The gulf countries and Iraq have abundant fossil fuel, The variation in energy resources as well as the characteristics of the electric load make it essential to look into interconnections beyond the national boundaries. Most of the existing or planned interconnections involve few power systems. A study involving 12 countries and over 20 utilities with different characteristics represents a very large scale undertaking

  3. Health and the environment: Examining some interconnections

    International Nuclear Information System (INIS)

    Nair, G.; Castelino, J.; Parr, R.M.

    1994-01-01

    In various ways, the IAEA is working with national and international agencies to broaden scientific understanding of the interconnections between the environment and human health. Often nuclear and related technologies are applied in the search for answers to complex and puzzling questions. This article highlights some of that work, illustrating the dimensions of both the problems and the potential solutions

  4. Systems theory of interconnected port contact systems

    NARCIS (Netherlands)

    Eberard, D.; Maschke, B.M.; Schaft, A.J. van der

    2005-01-01

    Port-based network modeling of a large class of complex physical systems leads to dynamical systems known as port-Hamiltonian systems. The key ingredient of any port-Hamiltonian system is a power-conserving interconnection structure (mathematically formalized by the geometric notion of a Dirac

  5. Experimental demonstration of titanium nitride plasmonic interconnects

    DEFF Research Database (Denmark)

    Kinsey, N.; Ferrera, M.; Naik, G. V.

    2014-01-01

    An insulator-metal-insulator plasmonic interconnect using TiN, a CMOS-compatible material, is proposed and investigated experimentally at the telecommunication wavelength of 1.55 mu m. The TiN waveguide was shown to obtain propagation losses less than 0.8 dB/mm with a mode size of 9.8 mu m...

  6. Nominate an Organization | Distributed Generation Interconnection

    Science.gov (United States)

    Collaborative | NREL Nominate an Organization Nominate an Organization Do you know of an organization doing high-quality, innovative work on the interconnection of distributed generation? Want to practices by nominating an organization to be profiled in an online case study! Please include your

  7. Adapting Memory Hierarchies for Emerging Datacenter Interconnects

    Institute of Scientific and Technical Information of China (English)

    江涛; 董建波; 侯锐; 柴琳; 张立新; 孙凝晖; 田斌

    2015-01-01

    Efficient resource utilization requires that emerging datacenter interconnects support both high performance communication and efficient remote resource sharing. These goals require that the network be more tightly coupled with the CPU chips. Designing a new interconnection technology thus requires considering not only the interconnection itself, but also the design of the processors that will rely on it. In this paper, we study memory hierarchy implications for the design of high-speed datacenter interconnects—particularly as they affect remote memory access—and we use PCIe as the vehicle for our investigations. To that end, we build three complementary platforms: a PCIe-interconnected prototype server with which we measure and analyze current bottlenecks; a software simulator that lets us model microarchitectural and cache hierarchy changes;and an FPGA prototype system with a streamlined switchless customized protocol Thunder with which we study hardware optimizations outside the processor. We highlight several architectural modifications to better support remote memory access and communication, and quantify their impact and limitations.

  8. Patterned electrodeposition of interconnects using microcontact printing

    NARCIS (Netherlands)

    Hovestad, A.; Rendering, H.; Maijenburg, A.W.

    2012-01-01

    Microcontact printing combined with electroless deposition is a potential low cost technique to make electrical interconnects for opto-electronic devices. Microcontact printed inhibitors locally prevent electroless deposition resulting in a pre-defined pattern of metal tracks. The inhibition of

  9. An architectural model for network interconnection

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Vissers, C.A.; Kalin, T.

    1983-01-01

    This paper presents a technique of successive decomposition of a common users' activity to illustrate the problems of network interconnection. The criteria derived from this approach offer a structuring principle which is used to develop an architectural model that embeds heterogeneous subnetworks

  10. Identifying influential spreaders in interconnected networks

    International Nuclear Information System (INIS)

    Zhao, Dawei; Li, Lixiang; Huo, Yujia; Yang, Yixian; Li, Shudong

    2014-01-01

    Identifying the most influential spreaders in spreading dynamics is of the utmost importance for various purposes for understanding or controlling these processes. The existing relevant works are limited to a single network. Most real networks are actually not isolated, but typically coupled and affected by others. The properties of epidemic spreading have recently been found to have some significant differences in interconnected networks from those in a single network. In this paper, we focus on identifying the influential spreaders in interconnected networks. We find that the well-known k-shell index loses effectiveness; some insignificant spreaders in a single network become the influential spreaders in the whole interconnected networks while some influential spreaders become no longer important. The simulation results show that the spreading capabilities of the nodes not only depend on their influence for the network topology, but also are dramatically influenced by the spreading rate. Based on this perception, a novel index is proposed for measuring the influential spreaders in interconnected networks. We then support the efficiency of this index with numerical simulations. (paper)

  11. Laser printed interconnects for flexible electronics

    Science.gov (United States)

    Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas

    Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  12. Electro-optic techniques for VLSI interconnect

    Science.gov (United States)

    Neff, J. A.

    1985-03-01

    A major limitation to achieving significant speed increases in very large scale integration (VLSI) lies in the metallic interconnects. They are costly not only from the charge transport standpoint but also from capacitive loading effects. The Defense Advanced Research Projects Agency, in pursuit of the fifth generation supercomputer, is investigating alternatives to the VLSI metallic interconnects, especially the use of optical techniques to transport the information either inter or intrachip. As the on chip performance of VLSI continues to improve via the scale down of the logic elements, the problems associated with transferring data off and onto the chip become more severe. The use of optical carriers to transfer the information within the computer is very appealing from several viewpoints. Besides the potential for gigabit propagation rates, the conversion from electronics to optics conveniently provides a decoupling of the various circuits from one another. Significant gains will also be realized in reducing cross talk between the metallic routings, and the interconnects need no longer be constrained to the plane of a thin film on the VLSI chip. In addition, optics can offer an increased programming flexibility for restructuring the interconnect network.

  13. Review of Interconnection Practices and Costs in the Western States

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Volpi, Christina M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Manning, David [Western Interstate Energy Board (WIEB); McAllister, Richard [Western Interstate Energy Board (WIEB)

    2018-04-27

    The objective of this report is to evaluate the nature of barriers to interconnecting distributed PV, assess costs of interconnection, and compare interconnection practices across various states in the Western Interconnection. The report addresses practices for interconnecting both residential and commercial-scale PV systems to the distribution system. This study is part of a larger, joint project between the Western Interstate Energy Board (WIEB) and the National Renewable Energy Laboratory (NREL), funded by the U.S. Department of Energy, to examine barriers to distributed PV in the 11 states wholly within the Western Interconnection.

  14. Warm Dense Matter: An Overview

    International Nuclear Information System (INIS)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-01-01

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities. The conclusion of this

  15. Holographic Renormalization in Dense Medium

    International Nuclear Information System (INIS)

    Park, Chanyong

    2014-01-01

    The holographic renormalization of a charged black brane with or without a dilaton field, whose dual field theory describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space

  16. Suprathermal viscosity of dense matter

    International Nuclear Information System (INIS)

    Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai

    2010-01-01

    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.

  17. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennock, Ken [AWS Truepower, Albany, NY (United States); Reed, Gregory [Univ. of Pittsburgh, PA (United States); Hanes, Spencer [Duke Energy, Charlotte, NC (United States)

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  18. Development and operation of interconnections in a restructuring context

    International Nuclear Information System (INIS)

    2003-01-01

    In many countries the electrical network is not fully interconnected and the best technical solution to achieve interconnection has to be found. At the same time the electricity industry is being restructured and interconnecting independent energy markets presents technical challenges. It is therefore timely to consider interconnection development and operation options: examine the benefits of interconnecting electrical networks and the development strategies, review the interconnection design options and the technologies available, identify the operational issues, the security problems of large interconnected systems, the protection issues, consider the impact of the restructuring of the electrical supply industry, assess the political, environmental and social implications of interconnections. reorganized in slovenia from 5-7 april 2004. (author)

  19. National Offshore Wind Energy Grid Interconnection Study Full Report

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennock, Ken [AWS Truepower, Albany, NY (United States); Reed, Gregory [Univ. of Pittsburgh, PA (United States); Hanes, Spencer [Duke Energy, Charlotte, NC (United States)

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  20. Dilute and dense axion stars

    Science.gov (United States)

    Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank

    2018-02-01

    Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.

  1. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air......A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...

  2. Si micro photonics for optical interconnection

    International Nuclear Information System (INIS)

    Wada, K.; Ahn, D.H.; Lim, D.R.; Michel, J.; Kimerling, L.C.

    2006-01-01

    This paper reviews current status of silicon microphotonics and the recent prototype of on-chip optical interconnection. Si microphotonics pursues complementary metal oxide semiconductor (CMOS)-compatibility of photonic devices to reduce the materials diversity eventually to integrate on Si chips. Fractal optical H-trees have been implemented on a chip and found to be a technology breakthrough beyond metal interconnection. It has shown that large RC time constants associated with metal can be eliminated at least long distant data communication on a chip, and eventually improve yield and power issues. This has become the world's first electronic and photonic integrated circuits (EPICs) and the possibility of at least 10 GHz clocking for personal computers has been demonstrated

  3. Copper Nanowire Production for Interconnect Applications

    Science.gov (United States)

    Han, Jin-Woo (Inventor); Meyyappan, Meyya (Inventor)

    2014-01-01

    A method of fabricating metallic Cu nanowires with lengths up to about 25 micrometers and diameters in a range 20-100 nanometers, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 micrometers), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nanometers. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).

  4. Architecture for on-die interconnect

    Science.gov (United States)

    Khare, Surhud; More, Ankit; Somasekhar, Dinesh; Dunning, David S.

    2016-03-15

    In an embodiment, an apparatus includes: a plurality of islands configured on a semiconductor die, each of the plurality of islands having a plurality of cores; and a plurality of network switches configured on the semiconductor die and each associated with one of the plurality of islands, where each network switch includes a plurality of output ports, a first set of the output ports are each to couple to the associated network switch of an island via a point-to-point interconnect and a second set of the output ports are each to couple to the associated network switches of a plurality of islands via a point-to-multipoint interconnect. Other embodiments are described and claimed.

  5. Accurate Modeling Method for Cu Interconnect

    Science.gov (United States)

    Yamada, Kenta; Kitahara, Hiroshi; Asai, Yoshihiko; Sakamoto, Hideo; Okada, Norio; Yasuda, Makoto; Oda, Noriaki; Sakurai, Michio; Hiroi, Masayuki; Takewaki, Toshiyuki; Ohnishi, Sadayuki; Iguchi, Manabu; Minda, Hiroyasu; Suzuki, Mieko

    This paper proposes an accurate modeling method of the copper interconnect cross-section in which the width and thickness dependence on layout patterns and density caused by processes (CMP, etching, sputtering, lithography, and so on) are fully, incorporated and universally expressed. In addition, we have developed specific test patterns for the model parameters extraction, and an efficient extraction flow. We have extracted the model parameters for 0.15μm CMOS using this method and confirmed that 10%τpd error normally observed with conventional LPE (Layout Parameters Extraction) was completely dissolved. Moreover, it is verified that the model can be applied to more advanced technologies (90nm, 65nm and 55nm CMOS). Since the interconnect delay variations due to the processes constitute a significant part of what have conventionally been treated as random variations, use of the proposed model could enable one to greatly narrow the guardbands required to guarantee a desired yield, thereby facilitating design closure.

  6. Development of Interconnect Technologies for Particle Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Mani [Univ. of California, Davis, CA (United States)

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  7. Interconnection of psychology, color and design

    OpenAIRE

    Minchuk, A. M.; Kudryashova, Aleksandra Vladimirovna

    2016-01-01

    The paper presents the direct interconnection between color, design and psychology on the basis of theoretical and historical analysis. It describes the peculiarities of how peopleperceive color. In the paper some of the historical details concerning the way our ancestors used color are presented and the modern scientific discoveries in the field of psychology, which give the evidence of the great psychological, emotional and physical influence of color on a person are shown as well. The pape...

  8. Computer simulation of electromigration in microelectronics interconnect

    OpenAIRE

    Zhu, Xiaoxin

    2014-01-01

    Electromigration (EM) is a phenomenon that occurs in metal conductor carrying high density electric current. EM causes voids and hillocks that may lead to open or short circuits in electronic devices. Avoiding these failures therefore is a major challenge in semiconductor device and packaging design and manufacturing, and it will become an even greater challenge for the semiconductor assembly and packaging industry as electronics components and interconnects get smaller and smaller. According...

  9. Viewing Integrated-Circuit Interconnections By SEM

    Science.gov (United States)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  10. The first LHC sector is fully interconnected

    CERN Multimedia

    2006-01-01

    Sector 7-8 is the first sector of the LHC to become fully operational. All the magnets, cryogenic line, vacuum chambers and services are interconnected. The cool down of this sector can soon commence. LHC project leader Lyn Evans, the teams from CERN's AT/MCS, AT/VAC and AT/MEL groups, and the members of the IEG consortium celebrate the completion of the first LHC sector. The 10th of November was a red letter day for the LHC accelerator teams, marking the completion of the first sector of the machine. The magnets of sector 7-8, together with the cryogenic line, the vacuum chambers and the distribution feedboxes (DFBs) are now all completely interconnected. Sector 7-8 has thus been closed and is the first LHC sector to become operational. The interconnection work required several thousand electrical, cryogenic and insulating connections to be made on the 210 interfaces between the magnets in the arc, the 30 interfaces between the special magnets and the interfaces with the cryogenic line. 'This represent...

  11. Implementation of interconnect simulation tools in spice

    Science.gov (United States)

    Satsangi, H.; Schutt-Aine, J. E.

    1993-01-01

    Accurate computer simulation of high speed digital computer circuits and communication circuits requires a multimode approach to simulate both the devices and the interconnects between devices. Classical circuit analysis algorithms (lumped parameter) are needed for circuit devices and the network formed by the interconnected devices. The interconnects, however, have to be modeled as transmission lines which incorporate electromagnetic field analysis. An approach to writing a multimode simulator is to take an existing software package which performs either lumped parameter analysis or field analysis and add the missing type of analysis routines to the package. In this work a traditionally lumped parameter simulator, SPICE, is modified so that it will perform lossy transmission line analysis using a different model approach. Modifying SPICE3E2 or any other large software package is not a trivial task. An understanding of the programming conventions used, simulation software, and simulation algorithms is required. This thesis was written to clarify the procedure for installing a device into SPICE3E2. The installation of three devices is documented and the installations of the first two provide a foundation for installation of the lossy line which is the third device. The details of discussions are specific to SPICE, but the concepts will be helpful when performing installations into other circuit analysis packages.

  12. The variability of interconnected wind plants

    International Nuclear Information System (INIS)

    Katzenstein, Warren; Fertig, Emily; Apt, Jay

    2010-01-01

    We present the first frequency-dependent analyses of the geographic smoothing of wind power's variability, analyzing the interconnected measured output of 20 wind plants in Texas. Reductions in variability occur at frequencies corresponding to times shorter than ∼24 h and are quantified by measuring the departure from a Kolmogorov spectrum. At a frequency of 2.8x10 -4 Hz (corresponding to 1 h), an 87% reduction of the variability of a single wind plant is obtained by interconnecting 4 wind plants. Interconnecting the remaining 16 wind plants produces only an additional 8% reduction. We use step change analyses and correlation coefficients to compare our results with previous studies, finding that wind power ramps up faster than it ramps down for each of the step change intervals analyzed and that correlation between the power output of wind plants 200 km away is half that of co-located wind plants. To examine variability at very low frequencies, we estimate yearly wind energy production in the Great Plains region of the United States from automated wind observations at airports covering 36 years. The estimated wind power has significant inter-annual variability and the severity of wind drought years is estimated to be about half that observed nationally for hydroelectric power.

  13. Dense Breasts: Answers to Commonly Asked Questions

    Science.gov (United States)

    ... Cancer Prevention Genetics of Breast & Gynecologic Cancers Breast Cancer Screening Research Dense Breasts: Answers to Commonly Asked Questions What are dense breasts? Breasts contain glandular, connective, and fat tissue. Breast density is a term that describes the ...

  14. Energetic diversification in the interconnected electric system

    International Nuclear Information System (INIS)

    Villanueva M, C.; Beltran M, H.; Serrano G, J.A.

    2007-01-01

    In the interconnected electric system of Mexico the demanded electricity in different timetable periods it is synthesized in the annual curve of load duration, which is characterized by three regions. The energy in every period is quantified according to the under curve areas in each region, which depend of the number of hours in that the power demand exceeds the minimum and the intermediate demands respectively that are certain percentages of the yearly maximum demand. In that context, the generating power stations are dispatched according to the marginal costs of the produced electricity and the electric power to be generated every year by each type of central it is located in some of the regions of the curve of load duration, as they are their marginal costs and their operation characteristic techniques. By strategic reasons it is desirable to diversify the primary energy sources that are used in the national interconnected system to generate the electricity that demand the millions of consumers that there are in Mexico. On one hand, when intensifying the use of renewable sources and of nucleo electric centrals its decrease the import volumes of natural gas, which has very volatile prices and it is a fuel when burning in the power stations produces hothouse gases that are emitted to the atmosphere. On the other hand, when diversifying the installed capacity of the different central types in the interconnected system, a better adaptation of the produced electricity volumes is achieved by each type to the timetable variation, daily, weekly and seasonal of the electric demand, as one manifests this in the curve of load duration. To exemplify a possible diversification plan of the installed capacity in the national interconnected system that includes nucleo electric centrals and those that use renewable energy, charts are presented that project of 2005 at 2015 the capacity, energy and ost of the electricity of different central types, located in each one of the

  15. Regulatory activities

    International Nuclear Information System (INIS)

    2001-01-01

    This publication, compiled in 8 chapters, presents the regulatory system developed by the Nuclear Regulatory Authority (NRA) of the Argentine Republic. The following activities and developed topics in this document describe: the evolution of the nuclear regulatory activity in Argentina; the Argentine regulatory system; the nuclear regulatory laws and standards; the inspection and safeguards of nuclear facilities; the emergency systems; the environmental systems; the environmental monitoring; the analysis laboratories on physical and biological dosimetry, prenatal irradiation, internal irradiation, radiation measurements, detection techniques on nuclear testing, medical program on radiation protection; the institutional relations with national and international organization; the training courses and meeting; the technical information

  16. Method and closing pores in a thermally sprayed doped lanthanum chromite interconnection layer

    Science.gov (United States)

    Singh, Prabhakar; Ruka, Roswell J.

    1995-01-01

    A dense, substantially gas-tight electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an air electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element or elements selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by thermal spraying doped LaCrO.sub.3 particles, either by plasma arc spraying or flame spraying; (C) depositing a mixture of CaO and Cr.sub.2 O.sub.3 on the surface of the thermally sprayed layer; and (D) heating the doped LaCrO.sub.3 layer coated with CaO and Cr.sub.2 O.sub.3 surface deposit at from about 1000.degree. C. to 1200.degree. C. to substantially close the pores, at least at a surface, of the thermally sprayed doped LaCrO.sub.3 layer. The result is a dense, substantially gas-tight, highly doped, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the nonselected portion of the air electrode. A fuel electrode can be applied to the solid electrolyte, to form an electrochemical cell, for example for generation of electrical power.

  17. Method of forming a plasma sprayed interconnection layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Spengler, Charles J.; Folser, George R.; Vora, Shailesh D.; Kuo, Lewis; Richards, Von L.

    1995-01-01

    A dense, substantially gas-tight, electrically conductive interconnection layer is formed on an air electrode structure of an electrochemical cell by (A) providing an electrode surface; (B) forming on a selected portion of the electrode surface, a layer of doped LaCrO.sub.3 particles doped with an element selected from Ca, Sr, Ba, Mg, Co, Ni, Al and mixtures thereof by plasma spraying doped LaCrO.sub.3 powder, preferably compensated with chromium as Cr.sub.2 O.sub.3 and/or dopant element, preferably by plasma arc spraying; and, (C) heating the doped and compensated LaCrO.sub.3 layer to about 1100.degree. C. to 1300.degree. C. to provide a dense, substantially gas-tight, substantially hydration-free, electrically conductive interconnection material bonded to the electrode surface. A solid electrolyte layer can be applied to the unselected portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell.

  18. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  19. Economic and environmental benefits of interconnected systems. The Spanish example

    International Nuclear Information System (INIS)

    Chicharro, A.S.; Dios Alija, R. de

    1996-01-01

    The interconnected systems provide large technical and economic benefits which, evaluated and contrasted with the associated network investment cost, usually produce important net savings. There are continental electrical systems formed by many interconnected subsystems. The optimal size of an interconnection should be defined within an economic background. It is necessary to take into account the global environmental effects. The approach and results of studies carried out by Red Electrica is presented, in order to analyse both economic and environmental benefits resulting from an increase in the present Spanish interconnection capacities. From both economic and environmental points of view, the development of the interconnected systems is highly positive. (author)

  20. CWDM for very-short-reach and optical-backplane interconnections

    Science.gov (United States)

    Laha, Michael J.

    2002-06-01

    Course Wavelength Division Multiplexing (CWDM) provides access to next generation optical interconnect data rates by utilizing conventional electro-optical components that are widely available in the market today. This is achieved through the use of CWDM multiplexers and demultiplexers that integrate commodity type active components, lasers and photodiodes, into small optical subassemblies. In contrast to dense wavelength division multiplexing (DWDM), in which multiple serial data streams are combined to create aggregate data pipes perhaps 100s of gigabits wide, CWDM uses multiple laser sources contained in one module to create a serial equivalent data stream. For example, four 2.5 Gb/s lasers are multiplexed to create a 10 Gb/s data pipe. The advantages of CWDM over traditional serial optical interconnects include lower module power consumption, smaller packaging, and a superior electrical interface. This discussion will detail the concept of CWDM and design parameters that are considered when productizing a CWDM module into an industry standard optical interconnect. Additionally, a scalable parallel CWDM hybrid architecture will be described that allows the transport of large amounts of data from rack to rack in an economical fashion. This particular solution is targeted at solving optical backplane bottleneck problems predicted for the next generation terabit and petabit routers.

  1. Screening in dense ionic fluids

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1991-01-01

    There has been great progress in recent years in determining and understanding the structure of molten salts. I focus on molten alkali halides and discuss two main points concerning their liquid structure and its relationship with static electrical response in these dense ionic conductors. These are (i) the nature of screening and the related definitions and properties of the screening length and of the dielectric function, and (ii) developments in integral equations techniques for the evaluation of molten salt structure and static screening from given pair potentials. (author). 26 refs, 3 figs, 2 tabs

  2. Crosstalk in modern on-chip interconnects a FDTD approach

    CERN Document Server

    Kaushik, B K; Patnaik, Amalendu

    2016-01-01

    The book provides accurate FDTD models for on-chip interconnects, covering most recent advancements in materials and design. Furthermore, depending on the geometry and physical configurations, different electrical equivalent models for CNT and GNR based interconnects are presented. Based on the electrical equivalent models the performance comparison among the Cu, CNT and GNR-based interconnects are also discussed in the book. The proposed models are validated with the HSPICE simulations. The book introduces the current research scenario in the modeling of on-chip interconnects. It presents the structure, properties, and characteristics of graphene based on-chip interconnects and the FDTD modeling of Cu based on-chip interconnects. The model considers the non-linear effects of CMOS driver as well as the transmission line effects of interconnect line that includes coupling capacitance and mutual inductance effects. In a more realistic manner, the proposed model includes the effect of width-dependent MFP of the ...

  3. Carbon nanotubes for interconnects process, design and applications

    CERN Document Server

    Dijon, Jean; Maffucci, Antonio

    2017-01-01

    This book provides a single-source reference on the use of carbon nanotubes (CNTs) as interconnect material for horizontal, on-chip and 3D interconnects. The authors demonstrate the uses of bundles of CNTs, as innovative conducting material to fabricate interconnect through-silicon vias (TSVs), in order to improve the performance, reliability and integration of 3D integrated circuits (ICs). This book will be first to provide a coherent overview of exploiting carbon nanotubes for 3D interconnects covering aspects from processing, modeling, simulation, characterization and applications. Coverage also includes a thorough presentation of the application of CNTs as horizontal on-chip interconnects which can potentially revolutionize the nanoelectronics industry. This book is a must-read for anyone interested in the state-of-the-art on exploiting carbon nanotubes for interconnects for both 2D and 3D integrated circuits. Provides a single-source reference on carbon nanotubes for interconnect applications; Includes c...

  4. Decentralised output feedback control of Markovian jump interconnected systems with unknown interconnections

    Science.gov (United States)

    Li, Li-Wei; Yang, Guang-Hong

    2017-07-01

    The problem of decentralised output feedback control is addressed for Markovian jump interconnected systems with unknown interconnections and general transition rates (TRs) allowed to be unknown or known with uncertainties. A class of decentralised dynamic output feedback controllers are constructed, and a cyclic-small-gain condition is exploited to dispose the unknown interconnections so that the resultant closed-loop system is stochastically stable and satisfies an H∞ performance. With slack matrices to cope with the nonlinearities incurred by unknown and uncertain TRs in control synthesis, a novel controller design condition is developed in linear matrix inequality formalism. Compared with the existing works, the proposed approach leads to less conservatism. Finally, two examples are used to illustrate the effectiveness of the new results.

  5. Environmental Regulation Impacts on Eastern Interconnection Performance

    Energy Technology Data Exchange (ETDEWEB)

    Markham, Penn N [ORNL; Liu, Yilu [ORNL; Young II, Marcus Aaron [ORNL

    2013-07-01

    In the United States, recent environmental regulations will likely result in the removal of nearly 30 GW of oil and coal-fired generation from the power grid, mostly in the Eastern Interconnection (EI). The effects of this transition on voltage stability and transmission line flows have previously not been studied from a system-wide perspective. This report discusses the results of power flow studies designed to simulate the evolution of the EI over the next few years as traditional generation sources are replaced with environmentally friendlier ones such as natural gas and wind.

  6. Optical Interconnection Via Computer-Generated Holograms

    Science.gov (United States)

    Liu, Hua-Kuang; Zhou, Shaomin

    1995-01-01

    Method of free-space optical interconnection developed for data-processing applications like parallel optical computing, neural-network computing, and switching in optical communication networks. In method, multiple optical connections between multiple sources of light in one array and multiple photodetectors in another array made via computer-generated holograms in electrically addressed spatial light modulators (ESLMs). Offers potential advantages of massive parallelism, high space-bandwidth product, high time-bandwidth product, low power consumption, low cross talk, and low time skew. Also offers advantage of programmability with flexibility of reconfiguration, including variation of strengths of optical connections in real time.

  7. Interconnectivity and the Electronic Academic Library

    Directory of Open Access Journals (Sweden)

    Donald E. Riggs

    1988-03-01

    Full Text Available 無Due to the emphasis on the use of computing networks on campuses and to the very nature of more information being accessible to library users only via electronic means, we are witnessing a migration to electronic academic libraries. this new type of library is being required to have interconnections with the campus' other online information/data systems. Arizona State University libraries have been provided the opportunity to develop an electronic library that will be the focal point of a campus-wide information/data network.

  8. Thermoelectric Coolers with Sintered Silver Interconnects

    Science.gov (United States)

    Kähler, Julian; Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2014-06-01

    The fabrication and performance of a sintered Peltier cooler (SPC) based on bismuth telluride with sintered silver interconnects are described. Miniature SPC modules with a footprint of 20 mm2 were assembled using pick-and-place pressure-assisted silver sintering at low pressure (5.5 N/mm2) and moderate temperature (250°C to 270°C). A modified flip-chip bonder combined with screen/stencil printing for paste transfer was used for the pick-and-place process, enabling high positioning accuracy, easy handling of the tiny bismuth telluride pellets, and immediate visual process control. A specific contact resistance of (1.4 ± 0.1) × 10-5 Ω cm2 was found, which is in the range of values reported for high-temperature solder interconnects of bismuth telluride pellets. The realized SPCs were evaluated from room temperature to 300°C, considerably outperforming the operating temperature range of standard commercial Peltier coolers. Temperature cycling capability was investigated from 100°C to 235°C over more than 200 h, i.e., 850 cycles, during which no degradation of module resistance or cooling performance occurred.

  9. Interconnected ponds operation for flood hazard distribution

    Science.gov (United States)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  10. Message Passing Framework for Globally Interconnected Clusters

    International Nuclear Information System (INIS)

    Hafeez, M; Riaz, N; Asghar, S; Malik, U A; Rehman, A

    2011-01-01

    In prevailing technology trends it is apparent that the network requirements and technologies will advance in future. Therefore the need of High Performance Computing (HPC) based implementation for interconnecting clusters is comprehensible for scalability of clusters. Grid computing provides global infrastructure of interconnecting clusters consisting of dispersed computing resources over Internet. On the other hand the leading model for HPC programming is Message Passing Interface (MPI). As compared to Grid computing, MPI is better suited for solving most of the complex computational problems. MPI itself is restricted to a single cluster. It does not support message passing over the internet to use the computing resources of different clusters in an optimal way. We propose a model that provides message passing capabilities between parallel applications over the internet. The proposed model is based on Architecture for Java Universal Message Passing (A-JUMP) framework and Enterprise Service Bus (ESB) named as High Performance Computing Bus. The HPC Bus is built using ActiveMQ. HPC Bus is responsible for communication and message passing in an asynchronous manner. Asynchronous mode of communication offers an assurance for message delivery as well as a fault tolerance mechanism for message passing. The idea presented in this paper effectively utilizes wide-area intercluster networks. It also provides scheduling, dynamic resource discovery and allocation, and sub-clustering of resources for different jobs. Performance analysis and comparison study of the proposed framework with P2P-MPI are also presented in this paper.

  11. Towards energy aware optical networks and interconnects

    Science.gov (United States)

    Glesk, Ivan; Osadola, Tolulope; Idris, Siti

    2013-10-01

    In a today's world, information technology has been identified as one of the major factors driving economic prosperity. Datacenters businesses have been growing significantly in the past few years. The equipments in these datacenters need to be efficiently connected to each other and also to the outside world in order to enable effective exchange of information. This is why there is need for highly scalable, energy savvy and reliable network connectivity infrastructure that is capable of accommodating the large volume of data being exchanged at any time within the datacenter network and the outside network in general. These devices that can ensure such effective connectivity currently require large amount of energy in order to meet up with these increasing demands. In this paper, an overview of works being done towards realizing energy aware optical networks and interconnects for datacenters is presented. Also an OCDMA approach is discussed as potential multiple access technique for future optical network interconnections. We also presented some challenges that might inhibit effective implementation of the OCDMA multiplexing scheme.

  12. An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering

    International Nuclear Information System (INIS)

    Zhu Zhang-Ming; Hao Bao-Tian; En Yun-Fei; Yang Yin-Tang; Li Yue-Jin

    2011-01-01

    On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses. (interdisciplinary physics and related areas of science and technology)

  13. Deterministic and unambiguous dense coding

    International Nuclear Information System (INIS)

    Wu Shengjun; Cohen, Scott M.; Sun Yuqing; Griffiths, Robert B.

    2006-01-01

    Optimal dense coding using a partially-entangled pure state of Schmidt rank D and a noiseless quantum channel of dimension D is studied both in the deterministic case where at most L d messages can be transmitted with perfect fidelity, and in the unambiguous case where when the protocol succeeds (probability τ x ) Bob knows for sure that Alice sent message x, and when it fails (probability 1-τ x ) he knows it has failed. Alice is allowed any single-shot (one use) encoding procedure, and Bob any single-shot measurement. For D≤D a bound is obtained for L d in terms of the largest Schmidt coefficient of the entangled state, and is compared with published results by Mozes et al. [Phys. Rev. A71, 012311 (2005)]. For D>D it is shown that L d is strictly less than D 2 unless D is an integer multiple of D, in which case uniform (maximal) entanglement is not needed to achieve the optimal protocol. The unambiguous case is studied for D≤D, assuming τ x >0 for a set of DD messages, and a bound is obtained for the average . A bound on the average requires an additional assumption of encoding by isometries (unitaries when D=D) that are orthogonal for different messages. Both bounds are saturated when τ x is a constant independent of x, by a protocol based on one-shot entanglement concentration. For D>D it is shown that (at least) D 2 messages can be sent unambiguously. Whether unitary (isometric) encoding suffices for optimal protocols remains a major unanswered question, both for our work and for previous studies of dense coding using partially-entangled states, including noisy (mixed) states

  14. Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms

    Science.gov (United States)

    Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)

    1996-01-01

    A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  15. Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Eike Möhlmann

    2015-06-01

    Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.

  16. Compact Interconnection Networks Based on Quantum Dots

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Matthew

    2003-01-01

    Architectures that would exploit the distinct characteristics of quantum-dot cellular automata (QCA) have been proposed for digital communication networks that connect advanced digital computing circuits. In comparison with networks of wires in conventional very-large-scale integrated (VLSI) circuitry, the networks according to the proposed architectures would be more compact. The proposed architectures would make it possible to implement complex interconnection schemes that are required for some advanced parallel-computing algorithms and that are difficult (and in many cases impractical) to implement in VLSI circuitry. The difficulty of implementation in VLSI and the major potential advantage afforded by QCA were described previously in Implementing Permutation Matrices by Use of Quantum Dots (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42. To recapitulate: Wherever two wires in a conventional VLSI circuit cross each other and are required not to be in electrical contact with each other, there must be a layer of electrical insulation between them. This, in turn, makes it necessary to resort to a noncoplanar and possibly a multilayer design, which can be complex, expensive, and even impractical. As a result, much of the cost of designing VLSI circuits is associated with minimization of data routing and assignment of layers to minimize crossing of wires. Heretofore, these considerations have impeded the development of VLSI circuitry to implement complex, advanced interconnection schemes. On the other hand, with suitable design and under suitable operating conditions, QCA-based signal paths can be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. The proposed architectures require two advances in QCA-based circuitry beyond basic QCA-based binary

  17. Optimal super dense coding over memory channels

    OpenAIRE

    Shadman, Zahra; Kampermann, Hermann; Macchiavello, Chiara; Bruß, Dagmar

    2011-01-01

    We study the super dense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and non-unitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The super dense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where non-unitary encoding leads to an improvement in the super dense coding capacity.

  18. Current Solutions: Recent Experience in Interconnecting Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.

    2003-09-01

    This report catalogues selected real-world technical experiences of utilities and customers that have interconnected distributed energy assets with the electric grid. This study was initiated to assess the actual technical practices for interconnecting distributed generation and had a particular focus on the technical issues covered under the Institute of Electrical and Electronics Engineers (IEEE) 1547(TM) Standard for Interconnecting Distributed Resources With Electric Power Systems.

  19. Interconnection network architectures based on integrated orbital angular momentum emitters

    Science.gov (United States)

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  20. Self-Rerouting and Curative Interconnect Technology (SERCUIT)

    Science.gov (United States)

    2017-12-01

    SPECIAL REPORT RDMR-CS-17-01 SELF-REROUTING AND CURATIVE INTERCONNECT TECHNOLOGY (SERCUIT) Shiv Joshi Concepts to Systems, Inc...Final 4. TITLE AND SUBTITLE Self-Rerouting and Curative Interconnect Technology (SERCUIT) 5. FUNDING NUMBERS 6. AUTHOR(S) Shiv Joshi...concepts2systems.com (p) 434-207-5189 x (f) Click to view full size Title Contract Number SELF-REROUTING AND CURATIVE INTERCONNECT TECHNOLOGY (SERCUIT) W911W6-17-C-0029

  1. Dense module enumeration in biological networks

    Science.gov (United States)

    Tsuda, Koji; Georgii, Elisabeth

    2009-12-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  2. Dense module enumeration in biological networks

    International Nuclear Information System (INIS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-01-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  3. Distributed Energy Resources Interconnection Systems: Technology Review and Research Needs

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, N. R.

    2002-09-01

    Interconnecting distributed energy resources (DER) to the electric utility grid (or Area Electric Power System, Area EPS) involves system engineering, safety, and reliability considerations. This report documents US DOE Distribution and Interconnection R&D (formerly Distributed Power Program) activities, furthering the development and safe and reliable integration of DER interconnected with our nation's electric power systems. The key to that is system integration and technology development of the interconnection devices that perform the functions necessary to maintain the safety, power quality, and reliability of the EPS when DER are connected to it.

  4. Cost based interconnection charges as a way to induce competition

    DEFF Research Database (Denmark)

    Falch, Morten

    The objective of this paper is to analyse the relationship between regulation of interconnection charges and the level of competition. One of the most important issues in the debate on interconnect regulation has been use of forward looking costs for setting of interconnection charges. This debat...... has been ongoing within the EU as well as in US. This paper discusses the European experiences and in particular the Danish experiences with use of cost based interconnection charges, and their impact on competition in the telecom market....

  5. Financial viability of the Sonora-Baja California interconnection line

    International Nuclear Information System (INIS)

    Alonso, G.; Ortega, G.

    2017-09-01

    In the Development Program of the National Electricity Sector 2015-2029, an electric interconnection line between Sonora and Baja California (Mexico) is proposed, this study analyzes the financial viability of this interconnection line based on the maximum hourly and seasonal energy demand between both regions and proposes alternatives for the supply of electric power that supports the economic convenience of this interconnection line. The results show that additional capacity is required in Sonora to cover the maximum demands of both regions since in the current condition of the National Electric System the interconnection line is not justified. (Author)

  6. 78 FR 73239 - Small Generator Interconnection Agreements and Procedures

    Science.gov (United States)

    2013-12-05

    ... Electronics Engineers (IEEE) Standard 1547 for Interconnecting Distributed Resources with Electric Power... discriminatory manner.\\38\\ \\37\\ The Electricity Consumers Resource Council, American Chemistry Council, American...

  7. Asynchronous decentralized method for interconnected electricity markets

    International Nuclear Information System (INIS)

    Huang, Anni; Joo, Sung-Kwan; Song, Kyung-Bin; Kim, Jin-Ho; Lee, Kisung

    2008-01-01

    This paper presents an asynchronous decentralized method to solve the optimization problem of interconnected electricity markets. The proposed method decomposes the optimization problem of combined electricity markets into individual optimization problems. The impact of neighboring markets' information is included in the objective function of the individual market optimization problem by the standard Lagrangian relaxation method. Most decentralized optimization methods use synchronous models of communication to exchange updated market information among markets during the iterative process. In this paper, however, the solutions of the individual optimization problems are coordinated through an asynchronous communication model until they converge to the global optimal solution of combined markets. Numerical examples are presented to demonstrate the advantages of the proposed asynchronous method over the existing synchronous methods. (author)

  8. Virtual interconnection platform initiative scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kou, Gefei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pan, Zuohong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); King Jr., Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    Due to security and liability concerns, the research community has limited access to realistic large-scale power grid models to test and validate new operation and control methodologies. It is also difficult for industry to evaluate the relative value of competing new tools without a common platform for comparison. This report proposes to develop a large-scale virtual power grid model that retains basic features and represents future trends of major U.S. electric interconnections. This model will include realistic power flow and dynamics information as well as a relevant geospatial distribution of assets. This model will be made widely available to the research community for various power system stability and control studies and can be used as a common platform for comparing the efficacies of various new technologies.

  9. New transmission interconnection reduces consumer costs

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-09-15

    The Central American electric interconnection system (SIEPAC) project will involve the construction of a 1830 km 230 kV transmission system that will link Guatemala, El Salvador, Honduras, Costa Rica, Nicaragua, and Panama. The system is expected to alleviate the region's power shortages and reduce electricity costs for consumers. Costs for the SIEPAC project have been estimated at $370 million. The system will serve approximately 37 million customers, and will include 15 substations. The contract for building the electrical equipment has been awarded to Schweitzer Engineering Laboratories (SEL) who plan to manufacture components at a plant in Mexico. The equipment will include high speed line protection, automation, and control systems. Line current differential systems and satellite-synchronized clocks will also be used. The new transmission system is expected to be fully operational by 2009. 1 fig.

  10. SIDES - Segment Interconnect Diagnostic Expert System

    International Nuclear Information System (INIS)

    Booth, A.W.; Forster, R.; Gustafsson, L.; Ho, N.

    1989-01-01

    It is well known that the FASTBUS Segment Interconnect (SI) provides a communication path between two otherwise independent, asynchronous bus segments. The SI is probably the most important module in any FASTBUS data acquisition network since it's failure to function can cause whole segments of the network to be inaccessible and sometimes inoperable. This paper describes SIDES, an intelligent program designed to diagnose SI's both in situ as they operate in a data acquisition network, and in the laboratory in an acceptance/repair environment. The paper discusses important issues such as knowledge acquisition; extracting knowledge from human experts and other knowledge sources. SIDES can benefit high energy physics experiments, where SI problems can be diagnosed and solved more quickly. Equipment pool technicians can also benefit from SIDES, first by decreasing the number of SI's erroneously turned in for repair, and secondly as SIDES acts as an intelligent assistant to the technician in the diagnosis and repair process

  11. Electric power grid interconnection in Northeast Asia

    International Nuclear Information System (INIS)

    Yun, Won-Cheol; Zhang, Zhong Xiang

    2006-01-01

    In spite of regional closeness, energy cooperation in Northeast Asia has remained unexplored. However, this situation appears to be changing. The government of South Korea seems to be very enthusiastic for power grid interconnection between the Russian Far East and South Korea to overcome difficulties in finding new sites for building power facilities to meet its need for increased electricity supplies. This paper analyzes the feasibility of this electric power grid interconnection route. The issues addressed include electricity market structures; the prospects for electric power industry restructuring in the Russian Federation and South Korea; the political issues related to North Korea; the challenges for the governments involved and the obstacles anticipated in moving this project forward; project financing and the roles and concerns from multilateral and regional banks; and institutional framework for energy cooperation. While there are many technical issues that need to be resolved, we think that the great challenge lies in the financing of this commercial project. Thus, the governments of the Russian Federation and South Korea involved in the project need to foster the development of their internal capital markets and to create confidence with international investors. To this end, on energy side, this involves defining a clear energy policy implemented by independent regulators, speeding up the already started but delayed reform process of restructuring electric power industry and markets, and establishing a fair and transparent dispute resolution mechanism in order to reduce non-commercial risks to a minimum. The paper argues that establishing a framework for energy cooperation in this region will contribute positively towards that end, although views differ regarding its specific form. Finally, given that North Korea has a crucial transit role to play and faces a very unstable political situation, it is concluded that moving the project forward needs to be

  12. Deconstructing the pluripotency gene regulatory network

    KAUST Repository

    Li, Mo

    2018-04-04

    Pluripotent stem cells can be isolated from embryos or derived by reprogramming. Pluripotency is stabilized by an interconnected network of pluripotency genes that cooperatively regulate gene expression. Here we describe the molecular principles of pluripotency gene function and highlight post-transcriptional controls, particularly those induced by RNA-binding proteins and alternative splicing, as an important regulatory layer of pluripotency. We also discuss heterogeneity in pluripotency regulation, alternative pluripotency states and future directions of pluripotent stem cell research.

  13. Deconstructing the pluripotency gene regulatory network

    KAUST Repository

    Li, Mo; Belmonte, Juan Carlos Izpisua

    2018-01-01

    Pluripotent stem cells can be isolated from embryos or derived by reprogramming. Pluripotency is stabilized by an interconnected network of pluripotency genes that cooperatively regulate gene expression. Here we describe the molecular principles of pluripotency gene function and highlight post-transcriptional controls, particularly those induced by RNA-binding proteins and alternative splicing, as an important regulatory layer of pluripotency. We also discuss heterogeneity in pluripotency regulation, alternative pluripotency states and future directions of pluripotent stem cell research.

  14. Dense sheet Z-pinches

    International Nuclear Information System (INIS)

    Tetsu, Miyamoto

    1999-01-01

    The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)

  15. STAR FORMATION IN DENSE CLUSTERS

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically ∼1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of ∼2, consistent with models of episodic disk accretion.

  16. Dense image correspondences for computer vision

    CERN Document Server

    Liu, Ce

    2016-01-01

    This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems.   ·         Provides i...

  17. Updating Small Generator Interconnection Procedures for New Market Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Fox, K.; Stanfield, S.; Varnado, L.; Culley, T.; Sheehan, M.

    2012-12-01

    Federal and state regulators are faced with the challenge of keeping interconnection procedures updated against a backdrop of evolving technology, new codes and standards, and considerably transformed market conditions. This report is intended to educate policymakers and stakeholders on beneficial reforms that will keep interconnection processes efficient and cost-effective while maintaining a safe and reliable power system.

  18. Optimal interconnection and renewable targets for north-west Europe

    International Nuclear Information System (INIS)

    Lynch, Muireann Á.; Tol, Richard S.J.; O'Malley, Mark J.

    2012-01-01

    We present a mixed-integer, linear programming model for determining optimal interconnection for a given level of renewable generation using a cost minimisation approach. Optimal interconnection and capacity investment decisions are determined under various targets for renewable penetration. The model is applied to a test system for eight regions in Northern Europe. It is found that considerations on the supply side dominate demand side considerations when determining optimal interconnection investment: interconnection is found to decrease generation capacity investment and total costs only when there is a target for renewable generation. Higher wind integration costs see a concentration of wind in high-wind regions with interconnection to other regions. - Highlights: ► We use mixed-integer linear programming to determine optimal interconnection locations for given renewable targets. ► The model is applied to a test system for eight regions in Northern Europe. ► Interconnection reduces costs only when there is a renewable target. ► Wind integration costs affect the interconnection portfolio.

  19. 14 CFR 29.957 - Flow between interconnected tanks.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.957 Flow between interconnected tanks. (a) Where tank outlets are interconnected and allow fuel to flow between them due to gravity or flight accelerations, it must be impossible for fuel to flow between tanks in...

  20. Robert Aymar seals the last interconnect in the LHC

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    The LHC completes the circle. On 7 November, in a brief ceremony in the LHC tunnel, CERN Director General Robert Aymar (Photo 1) sealed the last interconnect between the main magnets of the Large Hadron Collider (LHC). Jean-Philippe Tock, leader of the Interconnections team, tightens the last bolt (Photos 4-8).

  1. Circuit and interconnect design for high bit-rate applications

    NARCIS (Netherlands)

    Veenstra, H.

    2006-01-01

    This thesis presents circuit and interconnect design techniques and design flows that address the most difficult and ill-defined aspects of the design of ICs for high bit-rate applications. Bottlenecks in interconnect design, circuit design and on-chip signal distribution for high bit-rate

  2. Mapping of interconnection of climate risks

    Science.gov (United States)

    Yokohata, Tokuta; Tanaka, Katsumasa; Nishina, Kazuya; Takanashi, Kiyoshi; Emori, Seita; Kiguchi, Masashi; Iseri, Yoshihiko; Honda, Yasushi; Okada, Masashi; Masaki, Yoshimitsu; Yamamoto, Akitomo; Shigemitsu, Masahito; Yoshimori, Masakazu; Sueyoshi, Tetsuo; Iwase, Kenta; Hanasaki, Naota; Ito, Akihiko; Sakurai, Gen; Iizumi, Toshichika; Oki, Taikan

    2015-04-01

    Anthropogenic climate change possibly causes various impacts on human society and ecosystem. Here, we call possible damages or benefits caused by the future climate change as "climate risks". Many climate risks are closely interconnected with each other by direct cause-effect relationship. In this study, the major climate risks are comprehensively summarized based on the survey of studies in the literature using IPCC AR5 etc, and their cause-effect relationship are visualized by a "network diagram". This research is conducted by the collaboration between the experts of various fields, such as water, energy, agriculture, health, society, and eco-system under the project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). First, the climate risks are classified into 9 categories (water, energy, food, health, disaster, industry, society, ecosystem, and tipping elements). Second, researchers of these fields in our project survey the research articles, and pick up items of climate risks, and possible cause-effect relationship between the risk items. A long list of the climate risks is summarized into ~130, and that of possible cause-effect relationship between the risk items is summarized into ~300, because the network diagram would be illegible if the number of the risk items and cause-effect relationship is too large. Here, we only consider the risks that could occur if climate mitigation policies are not conducted. Finally, the chain of climate risks is visualized by creating a "network diagram" based on a network graph theory (Fruchtman & Reingold algorithm). Through the analysis of network diagram, we find that climate risks at various sectors are closely related. For example, the decrease in the precipitation under the global climate change possibly causes the decrease in river runoff and the decrease in soil moisture, which causes the changes in crop production. The changes in crop production can have an impact on society by

  3. A one-semester course in modeling of VSLI interconnections

    CERN Document Server

    Goel, Ashok

    2015-01-01

    Quantitative understanding of the parasitic capacitances and inductances, and the resultant propagation delays and crosstalk phenomena associated with the metallic interconnections on the very large scale integrated (VLSI) circuits has become extremely important for the optimum design of the state-of-the-art integrated circuits. More than 65 percent of the delays on the integrated circuit chip occur in the interconnections and not in the transistors on the chip. Mathematical techniques to model the parasitic capacitances, inductances, propagation delays, crosstalk noise, and electromigration-induced failure associated with the interconnections in the realistic high-density environment on a chip will be discussed. A One-Semester Course in Modeling of VLSI Interconnections also includes an overview of the future interconnection technologies for the nanotechnology circuits.

  4. Fuel cell electrode interconnect contact material encapsulation and method

    Science.gov (United States)

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  5. Next generation space interconnect research and development in space communications

    Science.gov (United States)

    Collier, Charles Patrick

    2017-11-01

    Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.

  6. Optical backplane interconnect switch for data processors and computers

    Science.gov (United States)

    Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.

    1989-01-01

    An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.

  7. Solar-cell interconnect design for terrestrial photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1984-01-01

    Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.

  8. 76 FR 45248 - PJM Interconnection, L.L.C., PJM Power Providers Group v. PJM Interconnection, L.L.C...

    Science.gov (United States)

    2011-07-28

    ...-002; Docket No. EL11-20-001] PJM Interconnection, L.L.C., PJM Power Providers Group v. PJM Interconnection, L.L.C.; Supplemental Notice of Staff Technical Conference On June 13, 2011, the Commission issued... Resources Services, Inc., Maryland Public Service Commission, Monitoring Analytics, L.L.C., National Rural...

  9. 76 FR 39870 - PJM Interconnection, LLC; PJM Power Providers Group v. PJM Interconnection, LLC; Notice of Date...

    Science.gov (United States)

    2011-07-07

    .... EL11-20-001] PJM Interconnection, LLC; PJM Power Providers Group v. PJM Interconnection, LLC; Notice of... Sell Offers for Planned Generation Capacity Resources submitted into PJM's Reliability Pricing Model... presents an opportunity to exercise buyer market power; (2) whether the Fixed Resource Requirement (FRR...

  10. Thermal Runaways in LHC Interconnections: Experiments

    CERN Document Server

    Willering, G P; Bottura, L; Scheuerlein, C; Verweij, A P

    2011-01-01

    The incident in the LHC in September 2008 occurred in an interconnection between two magnets of the 13 kA dipole circuit. This event was traced to a defect in one of the soldered joints between two superconducting cables stabilized by a copper busbar. Further investigation revealed defective joints of other types. A combination of (1) a poor contact between the superconducting cable and the copper stabilizer and (2) an electrical discontinuity in the stabilizer at the level of the connection can lead to an unprotected quench of the busbar. Once the heating power in the unprotected superconducting cable exceeds the heat removal capacity a thermal run-away occurs, resulting in a fast melt-down of the non-stabilized cable. We have performed a thorough investigation of the conditions upon which a thermal run-away in the defect can occur. To this aim, we have prepared heavily instrumented samples with well-defined and controlled defects. In this paper we describe the experiment, and the analysis of the data, and w...

  11. Microtexture of Strain in electroplated copper interconnects

    International Nuclear Information System (INIS)

    Spolenak, R.; Barr, D.L.; Gross, M.E.; Evans-Lutterodt, K.; Brown, W.L.; Tamura, N.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Valek, B.C.; Bravman, J.C.; Flinn, P.; Marieb, T.; Keller, R.R.; Batterman, B.W.; Patel, J.R.

    2001-01-01

    The microstructure of narrow metal conductors in the electrical interconnections on IC chips has often been identified as of major importance in the reliability of these devices. The stresses and stress gradients that develop in the conductors as a result of thermal expansion differences in the materials and of electromigration at high current densities are believed to be strongly dependent on the details of the grain structure. The present work discusses new techniques based on microbeam x-ray diffraction (MBXRD) that have enabled measurement not only of the microstructure of totally encapsulated conductors but also of the local stresses in them on a micron and submicron scale. White x-rays from the Advanced Light Source were focused to a micron spot size by Kirkpatrick-Baez mirrors. The sample was stepped under the micro-beam and Laue images obtained at each sample location using a CCD area detector. Microstructure and local strain were deduced from these images. Cu lines with widths ranging from 0.8 mm to 5 mm and thickness of 1 mm were investigated. Comparisons are made between the capabilities of MBXRD and the well established techniques of broad beam XRD, electron back scatter diffraction (EBSD) and focused ion beam imagining (FIB)

  12. Optical interconnects based on VCSELs and low-loss silicon photonics

    Science.gov (United States)

    Aalto, Timo; Harjanne, Mikko; Karppinen, Mikko; Cherchi, Matteo; Sitomaniemi, Aila; Ollila, Jyrki; Malacarne, Antonio; Neumeyr, Christian

    2018-02-01

    Silicon photonics with micron-scale Si waveguides offers most of the benefits of submicron SOI technology while avoiding most of its limitations. In particular, thick silicon-on-insulator (SOI) waveguides offer 0.1 dB/cm propagation loss, polarization independency, broadband single-mode (SM) operation from 1.2 to >4 µm wavelength and ability to transmit high optical powers (>1 W). Here we describe the feasibility of Thick-SOI technology for advanced optical interconnects. With 12 μm SOI waveguides we demonstrate efficient coupling between standard single-mode fibers, vertical-cavity surface-emitting lasers (VCSELs) and photodetectors (PDs), as well as wavelength multiplexing in small footprint. Discrete VCSELs and PDs already support 28 Gb/s on-off keying (OOK), which shows a path towards 50-100 Gb/s bandwidth per wavelength by using more advanced modulation formats like PAM4. Directly modulated VCSELs enable very power-efficient optical interconnects for up to 40 km distance. Furthermore, with 3 μm SOI waveguides we demonstrate extremely dense and low-loss integration of numerous optical functions, such as multiplexers, filters, switches and delay lines. Also polarization independent and athermal operation is demonstrated. The latter is achieved by using short polymer waveguides to compensate for the thermo-optic effect in silicon. New concepts for isolator integration and polarization rotation are also explained.

  13. Composite systems of dilute and dense couplings

    International Nuclear Information System (INIS)

    Raymond, J R; Saad, D

    2008-01-01

    Composite systems, where couplings are of two types, a combination of strong dilute and weak dense couplings of Ising spins, are examined through the replica method. The dilute and dense parts are considered to have independent canonical disordered or uniform bond distributions; mixing the models by variation of a parameter γ alongside inverse temperature β we analyse the respective thermodynamic solutions. We describe the variation in high temperature transitions as mixing occurs; in the vicinity of these transitions we exactly analyse the competing effects of the dense and sparse models. By using the replica symmetric ansatz and population dynamics we described the low temperature behaviour of mixed systems

  14. Confining but chirally symmetric dense and cold matter

    International Nuclear Information System (INIS)

    Glozman, L. Ya.

    2012-01-01

    The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.

  15. Optics vs copper: from the perspective of "Thunderbolt" interconnect technology

    Science.gov (United States)

    Cheng, Hengju; Krause, Christine; Ko, Jamyuen; Gao, Miaobin; Liu, Guobin; Wu, Huichin; Qi, Mike; Lam, Chun-Chit

    2013-02-01

    Interconnect technology has been progressed at a very fast pace for the past decade. The signaling rates have steadily increased from 100:Mb/s to 25Gb/s. In every generation of interconnect technology evolution, optics always seems to take over at first, however, at the end, the cost advantage of copper wins over. Because of this, optical interconnects are limited to longer distance links where the attenuation in copper cable is too large for the integrated circuits to compensate. Optical interconnect has long been viewed as the premier solution in compared with copper interconnect. With the release of Thunderbolt technology, we are entering a new era in consumer electronics that runs at 10Gb/s line rate (20Gb/s throughput per connector interface). Thunderbolt interconnect technology includes both active copper cables and active optical cables as the transmission media which have very different physical characteristics. In order for optics to succeed in consumer electronics, several technology hurdles need to be cleared. For example, the optical cable needs to handle the consumer abuses such as pinch and bend. Also, the optical engine used in the active optical cable needs to be physically very small so that we don't change the looks and feels of the cable/connector. Most importantly, the cost of optics needs to come down significantly to effectively compete with the copper solution. Two interconnect technologies are compared and discussed on the relative cost, power consumption, form factor, density, and future scalability.

  16. Signal Integrity Analysis in Single and Bundled Carbon Nanotube Interconnects

    International Nuclear Information System (INIS)

    Majumder, M.K.; Pandya, N.D.; Kaushik, B.K.; Manhas, S.K.

    2013-01-01

    Carbon nanotube (CN T) can be considered as an emerging interconnect material in current nano scale regime. They are more promising than other interconnect materials such as Al or Cu because of their robustness to electromigration. This research paper aims to address the crosstalk-related issues (signal integrity) in interconnect lines. Different analytical models of single- (SWCNT), double- (DWCNT), and multiwalled CNTs (MWCNT) are studied to analyze the crosstalk delay at global interconnect lengths. A capacitively coupled three-line bus architecture employing CMOS driver is used for accurate estimation of crosstalk delay. Each line in bus architecture is represented with the equivalent RLC models of single and bundled SWCNT, DWCNT, and MWCNT interconnects. Crosstalk delay is observed at middle line (victim) when it switches in opposite direction with respect to the other two lines (aggressors). Using the data predicted by ITRS 2012, a comparative analysis on the basis of crosstalk delay is performed for bundled SWCNT/DWCNT and single MWCNT interconnects. It is observed that the overall crosstalk delay is improved by 40.92% and 21.37% for single MWCNT in comparison to bundled SWCNT and bundled DWCNT interconnects, respectively.

  17. Analysis of interconnecting energy systems over a synchronized life cycle

    International Nuclear Information System (INIS)

    Nian, Victor

    2016-01-01

    Highlights: • A methodology is developed for evaluating a life cycle of interconnected systems. • A new concept of partial temporal boundary is introduced via quantitative formulation. • The interconnecting systems are synchronized through the partial temporal boundary. • A case study on the life cycle of the coal–uranium system is developed. - Abstract: Life cycle analysis (LCA) using the process chain analysis (PCA) approach has been widely applied to energy systems. When applied to an individual energy system, such as coal or nuclear electricity generation, an LCA–PCA methodology can yield relatively accurate results with its detailed process representation based on engineering data. However, there are fundamental issues when applying conventional LCA–PCA methodology to a more complex life cycle, namely, a synchronized life cycle of interconnected energy systems. A synchronized life cycle of interconnected energy systems is established through direct interconnections among the processes of different energy systems, and all interconnecting systems are bounded within the same timeframe. Under such a life cycle formation, there are some major complications when applying conventional LCA–PCA methodology to evaluate the interconnecting energy systems. Essentially, the conventional system and boundary formulations developed for a life cycle of individual energy system cannot be directly applied to a life cycle of interconnected energy systems. To address these inherent issues, a new LCA–PCA methodology is presented in this paper, in which a new concept of partial temporal boundary is introduced to synchronize the interconnecting energy systems. The importance and advantages of these new developments are demonstrated through a case study on the life cycle of the coal–uranium system.

  18. Interacting Social Processes on Interconnected Networks.

    Directory of Open Access Journals (Sweden)

    Lucila G Alvarez-Zuzek

    Full Text Available We propose and study a model for the interplay between two different dynamical processes -one for opinion formation and the other for decision making- on two interconnected networks A and B. The opinion dynamics on network A corresponds to that of the M-model, where the state of each agent can take one of four possible values (S = -2,-1, 1, 2, describing its level of agreement on a given issue. The likelihood to become an extremist (S = ±2 or a moderate (S = ±1 is controlled by a reinforcement parameter r ≥ 0. The decision making dynamics on network B is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S = +1 or against (S = -1 the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β. Starting from a polarized case scenario in which all agents of network A hold positive orientations while all agents of network B have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β, the two-network system reaches a consensus in the positive state (initial state of network A when the reinforcement overcomes a crossover value r*(β, while a negative consensus happens for r βc. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r*, β*.

  19. Genomic Predictability of Interconnected Biparental Maize Populations

    Science.gov (United States)

    Riedelsheimer, Christian; Endelman, Jeffrey B.; Stange, Michael; Sorrells, Mark E.; Jannink, Jean-Luc; Melchinger, Albrecht E.

    2013-01-01

    Intense structuring of plant breeding populations challenges the design of the training set (TS) in genomic selection (GS). An important open question is how the TS should be constructed from multiple related or unrelated small biparental families to predict progeny from individual crosses. Here, we used a set of five interconnected maize (Zea mays L.) populations of doubled-haploid (DH) lines derived from four parents to systematically investigate how the composition of the TS affects the prediction accuracy for lines from individual crosses. A total of 635 DH lines genotyped with 16,741 polymorphic SNPs were evaluated for five traits including Gibberella ear rot severity and three kernel yield component traits. The populations showed a genomic similarity pattern, which reflects the crossing scheme with a clear separation of full sibs, half sibs, and unrelated groups. Prediction accuracies within full-sib families of DH lines followed closely theoretical expectations, accounting for the influence of sample size and heritability of the trait. Prediction accuracies declined by 42% if full-sib DH lines were replaced by half-sib DH lines, but statistically significantly better results could be achieved if half-sib DH lines were available from both instead of only one parent of the validation population. Once both parents of the validation population were represented in the TS, including more crosses with a constant TS size did not increase accuracies. Unrelated crosses showing opposite linkage phases with the validation population resulted in negative or reduced prediction accuracies, if used alone or in combination with related families, respectively. We suggest identifying and excluding such crosses from the TS. Moreover, the observed variability among populations and traits suggests that these uncertainties must be taken into account in models optimizing the allocation of resources in GS. PMID:23535384

  20. Intense, ultrashort light and dense, hot matter

    Indian Academy of Sciences (India)

    tiphoton and tunneling ionization, the physics of plasma formed in dense matter is .... A typical Gaussian laser pulse of 100 fs dura- .... J range) – and finally it is compressed back to its .... bond-hardening, molecular orientation and reori-.

  1. Finding dense locations in indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2014-01-01

    for semi-constrained indoor movement, and then uses this to map raw tracking records into mapping records representing object entry and exit times in particular locations. Then, an efficient indexing structure, the Dense Location Time Index (DLT-Index) is proposed for indexing the time intervals...... of the mapping table, along with associated construction, query processing, and pruning techniques. The DLT-Index supports very efficient aggregate point queries, interval queries, and dense location queries. A comprehensive experimental study with real data shows that the proposed techniques can efficiently......Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based model...

  2. Interference Coordination for Dense Wireless Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.; Jørgensen, Niels T.K.

    2015-01-01

    and dense deployment in Tokyo are compared. Evolution to DenseNets offers new opportunities for further development of downlink interference cooperation techniques. Various mechanisms in LTE and LTE-Advanced are revisited. Some techniques try to anticipate the future in a proactive way, whereas others......The promise of ubiquitous and super-fast connectivity for the upcoming years will be in large part fulfilled by the addition of base stations and spectral aggregation. The resulting very dense networks (DenseNets) will face a number of technical challenges. Among others, the interference emerges...... as an old acquaintance with new significance. As a matter of fact, the interference conditions and the role of aggressor and victim depend to a large extent on the density and the scenario. To illustrate this, downlink interference statistics for different 3GPP simulation scenarios and a more irregular...

  3. Skyrmions, dense matter and nuclear forces

    International Nuclear Information System (INIS)

    Pethick, C.J.

    1984-12-01

    A simple introduction to a number of properties of Skyrme's chiral soliton model of baryons is given. Some implications of the model for dense matter and for nuclear interactions are discussed. (orig.)

  4. On-chip photonic interconnects a computer architect's perspective

    CERN Document Server

    Nitta, Christopher J; Akella, Venkatesh

    2013-01-01

    As the number of cores on a chip continues to climb, architects will need to address both bandwidth and power consumption issues related to the interconnection network. Electrical interconnects are not likely to scale well to a large number of processors for energy efficiency reasons, and the problem is compounded by the fact that there is a fixed total power budget for a die, dictated by the amount of heat that can be dissipated without special (and expensive) cooling and packaging techniques. Thus, there is a need to seek alternatives to electrical signaling for on-chip interconnection appli

  5. The Enhanced Segment Interconnect for FASTBUS data communications

    International Nuclear Information System (INIS)

    Machen, D.R.; Downing, R.W.; Kirsten, F.A.; Nelson, R.O.

    1987-01-01

    The Enhanced Segment Interconnect concept (ESI) for improved FASTBUS data communications is a development supported by the U.S. Department of Energy under the Small Business Innovation Research (SBIR) program. The ESI will contain both the Segment Interconnect (SI) Tyhpe S-1 and an optional buffered interconnect for store-and-forward data communications; fiber-optic-coupled serial ports will provide optional data paths. The ESI can be applied in large FASTBUS-implemented physics experiments whose data-set or data-transmission distance requirements dictate alternate approaches to data communications. This paper describes the functions of the ESI and the status of its development, now 25% complete

  6. Dynamical theory of dense groups of galaxies

    Science.gov (United States)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  7. Kinetic chemistry of dense interstellar clouds

    International Nuclear Information System (INIS)

    Graedel, T.E.; Langer, W.D.; Frerking, M.A.

    1982-01-01

    A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded

  8. Regulatory Anatomy

    DEFF Research Database (Denmark)

    Hoeyer, Klaus

    2015-01-01

    This article proposes the term “safety logics” to understand attempts within the European Union (EU) to harmonize member state legislation to ensure a safe and stable supply of human biological material for transplants and transfusions. With safety logics, I refer to assemblages of discourses, le...... they arise. In short, I expose the regulatory anatomy of the policy landscape....

  9. Regulatory Governance

    DEFF Research Database (Denmark)

    Kjær, Poul F.; Vetterlein, Antje

    2018-01-01

    Regulatory governance frameworks have become essential building blocks of world society. From supply chains to the regimes surrounding international organizations, extensive governance frameworks have emerged which structure and channel a variety of social exchanges, including economic, political...... by the International Transitional Administrations (ITAs) in Kosovo and Iraq as well as global supply chains and their impact on the garment industry in Bangladesh....

  10. Opto-Electronic and Interconnects Hierarchical Design Automation System (OE-IDEAS)

    National Research Council Canada - National Science Library

    Turowski, M

    2004-01-01

    As microelectronics technology continues to advance, the associated electrical interconnection technology is not likely to keep pace, due to many parasitic effects appearing in metallic interconnections...

  11. Knowledge Access in Rural Inter-connected Areas Network ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Knowledge Access in Rural Inter-connected Areas Network (KariaNet) - Phase II ... the existing network to include two thematic networks on food security and rural ... Woman conquering male business in Yemen : Waleya's micro-enterprise.

  12. Free-Space Optical Interconnect Employing VCSEL Diodes

    Science.gov (United States)

    Simons, Rainee N.; Savich, Gregory R.; Torres, Heidi

    2009-01-01

    Sensor signal processing is widely used on aircraft and spacecraft. The scheme employs multiple input/output nodes for data acquisition and CPU (central processing unit) nodes for data processing. To connect 110 nodes and CPU nodes, scalable interconnections such as backplanes are desired because the number of nodes depends on requirements of each mission. An optical backplane consisting of vertical-cavity surface-emitting lasers (VCSELs), VCSEL drivers, photodetectors, and transimpedance amplifiers is the preferred approach since it can handle several hundred megabits per second data throughput.The next generation of satellite-borne systems will require transceivers and processors that can handle several Gb/s of data. Optical interconnects have been praised for both their speed and functionality with hopes that light can relieve the electrical bottleneck predicted for the near future. Optoelectronic interconnects provide a factor of ten improvement over electrical interconnects.

  13. Knowledge Access in Rural Inter-connected Areas Network ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Knowledge Access in Rural Inter-connected Areas Network (KariaNet) - Phase II ... poor by sharing innovations, best practices and indigenous knowledge using ... A third thematic network - on knowledge management strategies - will play an ...

  14. Interconnected Power Systems Mexico-Guatemala financed by BID

    International Nuclear Information System (INIS)

    Martinez, Veronica

    2003-01-01

    The article describes the plans for the interconnection of the electric power systems of Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, Panama and Mexico within the project Plan Pueba Panama. The objective of the interconnection is to create an electric market in the region that contributes to reduce costs and prices. The project will receive a financing of $37.5 millions of US dollars from the Banco Intrameramericano de Desarrollo (BID)

  15. Robust design of head interconnect for hard disk drive

    Science.gov (United States)

    Gao, X. K.; Liu, Q. H.; Liu, Z. J.

    2005-05-01

    Design of head interconnect is one of the important issues for hard disk drives with higher data rate and storage capacity. The impedance of interconnect and electromagnetic coupling influence the quality level of data communication. Thus an insightful study on how the trace configuration affects the impedance and crosstalk is necessary. An effective design approach based on Taguchi's robust design method is employed therefore in an attempt to realize impedance matching and crosstalk minimization with the effects of uncontrollable sources taken into consideration.

  16. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  17. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  18. Load shedding scheme in the south/southeastern interconnected system

    Energy Technology Data Exchange (ETDEWEB)

    Vieira Filho, Xisto; Couri, J J.G.; Gomes, P; Almeida, P C [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    1988-12-31

    This paper presents some characteristics of the Brazilian interconnected system and discusses the load shedding scheme in its different stages considering the beginning of operation of the Itaipu power plant. The present situation of the South and Southeastern load shedding scheme combination is also commented. Finally, the interconnected system evolution and the effects on the load shedding schemes are discussed. 4 refs., 5 figs., 2 tabs.

  19. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    Directory of Open Access Journals (Sweden)

    Recep Colak

    2010-10-01

    Full Text Available Computational prediction of functionally related groups of genes (functional modules from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented.We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB, by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples.We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely

  20. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    Science.gov (United States)

    Colak, Recep; Moser, Flavia; Chu, Jeffrey Shih-Chieh; Schönhuth, Alexander; Chen, Nansheng; Ester, Martin

    2010-10-25

    Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense) regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented. We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB), by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples. We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely available large

  1. Constitutive law of dense granular matter

    International Nuclear Information System (INIS)

    Hatano, Takahiro

    2010-01-01

    The frictional properties of dense granular matter under steady shear flow are investigated using numerical simulation. Shear flow tends to localize near the driving boundary unless the coefficient of restitution is close to zero and the driving velocity is small. The bulk friction coefficient is independent of shear rate in dense and slow flow, whereas it is an increasing function of shear rate in rapid flow. The coefficient of restitution affects the friction coefficient only in such rapid flow. Contrastingly, in dense and slow regime, the friction coefficient is independent of the coefficient of restitution and mainly determined by the elementary friction coefficient and the rotation of grains. It is found that the mismatch between the vorticity of flow and the angular frequency of grains plays a key role to the frictional properties of sheared granular matter.

  2. Nucleon structure and properties of dense matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Pethick, C.J.; Illinois Univ., Urbana, IL

    1988-01-01

    We consider the properties of dense matter in a framework of the Skyrme soliton model and the chiral bag model. The influence of the nucleon structure on the equation of state of dense matter is emphasized. We find that in both models the energy per unit volume is proportional to n 4/3 , n being the baryon number density. We discuss the properties of neutron stars with a derived equation of state. The role of many-body effects is investigated. The effect of including higher order terms in the chiral lagrangian is examined. The phase transition to quark matter is studied. 29 refs., 6 figs. (author)

  3. Fast Solvers for Dense Linear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kauers, Manuel [Research Institute for Symbolic Computation (RISC), Altenbergerstrasse 69, A4040 Linz (Austria)

    2008-10-15

    It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination over the rationals.

  4. Market and regulatory aspects of trans-national offshore electricity networks for wind power interconnection

    NARCIS (Netherlands)

    Roggenkamp, Martha M.; Hendriks, Ralph L.; Ummels, Bart C.; Kling, Wil L.

    Subsea cable connections are an essential part of offshore wind power projects. Apart from direct connections between an offshore wind park to the national grid, several alternatives can be envisaged, including the connection to interconnectors between countries or direct connection to a country

  5. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Science.gov (United States)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  6. Electrode and interconnect for miniature fuel cells using direct methanol feed

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Clara, Filiberto (Inventor)

    2004-01-01

    An improved system for interconnects in a fuel cell. In one embodiment, the membranes are located in parallel with one another, and current flow between them is facilitated by interconnects. In another embodiment, all of the current flow is through the interconnects which are located on the membranes. The interconnects are located between two electrodes.

  7. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2017-04-04

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  8. Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits

    Science.gov (United States)

    Strickland, S. M.; Hester, J. D.; Gowan, A. K.; Montgomery, R. K.; Geist, D. L.; Blanche, J. F.; McGuire, G. D.; Nash, T. S.

    2011-01-01

    As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified.

  9. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  10. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  11. The electronic pressure in dense plasmas

    International Nuclear Information System (INIS)

    Pozwolski, A.E.

    1982-01-01

    A thermodynamic calculation of the electronic pressure in a dense plasma is given. Approximations involved by the use of the Debye length are avoided, so the above theory remains valid even if the Debye length is smaller than the interionic distance. (author)

  12. APT: Action localization Proposals from dense Trajectories

    NARCIS (Netherlands)

    van Gemert, J.C.; Jain, M.; Gati, E.; Snoek, C.G.M.; Xie, X.; Jones, M.W.; Tam, G.K.L.

    2015-01-01

    This paper is on action localization in video with the aid of spatio-temporal proposals. To alleviate the computational expensive video segmentation step of existing proposals, we propose bypassing the segmentations completely by generating proposals directly from the dense trajectories used to

  13. Dense Alternating Sign Matrices and Extensions

    Czech Academy of Sciences Publication Activity Database

    Fiedler, Miroslav; Hall, F.J.; Stroev, M.

    2014-01-01

    Roč. 444, 1 March (2014), s. 219-226 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : alternating sign matrix * dense matrix * totally unimodular matrix * combined matrix * generalized complementary basic matrix Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  14. Coalescence preference in dense packing of bubbles

    Science.gov (United States)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  15. Probing dense matter with strange hadrons

    CERN Document Server

    Rafelski, Johann; Rafelski, Johann; Letessier, Jean

    2002-01-01

    Analysis of hadron production experimental data allows to understand the properties of the dense matter fireball produced in relativistic heavy ion collisions. We interpret the analysis results and argue that color deconfined state has been formed at highest CERN-SPS energies and at BNL-RHIC.

  16. Performance of WCN diffusion barrier for Cu multilevel interconnects

    Science.gov (United States)

    Lee, Seung Yeon; Ju, Byeong-Kwon; Kim, Yong Tae

    2018-04-01

    The electrical and thermal properties of a WCN diffusion barrier have been studied for Cu multilevel interconnects. The WCN has been prepared using an atomic layer deposition system with WF6-CH4-NH3-H2 gases and has a very low resistivity of 100 µΩ cm and 96.9% step coverage on the high-aspect-ratio vias. The thermally stable WCN maintains an amorphous state at 800 °C and Cu/WCN contact resistance remains within a 10% deviation from the initial value after 700 °C. The mean time to failure suggests that the Cu/WCN interconnects have a longer lifetime than Cu/TaN and Cu/WN interconnects because WCN prevents Cu migration owing to the stress evolution from tensile to compressive.

  17. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC’s model interconnection and net metering procedures.

  18. All-zigzag graphene nanoribbons for planar interconnect application

    Science.gov (United States)

    Chen, Po-An; Chiang, Meng-Hsueh; Hsu, Wei-Chou

    2017-07-01

    A feasible "lightning-shaped" zigzag graphene nanoribbon (ZGNR) structure for planar interconnects is proposed. Based on the density functional theory and non-equilibrium Green's function, the electron transport properties are evaluated. The lightning-shaped structure increases significantly the conductance of the graphene interconnect with an odd number of zigzag chains. This proposed technique can effectively utilize the linear I-V characteristic of asymmetric ZGNRs for interconnect application. Variability study accounting for width/length variation and the edge effect is also included. The transmission spectra, transmission eigenstates, and transmission pathways are analyzed to gain the physical insights. This lightning-shaped ZGNR enables all 2D material-based devices and circuits on flexible and transparent substrates.

  19. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem

    2017-11-21

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  20. Bi cluster-assembled interconnects produced using SU8 templates

    International Nuclear Information System (INIS)

    Partridge, J G; Matthewson, T; Brown, S A

    2007-01-01

    Bi clusters with an average diameter of 25 nm have been deposited from an inert gas aggregation source and assembled into thin-film interconnects which are formed between planar electrical contacts and supported on Si substrates passivated with Si 3 N 4 or thermally grown oxide. A layer of SU8 (a negative photoresist based on EPON SU-8 epoxy resin) is patterned using optical or electron-beam lithography, and it defines the position and dimensions of the cluster film. The conduction between the contacts is monitored throughout the deposition/assembly process, and subsequent I(V) characterization is performed in situ. Bi cluster-assembled interconnects have been fabricated with nanoscale widths and with up to 1:1 thickness:width aspect ratios. The conductivity of these interconnects has been increased, post-deposition, using a simple thermal annealing process

  1. Carbon nanotube based VLSI interconnects analysis and design

    CERN Document Server

    Kaushik, Brajesh Kumar

    2015-01-01

    The brief primarily focuses on the performance analysis of CNT based interconnects in current research scenario. Different CNT structures are modeled on the basis of transmission line theory. Performance comparison for different CNT structures illustrates that CNTs are more promising than Cu or other materials used in global VLSI interconnects. The brief is organized into five chapters which mainly discuss: (1) an overview of current research scenario and basics of interconnects; (2) unique crystal structures and the basics of physical properties of CNTs, and the production, purification and applications of CNTs; (3) a brief technical review, the geometry and equivalent RLC parameters for different single and bundled CNT structures; (4) a comparative analysis of crosstalk and delay for different single and bundled CNT structures; and (5) various unique mixed CNT bundle structures and their equivalent electrical models.

  2. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    KAUST Repository

    Qaiser, Nadeem; Khan, S. M.; Nour, Maha A.; Rehman, M. U.; Rojas, J. P.; Hussain, Muhammad Mustafa

    2017-01-01

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  3. On the stability of the interface between dense plasma and liquid under electrical pulse discharge in liquid medium

    International Nuclear Information System (INIS)

    Starchyk, P.D.; Porytskyy, P.V.

    2005-01-01

    It is shown that the most important influence on the plasma of electrical pulse discharges in liquid have the processes in a zone of its contact with condensed medium. The investigations of growth of corrugations are conducted which arise on an interface between both the plasma channels of electrical pulse discharges and limiting it liquid. It is shown that the growth of perturbations caused by Rayleigh-Taylor instability are nonlinearly saturated. It is established the interconnection between both the pointed perturbations and the parameters of a dense plasma of discharge channel

  4. Natural gas and electrical interconnections in the Mediterranean Basin

    International Nuclear Information System (INIS)

    Grenon, M.

    1992-01-01

    Intermediate and long term socio-economical and energetic scenarios have shown that mediterranean basin countries will know a great growth of energy demand, particularly power demand. The first part of this paper describes the main projects for the establishment of interconnected natural gas systems through Mediterranean sea, by pipelines (Algeria-Tunisia-Libya project, Algeria-Morocco-Spain project, Libya-Italy project). The second part describes the main projects of electrical networks with the establishment of undersea links between Spain and Morocco, and between Italy and Tunisia; beefing up the interconnections between the North African countries; and developing ties in the Near East (from Egypt to Turkey)

  5. EEG simulation by 2D interconnected chaotic oscillators

    International Nuclear Information System (INIS)

    Kubany, Adam; Mhabary, Ziv; Gontar, Vladimir

    2011-01-01

    Research highlights: → ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. → An inverse problem solution (PRCGA) is proposed. → Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  6. Fundamentals of reliability engineering applications in multistage interconnection networks

    CERN Document Server

    Gunawan, Indra

    2014-01-01

    This book presents fundamentals of reliability engineering with its applications in evaluating reliability of multistage interconnection networks. In the first part of the book, it introduces the concept of reliability engineering, elements of probability theory, probability distributions, availability and data analysis.  The second part of the book provides an overview of parallel/distributed computing, network design considerations, and more.  The book covers a comprehensive reliability engineering methods and its practical aspects in the interconnection network systems. Students, engineers, researchers, managers will find this book as a valuable reference source.

  7. Load Frequency Control of AC Microgrid Interconnected Thermal Power System

    Science.gov (United States)

    Lal, Deepak Kumar; Barisal, Ajit Kumar

    2017-08-01

    In this paper, a microgrid (MG) power generation system is interconnected with a single area reheat thermal power system for load frequency control study. A new meta-heuristic optimization algorithm i.e. Moth-Flame Optimization (MFO) algorithm is applied to evaluate optimal gains of the fuzzy based proportional, integral and derivative (PID) controllers. The system dynamic performance is studied by comparing the results with MFO optimized classical PI/PID controllers. Also the system performance is investigated with fuzzy PID controller optimized by recently developed grey wolf optimizer (GWO) algorithm, which has proven its superiority over other previously developed algorithm in many interconnected power systems.

  8. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  9. Supplemental Information for New York State Standardized Interconnection Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narang, David J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mather, Barry A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kroposki, Benjamin D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-24

    This document is intended to aid in the understanding and application of the New York State Standardized Interconnection Requirements (SIR) and Application Process for New Distributed Generators 5 MW or Less Connected in Parallel with Utility Distribution Systems, and it aims to provide supplemental information and discussion on selected topics relevant to the SIR. This guide focuses on technical issues that have to date resulted in the majority of utility findings within the context of interconnecting photovoltaic (PV) inverters. This guide provides background on the overall issue and related mitigation measures for selected topics, including substation backfeeding, anti-islanding and considerations for monitoring and controlling distributed energy resources (DER).

  10. Compact models and performance investigations for subthreshold interconnects

    CERN Document Server

    Dhiman, Rohit

    2014-01-01

    The book provides a detailed analysis of issues related to sub-threshold interconnect performance from the perspective of analytical approach and design techniques. Particular emphasis is laid on the performance analysis of coupling noise and variability issues in sub-threshold domain to develop efficient compact models. The proposed analytical approach gives physical insight of the parameters affecting the transient behavior of coupled interconnects. Remedial design techniques are also suggested to mitigate the effect of coupling noise. The effects of wire width, spacing between the wires, wi

  11. Regulatory Physiology

    Science.gov (United States)

    Lane, Helen W.; Whitson, Peggy A.; Putcha, Lakshmi; Baker, Ellen; Smith, Scott M.; Stewart, Karen; Gretebeck, Randall; Nimmagudda, R. R.; Schoeller, Dale A.; Davis-Street, Janis

    1999-01-01

    As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.

  12. Regulatory Benchmarking

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2017-01-01

    Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The appli......Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of bench-marking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  13. Regulatory Benchmarking

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2017-01-01

    Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The appli......Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of benchmarking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  14. WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE

    International Nuclear Information System (INIS)

    Shinnaga, Hiroko; Phillips, Thomas G.; Furuya, Ray S.; Kitamura, Yoshimi

    2009-01-01

    In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (∼30-70 K), extended (radius of ∼2400 AU), dense (a few times 10 5 cm -3 ) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, 'warm-in-cold core stage (WICCS)', i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.

  15. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2016-12-10

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.

  16. Dense plasma focus - a literature review

    International Nuclear Information System (INIS)

    Tendys, J.

    1976-01-01

    The dense plasma focus (DPF) is a convenient source of short, intense neutron pulses, and dense, high temperature plasma. This review of the literature on the DPF indicates that its operation is still not understood, and attempts to show where the present data is either inadequate or inconsistent. Because the plasma conditions and neutron and x-ray fluxes vary from shot to shot, it is maintained that, to resolve inconsistencies in the present data, spectra need to be measured with energy and time resolution simultaneously, and cannot be built up from a large number of shots. Time resolutions of the order of 1 nsec for pulse lengths of about 100 nsec make these requirements especially difficult. Some theoretical models are presented for the neutron output and its spectrum, but no self-consistent description of the plasma in the focus region is likely for some time. (author)

  17. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    -ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation......Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X...

  18. Anomalous properties of hot dense nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Ferrante, G; Zarcone, M; Uryupin, S A

    2005-01-01

    A concise overview of a number of anomalous properties of hot dense nonequilibrium plasmas is given. The possibility of quasistationary megagauss magnetic field generation due to Weibel instability is discussed for plasmas created in atom tunnel ionization. The collisionless absorption and reflection of a test electromagnetic wave normally impinging on the plasma with two-temperature bi-maxwellian electron velocity distribution function are studied. Due to the wave magnetic field influence on the electron kinetics in the skin layer the wave absorption and reflection significantly depend on the degree of the electron temperature anisotropy. The linearly polarized impinging wave during reflection transforms into an elliptically polarized one. The problem of transmission of an ultrashort laser pulse through a layer of dense plasma, formed as a result of ionization of a thin foil, is considered. It is shown that the strong photoelectron distribution anisotropy yields an anomalous penetration of the wave field through the foil

  19. Deterministic dense coding with partially entangled states

    Science.gov (United States)

    Mozes, Shay; Oppenheim, Jonathan; Reznik, Benni

    2005-01-01

    The utilization of a d -level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle is between d and 2d . In general, we numerically find that the maximal alphabet size is any integer in the range [d,d2] with the possible exception of d2-1 . We also find that states with less entanglement can have a greater deterministic communication capacity than other more entangled states.

  20. PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS

    Energy Technology Data Exchange (ETDEWEB)

    Glassgold, A. E. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Najita, J. R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-09-10

    Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimes as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.

  1. Optical interconnection networks for high-performance computing systems

    International Nuclear Information System (INIS)

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  2. Encoded low swing for ultra low power interconnect

    NARCIS (Netherlands)

    Krishnan, R.; Pineda de Gyvez, J.

    2003-01-01

    We present a novel encoded-low swing technique for ultra low power interconnect. Using this technique and an efficient circuit implementation, we achieve an average of 45.7% improvement in the power-delay product over the schemes utilizing low swing techniques alone, for random bit streams. Also, we

  3. Distributed Robustness Analysis of Interconnected Uncertain Systems Using Chordal Decomposition

    DEFF Research Database (Denmark)

    Pakazad, Sina Khoshfetrat; Hansson, Anders; Andersen, Martin Skovgaard

    2014-01-01

    Large-scale interconnected uncertain systems commonly have large state and uncertainty dimensions. Aside from the heavy computational cost of performing robust stability analysis in a centralized manner, privacy requirements in the network can also introduce further issues. In this paper, we util...

  4. Interconnecting Microgrids via the Energy Router with Smart Energy Management

    Directory of Open Access Journals (Sweden)

    Yingshu Liu

    2017-08-01

    Full Text Available A novel and flexible interconnecting framework for microgrids and corresponding energy management strategies are presented, in response to the situation of increasing renewable-energy penetration and the need to alleviate dependency on energy storage equipment. The key idea is to establish complementary energy exchange between adjacent microgrids through a multiport electrical energy router, according to the consideration that adjacent microgrids may differ substantially in terms of their patterns of energy production and consumption, which can be utilized to compensate for each other’s instant energy deficit. Based on multiport bidirectional voltage source converters (VSCs and a shared direct current (DC power line, the energy router serves as an energy hub, and enables flexible energy flow among the adjacent microgrids and the main grid. The analytical model is established for the whole system, including the energy router, the interconnected microgrids and the main grid. Various operational modes of the interconnected microgrids, facilitated by the energy router, are analyzed, and the corresponding control strategies are developed. Simulations are carried out on the Matlab/Simulink platform, and the results have demonstrated the validity and reliability of the idea for microgrid interconnection as well as the corresponding control strategies for flexible energy flow.

  5. FDTD technique based crosstalk analysis of bundled SWCNT interconnects

    International Nuclear Information System (INIS)

    Duksh, Yograj Singh; Kaushik, Brajesh Kumar; Agarwal, Rajendra P.

    2015-01-01

    The equivalent electrical circuit model of a bundled single-walled carbon nanotube based distributed RLC interconnects is employed for the crosstalk analysis. The accurate time domain analysis and crosstalk effect in the VLSI interconnect has emerged as an essential design criteria. This paper presents a brief description of the numerical method based finite difference time domain (FDTD) technique that is intended for estimation of voltages and currents on coupled transmission lines. For the FDTD implementation, the stability of the proposed model is strictly restricted by the Courant condition. This method is used for the estimation of crosstalk induced propagation delay and peak voltage in lossy RLC interconnects. Both functional and dynamic crosstalk effects are analyzed in the coupled transmission line. The effect of line resistance on crosstalk induced delay, and peak voltage under dynamic and functional crosstalk is also evaluated. The FDTD analysis and the SPICE simulations are carried out at 32 nm technology node for the global interconnects. It is observed that the analytical results obtained using the FDTD technique are in good agreement with the SPICE simulation results. The crosstalk induced delay, propagation delay, and peak voltage obtained using the FDTD technique shows average errors of 4.9%, 3.4% and 0.46%, respectively, in comparison to SPICE. (paper)

  6. The myth of interconnected plastids and related phenomena.

    Science.gov (United States)

    Schattat, Martin H; Barton, Kiah A; Mathur, Jaideep

    2015-01-01

    Studies spread over nearly two and a half centuries have identified the primary plastid in autotrophic algae and plants as a pleomorphic, multifunctional organelle comprising of a double-membrane envelope enclosing an organization of internal membranes submerged in a watery stroma. All plastid units have been observed extending and retracting thin stroma-filled tubules named stromules sporadically. Observations on living plant cells often convey the impression that stromules connect two or more independent plastids with each other. When photo-bleaching techniques were used to suggest that macromolecules such as the green fluorescent protein could flow between already interconnected plastids, for many people this impression changed to conviction. However, it was noticed only recently that the concept of protein flow between plastids rests solely on the words "interconnected plastids" for which details have never been provided. We have critically reviewed botanical literature dating back to the 1880s for understanding this term and the phenomena that have become associated with it. We find that while meticulously detailed ontogenic studies spanning nearly 150 years have established the plastid as a singular unit organelle, there is no experimental support for the idea that interconnected plastids exist under normal conditions of growth and development. In this review, while we consider several possibilities that might allow a single elongated plastid to be misinterpreted as two or more interconnected plastids, our final conclusion is that the concept of direct protein flow between plastids is based on an unfounded assumption.

  7. Load frequency control of three area interconnected hydro-thermal ...

    African Journals Online (AJOL)

    This paper present analysis on dynamic performance of Load Frequency Control (LFC) of three area interconnected hydrothermal reheat power system by the use of Artificial Intelligent and PI Controller. In the proposed scheme, control methodology developed using conventional PI controller, Artificial Neural Network ...

  8. Optimal interconnect ATPG under a ground-bounce constraint

    NARCIS (Netherlands)

    Hollmann, H.D.L.; Marinissen, E.J.; Vermeulen, B.

    In order to prevent ground bounce, Automatic Test Pattern Generation (ATPG) algorithms for wire interconnects have recently been extended with the capability to restrict the maximal Hamming distance between any two consecutive test patterns to a user-defined integer, referred to as the

  9. Time analysis of interconnection network implemented on the honeycomb architecture

    Energy Technology Data Exchange (ETDEWEB)

    Milutinovic, D [Inst. Michael Pupin, Belgrade (Yugoslavia)

    1996-12-31

    Problems of time domains analysis of the mapping of interconnection networks for parallel processing on one form of uniform massively parallel architecture of the cellular type are considered. The results of time analysis are discussed. It is found that changing the technology results in changing the mapping rules. 17 refs.

  10. Area analysis of interconnection networks implemented on the honeycomb architecture

    Energy Technology Data Exchange (ETDEWEB)

    Milutinovic, D

    1996-12-31

    The are utilization of interconnection networks for parallel processing on one form of uniform parallel architecture of cellular type is analyzed. Formulae for the number of cells necessity to realize a networks and the efficiency factor of the system are derived. 15 refs.

  11. 14 CFR 25.957 - Flow between interconnected tanks.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.957 Flow between interconnected tanks. If fuel can be pumped from one tank to another in flight, the fuel tank vents and the fuel transfer system must be designed so that no structural damage to the tanks can occur because of overfilling. ...

  12. Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Directory of Open Access Journals (Sweden)

    Salman Shafqat

    2017-09-01

    Full Text Available The exciting field of stretchable electronics (SE promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS-type process recipes using bulk integrated circuit (IC microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.

  13. Ultra-stretchable Interconnects for high-density stretchable electronics

    NARCIS (Netherlands)

    Shafqat, S.; Hoefnagels, J.P.M.; Savov, A.; Joshi, S.; Dekker, R.; Geers, M.G.D.

    2017-01-01

    The exciting field of stretchable electronics (SE) promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for

  14. On Interconnections of Infinite-dimensional Port-Hamiltonian Systems

    NARCIS (Netherlands)

    Pasumarthy, Ramkrishna; Schaft, Arjan J. van der

    2004-01-01

    Network modeling of complex physical systems leads to a class of nonlinear systems called port-Hamiltonian systems, which are defined with respect to a Dirac structure (a geometric structure which formalizes the power-conserving interconnection structure of the system). A power conserving

  15. On interconnections of infinite-dimensional port-Hamiltonian systems

    NARCIS (Netherlands)

    Ramkrishna Pasumarthy, R.P.; van der Schaft, Arjan

    2004-01-01

    Network modeling of complex physical systems leads to a class of nonlinear systems called port-Hamiltonian systems, which are defined with respect to a Dirac structure (a geometric structure which formalizes the power-conserving interconnection structure of the system). A power conserving

  16. Bandwidth Analysis of Functional Interconnects Used as Test Access Mechanism

    NARCIS (Netherlands)

    Van den Berg, A.; Ren, P.; Marinissen, E.J.; Gaydadjiev, G.; Goossens, K.

    2010-01-01

    Test data travels through a System on Chip (SOC) from the chip pins to the Core-Under-Test (CUT) and vice versa via a Test Access Mechanism (TAM). Conventionally, a TAM is implemented using dedicated communication infrastructure. However, also existing functional interconnect, such as a bus or

  17. Bandwidth analysis of functional interconnects used as test access mechanism

    NARCIS (Netherlands)

    Berg, van den Ardy; Ren, P.; Marinissen, Erik Jan; Gaydadjiev, G.N.; Goossens, K.G.W.

    2010-01-01

    Test data travels through a System on Chip (SOC) from the chip pins to the Core-Under-Test (CUT) and vice versa via a Test Access Mechanism (TAM). Conventionally, a TAM is implemented using dedicated communication infrastructure. However, also existing functional interconnect, such as a bus or

  18. Cascade-robustness optimization of coupling preference in interconnected networks

    International Nuclear Information System (INIS)

    Zhang, Xue-Jun; Xu, Guo-Qiang; Zhu, Yan-Bo; Xia, Yong-Xiang

    2016-01-01

    Highlights: • A specific memetic algorithm was proposed to optimize coupling links. • A small toy model was investigated to examine the underlying mechanism. • The MA optimized strategy exhibits a moderate assortative pattern. • A novel coupling coefficient index was proposed to quantify coupling preference. - Abstract: Recently, the robustness of interconnected networks has attracted extensive attentions, one of which is to investigate the influence of coupling preference. In this paper, the memetic algorithm (MA) is employed to optimize the coupling links of interconnected networks. Afterwards, a comparison is made between MA optimized coupling strategy and traditional assortative, disassortative and random coupling preferences. It is found that the MA optimized coupling strategy with a moderate assortative value shows an outstanding performance against cascading failures on both synthetic scale-free interconnected networks and real-world networks. We then provide an explanation for this phenomenon from a micro-scope point of view and propose a coupling coefficient index to quantify the coupling preference. Our work is helpful for the design of robust interconnected networks.

  19. Security challenges for cooperative and interconnected mobility systems

    NARCIS (Netherlands)

    Bijlsma, T.; Kievit, S. de; Sluis, H.J.D. van de; Nunen, E. van; Passchier, I.; Luiijf, H.A.M.

    2013-01-01

    Software is becoming an important part of the innovation for vehicles. In addition, the systems in vehicles become interconnected and also get external connections, to the internet and Vehicular Ad hoc NETworks (VANETs). These trends form a combined security and safety threat, because recent

  20. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  1. Early resistance change and stress/electromigrationmodeling in aluminium interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Schoenmaker, W.

    1997-01-01

    A complete description for early resistance change and two dimensional simulation of mechanical stress evolution in confined Al interconnects, related to the electromigration, is given in this paper. The model, combines the stress/ vacancy concentration evolution with the early resistance change of

  2. Knowledge Access in Rural Inter-connected Areas Network ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Knowledge Access in Rural Inter-connected Areas Network (KariaNet) - Phase II ... and indigenous knowledge using information and communication technologies (ICTs) ... for research proposals on the aforementioned topics, action-research projects, ... Evaluating knowledge-sharing methods to improve land utilization and ...

  3. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects

    DEFF Research Database (Denmark)

    Karinou, Fotini; Borkowski, Robert; Zibar, Darko

    2013-01-01

    We experimentally assess the performance of a 64 × 64 optical switch fabric used for ns-speed optical cell switching in supercomputer optical interconnects. More specifically, we study four alternative modulation formats and detection schemes, namely, 10-Gb/s nonreturn-to-zero differential phase-...

  4. Dense-plasma research using ballistic compressors

    International Nuclear Information System (INIS)

    Hess, H.

    1986-01-01

    An introduction is given to research on dense (or nonideal) plasmas which can be generated to advantage by ballistic compressors. Some properties of ballistic compressors are discussed especially in comparison with shock tubes. A short review is given on the history of these devices for high-pressure plasma generation. The present state of the art is reported including research on the two ZIE (Central Institute for Electron Physics) ballistic compressors. (author)

  5. Studying dense plasmas with coherent XUV pulses

    International Nuclear Information System (INIS)

    Stabile, H.

    2006-12-01

    The investigation of dense plasma dynamic requires the development of diagnostics able to ensure the measurement of electronic density with micro-metric space resolution and sub-nanosecond, or even subpicosecond, time resolution (indeed this must be at least comparable with the characteristic tune scale of plasma evolution). In contrast with low-density plasmas, dense plasmas cannot be studied using optical probes in the visible domain, the density range accessible being limited to the critical density (N c equals 1.1*10 21 λ -2 (μm) ∼ 10 21 cm -3 for infrared). In addition, light is reflected even at smaller densities if the medium exhibits sharp density gradients. Hence probing of dense plasmas, for instance those produced by laser irradiation of solids, requires using shorter wavelength radiation. Thanks to their physical properties, high order harmonics generated in rare gases are particularly adapted to the study of dense plasmas. Indeed, they can naturally be synchronized with the generating laser and their pulse duration is very short, which makes it possible to use them in pump-probe experiments. Moreover, they exhibit good spatial and temporal coherencies. Two types of diagnostics were developed during this thesis. The first one was used to study the instantaneous creation of hot-solid-density plasma generated by focusing a femtosecond high-contrast laser on an ultra-thin foil (100 nm) in the 10 18 W/cm 2 intensity regime. The use of high order harmonics, providing a probe beam of sufficiently short wavelengths to penetrate such a medium, enables the study of its dynamics on the 100 fs time scale. The second one uses the harmonics beam as probe beam (λ equals 32 nm) within an interferometric device. This diagnostic was designed to ensure a micro-metric spatial resolution and a temporal resolution in the femtosecond range. The first results in presence of plasma created by irradiation of an aluminum target underline the potentialities of this new

  6. Particle identification system based on dense aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Beloborodov, K.I., E-mail: K.I.Beloborodov@inp.nsk.su [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, 5, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Golubev, V.B. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Gulevich, V.V. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Martin, K.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Serednyakov, S.I. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); and others

    2013-12-21

    A threshold Cherenkov counter based on dense aerogel with refraction index n=1.13 is described. This counter is used for kaon identification at momenta below 1 GeV/c in the SND detector, which takes data at the VEPP-2000 e{sup +}e{sup −} collider. The results of measurements of the counter efficiency using electrons, muons, pions, and kaons produced in e{sup +}e{sup −} annihilation are presented.

  7. Leeuwpan fine coal dense medium plant

    CSIR Research Space (South Africa)

    Lundt, M

    2010-11-01

    Full Text Available Beneficiation 2010, 4–6 May 2010. 671The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 110 NOVEMBER 2010 L Leeuwpan fine coal dense medium plant mixed with magnetite in the launder and enters... with production. Plant equipment operational changes Cyclone spigot changes In an attempt to lower the cut-point density, the spigot on the L 672 NOVEMBER 2010 VOLUME 110 The Journal of The Southern African Institute of Mining and Metallurgy Figure 1...

  8. At the speed of light? electricity interconnections for Europe

    International Nuclear Information System (INIS)

    Nies, S.

    2010-01-01

    Electricity moves almost at the speed of light: 273,000 km per second. The speed of electricity makes it the ultimate 'just in time' commodity. A problem anywhere can be transmitted every where in a nanosecond. Electricity interconnection is a prominent issue in the news, sometimes even featured as a panacea for the shortcomings of the European electricity market - a panacea that will ensure security o supply, solidarity and pave the way for a promising use of renewables in the future. The present study is devoted to electricity interconnections in Europe, their current state and the projects concerning them. The study addresses the following questions: - What is the role of interconnections in the development of a sustainable grid that can emerge from the existing pieces, make optimum use of existing generation capacity, ensure energy security, and offer economies of scales? What is their role in the process of building a different energy concept, one that would be concerned with climate change and thus in favour of the use of renewables? - How are existing interconnections exploited and governed, and how can their exploitation be improved? Does the EU need more and new interconnections; and if so, where and why, and who is going to finance them? Prominent projects as such as Desertec, the debate on DC or AC lines, or the limits of synchronization, as well as the state of a potential East-West electricity linkage between Former Soviet Union and EU, termed UCTE-UPS/IPS, are discussed in the volume. Part I develops definitions and basic notions necessary for the understanding of the subject. It also addresses the independent variables that influence interconnections (here the dependent variable), and recounts the historical legacies and their enduring impact on today's grid. Part II is devoted to the EU legal framework and to the complex landscape of governance and its current state of transition. Part III addresses the management of existing interconnections and

  9. Collective dynamics in dense fluid mixtures

    International Nuclear Information System (INIS)

    Sinha, S.

    1992-01-01

    This thesis deals with the short wavelength collective dynamics of dense binary fluid mixtures. The analysis shows that at the level of linearized generalized hydrodynamics, the longitudinal modes of the system separates essentially into two parts - one involves the coupling of partial density fluctuations of the two species and the other involves coupling of longitudinal momentum and temperature fluctuations. The authors have shown that the coupling of longitudinal momentum and temperature fluctuations leads to an adequate description of sound propagation in such systems. In particular, they show that structural disorder controls the trapping of sound waves in dense mixtures. The coupling of the partial density fluctuations of the two species leads to a simple description of the partial dynamic structure factors. The results are in agreement with the molecular dynamics simulations of soft sphere mixtures. The partial density fluctuations are the slowest decaying fluctuations on molecular length scales and it turns out that nonlinear coupling of these slow modes leads to important corrections to the long time behavior of the time correlation functions determining the shear viscosity in dense mixtures

  10. Formation and fragmentation of protostellar dense cores

    International Nuclear Information System (INIS)

    Maury, Anaelle

    2009-01-01

    Stars form in molecular clouds, when they collapse and fragment to produce protostellar dense cores. These dense cores are then likely to contract under their own gravity, and form young protostars, that further evolve while accreting their circumstellar mass, until they reach the main sequence. The main goal of this thesis was to study the formation and fragmentation of protostellar dense cores. To do so, two main studies, described in this manuscript, were carried out. First, we studied the formation of protostellar cores by quantifying the impact of protostellar outflows on clustered star formation. We carried out a study of the protostellar outflows powered by the young stellar objects currently formed in the NGc 2264-C proto-cluster, and we show that protostellar outflows seem to play a crucial role as turbulence progenitors in clustered star forming regions, although they seem unlikely to significantly modify the global infall processes at work on clump scales. Second, we investigated the formation of multiple systems by core fragmentation, by using high - resolution observations that allow to probe the multiplicity of young protostars on small scales. Our results suggest that the multiplicity rate of protostars on small scales increase while they evolve, and thus favor dynamical scenarios for the formation of multiple systems. Moreover, our results favor magnetized scenarios of core collapse to explain the small-scale properties of protostars at the earliest stages. (author) [fr

  11. Hybrid-Based Dense Stereo Matching

    Science.gov (United States)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  12. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.; Loczi, Lajos; Jangabylova, Aliya; Kusmanov, Adil

    2016-01-01

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step

  13. About chiral models of dense matter and its magnetic properties

    International Nuclear Information System (INIS)

    Kutschera, M.

    1990-12-01

    The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)

  14. Does the conductivity of interconnect coatings matter for solid oxide fuel cell applications?

    Science.gov (United States)

    Goebel, Claudia; Fefekos, Alexander G.; Svensson, Jan-Erik; Froitzheim, Jan

    2018-04-01

    The present work aims to quantify the influence of typical interconnect coatings used for solid oxide fuel cells (SOFC) on area specific resistance (ASR). To quantify the effect of the coating, the dependency of coating thickness on the ASR is examined on Crofer 22 APU at 600 °C. Three different Co coating thicknesses are investigated, 600 nm, 1500 nm, and 3000 nm. Except for the reference samples, the material is pre-oxidized prior to coating to mitigate the outward diffusion of iron and consequent formation of poorly conducting (Co,Fe)3O4 spinel. Exposures are carried out at 600 °C in stagnant laboratory air for 500 h and subsequent ASR measurements are performed. Additionally the microstructure is investigated with scanning electron microscopy (SEM). On all pre-oxidized samples, a homogenous dense Co3O4 top layer is observed beneath which a thin layer of Cr2O3 is present. As the ASR values range between 7 and 12 mΩcm2 for all pre-oxidized samples, even though different Co3O4 thicknesses are observed, the results strongly suggest that for most applicable cases the impact of the coating on ASR is negligible and the main contributor is Cr2O3.

  15. Vertically aligned multiwalled carbon nanotubes as electronic interconnects

    Science.gov (United States)

    Gopee, Vimal Chandra

    The drive for miniaturisation of electronic circuits provides new materials challenges for the electronics industry. Indeed, the continued downscaling of transistor dimensions, described by Moore’s Law, has led to a race to find suitable replacements for current interconnect materials to replace copper. Carbon nanotubes have been studied as a suitable replacement for copper due to its superior electrical, thermal and mechanical properties. One of the advantages of using carbon nanotubes is their high current carrying capacity which has been demonstrated to be three orders of magnitude greater than that of copper. Most approaches in the implementation of carbon nanotubes have so far focused on the growth in vias which limits their application. In this work, a process is described for the transfer of carbon nanotubes to substrates allowing their use for more varied applications. Arrays of vertically aligned multiwalled carbon nanotubes were synthesised by photo-thermal chemical vapour deposition with high growth rates. Raman spectroscopy was used to show that the synthesised carbon nanotubes were of high quality. The carbon nanotubes were exposed to an oxygen plasma and the nature of the functional groups present was determined using X-ray photoelectron spectroscopy. Functional groups, such as carboxyl, carbonyl and hydroxyl groups, were found to be present on the surface of the multiwalled carbon nanotubes after the functionalisation process. The multiwalled carbon nanotubes were metallised after the functionalisation process using magnetron sputtering. Two materials, solder and sintered silver, were chosen to bind carbon nanotubes to substrates so as to enable their transfer and also to make electrical contact. The wettability of solder to carbon nanotubes was investigated and it was demonstrated that both functionalisation and metallisation were required in order for solder to bond with the carbon nanotubes. Similarly, functionalisation followed by metallisation

  16. Evolution of dense spatially modulated electron bunches

    Science.gov (United States)

    Balal, N.; Bratman, V. L.; Friedman, A.

    2018-03-01

    An analytical theory describing the dynamics of relativistic moving 1D electron pulses (layers) with the density modulation affected by a space charge has been revised and generalized for its application to the formation of dense picosecond bunches from linear accelerators with laser-driven photo injectors, and its good agreement with General Particle Tracer simulations has been demonstrated. Evolution of quasi-one-dimensional bunches (disks), for which the derived formulas predict longitudinal expansion, is compared with that for thin and long electron cylinders (threads), for which the excitation of non-linear waves with density spikes was found earlier by Musumeci et al. [Phys. Rev. Lett. 106(18), 184801 (2011)] and Musumeci et al. [Phys. Rev. Spec. Top. -Accel. Beams 16(10), 100701 (2013)]. Both types of bunches can be used for efficiency enhancement of THz sources based on the Doppler frequency up-shifted coherent spontaneous radiation of electrons. Despite the strong Coulomb repulsion, the periodicity of a preliminary modulation in dense 1D layers persists during their expansion in the most interesting case of a relatively small change in particle energy. However, the period of modulation increases and its amplitude decreases in time. In the case of a large change in electron energy, the uniformity of periodicity is broken due to different relativistic changes in longitudinal scales along the bunch: the "period" of modulation decreases and its amplitude increases from the rear to the front boundary. Nevertheless, the use of relatively long electron bunches with a proper preliminary spatial modulation of density can provide a significantly higher power and a narrower spectrum of coherent spontaneous radiation of dense bunches than in the case of initially short single bunches with the same charge.

  17. 75 FR 6020 - Electrical Interconnection of the Lower Snake River Wind Energy Project

    Science.gov (United States)

    2010-02-05

    ... DEPARTMENT OF ENERGY Bonneville Power Administration Electrical Interconnection of the Lower Snake River Wind Energy Project AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE... (BPA) has decided to offer Puget Sound Energy Inc., a Large Generator Interconnection Agreement for...

  18. Electron conductivity model for dense plasmas

    International Nuclear Information System (INIS)

    Lee, Y.T.; More, R.M.

    1984-01-01

    An electron conductivity model for dense plasmas is described which gives a consistent and complete set of transport coefficients including not only electrical conductivity and thermal conductivity, but also thermoelectric power, and Hall, Nernst, Ettinghausen, and Leduc--Righi coefficients. The model is useful for simulating plasma experiments with strong magnetic fields. The coefficients apply over a wide range of plasma temperature and density and are expressed in a computationally simple form. Different formulas are used for the electron relaxation time in plasma, liquid, and solid phases. Comparisons with recent calculations and available experimental measurement show the model gives results which are sufficiently accurate for many practical applications

  19. Dense hydrogen plasma: Comparison between models

    International Nuclear Information System (INIS)

    Clerouin, J.G.; Bernard, S.

    1997-01-01

    Static and dynamical properties of the dense hydrogen plasma (ρ≥2.6gcm -3 , 0.1< T<5eV) in the strongly coupled regime are compared through different numerical approaches. It is shown that simplified density-functional molecular-dynamics simulations (DFMD), without orbitals, such as Thomas-Fermi Dirac or Thomas-Fermi-Dirac-Weiszaecker simulations give similar results to more sophisticated descriptions such as Car-Parrinello (CP), tight binding, or path-integral Monte Carlo, in a wide range of temperatures. At very low temperature, screening effects predicted by DFMD are still less pronounced than CP simulations. copyright 1997 The American Physical Society

  20. Electrical and thermal conductivities in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  1. Dense ceramic membranes for methane conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bouwmeester, Henny J.M. [Laboratory for Inorganic Materials Science, Department of Science and Technology and MESA Research Institute, University of Twente, 7500 AE Enschede (Netherlands)

    2003-07-30

    Dense ceramic membranes made from mixed oxygen-ionic and electronic conducting perovskite-related oxides allow separation of oxygen from an air supply at elevated temperatures (>700C). By combining air separation and catalytic partial oxidation of methane to syngas into a ceramic membrane reactor, this technology is expected to significantly reduce the capital costs of conversion of natural gas to liquid added-value products. The present survey is mainly concerned with the material properties that govern the performance of the mixed-conducting membranes in real operating conditions and highlights significant developments in the field.

  2. The Magpie dense z-pinch project

    International Nuclear Information System (INIS)

    Chittenden, J.; Choi, P.; Mitchell, I.; Dangor, A.E.; Haines, M.G.

    1990-01-01

    The authors present a design study on the Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE), a project currently under construction at Imperial College London, to study radiative collapse of a dense Z-pinch plasma created from a 20 um diameter cryogenic hydrogen fiber. The 2 TW generator is composed of four individual 2.4 MV Marx banks of the HERMES III type design with a maximum stored energy of 336 kJ. They drive four 5 ohm Pulse Forming Lines which are combined into a single 1.25 MA in 150 ns to a 150 nH load

  3. Strange mesons in dense nuclear matter

    International Nuclear Information System (INIS)

    Senger, P.

    2000-10-01

    Experimental data on the production of kaons and antikaons in heavy ion collisions at relativistic energies are reviewed with respect to in-medium effects. The K - /K + ratios measured in nucleus-nucleus collisions are 1-2 orders of magnitude larger than in proton-proton collisions. The azimuthal angle distributions of K + mesons indicate a repulsive kaon-nucleon potential. Microscopic transport calculations consistently explain both the yields and the emission patterns of kaons and antikaons when assuming that their properties are modified in dense nuclear matter. The K + production excitation functions measured in light and heavy collision systems provide evidence for a soft nuclear equation-of-state. (orig.)

  4. Atomic physics in dense plasmas. Recent advances

    International Nuclear Information System (INIS)

    Leboucher-Dalimier, E.; Angelo, P.; Ceccotti, T.; Derfoul, H.; Poquerusse, A.; Sauvan, P.; Oks, E.

    2000-01-01

    This paper presents observations and simulations of novel density-dependent spectroscopic features in hot and dense plasmas. Both time-integrated and time-resolved results using ultra-high resolutions spectrometers are presented; they are justified within the standard spectral line shape theory or the quasi-molecular alternative treatment. A particular attention is paid to the impact of the spatio-temporal evolution of the plasma on the experimental spectra. Satellite-like features and molecular lines in the cases of Flyβ, Heβ are discussed emphasizing their importance for the density diagnostics when ion-ion correlations are significant. (authors)

  5. Structure of a new dense amorphous ice

    International Nuclear Information System (INIS)

    Finney, J.L.; Bowron, D.T.; Soper, A.K.; Loerting, T.; Mayer, E.; Hallbrucker, A.

    2002-01-01

    The detailed structure of a new dense amorphous ice, VHDA, is determined by isotope substitution neutron diffraction. Its structure is characterized by a doubled occupancy of the stabilizing interstitial location that was found in high density amorphous ice, HDA. As would be expected for a thermally activated unlocking of the stabilizing 'interstitial', the transition from VHDA to LDA (low-density amorphous ice) is very sharp. Although its higher density makes VHDA a better candidate than HDA for a physical manifestation of the second putative liquid phase of water, as for the HDA case, the VHDA to LDA transition also appears to be kinetically controlled

  6. Fabrication of dense panels in lithium fluoride

    International Nuclear Information System (INIS)

    Farcy, P.; Roger, J.; Pointud, R.

    1958-04-01

    The authors report a study aimed at the fabrication of large and dense lithium fluoride panels. This sintered lithium fluoride is then supposed to be used for the construction of barriers of protection against a flow of thermal neutrons. They briefly present the raw material which is used under the form of chamotte obtained through a pre-sintering process which is also described. Grain size measurements and sample preparation are indicated. Shaping, drying, and thermal treatment are briefly described, and characteristics of the sintered product are indicated

  7. Quasi-molecular processes in dense plasmas

    International Nuclear Information System (INIS)

    Younger, S.M.

    1991-01-01

    Quasi-molecular phenomena occur in dense plasmas when the interatomic spacing is comparable to the characteristic wavelength of the electrons. If the electronic states are bound, covalent orbitals arise with different excitation energies, radiative rates, and collisional rates than for isolated ions. For continuum electrons, charge localization near transient clusters of nuclei can influence many scattering and transport processes. We identify several novel consequences of quasi-molecular phenomena in plasmas and give a possible explanation of high energy features associated with helium-like emissions lines observed in recent inertial fusion experiments. 7 refs

  8. Graph Quasicontinuous Functions and Densely Continuous Forms

    Directory of Open Access Journals (Sweden)

    Lubica Hola

    2017-07-01

    Full Text Available Let $X, Y$ be topological spaces. A function $f: X \\to Y$ is said to be graph quasicontinuous if there is a quasicontinuous function $g: X \\to Y$ with the graph of $g$ contained in the closure of the graph of $f$. There is a close relation between the notions of graph quasicontinuous functions and minimal usco maps as well as the notions of graph quasicontinuous functions and densely continuous forms. Every function with values in a compact Hausdorff space is graph quasicontinuous; more generally every locally compact function is graph quasicontinuous.

  9. Conductive polymer/metal composites for interconnect of flexible devices

    Science.gov (United States)

    Kawakita, Jin; Hashimoto Shinoda, Yasuo; Shuto, Takanori; Chikyow, Toyohiro

    2015-06-01

    An interconnect of flexible and foldable devices based on advanced electronics requires high electrical conductivity, flexibility, adhesiveness on a plastic substrate, and efficient productivity. In this study, we investigated the applicability of a conductive polymer/metal composite to the interconnect of flexible devices. By combining an inkjet process and a photochemical reaction, micropatterns of a polypyrrole/silver composite were formed on flexible plastic substrates with an average linewidth of approximately 70 µm within 10 min. The conductivity of the composite was improved to 6.0 × 102 Ω-1·cm-1. From these results, it is expected that the conducting polymer/metal composite can be applied to the microwiring of flexible electronic devices.

  10. Security analysis of interconnected AC/DC systems

    DEFF Research Database (Denmark)

    Eriksson, Robert

    2015-01-01

    This paper analyses N-1 security in an interconnected ac/dc transmission system using power transfer distribution factors (PTDFs). In the case of a dc converter outage the power needs to be redistributed among the remaining converter to maintain power balance and operation of the dc grid...... any line or transformer limits. Simulations were performed in a model of the Nordic power system where a dc grid is placed on top. The simulation supports the method as a tool to consider transfer limits in the grid to avoid violate the same and increase the security after a converter outage........ The redistribution of power has a sudden effect on the power-flow in the interconnected ac system. This may cause overloading of lines and transformers resulting in disconnection of equipment, and as a consequence cascading failure. The PTDF is used as a method to analyze and avoid violating limits by in the dc...

  11. TEM sample preparation by FIB for carbon nanotube interconnects

    International Nuclear Information System (INIS)

    Ke, Xiaoxing; Bals, Sara; Romo Negreira, Ainhoa; Hantschel, Thomas; Bender, Hugo; Van Tendeloo, Gustaaf

    2009-01-01

    A powerful method to study carbon nanotubes (CNTs) grown in patterned substrates for potential interconnects applications is transmission electron microscopy (TEM). However, high-quality TEM samples are necessary for such a study. Here, TEM specimen preparation by focused ion beam (FIB) has been used to obtain lamellae of patterned samples containing CNTs grown inside contact holes. A dual-cap Pt protection layer and an extensive 5 kV cleaning procedure are applied in order to preserve the CNTs and avoid deterioration during milling. TEM results show that the inner shell structure of the carbon nanotubes has been preserved, which proves that focused ion beam is a useful technique to prepare TEM samples of CNT interconnects.

  12. TEM sample preparation by FIB for carbon nanotube interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Xiaoxing, E-mail: xiaoxing.ke@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Bals, Sara [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Romo Negreira, Ainhoa [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Metallurgy and Materials Engineering Department, KU Leuven, Kasteelpark Arenberg 44, Leuven B-3001 (Belgium); Hantschel, Thomas; Bender, Hugo [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Van Tendeloo, Gustaaf [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2009-10-15

    A powerful method to study carbon nanotubes (CNTs) grown in patterned substrates for potential interconnects applications is transmission electron microscopy (TEM). However, high-quality TEM samples are necessary for such a study. Here, TEM specimen preparation by focused ion beam (FIB) has been used to obtain lamellae of patterned samples containing CNTs grown inside contact holes. A dual-cap Pt protection layer and an extensive 5 kV cleaning procedure are applied in order to preserve the CNTs and avoid deterioration during milling. TEM results show that the inner shell structure of the carbon nanotubes has been preserved, which proves that focused ion beam is a useful technique to prepare TEM samples of CNT interconnects.

  13. Modular cryogenic interconnects for multi-qubit devices

    Energy Technology Data Exchange (ETDEWEB)

    Colless, J. I.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-11-15

    We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with −3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements.

  14. Optical interconnect technologies for high-bandwidth ICT systems

    Science.gov (United States)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  15. Integrated optoelectronic materials and circuits for optical interconnects

    International Nuclear Information System (INIS)

    Hutcheson, L.D.

    1988-01-01

    Conventional interconnect and switching technology is rapidly becoming a critical issue in the realization of systems using high speed silicon and GaAs based technologies. In recent years clock speeds and on-chip density for VLSI/VHSIC technology has made packaging these high speed chips extremely difficult. A strong case can be made for using optical interconnects for on-chip/on-wafer, chip-to-chip and board-to-board high speed communications. GaAs integrated optoelectronic circuits (IOC's) are being developed in a number of laboratories for performing Input/Output functions at all levels. In this paper integrated optoelectronic materials, electronics and optoelectronic devices are presented. IOC's are examined from the standpoint of what it takes to fabricate the devices and what performance can be expected

  16. Fractal Characteristics Analysis of Blackouts in Interconnected Power Grid

    DEFF Research Database (Denmark)

    Wang, Feng; Li, Lijuan; Li, Canbing

    2018-01-01

    The power failure models are a key to understand the mechanism of large scale blackouts. In this letter, the similarity of blackouts in interconnected power grids (IPGs) and their sub-grids is discovered by the fractal characteristics analysis to simplify the failure models of the IPG. The distri......The power failure models are a key to understand the mechanism of large scale blackouts. In this letter, the similarity of blackouts in interconnected power grids (IPGs) and their sub-grids is discovered by the fractal characteristics analysis to simplify the failure models of the IPG....... The distribution characteristics of blackouts in various sub-grids are demonstrated based on the Kolmogorov-Smirnov (KS) test. The fractal dimensions (FDs) of the IPG and its sub-grids are then obtained by using the KS test and the maximum likelihood estimation (MLE). The blackouts data in China were used...

  17. Optimal interconnection trees in the plane theory, algorithms and applications

    CERN Document Server

    Brazil, Marcus

    2015-01-01

    This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions.  Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees.  The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, ...

  18. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    Science.gov (United States)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  19. Interconnection test framework for the CMS level-1 trigger system

    International Nuclear Information System (INIS)

    Hammer, J.; Magrans de Abril, M.; Wulz, C.E.

    2012-01-01

    The Level-1 Trigger Control and Monitoring System is a software package designed to configure, monitor and test the Level-1 Trigger System of the Compact Muon Solenoid (CMS) experiment at CERN's Large Hadron Collider. It is a large and distributed system that runs over 50 PCs and controls about 200 hardware units. The objective of this paper is to describe and evaluate the architecture of a distributed testing framework - the Interconnection Test Framework (ITF). This generic and highly flexible framework for creating and executing hardware tests within the Level-1 Trigger environment is meant to automate testing of the 13 major subsystems interconnected with more than 1000 links. Features include a web interface to create and execute tests, modeling using finite state machines, dependency management, automatic configuration, and loops. Furthermore, the ITF will replace the existing heterogeneous testing procedures and help reducing both maintenance and complexity of operation tasks. (authors)

  20. A reference model for space data system interconnection services

    Science.gov (United States)

    Pietras, John; Theis, Gerhard

    1993-01-01

    The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).

  1. Building an organic computing device with multiple interconnected brains

    OpenAIRE

    Pais-Vieira, Miguel; Chiuffa, Gabriela; Lebedev, Mikhail; Yadav, Amol; Nicolelis, Miguel A. L.

    2015-01-01

    Recently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer. Here, we describe the first experimental demonstration of such a Brainet, built by interconnecting four adult rat brains. Brainets worked by concurrently recording the extracellular electrical activity generated by populations of cortical ...

  2. Authentication in Virtual Organizations: A Reputation Based PKI Interconnection Model

    Science.gov (United States)

    Wazan, Ahmad Samer; Laborde, Romain; Barrere, Francois; Benzekri, Abdelmalek

    Authentication mechanism constitutes a central part of the virtual organization work. The PKI technology is used to provide the authentication in each organization involved in the virtual organization. Different trust models are proposed to interconnect the different PKIs in order to propagate the trust between them. While the existing trust models contain many drawbacks, we propose a new trust model based on the reputation of PKIs.

  3. Interconnection France-England; Interconnexion France-Angleterre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    These documents defines the interconnection France-England rules for the 2000 MW DC submarine cable directly linking the transmission networks of England and Wales and France. Rights to use Interconnector capacity from 1 April 2001 are to be offered through competitive tenders and auctions, full details of which are set out in the Rules. The contract and a guide to the application form are provided. (A.L.B.)

  4. Interconnected microbiomes and resistomes in low-income human habitats

    OpenAIRE

    Pehrsson, Erica C.; Tsukayama, Pablo; Patel, Sanket; Mej?a-Bautista, Melissa; Sosa-Soto, Giordano; Navarrete, Karla M.; Calderon, Maritza; Cabrera, Lilia; Hoyos-Arango, William; Bertoli, M. Teresita; Berg, Douglas E.; Gilman, Robert H.; Dantas, Gautam

    2016-01-01

    Summary Antibiotic-resistant infections annually claim hundreds of thousands of lives worldwide. This problem is exacerbated by resistance gene exchange between pathogens and benign microbes from diverse habitats. Mapping resistance gene dissemination between humans and their environment is a public health priority. We characterized the bacterial community structure and resistance exchange networks of hundreds of interconnected human fecal and environmental samples from two low-income Latin A...

  5. Synthesis of micro-sized interconnected Si-C composites

    Science.gov (United States)

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0

  6. Smart hospitality—Interconnectivity and interoperability towards an ecosystem

    OpenAIRE

    Buhalis, Dimitrios; Leung, Rosanna

    2018-01-01

    The Internet and cloud computing changed the way business operate. Standardised web-based applications simplify data interchange which allow internal applications and business partners systems to become interconnected and interoperable. This study conceptualises the smart and agile hospitality enterprises of the future, and proposes a smart hospitality ecosystem that adds value to all stakeholders. Internal data from applications among all stakeholders, consolidated with external environment ...

  7. Design and Training of Limited-Interconnect Architectures

    Science.gov (United States)

    1991-07-16

    and signal processing. Neuromorphic (brain like) models, allow an alternative for achieving real-time operation tor such tasks, while having a...compact and robust architecture. Neuromorphic models consist of interconnections of simple computational nodes. In this approach, each node computes a...operational performance. I1. Research Objectives The research objectives were: 1. Development of on- chip local training rules specifically designed for

  8. Overvoltages related to distributed generation-power system interconnection transformer

    Energy Technology Data Exchange (ETDEWEB)

    Zamanillo, G.R.; Gomez, J.C.; Florena, E.F. [Rio Cuarto National University (IPSEP/UNRC), Cordoba (Argentina). Electric Power Systems Protection Institute], Email: jcgomez@ing.unrc.edu.ar

    2009-07-01

    The energy crisis that experiences the world drives to carry to an extreme, the use of all energy sources which are available. The sources need to be connected to the electric network in their next point, requiring of electric-electronic interfaces. The traditional electric power systems are changing their characteristics, in what concerns to structure, operation and on overvoltage generation. This change is not taking place in coordinated form among the involved sectors. The interconnection of a Distributed Generator (DG) directly with the power system is objectionable and risky. It is required of an interconnection transformer which performs several functions. Rigid specifications do not exist in this respect, for the variety of systems in use in the world, nevertheless there are utilities recommendations. Overvoltages caused by the DG, which arise due to the change of structure of the electric system, are explained. The transformer connection selection, presents positive and negative aspects that impact the utility and the user in a different or many times in an antagonistic way. The phenomenon of balanced and unbalanced ferroresonance overvoltage is studied. This phenomenon can takes place when using DG, either with synchronous or asynchronous generator, and for any type of connection of the transformer. The necessary conditions so that the phenomenon appears are presented. Eight interconnection transformer connection ways were studied. It is concluded that the solutions to reach by means of the employment of the DG, offer technical-economic advantages so much to the utility as to the user. It is also concluded in this work that the more advisable interconnection type is function of the system connection type. (author)

  9. Stackable Form-Factor Peripheral Component Interconnect Device and Assembly

    Science.gov (United States)

    Somervill, Kevin M. (Inventor); Ng, Tak-kwong (Inventor); Torres-Pomales, Wilfredo (Inventor); Malekpour, Mahyar R. (Inventor)

    2013-01-01

    A stackable form-factor Peripheral Component Interconnect (PCI) device can be configured as a host controller or a master/target for use on a PCI assembly. PCI device may comprise a multiple-input switch coupled to a PCI bus, a multiplexor coupled to the switch, and a reconfigurable device coupled to one of the switch and multiplexor. The PCI device is configured to support functionality from power-up, and either control function or add-in card function.

  10. EUROPEAN ENERGY INTERCONNECTION EFFECTS ON THE ROMANIAN ECONOMY

    Directory of Open Access Journals (Sweden)

    Ionescu Mihaela

    2014-07-01

    Full Text Available In this paper the author wants to exemplify the extent to which economic growth in Romania is influenced by the current power system infrastructure investments in Europe. Electricity transmission infrastructure in Romania is at a turning point. The high level of security of supply, delivery efficiency in a competitive internal market are dependent on significant investment, both within the country and across borders. Since the economic crisis makes investment financing is increasingly difficult, it is necessary that they be targeted as well. The European Union has initiated the “Connecting Europe” through which investments are allocated to European energy network interconnection of energy. The action plan for this strategy will put a greater emphasis on investments that require hundreds of billions of euro in new technologies, infrastructure, improve energy intensity, low carbon energy technologies. Romania's energy challenge will depend on the new interconnection modern and smart, both within the country and other European countries, energy saving practices and technologies. This challenge is particularly important as Romania has recovered severe gaps in the level of economic performance compared to developed countries. Such investment will have a significant impact on transmission costs, especially electricity, while network tariffs will rise slightly. Some costs will be higher due to support programs in renewable energy nationwide.Measures are more economically sustainable to maintain or even reinforce the electricity market, which system can be flexible in order to address any issues of adequacy. These measures include investments in border infrastructure (the higher the network, so it is easier to evenly distribute energy from renewable sources, to measure demand response and energy storage solutions.An integrated European infrastructure will ensure economic growth in countries interconnected and thus Romania. Huge energy potential of

  11. The critical thickness of liners of Cu interconnects

    International Nuclear Information System (INIS)

    Jiang, Q; Zhang, S H; Li, J C

    2004-01-01

    A model for the size-dependence of activation energy is developed. With the model and Fick's second law, relationships among the liner thickness, the working life and the working temperature of a TaN liner for Cu interconnects are predicted. The predicted results of the TaN liner are in good agreement with the experimental results. Moreover, the critical thicknesses of liners of some elements are calculated

  12. Greenhouse gas emission factors of purchased electricity from interconnected grids

    International Nuclear Information System (INIS)

    Ji, Ling; Liang, Sai; Qu, Shen; Zhang, Yanxia; Xu, Ming; Jia, Xiaoping; Jia, Yingtao; Niu, Dongxiao; Yuan, Jiahai; Hou, Yong; Wang, Haikun; Chiu, Anthony S.F.; Hu, Xiaojun

    2016-01-01

    Highlights: • A new accounting framework is proposed for GHG emission factors of power grids. • Three cases are used to demonstrate the proposed framework. • Comparisons with previous system boundaries approve the necessity. - Abstract: Electricity trade among power grids leads to difficulties in measuring greenhouse gas (GHG) emission factors of purchased electricity. Traditional methods assume either electricity purchased from a grid is entirely produced locally (Boundary I) or imported electricity is entirely produced by the exporting grid (Boundary II) (in fact a blend of electricity produced by many grids). Both methods ignore the fact that electricity can be indirectly traded between grids. Failing to capture such indirect electricity trade can underestimate or overestimate GHG emissions of purchased electricity in interconnected grid networks, potentially leading to incorrectly accounting for the effects of emission reduction policies involving purchased electricity. We propose a “Boundary III” framework to account for emissions both directly and indirectly caused by purchased electricity in interconnected gird networks. We use three case studies on a national grid network, an Eurasian Continent grid network, and North Europe grid network to demonstrate the proposed Boundary III emission factors. We found that the difference on GHG emissions of purchased electricity estimated using different emission factors can be considerably large. We suggest to standardize the choice of different emission factors based on how interconnected the local grid is with other grids.

  13. Fabrication of interconnected microporous biomaterials with high hydroxyapatite nanoparticle loading

    International Nuclear Information System (INIS)

    Zhang Wei; Yao Donggang; Zhang Qingwei; Lelkes, Peter I; Zhou, Jack G

    2010-01-01

    Hydroxyapatite (HA) is known to promote osteogenicity and enhance the mechanical properties of biopolymers. However, incorporating a large amount of HA into a porous biopolymer still remains a challenge. In the present work, a new method was developed to produce interconnected microporous poly(glycolic-co-lactic acid) (PLGA) with high HA nanoparticle loading. First, a ternary blend comprising PLGA/PS (polystyrene)/HA (40/40/20 wt%) was prepared by melt blending under conditions for formation of a co-continuous phase structure. Next, a dynamic annealing stage under small-strain oscillation was applied to the blend to facilitate nanoparticle redistribution. Finally, the PS phase was sacrificially extracted, leaving a porous matrix. The results from different characterizations suggested that the applied small-strain oscillation substantially accelerated the migration of HA nanoparticles during annealing from the PS phase to the PLGA phase; nearly all HA particles were uniformly presented in the PLGA phase after a short period of annealing. After dissolution of the PS phase, a PLGA material with interconnected microporous structure was successfully produced, with a high HA loading above 30 wt%. The mechanisms beneath the experimental observations, particularly on the enhanced particle migration process, were discussed, and strategies for producing highly particle loaded biopolymers with interconnected microporous structures were proposed.

  14. Power System Study for Renewable Energy Interconnection in Malaysia

    International Nuclear Information System (INIS)

    Askar, O F; Ramachandaramurthy, V K

    2013-01-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  15. Planning and design of the Gulf States interconnection

    International Nuclear Information System (INIS)

    Al Alawi, J.; Sud, S.; McGillis, D.

    1994-01-01

    On May 25, 1981, the six Arab state of Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates (UAE) formally ratified the charter of the organization named Co-operation Council for the Arab States of the Gulf. This has become more popularly known as the Gulf Cooperation Council (GCC). In the mid 1980s, the integration of the electric systems study in the GCC was initiated, and several possible interconnection schemes to provide for reserve sharing and generally more economic and flexible operation of the networks were proposed. The GCC subsequently asked for an update of this study and a recommended interconnection scheme. this update study was completed in 1990, and a definite scheme was proposed, which met with the approval of all GCC members. This presentation describes the proposed interconnection, the studies that led to its selection, and the associated management structure required for its implementation. the population of the GCC states, and their load, generating capacity, and the transmission systems are shown

  16. Carbon Nanotubes and Graphene Nanoribbons: Potentials for Nanoscale Electrical Interconnects

    Directory of Open Access Journals (Sweden)

    Swastik Kar

    2013-08-01

    Full Text Available Carbon allotropes have generated much interest among different scientific communities due to their peculiar properties and potential applications in a variety of fields. Carbon nanotubes and more recently graphene have shown very interesting electrical properties along with the possibility of being grown and/or deposited at a desired location. In this Review, we will focus our attention on carbon-based nanostructures (in particular, carbon nanotubes and graphene nanoribbons which could play an important role in the technological quest to replace copper/low-k for interconnect applications. We will provide the reader with a number of possible architectures, including single-wall as well as multi-wall carbon nanotubes, arranged in horizontal and vertical arrays, regarded as individual objects as well as bundles. Modification of their functional properties in order to fulfill interconnect applications requirements are also presented. Then, in the second part of the Review, recently discovered graphene and in particular graphene and few-graphene layers nanoribbons are introduced. Different architectures involving nanostructured carbon are presented and discussed in light of interconnect application in terms of length, chirality, edge configuration and more.

  17. Construction of programmable interconnected 3D microfluidic networks

    International Nuclear Information System (INIS)

    Hunziker, Patrick R; Wolf, Marc P; Wang, Xueya; Zhang, Bei; Marsch, Stephan; Salieb-Beugelaar, Georgette B

    2015-01-01

    Microfluidic systems represent a key-enabling platform for novel diagnostic tools for use at the point-of-care in clinical contexts as well as for evolving single cell diagnostics. The design of 3D microfluidic systems is an active field of development, but construction of true interconnected 3D microfluidic networks is still a challenge, in particular when the goal is rapid prototyping, accurate design and flexibility. We report a novel approach for the construction of programmable 3D microfluidic systems consisting of modular 3D template casting of interconnected threads to allow user-programmable flow paths and examine its structural characteristics and its modular function. To overcome problems with thread template casting reported in the literature, low-surface-energy polymer threads were used, that allow solvent-free production. Connected circular channels with excellent roundness and low diameter variability were created. Variable channel termination allowed programming a flow path on-the-fly, thus rendering the resulting 3D microfluidic systems highly customizable even after production. Thus, construction of programmable/reprogrammable fully 3D microfluidic systems by template casting of a network of interconnecting threads is feasible, leads to high-quality and highly reproducible, complex 3D geometries. (paper)

  18. Interconnected porous hydroxyapatite ceramics for bone tissue engineering

    Science.gov (United States)

    Yoshikawa, Hideki; Tamai, Noriyuki; Murase, Tsuyoshi; Myoui, Akira

    2008-01-01

    Several porous calcium hydroxyapatite (HA) ceramics have been used clinically as bone substitutes, but most of them possessed few interpore connections, resulting in pathological fracture probably due to poor bone formation within the substitute. We recently developed a fully interconnected porous HA ceramic (IP-CHA) by adopting the ‘foam-gel’ technique. The IP-CHA had a three-dimensional structure with spherical pores of uniform size (average 150 μm, porosity 75%), which were interconnected by window-like holes (average diameter 40 μm), and also demonstrated adequate compression strength (10–12 MPa). In animal experiments, the IP-CHA showed superior osteoconduction, with the majority of pores filled with newly formed bone. The interconnected porous structure facilitates bone tissue engineering by allowing the introduction of mesenchymal cells, osteotropic agents such as bone morphogenetic protein or vasculature into the pores. Clinically, we have applied the IP-CHA to treat various bony defects in orthopaedic surgery, and radiographic examinations demonstrated that grafted IP-CHA gained radiopacity more quickly than the synthetic HA in clinical use previously. We review the accumulated data on bone tissue engineering using the novel scaffold and on clinical application in the orthopaedic field. PMID:19106069

  19. Interconnections and market integration in the Irish Single Electricity Market

    International Nuclear Information System (INIS)

    Nepal, Rabindra; Jamasb, Tooraj

    2012-01-01

    Interconnections can be an effective way to increase competition and improve market integration in concentrated wholesale electricity markets with limited number of participants. This paper examines the potential for interconnections and increasing market integration in the Irish Single Electricity Market (SEM). We use a time-varying Kalman filter technique to assess the degree of market integration between SEM and other large, mature and interconnected wholesale electricity markets in Europe including Great Britain (GB). The results indicate no market integration between SEM and other European markets except for Elspot and GB. We show that the current state of market integration between SEM and GB is just 17% indicating potential to improve market integration via increased interconnector capacity. The results indicate that liquidity of wholesale markets might be a crucial factor in the market integration process while our results remain inconclusive in determining whether increased trade of renewables can improve market integration. - Highlights: ► We assess the degree of market integration between SEM and other EU electricity markets. ► Our results indicate no market integration between SEM and other European markets except for Elspot and GB. ► We show that the current state of market integration between SEM and GB is just 17%.

  20. 32 x 16 CMOS smart pixel array for optical interconnects

    Science.gov (United States)

    Kim, Jongwoo; Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Choquette, Kent D.; Kiamilev, Fouad E.

    2000-05-01

    Free space optical interconnects can increase throughput capacities and eliminate much of the energy consumption required for `all electronic' systems. High speed optical interconnects can be achieved by integrating optoelectronic devices with conventional electronics. Smart pixel arrays have been developed which use optical interconnects. An individual smart pixel cell is composed of a vertical cavity surface emitting laser (VCSEL), a photodetector, an optical receiver, a laser driver, and digital logic circuitry. Oxide-confined VCSELs are being developed to operate at 850 nm with a threshold current of approximately 1 mA. Multiple quantum well photodetectors are being fabricated from AlGaAs for use with the 850 nm VCSELs. The VCSELs and photodetectors are being integrated with complementary metal oxide semiconductor (CMOS) circuitry using flip-chip bonding. CMOS circuitry is being integrated with a 32 X 16 smart pixel array. The 512 smart pixels are serially linked. Thus, an entire data stream may be clocked through the chip and output electrically by the last pixel. Electrical testing is being performed on the CMOS smart pixel array. Using an on-chip pseudo random number generator, a digital data sequence was cycled through the chip verifying operation of the digital circuitry. Although, the prototype chip was fabricated in 1.2 micrometers technology, simulations have demonstrated that the array can operate at 1 Gb/s per pixel using 0.5 micrometers technology.

  1. Enhancing Ecoefficiency in Shrimp Farming through Interconnected Ponds

    Directory of Open Access Journals (Sweden)

    Ramón Héctor Barraza-Guardado

    2015-01-01

    Full Text Available The future development of shrimp farming needs to improve its ecoefficiency. The purpose of this study was to evaluate water quality, flows, and nitrogen balance and production parameters on a farm with interconnected pond design to improve the efficiency of the semi-intensive culture of Litopenaeus vannamei ponds. The study was conducted in 21 commercial culture ponds during 180 days at densities of 30–35 ind m−2 and daily water exchange <2%. Our study provides evidence that by interconnecting ponds nutrient recycling is favored by promoting the growth of primary producers of the pond as chlorophyll a. Based on the mass balance and flow of nutrients this culture system reduces the flow of solid, particulate organic matter, and nitrogen compounds to the environment and significantly increases the efficiency of water (5 to 6.5 m3 kg−1 cycle−1, when compared with traditional culture systems. With this culture system it is possible to recover up to 34% of the total nitrogen entering the system, with production in excess of 4,000 kg ha−1 shrimp. We believe that the production system with interconnected ponds is a technically feasible model to improve ecoefficiency production of shrimp farming.

  2. Chip-Level Electromigration Reliability for Cu Interconnects

    International Nuclear Information System (INIS)

    Gall, M.; Oh, C.; Grinshpon, A.; Zolotov, V.; Panda, R.; Demircan, E.; Mueller, J.; Justison, P.; Ramakrishna, K.; Thrasher, S.; Hernandez, R.; Herrick, M.; Fox, R.; Boeck, B.; Kawasaki, H.; Haznedar, H.; Ku, P.

    2004-01-01

    Even after the successful introduction of Cu-based metallization, the electromigration (EM) failure risk has remained one of the most important reliability concerns for most advanced process technologies. Ever increasing operating current densities and the introduction of low-k materials in the backend process scheme are some of the issues that threaten reliable, long-term operation at elevated temperatures. The traditional method of verifying EM reliability only through current density limit checks is proving to be inadequate in general, or quite expensive at the best. A Statistical EM Budgeting (SEB) methodology has been proposed to assess more realistic chip-level EM reliability from the complex statistical distribution of currents in a chip. To be valuable, this approach requires accurate estimation of currents for all interconnect segments in a chip. However, no efficient technique to manage the complexity of such a task for very large chip designs is known. We present an efficient method to estimate currents exhaustively for all interconnects in a chip. The proposed method uses pre-characterization of cells and macros, and steps to identify and filter out symmetrically bi-directional interconnects. We illustrate the strength of the proposed approach using a high-performance microprocessor design for embedded applications as a case study

  3. Power System Study for Renewable Energy Interconnection in Malaysia

    Science.gov (United States)

    Askar, O. F.; Ramachandaramurthy, V. K.

    2013-06-01

    The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.

  4. Ontario's intertie capacity and electricity trade in the interconnected system

    International Nuclear Information System (INIS)

    Dorey, S.

    2002-01-01

    Hydro One's capacity of existing interconnections were described. The Ontario utility is within reach of about 320 GW electricity markets in neighbouring Quebec, New York, Michigan, Minnesota, and Manitoba. It is also within reach of 50 million customers, and 30 per cent of total U.S. energy consumption. The author emphasized the need for expanded interties and new interconnections. The status of new interconnections was described along with the rules regarding electric power import, export and wheeling. It was noted that compared to the United States, Canada has a higher proportion of clean hydro and nuclear power plants in its mix of power generation. Markets across North America are adopting electricity restructuring and open competition. However, the transmission grids were not designed to support market-driven electricity trading. Most transmission grids were built when utilities were tightly regulated and provided service only within their assigned regions. The current energy infrastructure is not equipped for large-scale swapping of power in competitive markets. It was also noted that growth in US power flows is outpacing transmission investment. This paper addressed the issue of license requirements, transmitter proposals for regulated investments, and non-rate base transmitter investments. It was concluded that while market rules are flexible enough to encourage inter-jurisdictional trade, the rules have to facilitate and encourage transmission investment. 8 figs

  5. 77 FR 3766 - PJM Interconnection, L.L.C.; Notice of Staff Technical Conference

    Science.gov (United States)

    2012-01-25

    ... Interconnection, L.L.C.; Notice of Staff Technical Conference On December 14, 2011, the Commission issued an order... Interconnection, L.L.C.'s (PJM) filing.\\1\\ Take notice that the technical conference will be held on February 14...\\ PJM Interconnection, L.L.C., 137 FERC ] 61,204 (2011) (December 14 Order). All interested parties are...

  6. 75 FR 40815 - PJM Interconnection, L.L.C.; Notice of Filing

    Science.gov (United States)

    2010-07-14

    ... Interconnection, L.L.C.; Notice of Filing July 7, 2010. Take notice that on July 1, 2010, PJM Interconnection, L.L.C. (PJM) filed revised sheets to Schedule 1 of the Amended and Restated Operating Agreement of PJM Interconnection, L.L.C. (Operating Agreement) and the parallel provisions of Attachment K--Appendix of the PJM...

  7. 75 FR 22773 - PJM Interconnection, L.L.C.; Notice of Filing

    Science.gov (United States)

    2010-04-30

    ... Interconnection, L.L.C.; Notice of Filing April 23, 2010. Take notice that on April 22, 2010, PJM Interconnection, L.L.C. (PJM) filed revised tariff sheets to its Schedule 1 of the Amended and Restated Operating... (Commission) March 23, 2010 Order on Compliance Filing, PJM Interconnection, L.L.C., 130 FERC ] 61,230 (2010...

  8. 77 FR 34378 - PJM Interconnection, L.L.C.; Notice of Complaint

    Science.gov (United States)

    2012-06-11

    ... Interconnection, L.L.C.; Notice of Complaint Take notice that on June 1, 2012, pursuant to section 206 of the Federal Power Act (FPA), 16 U.S.C. 824(e), PJM Interconnection, L.L.C. (PJM) filed proposed revisions to the Amended and Restated Operating Agreement of PJM Interconnection L.L.C. (Operating Agreement) to...

  9. Neutrino interactions in hot and dense matter

    International Nuclear Information System (INIS)

    Reddy, S.; Prakash, M.; Lattimer, J.M.

    1998-01-01

    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star. copyright 1998 The American Physical Society

  10. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  11. Cold dense baryonic matter and compact stars

    International Nuclear Information System (INIS)

    Hyun Kyu Lee; Sang-Jin Sin; Mannque Rho

    2011-01-01

    Probing dense hadronic matter is thus far an uncharted field of physics. Here we give a brief summary of the highlights of what has been so far accomplished and what will be done in the years ahead by the World Class University III Project at Hanyang University in the endeavor to unravel and elucidate the multi-facet of the cold dense baryonic matter existing in the interior of the densest visible stable object in the universe, i.e. neutron stars, strangeness stars and/or quark stars, from a modest and simplified starting point of an effective field theory modeled on the premise of QCD as well as from a gravity dual approach of hQCD. The core of the matter of our research is the possible origin of the ∼ 99% of the proton mass that is to be accounted for and how the 'vacuum' can be tweaked so that the source of the mass generation can be uncovered by measurements made in terrestrial as well as space laboratories. Some of the issues treated in the program concern what can be done - both theoretically and experimentally - in anticipation of what's to come for basic physics research in Korea. (authors)

  12. Collective dynamics in dense Hg vapour

    International Nuclear Information System (INIS)

    Ishikawa, D; Inui, M; Matsuda, K; Tamura, K; Baron, A Q R; Tsutsui, S; Tanaka, Y; Ishikawa, T

    2004-01-01

    The dynamic structure factor, S(Q,ο), of dense Hg vapour has been measured by high resolution inelastic x-ray scattering for densities of 3.0, 2.1 and 1.0 g cm -3 corresponding to 0.52, 0.36 and 0.17 times the critical density, respectively, and for momentum transfers between 2.0 and 48 nm -1 . Analysis of the longitudinal current-current correlation function in the framework of generalized hydrodynamics reveals that the frequencies of the collective excitations increase faster with Q than estimated from the macroscopic speed of sound. The ratios of the frequencies were found to be 1.27 at 3.0 g cm -3 , 1.12 at 2.1 g cm -3 and 1.10 at 1.0 g cm -3 . The sound velocity obtained from the present experiments is well reproduced by a wavenumber dependent adiabatic sound velocity, which means that the collective modes remain in the spectra of dense Hg vapour. (letter to the editor)

  13. Redesigning Triangular Dense Matrix Computations on GPUs

    KAUST Repository

    Charara, Ali

    2016-08-09

    A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels fail to achieve the percentage of the theoretical peak performance on GPUs that one would expect when running kernels with similar surface-to-volume ratio on hardware accelerators, i.e., the standard matrix-matrix multiplication (GEMM). The authors propose adopting a recursive formulation, which enriches the TRMM and TRSM inner structures with GEMM calls and, therefore, reduces memory traffic while increasing the level of concurrency. The new implementation enables efficient use of the GPU memory hierarchy and mitigates the latency overhead, to run at the speed of the higher cache levels. Performance comparisons show up to eightfold and twofold speedups for large dense matrix sizes, against the existing state-of-the-art TRMM and TRSM implementations from NVIDIA cuBLAS, respectively, across various GPU generations. Once integrated into high-level Cholesky-based dense linear algebra algorithms, the performance impact on the overall applications demonstrates up to fourfold and twofold speedups, against the equivalent native implementations, linked with cuBLAS TRMM and TRSM kernels, respectively. The new TRMM/TRSM kernel implementations are part of the open-source KBLAS software library (http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx) and are lined up for integration into the NVIDIA cuBLAS library in the upcoming v8.0 release.

  14. 78 FR 14532 - Small Generator Interconnection Agreements and Procedures; Workshop

    Science.gov (United States)

    2013-03-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM13-2-000] Small Generator... Regulatory Commission, 888 First Street NE., Washington, DC 20426. Members of the Commission may attend the...-generator-03-27-13-form.asp . The purpose of this workshop is to discuss certain topics related to the...

  15. As to achieve regulatory action, regulatory approaches

    International Nuclear Information System (INIS)

    Cid, R.; Encinas, D.

    2014-01-01

    The achievement of the effectiveness in the performance of a nuclear regulatory body has been a permanent challenge in the recent history of nuclear regulation. In the post-Fukushima era this challenge is even more important. This article addresses the subject from two complementary points of view: the characteristics of an effective regulatory body and the regulatory approaches. This work is based on the most recent studies carried out by the Committee on Nuclear Regulatory Activities, CNRA (OECD/NEA), as well as on the experience of the Consejo de Seguridad Nuclear, CSN, the Spanish regulatory body. Rafael Cid is the representative of CSN in these project: Diego Encinas has participated in the study on regulatory approaches. (Author)

  16. MnCo{sub 2}O{sub 4} spinel chromium barrier coatings for SOFC interconnect by HVOF

    Energy Technology Data Exchange (ETDEWEB)

    Lagerbom, J.; Varis, T.; Pihlatie, M.; Himanen, O.; Saarinen, V.; Kiviaho, J.; Turunen, E. [VTT Technical Research Centre of Finland, Espoo (Finland); Puranen, J. [Tampere Univ. of Technology (Finland). Inst. of Materials Science

    2010-07-01

    Chromia released from steel parts used for interconnect plates by evaporation and condensation can quickly degrade the cell (cathode) performance in solid oxide fuel cell SOFC. Coatings on top of the IC plate can work as a chromium evaporation barrier. The coating material should have good electrical conductivity, high temperature stability and nearly the same coefficient of thermal expansion as the cell materials. One candidate for the coating material is MnCo{sub 2}O{sub 4} spinel because of its suitable properties. High velocity oxy fuel (HVOF) spraying was used for the coating application on Crofer 22 APU steel samples. Using commercial and self made spray dried powders together with an HV2000 spray gun it was possible to successfully manufacture, well adhering, dense and reasonably uniform coatings. The samples were tested in oxidation exposure tests in air followed by post analysis in SEM. Powders and coatings microstructures are presented here, both before and after exposure. It was found out that together with spraying parameters the powder characteristics used influence clearly to the coating quality. Especially as very thin coatings was aimed with dense structure fine powders was found to be essential. (orig.)

  17. Next Generation Space Interconnect Standard (NGSIS): a modular open standards approach for high performance interconnects for space

    Science.gov (United States)

    Collier, Charles Patrick

    2017-04-01

    The Next Generation Space Interconnect Standard (NGSIS) effort is a Government-Industry collaboration effort to define a set of standards for interconnects between space system components with the goal of cost effectively removing bandwidth as a constraint for future space systems. The NGSIS team has selected the ANSI/VITA 65 OpenVPXTM standard family for the physical baseline. The RapidIO protocol has been selected as the basis for the digital data transport. The NGSIS standards are developed to provide sufficient flexibility to enable users to implement a variety of system configurations, while meeting goals for interoperability and robustness for space. The NGSIS approach and effort represents a radical departure from past approaches to achieve a Modular Open System Architecture (MOSA) for space systems and serves as an exemplar for the civil, commercial, and military Space communities as well as a broader high reliability terrestrial market.

  18. Glaciations and dense interstellar clouds; and reply

    Energy Technology Data Exchange (ETDEWEB)

    McCrea, W H [Sussex Univ., Brighton (UK); Dennison, B; Mansfield, V N

    1976-09-16

    Reference is made to Dennison and Mansfield (Nature 261:32 (1976)) who offered comments on a previous paper by the author (Nature 255:607 (1975)), in which he suggested that a possible cause of an ice age on the Earth was the passage of the solar system through an interstellar matter compression region bordering a spiral arm of the Galaxy. Dennison and Mansfield criticised this suggestion because it led them to expect to find a dense cloud of interstellar matter still very close to the Earth, whereas no such cloud is known. It is stated here that this criticism ignores the structure of the Galaxy, that provided the basis of the suggestion. A reply by Dennison and Mansfield is appended.

  19. Charmonium propagation through a dense medium

    Directory of Open Access Journals (Sweden)

    Kopeliovich B.Z.

    2015-01-01

    Full Text Available Attenuation of a colourless c̄c dipole propagating with a large momentum through a hot medium originates from two sources, Debye screening (melting, and inelastic collisions with surrounding scattering centres (absorption. The former never terminates completely production of a bound charmonium in heavy ion collisions, even at very high temperatures. The latter, is controlled my the magnitude of the dipole cross section, related to the transport coefficient, which is the rate of transverse momentum broadening in the medium. A novel procedure of Lorentz boosting of the Schrödinger equation is developed, which allows to calculate the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. A novel mechanism of charmonium regeneration in a dense medium is proposed.

  20. Frontiers and challenges in warm dense matter

    CERN Document Server

    Desjarlais, Michael; Redmer, Ronald; Trickey, Samuel

    2014-01-01

    Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent...

  1. Intrinsically secure fast reactors with dense cores

    International Nuclear Information System (INIS)

    Slessarev, Igor

    2007-01-01

    Secure safety, resistance to weapons material proliferation and problems of long-lived wastes remain the most important 'painful points' of nuclear power. Many innovative reactor concepts have been developed aimed at a radical enhancement of safety. The promising potential of innovative nuclear reactors allows for shifting accents in current reactor safety 'strategy' to reveal this worth. Such strategy is elaborated focusing on the priority for intrinsically secure safety features as well as on sure protection being provided by the first barrier of defence. Concerning the potential of fast reactors (i.e. sodium cooled, lead-cooled, etc.), there are no doubts that they are able to possess many favourable intrinsically secure safety features and to lay the proper foundation for a new reactor generation. However, some of their neutronic characteristics have to be radically improved. Among intrinsically secure safety properties, the following core parameters are significantly important: reactivity margin values, reactivity feed-back and coolant void effects. Ways of designing intrinsically secure safety features in fast reactors (titled hereafter as Intrinsically Secure Fast Reactors - ISFR) can be found in the frame of current reactor technologies by radical enhancement of core neutron economy and by optimization of core compositions. Simultaneously, respecting resistance to proliferation, by using non-enriched fuel feed as well as a core breeding gain close to zero, are considered as the important features (long-lived waste problems will be considered in a separate paper). This implies using the following reactor design options as well as closed fuel cycles with natural U as the reactor feed: ·Ultra-plate 'dense cores' of the ordinary (monolithic) type with negative total coolant void effects. ·Modular type cores. Multiple dense modules can be embedded in the common reflector for achieving the desired NPP total power. The modules can be used also independently (as

  2. Coherent neutrino interactions in a dense medium

    International Nuclear Information System (INIS)

    Kiers, K.; Weiss, N.

    1997-01-01

    Motivated by the effect of matter on neutrino oscillations (the MSW effect) we study in more detail the propagation of neutrinos in a dense medium. The dispersion relation for massive neutrinos in a medium is known to have a minimum at nonzero momentum p∼G F ρ/√(2). We study in detail the origin and consequences of this dispersion relation for both Dirac and Majorana neutrinos both in a toy model with only neutral currents and a single neutrino flavor and in a realistic open-quotes standard modelclose quotes with two neutrino flavors. We find that for a range of neutrino momenta near the minimum of the dispersion relation, Dirac neutrinos are trapped by their coherent interactions with the medium. This effect does not lead to the trapping of Majorana neutrinos. copyright 1997 The American Physical Society

  3. Equation of state of dense baryonic matter

    International Nuclear Information System (INIS)

    Weber, F.; Weigel, M.K.

    1989-01-01

    In a previous investigation we treated nuclear matter as well as neutron matter at zero and finite temperatures in the frame of different relativistic field theoretical models, but with the restriction to nucleons as the only present baryons. This approach is extended by including a larger fraction of baryons and mesons, necessary for a description of baryon matter under extreme conditions. The equation of state (EOS) is calculated in both the Hartree and Hartree-Fock (HF) approximations for dense nuclear as well as neutron matter. Self-interactions of the σ field up to fourth order have been taken into account. For the treatment of many-baryon matter in the HF approach the parameters of the theory had to be readjusted. A phase transition of both many-baryon systems (neutron as well as nuclear matter) in the high-pressure and high-energy-density region has been found. (author)

  4. Nonlinear extraordinary wave in dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Russian University of Peoples’ Friendship (Russian Federation)

    2013-10-15

    Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.

  5. Statistical mechanics of dense granular media

    International Nuclear Information System (INIS)

    Coniglio, A; Fierro, A; Nicodemi, M; Ciamarra, M Pica; Tarzia, M

    2005-01-01

    We discuss some recent results on the statistical mechanics approach to dense granular media. In particular, by analytical mean field investigation we derive the phase diagram of monodisperse and bidisperse granular assemblies. We show that 'jamming' corresponds to a phase transition from a 'fluid' to a 'glassy' phase, observed when crystallization is avoided. The nature of such a 'glassy' phase turns out to be the same as found in mean field models for glass formers. This gives quantitative evidence for the idea of a unified description of the 'jamming' transition in granular media and thermal systems, such as glasses. We also discuss mixing/segregation transitions in binary mixtures and their connections to phase separation and 'geometric' effects

  6. A constitutive law for dense granular flows.

    Science.gov (United States)

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  7. Dense gas dispersion in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Morten

    1998-09-01

    Dense gas dispersion is characterized by buoyancy induced gravity currents and reduction of the vertical mixing. Liquefied gas releases from industrial accidents are cold because of the heat of evaporation which determines the density for a given concentration and physical properties. The temperature deficit is moderated by the heat flux from the ground, and this convection is an additional source of turbulence which affects the mixing. A simple model as the soil heat flux is used to estimate the ability of the ground to sustain the heat flux during release. The initial enthalpy, release rate, initial entrainment and momentum are discussed for generic source types and the interaction with obstacles is considered. In the MTH project BA experiments source with and without momentum were applied. The continuously released propane gas passed a two-dimensional removable obstacle perpendicular to the wind direction. Ground-level gas concentrations and vertical profiles of concentration, temperature, wind speed and turbulence were measured in front of and behind the obstacle. Ultrasonic anemometers providing fast velocity and concentration signals were mounted at three levels on the masts. The observed turbulence was influenced by the stability and the initial momentum of the jet releases. Additional information were taken from the `Dessert tortoise` ammonia jet releases, from the `Fladis` experiment with transition from dense to passive dispersion, and from the `Thorney Island` continuous releases of isothermal freon mixtures. The heat flux was found to moderate the negative buoyancy in both the propane and ammonia experiments. The heat flux measurements are compared to an estimate by analogy with surface layer theory. (au) 41 tabs., 146 ills., 189 refs.

  8. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Bastidas, D. M.

    2006-01-01

    Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation. (Author) 66 refs

  9. Time Domain Analysis of Graphene Nanoribbon Interconnects Based on Transmission Line ‎Model

    Directory of Open Access Journals (Sweden)

    S. Haji Nasiri

    2012-03-01

    Full Text Available Time domain analysis of multilayer graphene nanoribbon (MLGNR interconnects, based on ‎transmission line modeling (TLM using a six-order linear parametric expression, has been ‎presented for the first time. We have studied the effects of interconnect geometry along with ‎its contact resistance on its step response and Nyquist stability. It is shown that by increasing ‎interconnects dimensions their propagation delays are increased and accordingly the system ‎becomes relatively more stable. In addition, we have compared time responses and Nyquist ‎stabilities of MLGNR and SWCNT bundle interconnects, with the same external dimensions. ‎The results show that under the same conditions, the propagation delays for MLGNR ‎interconnects are smaller than those of SWCNT bundle interconnects are. Hence, SWCNT ‎bundle interconnects are relatively more stable than their MLGNR rivals.‎

  10. Kesterite Cu2ZnSnS4 compounds via electrospinning: A facile route to mesoporous fibers and dense films

    International Nuclear Information System (INIS)

    Mu, Chunhong; Song, Yuanqiang; Wang, Xiaoning; Wu, Peng

    2015-01-01

    Highlights: • CZTS fibers, mesporous films and dense films are fabricated via electrospinning. • Controllable micromorphologies can be obtained. • Band gap decrease from 1.49 eV to 1.44 eV with the morphology changing. - Abstract: Kesterite Cu 2 ZnSnS 4 (CZTS) layers composed of either mesoporous fibers or dense films were successfully synthesized by electrospinning following sulfurization at high temperature. CZTS layers were characterized using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), Raman and X-ray photoelectronic spectroscopy (XPS), and X-ray diffraction (XRD). The optical properties were also recorded by UV–vis absorption spectroscopy. The results showed that, with the increasing of sulfurization temperature from 450 to 600 °C, the electrospun precursor fibers evolved from isolated CZTS fibers to interconnected fibers, and finally forming a compact films composing of sub-micro crystal flakes, just by simply adjusting the solutes concentration and sulfurization parameters. All the synthesized CZTS samples had a single phase, good crystallinity and a stoichiometric composition. Moreover, the band gap evolved from 1.49 eV to 1.44 eV with the morphology changing from porous microfibers to compact films. This work puts forward a facile route to both CZTS fibers and dense films, and would be meaningful for exploiting CZTS-based solar cells

  11. Dense Deposit Disease Mimicking a Renal Small Vessel Vasculitis

    Science.gov (United States)

    Singh, Lavleen; Bhardwaj, Swati; Sinha, Aditi; Bagga, Arvind; Dinda, Amit

    2016-01-01

    Dense deposit disease is caused by fluid-phase dysregulation of the alternative complement pathway and frequently deviates from the classic membranoproliferative pattern of injury on light microscopy. Other patterns of injury described for dense deposit disease include mesangioproliferative, acute proliferative/exudative, and crescentic GN. Regardless of the histologic pattern, C3 glomerulopathy, which includes dense deposit disease and C3 GN, is defined by immunofluorescence intensity of C3c two or more orders of magnitude greater than any other immune reactant (on a 0–3 scale). Ultrastructural appearances distinguish dense deposit disease and C3 GN. Focal and segmental necrotizing glomerular lesions with crescents, mimicking a small vessel vasculitis such as ANCA-associated GN, are a very rare manifestation of dense deposit disease. We describe our experience with this unusual histologic presentation and distinct clinical course of dense deposit disease, discuss the pitfalls in diagnosis, examine differential diagnoses, and review the relevant literature. PMID:26361799

  12. Exploring the interconnections between gender, health and nature.

    Science.gov (United States)

    MacBride-Stewart, S; Gong, Y; Antell, J

    2016-12-01

    Public health has recognized that nature is good for health but there are calls for a review of its gendered aspects. This review attempts to develop and explore a broad analytical theme - the differing interconnections between gender, health and nature. The paper summarizes the interconnections that have been subject to extensive academic enquiry between gender and health, health and space, and gender and space. A combination of key terms including place; gender; health; outdoor space; green space; natural environment; national parks; femininity; masculinity; recreation; physical activity; sustainability; ecofeminism; feminism; environmental degradation; and environmental justice were used to search the electronic databases Sociological Abstracts, Web of Science and Scopus to identify relevant articles. We took two approaches for this review to provide an overview and analysis of the range of research in the field, and to present a framework of research that is an analysis of the intersection of gender, health and nature. Four dimensions are distinguished: (1) evaluations of health benefits and 'toxicities' of nature; (2) dimensions and qualities of nature/space; (3) environmental justice including accessibility, availability and usability; and (4) identification of boundaries (symbolic/material) that construct differential relationships between nature, gender and health. This paper offers an understanding of how environmental and social conditions may differentially shape the health of women and men. The dimensions direct analytical attention to the diverse linkages that constitute overlapping and inseparable domains of knowledge and practice, to identify complex interconnections between gender, health and nature. This review therefore analyses assumptions about the health benefits of nature, and its risks, for gender from an in-depth, analytical perspective that can be used to inform policy. Copyright © 2016 The Royal Society for Public Health. Published by

  13. Actual issues concerning nuclear power plants and interconnected grid

    International Nuclear Information System (INIS)

    Medjimorec, D.; Brkic, S.

    2004-01-01

    Nuclear power plants and transmission grid have always been mutually of special relevance. In countries and/or regions where nuclear power plants are located they are almost as a rule counted among strongest nodes of the grid. Hence, they are treated as such from grid point of view in various aspects (operational, planning). In interconnected high-voltage transmission grid of European mainland, usually called UCTE interconnected system, this importance could be shown in a range of issues and several cases, particularly under present situation in which there are numerous demanding and challenging tasks put on transmission system operators, largely due to the opening of electricity markets in the most of European countries. Among these issues definitely worth of mentioning is relevant influence to both commercial paths and physical power flows, and also to exchange programmes between control areas and blocks. In this context there is also relation to cross-border transactions and mechanism applied to them. In respect to security of supply issues and future of nuclear power generation under present regulative framework of most European countries it is needed to comply with connecting conditions (and other stipulations) from national grid codes where different approaches could be observed. Furthermore, nuclear issues significantly influence approach to extension of UCTE system. In certain extent this also applies to pending re-connection of present two synchronous zones of UCTE, particularly to area of broader region directly affected with this complex process. Some of these also reflect to Croatian high-voltage transmission grid as a part of UCTE interconnected system with certain peculiarities.(author)

  14. Fiber bundle probes for interconnecting miniaturized medical imaging devices

    Science.gov (United States)

    Zamora, Vanessa; Hofmann, Jens; Marx, Sebastian; Herter, Jonas; Nguyen, Dennis; Arndt-Staufenbiel, Norbert; Schröder, Henning

    2017-02-01

    Miniaturization of medical imaging devices will significantly improve the workflow of physicians in hospitals. Photonic integrated circuit (PIC) technologies offer a high level of miniaturization. However, they need fiber optic interconnection solutions for their functional integration. As part of European funded project (InSPECT) we investigate fiber bundle probes (FBPs) to be used as multi-mode (MM) to single-mode (SM) interconnections for PIC modules. The FBP consists of a set of four or seven SM fibers hexagonally distributed and assembled into a holder that defines a multicore connection. Such a connection can be used to connect MM fibers, while each SM fiber is attached to the PIC module. The manufacturing of these probes is explored by using well-established fiber fusion, epoxy adhesive, innovative adhesive and polishing techniques in order to achieve reliable, low-cost and reproducible samples. An innovative hydrofluoric acid-free fiber etching technology has been recently investigated. The preliminary results show that the reduction of the fiber diameter shows a linear behavior as a function of etching time. Different etch rate values from 0.55 μm/min to 2.3 μm/min were found. Several FBPs with three different type of fibers have been optically interrogated at wavelengths of 630nm and 1550nm. Optical losses are found of approx. 35dB at 1550nm for FBPs composed by 80μm fibers. Although FBPs present moderate optical losses, they might be integrated using different optical fibers, covering a broad spectral range required for imaging applications. Finally, we show the use of FBPs as promising MM-to-SM interconnects for real-world interfacing to PIC's.

  15. Ferroelectric devices, interconnects, and methods of manufacture thereof

    KAUST Repository

    Alshareef, Husam N.

    2013-12-12

    A doped electroconductive organic polymer is used for forming the electrode of a ferroelectric device or an interconnect. An exemplary ferroelectric device is a ferrelectric capacitor comprising: a substrate (101); a first electrode (106) disposed on the substrate; a ferroelectric layer (112) disposed on and in contact with the first electrode; and a second electrode (116) disposed on and in contact with the ferroelectric layer, wherein at least one of the first electrode and the second electrode is an organic electrode comprising a doped electroconductive organic polymer, for example DMSO-doped PEDOT-PSS.

  16. First experience with the InfiniBand interconnect

    International Nuclear Information System (INIS)

    Schwickerath, Ulrich; Heiss, Andreas

    2004-01-01

    A test cluster of dual Intel-Xeon processor server nodes has been equipped with 10 GBit/s InfiniBand interconnect. Capabilities of this new technique were tested and compared to Gigabit-Ethernet (GE) with respect to both High-Performance Computing (MPI-based parallel computing applications) and High-Throughput Computing (HTC). RFIO, a protocol for fast and efficient file transfers, has been ported to make immediate use of InfiniBand, utilizing the remote direct memory access (RDMA) capabilities of the InfiniBand hardware. The performance is compared to Gigabit-Ethernet

  17. Ring-array processor distribution topology for optical interconnects

    Science.gov (United States)

    Li, Yao; Ha, Berlin; Wang, Ting; Wang, Sunyu; Katz, A.; Lu, X. J.; Kanterakis, E.

    1992-01-01

    The existing linear and rectangular processor distribution topologies for optical interconnects, although promising in many respects, cannot solve problems such as clock skews, the lack of supporting elements for efficient optical implementation, etc. The use of a ring-array processor distribution topology, however, can overcome these problems. Here, a study of the ring-array topology is conducted with an aim of implementing various fast clock rate, high-performance, compact optical networks for digital electronic multiprocessor computers. Practical design issues are addressed. Some proof-of-principle experimental results are included.

  18. Performance evaluation of two highly interconnected Data Center networks

    DEFF Research Database (Denmark)

    Andrus, Bogdan-Mihai; Mihai Poncea, Ovidiu; Vegas Olmos, Juan José

    2015-01-01

    In this paper we present the analysis of highly interconnected topologies like hypercube and torus and how they can be implemented in data centers in order to cope with the rapid increase and demands for performance of the internal traffic. By replicating the topologies and subjecting them...... to uniformly distributed traffic routed by shortest path algorithms, we are able to extract relevant statistics related to average throughput, latency and loss rate. A decrease in throughput per connection of only about 5% for the hypercube compared to 16% for the 3D torus was measured when the size...

  19. Ferroelectric devices, interconnects, and methods of manufacture thereof

    KAUST Repository

    Alshareef, Husam N.; Unnat, Bhansali; Khan, Mohd Adnan; Saleh, Moussa M.; Odeh, Ihab N.

    2013-01-01

    A doped electroconductive organic polymer is used for forming the electrode of a ferroelectric device or an interconnect. An exemplary ferroelectric device is a ferrelectric capacitor comprising: a substrate (101); a first electrode (106) disposed on the substrate; a ferroelectric layer (112) disposed on and in contact with the first electrode; and a second electrode (116) disposed on and in contact with the ferroelectric layer, wherein at least one of the first electrode and the second electrode is an organic electrode comprising a doped electroconductive organic polymer, for example DMSO-doped PEDOT-PSS.

  20. Electromigration kinetics and critical current of Pb-free interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Minhua; Rosenberg, Robert [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2014-04-07

    Electromigration kinetics of Pb-free solder bump interconnects have been studied using a single bump parameter sweep technique. By removing bump to bump variations in structure, texture, and composition, the single bump sweep technique has provided both activation energy and power exponents that reflect atomic migration and interface reactions with fewer samples, shorter stress time, and better statistics than standard failure testing procedures. Contact metallurgies based on Cu and Ni have been studied. Critical current, which corresponds to the Blech limit, was found to exist in the Ni metallurgy, but not in the Cu metallurgy. A temperature dependence of critical current was also observed.

  1. Effect of interconnectivity of structures against seismic load

    International Nuclear Information System (INIS)

    Bhuvaneshwari, P.; Elangovan, S.

    2003-01-01

    Since years world had experienced number of earthquakes and in India, zones have been modified according to the severity of earthquake and all this have made designers and engineers to concentrate rigorously to bring down the effect of damage to structures. Since the response of the structures to seismic force mainly depends on the distribution of mass, stiffness and damping characteristics an attempt is being made to compare and study the response by improving these characteristics in a simple building frame with and without infill. This in turn gives an idea of interconnecting the adjacent buildings of nuclear island to reduce the hazard to a minimum. (author)

  2. DER Certification Laboratory Pilot, Accreditation Plan, and Interconnection Agreement Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Key, T.; Sitzlar, H. E.; Ferraro, R.

    2003-11-01

    This report describes the first steps toward creating the organization, procedures, plans and tools for distributed energy resources (DER) equipment certification, test laboratory accreditation, and interconnection agreements. It covers the activities and accomplishments during the first period of a multiyear effort. It summarizes steps taken to outline a certification plan to assist in the future development of an interim plan for certification and accreditation activities. It also summarizes work toward a draft plan for certification, a beta Web site to support communications and materials, and preliminary draft certification criteria.

  3. 100 GHz Externally Modulated Laser for Optical Interconnects Applications

    DEFF Research Database (Denmark)

    Ozolins, Oskars; Pang, Xiaodan; Iglesias Olmedo, Miguel

    2017-01-01

    We report on a 116 Gb/s on-off keying (OOK), four pulse amplitude modulation (PAM) and 105-Gb/s 8-PAM optical transmitter using an InP-based integrated and packaged externally modulated laser for high-speed optical interconnects with up to 30 dB static extinction ratio and over 100-GHz 3-d......B bandwidth with 2 dB ripple. In addition, we study the tradeoff between power penalty and equalizer length to foresee transmission distances with standard single mode fiber....

  4. A new method for energy accounting in interconnected operations

    International Nuclear Information System (INIS)

    Navid, Taghizadegan; Navid, Taghizadegan; Naser, Tabatabaei; Ahmad Reza, Zentabchi; Majid, Mollazadeh

    2005-01-01

    Full text : The measurement of electrical energy supplied to customers or purchased from and delivered to interconnected power systems is of paramount importance in power system operations. Accurate measurement of energy delivered to customers or received from and delivered to other systems is necessary to ensure that billing is correct. energy transferred between systems also must be properly measured and accounted for to ensure that agreed-upon schedules are being met and that each system meets its obligation to match generation with load on a moment-to-moment basis

  5. Production process for advanced space satellite system cables/interconnects.

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  6. X-ray microdiffraction study of Cu interconnects

    International Nuclear Information System (INIS)

    Zhang, X.; Solak, H.; Cerrina, F.; Lai, B.; Cai, Z.; Ilinski, P.; Legnini, D.; Rodrigues, W.

    2000-01-01

    We have used x-ray microdiffraction to study the local structure and strain variation of copper interconnects. Different types of local microstructures have been found in different samples. Our data show that the Ti adhesion layer has a very dramatic effect on Cu microstructure. Strain measurement was conducted before and after electromigration test, Cu fluorescence was used to find the mass variations around voids and hillocks, and x-ray microdiffraction was used to measure the strain change around that interested region. (c) 2000 American Institute of Physics

  7. Financial Economy and Financial System: Basis of Structural Interconnection

    OpenAIRE

    Khorosheva Olena I.

    2014-01-01

    The goal of the article lies in identification of grounds of interconnection of the financial economy and financial system. The study was conducted with consideration of main provisions of the theory of finance and concept of financial economy, which is a set of means used in the process of reproduction of finance by their owner for formation and / or maintenance of the own system of values in the viable state. For the first time ever the structure of the financial system is identified as an ...

  8. Addendum to the 2015 Eastern Interconnect Baselining and Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Follum, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-30

    This report serves as an addendum to the report 2015 Eastern Interconnect Baselining and Analysis Report (Amidan, Follum, and Freeman, 2015). This addendum report investigates the following: the impact of shorter record lengths and of adding a daily regularization term to the date/time models for angle pair measurements, additional development of a method to monitor the trend in phase angle pairs, the effect of changing the length of time to determine a baseline, when calculating atypical events, and a comparison between quantitatively discovered atypical events and actual events.

  9. Bottom-up approach for carbon nanotube interconnects

    International Nuclear Information System (INIS)

    Li Jun; Ye Qi; Cassell, Alan; Ng, Hou Tee; Stevens, Ramsey; Han Jie; Meyyappan, M.

    2003-01-01

    We report a bottom-up approach to integrate multiwalled carbon nanotubes (MWNTs) into multilevel interconnects in silicon integrated-circuit manufacturing. MWNTs are grown vertically from patterned catalyst spots using plasma-enhanced chemical vapor deposition. We demonstrate the capability to grow aligned structures ranging from a single tube to forest-like arrays at desired locations. SiO 2 is deposited to encapsulate each nanotube and the substrate, followed by a mechanical polishing process for planarization. MWNTs retain their integrity and demonstrate electrical properties consistent with their original structure

  10. Nonlinear optical properties of interconnected gold nanoparticles on silicon

    Science.gov (United States)

    Lesuffleur, Antoine; Gogol, Philippe; Beauvillain, Pierre; Guizal, B.; Van Labeke, D.; Georges, P.

    2008-12-01

    We report second harmonic generation (SHG) measurements in reflectivity from chains of gold nanoparticles interconnected with metallic bridges. We measured more than 30 times a SHG enhancement when a surface plasmon resonance was excited in the chains of nanoparticles, which was influenced by coupling due to the electrical connectivity of the bridges. This enhancement was confirmed by rigorous coupled wave method calculations and came from high localization of the electric field at the bridge. The introduction of 10% random defects into the chains of nanoparticles dropped the SHG by a factor of 2 and was shown to be very sensitive to the fundamental wavelength.

  11. Centralized database for interconnection system design. [for spacecraft

    Science.gov (United States)

    Billitti, Joseph W.

    1989-01-01

    A database application called DFACS (Database, Forms and Applications for Cabling and Systems) is described. The objective of DFACS is to improve the speed and accuracy of interconnection system information flow during the design and fabrication stages of a project, while simultaneously supporting both the horizontal (end-to-end wiring) and the vertical (wiring by connector) design stratagems used by the Jet Propulsion Laboratory (JPL) project engineering community. The DFACS architecture is centered around a centralized database and program methodology which emulates the manual design process hitherto used at JPL. DFACS has been tested and successfully applied to existing JPL hardware tasks with a resulting reduction in schedule time and costs.

  12. Series interconnected photovoltaic cells and method for making same

    Science.gov (United States)

    Albright, Scot P.; Chamberlin, Rhodes R.; Thompson, Roger A.

    1995-01-01

    A novel photovoltaic module (10) and method for constructing the same are disclosed. The module (10) includes a plurality of photovoltaic cells (12) formed on a substrate (14) and laterally separated by interconnection regions (15). Each cell (12) includes a bottom electrode (16), a photoactive layer (18) and a top electrode layer (20). Adjacent cells (12) are connected in electrical series by way of a conductive-buffer line (22). The buffer line (22) is also useful in protecting the bottom electrode (16) against severing during downstream layer cutting processes.

  13. On some interconnections between combinatorial optimization and extremal graph theory

    Directory of Open Access Journals (Sweden)

    Cvetković Dragoš M.

    2004-01-01

    Full Text Available The uniting feature of combinatorial optimization and extremal graph theory is that in both areas one should find extrema of a function defined in most cases on a finite set. While in combinatorial optimization the point is in developing efficient algorithms and heuristics for solving specified types of problems, the extremal graph theory deals with finding bounds for various graph invariants under some constraints and with constructing extremal graphs. We analyze by examples some interconnections and interactions of the two theories and propose some conclusions.

  14. Decentralized control and filtering in interconnected dynamical systems

    CERN Document Server

    Mahmoud, Magdi S

    2011-01-01

    Based on the many approaches available for dealing with large-scale systems (LSS), Decentralized Control and Filtering in Interconnected Dynamical Systems supplies a rigorous framework for studying the analysis, stability, and control problems of LSS. Providing an overall assessment of LSS theories, it addresses model order reduction, parametric uncertainties, time delays, and control estimator gain perturbations. Taking readers on a guided tour through LSS, the book examines recent trends and approaches and reviews past methods and results from a contemporary perspective. It traces the progre

  15. Professional and Regulatory Search

    Science.gov (United States)

    Professional and Regulatory search are designed for people who use EPA web resources to do their job. You will be searching collections where information that is not relevant to Environmental and Regulatory professionals.

  16. Breast cancer screening in Korean woman with dense breast tissue

    International Nuclear Information System (INIS)

    Shin, Hee Jung; Ko, Eun Sook; Yi, Ann

    2015-01-01

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results

  17. Breast cancer screening in Korean woman with dense breast tissue

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Jung [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ko, Eun Sook [Dept. of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Yi, Ann [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-11-15

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results.

  18. Future nuclear regulatory challenges

    International Nuclear Information System (INIS)

    Royen, J.

    1998-01-01

    In December 1996, the NEA Committee on Nuclear Regulatory Activities concluded that changes resulting from economic deregulation and other recent developments affecting nuclear power programmes have consequences both for licensees and regulatory authorities. A number of potential problems and issues which will present a challenge to nuclear regulatory bodies over the next ten years have been identified in a report just released. (author)

  19. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  20. High-speed VCSEL-based optical interconnects

    Science.gov (United States)

    Ishak, Waguih S.

    2001-11-01

    Vertical Cavity Surface Emitting Lasers (VCSEL) have made significant inroads into commercial realization especially in the area of data communications. Single VCSEL devices are key components in Gb Ethernet Transceivers. A multi-element VCSEL array is the key enabling technology for high-speed multi Gb/s parallel optical interconnect modules. In 1996, several companies introduced a new generation of fiber optic products based VCSEL technology such as multimode fiber transceivers for the ANSI Fiber Channel and Gigabit Ethernet IEEE 802.3 standards. VCSELs offer unique advantages over its edge-emitting counterparts in several areas. These include low-cost (LED-like) manufacturability, low current operation and array integrability. As data rates continue to increase, VCSELs offer the advantage of being able to provide the highest modulation bandwidth per milliamp of modulation current. Currently, most of the VCSEL-based products use short (780 - 980 nm) wavelength lasers. However, significant research efforts are taking place at universities and industrial research labs around the world to develop reliable, manufacturable and high-power long (1300 - 1550 nm) wavelength VCSELs. These lasers will allow longer (several km) transmission distances and will help alleviate some of the eye-safety issues. Perhaps, the most important advantage of VCSELs is the ability to form two-dimensional arrays much easier than in the case of edge-emitting lasers. These arrays (single and two-dimensional) will allow a whole new family of applications, specifically in very high-speed computer and switch interconnects.

  1. Mechanics of ultra-stretchable self-similar serpentine interconnects

    International Nuclear Information System (INIS)

    Zhang, Yihui; Fu, Haoran; Su, Yewang; Xu, Sheng

    2013-01-01

    Graphical abstract: We developed analytical models of flexibility and elastic-stretchability for self-similar interconnect. The analytic solutions agree very well with the finite element analyses, both demonstrating that the elastic-stretchability more than doubles when the order of self-similar structure increases by one. Design optimization yields 90% and 50% elastic stretchability for systems with surface filling ratios of 50% and 70% of active devices, respectively. The analytic models are useful for the development of stretchable electronics that simultaneously demand large coverage of active devices, such as stretchable photovoltaics and electronic eye-ball cameras. -- Abstract: Electrical interconnects that adopt self-similar, serpentine layouts offer exceptional levels of stretchability in systems that consist of collections of small, non-stretchable active devices in the so-called island–bridge design. This paper develops analytical models of flexibility and elastic stretchability for such structures, and establishes recursive formulae at different orders of self-similarity. The analytic solutions agree well with finite element analysis, with both demonstrating that the elastic stretchability more than doubles when the order of the self-similar structure increases by one. Design optimization yields 90% and 50% elastic stretchability for systems with surface filling ratios of 50% and 70% of active devices, respectively

  2. Advanced methodology for generation expansion planning including interconnected systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M; Yokoyama, R; Yasuda, K [Tokyo Metropolitan Univ. (Japan); Sasaki, H [Hiroshima Univ. (Japan); Ogimoto, K [Electric Power Development Co. Ltd., Tokyo (Japan)

    1994-12-31

    This paper reviews advanced methodology for generation expansion planning including interconnected systems developed in Japan, putting focus on flexibility and efficiency in a practical application. First, criteria for evaluating flexibility of generation planning considering uncertainties are introduced. Secondly, the flexible generation mix problem is formulated as a multi-objective optimization with more than two objective functions. The multi-objective optimization problem is then transformed into a single objective problem by using the weighting method, to obtain the Pareto optimal solution, and solved by a dynamics programming technique. Thirdly, a new approach for electric generation expansion planning of interconnected systems is presented, based on the Benders Decomposition technique. That is, large scale generation problem constituted by the general economic load dispatch problem, and several sub problems which are composed of smaller scale isolated system generation expansion plans. Finally, the generation expansion plan solved by an artificial neural network is presented. In conclusion, the advantages and disadvantages of this method from the viewpoint of flexibility and applicability to practical generation expansion planning are presented. (author) 29 refs., 10 figs., 4 tabs.

  3. Complexity in neuronal noise depends on network interconnectivity.

    Science.gov (United States)

    Serletis, Demitre; Zalay, Osbert C; Valiante, Taufik A; Bardakjian, Berj L; Carlen, Peter L

    2011-06-01

    "Noise," or noise-like activity (NLA), defines background electrical membrane potential fluctuations at the cellular level of the nervous system, comprising an important aspect of brain dynamics. Using whole-cell voltage recordings from fast-spiking stratum oriens interneurons and stratum pyramidale neurons located in the CA3 region of the intact mouse hippocampus, we applied complexity measures from dynamical systems theory (i.e., 1/f(γ) noise and correlation dimension) and found evidence for complexity in neuronal NLA, ranging from high- to low-complexity dynamics. Importantly, these high- and low-complexity signal features were largely dependent on gap junction and chemical synaptic transmission. Progressive neuronal isolation from the surrounding local network via gap junction blockade (abolishing gap junction-dependent spikelets) and then chemical synaptic blockade (abolishing excitatory and inhibitory post-synaptic potentials), or the reverse order of these treatments, resulted in emergence of high-complexity NLA dynamics. Restoring local network interconnectivity via blockade washout resulted in resolution to low-complexity behavior. These results suggest that the observed increase in background NLA complexity is the result of reduced network interconnectivity, thereby highlighting the potential importance of the NLA signal to the study of network state transitions arising in normal and abnormal brain dynamics (such as in epilepsy, for example).

  4. A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids

    Directory of Open Access Journals (Sweden)

    Nian Liu

    2016-12-01

    Full Text Available With the development of microgrids (MGs, interconnected operation of multiple MGs is becoming a promising strategy for the smart grid. In this paper, a privacy-preserving distributed optimal scheduling method is proposed for the interconnected microgrids (IMG with a battery energy storage system (BESS and renewable energy resources (RESs. The optimal scheduling problem is modeled to minimize the coalitional operation cost of the IMG, including the fuel cost of conventional distributed generators and the life loss cost of BESSs. By using the framework of the alternating direction method of multipliers (ADMM, a distributed optimal scheduling model and an iteration solution algorithm for the IMG is introduced; only the expected exchanging power (EEP of each MG is required during the iterations. Furthermore, a privacy-preserving strategy for the sharing of the EEP among MGs is designed to work with the mechanism of the distributed algorithm. According to the security analysis, the EEP can be delivered in a cooperative and privacy-preserving way. A case study and numerical results are given in terms of the convergence of the algorithm, the comparison of the costs and the implementation efficiency.

  5. Electromigration of intergranular voids in metal films for microelectronic interconnects

    CERN Document Server

    Averbuch, A; Ravve, I

    2003-01-01

    Voids and cracks often occur in the interconnect lines of microelectronic devices. They increase the resistance of the circuits and may even lead to a fatal failure. Voids may occur inside a single grain, but often they appear on the boundary between two grains. In this work, we model and analyze numerically the migration and evolution of an intergranular void subjected to surface diffusion forces and external voltage applied to the interconnect. The grain-void interface is considered one-dimensional, and the physical formulation of the electromigration and diffusion model results in two coupled fourth-order one-dimensional time-dependent PDEs. The boundary conditions are specified at the triple points, which are common to both neighboring grains and the void. The solution of these equations uses a finite difference scheme in space and a Runge-Kutta integration scheme in time, and is also coupled to the solution of a static Laplace equation describing the voltage distribution throughout the grain. Since the v...

  6. Tomography of integrated circuit interconnect with an electromigration void

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Zachary H. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Rensselaer Polytechnic Institute, Troy, New York 12180-3590 (United States); Kalukin, Andrew R. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Kuhn, Markus [Intel Corporation RA1-329, 5200 Northeast Elam Young Parkway, Hillsboro, Oregon 74124 (United States); Frigo, Sean P. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); McNulty, Ian [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Retsch, Cornelia C. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Wang, Yuxin [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Arp, Uwe [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Lucatorto, Thomas B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States); Ravel, Bruce D. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410 (United States)] (and others)

    2000-05-01

    An integrated circuit interconnect was subject to accelerated-life test conditions to induce an electromigration void. The silicon substrate was removed, leaving only the interconnect test structure encased in silica. We imaged the sample with 1750 eV photons using the 2-ID-B scanning transmission x-ray microscope at the Advanced Photon Source, a third-generation synchrotron facility. Fourteen views through the sample were obtained over a 170 degree sign range of angles (with a 40 degree sign gap) about a single rotation axis. Two sampled regions were selected for three-dimensional reconstruction: one of the ragged end of a wire depleted by the void, the other of the adjacent interlevel connection (or ''via''). We applied two reconstruction techniques: the simultaneous iterative reconstruction technique and a Bayesian reconstruction technique, the generalized Gaussian Markov random field method. The stated uncertainties are total, with one standard deviation, which resolved the sample to 200{+-}70 and 140{+-}30 nm, respectively. The tungsten via is distinguished from the aluminum wire by higher absorption. Within the void, the aluminum is entirely depleted from under the tungsten via. The reconstructed data show the applicability of this technique to three-dimensional imaging of buried defects in submicrometer structures relevant to the microelectronics industry. (c) 2000 American Institute of Physics.

  7. Electromigration-induced plasticity and texture in Cu interconnects

    International Nuclear Information System (INIS)

    Advanced Light Source; Tamura, Nobumichi; Budiman, A. S.; Hau-Riege, C.S.; Besser, P. R.; Marathe, A.; Joo, Y.-C.; Tamura, N.; Patel, J. R.; Nix, W. D.

    2007-01-01

    Plastic deformation has been observed in damascene Cu interconnect test structures during an in-situ electromigration experiment and before the onset of visible microstructural damage (ie. voiding) using a synchrotron technique of white beam X-ray microdiffraction. We show here that the extent of this electromigration-induced plasticity is dependent on the texture of the Cu grains in the line. In lines with strong textures, the extent of plastic deformation is found to be relatively large compared to our plasticity results in the previous study [1] using another set of Cu lines with weaker textures. This is consistent with our earlier observation that the occurrence of plastic deformation in a given grain can be strongly correlated with the availability of a direction of the crystal in the proximity of the direction of the electron flow in the line (within an angle of 10 o ). In out-of-plane oriented grains in a damascene interconnect scheme, the crystal plane facing the sidewall tends to be a {110} plane,[2-4] so as to minimize interfacial energy. Therefore, it is deterministic rather than probabilistic that the grains will have a direction nearly parallel to the direction of electron flow. Thus, strong textures lead to more plasticity, as we observe

  8. Electromigration-induced Plasticity and Texture in Cu Interconnects

    Science.gov (United States)

    Budiman, A. S.; Hau-Riege, C. S.; Besser, P. R.; Marathe, A.; Joo, Y.-C.; Tamura, N.; Patel, J. R.; Nix, W. D.

    2007-10-01

    Plastic deformation has been observed in damascene Cu interconnect test structures during an in-situ electromigration experiment and before the onset of visible microstructural damage (ie. voiding) using a synchrotron technique of white beam X-ray microdiffraction. We show here that the extent of this electromigration-induced plasticity is dependent on the texture of the Cu grains in the line. In lines with strong textures, the extent of plastic deformation is found to be relatively large compared to our plasticity results in the previous study[1] using another set of Cu lines with weaker textures. This is consistent with our earlier observation that the occurrence of plastic deformation in a given grain can be strongly correlated with the availability of a direction of the crystal in the proximity of the direction of the electron flow in the line (within an angle of 10°). In out-of-plane oriented grains in a damascene interconnect scheme, the crystal plane facing the sidewall tends to be a {110} plane,[2-4] so as to minimize interfacial energy. Therefore, it is deterministic rather than probabilistic that the grains will have a direction nearly parallel to the direction of electron flow. Thus, strong textures lead to more plasticity, as we observe.

  9. Synthesis of lanthanum tungstate interconnecting nanoparticles by high voltage electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Keereeta, Yanee, E-mail: ynkeereeta@gmail.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-10-01

    Graphical abstract: - Highlights: • La{sub 2}(WO{sub 4}){sub 3} as one of semiconducting materials. • H.V. electrospinning was used to synthesize La{sub 2}(WO{sub 4}){sub 3} interconnecting nanoparticles. • A promising material for photoemission. - Abstract: Lanthanum tungstate (La{sub 2}(WO{sub 4}){sub 3}) interconnecting nanoparticles in the shape of fibers were successfully synthesized by electrospinning in combination with high temperature calcination. In this research, calcination temperature for the synthesis of the fibers evidently influenced the diameter, morphology and crystalline degree. The crystalline monoclinic La{sub 2}(WO{sub 4}){sub 3} fibers with 200–700 nm in diameter, two main Raman peaks at 945 and 927 cm{sup −1}, FTIR stretching modes at 936 and 847 cm{sup −1}, 2.02 eV energy gap and 415–430 nm blue emission were synthesized by calcination of inorganic/organic hybrid fibers at 750 °C for 5 h, characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV–visible spectroscopy and photoluminescence (PL) spectroscopy. The surface of the composite fibers before calcination was very smooth. Upon calcination the composite fibers at 750 °C for 5 h, they were transformed into nanoparticles join together in the shape of fibers with rough surface.

  10. Seismic Hazard Analysis on a Complex, Interconnected Fault Network

    Science.gov (United States)

    Page, M. T.; Field, E. H.; Milner, K. R.

    2017-12-01

    In California, seismic hazard models have evolved from simple, segmented prescriptive models to much more complex representations of multi-fault and multi-segment earthquakes on an interconnected fault network. During the development of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), the prevalence of multi-fault ruptures in the modeling was controversial. Yet recent earthquakes, for example, the Kaikora earthquake - as well as new research on the potential of multi-fault ruptures (e.g., Nissen et al., 2016; Sahakian et al. 2017) - have validated this approach. For large crustal earthquakes, multi-fault ruptures may be the norm rather than the exception. As datasets improve and we can view the rupture process at a finer scale, the interconnected, fractal nature of faults is revealed even by individual earthquakes. What is the proper way to model earthquakes on a fractal fault network? We show multiple lines of evidence that connectivity even in modern models such as UCERF3 may be underestimated, although clustering in UCERF3 mitigates some modeling simplifications. We need a methodology that can be applied equally well where the fault network is well-mapped and where it is not - an extendable methodology that allows us to "fill in" gaps in the fault network and in our knowledge.

  11. Design rules for vertical interconnections by reverse offset printing

    Science.gov (United States)

    Kusaka, Yasuyuki; Kanazawa, Shusuke; Ushijima, Hirobumi

    2018-03-01

    Formation of vertical interconnections by reverse offset printing was investigated, particularly focusing on the transfer step, in which an ink pattern is transferred from a polydimethylsiloxane (PDMS) sheet for the step coverage of contact holes. We systematically examined the coverage of contact holes made of a tapered photoresist layer by varying the hole size, the hole depth, PDMS elasticity, PDMS thickness, printing speed, and printing indentation depth. Successful ink filling was achieved when the PDMS was softer, and the optimal PDMS thickness varied depending on the size of the contact holes. This behaviour is related to the bell-type uplift deformation of incompressible PDMS, which can be described by contact mechanics numerical simulations. Based on direct observation of PDMS/resist-hole contact behaviour, the step coverage of contact holes typically involves two steps of contact area growth: (i) the PDMS first touches the bottom of the holes and then (ii) the contact area gradually and radially widens toward the tapered sidewall. From an engineering perspective, it is pointed out that mechanical synchronisation mismatch in the roll-to-sheet type printing invokes the cracking of ink layers at the edges of contact holes. According to the above design rule, ink filling into a contact hole with thickness of 2.5 µm and radius of 10 µm was achieved. Contact chain patterns with 1386 points of vertical interconnections with the square hole size of up to 10 µm successfully demonstrated the validity of the technique presented herein.

  12. Sound insulation performance of plates with interconnected distributed piezoelectric patches

    Directory of Open Access Journals (Sweden)

    Yi Kaijun

    2017-02-01

    Full Text Available This paper deals with the sound insulation performance of a thin plate with interconnected distributed piezoelectric patches. Piezoelectric patches are periodically bonded on the surfaces of the plate in a collocated fashion, and are interconnected via an inductive circuit network. This piezoelectric system is termed as piezo-electromechanical (PEM plate in the paper. Homogenization methods are involved under a sub-wavelength assumption to analytically develop the dynamical equations for the PEM plate. The dispersion relationships and energy densities of the wave modes propagating in the PEM plate are studied; the sub-wavelength assumption is verified for the simulations in this paper. The coincidence frequency of the PEM plate is researched, and results show that the coincidence frequency of the PEM plate will disappear at certain circumstances; mathematical and physical explanations are made for this phenomenon. The disappearance of the coincidence frequency is used to optimize the value of inductance, for the purpose of improving the sound transmission loss of the PEM plate.

  13. Electromigration-induced plasticity and texture in Cu interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; Tamura, Nobumichi; Budiman, A. S.; Hau-Riege, C.S.; Besser, P. R.; Marathe, A.; Joo, Y.-C.; Tamura, N.; Patel, J. R.; Nix, W. D.

    2007-10-31

    Plastic deformation has been observed in damascene Cu interconnect test structures during an in-situ electromigration experiment and before the onset of visible microstructural damage (ie. voiding) using a synchrotron technique of white beam X-ray microdiffraction. We show here that the extent of this electromigration-induced plasticity is dependent on the texture of the Cu grains in the line. In lines with strong <111> textures, the extent of plastic deformation is found to be relatively large compared to our plasticity results in the previous study [1] using another set of Cu lines with weaker textures. This is consistent with our earlier observation that the occurrence of plastic deformation in a given grain can be strongly correlated with the availability of a <112> direction of the crystal in the proximity of the direction of the electron flow in the line (within an angle of 10{sup o}). In <111> out-of-plane oriented grains in a damascene interconnect scheme, the crystal plane facing the sidewall tends to be a {l_brace}110{r_brace} plane,[2-4] so as to minimize interfacial energy. Therefore, it is deterministic rather than probabilistic that the <111> grains will have a <112> direction nearly parallel to the direction of electron flow. Thus, strong <111> textures lead to more plasticity, as we observe.

  14. Zooplankton structure in two interconnected ponds: similarities and differences

    Directory of Open Access Journals (Sweden)

    Špoljar Maria

    2016-03-01

    Full Text Available The research of zooplankton diversity, abundance and trophic structure was conducted during the summer period in pelagial zone on the longitudinal profile of the Sutla River Backwater. Investigated site consists of two interconnected basins: transparent Upper Basin with submerged macrophytes and turbid Lower Basin without macrophytes in the littoral zone. In the Upper Basin, abundance and diversity of zooplankton in the pelagial was higher in comparison to the Lower Basin, with prevailing species of genus Keratella as microfilter-feeder, and genera of Polyartha and Trihocerca as macrofilter-feeder rotifers. On the contrary, in the Lower Basin, crustaceans dominated in abundance. Microfilter-feeder cladoceran (Bosmina longirostris and larval and adult stages of macrofilter-feeder copepod (Macrocyclops albidus prevailed in the Lower Basin. Fish predation pressure was more pronounced in the pelagial of the Upper Basin, indicated by low cladoceran abundance in the surface layer. Although the studied basins were interconnected, results indicate significant (Mann-Whitney U test, p < 0.05 differences in the zooplankton structure as a potential result of the macrophyte impact on environmental conditions and fish predation pressure.

  15. Cooperative behavior evolution of small groups on interconnected networks

    International Nuclear Information System (INIS)

    Huang, Keke; Cheng, Yuan; Zheng, Xiaoping; Yang, Yeqing

    2015-01-01

    Highlights: • Small groups are modeled on interconnected networks. • Players face different dilemmas inside and outside small groups. • Impact of the ratio and strength of link on the behavioral evolution are studied. - Abstract: Understanding the behavioral evolution in evacuation is significant for guiding and controlling the evacuation process. Based on the fact that the population consists of many small groups, here we model the small groups which are separated in space but linked by other methods, such as kinship, on interconnected networks. Namely, the players in the same layer belong to an identical small group, while the players located in different layers belong to different small groups. And the players of different layers establish interaction by edge crossed layers. In addition, players face different dilemmas inside and outside small groups, in detail, the players in the same layer play prisoner’s dilemma, but players in different layers play harmony game. By means of numerous simulations, we study the impact of the ratio and strength of link on the behavioral evolution. Because the framework of this work takes the space distribution into account, which is close to the realistic life, we hope that it can provide a new insight to reveal the law of behavioral evolution of evacuation population.

  16. Energy Zones Study: A Comprehensive Web-Based Mapping Tool to Identify and Analyze Clean Energy Zones in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Koritarov, V.; Kuiper, J.; Hlava, K.; Orr, A.; Rollins, K.; Brunner, D.; Green, H.; Makar, J.; Ayers, A.; Holm, M.; Simunich, K.; Wang, J.; Augustine, C.; Heimiller, D.; Hurlbut, D. J.; Milbrandt, A.; Schneider, T. R.; et al.

    2013-09-01

    and is publicly available at http://eispctools.anl.gov. In addition to enabling EISPC members and other stakeholders to identify areas with a high concentration of clean energy resources that could provide significant power generation in the future, another objective of the study was to promote open and transparent collaboration among state-level energy planning and regulatory agencies and to foster consistent and coordinated direction for regional and interconnection-level electricity analyses and planning. Funding for the project was provided by DOE’s Office of Electricity Delivery and Energy Reliability (DOE/OE) under the American Recovery and Reinvestment Act. Page

  17. Management and use of electric interconnections in 2008

    International Nuclear Information System (INIS)

    2009-07-01

    Major progress was made throughout 2008 in border congestion management and market integration. A number of projects were carried out, including the creation of a single auction platform for the Central-West region (CASC-CWE) and the first centre for regional coordination (Coreso SA) to better control real-time flow, thus laying the foundations for future network management on a regional scale. Such progress encourages more improvements still, which should take effect some time in 2009 and should constitute an important stage in creating an integrated European electricity market. The more significant expected advances notably include the implementation of a single, harmonised set of bidding rules covering the entire Central-West region, which would include introducing the principle of automatic resale of capacity (use-it-or-sell-it); the launch of the second phase of the BALIT project for reciprocal adjusting exchanges between France and England; the introduction of a compensation scheme for curtailments of capacity based on the differences in pricing at Power Exchanges over the France-Spain interconnection; and finally the elaboration of the very first regional reports by regulators on the management and use of interconnections. The launch of the market coupling in the Central-West region, planned for March 2010, will unquestionably be a key event in market integration. In addition to substantially improving the use of the region's interconnections, it will offer significant new perspectives in market organisation (such as the future role and status of organised markets as regards day-ahead activity). The work of network operators on the flow-based aspect of the project will also enable improvements in transparency and coordination when calculating interconnection capacities, and could, in the long-run, open debates on changing the market design. However, of the issues raised in CRE's second report on management and use of interconnections, several have

  18. Characterisation of Ferrosilicon Dense Medium Separation Material

    International Nuclear Information System (INIS)

    Waanders, F. B.; Mans, A.

    2003-01-01

    Ferrosilicon is used in the dense medium separation of iron ore at Kumba resources, Sishen, South Africa. Due to high cost and losses that occur during use, maximum recovery by means of magnetic separation is aimed for. The purpose of this project was to determine the characteristics of the unused Fe-Si and then to characterise the changes that occur during storage and use thereof. Scanning electron microscopy was used to determine the composition of each sample, whilst Moessbauer spectroscopy yielded a two-sextet spectrum with hyperfine magnetic field strengths of 20 and 31 T, respectively, for the fresh samples. Additional hematite oxide peaks appeared in the Moessbauer spectra after use of the Fe-Si over a length of time, but this did not result in a dramatic degradation of the medium. No definite changes occurred during correct storage methods. It was, however, found that the biggest loss of Fe-Si was due to the abrasion of the particles, which resulted in the formation of an oxihydroxide froth, during the process.

  19. Improved models of dense anharmonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rosenau, P., E-mail: rosenau@post.tau.ac.il; Zilburg, A.

    2017-01-15

    We present two improved quasi-continuous models of dense, strictly anharmonic chains. The direct expansion which includes the leading effect due to lattice dispersion, results in a Boussinesq-type PDE with a compacton as its basic solitary mode. Without increasing its complexity we improve the model by including additional terms in the expanded interparticle potential with the resulting compacton having a milder singularity at its edges. A particular care is applied to the Hertz potential due to its non-analyticity. Since, however, the PDEs of both the basic and the improved model are ill posed, they are unsuitable for a study of chains dynamics. Using the bond length as a state variable we manipulate its dispersion and derive a well posed fourth order PDE. - Highlights: • An improved PDE model of a Newtonian lattice renders compacton solutions. • Compactons are classical solutions of the improved model and hence amenable to standard analysis. • An alternative well posed model enables to study head on interactions of lattices' solitary waves. • Well posed modeling of Hertz potential.

  20. Load Designs For MJ Dense Plasma Foci

    Science.gov (United States)

    Link, A.; Povlius, A.; Anaya, R.; Anderson, M. G.; Angus, J. R.; Cooper, C. M.; Falabella, S.; Goerz, D.; Higginson, D.; Holod, I.; McMahon, M.; Mitrani, J.; Koh, E. S.; Pearson, A.; Podpaly, Y. A.; Prasad, R.; van Lue, D.; Watson, J.; Schmidt, A. E.

    2017-10-01

    Dense plasma focus (DPF) Z-pinches are compact pulse power driven devices with coaxial electrodes. The discharge of DPF consists of three distinct phases: first generation of a plasma sheath, plasma rail gun phase where the sheath is accelerated down the electrodes and finally an implosion phase where the plasma stagnates into a z-pinch geometry. During the z-pinch phase, DPFs can produce MeV ion beams, x-rays and neutrons. Megaampere class DPFs with deuterium fills have demonstrated neutron yields in the 1012 neutrons/shot range with pulse durations of 10-100 ns. Kinetic simulations using the code Chicago are being used to evaluate various load configurations from initial sheath formation to the final z-pinch phase for DPFs with up to 5 MA and 1 MJ coupled to the load. Results will be presented from the preliminary design simulations. LLNL-ABS-734785 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.

  1. Kinetic Simulations of Dense Plasma Focus Breakdown

    Science.gov (United States)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Neutrino ground state in a dense star

    International Nuclear Information System (INIS)

    Kiers, K.; Tytgat, M.H.

    1998-01-01

    It has recently been argued that long range forces due to the exchange of massless neutrinos give rise to a very large self-energy in a dense, finite-ranged, weakly charged medium. Such an effect, if real, would destabilize a neutron star. To address this issue we have studied the related problem of a massless neutrino field in the presence of an external, static electroweak potential of finite range. To be precise, we have computed to one loop the exact vacuum energy for the case of a spherical square well potential of depth α and radius R. For small wells, the vacuum energy is reliably determined by a perturbative expansion in the external potential. For large wells, however, the perturbative expansion breaks down. A manifestation of this breakdown is that the vacuum carries a non-zero neutrino charge. The energy and neutrino charge of the ground state are, to a good approximation for large wells, those of a neutrino condensate with chemical potential μ=α. Our results demonstrate explicitly that long-range forces due to the exchange of massless neutrinos do not threaten the stability of neutron stars. copyright 1998 The American Physical Society

  3. Neutral helium spectral lines in dense plasmas

    International Nuclear Information System (INIS)

    Omar, Banaz; Wierling, August; Roepke, Gerd; Guenter, Sibylle

    2006-01-01

    Shift and broadening of isolated neutral helium lines 7281 A ring (2 1 P-3 1 S), 7065 A ring (2 3 P-3 3 S), 6678 A ring (2 1 P-3 1 D), 5048 A ring (2 1 P-4 1 S), 4922 A ring (2 1 P-4 1 D), and 4713 A ring (2 3 P-4 3 S) in a dense plasma are investigated. Based on a quantum statistical theory, the electronic contributions to the shift and width are considered, using the method of thermodynamic Green functions. Dynamic screening of the electron-atom interaction is included. Compared to the width, the electronic shift is more affected by dynamical screening. This effect increases at high density. A cut-off procedure for strong collisions is used. The contribution of the ions is taken into account in a quasi-static approximation, with both the quadratic Stark effect and the quadrupole interaction included. The results for shift and width agree well with the available experimental and theoretical data

  4. Deterministic dense coding and entanglement entropy

    International Nuclear Information System (INIS)

    Bourdon, P. S.; Gerjuoy, E.; McDonald, J. P.; Williams, H. T.

    2008-01-01

    We present an analytical study of the standard two-party deterministic dense-coding protocol, under which communication of perfectly distinguishable messages takes place via a qudit from a pair of nonmaximally entangled qudits in a pure state |ψ>. Our results include the following: (i) We prove that it is possible for a state |ψ> with lower entanglement entropy to support the sending of a greater number of perfectly distinguishable messages than one with higher entanglement entropy, confirming a result suggested via numerical analysis in Mozes et al. [Phys. Rev. A 71, 012311 (2005)]. (ii) By explicit construction of families of local unitary operators, we verify, for dimensions d=3 and d=4, a conjecture of Mozes et al. about the minimum entanglement entropy that supports the sending of d+j messages, 2≤j≤d-1; moreover, we show that the j=2 and j=d-1 cases of the conjecture are valid in all dimensions. (iii) Given that |ψ> allows the sending of K messages and has √(λ 0 ) as its largest Schmidt coefficient, we show that the inequality λ 0 ≤d/K, established by Wu et al. [Phys. Rev. A 73, 042311 (2006)], must actually take the form λ 0 < d/K if K=d+1, while our constructions of local unitaries show that equality can be realized if K=d+2 or K=2d-1

  5. Thermochemistry of dense hydrous magnesium silicates

    Science.gov (United States)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  6. Borehole stability in densely welded tuffs

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1992-07-01

    The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs

  7. Packing frustration in dense confined fluids.

    Science.gov (United States)

    Nygård, Kim; Sarman, Sten; Kjellander, Roland

    2014-09-07

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile--each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  8. Deuterium fractionation in dense interstellar clouds

    International Nuclear Information System (INIS)

    Millar, T.J.; Bennett, A.; Herbst, E.

    1989-01-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized. 60 refs

  9. Deuterium fractionation in dense interstellar clouds

    Science.gov (United States)

    Millar, T. J.; Bennett, A.; Herbst, Eric

    1989-05-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized.

  10. Matching Cost Filtering for Dense Stereo Correspondence

    Directory of Open Access Journals (Sweden)

    Yimin Lin

    2013-01-01

    Full Text Available Dense stereo correspondence enabling reconstruction of depth information in a scene is of great importance in the field of computer vision. Recently, some local solutions based on matching cost filtering with an edge-preserving filter have been proved to be capable of achieving more accuracy than global approaches. Unfortunately, the computational complexity of these algorithms is quadratically related to the window size used to aggregate the matching costs. The recent trend has been to pursue higher accuracy with greater efficiency in execution. Therefore, this paper proposes a new cost-aggregation module to compute the matching responses for all the image pixels at a set of sampling points generated by a hierarchical clustering algorithm. The complexity of this implementation is linear both in the number of image pixels and the number of clusters. Experimental results demonstrate that the proposed algorithm outperforms state-of-the-art local methods in terms of both accuracy and speed. Moreover, performance tests indicate that parameters such as the height of the hierarchical binary tree and the spatial and range standard deviations have a significant influence on time consumption and the accuracy of disparity maps.

  11. Regulatory activities; Actividades regulatorias

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This publication, compiled in 8 chapters, presents the regulatory system developed by the Nuclear Regulatory Authority (NRA) of the Argentine Republic. The following activities and developed topics in this document describe: the evolution of the nuclear regulatory activity in Argentina; the Argentine regulatory system; the nuclear regulatory laws and standards; the inspection and safeguards of nuclear facilities; the emergency systems; the environmental systems; the environmental monitoring; the analysis laboratories on physical and biological dosimetry, prenatal irradiation, internal irradiation, radiation measurements, detection techniques on nuclear testing, medical program on radiation protection; the institutional relations with national and international organization; the training courses and meeting; the technical information.

  12. Mining connected global and local dense subgraphs for bigdata

    Science.gov (United States)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  13. Dense chlorinated solvents and other DNAPLs in groundwater

    DEFF Research Database (Denmark)

    Broholm, K.

    1996-01-01

    Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996......Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996...

  14. Dry processing versus dense medium processing for preparing thermal coal

    CSIR Research Space (South Africa)

    De Korte, GJ

    2013-10-01

    Full Text Available of the final product. The separation efficiency of dry processes is, however, not nearly as good as that of dense medium and, as a result, it is difficult to effectively beneficiate coals with a high near-dense content. The product yield obtained from some raw...

  15. Interparticle interaction and transport processes in dense semiclassical plasmas

    International Nuclear Information System (INIS)

    Baimbetov, F.B.; Giniyatova, Sh.G.

    2005-01-01

    On the basis of the density response formalism an expression for the pseudopotential of dense semiclassical plasma, which takes account of quantum-mechanical effects, local field corrections, and electronic screening effects is obtained. The static structure factors taking into account both local fields and quantum-mechanical effects are calculated. An electrical conductivity, thermal conductivity, and viscosity of dense semiclassical plasma are studied

  16. Report on the use of the French-German interconnection in 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    For years, most of the European electricity interconnections were managed using administrative mechanisms (priority lists or pro-rata), and a priority of access was granted to long-term contracts between incumbent operators. With the liberalization process, cross-border power flows tended to increase, and congestions occurred more frequently, calling for efficient congestion management methods. Furthermore, the European Regulation 1228/2003 on conditions for access to the network for cross-border exchanges in electricity came into force. Among other issues, it stipulated that 'network congestion problems shall be addressed with non-discriminatory market based solutions which give efficient economic signals to the market participants and transmission system operators involved'. In other words, cross-border capacity auctions had to be implemented. Due to repeated critical situations in December 2004 the past pro-rata procedure used for Germany to France exports was replaced as from 5 April 2005 by the introduction of a one-sided explicit auction for the day-ahead capacities by RWE Transportnetz Strom GmbH and EnBW Transportnetze AG. In addition the capacities have been auctioned quarterly and monthly since 1 July 2005. During the summer of 2005, the Federal Network Agency and the Commission de Regulation de l'energie (CRE) set the priority for further developing the auctions in 2006 by having a coordinated congestion management mechanism for both directions. The general principles of the auction design were publicly consulted by the regulators together with further questions on cross-border exchanges in the autumn of 2005. The market participants' statements were assessed by the regulatory authorities and considered through the development of a common Road-map for the congestion management methods at the French-German border, published on 3 November 2005. In addition to the implementation of explicit auctions, this road-map included the

  17. Report on the use of the French-German interconnection in 2006

    International Nuclear Information System (INIS)

    2007-01-01

    For years, most of the European electricity interconnections were managed using administrative mechanisms (priority lists or pro-rata), and a priority of access was granted to long-term contracts between incumbent operators. With the liberalization process, cross-border power flows tended to increase, and congestions occurred more frequently, calling for efficient congestion management methods. Furthermore, the European Regulation 1228/2003 on conditions for access to the network for cross-border exchanges in electricity came into force. Among other issues, it stipulated that 'network congestion problems shall be addressed with non-discriminatory market based solutions which give efficient economic signals to the market participants and transmission system operators involved'. In other words, cross-border capacity auctions had to be implemented. Due to repeated critical situations in December 2004 the past pro-rata procedure used for Germany to France exports was replaced as from 5 April 2005 by the introduction of a one-sided explicit auction for the day-ahead capacities by RWE Transportnetz Strom GmbH and EnBW Transportnetze AG. In addition the capacities have been auctioned quarterly and monthly since 1 July 2005. During the summer of 2005, the Federal Network Agency and the Commission de Regulation de l'energie (CRE) set the priority for further developing the auctions in 2006 by having a coordinated congestion management mechanism for both directions. The general principles of the auction design were publicly consulted by the regulators together with further questions on cross-border exchanges in the autumn of 2005. The market participants' statements were assessed by the regulatory authorities and considered through the development of a common Road-map for the congestion management methods at the French-German border, published on 3 November 2005. In addition to the implementation of explicit auctions, this road-map included the establishment of a secondary

  18. Empirical Bayes conditional independence graphs for regulatory network recovery

    Science.gov (United States)

    Mahdi, Rami; Madduri, Abishek S.; Wang, Guoqing; Strulovici-Barel, Yael; Salit, Jacqueline; Hackett, Neil R.; Crystal, Ronald G.; Mezey, Jason G.

    2012-01-01

    Motivation: Computational inference methods that make use of graphical models to extract regulatory networks from gene expression data can have difficulty reconstructing dense regions of a network, a consequence of both computational complexity and unreliable parameter estimation when sample size is small. As a result, identification of hub genes is of special difficulty for these methods. Methods: We present a new algorithm, Empirical Light Mutual Min (ELMM), for large network reconstruction that has properties well suited for recovery of graphs with high-degree nodes. ELMM reconstructs the undirected graph of a regulatory network using empirical Bayes conditional independence testing with a heuristic relaxation of independence constraints in dense areas of the graph. This relaxation allows only one gene of a pair with a putative relation to be aware of the network connection, an approach that is aimed at easing multiple testing problems associated with recovering densely connected structures. Results: Using in silico data, we show that ELMM has better performance than commonly used network inference algorithms including GeneNet, ARACNE, FOCI, GENIE3 and GLASSO. We also apply ELMM to reconstruct a network among 5492 genes expressed in human lung airway epithelium of healthy non-smokers, healthy smokers and individuals with chronic obstructive pulmonary disease assayed using microarrays. The analysis identifies dense sub-networks that are consistent with known regulatory relationships in the lung airway and also suggests novel hub regulatory relationships among a number of genes that play roles in oxidative stress and secretion. Availability and implementation: Software for running ELMM is made available at http://mezeylab.cb.bscb.cornell.edu/Software.aspx. Contact: ramimahdi@yahoo.com or jgm45@cornell.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22685074

  19. 16. Hot dense plasma atomic processes

    International Nuclear Information System (INIS)

    Werner, Dappen; Totsuji, H.; Nishii, Y.

    2002-01-01

    This document gathers 13 articles whose common feature is to deal with atomic processes in hot plasmas. Density functional molecular dynamics method is applied to the hydrogen plasma in the domain of liquid metallic hydrogen. The effects of the density gradient are taken into account in both the electronic kinetic energy and the exchange energy and it is shown that they almost cancel with each other, extending the applicability of the Thomas-Fermi-Dirac approximation to the cases where the density gradient is not negligible. Another article reports about space and time resolved M-shell X-ray measurements of a laser-produced gas jet xenon plasma. Plasma parameters have been measured by ion acoustic and electron plasma waves Thomson scattering. Photo-ionization becomes a dominant atomic process when the density and the temperature of plasmas are relatively low and when the plasma is submitted to intense external radiation. It is shown that 2 plasmas which have a very different density but have the same ionization parameters, are found in a similar ionization state. Most radiation hydrodynamics codes use radiative opacity data from available libraries of atomic data. Several articles are focused on the determination of one group Rosseland and Planck mean analytical formulas for several single elements used in inertial fusion targets. In another paper the plasma density effect on population densities, effective ionization, recombination rate coefficients and on emission lines from carbon and Al ions in hot dense plasma, is studied. The last article is devoted to a new atomic model in plasmas that considers the occupation probability of the bound state and free state density in the presence of the plasma micro-field. (A.C.)

  20. DENSE MOLECULAR CORES BEING EXTERNALLY HEATED

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwanjeong; Lee, Chang Won; Kim, Mi-Ryang [Radio Astronomy division, Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon, 34055 (Korea, Republic of); Gopinathan, Maheswar [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263129 (India); Jeong, Woong-Seob, E-mail: archer81@kasi.re.kr [Department of Astronomy and Space Science, University of Science and Technology, 217 Gajungro, Yuseong-gu, Daejeon, 34113 (Korea, Republic of)

    2016-06-20

    We present results of our study of eight dense cores, previously classified as starless, using infrared (3–160 μ m) imaging observations with the AKARI telescope and molecular line (HCN and N{sub 2}H{sup +}) mapping observations with the KVN telescope. Combining our results with the archival IR to millimeter continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosities of ∼0.3–4.4 L {sub ⊙}. The other six cores are found to remain starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3–6 K toward the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an overdominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory motion, probably due to the external heating. Most of the starless cores show a coreshine effect due to the scattering of light by the micron-sized dust grains. This may imply that the age of the cores is of the order of ∼10{sup 5} years, which is consistent with the timescale required for the cores to evolve into an oscillatory stage due to external perturbation. Our observational results support the idea that the external feedback from nearby stars and/or interstellar radiation fields may play an important role in the dynamical evolution of the cores.

  1. Design of a highly parallel board-level-interconnection with 320 Gbps capacity

    Science.gov (United States)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.; Bauer, H.

    2012-01-01

    A parallel board-level interconnection design is presented consisting of 32 channels, each operating at 10 Gbps. The hardware uses available optoelectronic components (VCSEL, TIA, pin-diodes) and a combination of planarintegrated free-space optics, fiber-bundles and available MEMS-components, like the DMD™ from Texas Instruments. As a specific feature, we present a new modular inter-board interconnect, realized by 3D fiber-matrix connectors. The performance of the interconnect is evaluated with regard to optical properties and power consumption. Finally, we discuss the application of the interconnect for strongly distributed system architectures, as, for example, in high performance embedded computing systems and data centers.

  2. Cross-border versus cross-sector interconnectivity in renewable energy systems

    DEFF Research Database (Denmark)

    Thellufsen, Jakob Zinck; Lund, Henrik

    2017-01-01

    renewable energy, the energy system has to be more flexible in terms of decoupling demand and production. This paper investigates two potential ways to increase flexibility. The first is the interconnection between energy systems, for instance between two countries, labelled as cross-border interconnection...... systems that represent Northern and Southern Europe. Both systems go through three developmental steps that increase the cross-sector interconnectivity. At each developmental step an increasing level of transmission capacities is examined to identify the benefits of cross-border interconnectivity...

  3. Fabrication of dense panels in lithium fluoride; Fabrication de panneaux denses en fluorure de lithium

    Energy Technology Data Exchange (ETDEWEB)

    Farcy, P.; Roger, J.; Pointud, R.

    1958-04-15

    The authors report a study aimed at the fabrication of large and dense lithium fluoride panels. This sintered lithium fluoride is then supposed to be used for the construction of barriers of protection against a flow of thermal neutrons. They briefly present the raw material which is used under the form of chamotte obtained through a pre-sintering process which is also described. Grain size measurements and sample preparation are indicated. Shaping, drying, and thermal treatment are briefly described, and characteristics of the sintered product are indicated.

  4. Oxygen assisted interconnection of silver nanoparticles with femtosecond laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Zhou, Y., E-mail: nzhou@uwaterloo.ca [Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Duley, W. W. [Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2015-12-14

    Ablation of silver (Ag) nanoparticles in the direction of laser polarization is achieved by utilizing femtosecond laser irradiation in air at laser fluence ranging from ∼2 mJ/cm{sup 2} to ∼14 mJ/cm{sup 2}. This directional ablation is attributed to localized surface plasmon induced localized electric field enhancement. Scanning electron microscopy observations of the irradiated particles in different gases and at different pressures indicate that the ablation is further enhanced by oxygen in the air. This may be due to the external heating via the reactions of its dissociation product, atomic oxygen, with the surface of Ag particles, while the ablated Ag is not oxidized. Further experimental observations show that the ablated material re-deposits near the irradiated particles and results in the extension of the particles in laser polarization direction, facilitating the interconnection of two well-separated nanoparticles.

  5. The high speed interconnect system architecture and operation

    Science.gov (United States)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  6. Multimode polymer waveguides for high-speed optical interconnects

    Science.gov (United States)

    Bamiedakis, N.; Ingham, J. D.; Penty, R. V.; White, I. H.; DeGroot, J. V.; Clapp, T. V.

    2017-11-01

    Polymeric multimode waveguides are of particular interest for optical interconnections in short-reach data links. In some applications, for example in space-borne systems, the use of advanced materials with outstanding performance in extreme environments is required (temperature and radiation). In this paper therefore, we present novel siloxane polymers suitable for these applications. The materials are used to form straight, 90° bent and spiral polymer waveguides by low-cost conventional photolithographic techniques on FR4 substrates. The samples have been tested to investigate their propagation characteristics and demonstrate their potential for high-speed data links. Overall, there is strong evidence that these multimode waveguides can be successfully employed as high-speed short-reach data links. Their excellent thermal properties, their low cost and the simple fabrication process indicate their suitability for a wide range of space applications.

  7. Crosstalk in dynamic optical interconnects in photorefractive crystals

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Petersen, Paul Michael; Buchhave, Preben

    1994-01-01

    We have investigated the crosstalk between two neighboring gratings in photorefractive Bi12SiO20 optical interconnects. The gratings are induced by the interference between one reference beam and two object beams. By applying a suitable phase shift in one of the object beams, we can selectively...... switch off one of the gratings. The crosstalk between the two gratings is experimentally determined from the diffraction efficiency in the remaining grating before and after applying the phase shift. The magnitude of the crosstalk is determined by the intensity ratio between the reference beam intensity...... and the object beam intensity. Crosstalk can be avoided by choosing a certain intensity ratio between the reference and the object beams....

  8. Stretchable microelectrode array using room-temperature liquid alloy interconnects

    International Nuclear Information System (INIS)

    Wei, P; Ziaie, B; Taylor, R; Chung, C; Higgs, G; Pruitt, B L; Ding, Z; Abilez, O J

    2011-01-01

    In this paper, we present a stretchable microelectrode array for studying cell behavior under mechanical strain. The electrode array consists of gold-plated nail-head pins (250 µm tip diameter) or tungsten micro-wires (25.4 µm in diameter) inserted into a polydimethylsiloxane (PDMS) platform (25.4 × 25.4 mm 2 ). Stretchable interconnects to the outside were provided by fusible indium-alloy-filled microchannels. The alloy is liquid at room temperature, thus providing the necessary stretchability and electrical conductivity. The electrode platform can withstand strains of up to 40% and repeated (100 times) strains of up to 35% did not cause any failure in the electrodes or the PDMS substrate. We confirmed biocompatibility of short-term culture, and using the gold pin device, we demonstrated electric field pacing of adult murine heart cells. Further, using the tungsten microelectrode device, we successfully measured depolarizations of differentiated murine heart cells from embryoid body clusters

  9. Results on 3D interconnection from AIDA WP3

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Hans-Günther, E-mail: hgm@hll.mpg.de

    2016-09-21

    From 2010 to 2014 the EU funded AIDA project established in one of its work packages (WP3) a network of groups working collaboratively on advanced 3D integration of electronic circuits and semiconductor sensors for applications in particle physics. The main motivation came from the severe requirements on pixel detectors for tracking and vertexing at future Particle Physics experiments at LHC, super-B factories and linear colliders. To go beyond the state-of-the-art, the main issues were studying low mass, high bandwidth applications, with radiation hardness capabilities, with low power consumption, offering complex functionality, with small pixel size and without dead regions. The interfaces and interconnects of sensors to electronic readout integrated circuits are a key challenge for new detector applications.

  10. Interconnecting Multidiscilinary Data Infrastructures: From Federation to Brokering Framework

    Science.gov (United States)

    Nativi, S.

    2014-12-01

    Standardization and federation activities have been played an essential role to push interoperability at the disciplinary and cross-disciplinary level. However, they demonstrated not to be sufficient to resolve important interoperability challenges, including: disciplinary heterogeneity, cross-organizations diversities, cultural differences. Significant international initiatives like GEOSS, IODE, and CEOS demonstrated that a federation system dealing with global and multi-disciplinary domain turns out to be rater complex, raising more the already high entry level barriers for both Providers and Users. In particular, GEOSS demonstrated that standardization and federation actions must be accompanied and complemented by a brokering approach. Brokering architecture and its implementing technologies are able to implement an effective interoperability level among multi-disciplinary systems, lowering the entry level barriers for both data providers and users. This presentation will discuss the brokering philosophy as a complementary approach for standardization and federation to interconnect existing and heterogeneous infrastructures and systems. The GEOSS experience will be analyzed, specially.

  11. Interconnection between thyroid hormone signalling pathways and parvovirus cytotoxic functions.

    Science.gov (United States)

    Vanacker, J M; Laudet, V; Adelmant, G; Stéhelin, D; Rommelaere, J

    1993-01-01

    Nonstructural (NS) proteins of autonomous parvoviruses can repress expression driven by heterologous promoters, an activity which thus far has not been separated from their cytotoxic effects. It is shown here that, in transient transfection assays, the NS-1 protein of the parvovirus minute virus of mice (MVMp) activates the promoter of the human c-erbA1 gene, encoding the thyroid hormone (T3) receptor alpha. The endogenous c-erbA1 promoter is also a target for induction upon MVMp infection. Moreover, T3 was found to up-modulate the level of cell sensitivity to parvovirus attack. These data suggest an interconnection between T3 signalling and NS cytotoxic pathways. Images PMID:8230488

  12. The Quality Control of the LHC Continuous Cryostat Interconnections

    CERN Document Server

    Bertinelli, F; Bozzini, D; Cruikshank, P; Fessia, P; Grimaud, A; Kotarba, A; Maan, W; Olek, S; Poncet, A; Russenschuck, Stephan; Savary, F; Sulek, Z; Tock, J P; Tommasini, D; Vaudaux, L; Williams, L

    2008-01-01

    The interconnections between the Large Hadron Collider (LHC) magnets have required some 40 000 TIG welded joints and 65 000 electrical splices. At the level of single joints and splices, non-destructive techniques find limited application: quality control is based on the qualification of the process and of operators, on the recording of production parameters and on production samples. Visual inspection and process audits were the main techniques used. At the level of an extended chain of joints and splices - from a 53.5 m half-cell to a complete 2.7 km arc sector - quality control is based on vacuum leak tests, electrical tests and RF microwave reflectometry that progressively validated the work performed. Subsequent pressure tests, cryogenic circuits flushing with high pressure helium and cool-downs revealed a few unseen or new defects. This paper presents an overview of the quality control techniques used, seeking lessons applicable to similar large, complex projects.

  13. The GIOD Project-Globally Interconnected Object Databases

    CERN Document Server

    Bunn, J J; Newman, H B; Wilkinson, R P

    2001-01-01

    The GIOD (Globally Interconnected Object Databases) Project, a joint effort between Caltech and CERN, funded by Hewlett Packard Corporation, has investigated the use of WAN-distributed Object Databases and Mass Storage systems for LHC data. A prototype small- scale LHC data analysis center has been constructed using computing resources at Caltechs Centre for advanced Computing Research (CACR). These resources include a 256 CPU HP Exemplar of ~4600 SPECfp95, a 600 TByte High Performance Storage System (HPSS), and local/wide area links based on OC3 ATM. Using the exemplar, a large number of fully simulated CMS events were produced, and used to populate an object database with a complete schema for raw, reconstructed and analysis objects. The reconstruction software used for this task was based on early codes developed in preparation for the current CMS reconstruction program, ORCA. (6 refs).

  14. Interconnected magnetic tunnel junctions for spin-logic applications

    Science.gov (United States)

    Manfrini, Mauricio; Vaysset, Adrien; Wan, Danny; Raymenants, Eline; Swerts, Johan; Rao, Siddharth; Zografos, Odysseas; Souriau, Laurent; Gavan, Khashayar Babaei; Rassoul, Nouredine; Radisic, Dunja; Cupak, Miroslav; Dehan, Morin; Sayan, Safak; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Mocuta, Dan; Radu, Iuliana P.

    2018-05-01

    With the rapid progress of spintronic devices, spin-logic concepts hold promises of energy-delay conscious computation for efficient logic gate operations. We report on the electrical characterization of domain walls in interconnected magnetic tunnel junctions. By means of spin-transfer torque effect, domains walls are produced at the common free layer and its propagation towards the output pillar sensed by tunneling magneto-resistance. Domain pinning conditions are studied quasi-statically showing a strong dependence on pillar size, ferromagnetic free layer width and inter-pillar distance. Addressing pinning conditions are detrimental for cascading and fan-out of domain walls across nodes, enabling the realization of domain-wall-based logic technology.

  15. Fixed Orientation Interconnection Problems: Theory, Algorithms and Applications

    DEFF Research Database (Denmark)

    Zachariasen, Martin

    Interconnection problems have natural applications in the design of integrated circuits (or chips). A modern chip consists of billions of transistors that are connected by metal wires on the surface of the chip. These metal wires are routed on a (fairly small) number of layers in such a way...... that electrically independent nets do not intersect each other. Traditional manufacturing technology limits the orientations of the wires to be either horizontal or vertical — and is known as Manhattan architecture. Over the last decade there has been a growing interest in general architectures, where more than two...... a significant step forward, both concerning theory and algorithms, for the fixed orientation Steiner tree problem. In addition, the work maintains a close link to applications and generalizations motivated by chip design....

  16. Efficient dual layer interconnect coating for high temperature electrochemical devices

    DEFF Research Database (Denmark)

    Palcut, Marián; Mikkelsen, Lars; Neufeld, Kai

    2012-01-01

    Effects of novel dual layer coatings Co3O4/La0.85Sr0.15MnO3−δ on high temperature oxidation behaviour of candidate steels for interconnects are studied at 1123 K in flowing simulated ambient air (air + 1% H2O) and oxygen. Four alloys are investigated: Crofer 22 APU, Crofer 22 H, E-Brite and AL 29...... that the oxidation reaction is limited by outward Cr3+ diffusion in the chromia scale. The coating effectively reduces the oxidation rate. Reactions and cation inter-diffusion between the coating and the oxide scale are observed. Long term effects of these interactions are discussed and practical implications...

  17. The Special LHC Interconnections Technologies, Organization and Quality Control

    CERN Document Server

    Tock, J P; Bozzini, D; Cruikshank, P; Desebe, O; Felip, M; Garion, C; Hajduk, L; Jacquemod, A; Kos, N; Laurent, F; Poncet, A; Russenschuck, Stephan; Slits, I; Vaudaux, L; Williams, L

    2008-01-01

    In addition to the standard interconnections (IC) of the continuous cryostat of the Large Hadron Collider (LHC), there exists a variety of special ones related to specific components and assemblies, such as cryomagnets of the insertion regions, electrical feedboxes and superconducting links. Though they are less numerous, their specificities created many additional IC types, requiring a larger variety of assembly operations and quality control techniques, keeping very high standards of quality. Considerable flexibility and adaptability from all the teams involved (CERN staff, collaborating institutes, contractors) were the key points to ensure the success of this task. This paper first describes the special IC and presents the employed technologies which are generally adapted from the standard work. Then, the organization adopted for this non-repetitive work is described. Examples of non-conformities that were resolved are also discussed. Figures of merit in terms of quality and productivity are given and com...

  18. Two component micro injection moulding for moulded interconnect devices

    DEFF Research Database (Denmark)

    Islam, Aminul

    2008-01-01

    Moulded interconnect devices (MIDs) contain huge possibilities for many applications in micro electro-mechanical-systems because of their capability of reducing the number of components, process steps and finally in miniaturization of the product. Among the available MID process chains, two...... component injection moulding is one of the most industrially adaptive processes. However, the use of two component injection moulding for MID fabrication, with circuit patterns in the sub-millimeter range, is still a big challenge at the present state of technology. The scope of the current Ph.D. project...... and a reasonable adhesion between them. • Selective metallization of the two component plastic part (coating one polymer with metal and leaving the other one uncoated) To overcome these two main issues in MID fabrication for micro applications, the current Ph.D. project explores the technical difficulties...

  19. Operational Plan Ontology Model for Interconnection and Interoperability

    Science.gov (United States)

    Long, F.; Sun, Y. K.; Shi, H. Q.

    2017-03-01

    Aiming at the assistant decision-making system’s bottleneck of processing the operational plan data and information, this paper starts from the analysis of the problem of traditional expression and the technical advantage of ontology, and then it defines the elements of the operational plan ontology model and determines the basis of construction. Later, it builds up a semi-knowledge-level operational plan ontology model. Finally, it probes into the operational plan expression based on the operational plan ontology model and the usage of the application software. Thus, this paper has the theoretical significance and application value in the improvement of interconnection and interoperability of the operational plan among assistant decision-making systems.

  20. FttC-Based Fronthaul for 5G Dense/Ultra-Dense Access Network: Performance and Costs in Realistic Scenarios

    Directory of Open Access Journals (Sweden)

    Franco Mazzenga

    2017-10-01

    Full Text Available One distinctive feature of the next 5G systems is the presence of a dense/ultra-dense wireless access network with a large number of access points (or nodes at short distances from each other. Dense/ultra-dense access networks allow for providing very high transmission capacity to terminals. However, the deployment of dense/ultra-dense networks is slowed down by the cost of the fiber-based infrastructure required to connect radio nodes to the central processing units and then to the core network. In this paper, we investigate the possibility for existing FttC access networks to provide fronthaul capabilities for dense/ultra-dense 5G wireless networks. The analysis is realistic in that it is carried out considering an actual access network scenario, i.e., the Italian FttC deployment. It is assumed that access nodes are connected to the Cabinets and to the corresponding distributors by a number of copper pairs. Different types of cities grouped in terms of population have been considered. Results focus on fronthaul transport capacity provided by the FttC network and have been expressed in terms of the available fronthaul bit rate per node and of the achievable coverage.

  1. Interrelationships between different generations of interconnected tillers of Cares bigelowii

    International Nuclear Information System (INIS)

    Jonsdottir, I.S.; Callaghan, T.V.

    1988-01-01

    (1) The interrelationships between tiller generations of Carex bigelowii Torr. ex Schwein were investigated at two subarctic sites by labelling young tiller modules with 14 C and detecting its translocation, and by severing modules at increasing distances from the youngest tiller generation. Tiller survival, regeneration and physiological continuity were all measured. All of the investigations were on systems produced by vegetative proliferation and subsequent fragmentation: recruitment from seedlings was not observed. (2) 14 C-assimilates were translocated through the rhizome system, from the one to two years old assimilating tillers into the roots and rhizomes of nine to eleven years old tillers with only below-ground organs remaining. This shows that the roots and rhizomers of the numerous interconnected old non-assimilating tillers were alive and that their roots were probably still functioning. (3) The severing-experiment showed that the few assimilating young tiller generations were to some extent dependent on the old below-ground, non-assimilating tiller generations for their survival, growth and reproduction. Water and nutrients are probably the forms of subsidy. (4) The minimum size of a succesful physiologically functional unit was around five interconnected tiller generations. The maximum size could not be determined. (5) Apical dominance effects were detected within the rhizome system. The rhizomes keep a reserve of dormant buds. When the connection between tiller generations was severed, buds on the old rhizomes, which had been dormant for several years, developed into new tillers. These tillers were characterized by having only short rhizomes and they produced green leaves in the first season of growth. (6) The integrated system of old and young tiller generations, together with a spatial network of modules controlled by apical dominance, provide Carex bigelowii with mechanisms for locating and exploiting favorable patches in a nutrient poor, but

  2. Deposition and characterisation of copper for high density interconnects

    International Nuclear Information System (INIS)

    McCusker, N.

    1999-09-01

    Copper has been deposited by sputtering and investigated for application as high density interconnects, with a view to maximising its performance and reliability. A sputter deposition process using gettering has been developed, which produces consistently pure, low resistivity films. A relationship between film thickness and resistivity has been explained by studying the grain growth process in copper films using atomic force microscopy. The Maydas-Shatzkes model has been used to separate the contributions of grain boundary and surface scattering to thin film resistivity, in copper and gold. Stress and texture in copper film have been studied. Annealing has been used to promote grain growth and texture development. Electromigration has been studied in copper and aluminium interconnects using a multi-line accelerated test set-up. A difference in failure distributions and void morphologies has been explained by an entirely different damage mechanism. The importance of surface/interface migration in electromigration damage of copper lines has been established and explained using a grain boundary-grooving model. A tantalum overlayer was found to extend the lifetime of copper lines. A composite sputtering target has been used to deposit copper/zirconium alloy films. The composition of the alloys was studied by Rutherford backscattering, Auger and secondary neutral mass spectrometry. The alloy films had an improved electromigration lifetime. A surface controlled mechanism is proposed to explain the advantage. A metal oxide semiconductor (MOS) capacitor technique is used to investigate barrier reliability. Tungsten is shown to be an effective diffusion barrier for copper, up to 700 deg. C. (author)

  3. Research and regulatory review

    International Nuclear Information System (INIS)

    Macleod, J.S.; Fryer, D.R.H.

    1979-01-01

    To enable the regulatory review to be effectively undertaken by the regulatory body, there is a need for it to have ready access to information generated by research activities. Certain advantages have been seen to be gained by the regulatory body itself directly allocating and controlling some portion of these activities. The princial reasons for reaching this conclusion are summarised and a brief description of the Inspectorates directly sponsored programme outlined. (author)

  4. Rates of Thermonuclear Reactions in Dense Plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Bornatici, M.

    2000-01-01

    The problem of plasma screening of thermonuclear reactions has attracted considerable scientific interest ever since Salpeter's seminal paper, but it is still faced with controversial statements and without any definite conclusion. It is of relevant importance to thermonuclear reactions in dense astrophysical plasmas, for which charge screening can substantially affect the reaction rates. Whereas Salpeter and a number of subsequent investigations have dealt with static screening, Carraro, Schafer, and Koonin have drawn attention to the fact that plasma screening of thermonuclear reactions is an essentially dynamic effect. In addressing the issue of collective plasma effects on the thermonuclear reaction rates, the first critical overview of most of the work carried out so far is presented and the validity of the test particle approach is assessed. In contrast to previous investigations, we base our description on the kinetic equation for nonequilibrium plasmas, which accounts for the effects on the rates of thermonuclear reactions of both plasma fluctuations and screening and allows one to analyze explicitly the effects of the fluctuations on the reaction rates. Such a kinetic formulation is more general than both Salpeter's approach and the recently developed statistical approaches and makes it possible to obtain a more comprehensive understanding of the problem. A noticeable result of the fluctuation approach is that the static screening, which affects both the interaction and the self-energy of the reacting nuclei, does not affect the reaction rates, in contrast with the results obtained so far. Instead, a reduction of the thermonuclear reaction rates is obtained as a result of the effect of plasma fluctuations related to the free self-energy of the reacting nuclei. A simple physical explanation of the slowing down of the reaction rates is given, and the relation to the dynamically screened test particle approach is discussed. Corrections to the reaction rates

  5. Neutrino reactions in hot and dense matter

    International Nuclear Information System (INIS)

    Lohs, Andreas

    2015-01-01

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  6. Neutrino reactions in hot and dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lohs, Andreas

    2015-04-13

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  7. Dense-gas dispersion advection-diffusion model

    International Nuclear Information System (INIS)

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments

  8. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Seshadhri, Comandur [The Ohio State Univ., Columbus, OH (United States); Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sariyuce, Ahmet Erdem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Catalyurek, Umit [The Ohio State Univ., Columbus, OH (United States)

    2014-11-01

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account for overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.

  9. Regulatory Commission of Alaska

    Science.gov (United States)

    Map Help Regulatory Commission of Alaska Login Forgot Password Arrow Image Forgot password? View Cart login Procedures for Requesting Login For Consumers General Information Telephone Electric Natural Gas

  10. A model-based prognostic approach to predict interconnect failure using impedance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Dae Il; Yoon, Jeong Ah [Dept. of System Design and Control Engineering. Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2016-10-15

    The reliability of electronic assemblies is largely affected by the health of interconnects, such as solder joints, which provide mechanical, electrical and thermal connections between circuit components. During field lifecycle conditions, interconnects are often subjected to a DC open circuit, one of the most common interconnect failure modes, due to cracking. An interconnect damaged by cracking is sometimes extremely hard to detect when it is a part of a daisy-chain structure, neighboring with other healthy interconnects that have not yet cracked. This cracked interconnect may seem to provide a good electrical contact due to the compressive load applied by the neighboring healthy interconnects, but it can cause the occasional loss of electrical continuity under operational and environmental loading conditions in field applications. Thus, cracked interconnects can lead to the intermittent failure of electronic assemblies and eventually to permanent failure of the product or the system. This paper introduces a model-based prognostic approach to quantitatively detect and predict interconnect failure using impedance analysis and particle filtering. Impedance analysis was previously reported as a sensitive means of detecting incipient changes at the surface of interconnects, such as cracking, based on the continuous monitoring of RF impedance. To predict the time to failure, particle filtering was used as a prognostic approach using the Paris model to address the fatigue crack growth. To validate this approach, mechanical fatigue tests were conducted with continuous monitoring of RF impedance while degrading the solder joints under test due to fatigue cracking. The test results showed the RF impedance consistently increased as the solder joints were degraded due to the growth of cracks, and particle filtering predicted the time to failure of the interconnects similarly to their actual timesto- failure based on the early sensitivity of RF impedance.

  11. Effects of advanced process approaches on electromigration degradation of Cu on-chip interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.A.

    2007-07-12

    This thesis provides a methodology for the investigation of electromigration (EM) in Cu-based interconnects. An experimental framework based on in-situ scanning electron microscopy (SEM) investigations was developed for that purpose. It is capable to visualize the EM-induced void formation and evolution in multi-level test structures in real time. Different types of interconnects were investigated. Furthermore, stressed and unstressed samples were studied applying advanced physical analysis techniques in order to obtain additional information about the microstructure of the interconnects as well as interfaces and grain boundaries. These data were correlated to the observed degradation phenomena. Correlations of the experimental results to recently established theoretical models were highlighted. Three types of Cu-based interconnects were studied. Pure Cu interconnects were compared to Al-alloyed (CuAl) and CoWP-coated interconnects. The latter two represent potential approaches that address EM-related reliability concerns. It was found that in such interconnects the dominant diffusion path is no longer the Cu/capping layer interface for interconnects as in pure Cu interconnects. Instead, void nucleation occurs at the bottom Cu/barrier interface with significant effects from grain boundaries. Moreover, the in-situ investigations revealed that the initial void nucleation does not occur at the cathode end of the lines but several micrometers away from it. The mean times-to-failure of CuAl and CoWP-coated interconnects were increased by at least one order of magnitude compared to Cu interconnects. The improvements were attributed to the presence of foreign metal atoms at the Cu/capping layer interface. Post-mortem EBSD investigations were used to reveal the microstructure of the tested samples. The data were correlated to the in-situ observations. (orig.)

  12. Ground rules of the pluripotency gene regulatory network.

    KAUST Repository

    Li, Mo

    2017-01-03

    Pluripotency is a state that exists transiently in the early embryo and, remarkably, can be recapitulated in vitro by deriving embryonic stem cells or by reprogramming somatic cells to become induced pluripotent stem cells. The state of pluripotency, which is stabilized by an interconnected network of pluripotency-associated genes, integrates external signals and exerts control over the decision between self-renewal and differentiation at the transcriptional, post-transcriptional and epigenetic levels. Recent evidence of alternative pluripotency states indicates the regulatory flexibility of this network. Insights into the underlying principles of the pluripotency network may provide unprecedented opportunities for studying development and for regenerative medicine.

  13. Ground rules of the pluripotency gene regulatory network.

    KAUST Repository

    Li, Mo; Belmonte, Juan Carlos Izpisua

    2017-01-01

    Pluripotency is a state that exists transiently in the early embryo and, remarkably, can be recapitulated in vitro by deriving embryonic stem cells or by reprogramming somatic cells to become induced pluripotent stem cells. The state of pluripotency, which is stabilized by an interconnected network of pluripotency-associated genes, integrates external signals and exerts control over the decision between self-renewal and differentiation at the transcriptional, post-transcriptional and epigenetic levels. Recent evidence of alternative pluripotency states indicates the regulatory flexibility of this network. Insights into the underlying principles of the pluripotency network may provide unprecedented opportunities for studying development and for regenerative medicine.

  14. Dense interstellar cloud chemistry: Basic issues and possible dynamical solution

    International Nuclear Information System (INIS)

    Prasad, S.S.; Heere, K.R.; Tarafdar, S.P.

    1989-01-01

    Standing at crossroad of enthusiasm and frustration, dense intertellar cloud chemistry has a squarely posed fundamental problem: Why do the grains appear to play at best a minor role in the chemistry? Grain surface chemistry creates considerable difficulties when the authors treat dense clouds as static objects and ignore the implications of the processes by which the clouds became dense in the first place. A new generation of models which treat chemical and dynamical evolutions concurrently are therefore presented as possible solution to the current frustrations. The proposed modeling philosophy and agenda could make the next decade quite exciting for interstellar chemistry

  15. Dense time discretization technique for verification of real time systems

    International Nuclear Information System (INIS)

    Makackas, Dalius; Miseviciene, Regina

    2016-01-01

    Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate

  16. Photons in dense nuclear matter: Random-phase approximation

    Science.gov (United States)

    Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay

    2018-04-01

    We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.

  17. Report on the use of the French-German interconnection in 2006

    International Nuclear Information System (INIS)

    2007-01-01

    For years, most of the European electricity interconnections were managed using administrative mechanisms (priority lists or pro-rata), and a priority of access was granted to long-term contracts between incumbent operators. With the liberalisation process, cross-border power flows tended to increase, and congestions occurred more frequently, calling for efficient congestion management methods. Therefore, cross-border capacity auctions were implemented and the past pro-rata procedure used for Germany to France exports was replaced by the introduction of a one-sided explicit auction for the day-ahead capacities by RWE Transportnetz Strom GmbH and EnBW Transportnetze AG. In addition the capacities have been auctioned quarterly and monthly since 1 July 2005. Then, the Federal Network Agency and the Commission de Regulation de l'energie (CRE) set the priority for further developing the auctions in 2006 by having a coordinated congestion management mechanism for both directions. A common road-map for the congestion management methods at the French-German border was published on 3 November 2005. In addition to the implementation of explicit auctions, this road-map included the establishment of a secondary market, a further coordination of the intra-day exchanges, the development of a coordinated model for calculating the transmission capacity and the investigation of further coordination possibilities. The two German TSOs operating the inter-connectors to France and the French TSO RTE therefore developed common capacity auction rules. The road-map also announced that an annual report would be published by the regulatory authorities to give feed-back to market participants on how explicit auctions methods operate. As a result the TSOs have provided monthly extensive data on the auctions to the regulatory authorities since January 2006. These data forms the basis of the analyses presented in this report. The important work carried out by regulators and TSOs within the

  18. 77 FR 63757 - Extension of the Commission's Rules Regarding Outage Reporting to Interconnected Voice Over...

    Science.gov (United States)

    2012-10-17

    ... telephone subscriptions in the United States were users of interconnected VoIP providers--an increase of 21... Commission's Rules Regarding Outage Reporting to Interconnected Voice Over Internet Protocol Service Providers and Broadband Internet Service Providers AGENCY: Federal Communications Commission. ACTION: Final...

  19. Global On-Chip Differential Interconnects with Optimally-Placed Twists

    NARCIS (Netherlands)

    Mensink, E.; Schinkel, Daniel; Klumperink, Eric A.M.; van Tuijl, Adrianus Johannes Maria; Nauta, Bram

    2005-01-01

    Global on-chip communication is receiving quite some attention as global interconnects are rapidly becoming a speed, power and reliability bottleneck for digital CMOS systems. Recently, we proposed a bus-transceiver test chip in 0.13 μm CMOS using 10 mm long uninterrupted differential interconnects

  20. Investigation of performance degradation of SOFC using chromium-containing alloy interconnects

    DEFF Research Database (Denmark)

    Beeaff, D.R.; Dinesen, A.; Hendriksen, Peter Vang

    2007-01-01

    The long-term aging of a stack element (fuel cell, current collectors, and interconnect materials) was studied. A pair of tests were made in which one sample contained an interconnect, a high-temperature stainless steel (Crofer 22 APU), treated with an LSMC coating applied to the cathode-side int...