WorldWideScience

Sample records for dense pyroclastic flows

  1. Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption

    Science.gov (United States)

    Roche, Olivier; Buesch, David C.; Valentine, Greg A.

    2016-01-01

    Explosive volcanic super-eruptions of several hundred cubic kilometres or more generate long run-out pyroclastic density currents the dynamics of which are poorly understood and controversial. Deposits of one such event in the southwestern USA, the 18.8 Ma Peach Spring Tuff, were formed by pyroclastic flows that travelled >170 km from the eruptive centre and entrained blocks up to ~70–90 cm diameter from the substrates along the flow paths. Here we combine these data with new experimental results to show that the flow’s base had high-particle concentration and relatively modest speeds of ~5–20 m s−1, fed by an eruption discharging magma at rates up to ~107–108 m3 s−1 for a minimum of 2.5–10 h. We conclude that sustained high-eruption discharge and long-lived high-pore pressure in dense granular dispersion can be more important than large initial velocity and turbulent transport with dilute suspension in promoting long pyroclastic flow distance.

  2. Theoretical analysis of tsunami generation by pyroclastic flows

    Science.gov (United States)

    Watts, P.; Waythomas, C.F.

    2003-01-01

    Pyroclastic flows are a common product of explosive volcanism and have the potential to initiate tsunamis whenever thick, dense flows encounter bodies of water. We evaluate the process of tsunami generation by pyroclastic flow by decomposing the pyroclastic flow into two components, the dense underflow portion, which we term the pyroclastic debris flow, and the plume, which includes the surge and coignimbrite ash cloud parts of the flow. We consider five possible wave generation mechanisms. These mechanisms consist of steam explosion, pyroclastic debris flow, plume pressure, plume shear, and pressure impulse wave generation. Our theoretical analysis of tsunami generation by these mechanisms provides an estimate of tsunami features such as a characteristic wave amplitude and wavelength. We find that in most situations, tsunami generation is dominated by the pyroclastic debris flow component of a pyroclastic flow. This work presents information sufficient to construct tsunami sources for an arbitrary pyroclastic flow interacting with most bodies of water. Copyright 2003 by the American Geophysical Union.

  3. Viewing inside Pyroclastic Flows - Large-scale Experiments on hot pyroclast-gas mixture flows

    Science.gov (United States)

    Breard, E. C.; Lube, G.; Cronin, S. J.; Jones, J.

    2014-12-01

    Pyroclastic density currents are the largest threat from volcanoes. Direct observations of natural flows are persistently prevented because of their violence and remain limited to broad estimates of bulk flow behaviour. The Pyroclastic Flow Generator - a large-scale experimental facility to synthesize hot gas-particle mixture flows scaled to pyroclastic flows and surges - allows investigating the physical processes behind PDC behaviour in safety. The ability to simulate natural eruption conditions and to view and measure inside the hot flows allows deriving validation and calibration data sets for existing numerical models, and to improve the constitutive relationships necessary for their effective use as powerful tools in hazard assessment. We here report on a systematic series of large-scale experiments on up to 30 ms-1 fast, 2-4.5 m thick, 20-35 m long flows of natural pyroclastic material and gas. We will show high-speed movies and non-invasive sensor data that detail the internal structure of the analogue pyroclastic flows. The experimental PDCs are synthesized by the controlled 'eruption column collapse' of variably diluted suspensions into an instrumented channel. Experiments show four flow phases: mixture acceleration and dilution during free fall; impact and lateral blasting; PDC runout; and co-ignimbrite cloud formation. The fully turbulent flows reach Reynolds number up to 107 and depositional facies similar to natural deposits. In the PDC runout phase, the shear flows develop a four-partite structure from top to base: a fully turbulent, strongly density-stratified ash cloud with average particle concentrations <<1vol%; a transient, turbulent dense suspension region with particle concentrations between 1 and 10 vol%; a non-turbulent, aerated and highly mobile dense underflows with particle concentrations between 40 and 50 vol%; and a vertically aggrading bed of static material. We characterise these regions and the exchanges of energy and momentum

  4. Dynamical weakening of pyroclastic flows by mechanical vibrations

    Science.gov (United States)

    Valverde, Jose Manuel; Soria-Hoyo, Carlos; Roche, Olivier

    2017-06-01

    Dynamical weakening of dense granular flows plays a critical role on diverse geological events such as seismic faulting and landslides. A common feature of these processes is the development of fluid-solid relative flows that could lead to fluidization by hydrodynamic viscous stresses. Volcanic ash landslides (pyroclastic flows) are characterized by their high mobility often attributed to fluidization of the usually fine and/or low-density particles by their interaction with the entrapped gas. However, the physical mechanism that might drive sustained fluidization of these dense granular flows over extraordinarily long runout distances is elusive. The behavior of volcanic ash in a slowly rotating drum subjected to mechanical vibrations shown in this work suggests that fluid-particle relative oscillations in dense granular flows present in volcanic eruption events can promote pore gas pressure at reduced shear rates as to sustain fluidization.

  5. Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Calder, E.S.; Cole, P.D.; Dade, W.B.; Druitt, T.H.; Hoblitt, R.P.; Huppert, H.E.; Ritchie, L.; Sparks, R.S.J.; Young, S.R.

    1999-01-01

    The Soufriere Hills Volcano on Montserrat has produced avalanche-like pyroclastic flows formed by collapse of the unstable lava dome or explosive activity. Pyroclastic flows associated with dome collapse generate overlying dilute surges which detach from and travel beyond their parent flows. The largest surges partially transform by rapid sedimentation into dense secondary pyroclastic flows that pose significant hazards to distal areas. Different kinds of pyroclastic density currents display contrasting mobilities indicated by ratios of total height of fall H, run-out distance L, area inundated A and volume transported V. Dome-collapse flow mobilities (characterised by either L/H or A/V 2/3) resemble those of terrestrial and extraterrestrial cold-rockfalls (Dade and Huppert, 1998). In contrast, fountain-fed pumice flows and fine-grained, secondary pyroclastic flows travel slower but, for comparable initial volumes and heights, can inundate greater areas.

  6. Interrelations among pyroclastic surge, pyroclastic flow, and lahars in Smith Creek valley during first minutes of 18 May 1980 eruption of Mount St. Helens, USA

    Science.gov (United States)

    Brantley, S.R.; Waitt, R.B.

    1988-01-01

    A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable "wet" character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from

  7. A Pyroclastic Flow Deposit on Venus

    Science.gov (United States)

    Ghail, R.; Wilson, L.

    2013-12-01

    Explosive volcanism on Venus is severely inhibited by its high atmospheric pressure and lack of water. This paper shows that a deposit located near 16°S, 144°E, here referred to as Scathach Fluctus, displays a number of morphological characteristics consistent with a pyroclastic flow deposit. These characteristics, particularly its lack of channelisation and evidence for momentum rather than cooling limited flow length, contrast with fissure-fed lava flow deposits. The total erupted volume is estimated to have been between 225 km3 and 875 km3 but this may have been emplaced in more than one event. Interaction between Scathach Fluctus and a small volcanic cone constrain the flow velocity to 48 m s-1 and plausible volatile concentrations to at least 1.8 wt% H2O, 4.3 wt% CO2 or 6.1 wt% SO2, the latter two implying magma sourced directly from the mantle. The deposit has radar characteristics, particularly an exponential backscatter function, that are similar to those of nearly half the planetary surface, implying that pyroclastic deposits may be much more common on Venus than has been recognised to date, and suggesting both a relatively volatile-rich mantle and a volcanic source for atmospheric SO2. Unfortunately, because the plains usually lack clear flow boundaries and structures, the features diagnostic of a high momentum flow - linear undulating deposits that lack channel morphology, cross narrow graben without deviation, climb obstacles and show evidence for parabolic flow out from steep drops - may not be identifiable. Thus, while pyroclastic flows may be common on Venus, Scathach Fluctus may, indeed, become the only proven example from Magellan data. False colour image of Scathach Fluctus using data from Cycle 1 (left-looking), Cycle 2 (right-looking) and passive emissivity combined to enhance the impression of relief in the grey scale image, overlain with colour-coded derived asperity height, defined as surface roughness at the scale-length of the Magellan

  8. Experimental evidence links volcanic particle characteristics to pyroclastic flow hazard

    Science.gov (United States)

    Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico M.; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd

    2010-06-01

    Pyroclastic flows represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Vesuvius that destroyed Pompeii (AD 79). Much of our knowledge of the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, including the particles contained in pyroclastic deposits, but the deposit characteristics are rarely used for quantifying the destructive potential of pyroclastic flows. By means of experiments, we validate a model that is based on data from pyroclastic deposits. The model allows the reconstruction of the current's fluid-dynamic behaviour. Model results are consistent with measured values of dynamic pressure in the experiments, and allow the quantification of the damage potential of pyroclastic flows.

  9. Propagation and deposition mechanisms of dense pyroclastic density currents: insights from analogue laboratory experiments. (Invited)

    Science.gov (United States)

    Roche, O.; Montserrat, S.; Niño, Y.; Tamburrino, A.

    2010-12-01

    Analogue laboratory experiments on air-particle flows represent a useful tool to investigate the mechanisms of propagation and deposition of dense (or the dense part of) pyroclastic density currents. In this context, we carried out experiments in the dam-break configuration and studied the emplacement processes of analogue biphasic currents generated from the quasi-instantaneous release of fluidized columns of fine (80 µm) particles. The low permeability of the granular material permitted relatively slow diffusion of the initial pore pressure within the flows until they came to halt. Analysis of the flow kinematics and comparison with flows of water in the same apparatus revealed that the air-particle currents propagated in two distinct stages. They behaved as their inertial water counterparts for most their emplacement, as both types of flows had the same morphology and propagated at constant front velocity U~√(2gh), h being the initial height of the granular column. This occurred as long as the height of the collapsing fluidized columns was higher than the that of the resultant flows, thus generating a driving pressure gradient. This fluid-inertial behavior suggested that the pore fluid pressure was high during propagation of the mixture. In order to check this hypothesis, we carried out non invasive measurements of the pore fluid pressure at the base of the air-particle flows and made correlation of the pressure signal with the flow structure from analyses of high speed videos. The flow structure consisted of a sliding head that caused underpressure relative to ambient conditions and whose magnitude correlated with the flow velocity. The flow head was followed by a body that generated overpressure and at the base of which a deposit aggraded at a nearly constant rate. Both the flow head and body were sheared pervasively as the internal velocity increased upwards. The combination of pressure advection from the source and relatively slow pressure diffusion

  10. Numerical models of Plinian eruption columns and pyroclastic flows

    Science.gov (United States)

    Valentine, Greg A.; Wohletz, Kenneth H.

    1989-02-01

    Numerical simulations of physical processes governing the large-scale dynamics of Plinian eruption columns reveal conditions contributing to column collapse and emplacement of pyroclastic flows. The simulations are based on numerical solution of the time-dependent, two-phase, compressible Navier-Stokes equations for jets in a gravitational field. This modeling effort is directed toward studying the steady discharge phase of eruptions in contrast to our previous models of the initial, unsteady blast phase. Analysis of 51 eruption models covers a wide range of vent exit pressures, inertial and buoyancy driving forces, and coupling of energy and momentum between gas and pyroclasts. Consideration of three dimensionless groups (Richardson and Rouse numbers and thermogravitational parameter) facilitates this analysis and defines conditions leading to column collapse. For eruptions with similar particle size characteristics, exit pressure ratios are also very important in determining column behavior; column behavior is much more sensitive to exit pressure ratio than to the density ratio between the column and the atmosphere. Model eruption columns with exit pressures exceeding atmospheric pressure have diamond-shaped patterns at their bases with internal dynamics that correspond closely to observations of overpressured jets in laboratory experiments. Collapsing fountains form pyroclastic flows that consist of low-concentration fronts, relatively thick heads, vortex development along the top surfaces, and rising clouds of buoyant ash. The presence of coarse-grained proximal deposits primarily reflects tephra size sorting within the eruption column before collapse, as opposed to that which occurs during lateral transport of the material in pyroclastic flows. The dynamics and particle behavior in the proximal zone around collapsing eruption columns is examined; the modeling indicates that flow within a few kilometers of a vent will be at its highest particle concentration

  11. Flow Transformation in Pyroclastic Density Currents: Entrainment and Granular Dynamics during the 2006 eruption of Tungurahua

    Science.gov (United States)

    Dufek, J.; Benage, M. C.; Geist, D.; Harpp, K. S.

    2013-12-01

    Pyroclastic density currents are ground hugging flows composed of hot gases, fragments of juvenile magmatic material, and entrained clasts from the conduit or the edifice over which the flows have traveled. The interior of these flows are opaque to observation due to their large ash content, but recent investigations have highlighted that there are likely strong gradients in particle concentration and segregation of particle sizes in these particle-laden gravity currents. Pyroclastic density currents refer to a broad range of phenomena from dense flows in which the dynamics are dominated by frictional interaction between particles (dense granular flows), to gas fluidized flows, to dilute flows dominated by particle-gas turbulent interaction. However, abrupt flow transformation (e.g. from dense to dilute pyroclastic density currents) can arise due to energy exchange across multiple length scales and phases, and understanding these flow transformations is important in delineating the entrainment and erosion history of these flows, interpretations of their deposits, and in better understanding the hazards they present. During the 2006 eruption of Tungurahua, Ecuador numerous, dense pyroclastic density currents descended the volcano as result of boiling-over or low column collapse eruptions. The deposits of these flows typically have pronounced snouts and levees, and are often dominated by large, clasts (meter scale in some locations). There is an exceptional observational record of these flows and their deposits, permitting detailed field constraints of their dynamics. A particularly interesting set of flows occurred on Aug. 17, 2006 during the paroxysmal phase of the eruption that descended the slope of the volcano, filled in the river channel of the Chambo river, removing much of the larger clasts from the flow, and resulting in a dilute ';surge' that transported finer material across the channel and uphill forming dune features on the opposite bank of the river. We

  12. The Entrance of Pyroclastic Flows into the Sea

    Science.gov (United States)

    Freundt, A.

    2001-12-01

    Explosive volcanoes, especially in subduction-zone and ocean-island settings, can generate pyroclastic flows that enter the sea. Geologic constraints on the interaction mechanisms and hazards are poor since resulting deposits hardly survive coastal erosion. The entrance of hot pyroclastic flows into water has been observed experimentally by letting shooting granular flows of ignimbrite ash heated to up to 420oC run down a chute into a water-filled tank. Flows of relatively cool ash, less than 150oC, impulsively displace some near-shore water generating a tsunami wave and then separate into a fine-ash over-water surge formed near shore and the main, coarser and denser material penetrating the water surface to form a turbulent mixing zone which advances downstream as long as the granular flow is maintained. Pumice floats to the surface, lithics and coarse ash fall out onto the floor, but ash remaining in suspension forms a turbidity current flowing down the tank. At temperatures above 250oC, almost all ash is initially transported along the water surface, rather than immediately penetrating it. Transport over water is facilitated by steam explosions derived from mixing of some of the ash with water across the surface. Ash fountains throw dry ash forward before it contacts the water, triggering the next steam explosion farther away from shore where fountains collapse onto the water surface. Each time ash and heat are consumed by mixing; the distance to where explosions extend thus depends on initial mass flux and temperature. Most fine ash forms an ash-cloud surge travelling over water, loosing sediment plumes that unite on the tank floor to form a turbidity current. Tsunami waves generated by coastal impact appear to be additionally driven by surface-water displacement by massive ash-input from ash fountains. Grain size distribution is also critical in determining interaction processes. Moderately well sorted medium ash generates strong steam explosions and becomes

  13. Tracking Pyroclastic Flows at Soufrière Hills Volcano

    Science.gov (United States)

    Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Poggi, Pasquale; Williams, Carlisle; Marchetti, Emanuele; Delle Donne, Dario; Ulivieri, Giacomo

    2009-07-01

    Explosive volcanic eruptions typically show a huge column of ash and debris ejected into the stratosphere, crackling with lightning. Yet equally hazardous are the fast moving avalanches of hot gas and rock that can rush down the volcano's flanks at speeds approaching 280 kilometers per hour. Called pyroclastic flows, these surges can reach temperatures of 400°C. Fast currents and hot temperatures can quickly overwhelm communities living in the shadow of volcanoes, such as what happened to Pompeii and Herculaneum after the 79 C.E. eruption of Italy's Mount Vesuvius or to Saint-Pierre after Martinique's Mount Pelée erupted in 1902.

  14. The flow structure of pyroclastic density currents: evidence from particle models and large-scale experiments

    Science.gov (United States)

    Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico Maria; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd

    2010-05-01

    Pyroclastic flows are ground hugging, hot, gas-particle flows. They represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Pompeii (AD 79) at Vesuvius. Much of our knowledge on the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, i.e. the particles contained in pyroclastic deposits, but they are rarely used for quantifying the destructive potential of pyroclastic flows. In this paper, by means of experiments, we validate a model that is based on data from pyroclastic deposits. It allows the reconstruction of the current's fluid-dynamic behaviour. We show that our model results in likely values of dynamic pressure and particle volumetric concentration, and allows quantifying the hazard potential of pyroclastic flows.

  15. Post-Failure behaviour of pyroclastic debris flow

    Science.gov (United States)

    Scotto di Santolo, Anna; Pellegrino, Anna Maria; Evangelista, Aldo; Coussot, Philippe

    2010-05-01

    The Campania Region is covered by pyroclastic soils accumulated in the last tens of thousands of years as a result of volcanic activity of Campi Flegrei (Phlegrean Fields) and Somma-Vesuvio. These materials cover the slope of the hilly area of Naples and mountain sides of Appennino. Even if they present significant physical and mechanical differences from site to site, they are posing the same geotechnical problems: they are usually unsaturated and collapse due to the increase of water content after prolonged rains creating simple or complex type of landslides (translational or rotational sliding or falls that lead to debris flows). While the mechanical properties of natural soils are the object of a number of research works, the evolution of the material after failure is much less often studied. Typically the post failure behaviour of this material may be "solid-like" or "fluid-like", according to causes that are not well-known. The object of this presentation is the study of the rheological behaviour of the "fluid like" material mixtures with fluid mechanics tools. Three natural pyroclastic deposits were sampled and the soils were remixed with distilled water at different solid volume fractions. The behaviour of these mixtures was investigated like a fluid with a vane rotor rheometer and an inclined plane. The main results are that the rheological behaviour is strongly related to the solid volume concentration, but the transition between solid-like to fluid-like behaviour occurs in a small range of solid concentration slightly different for each material tested. In the fluid-like behaviour the material mixtures behave like a yield stress fluid and a classical Herschel-Bulkley model well represents the experimental data. Nevertheless a hysteresis effect, associated with instability of the material behaviour, is observed for the largest solid concentrations. In that case the material starts to flow abruptly beyond a critical stress and rapidly reaches a relatively

  16. 3D Simulations of a Pyroclastic Surge as an Example of a Compressible Suspension Flow

    National Research Council Canada - National Science Library

    ISHIMINE, Yasuhiro

    2004-01-01

    .... As a conspicuous example of such a flow, we present three-dimensional numerical simulations of a pyroclastic surge, which spreads laterally over the ground surface during some volcanic eruptions...

  17. Radiocarbon dates for lava flows and pyroclastic deposits on Sao Miguel, Azores

    Science.gov (United States)

    Moore, R.B.; Rubin, M.

    1991-01-01

    We report 63 new radiocarbon analyses of samples from Sao Miguel, the largest island in the Azores archipelago. The samples are mainly carbonized tree roots and other plant material collected from beneath 20 mafic lava flows and spatter deposits and from within and beneath 42 trachytic pyroclastic flow, pyroclastic surge, mudflow, pumice-fall and lacustrine deposits and lava flows. One calcite date is reported. These dates establish ages for 48 previously undated lava flows and pyroclastic deposits, and revise three ages previously reported. These data are critical to deciphering the Holocene and late Pleistocene eruptive history of Sao Miguel and evaluating its potential volcanic hazards. Average dormant intervals during the past 3000 years are about 400 years for Sete Cidades volcano, 145 years for volcanic Zone 2, 1150 years for Agua de Pau volcano and 320 years for Furnas volcano. No known eruptions have occurred in volcanic Zone 4 during the past 3000 years. -from Authors

  18. Pyroclastic flow hazard at Volcán Citlaltépetl

    Science.gov (United States)

    Sheridan, Michael F.; Hubbard, Bernard E.; Carrasco-Nunez, Gerardo; Siebe, Claus

    2004-01-01

    Volcán Citlaltépetl (Pico de Orizaba) with an elevation of 5,675 m is the highest volcano in North America. Its most recent catastrophic events involved the production of pyroclastic flows that erupted approximately 4,000, 8,500, and 13,000 years ago. The distribution of mapped deposits from these eruptions gives an approximate guide to the extent of products from potential future eruptions. Because the topography of this volcano is constantly changing computer simulations were made on the present topography using three computer algorithms: energy cone, FLOW2D, and FLOW3D. The Heim Coefficient (μ), used as a code parameter for frictional sliding in all our algorithms, is the ratio of the assumed drop in elevation (H) divided by the lateral extent of the mapped deposits (L). The viscosity parameter for the FLOW2D and FLOW3D codes was adjusted so that the paths of the flows mimicked those inferred from the mapped deposits. We modeled two categories of pyroclastic flows modeled for the level I and level II events. Level I pyroclastic flows correspond to small but more frequent block-and-ash flows that remain on the main cone. Level II flows correspond to more widespread flows from catastrophic eruptions with an approximate 4,000-year repose period. We developed hazard maps from simulations based on a National Imagery and Mapping Agency (NIMA) DTED-1 DEM with a 90 m grid and a vertical accuracy of ±30 m. Because realistic visualization is an important aid to understanding the risks related to volcanic hazards we present the DEM as modeled by FLOW3D. The model shows that the pyroclastic flows extend for much greater distances to the east of the volcano summit where the topographic relief is nearly 4,300 m. This study was used to plot hazard zones for pyroclastic flows in the official hazard map that was published recently.

  19. Analysis of the Pyroclastic Flow Deposits of Mount Sinabung and Merapi Using Landsat Imagery and the Artificial Neural Networks Approach

    Directory of Open Access Journals (Sweden)

    Prima Riza Kadavi

    2017-09-01

    Full Text Available Volcanic eruptions cause pyroclastic flows, which can destroy plantations and settlements. We used image data from Landsat 7 Bands 7, 4 and 2 and Landsat 8 Bands 7, 5 and 3 to observe and analyze the distribution of pyroclastic flow deposits for two volcanos, Mount Sinabung and Merapi, over a period of 10 years (2001–2017. The satellite data are used in conjunction with an artificial neural network method to produce maps of pyroclastic precipitation for Landsat 7 and 8, then we calculated the pyroclastic precipitation area using an artificial neural network method after dividing the images into four classes based on color. Red, green, blue and yellow were used to indicate pyroclastic deposits, vegetation and forest, water and cloud, and farmland, respectively. The area affected by a volcanic eruption was deduced from the neural network processing, including calculating the area of pyroclastic deposits. The main differences between the pyroclastic flow deposits of Mount Sinabung and Mount Merapi are: the sediment deposits of the pyroclastic flows of Mount Sinabung tend to widen, whereas those of Merapi elongated; the direction of pyroclastic flow differed; and the area affected by an eruption was greater for Mount Merapi than Mount Sinabung because the VEI (Volcanic Explosivity Index during the last 10 years of Mount Merapi was larger than Mount Sinabung.

  20. Secondary hydroeruptions in pyroclastic-flow deposits: Examples from Mount St. Helens

    Science.gov (United States)

    Moyer, T.C.; Swanson, D.A.

    1987-01-01

    Secondary hydroeruptions occur in pyroclastic-flow deposits when water or ice is trapped beneath hot pyroclastic debris and rapidly heated to steam. These eruptions display various styles of activity including fumarolic degassing, tephra fountaining, and explosive cratering. The deposits, which occupy the layer 3 stratigraphic position on the top of pyroclastic-flow units, can be distinguished from ash-cloud material by lateral thickness variation, clast composition, and other sedimentary features. The ejecta of secondary hydroeruptions comprise a subset of hydrovolcanic pyroclastic deposits. A small secondary hydroeruption observed on the Mount St. Helens pumice plain in 1981 produced tephra that was emplaced ballistically, by deposition from base surges, and by fallout from an eruption column. Stratigraphic descriptions and grain-size analysis of the ejecta from several secondary craters on the pumice plain demonstrate that the bedforms produced by a hydroeruption change with crater diameter. In particular, craters of small diameter are surrounded by interbedded ripple-laminated ash horizons and nonstratified, fines-depleted units; large craters have ejecta ramparts comprised of coarse dunes and antidunes. These bedform changes are related to a progressive increase in eruptive energy, which produces base surges of greater power and eruptive columns of greater height. We suggest that the style of activity displayed during a secondary hydroeruption is controlled by both the total thermal energy of the system and the permeability of the pyroclastic overburden. ?? 1987.

  1. A new high-performance 3D multiphase flow code to simulate volcanic blasts and pyroclastic density currents: example from the Boxing Day event, Montserrat

    Science.gov (United States)

    Ongaro, T. E.; Clarke, A.; Neri, A.; Voight, B.; Widiwijayanti, C.

    2005-12-01

    For the first time the dynamics of directed blasts from explosive lava-dome decompression have been investigated by means of transient, multiphase flow simulations in 2D and 3D. Multiphase flow models developed for the analysis of pyroclastic dispersal from explosive eruptions have been so far limited to 2D axisymmetric or Cartesian formulations which cannot properly account for important 3D features of the volcanic system such as complex morphology and fluid turbulence. Here we use a new parallel multiphase flow code, named PDAC (Pyroclastic Dispersal Analysis Code) (Esposti Ongaro et al., 2005), able to simulate the transient and 3D thermofluid-dynamics of pyroclastic dispersal produced by collapsing columns and volcanic blasts. The code solves the equations of the multiparticle flow model of Neri et al. (2003) on 3D domains extending up to several kilometres in 3D and includes a new description of the boundary conditions over topography which is automatically acquired from a DEM. The initial conditions are represented by a compact volume of gas and pyroclasts, with clasts of different sizes and densities, at high temperature and pressure. Different dome porosities and pressurization models were tested in 2D to assess the sensitivity of the results to the distribution of initial gas pressure, and to the total mass and energy stored in the dome, prior to 3D modeling. The simulations have used topographies appropriate for the 1997 Boxing Day directed blast on Montserrat, which eradicated the village of St. Patricks. Some simulations tested the runout of pyroclastic density currents over the ocean surface, corresponding to observations of over-water surges to several km distances at both locations. The PDAC code was used to perform 3D simulations of the explosive event on the actual volcano topography. The results highlight the strong topographic control on the propagation of the dense pyroclastic flows, the triggering of thermal instabilities, and the elutriation

  2. Computer Mapping of Pyroclastic Flow Inundation Probability: Application to the August 2006 Flows at Tungurahua, Ecuador

    Science.gov (United States)

    Sheridan, M. F.; Patra, A.; Dalbey, K.; Stinton, A.; Hall, M.

    2007-05-01

    In the summer of 2006 Tungurahua produced its most intense pyroclastic activity since the current eruptive cycle began in October 1999. In mid-July and again in mid-August more than 20 pyroclastic flows descended ravines on the north to west flanks of the volcano causing at least five deaths and destroying property and livestock. These PFs reached the Chambo River at the base of the volcano and temporarily dammed it. The flows passed over the major Ambato-Baños highway and came within 2.5 km from the popular El Salado hot springs near the town of Banos (ca. 20,000 inhabitants). These August 16 pyroclastic flows provide a good data base for calibrating models used in hazard mapping. Titan2D is a computational code for volcanic block and ash flows and rock avalanches of various types and scales. It forms the core of the new Titan environment for volcanic hazards analysis that can integrate modeling, high-performance computing, database management, visualization, and collaborative environments to a very sophisticated level. Titan provides a solution to mapping problems by providing a probabilistic calculation of inundation depth that takes into account many of the critical uncertainties using a PCQ methodology to reduce computation time. We used TITAN to map potential inundation areas for future block-and-ash flows at Tungurahua, Ecuador. First the DEM was modified to fill the crater with a tiled plane to avoid back filling of the simulated flows. For each PCQ analysis we started with a 360° uniform distribution of initial direction of flow, a flux footprint with a 50 m radius and an initial velocity of velocity of 50 m s-1. Flux rates started at their maximum value and decreased linearly to zero over time; flux durations ranged between 1 and 5 minutes with duration being linear in volume. Then we used a flux footprint with a 50 m radius and an initial velocity of velocity of 50 m s-1. Flux rates started from their maximum value and decreased linearly to zero over

  3. Are eruptions from linear fissures and caldera ring dykes more likely to produce pyroclastic flows?

    Science.gov (United States)

    Jessop, D. E.; Gilchrist, J.; Jellinek, A. M.; Roche, O.

    2016-11-01

    Turbulent volcanic jets are produced by highly-energetic explosive eruptions and may form buoyant plumes that rise many tens of kilometres into the atmosphere to form umbrella clouds or collapse to generate ground-hugging pyroclastic flows. Ash injected into the atmosphere can be transported for many hundreds of kilometres with the potential to affect climate, disrupt global air travel and cause respiratory health problems. Pyroclastic flows, by contrast, are potentially catastrophic to populations and infrastructure close to the volcano. Key to which of these two behaviours will occur is the extent to which the mechanical entrainment and mixing of ambient air into the jet by large (entraining) eddies forming the jet edge changes the density of the air-ash mixture: low entrainment rates lead to pyroclastic flows and high entrainment rates give rise to buoyant plumes. Recent experiments on particle-laden (multi-phase) volcanic jets from flared and straight-sided circular openings suggest that the likelihood for buoyant plumes will depend strongly on the shape and internal geometry of the vent region. This newly recognised sensitivity of the fate of volcanic jets to the structure of the vent is a consequence of a complex dynamic coupling between the jet and entrained solid particles, an effect that has generally been overlooked in previous studies. Building on this work, here we use an extensive series of experiments on multi-phase turbulent jets from analogue linear fissures and annular ring fractures to explore whether the restrictive vent geometry during cataclysmic caldera-forming (CCF) eruptions will ultimately lead a relatively greater frequency of pyroclastic flows than eruptions from circular vents on stratovolcanoes. Our results, understood through scaling analyses and a one-dimensional theoretical model, show that entrainment is enhanced where particle motions contribute angular momentum to entraining eddies. However, because the size of the entraining

  4. Synthesizing large-scale pyroclastic flows: Experimental design, scaling, and first results from PELE

    Science.gov (United States)

    Lube, G.; Breard, E. C. P.; Cronin, S. J.; Jones, J.

    2015-03-01

    Pyroclastic flow eruption large-scale experiment (PELE) is a large-scale facility for experimental studies of pyroclastic density currents (PDCs). It is used to generate high-energy currents involving 500-6500 m3 natural volcanic material and air that achieve velocities of 7-30 m s-1, flow thicknesses of 2-4.5 m, and runouts of >35 m. The experimental PDCs are synthesized by a controlled "eruption column collapse" of ash-lapilli suspensions onto an instrumented channel. The first set of experiments are documented here and used to elucidate the main flow regimes that influence PDC dynamic structure. Four phases are identified: (1) mixture acceleration during eruption column collapse, (2) column-slope impact, (3) PDC generation, and (4) ash cloud diffusion. The currents produced are fully turbulent flows and scale well to natural PDCs including small to large scales of turbulent transport. PELE is capable of generating short, pulsed, and sustained currents over periods of several tens of seconds, and dilute surge-like PDCs through to highly concentrated pyroclastic flow-like currents. The surge-like variants develop a basal surge (1.5-3 m thick) with 100 to 10-4 vol % particles. Their deposits include stratified, massive, normally and reversely graded beds, lobate fronts, and laterally extensive veneer facies beyond channel margins.

  5. Spectral Analysis of Surface Features of Subaquaeous Pyroclastic Flow Deposits Around Santorini Volcano, Greece

    Science.gov (United States)

    Croff, K. L.; Sigurdsson, H.; Carey, S.; Alexandri, M.; Sakellariou, D.; Nomikou, P.

    2006-12-01

    Multibeam bathymetry mapping and seismic airgun surveys of the submarine region around the Santorini volcanic field in the Hellenic Arc (Greece) have revealed regions of terraced or step-like topography. These features may be related to the transport and deposition of submarine pyroclastic flows from the last major eruption of this volcano (~3600yrs. B.P.). The uppermost sediment sequence identified in seismic records has an average thickness of approximately 29 meters and may represent the pyroclastic flow deposits from this eruption. These terraced or step-like features are mainly located in areas that are approximately five kilometers offshore and at depths in the range of 200 to 800 meters. The seafloor in these areas has slope ratios on the order of 1:20. Profiles of the seafloor topography were sampled from seismic profiles that radiate from the Sanotrini caldera in five regions of interest. Spectral analysis of seafloor topography has been carried out to determine spectral characteristics of these features, including power spectrum, periodicity and amplitude of the waveforms, variance, and roughness of topography. The results are compared to surface features of the subaqueous pyroclastic deposits from the 1883 explosive eruption of Krakatau (Indonesia) and other areas with similar environments, to determine the parameters that are characteristic of this new feature of submarine volcaniclastic deposits.

  6. Voluminous lava-like precursor to a major ash-flow tuff: Low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado

    Science.gov (United States)

    Bachmann, Olivier; Dungan, M.A.; Lipman, P.W.

    2000-01-01

    The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (~5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40-60%) of juvenile clasts (to 3-4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5-10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75 x 35 km2 La Garita

  7. Eruption of a major Holocene pyroclastic flow at Citlaltépetl volcano (Pico de Orizaba), México, 8.5 9.0 ka

    Science.gov (United States)

    Carrasco-Núñez, Gerardo; Rose, William I.

    1995-12-01

    Multiple volcanic eruptions occurred between 8500 and 9000 yr. B.P. from the central crater of Citlaltépetl Volcano generating a series of pyroclastic flows that formed a deposit with a total volume of about 0.26 km 3 (D.R.E.). The flows descended in all directions around the crater, but they were mostly controlled by topography and deposited in valleys or local topographic depressions up to about 30 km from vent. Although the flows were apparently emplaced without much violence, some features of the deposits reveal local turbulent conditions and an expanded fluidization that can be related to moderate flow velocities. The deposit has two members: the lower one consists of multiple flow units, and the upper one includes a single flow unit and a thin basal pumice-fall. Both members are lithologically similar and dominated by dense, andesitic scoriae with minor amounts of different pumice types (andesitic, dacitic, and banded), and lithics in a silty matrix. The eruption probably had a low-pressure 'boiling-over' mechanism and was possibly triggered by mixing of dacitic and andesitic magmas. Juvenile material in the pyroclastic-flow deposit is compositionally similar to that of Holocene lava flows at Citlaltépetl, which have apparently resulted from magma homogenization of mafic and silicic end members. Because the system is continuously injected with new basaltic-andesitic magma, a recurrence of explosive activity is possible in future eruptions.

  8. Pyroclastic surges and flows from the 8-10 May 1997 explosive eruption of Bezymianny volcano, Kamchatka, Russia

    Science.gov (United States)

    Belousov, Alexander; Voight, Barry; Belousova, Marina; Petukhin, Anatoly

    2002-07-01

    The 8-10 May 1997 eruption of Bezymianny volcano began with extrusion of a crystallized plug from the vent in the upper part of the dome. Progressive gravitational collapses of the plug caused decompression of highly crystalline magma in the upper conduit, leading at 13:12 local time on 9 May to a powerful, vertical Vulcanian explosion. The dense pyroclastic mixture collapsed in boil-over style to generate a pyroclastic surge which was focused toward the southeast by the steep-walled, 1956 horseshoe-shaped crater. This surge, with a temperature 30 km2 with deposits as much as 30 cm thick and extending 7 km from the vent. The surge deposits comprised massive to vaguely laminated, gravelly sand (Md -1.2 to 3.7φ sorting 1.2 to 3φ) of poorly vesiculated andesite (mean density 1.82 g cm-3 vesicularity 30 vol% SiO2 content 58.0 wt%). The deposits, with a volume of 5-15×106 m3, became finer grained and better sorted with distance; the maximal diameter of juvenile clasts decreased from 46 to 4 cm. The transport and deposition of the surge over a snowy landscape generated extensive lahars which traveled >30 km. Immediately following the surge, semi-vesiculated block-and-ash flows were emplaced as far as 4.7 km from the vent. Over time the juvenile lava in clasts of these flows became progressively less crystallized, apparently more silicic (59.0 to 59.9 wt% SiO2) and more vesiculated (density 1.64 to 1.12 g cm-3 vesicularity 37 to 57 vol%). At this stage the eruption showed transitional behavior, with mass divided between collapsing fountain and buoyant column. The youngest pumice-and-ash flows were accompanied by a sustained sub-Plinian eruption column 14 km high, from which platy fallout clasts were deposited ( 59.7% SiO2; density 1.09 g cm-3 vesicularity 58 vol%). The explosive activity lasted about 37 min and produced a total of 0.026 km3 dense rock equivalent of magma, with an average discharge of 1.2×104 m3 s-1. A lava flow 200 m long terminated the eruption. The

  9. Tracking in Real-Time Pyroclastic Flows at Soufriere Hills Volcano, Montserrat, by infrasonic array.

    Science.gov (United States)

    Ripepe, M.; de Angelis, S.; Lacanna, G.; Poggi, P.; Williams, C.

    2008-12-01

    Active volcanoes produce infrasonic airwaves, which provide valuable insight into the eruption dynamics and the level of volcanic activity. On open conduit volcanoes, infrasound can be used to monitor the gas overpressure in the magma and the degassing rate of active volcanic vents. On volcanoes characterized by dome growth, infrasound can also be generated by non-explosive sources related to dome collapses and pyroclastic flows. In March 2008, the Department of Earth Science (DST) of Firenze (Italy) in cooperation with Montserrat Volcano Observatory (MVO) has installed a small-aperture infrasonic array at a distance of ~3000 m from the dome of the Soufriere Hill Volcano (SHV). The array has an aperture of 200 m and a "star" geometry, with 3 satellite stations at 100 m distance from the receiving central station. Each element of the array is linked to the receiver station by fiber optics cable, and the signal is acquired with a resolution of 16 bits at a rate of 50 samples/sec. The data collected by the array are sent via a radio modem link to the MVO offices, on Montserrat, where they are archived and processed in real-time. Real-time location of infrasonic events are obtained and displayed on computer monitors for use in monitoring of volcanic activity. After a period of very low levels of activity, starting from the end of May 2008, SHV has produced several small explosions without any short-term precursory sign. Some of these events have generated ash plumes reaching up to a few thousands of meters above the sea level, and were accompanied by moderate-to-large size pyroclastic flows that descended the western flanks of the volcanic edifice. The array was able to detect and locate in real-time the clear infrasound associated both with the explosions and the pyroclastic flows. In the latter case, the array estimated the speed and the direction of the flux revealing the presence of several pulses within the same flow. The variable azimuth of the signal during the

  10. Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event

    Directory of Open Access Journals (Sweden)

    G. B. Crosta

    2003-01-01

    Full Text Available Pyroclastic soils mantling a wide area of the Campanian Apennines are subjected to recurrent instability phenomena. This study analyses the 5 and 6 May 1998 event which affected the Pizzo d’Alvano (Campania, southern Italy. More than 400 slides affecting shallow pyroclastic deposits were triggered by intense and prolonged but not extreme rainfall. Landslides affected the pyroclastic deposits that cover the steep calcareous ridges and are soil slip-debris flows and rapid mudflows. About 30 main channels were deeply scoured by flows which reached the alluvial fans depositing up to 400 000 m3 of material in the piedmont areas. About 75% of the landslides are associated with morphological discontinuities such as limestone cliffs and roads. The sliding surface is located within the pyroclastic cover, generally at the base of a pumice layer. Geotechnical characterisation of pyroclastic deposits has been accomplished by laboratory and in situ tests. Numerical modelling of seepage processes and stability analyses have been run on four simplified models representing different settings observed at the source areas. Seepage modelling showed the formation of pore pressure pulses in pumice layers and the localised increase of pore pressure in correspondence of stratigraphic discontinuities as response to the rainfall event registered between 28 April and 5 May. Numerical modelling provided pore pressure values for stability analyses and pointed out critical conditions where stratigraphic or morphological discontinuities occur. This study excludes the need of a groundwater flow from the underlying bedrock toward the pyroclastic cover for instabilities to occur.

  11. Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event

    Science.gov (United States)

    Crosta, G. B.; Dal Negro, P.

    Pyroclastic soils mantling a wide area of the Campanian Apennines are subjected to recurrent instability phenomena. This study analyses the 5 and 6 May 1998 event which affected the Pizzo d'Alvano (Campania, southern Italy). More than 400 slides affecting shallow pyroclastic deposits were triggered by intense and prolonged but not extreme rainfall. Landslides affected the pyroclastic deposits that cover the steep calcareous ridges and are soil slip-debris flows and rapid mudflows. About 30 main channels were deeply scoured by flows which reached the alluvial fans depositing up to 400 000 m3 of material in the piedmont areas. About 75% of the landslides are associated with morphological discontinuities such as limestone cliffs and roads. The sliding surface is located within the pyroclastic cover, generally at the base of a pumice layer. Geotechnical characterisation of pyroclastic deposits has been accomplished by laboratory and in situ tests. Numerical modelling of seepage processes and stability analyses have been run on four simplified models representing different settings observed at the source areas. Seepage modelling showed the formation of pore pressure pulses in pumice layers and the localised increase of pore pressure in correspondence of stratigraphic discontinuities as response to the rainfall event registered between 28 April and 5 May. Numerical modelling provided pore pressure values for stability analyses and pointed out critical conditions where stratigraphic or morphological discontinuities occur. This study excludes the need of a groundwater flow from the underlying bedrock toward the pyroclastic cover for instabilities to occur.

  12. Using InSAR for Characterizing Pyroclastic Flow Deposits at Augustine Volcano Across Two Eruptive Cycles

    Science.gov (United States)

    McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.

    2014-12-01

    Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. At Augustine Volcano, SAR data suitable for interferometry is available from 1992 to 2005, from March 2006 to April 2007, and from July 2007 to October 2010. Its last two eruptive episodes, in 1986 and 2006, resulted in substantial pyroclastic flow deposits (PFDs) on the Volcano's north flank. Earlier InSAR analyses of the area, from 1992-1999, identified local subsidence, but no volcano-wide deformation indicative of magma-chamber evacuation. In contrast to previous studies, we use InSAR data to determine a range of geophysical parameters for PFDs emplaced during the Augustine's two most recent eruption cycles. Based on InSAR measurements between 1992 and 2010, we reconstruct the deformation behavior of PFDs emplaced during Augustine's last two eruption cycles. Using a combination of InSAR measurements and modeling, we determine the thickness and long-term deformation of overlaying pyroclastic flow deposits emplaced in 1986 and 2006. Consistent with previous observations of pyroclastic flows, we found that the PFDs on Augustine Island rapidly subsided after emplacement due to an initial compaction of the material. We determined the length of this initial settling period and measured the compaction rate. Subsequent to this initial rapid subsidence, we found that PFD deformation slowed to a more persistent, linear, long-term rate, related to cooling of the deposits. We established that the deposits' contraction rate is linearly related to their thickness and measured the contraction rate. Finally, a study of long term coherence properties of the Augustine PFDs showed remarkable stability of the surface over long time periods. This information provides clues on the structural properties and composition of the emplaced material.

  13. PYROCLASTIC FLOW MODELING TO RECONSTRUCT A VOLCANIC EDIFICE IN PAIPA (BOYACÁ-COLOMBIA.

    Directory of Open Access Journals (Sweden)

    Rodríguez Óscar

    2004-06-01

    Full Text Available Pyroclastic deposits produced by the domes collapse (resurgence of a caldera collapse, at the west of the Honda Grande creek (Paipa, Boyacá-Colombia were related by INGEOMINAS. These deposits fill the valleys of Olitas, Calderitas and a creek at the south of the Alto de los Volcanes reaching distances near to 3 km from the focus between the Alto de los Volcanes and El Mirador Hill.The flows were modeled using 3D Software (Sheridan and Kover, 1996. A volcanic simulation was done obtaining the height and morphology of the volcanic edifice before the collapse during the last eruptive event.

  14. Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.

    1998-01-01

    Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (surge component was enhanced during the larger sustained events. Periods of elevated pyroclastic flow productivity and sustained dome collapse events are linked to pulses of high magma extrusion rates.Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.

  15. DNS of turbulent flows of dense gases

    Science.gov (United States)

    Sciacovelli, L.; Cinnella, P.; Gloerfelt, X.; Grasso, F.

    2017-03-01

    The influence of dense gas effects on compressible turbulence is investigated by means of numerical simulations of the decay of compressible homogeneous isotropic turbulence (CHIT) and of supersonic turbulent flows through a plane channel (TCF). For both configurations, a parametric study on the Mach and Reynolds numbers is carried out. The dense gas considered in these parametric studies is PP11, a heavy fluorocarbon. The results are systematically compared to those obtained for a diatomic perfect gas (air). In our computations, the thermodynamic behaviour of the dense gases is modelled by means of the Martin-Hou equation of state. For CHIT cases, initial turbulent Mach numbers up to 1 are analyzed using mesh resolutions up to 5123. For TCF, bulk Mach numbers up to 3 and bulk Reynolds numbers up to 12000 are investigated. Average profiles of the thermodynamic quantities exhibit significant differences with respect to perfect-gas solutions for both of the configurations. For high-Mach CHIT, compressible structures are modified with respect to air, with weaker eddy shocklets and stronger expansions. In TCF, the velocity profiles of dense gas flows are much less sensitive to the Mach number and collapse reasonably well in the logarithmic region without any special need for compressible scalings, unlike the case of air, and the overall flow behaviour is midway between that of a variable-property liquid and that of a gas.

  16. Gravity-driven dense granular flows

    Energy Technology Data Exchange (ETDEWEB)

    ERTAS,DENIZ; GREST,GARY S.; HALSEY,THOMAS C.; DEVINE,DOV; SILBERT,LEONARDO E.

    2000-03-29

    The authors report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type for force law has little impact on the behavior of the system. Failure is not initiated at the surface, consistent with the absence of surface flows and different principal stress directions at vs. below the surface.

  17. Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Downs, Drew

    2016-01-01

    The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures including: 1) breadcrusted juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ± 81 Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicate either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.

  18. Mihi Breccia: A stack of lacustrine sediments and subaqueous pyroclastic flows within the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Downs, Drew T.

    2016-11-01

    The Taupo Volcanic Zone (TVZ), New Zealand, encompasses a wide variety of arc-related strata, although most of its small-volume (non-caldera-forming) eruptions are poorly-exposed and extensively hydrothermally altered. The Mihi Breccia is a stratigraphic sequence consisting of interbedded rhyolitic pyroclastic flows and lacustrine sediments with eruption ages of 281 ± 18 to at least 239 ± 6 ka (uncertainties at 2σ). In contrast to other small-volume rhyolitic eruptions within the TVZ, Mihi Breccia is relatively well-exposed within the Paeroa fault block, and contains minimal hydrothermal alteration. Pyroclastic flow characteristics and textures include: 1) prismatically jointed juvenile clasts, 2) lack of welding, 3) abundant ash-rich matrix, 4) lack of fiamme and eutaxitic textures, 5) lack of thermal oxidation colors, 6) lack of cooling joints, 7) exclusive lacustrine sediment lithic clasts, and 8) interbedding with lacustrine sediments, all indicating that Mihi Breccia strata originated in a paleo-lake system. This ephemeral paleo-lake system is inferred to have lasted for > 50 kyr (based on Mihi Breccia age constraints), and referred to as Huka Lake. Mihi Breccia pyroclastic flow juvenile clast geochemistry and petrography correspond with similar-aged (264 ± 8, 263 ± 10, and 247 ± 4 ka) intra-caldera rhyolite domes filling the Reporoa caldera (source of the 281 ka Kaingaroa Formation ignimbrite). These exposed intra-caldera rhyolite domes (as well as geophysically inferred subsurface domes) are proposed to be source vents for the Mihi Breccia pyroclastic flows. Soft-sediment deformation associated with Mihi Breccia strata indicates either seismic shock, rapid sediment loading during pyroclastic flow emplacement, or both. Thus, the Mihi Breccia reflects a prolonged series of subaqueous rhyolite dome building and associated pyroclastic flows, accompanied by seismic activity, emplaced into a large paleo-lake system within the TVZ.

  19. Emplacement of pyroclastic flows during the 1998 1999 eruption of Volcán de Colima, México

    Science.gov (United States)

    Saucedo, R.; Macías, J. L.; Bursik, M. I.; Mora, J. C.; Gavilanes, J. C.; Cortes, A.

    2002-09-01

    After three years of quiescence, Volcán de Colima reawakened with increasing seismic and rock fall activity that reached its peak on November 20, 1998, when a new lava dome forced its way to the volcano's summit. The new lava rapidly reached the S-SW edge of the summit area, beginning the generation of Merapi-type pyroclastic flows that traveled down La Lumbre, and the El Cordoban Western and Eastern ravines, reaching distances of 3, 4.5, and 3 km, respectively. On December 1, 1998, the lava flow split into three fronts that in early 1999 had reached 2.8, 3.1, and 2.5 km in length, advancing down the El Cordoban ravines. The lava flow fronts disaggregated into blocks forming pyroclastic flows. One of the best examples occurred on December 10, 1998. As the lava flow ceased moving in early 1999, activity became more explosive. Strong blasts were recorded on February 10, May 10, and July 17, 1999. The last event developed a 10-km-high eruptive column from which a pyroclastic flow developed from the base, traveling 3.3 km SW from the summit into the San Antonio-Montegrande ravines. Regardless of the mechanism of pyroclastic-flow generation, each flow immediately segregated into a basal avalanche that moved as a granular flow and an upper ash cloud in which particles were sustained in turbulent suspension. When the basal avalanche lost velocity and eventually stopped, the upper ash cloud continued to move independently as a dilute pyroclastic flow that produced a massive pyroclastic-flow deposit and an upper dune-bedded surge deposit. The dilute pyroclastic flow scorched and toppled maguey plants and trees, and sandblasted vegetation in the direction of the flow. At the end of the dilute pyroclastic-flow path, the suspended particles lifted off in a cloud from which a terminal ash fall was deposited. The basal avalanche emplaced block-and-ash flow deposits (up to 8 m thick) that filled the main ravines and consisted of several flow units. Each flow unit was massive

  20. Erosion Modeling of the Pyroclastic Flow Deposits From the 1991 Eruption of Mt. Pinatubo, Philippines

    Science.gov (United States)

    Daag, A. S.; Daag, A. S.

    2001-12-01

    The June 15-16 1991 eruption of Mt. Pinatubo had emplaced approximately 6km3 of sand-size pumiceous pyroclastic flow deposits that affected 8 major watersheds surrounding the volcano. These deposits attained thickness of about 200m on deep channels and remained unconsolidated, when it rains they are the main source of lahars for several years. This study focuses on the eastern watersheds namely, Sacobia-Pasig-Abacan, because it posed the greatest risk due to lahar flow hazards being the highly developed and the most populated. In order to study and monitor the erosions of the pyroclastic flow deposits, several methods were used. Yearly direct quantification of erosions were made using multi-temporal Digital Elevation Models (DEMs), aerial photos and satellite imageries. GIS and image processing software were used to compute erosion volumes and in determining geomorphic changes. To understand the different parameters affecting the erosiveness of in-situ deposits, a portable rainfall simulator was used. Regression modeling was utilized to determine the effect of the different parameters in the erosion such as, slope, rainfall intensity, grain size and shear strength of the deposits. Yearly rainfall events that yielded lahars were all analyzed to get the yearly deviations and relationships of the rainfall-lahar triggering thresholds. A physically based distributed simulation model was developed using PCRaster program that simulates the catchments' response on a certain rainfall and predicts the lahar hydrographs. This model utilizes DEM and other catchment's physical parameters. The flow predicts the volumetric ratio of sediments and water using Meunier mudflow equation.

  1. Characterizing pyroclastic-flow interactions with snow and water using environmental magnetism at Augustine Volcano: Chapter 11 in The 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Beget, James E.; Power, John A.; Coombs, Michelle L.; Freymueller, Jeffrey T.

    2010-01-01

    In-place measurements of environmental magnetic susceptibility of pyroclastic flows, surges and lahars emplaced during the 2006 eruption of Augustine Volcano show that primary volume magnetic susceptibilities of pyroclastic materials decreased where the flows encountered water and steam. The Rocky Point pyroclastic flow, the largest flow of the eruption sequence, encountered a small pond near the north coast of Augustine Island where local interactions with water and steam caused susceptibilities to decrease from 1,084±128×10-5 SI to 615±114×10-5 SI. Ash produced during phreatic explosions and pyroclastic surges that crossed snow also produced deposits with reduced susceptibilities, while lahar deposits derived from pyroclastic flows showed even greater reductions in susceptibility (430±129×10-5 SI). The susceptibility reductions are probably largely attributable to oxidation of iron in magnetite and other minerals within the pyroclastic flows, although other physiochemical processes may play a role. Measurements of the magnetic properties of pyroclastic flows, surges, and lahar deposits can be a useful tool in understanding the processes that occur when pyroclastic flows encounter ice, snow, and water and interact with water and steam on the slopes of active volcanoes.

  2. Probabilistic hazard analysis of dense Pyroclastic Density Currents at Vesuvius (Italy) via parametric uncertainty characterization of TITAN2D numerical simulator

    Science.gov (United States)

    Tierz, Pablo; Ramona Stefanescu, Elena; Sandri, Laura; Patra, Abani; Marzocchi, Warner; Sulpizio, Roberto

    2014-05-01

    Probabilistic hazard assessments of Pyroclastic Density Currents (PDCs) are of great interest for decision-making purposes. However, there is a limited number of published works available on this topic. Recent advances in computation and statistical methods are offering new opportunities beyond the classical Monte Carlo (MC) sampling which is known as a simple and robust method but it usually turns out to be slow and computationally intractable. In this work, Titan2D numerical simulator has been coupled to Polynomial Chaos Quadrature (PCQ) to propagate the simulator parametric uncertainty and compute VEI-based probabilistic hazard maps of dense PDCs formed as a result of column collapse at Vesuvius volcano, Italy. Due to the lack of knowledge about the exact conditions under which these PDCs will form, Probability Distribution Functions (PDFs) are assigned to the simulator input parameters (Bed Friction Angle and Volume) according to three VEI sizes. Uniform distributions were used for both parameters since there is insufficient information to assume that any value in the range is more likely that any other value. Reasonable (and compatible) ranges for both variables were constrained according to past eruptions at Vesuvius volcanic system. On the basis of reasoning above a number of quadrature points were taken within those ranges, which resulted in one execution of the TITAN2D code at each quadrature point. With a computational cost several orders of magnitude smaller than MC, exceedance probabilities for a given threshold of flow depth (and conditional to the occurrence of VEI3, VEI4 and VEI5 eruptions) were calculated using PCQ. Moreover, PCQ can be run at different threshold values of the same output variable (flow depth, speed, kinetic energy, …) and, therefore, it can serve to compute Exceedance Probability curves (aka hazard curves) at singular points inside the hazard domain, representing the most important and useful scientific input to quantitative risk

  3. Solids flow rate measurement in dense slurries

    Energy Technology Data Exchange (ETDEWEB)

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  4. Long-term contraction of pyroclastic flow deposits at Augustine Volcano using InSAR

    Science.gov (United States)

    McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.

    2013-12-01

    Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. The volcano's nearly symmetrical central cone reaches an altitude of 1260 m, and the surrounding island is composed almost entirely of volcanic deposits. It is the youngest and most frequently active volcano in the lower Cook Inlet, with at least seven known eruptions since the beginning of written records in 1812. Its two most recent eruptions occurred during March-August 1986, and January-March 2006 The 1986 and 2006 Augustine eruptions produced significant pyroclastic flow deposits (PFDs) on the island, both which have been well mapped by previous studies. Subsidence of material deposited by these pyroclastic flows has been measured by InSAR data, and can be attributed to at least four processes: (1) initial, granular settling; (2) thermal contraction; (3) loading of 1986 PFDs from overlying 2006 deposits; and (4) continuing subsidence of 1986 PFDs buried beneath 2006 flows. For this paper, SAR data for PFDs from Augustine Volcano were obtained from 1992 through 2005, from 2006-2007, and from 2007-2011. These time frames provided InSAR data for long-term periods after both 1986 and 2006 eruptions. From time-series analysis of these datasets, deformation rates of 1986 PFDs and 2006 PFDs were determined, and corrections applied where newer deposits were emplaced over old deposits. The combination of data sets analyzed in this study enabled, for the first time, an analysis of long and short term subsidence rates of volcanic deposits emplaced by the two eruptive episodes. The generated deformation time series provides insight into the significance and duration of the initial settling period and allows us to study the thermal regime and heat loss of the PFDs. To extract quantitative information about thermal properties and composition of the PFDs, we measured the thickness

  5. Constitutive relations for steady, dense granular flows

    Science.gov (United States)

    Vescovi, D.; Berzi, D.; di Prisco, C. G.

    2011-12-01

    In the recent past, the flow of dense granular materials has been the subject of many scientific works; this is due to the large number of natural phenomena involving solid particles flowing at high concentration (e.g., debris flows and landslides). In contrast with the flow of dilute granular media, where the energy is essentially dissipated in binary collisions, the flow of dense granular materials is characterized by multiple, long-lasting and frictional contacts among the particles. The work focuses on the mechanical response of dry granular materials under steady, simple shear conditions. In particular, the goal is to obtain a complete rheology able to describe the material behavior within the entire range of concentrations for which the flow can be considered dense. The total stress is assumed to be the linear sum of a frictional and a kinetic component. The frictional and the kinetic contribution are modeled in the context of the critical state theory [8, 10] and the kinetic theory of dense granular gases [1, 3, 7], respectively. In the critical state theory, the granular material approaches a certain attractor state, independent on the initial arrangement, characterized by the capability of developing unlimited shear strains without any change in the concentration. Given that a disordered granular packing exists only for a range of concentration between the random loose and close packing [11], a form for the concentration dependence of the frictional normal stress that makes the latter vanish at the random loose packing is defined. In the kinetic theory, the particles are assumed to interact through instantaneous, binary and uncorrelated collisions. A new state variable of the problem is introduced, the granular temperature, which accounts for the velocity fluctuations. The model has been extended to account for the decrease in the energy dissipation due to the existence of correlated motion among the particles [5, 6] and to deal with non

  6. Magnetic fabric and implications for pyroclastic flow and lahar emplacement, Albano maar, Italy

    Science.gov (United States)

    Porreca, M.; Mattei, M.; Giordano, G.; de Rita, D.; Funiciello, R.

    2003-05-01

    The Albano polygenetic maar is the youngest eruptive center of the quiescent Colli Albani volcano, located near the city of Rome. The most recent activity of the Albano maar extends from ˜23 ka into the Holocene and produced the small volume, basic, phreatomagmatic Peperino Albano (PA) ignimbrite, and, more recently, phreatomagmatic surge and lahar deposits related to the overspill of the Albano maar lake. We have performed an anisotropy of magnetic susceptibility (AMS) study, in order to define the relationships between the magnetic fabric and the flow mechanisms of the PA and of the phreatomagmatic deposits and lahars. AMS results indicate different transport and/or depositional systems for the veneer and valley pond facies in the PA ignimbrite and for the lahar deposits. AMS also demonstrates that flow directions are mainly controlled by the paleotopography. The paleotopographic control has been interpreted in terms of talweg sedimentation even at proximal locations where deposition occurs from dilute pyroclastic flows. Furthermore, AMS results clearly evidence a southward provenance for Holocene post-PA ignimbrite units, cropping out in the Ciampino plain, and confirm their origin from Albano maar lake overspill. We demonstrate that AMS is a reliable marker to determine paleoflow directions also in small volume phreatomagmatic ignimbrites and in syneruptive lahar deposits and can be successfully used to define their depositional systems.

  7. Littoral blasts: Pumice-water heat transfer and the conditions for steam explosions when pyroclastic flows enter the ocean

    Science.gov (United States)

    Dufek, J.; Manga, M.; Staedter, M.

    2007-11-01

    Steam explosions, or littoral blasts, generated when pyroclastic flows interact with seawater may be a common, although rarely documented, phenomena. The development of steam explosions rather than passive steam production is related to the rate of thermal energy transfer from hot pyroclasts to water. We conduct a series of laboratory experiments to quantify the heat transfer and steam production rates when hot pyroclasts encounter water. Hot pumice (>200°C) rapidly ingests water while remaining at the surface, producing measurable amounts of steam during the process. Approximately 10% of the thermal energy of the pumice particles is partitioned into the production of steam, and smaller particles have greater steam production rates. The laboratory experiments are used to develop a subgrid model for steam production that can be incorporated into a multiphase numerical framework. We use this model to study the critical steam production rates required to initiate explosive events. For conditions typical of many pyroclastic flows, particles smaller than ˜1-5 mm are required to initiate a littoral blast. A second set of two-dimensional numerical simulations is conducted to simulate the 12-13 July Soufrière Hills dome collapse event that reached the sea. The simulations predict that the focus of the blast is likely generated several hundred meters offshore and although the landward directed base surge is primarily dry (water vapor), the area immediately above the blast is steam-rich and may be a likely site for the production of accretionary lapilli.

  8. Two coarse pyroclastic flow deposits, northern Mono-Inyo Craters, CA

    Science.gov (United States)

    Dennen, R. L.; Bursik, M. I.; Stokes, P. J.; Lagamba, M.; Fontanella, N.; Hintz, A. R.; Jayko, A. S.

    2010-12-01

    The ~1350 A.D., rhyolitic North Mono eruption, Mono-Inyo Craters, CA, included the extrusion and destruction of Panum Dome and associated clastic deposits. Overlying the tephras of the North Mono sequence, the Panum deposits include a block-and-ash flow (BAF) deposit, covering ~3.5 km2. Blocks within the deposit are typically lithic rhyolite and banded gray micro-vesicular glass, showing white, almost powdery marks ranging from circular to linear in shape. These marks are interpreted as friction marks resulting from collisions between clasts. The deposit also contains bread-crusted obsidians with pressed-in clasts as well as reticulite with a bread-crusted surface texture. Near the centerline of the deposit is a ridge-topping train of jigsaw fractured blocks, often with reddish-orange alteration. One house sized jigsaw block sits upstream of a long, thinning pile of reddish orange debris; this “flow shadow” indicates that the block remained relatively stationary while the block and ash flow continued to propagate around it. The bread-crusted reticulite is most common at proximal localities. It is proposed that the dome destruction included a debris avalanche emplacing the train of jigsaw fractured blocks and creating a topographic high, the block-and-ash flow (the farthest reaching deposit from this event) which flowed around the debris avalanche deposits, and a final “lateral expansion” of a magma foam, creating the reticulite seen concentrated at proximal locations. Another coarse pyroclastic flow (here termed the “lower blast deposit”) underlies the North Mono tephra. It is more obsidian rich and finer grained than the Panum BAF. The lower blast deposit may have originated from Pumice Pit vent, which is now capped with an older dome ~0.5 km southeast of Panum. The lower blast deposit extends farther from the Panum vent than does the Panum BAF deposit, and apparently was mistaken for the Panum BAF deposit by previous workers. Hence the run

  9. Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects

    Science.gov (United States)

    Valentine, Greg A.

    1998-12-01

    In order to define the risk from explosive eruptions, one must constrain both the probability of explosive events and the effects, or consequences, of those events. This paper focuses on the effects of pyroclastic flows and surges (here termed `pyroclastic density currents', or PDCs) on buildings, infrastructure elements, and to some extent on vehicles. PDCs impart a lateral force to such structures in the form of dynamic pressure, which depends on the bulk density of the PDC (which in turn depends mainly on particle concentration) and its velocity. For reasonable ranges of particle concentration (10 -3 to 0.5) and velocities (10 to 300 m/s), dynamic pressure on the upstream face of a structure ranges from ˜0.1 kPa to 10 4 kPa. Lateral loads ranging up to about 100 kPa were produced during nuclear weapons tests in the 1940s and 1950s that were designed to study the effects of such loading on a variety of structures for civil defense and emergency response purposes in the event of nuclear war. Although considerable simplifications are involved, the data from these weapon tests provide useful analog information for understanding the effects of PDCs. I reviewed data from the nuclear tests, describing the expected damage from different loadings. Tables are provided that define the response of different structural elements (e.g., windows, framing, walls) and whole structures to loading in probabilistic terms, which in principle account for variations in construction quality, orientation, and other factors. Finally, damage documented from historical eruptions at Mt. Lamington (1951), Herculaneum (AD 79 Vesuvius eruption), and St. Pierre (1902 Mt. Pelee eruption) is reviewed. Damage patterns, combined with estimates of velocity, provide an independent estimate of particle concentration in the PDCs. Details of structural damage should be recorded and mapped around future eruptions in order to help refine this aspect of consequence analysis. Another fruitful approach would

  10. Modelling submarine pyroclastic flows at the Soufrière Hills volcano, Montserrat

    Science.gov (United States)

    Hogg, A. J.; Goater, A.

    2011-12-01

    Submarine sedimentary flows are notoriously difficult to observe directly and interpreting their deposits to gain insight to the parent flows can be problematic. Pyroclastic flows from the Soufrière Hills volcano, Montserrat, which entered the ocean and deposited particles over the sea bed are a notable exception. In this case, from monitoring of the volcano, the mass of particulate released and the duration of the flow can be estimated accurately. Furthermore research cruises have imaged, cored the ocean bed and measured the distribution and composition of the deposit left by these flows over much of their runout. These observations therefore form a unique dataset in which both source conditions and final deposit are relatively well constrained. Mathematically modelling long runout sedimentary flows can also present several difficulties. Over these length and time scales, it is not feasible to simulate directly all of the fluid and particulate motions and so reduced models have been developed to capture the dominant processes and features of the flows. These have often been calibrated by laboratory scale experiments - but now with this data from the Soufrière Hills volcano, it is possible to compare model predictions with a natural scale event. Our model is based upon a shallow layer formulation, assuming hydrostatic balance in the vertical to leading order. The downslope motion of the sediment-laden fluid is driven by gravitational forces, associated with the density difference between the intruding and surrounding fluid. Particles settle out of the current to the underlying boundary, reducing the density difference, slowing the motion and forming the deposit. We develop a model that expresses conservation of fluid and particulate mass and a balance of streamwise momentum. This system of equations is integrated numerically to reveal the temporal and spatial evolution and asymptotic methods are used to reveal the dynamical controls on the runout. The theoretical

  11. Pyroclastic Flow Deposits and InSAR: Analysis of Long-Term Subsidence at Augustine Volcano, Alaska

    Directory of Open Access Journals (Sweden)

    David B. McAlpin

    2016-12-01

    Full Text Available Deformation of pyroclastic flow deposits begins almost immediately after emplacement, and continues thereafter for months or years. This study analyzes the extent, volume, thickness, and variability in pyroclastic flow deposits (PFDs on Augustine Volcano from measuring their deformation rates with interferometric synthetic aperture radar (InSAR. To conduct this analysis, we obtained 48 SAR images of Augustine Volcano acquired between 1992 and 2010, spanning its most recent eruption in 2006. The data were processed using d-InSAR time-series analysis to measure the thickness of the Augustine PFDs, as well as their surface deformation behavior. Because much of the 2006 PFDs overlie those from the previous eruption in 1986, geophysical models were derived to decompose deformation contributions from the 1986 deposits underlying the measured 2006 deposits. To accomplish this, we introduce an inversion approach to estimate geophysical parameters for both 1986 and 2006 PFDs. Our analyses estimate the expanded volume of pyroclastic flow material deposited during the 2006 eruption to be 3.3 × 107 m3 ± 0.11 × 107 m3, and that PFDs in the northeastern part of Augustine Island reached a maximum thickness of ~31 m with a mean of ~5 m. Similarly, we estimate the expanded volume of PFDs from the 1986 eruption at 4.6 × 107 m3 ± 0.62 × 107 m3, with a maximum thickness of ~31 m, and a mean of ~7 m.

  12. ASTER/AVHRR Data Hybridization to determine Pyroclastic Flow cooling curves

    Science.gov (United States)

    Reath, K. A.; Wright, R.; Ramsey, M. S.

    2014-12-01

    Shiveluch Volcano (Kamchatka, Russia) has been in a consistent state of eruption for the past 15 years. During this period different eruption styles have been documented including: sub-plinian events, dome growth and collapse, and subsequent debris flow deposits. For example, on June 25-26, 2009 a pyroclastic debris flow was emplaced and the eruption onset that produced it was recorded by a series of seismic events spanning several hours. However, due to cloud cover, visual confirmation of the exact emplacement time was obscured. Orbital remote sensing was able to image the deposit repeatedly over the subsequent months. ASTER is a high spatial resolution (90m), low temporal resolution (2 - 4 days at the poles, 16 days at the equator) thermal infrared (TIR) sensor on the NASA Terra satellite. AVHRR is a high temporal resolution (minutes to several hours), low spatial resolution (1km) spaceborne TIR sensor on a series of NOAA satellites. Combined, these sensors provide a unique opportunity to fuse high-spatial and high-temporal resolution data to better observe changes on the surface of the deposit over time. For example, ASTER data were used to determine the flow area and to provide several data points for average temperature while AVHRR data were used to increase the amount of data points. Through this method an accurate average cooling rate over a three month period was determined. This cooling curve was then examined to derive several features about the deposit that were previously unknown. The time of emplacement and period of time needed for negligible thermal output were first determined by extrapolating the cooling curve in time. The total amount of heat output and total flow volume of the deposit were also calculated. This volume was then compared to the volume of the dome to calculate the percentage of collapse. This method can be repeated for other flow deposits to determine if there is a consistent correlation between the dome growth rate, the average

  13. Low-Temperature Volcanism and Pyroclastic Flows on Comet Tempel 1

    Science.gov (United States)

    Melosh, H. J.; Belton, M.

    2008-12-01

    The Deep Impact mission discovered several smooth terrains and repetitive outbursts on comet 9P/Tempel 1 suggestive of cryo-volcanic activity in its interior. We present new measurements of the extent of the smooth terrains, the slopes along their centerlines, and the areas of their likely source regions and vents. Our analysis of these features indicates that they may be only a few orbits old and the result of an ongoing process. Based on the source locations of repetitive outbursts, we propose that the smooth terrains originate from different regimes of fluidization and gas transport in a weakly bound particulate mixture of ice and dust above an amorphous to crystalline water ice phase transformation boundary where CO and/or CO2 is released. The stresses due to gas pressure extrude, at low velocity, fluidized and dilated, gas-laden cometary material onto the surface leading to downhill flow and subsequent collapse of the evacuated cavity. The most prominent smooth terrain is longitudinally striated and slopes monotonically downward from an apparent source crater with an average gradient of about 3 deg. It resembles terrestrial catastrophic rock avalanches such as the Alaskan Sherman Glacier landslide of 1964. However, in the case of Tempel 1 the fluidizing agent is CO or CO2 gas. The gas-charged material erupted onto the surface and, as the gas slowly diffused out of the moving mass, moved downslope as a mobile debris flow, similar in concept to terrestrial mudflows that are fluidized by water (the pressure in both obeys precisely the same equation, but this differs from a terrestrial pyroclastic flow). The mass of material that remains on the surface comprises about 10E10 kg of fine particulates in the best-imaged example. Due to their high density and thus relatively high viscosity, these flows traveled in a laminar regime and halted abruptly as the fluidizing gas escaped, leaving a steep terminal scarp. Nevertheless, the flow viscosity was not high enough to

  14. Is vent location an important factor in the assessment of pyroclastic flow hazard from sub-Plinian events at Vesuvius?

    Science.gov (United States)

    Marianelli, P.; Esposti Ongaro, T.; Neri, A.; Cavazzoni, C.; Erbacci, G.

    2009-04-01

    Reconstructions of vent location of past sub-Plinian (and Plinian) eruptions of Vesuvius show a significant spatial variability of the vent inside the caldera area. Moreover, it is likely that the exact location of the vent of a future explosive event of that type at Vesuvius will be unknown until the onset of the event itself. Nevertheless, to our knowledge, no studies exist that analyse the influence of vent location on the simulated eruptive scenarios. This omission could be particularly critical for the assessment of pyroclastic flow (or pyroclastic density current, PDC) hazard due to the specific morphology of the Somma-Vesuvius complex. In this work, we present new numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius by using the transient 3D multiphase flow code PDAC (Esposti Ongaro et al., Parallel Computing, 33, 2007). Simulations have been carried out by assuming three different locations of the vent within the caldera area: the first is in Valle del Gigante, between Mt. Somma ridge and the present Gran Cono, the second is in Piano delle Ginestre, to the west of the Gran Cono, while the third one is in Valle dell'Inferno, in the south-eastern direction with respect to the Gran Cono. Source conditions for all cases refer to a sub-Plinian event and to both partial and nearly-total collapse of the eruptive column. Simulation results clearly show the first-order effect of vent location on the propagation directions of PDCs and the areal distribution of pyroclasts, owing to the complex interaction of the flow with the proximal volcano morphology. Comparisons with simulations assuming a central vent located in the position of Gran Cono clearly show the different roles of Mt. Somma, Gran Cono, along with mean slope and channelling effects as a function of the assumed vent location. Estimates of the areas invaded by the flows are presented, although the definition of their runout is particularly difficult due to the

  15. Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 1. Flow direction and deposition

    Science.gov (United States)

    Gurioli, L.; Zanella, E.; Pareschi, M. T.; Lanza, R.

    2007-05-01

    To assess ways in which the products of explosive eruptions interact with human settlements, we performed volcanological and rock magnetic analyses on the deposits of the A.D. 79 eruption at the Pompeii excavations (Italy). During this eruption the Roman town of Pompeii was covered by 2.5 m of fallout pumice and then partially destroyed by pyroclastic density currents (PDCs). Anisotropy of magnetic susceptibility measurements performed on the fine matrix of the deposits allowed the quantification of the variations in flow direction and emplacement mechanisms of the parental PDCs that entered the town. These results, integrated with volcanological field investigations, revealed that the presence of buildings, still protruding through the fallout deposits, strongly affected the distribution and accumulation of the erupted products. All of the PDCs that entered the town, even the most dilute ones, were density stratified currents in which interaction with the urban fabric occurred in the lower part of the current. The degree of interaction varied mainly as a function of obstacle height and density stratification within the current. For examples, the lower part of the EU4pf current left deposits up to 3 m thick and was able to interact with 2- to 4-m-high obstacles. However, a decrease in thickness and grain size of the deposits across the town indicates that even though the upper portion of the current was able to decouple from the lower portion, enabling it to flow over the town, it was not able to fully restore the sediment supply to the lower portion in order to maintain the deposition observed upon entry into the town.

  16. Surface height adjustments in pyroclastic-flow deposits observed at Unzen volcano by JERS-1 SAR interferometry

    Science.gov (United States)

    Matthews, J. P.; Kamata, H.; Okuyama, S.; Yusa, Y.; Shimizu, H.

    2003-07-01

    Pyroclastic flows from the 1990-1995 eruption of Unzen, a dacitic volcano in the southwest of Japan, descended the mountain along a variety of routes causing widespread damage and loss of life. Interferograms constructed from JERS-1 L-band Synthetic Aperture Radar (SAR) images show a number of features related to these pyroclastic flows and their secondary effects. The most useful interferogram in this respect is based on images acquired on 22 July 1993 and 1 December 1993 and shows the descent paths for pyroclastic flows occurring in four valley systems within this time window as zones of decorrelation caused by the repeated resurfacing. The 22 July 1993 SAR image was, through considerable good fortune, acquired only 2.6 days after a major pyroclastic flow had descended into the Mizunashi valley so that, in the absence of rainfall, the fresh 2-m-thick deposits were dry when first imaged. The largest differential surface height changes observed in the interferogram represent height decreases in the vertical of ˜12 cm and, significantly, lie within a small region of the Mizunashi valley which was resurfaced by the pyroclastic flow of 19 July 1993 but not subsequently. Within this small region, radar coherence is higher (maximum correlation value of ˜0.75) in a center-valley site where ash but relatively few large boulders are present. In a qualitative sense, the new ash surfaces exhibit higher levels of radar coherence than the older (pre-19 July) deposits. In other Unzen valleys visited by pyroclastic flows, smaller differential surface height decreases (˜4 cm) are observed where the surface deposits were emplaced by events taking place between 1-3 months before the acquisition date of the 22 July 1993 image. The 'extra' ˜8 cm of surface height decrease observed in the case of the freshly laid Mizunashi deposits must result from a deflationary mechanism (or mechanisms) operating in a spatially uniform manner in order for radar coherence to be maintained. A

  17. Correlation of eruptive products, Volcán Azufral, Colombia: Implications for rapid emplacement of domes and pyroclastic flow units

    Science.gov (United States)

    Williams, Matthew; Bursik, M. I.; Cortes, G. P.; Garcia, A. M.

    2017-07-01

    The eruptive history and morphology of Azufral Volcano, Colombia, is explored and analyzed to provide a more complete picture of past eruptions, as well as to infer what eruption styles may occur in the future. Through the use of principal component analysis on Fe-Ti oxides, domes can be correlated to the pyroclastic deposits, enabling the identification of a full eruptive sequence. The findings suggest that eruptive activity at Azufral Volcano is largely explosive, experiencing long periods of quiescence, punctuated by short periods of pyroclastic activity and volcanic debris avalanches. Geomorphology of the dome complex is reinterpreted to better understand the sequence of dome growth. This reinterpretation, along with geochemical analysis and comparison via PCA, allows for reclassification of a major deposit, originally thought to be a juvenile block-and-ash flow, as a volcanic debris avalanche.

  18. Consideration notes on the critical rainfall threshold to predict the triggering of pyroclastic flows

    Science.gov (United States)

    Scotto di Santolo, A.

    2009-04-01

    This paper reports the results of a theoretical analysis carried out designed to evaluate meteoric events that can be defined as critical since they are capable of triggering landslides in partially saturated pyroclastic soils. The study refers to analyses of the pyroclastic covers in the area of Campania, Italy, which is often affected by complex phenomena that begin as rotational or translational slide or fall and evolve into rapid landslides as earth-flows (debris or mud as function of grain size distributions). The prediction of triggering factors is of extreme importance for the implementation of civic protection schemes, given the dynamic features that characterize these phenomena during their evolution. The study highlights the fact that it is impossible to define the criticality of a meteoric event by means of empiric laws that correlate the mean intensity of rainfall and the "mean" duration of the event. However, it is possible to identify the criticality of a meteoric event in partially saturated soils, by means of a more complex approach which is physically conditioned. The rainfall is critical if it is capable of causing the rainwater to filter into the subsoil into "weak" layers where there is an increase in the specific volume with a significant reduction of the suction and resistance to the shear of the terrain (Fredlund et al., 78). This study focuses exclusively on seepage, regardless of the resistance of the soil, by analyzing, among various aspects, the phenomenon using a simplified subsoil model. For this study, it is assumed that the rainfall is critical when it is capable of saturating the soil cover for a predefined summit thickness Zc. For the purposes of this study, value Zc could be given an arbitrary value. This has been assumed to be 1m, considering that the experimental evidence has shown that rapid flows, at least when triggered, prove to be superficial. The other hypotheses are: • 1D infiltration, • Rigid solid skeleton;

  19. GIS-based statistical mapping technique for block-and-ash pyroclastic flow and surge hazards

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S.

    2008-12-01

    Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from many volcanoes and given by A = (0.05-0.1)V2/3, B = (35-40)V2/3 , where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on coefficients applicable to individual PFs, DEM details, and release volumes. Gradational nested hazard maps produced by these simulations reflect in a sense these uncertainties. The model does not explicitly consider dynamic behavior, which can be important. Surge impacts must be extended beyond PF hazard zones and we have explored several approaches to do this. The method has been used to supply PF hazard maps in two crises: Merapi 2006; and Montserrat 2006- 2007. We have also compared our hazard maps to actual recent PF deposits and to maps generated by several other model techniques.

  20. Outburst fan deposit from pyroclastic flows, Williamson River canyon, south-central Oregon

    Science.gov (United States)

    Cummings, M. L.; Eibert, D.

    2016-12-01

    Pyroclastic flows from the Holocene eruption of Mount Mazama in the Cascade volcanic arc of Oregon, blocked the narrow (210 to 225 m wide, 35 to 40 m deep), bedrock-lined canyon of the Williamson River. The estimated volume of the long, narrow blockage was 4.4 x 10^7 cubic meters. The blockage eventually failed releasing an impounded lake and depositing a debris fan at the mouth of the canyon. Remnants of the debris fan underlie a gently sloping surface dissected by various abandoned channels of the river. The modern Williamson River cut its channel across the upper part of the fan. Three bedrock units are present as boulders: hydrovolcanic tuff (Di = 2.75 m) derived from tuff cones in the lower reaches of the canyon, distinctly layered geochemically primitive olivine basalt (Di = 3.4 m) that crops out approximately 6 km upstream, and massive basaltic andesite that underlies the channel in the upper canyon and cliffs that define the right bank of the canyon near the mouth. Matrix between boulders and deposits that flank and overlie the boulder deposit are dominated by medium- to fine-grained sand (ASTM; 61-70 wt. % in matrix; 76-100 wt. % elsewhere). Sand grains are predominantly well-rounded phenocryst-bearing glass that vary from massive to moderately vesiculated and crystals of plagioclase and hornblende commonly with attached remnants of groundmass. Crystals are most abundant in the medium- and fine-grained size range (>20 and fragments (twigs and molds) are common in medium-sand and larger. Elongate bars of rounded pumice gravel provide local current directions during the waning stage of the outburst flood. The thickness of the boulder deposit near the mouth of the canyon is not known. Sand deposits are 1 to 1.5 m thick near the mouth of the canyon and thin to 70 cm at about 3.4 km from the mouth of the canyon.

  1. Shaking of pyroclastic cones and the formation of granular flows on their flanks: Results from laboratory experiments

    Science.gov (United States)

    Cagnoli, B.; Romano, G. P.; Ventura, G.

    2015-11-01

    We have carried out laboratory experiments to study the generation of granular flows on the slopes of pyroclastic cones that are experiencing volcanic tremor or tectonic earthquakes. These experiments are inspired by the occurrence of granular flows on the flanks of Mount Vesuvius during its 1944 eruption. Our laboratory model consists of sand cones built around a vibrating tube which represents a volcanic conduit with erupting magma inside. A video camera allows the study of the granular flow inception, movement and deposition. Although the collapse of the entire cone is obtained at a specific resonance frequency, single granular flows can be generated by all the vibration frequencies (1-16 Hz) and all the vibration amplitudes (0.5-1.5 mm) that our experimental apparatus has allowed us to adopt. We believe that this is due to the fact that the energy threshold to trigger the flows is small in value. Therefore, if this is true in nature as well, shaken pyroclastic cones are always potentially dangerous because they can easily generate flows that can strike the surrounding areas.

  2. Insight from Laboratory Experiments on the Generation of Granular Flows on the Flanks of Vibrated Pyroclastic Cones

    Science.gov (United States)

    Cagnoli, B.; Romano, G. P.; Ventura, G.

    2015-12-01

    We have carried out laboratory experiments to study the generation of granular flows on the slopes of pyroclastic cones that are experiencing volcanic tremor or tectonic earthquakes. These experiments are inspired by the occurrence of granular flows on the flanks of Mount Vesuvius during its 1944 eruption. Our laboratory model consists of sand cones built around a vibrating tube which represents a volcanic conduit with erupting magma inside. A video camera allows the study of the granular flow inception, movement and deposition. Although the collapse of the entire cone is obtained at a specific resonance frequency, individual granular flows can be generated by all the vibration frequencies and all the vibration amplitudes that our experimental apparatus has allowed us to adopt. We believe that this is due to the fact that the energy threshold to generate the flows is small in value. Therefore, if this is true in nature as well, shaken pyroclastic cones are always potentially dangerous because they can easily generate flows that can strike the surrounding areas.

  3. Inside pyroclastic density currents - uncovering the enigmatic flow structure and transport behaviour in large-scale experiments

    Science.gov (United States)

    Breard, Eric C. P.; Lube, Gert

    2017-01-01

    Pyroclastic density currents (PDCs) are the most lethal threat from volcanoes. While there are two main types of PDCs (fully turbulent, fully dilute pyroclastic surges and more concentrated pyroclastic flows encompassing non-turbulent to turbulent transport) pyroclastic flows, which are the subject of the present study, are far more complex than dilute pyroclastic surges and remain the least understood type despite their far greater hazard, greater runout length and ability to transport vast quantities of material across the Earth's surface. Here we present large-scale experiments of natural volcanic material and gas in order to provide the missing quantitative view of the internal structure and gas-particle transport mechanisms in pyroclastic flows. We show that the outer flow structure with head, body and wake regions broadly resembles current PDC analogues of dilute gravity currents. However, the internal structure, in which lower levels consist of a concentrated granular fluid and upper levels are more dilute, contrasts significantly with the internal structure of fully dilute gravity currents. This bipartite vertical structure shows strong analogy to current conceptual models of high-density turbidity currents, which are responsible for the distribution of coarse sediment in marine basins and of great interest to the hydrocarbon industry. The lower concentrated and non-turbulent levels of the PDC (granular-fluid basal flow) act as a fast-flowing carrier for the more dilute and turbulent upper levels of the current (ash-cloud surge). Strong kinematic coupling between these flow parts reduces viscous dissipation and entrainment of ambient air into the lower part of the ash-cloud surge. This leads to a state of forced super-criticality whereby fast and destructive PDCs can endure even at large distances from volcanoes. Importantly, the basal flow/ash-cloud surge coupling yields a characteristically smooth rheological boundary across the non

  4. Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S. P.

    2009-08-01

    Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash type PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (Geol Soc America Bull 110:972-984, 1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from several volcanoes and given by A = (0.05 to 0.1) V 2/3, B = (35 to 40) V 2/3, where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on the coefficients applicable to individual PFs, the authenticity of DEM details, and the volume of future collapses. The statistical uncertainty of the predictive equations, which imply a factor of two or more in predicting A or B for a specified V, is superposed on the uncertainty of forecasting V for the next PF to descend a particular valley. Multiple inundation zones, produced by simulations using a selected range of volumes, partly accommodate these uncertainties. The resulting maps show graphically that PF inundation potentials are highest nearest volcano sources and along valley thalwegs, and diminish with distance from source and lateral distance from thalweg. The model

  5. Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S.P.

    2009-01-01

    Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash type PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (Geol Soc America Bull 110:972-984, (1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from several volcanoes and given by A = (0.05 to 0.1) V2/3, B = (35 to 40) V2/3, where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on the coefficients applicable to individual PFs, the authenticity of DEM details, and the volume of future collapses. The statistical uncertainty of the predictive equations, which imply a factor of two or more in predicting A or B for a specified V, is superposed on the uncertainty of forecasting V for the next PF to descend a particular valley. Multiple inundation zones, produced by simulations using a selected range of volumes, partly accommodate these uncertainties. The resulting maps show graphically that PF inundation potentials are highest nearest volcano sources and along valley thalwegs, and diminish with distance from source and lateral distance from thalweg. The model does

  6. Generation of pyroclastic flows and surges by hot-rock avalanches from the dome of Mount St. Helens volcano, USA

    Science.gov (United States)

    Mellors, R.A.; Waitt, R.B.; Swanson, D.A.

    1988-01-01

    Several hot-rock avalanches have occurred during the growth of the composite dome of Mount St. Helens, Washington between 1980 and 1987. One of these occurred on 9 May 1986 and produced a fan-shaped avalanche deposit of juvenile dacite debris together with a more extensive pyroclastic-flow deposit. Laterally thinning deposits and abrasion and baking of wooden and plastic objects show that a hot ash-cloud surge swept beyond the limits of the pyroclastic flow. Plumes that rose 2-3 km above the dome and vitric ash that fell downwind of the volcano were also effects of this event, but no explosion occurred. All the facies observed originated from a single avalanche. Erosion and melting of craterfloor snow by the hot debris caused debris flows in the crater, and a small flood that carried juvenile and other clasts north of the crater. A second, broadly similar event occured in October 1986. Larger events of this nature could present a significant volcanic hazard. ?? 1988 Springer-Verlag.

  7. The November 2002 Pyroclastic Flows at El Reventador, Ecuador: Computer Simulations Using the TITAN Thin-layer Code

    Science.gov (United States)

    Burkett, B.; Sheridan, M. F.

    2007-05-01

    On November 3, 2002, El Reventador volcano, located on the eastern flank of the Ecuadorian Andes, produced a sudden, violent eruption culminating in a 17km high column containing mostly steam and ash. Explosions in the initial phase created a summit crater while generating four lithic-rich andesitic pyroclastic flows. The longest of these flows traveled ESE out of the breached caldera, obliquely overriding the 200-400m southern caldera wall, reaching the Quijos River 8km distant. This flow crossed the major oil pipelines of Ecuador, displacing a pressurized crude oil pipeline more than 100m. The flows contained mostly lithic fragments with only minor juvenile pumice. The accompanying ash-cloud surge deposited a thin layer on top of the PF deposit, indicating an abundance of gas within the flow. The eruption came with practically no warning and yet had a large socio- economic impact for Ecuador. While the flows themselves resulted in no loss of life, the lack of significant precursor activity underscores the necessity for detailed pre-eruption knowledge of the potential hazards and risk zones around a particular volcano so as to be prepared in the event of such "surprise" eruptions. In conjunction with field mapping, computer models of volcanogenic flows can be used not only to identify risk zones but to understand the evolution of these flows. A new set of computer simulations using the TITAN (www.gmfg.buffalo.edu) thin-layer code allows a more complete exploration of important flow properties associated with this type of eruption. Realizations of this code simulate the path, extent, flow thickness, velocity, and momentum of the flows given the set of initial conditions (volume, starting location, flux hydrograph, internal friction, and basal friction). The TITAN code was used to simulate the four lithic-rich pyroclastic flows generated at the beginning of the 2002 eruption. Using field estimated volumes and starting positions of the PFs, simulations of the two

  8. Building vulnerability and human casualty estimation for a pyroclastic flow: a model and its application to Vesuvius

    Science.gov (United States)

    Spence, Robin J. S.; Baxter, Peter J.; Zuccaro, Giulio

    2004-05-01

    Pyroclastic flows clearly present a serious threat to life for the inhabitants of settlements on the slopes of volcanoes with a history of explosive eruptions; but it is increasingly realised that buildings can provide a measure of protection to occupants trapped by such flows. One important example is Vesuvius, whose eruption history includes many events which were lethal for the inhabitants of the neighbouring Vesuvian villages. Recent computational fluid dynamics computer modelling for Vesuvius [Todesco et al., Bull. Volcanol. 64 (2002) 155-177] has enabled a realistic picture of an explosive eruption to be modelled, tracing the time-dependent development of the physical parameters of a simulated flow at a large three-dimensional mesh of points, based on assumed conditions of temperature, mass-flow rate and particle size distribution at the vent. The output includes mapping of temperature, mixture density and mixture velocity over the whole adjacent terrain. But to date this information has not been used to assess the impacts of such flows on buildings and their occupants. In the project reported in this paper, estimates of the near-ground flow parameters were used to assess the impact of a particular simulated pyroclastic flow (modelled roughly on the 1631 eruption) on the buildings and population in four of the Vesuvian villages considered most at risk. The study had five components. First, a survey of buildings and the urban environment was conducted to identify the incidence of characteristics and elements likely to affect human vulnerability, and to classify the building stock. The survey emphasised particularly the number, location and type of openings characteristic of the major classes of the local building stock. In the second part of the study, this survey formed the basis for estimates of the probable impact of the pyroclastic flow on the envelope and internal air conditions of typical buildings. In the third part, a number of distinct ways in which

  9. Mechanics of dense suspensions in turbulent channel flows

    NARCIS (Netherlands)

    Picano, F.; Costa, P.; Breugem, W.P.; Brandt, L.

    2015-01-01

    Dense suspensions are usually investigated in the laminar limit where inertial effects are insignificant. When the flow rate is high enough, i.e. at high Reynolds number, the flow may become turbulent and the interaction between solid and liquid phases modifies the turbulence we know in single-phase

  10. The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types

    Science.gov (United States)

    Cas, Ray A.F.; Wright, Heather M.; Folkes, Christopher B.; Lesti, Chiara; Porreca, Massimiliano; Giordano, Guido; Viramonte, Jose G.

    2011-01-01

    The 2.08-Ma Cerro Galán Ignimbrite (CGI) represents a >630-km3 dense rock equivalent (VEI 8) eruption from the long-lived Cerro Galán magma system (∼6 Ma). It is a crystal-rich (35–60%), pumice (multiple depositional units, often separated by pyroclastic surge deposits. The CGI preserves a widespread sub-horizontal fabric, defined by aligned elongate pumice and lithic clasts, and minerals (e.g. biotite). A sub-horizontal anisotropy of magnetic susceptibility fabric is defined by minute magnetic minerals in all localities where it has been analysed. The CGI is poor in both vent-derived (‘accessory’) lithics and locally derived lithics from the ground surface (‘accidental’) lithics. Locally derived lithics are small (order to explain the contemporaneous maintenance of high particle concentration, high sedimentation rate at the depositional boundary layer and a high level of mobility, it is also proposed that the flow(s) was continuously supplied at a high mass feeding rate. It is also proposed that internal gas pressure within the flow, directed downwards onto the substrate over which the flow was passing, reduced the friction between the flow and the substrate and also enhanced its mobility. The pervasive sub-horizontal fabric of aligned pumice, lithic and even biotite crystals indicates a consistent horizontal shear force existed during transport and deposition in the basal granular flow, consistent with the existence of a laminar, shearing, granular flow regime during the final stages of transport and deposition.

  11. Particles size segregation and roll waves in dense granular flows

    Science.gov (United States)

    Viroulet, Sylvain; Baker, James; Kokelaar, Peter; Gray, Nico

    2015-11-01

    Geophysical granular flows, such as landslides, snow avalanches and pyroclastic flows commonly involve particles with different sizes which are prone to segregate during the flow. This particle-size segregation may lead to the formation of regions with different frictional properties which can have a feedback on the flow. This study aims to understand this effect in the context of bi-disperse roll waves in shallow granular free-surface flows. Experiments have been performed in a 3 meter long chute using several mixtures of spherical glass beads of diameter 75-150 and 400-600 microns flowing on a rough bed. These show that the waves propagate at constant speed that depends on the initial mixture composition. In addition, during their propagation, a higher concentration of large particles is localized at the front of the waves. A theoretical and numerical approach is presented using depth-averaged equations for the conservation of mass, momentum and depth-averaged small particle concentration. Results without frictional feedback are investigated and compared to those that include the enhanced frictional resistance to motion of the large grains.

  12. Dense Descriptors for Optical Flow Estimation: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ahmadreza Baghaie

    2017-02-01

    Full Text Available Estimating the displacements of intensity patterns between sequential frames is a very well-studied problem, which is usually referred to as optical flow estimation. The first assumption among many of the methods in the field is the brightness constancy during movements of pixels between frames. This assumption is proven to be not true in general, and therefore, the use of photometric invariant constraints has been studied in the past. One other solution can be sought by use of structural descriptors rather than pixels for estimating the optical flow. Unlike sparse feature detection/description techniques and since the problem of optical flow estimation tries to find a dense flow field, a dense structural representation of individual pixels and their neighbors is computed and then used for matching and optical flow estimation. Here, a comparative study is carried out by extending the framework of SIFT-flow to include more dense descriptors, and comprehensive comparisons are given. Overall, the work can be considered as a baseline for stimulating more interest in the use of dense descriptors for optical flow estimation.

  13. A review of flow modeling for dense medium cyclones

    Energy Technology Data Exchange (ETDEWEB)

    M. Narasimha; M.S. Brennan; P.N. Holtham [Tata Steel, Jamshedpur (India). R& amp; D Division

    2006-06-15

    A critical assessment is presented for the existing fluid flow models used for dense medium cyclones (DMCs) and hydrocyclones. As the present discussion indicates, the understanding of dense medium cyclone flow is still far from the complete. However, its similarity to the hydrocyclone provides a basis for improved understanding of fluid flow in DMCs. The complexity of fluid flow in DMCs is basically due to the existence of medium as well as the dominance of turbulent particle size and density effects on separation. Both the theoretical and experimental analysis is done with respect to two-phase motions and solid phase flow in hydrocyclones or DMCs. A detailed discussion is presented on the empirical, semiempirical, and the numerical models based upon both the vorticity-stream function approach and Navier-Stokes equations in their primitive variables and in cylindrical coordinates available in literature. The existing equations describing turbulence and multiphase flows in cyclone are also critically reviewed.

  14. The perfect ash-storm: large-scale Pyroclastic Density Current experiments reveal highly mobile, self-fluidising and air-cushioned flow transport regime

    Science.gov (United States)

    Lube, G.; Cronin, S. J.; Breard, E.; Valentine, G.; Bursik, M. I.; Hort, M. K.; Freundt, A.

    2013-12-01

    We report on the first systematic series of large-scale Pyroclastic Density Current (PDC) experiments using the New Zealand PDC Generator, a novel international research facility in Physical Volcanology recently commissioned at Massey University. Repeatable highly energetic and hot PDCs are synthesized by the controlled ';eruption column-collapse' of up to 3500 kg of homogenously aerated Taupo ignimbrite material from a 15 m-elevated hopper onto an instrumented inclined flume. At discharge rates between 250-1300 kg/s and low- to moderate gas injection rates (yielding initial solids concentration of 15-70 vol%) channelized gas-particle mixture flows life-scaled to dense PDCs can be generated. The flow fronts of the currents reach velocities of up to 9.5 m/s over their first 12 m of travel and rapidly develop strong vertical density stratification. The PDCs typically form a highly mobile, surge that also laterally escapes the flume boundaries. Depending on the PDC starting conditions underflows with 1-45 vol% solids concentration are formed, while the upper surge contains <<1 vol.% solids. A characteristic feature of the underflow is the occurrence of 'ignitive' front breakouts, producing jetted lobes that accelerate outward from the flow front, initially forming a lobe-cleft structure, followed by segregation downslope into multiple flow pulses. Depending on initial solids concentration and discharge rate, stratified, dune-bedded and inversely graded bedforms are created whose thicknesses are remarkably uniform along the medial to distal runout path characterising highly mobile flow runout. Along with high-speed video footage we present time-series data of basal arrays of load- and gas-pore pressure transducers to characterise the mobile dense underflows. Data shows that the PDCs are comprised of a turbulent coarse-grained and air-ingesting front with particle-solids concentrations of 1-5 vol%. The front shows a brief phase of negative pore pressure due to the

  15. Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event

    OpenAIRE

    Crosta, G. B.; Negro, P.

    2003-01-01

    Pyroclastic soils mantling a wide area of the Campanian Apennines are subjected to recurrent instability phenomena. This study analyses the 5 and 6 May 1998 event which affected the Pizzo d’Alvano (Campania, southern Italy). More than 400 slides affecting shallow pyroclastic deposits were triggered by intense and prolonged but not extreme rainfall. Landslides affected the pyroclastic deposits that cover the steep calcareous ridges and are ...

  16. Flow distortion at a dense forest edge

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Bingöl, Ferhat; Mann, Jakob

    2014-01-01

    The flow near tall forest edges is complex, yet poorly described. A field experiment using two meteorological masts equipped with sonic anemometers and a horizontally staring lidar was performed upwind and downwind of the interface between an open flat farmland and a tall (hc = 24 m) beech forest......, relative to the measurements upwind of the edge. The lidar data taken at several positions between the masts at 1.25hc show that the minimum wind speed occurred just upwind of the edge. At the 1.25hc level, at the forest mast, the momentum flux (\\documentclass....... Data obtained during near‐neutral conditions are presented for the wind direction towards the forest. Results from a high leaf area index period are compared with those from a low leaf area index period. For both periods, the wind speed increased above the forest and decreased within the forest...

  17. Length scales and selforganization in dense suspension flows

    NARCIS (Netherlands)

    Düring, G.; Lerner, E.; Wyart, M.

    2014-01-01

    Dense non-Brownian suspension flows of hard particles display mystifying properties: As the jamming threshold is approached, the viscosity diverges, as well as a length scale that can be identified from velocity correlations. To unravel the microscopic mechanism governing dissipation and its

  18. Validation of TITAN2D flow model code for pyroclastic flows and debris avalanches at Soufrière Hills Volcano, Montserrat, BWI

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Patra, A.; Pitman, E.

    2004-12-01

    Soufrière Hills Volcano (SHV), Montserrat, has experienced numerous episodes of dome collapses since 1996. They range from relatively small rockfalls to major dome collapses, several >10x106 m3, and one >100x106 m3 (Calder, Luckett, Sparks and Voight 2002; Voight et al. 2002). The hazard implications for such events are significant at both local and regional scales, and include pyroclastic surges, explosions, and tsunami. Problems arise in forecasting and hazards mitigation, particularly in zoning for populated areas. Determining the likely extent of flow deposits is important for hazard zonation. For this, detailed mapping (topography of source areas and paths, material properties, structure, track roughness and erosion) has an important role, giving clues on locations of future collapse and runout paths. Here we present an application of a numerical computation model of geophysical mass flow using the TITAN2D code (Patra et al. 2004; Pitman et al. 2004), to simulate dome collapses at SHV. The majority of collapse-type pyroclastic flows at SHV are consistent with an initiation by gravitational collapse of oversteepened flanks of the dome. If the gravity controls the energy for such processes, then the flow tracks can be predicted on the basis of topography, and friction influences runout. TITAN2D is written to simulate this type of volcanic flow, and the SHV database is used to validate the code and provide calibrated data on friction properties. The topographic DEM was successively updated by adding flow deposit thicknesses for previous collapses. Simulation results were compared to observed flow parameters, including flow path, deposit volume, duration, velocity, and runout distance of individual flows, providing calibration data on internal and bed friction, and demonstrating the validity and limitations of such modeling for practical volcanic hazard assessment.

  19. Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record

    Science.gov (United States)

    Gurioli, L.; Sulpizio, R.; Cioni, R.; Sbrana, A.; Santacroce, R.; Luperini, W.; Andronico, D.

    2010-11-01

    During the past 22 ka of activity at Somma-Vesuvius, catastrophic pyroclastic density currents (PDCs) have been generated repeatedly. Examples are those that destroyed the towns of Pompeii and Ercolano in AD 79, as well as Torre del Greco and several circum-Vesuvian villages in AD 1631. Using new field data and data available from the literature, we delineate the area impacted by PDCs at Somma-Vesuvius to improve the related hazard assessment. We mainly focus on the dispersal, thickness, and extent of the PDC deposits generated during seven plinian and sub-plinian eruptions, namely, the Pomici di Base, Greenish Pumice, Pomici di Mercato, Pomici di Avellino, Pompeii Pumice, AD 472 Pollena, and AD 1631 eruptions. We present maps of the total thickness of the PDC deposits for each eruption. Five out of seven eruptions dispersed PDCs radially, sometimes showing a preferred direction controlled by the position of the vent and the paleotopography. Only the PDCs from AD 1631 eruption were influenced by the presence of the Mt Somma caldera wall which stopped their advance in a northerly direction. Most PDC deposits are located downslope of the pronounced break-in slope that marks the base of the Somma-Vesuvius cone. PDCs from the Pomici di Avellino and Pompeii Pumice eruptions have the most dispersed deposits (extending more than 20 km from the inferred vent). These deposits are relatively thin, normally graded, and stratified. In contrast, thick, massive, lithic-rich deposits are only dispersed within 7 to 8 km of the vent. Isopach maps and the deposit features reveal that PDC dispersal was strongly controlled by the intensity of the eruption (in terms of magma discharge rate), the position of the vent area with respect to the Mt Somma caldera wall, and the pre-existing topography. Facies characteristics of the PDC deposits appear to correlate with dispersal; the stratified facies are consistently dispersed more widely than the massive facies.

  20. Magnetic fabrics of the Miocene ignimbrites from West-Cameroon: Implications for pyroclastic flow source and sedimentation

    Science.gov (United States)

    Gountié Dedzo, M.; Nédélec, A.; Nono, A.; Njanko, T.; Font, E.; Kamgang, P.; Njonfang, E.; Launeau, P.

    2011-06-01

    The Miocene ignimbrites of Mounts Bambouto and Bamenda located in the central part of Cameroon Volcanic Line are generally made of welded and non-welded massive lapilli tuff and lithic breccias. These discontinuous deposits cover a total area of 180 km 2 with thickness ranging from 25 to 200 m. The different facies contain several lithic fragments of mainly trachytic nature. The devitrified matrix of the welded ignimbrites is constituted by sanidine, anorthoclase, quartz, plagioclase, clinopyroxene, biotite, Fe-Ti oxides and devitrified fiammes. Anisotropy of magnetic susceptibility (AMS) is used to characterize magnetic fabrics and to provide an estimate of flow direction of each ignimbrite sheet. Magnetic mineralogy results from different flow units show that titanomagnetite, titanohematite, maghemite and goethite with grain size ranging from coarse MD to very fine SP are the main magnetic carriers of these ignimbrites. Inferred transport directions based on the AMS data and field indicators show that Bambouto caldera is the source of main pyroclastic deposits of Mount Bambouto. In southwestern Mount Bamenda, Santa-Mbu caldera or Bambouto caldera constituted the probable emission center of Mbengwi, Bamenda and Mbu ignimbrite sheets, whereas magnetic fabrics of Bambili, Sabga and Big Babanki ignimbrites demonstrate that these deposits were emitted from a northeastern source, namely Oku vent in Mount Oku. A small number of subvertical AMS fabrics correspond to rocks possibly modified by an elutriation process.

  1. Tsunami generation by pyroclastic flow during the 3500-year B.P. caldera-forming eruption of Aniakchak Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Neal, Christina A.

    1999-01-01

    A discontinuous pumiceous sand, a few centimeters to tens of centimeters thick, is located up to 15 m above mean high tide within Holocene peat along the northern Bristol Bay coastline of Alaska. The bed consists of fine-to-coarse, poorly to moderately well-sorted, pumice-bearing sand near the top of a 2-m-thick peat sequence. The sand bed contains rip-up clasts of peat and tephra and is unique in the peat sequence. Major element compositions of juvenile glass from the deposit and radiocarbon dating of enclosing peat support correlation of the pumiceous sand with the caldera-forming eruption of Aniakchak Volcano. The distribution of the sand and its sedimentary characteristics are consistent with emplacement by tsunami. The pumiceous sand most likely represents redeposition by tsunami of climactic fallout tephra and beach sand during the approximately 3.5 ka Aniakchak caldera-forming eruption on the Alaska Peninsula. We propose that a tsunami was generated by the sudden entrance of a rapidly moving, voluminous pyroclastic flow from Aniakchak into Bristol Bay. A seismic trigger for the tsunami is unlikely, because tectonic structures suitable for tsunami generation are present only south of the Alaska Peninsula. The pumiceous sand in coastal peat of northern Bristol Bay is the first documented geologic evidence of a tsunami initiated by a volcanic eruption in Alaska.

  2. SIFT flow: dense correspondence across scenes and its applications.

    Science.gov (United States)

    Liu, Ce; Yuen, Jenny; Torralba, Antonio

    2011-05-01

    While image alignment has been studied in different areas of computer vision for decades, aligning images depicting different scenes remains a challenging problem. Analogous to optical flow, where an image is aligned to its temporally adjacent frame, we propose SIFT flow, a method to align an image to its nearest neighbors in a large image corpus containing a variety of scenes. The SIFT flow algorithm consists of matching densely sampled, pixelwise SIFT features between two images while preserving spatial discontinuities. The SIFT features allow robust matching across different scene/object appearances, whereas the discontinuity-preserving spatial model allows matching of objects located at different parts of the scene. Experiments show that the proposed approach robustly aligns complex scene pairs containing significant spatial differences. Based on SIFT flow, we propose an alignment-based large database framework for image analysis and synthesis, where image information is transferred from the nearest neighbors to a query image according to the dense scene correspondence. This framework is demonstrated through concrete applications such as motion field prediction from a single image, motion synthesis via object transfer, satellite image registration, and face recognition.

  3. Directional fabric measurements: an investigative approach to transport and depositional mechanisms in pyroclastic flows

    Science.gov (United States)

    Capaccioni, Bruno; Nappi, Giovanni; Valentini, Laura

    2001-07-01

    Computer-assisted image analysis data of rock fabrics from two quaternary ignimbrites in the Vulsini and Cimini Volcanic Districts of Central Italy are interpreted in terms of transport and depositional mechanisms. Samples were collected vertically at m spaces up two sections through each deposit. The Orvieto-Bagnoregio ignimbrite (OBI) is a non-welded ignimbrite that shows both fluctuations in the mean particle orientation values of up to approximately ±60°, and large variations in the strength of particle iso-orientation with height. The circular frequency distributions of particle orientations are almost always anisotropic and unimodal, in line with a theoretical Von Mises distribution (the circular equivalent of a unimodal, log-normal distribution). In contrast, the welded Cimina ignimbrite (CI) shows vertical homogeneities in mean orientation values with height, and generally lower degrees of anisotropy. Such differences are interpreted as being the results of different depositional mechanisms: incremental deposition at the base of a density-stratified, partially turbulent flow for the OBI; deposition of a laminar mass flow for the CI. In the former case, during transport particles under solidus temperature are subjected to a frictional regime, particles gliding and dispersive pressures, which finally produce size-inverse grading and variable fabric development, depending on the residence time of particles at the basal shear conditions. In the latter case, elongated particles, supported in a laminar flowing viscous matrix, undergo periodic motions which tend to develop parallel-to-flow iso-orientation. Fabric data in the deposit suggest vertical constancy in the rheological properties of the flow, absence of rheological decoupling and (shearing pervasively during transport) a minor importance of plug horizons.

  4. Pyroclastic flow deposits on Venus as indicators of renewed magmatic activity

    Science.gov (United States)

    Campbell, Bruce A.; Morgan, Gareth A.; Whitten, Jennifer L.; Carter, Lynn M.; Glaze, Lori S.; Campbell, Donald B.

    2017-07-01

    Radar bright deposits on Venus that have diffuse margins suggest eruptions that distribute debris over large areas due to ground-hugging flows from plume collapse. We examine deposits in eastern Eistla, western Eistla, Phoebe, and Dione Regiones using Magellan data and Earth-based radar maps. The radar bright units have no marginal lobes or other features consistent with viscous flow. Their morphology, radar echo strength, polarization properties, and microwave emissivity are consistent with mantling deposits composed of few centimeters or larger clasts. This debris traveled downhill up to 100 km on modest slopes and blanketed lava flows and tectonic features to depths of tens of centimeters to a few meters over areas up to 40 × 103 km2. There is evidence for ongoing removal and exhumation of previously buried terrain. A newly identified occurrence is associated with a ridge belt south of Ushas Mons. We also note radar bright streaks of coarse material west of Rona Chasma that reflect the last traces of a deposit mobilized by winds from the formation of Mirabeau crater. If the radar bright units originate by the collapse of eruption columns, with coarse fragmental material entrained and fluidized by hot gases, then their extent suggests large erupted volatile (CO2 or H2O) amounts. We propose that these deposits reflect the early stage of renewed magmatic activity, with volatile-rich, disrupted magma escaping through vents in fractured regions of the upper crust. Rapidly eroding under Venus surface conditions or buried by subsequent eruptions, these markers of recently renewed activity have disappeared from older regions.

  5. MATHEMATICAL MODELS AND NUMERICAL SIMULATION FOR DENSE PARTICULATE FLOWS

    Institute of Scientific and Technical Information of China (English)

    WU Chun-liang

    2004-01-01

    Sedimentation of particles in inclined and vertical vessels is numerically simulated by the Eulerian two-fluid model. The numerical results show an interesting phenomenon with two circulation vortexes in a vertical vessel but one in the inclined vessel. Sensitivity tests indicate that the boundary layer effect is the key to induce this phenomenon. A numerical method based on 2D unstructured meshes is presented to solve the hard-sphere discrete particle model. Several applications show the numerical method has a good performance to simulate dense particulate flows in irregular domains without regard to element types of the mesh.

  6. Flow of Dense Granular Media; A Peculiar Liquid

    Science.gov (United States)

    Pouliquen, Olivier

    2007-11-01

    Rice flowing out of a silo, rocks tumbling down a slope, sand avalanching on a dune, are examples of simple granular flows. Their description still represents a challenge due to the lack of constitutive laws able to describe the rich phenomenology observed with granular materials. However, the numerous experiments and simulations carried out during the last ten years have given keys for a better understanding. This talk will review the general properties of granular flows, before focusing on the dense flow regime where granular media flow like a liquid. In this regime, simple constitutive laws can be proposed, in which the granular fluid is described as a peculiar visco-plastic liquid. This talk will show that this approach gives quantitative predictions in several configurations, providing a relevant framework for adressing granular hydrodynamic problems. The second part of this presentation will discuss the limits of this approach, the important open problems, and the consequences of this development for the more complex case of mixture of grains and fluid. This work has been done with Pierre Jop, Yoel Forterre and Mickael Paihla.

  7. Modeling of dilute and dense dispersed fluid-particle flow

    Energy Technology Data Exchange (ETDEWEB)

    Laux, Harald

    1998-08-01

    A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a

  8. Shear Profiles and Velocity Distribution in Dense Shear Granular Flow

    Institute of Scientific and Technical Information of China (English)

    WANG Deng-Ming; ZHOU You-He

    2009-01-01

    We perform DEM simulations to investigate the influence of the packing fraction γ on the,shape of mean tan-gential velocity profile in a 2D annular dense shear granular flow. There is a critical packing fraction γc. For γ < γc, the mean tangential velocity profile shows a roughly exponential decay from the shearing boundary and is almost invariant to the imposed shear rate. However, for γ γc, the tangential velocity profile exhibits a rate-dependence feature and changes from linear to nonlinear gradually with the increasing shear rate. Fhrther-more, the distributions of normalized tangential velocities at different positions along radial direction exhibit the Gaussian or the composite Gaussian distributing features.

  9. Modeling of dilute and dense dispersed fluid-particle flow

    Energy Technology Data Exchange (ETDEWEB)

    Laux, Harald

    1998-08-01

    A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a

  10. Inland-directed base surge generated by the explosive interaction of pyroclastic flows and seawater at Soufrière Hills volcano, Montserrat

    Science.gov (United States)

    Edmonds, Marie; Herd, Richard A.

    2005-01-01

    The largest and most intense lava-dome collapse during the eruption of Soufrière Hills volcano, Montserrat, 1995–2004, occurred 12–13 July 2003. The dome collapse involved around 200 × 106 m3 of material and was associated with a phenomenon previously unknown at this volcano. Large pyroclastic flows at the peak of the dome collapse interacted explosively with seawater at the mouth of the Tar River Valley and generated a hot, dry base surge that flowed 4 km inland and 300 m uphill. The surge was destructive to at least 25 m above the ground and it carbonized vegetation. The resulting two-layer deposits were as much as 0.9 m thick. Although the entire collapse lasted 18 h, the base surge greatly increased the land area affected by the dome collapse in a few minutes at the peak of the event, illustrating the complex nature of the interaction between pyroclastic flows and seawater.

  11. Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy)

    Science.gov (United States)

    Napolitano, E.; Fusco, F; Baum, Rex L.; Godt, Jonathan W.; De Vita, P.

    2016-01-01

    Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfallinduced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity- Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall

  12. Stress transmission and incipient yield flow in dense granular materials

    Science.gov (United States)

    Blumenfeld, Raphael

    2010-05-01

    Jammed granular matter transmits stresses non-uniformly like no conventional solid, especially when it is on the verge of failure. Jamming is caused by self-organization of granular matter under external loads, often giving rise to networks of force chains that support the loads non-uniformly. An ongoing debate in the literature concerns the correct way to model the static stress field in such media: good old elasticity theory or newcomer isostaticity theory. The two differ significantly and, in particular in 2D, isostaticity theory leads naturally to force chain solutions. More recently, it has been proposed that real granular materials are made of mixtures of regions, some behaving elastically and some isostatically. The theory to describe these systems has been named stato-elasticity. In this paper, I first present the rationale for stato-elasticity theory. An important step towards the construction of this theory is a good understanding of stress transmission in the regions of pure isostatic states. A brief description is given of recently derived general solutions for 2D isostatic regions with nonuniform structures, which go well beyond the over-simplistic picture of force chains. I then show how the static stress equations are related directly to incipient yield flow and derive the equations that govern yield and creep rheology of dense granular matter at the initial stages of failure. These equations are general and describe strains in granular materials of both rigid and compliant particles.

  13. Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador.

    Science.gov (United States)

    Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B

    The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain

  14. Ranking welding intensity in pyroclastic deposits

    Science.gov (United States)

    Quane, S. L.; Russell, J. K.

    2003-04-01

    Pyroclastic deposits emplaced at high temperatures and having sufficient thickness become welded. The welding process involves sintering, compaction and flattening of hot glassy pyroclastic material and is attended by systematic changes in physical properties. Historically, the terms nonwelded, incipiently welded, partially welded with pumice, partially welded with fiamme, moderately welded and densely welded have been used as field descriptors for welding intensity (e.g., Smith &Bailey, 1966; Smith, 1979; Ross &Smith, 1980; Streck &Grunder, 1995). While using these descriptive words is often effective for delineating variations of welding intensity within a single deposit, their qualitative character does not provide for consistency between field areas or workers, and inhibits accurate comparison between deposits. Hence, there is a need for a universal classification of welding intensity in pyroclastic deposits. Here we develop an objective ranking system. The system recognizes 8 ranks (I to VIII) based on measurements of physical properties and petrographic characteristics. The physical property measurements include both lab and field observations: density, porosity, uniaxial compressive strength, point load strength, fiamme elongation, and foliation/fabric. The values are normalized in order to make the system universal. The rank divisions are adaptations of a rock mass-rating scheme based on rock strength (Hoek &Brown, 1980) and previous divisions of welding degree based on physical properties (e.g., density: Ragan &Sheridan, 1972, Streck &Grunder, 1995; fiamme elongation: Peterson, 1979). Each rank comprises a range of normalized values for each of the physical properties and a corresponding set of petrographic characteristics. Our new ranking system provides a consistent, objective means by which each sample or section of welded tuff can be evaluated, thus providing a much needed uniformity in nomenclature for degree of welding. References: Hoek, E. &Brown, E

  15. Paleomagnetic intensity of Aso pyroclastic flows: Additional results with LTD-DHT Shaw method, Thellier method with pTRM-tail check

    Science.gov (United States)

    Maruuchi, T.; Shibuya, H.

    2009-12-01

    For the sake to calibrate the absolute value of the ’relative paleointensity variation curve’ drawn from sediment cores, Takai et al. (2002) proposed to use pyroclastic flows co-bearing with wide spread tephras. The pyroclastic flows prepare volcanic rocks with TRM, which let us determine absolute paleointensity, and the tephras prepare the correlation with sediment stratigraphy. While 4 out of 6 pyroclastic flows are consistent with Sint-800 paleointensity variation curve, two flows, Aso-2 and Aso-4, show weaker and stronger than Sint-800 beyond the error, respectively. We revisited the paleointensity study of Aso pyroclastic flows, adding LTD- DHT Shaw method, the pTRM-tail check in Thellier experiment, and LTD-DHT Shaw method by using volcanic glasses. We prepared 11 specimens from 3 sites of Aso-1 welded tuff for LTD-DHT Shaw method experiments, and obtained 6 paleointensities satisfied a set of strict criteria. They yield an average paleointensity of 21.3±5.8uT, which is smaller than 31.0±3.4uT provided by Takai et al. (2002). For Aso-2 welded tuff, 11 samples from 3 sites were submitted to Thellier experiments, and 6 passed a set of pretty stringent criteria including pTRM-tail check, which is not performed by Takai et al. (2002). They give an average paleointensity of 20.2±1.5uT, which is virtually identical to 20.2±1.0uT (27 samples) given by Takai et al. (2002). Although the success rate was not good in LTD-DHT Shaw method, 2 out of 12 specimens passed the criteria, and gave 25.8±3.4uT, which is consistent with Takai et al. (2002). In addition, we obtained a reliable paleointensity from a volcanic glass in LTD-DHT Shaw method, it gives a paleointensity of 23.6 uT. It is also consitent with Takai et al. (2002). For Aso-3 welded tuff, we performed only LTD-DHT Shaw method for one specimen from one site yet. It gives a paleointensity of 43.0uT, which is higher than 31.8±3.6uT given by Takai et al. (2002). Eight sites were set for Aso-4 welded tuff

  16. Erosion and entrainment of snow and ice by pyroclastic density currents: some outstanding questions (Invited)

    Science.gov (United States)

    Walder, J. S.

    2010-12-01

    A pyroclastic density current moving over snow is likely to transform to a lahar if the pyroclasts incorporate enough (melting) snow and meltwater to bring the bulk water content of the mixture to about 35% by volume. However, the processes by which such a mixture forms are still not well understood. Walder (Bull. Volcanol., v. 62, 2000) showed experimentally the existence of an erosion mechanism that functions even in the absence of relative shear motion between pyroclasts and snow substrate: a portion of the snow melted by a blanket of pyroclasts is vaporized; the flux of water vapor upward through the pyroclasts may be enough to fluidize the pyroclasts, which then convect, rapidly scour the snow substrate and transform into a slurry. But these experiments do not tell us how moving pyroclasts would erode snow, and simply releasing a hot grain flow over a snow surface in the lab gives misleading results owing to improper scaling of τ/σ , the ratio of the shear stress τ exerted by the pyroclastic flow to the shear strength σ of snow. There seems to be no way around this problem for experiments with actual snow. However, it may be possible to circumvent the scaling problem by replacing the snow substrate by a gas-fluidized particle bed: by varying the gas flux, the apparent shear strength of the particle bed can be varied. Such an investigation of erosional processes could be done at room temperature. Snow-avalanche studies (for example, Gauer and Issler, Ann. Glaciol. v. 38, 2003) may provide some insight into snow erosion by a pyroclastic density current. Snow is eroded at the base of a dense snow avalanche by abrasion, particle impacts, and—at the avalanche head—by plowing and a “blasting” mechanism associated with compression of the snowpack and expulsion of pore fluid (air). Erosion at the avalanche head seems to be particularly important. Similar processes are likely to occur when the over-riding flow comprises hot grains. The laboratory release of

  17. Dense bubble flow in a silo: An unusual flow of a dispersed medium

    Science.gov (United States)

    Bertho, Yann; Becco, Christophe; Vandewalle, Nicolas

    2006-05-01

    The dense flow of air bubbles in a two-dimensional silo (through an aperture D ) filled with a liquid is studied experimentally. A particle tracking technique has been used to bring out the main properties of the flow: displacements of the bubbles, transverse, and axial velocities. The behavior of the air bubbles is observed to present similarities with nondeformable solid grains in a granular flow. Nevertheless, a correlation between the bubble velocities and their deformations has been evidenced. Moreover, a new discharge law (Beverloo like) must be considered for such a system, where the flow rate is observed to vary as D1/2 and depends on the deformability of the particles.

  18. Ranking welding intensity in pyroclastic deposits

    Science.gov (United States)

    Quane, Steven L.; Russell, James K.

    2005-02-01

    Welding of pyroclastic deposits involves flattening of glassy pyroclasts under a compactional load at temperatures above the glass transition temperature. Progressive welding is recorded by changes in the petrographic (e.g., fabric) and physical (e.g., density) properties of the deposits. Mapping the intensity of welding can be integral to studies of pyroclastic deposits, but making systematic comparisons between deposits can be problematical. Here we develop a scheme for ranking welding intensity in pyroclastic deposits on the basis of petrographic textural observations (e.g., oblateness of pumice lapilli and micro-fabric orientation) and measurements of physical properties, including density, porosity, point load strength and uniaxial compressive strength. Our dataset comprises measurements on 100 samples collected from a single cooling unit of the Bandelier Tuff and parallel measurements on 8 samples of more densely welded deposits. The proposed classification comprises six ranks of welding intensity ranging from unconsolidated (Rank I) to obsidian-like vitrophyre (Rank VI) and should allow for reproducible mapping of subtle variations in welding intensity between different deposits. The application of the ranking scheme is demonstrated by using published physical property data on welded pyroclastic deposits to map the total accumulated strain and to reconstruct their pre-welding thicknesses.

  19. Shear flows of dense suspensions: flow modification by particle clustering and mixing

    Science.gov (United States)

    Vowinckel, Bernhard; Carmi, Meital; Biegert, Edward; Meiburg, Eckart

    2016-11-01

    We investigate numerically the behavior of sheared, dense suspensions of neutrally buoyant particles, for finite Reynolds number values. This type of problem is of particular interest for multiple applications in environmental, mechanical as well as process engineering such as debris flows, slurries, and pneumatic conveying in pipelines. Controlling channel flows laden with dense suspensions is very important as it can result in jamming of the channel, hence, lowering the efficiency of a hydraulic facility. It was observed that there exists a regime for which a small increase in shear force can cause a drastic, discontinuous increase of the effective viscosity of the mixture. This abrupt transition is commonly referred to as discontinuous shear thickening. We carry out phase-resolved numerical simulations to understand the modification of the flow on the grain scale in full detail allowing for improved definitions of threshold conditions. As the properties of the carrier fluid remain unchanged during the simulation, the thickening must be caused by the disperse phase, for example, by effects of changes in spatial particle distribution, clustering, and mixing. We provide a detailed statistical analysis to answer this question.

  20. Assessment of the kinetic-frictional model for dense granular flow

    Institute of Scientific and Technical Information of China (English)

    Boon Ho Ng; Yulong Ding; Mojtaba Ghadiri

    2008-01-01

    This paper aims to quantitatively assess the application of kinetic-frictional model to simulate the motion of dry granular materials in dense condition, in particular, the annular shearing in Couette configuration. The weight of frictional stress was varied to study the contribution of the frictional stress in dense granular flows. The results show that the pure kinetic-theory-based computational fluid dynamics (CFD) model (without frictional stress) over-predicts the dominant solids motion of dense granular flow while adding frictional stress [Schaeffer, D. G. (1987). Instability in the evolution equations describing incompressible granular flow. Journal of Differential Equations, 66(1), 19-50] with the solids pressure of [Lun, C. KTK., Savage, S. B., Jeffrey, D. J., & Chepurniy, N. (1984). Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flow field. Journal of Fluid Mechanics, 140, 223-256] in the CFD model improves the simulation to better conform available experimental results. The results also suggest that frictional stress transmission plays an important role in dense granular flow and should not be neglected in granular flow simulations. Compatible simulation results to the experimental data are seen by increasing the weight of frictional stress to a factor of 1.25-1.5. These improved simulation results suggest the current constitutive relations (kinetic-frictional model) need to be improved in order to better reflect the real dense granular flow.

  1. Estimation of Dense Image Flow Fields in Fluids

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Conradsen, Knut; Ersbøll, Bjarne Kjær

    1998-01-01

    The estimation of flow fields from time sequences of satellite imagery has a number of important applications. For visualisation of cloud or sea ice movements in sequences of crude temporal sampling a satisfactory non-blurred temporal interpolation can be performed only when the flow field...... images. The estimated flow fields are used in a temporal interpolation scheme....

  2. Hydraulic jumps within pyroclastic density currents and their sedimentary record

    Science.gov (United States)

    Douillet, G.; Mueller, S.; Kueppers, U.; Dingwell, D. B.

    2013-12-01

    This contribution presents a complete and comprehensive formulation of the hydraulic jump phenomenon and reviews sedimentary structures that may be associated with them. Beginning from the general fluid phenomenon, we then focus on examples from pyroclastic density currents in order to infer dynamic parameters on the parent flows. A hydraulic jump is a fluid dynamics phenomenon that corresponds to the sudden increase of the thickness of a flow accompanied by a decrease of its velocity and/or density. A hydraulic jump is the expression of the transition of the flow from two different flow regimes: supercritical to subcritical. This entrains a change in the energy balance between kinetic energy and gravity potential energy. Recently, the terms of 'pneumatic jumps' have been used for similar phenomenon driven within a gas phase, and granular jumps for dense granular flows. It is thought that such strong changes in the flow conditions may leave characteristic structures in the sedimentary record. Indeed, the main variables influencing the sedimentation rate are the flow velocity, particle concentration and turbulence level, all of them strongly affected by a hydraulic jump. Structures deposited by hydraulic/pneumatic jumps have been called cyclic steps and chute and pool structures. Chute and pools represent the record of a single supercritical to subcritical transition, whereas cyclic steps are produced by stable trains of hydraulic jumps and subsequent re-accelerations. Pyroclastic density currents (PDCs) are gas and pyroclasts flows. As such, they can be subjected to granular and pneumatic jumps and their deposit have often been interpreted as containing records of jumps. Steep sided truncations covered by lensoidal layers have been interpreted as the record of internal jumps within density stratified flows. Fines-depleted breccias at breaks in slope are thought to result from the enhanced turbulence at a jump of the entire flow. Sudden increases in thickness of

  3. Estimation of Dense Image Flow Fields in Fluids

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Conradsen, Knut; Ersbøll, Bjarne Kjær

    The estimation of flow fields from time sequences of satellite imagery has a number of important applications. For visualization of cloud or sea ice movements in sequences of crude temporal sampling a satisfactory non blurred temporal interpolation can be performed only when the flow field...... interpolation scheme....

  4. Emplacement Temperatures of Pyroclastic and Volcaniclastic Deposits in Kimberlite Pipes in Southern Africa: New constraints From Palaeomagnetic Measurements

    Science.gov (United States)

    Fontana, G. P.; Macniocaill, C.; Brown, R. J.; Sparks, S. R.; Field, M.; Gernon, T. M.

    2009-05-01

    Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied for the first time to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies, from three pipes for which the internal geology is well constrained (A/K1 pipe, Orapa Mine, Botswana and the K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions and layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Lithic clasts sampled from layered and massive vent-filling pyroclastic deposits in A/K1 were emplaced at >590° C. Results from K1 and K2 provide a maximum emplacement temperature limit for vent-filling breccias of 420-460° C; and constrain equilibrium deposit temperatures at 300-340° C. Crater-filling volcaniclastic kimberlite breccias and talus deposits from A/K1 were emplaced at ambient temperatures, consistent with infilling of the pipe by post-eruption epiclastic processes. Identified within the epiclastic crater- fill succession is a laterally extensive 15-20 metre thick kimberlite pyroclastic flow deposit emplaced at temperatures of 220-440° C. It overlies the post-eruption epiclastic units and is considered an extraneous pyroclastic kimberlite deposit erupted from another kimberlite vent. The emplacement temperature results are comparable to the estimated emplacement temperatures of other kimberlite deposits and pyroclastic deposits from other volcanic systems, and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. This is in the range where welding and agglutination of juvenile pyroclasts occurs in other types of pyroclastic deposits. Such high emplacement temperatures for vent-filling pyroclastic deposits are consistent with volatile

  5. Monte Carlo simulations of dense gas flow and heat transfer in micro- and nano-channels

    Institute of Scientific and Technical Information of China (English)

    WANG Moran; LI Zhixin

    2005-01-01

    The dense gas flow and heat transfer in micro- and nano-channels was simulated using the Enskog simulation Monte Carlo (ESMC) method. The results were compared with those from the direct simulation Monte Carlo (DSMC) method and from the consistent Boltzmann algorithm (CBA). The dense gas flow and heat transfer characteristics were thus analyzed. The results showed that when the gas density was large enough, the finite gas density effect on the flow and heat transfer cannot be ignored, which decreased the skin friction coefficient and changed the heat transfer characteristics on the channel wall surfaces.

  6. Rheology of dense granular chute flow: simulations to experiments

    Directory of Open Access Journals (Sweden)

    Bharathraj S

    2017-01-01

    Full Text Available Granular chute flow simulations reveal an interesting transition from a random disordered structure to an ordered one with hexagonally ordered sheets of spherical particles, when the base roughness is modulated. Two types of base roughness are considered. The first is a fixed base, where glued spherical particles form the base, and the base roughness is varied by changing the ratio of diameters of the base and flowing particles. In the second sinusoidal base, a smooth wall with sinusoidal height variation is used; the amplitude and wavelength of the base modulation determine the base roughness. The transition is studied as a function of these roughness parameters. For the fixed base, there is a critical base particle diameter below which ordered states are observed. For the sinusoidal base, the critical amplitude increases linearly with the wavelength at lower wavelengths, reaches a maximum depending on the height of the flowing layer, and then decreases as the wavelength is further increased. There is flow for angles of inclination from 15 ° ≤ θ ≤ 25 ° for the ordered state and 20 ° ≤ θ ≤ 25 ° for the disordered state. Flow confinement by sidewalls also influences the rheology of the system and we see that the ordering is induced by the sidewalls as well. Experiments on chute flow at low angles indicate the presence of two types of rheology depending on the system height. A transition is observed from an erodible base configuration, where a dead zone at the bottom supports a free surface reposing at the top, to a Bagnold rheology with considerable slip at the bottom.

  7. Computer-assisted mapping of pyroclastic surges.

    Science.gov (United States)

    Malin, M C; Sheridan, M F

    1982-08-13

    Volcanic hazard maps of surge boundaries and deposit thickness can be created by using a simplified eruption model based on an "energy line" concept of pyroclastic surge and flow emplacement. Computer image-processing techniques may be used to combine three-dimensional representations of the energy relations of pyroclasts moving under the influence of gravity (defined by an "energy cone") with digital topographic models of volcanoes to generate theoretical hazard maps. The deposit boundary and thickness calculated for the 18 May 1980 eruption of Mount St. Helens are qualitatively similar to those actually observed.

  8. Particle Dispersion Behaviors of Dense Gas-Particle Flows in Bubble Fluidized Bed

    OpenAIRE

    Xue Liu; Guohui Li; Sihao Lv

    2013-01-01

    An Euler-Euler two-fluid model incorporating a developed momentum transfer empirical coefficient is developed to study the particle dispersion behaviors of dense gas-particle flows in gas-fluidization reactor. In this model, the four-way couplings among gas-particles, particle-gas, and particle-particle collisions are fully considered based on kinetic theory of granular flows and an improved smooth continuous drag coefficient is utilized. Gas turbulent flow is solved by large eddy simulation....

  9. Swirling flows in horizontally vibrated beds of dense granular materials

    Institute of Scientific and Technical Information of China (English)

    Ali Bakhshinejad; Piroz Zamankhan

    2012-01-01

    In a series of experiments,a granular material in a rectangular container with two hollow cylinders was studied as it underwent horizontal vibrations.At the peak values of acceleration,novel swirling granular flows were observed in the cylinders while the grains cascaded down the outer surface of the piles that formed outside the cylinders.Computer simulations were performed that supported our interpretation of the behaviour observed in the experiments.

  10. Rheology of binary granular mixtures in the dense flow regime

    Science.gov (United States)

    Tripathi, Anurag; Khakhar, D. V.

    2011-11-01

    We study the rheology of granular mixtures in a steady, fully developed, gravity-driven flow on an inclined plane, by means of discrete element method (DEM) simulations. Results are presented for a single component system and binary mixtures with particles of different size and density. Inclination angles, composition, size ratios and density ratios are varied to obtain different segregated configurations at equilibrium. Steady state profiles of the mean velocity, volume fractions, shear stress, shear rate, inertial number and apparent viscosity across the depth of the flowing layer are reported for the different cases. The viscosity varies with height and is found to depend on the local bulk density and composition, which, in turn, depend on the size ratio, the mass ratio and the degree of segregation. For a single component system, a viscoplastic rheological model [P. Jop et al., Nature 441, 727 (2006)] describes the data quite well. We propose a modification of the model for the case of mixtures. The mixture model predicts the viscosity for both well-mixed and segregated granular mixtures differing in size, density or both, using the same model parameters as obtained for the single component system. The predictions of a model for the volume fraction of the mixtures also agree well with simulation results.

  11. Real-time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow

    Science.gov (United States)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time. dense stereo system to include realtime. dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop. computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  12. Dense core formation in supersonic turbulent converging flows

    CERN Document Server

    Gong, Hao

    2011-01-01

    We use numerical hydrodynamic simulations to investigate prestellar core formation in the dynamic environment of giant molecular clouds, focusing on planar post-shock layers produced by colliding turbulent flows. A key goal is to test how core evolution and properties depend on the velocity dispersion in the parent cloud; our simulation suite consists of 180 models with inflow Mach numbers Ma=v/c_s=1.1-9. At all Mach numbers, our models show that turbulence and self-gravity collect gas within post-shock regions into filaments at the same time as overdense areas within these filaments condense into cores. This morphology, together with the subsonic velocities we find inside cores, is similar to observations. We extend previous results showing that core collapse develops in an ``outside-in'' manner, with density and velocity approaching the Larson-Penston asymptotic solution. The time for the first core to collapse varies as 1/sqrt(v), consistent with analytic estimates. Core building takes 10 times as long as ...

  13. Subaqueous explosive eruption and welding of pyroclastic deposits.

    Science.gov (United States)

    Kokelaar, P; Busby, C

    1992-07-10

    Silicic tuffs infilling an ancient submarine caldera, at Mineral King in California, show microscopic fabrics indicative of welding of glass shards and pumice at temperatures >500 degrees C. The occurrence indicates that subaqueous explosive eruption and emplacement of pyroclastic materials can occur without substantial admixture of the ambient water, which would cause chilling. Intracaldera progressive aggradation of pumice and ash from a thick, fast-moving pyroclastic flow occurred during a short-lived explosive eruption of approximately 26 cubic kilometers of magma in water >/=150 meters deep. The thickness, high velocity, and abundant fine material of the erupted gas-solids mixture prevented substantial incorporation of ambient water into the flow. Stripping of pyroclasts from upper surfaces of subaqueous pyroclastic flows in general, both above the vent and along any flow path, may be the main process giving rise to buoyant-convective subaqueous eruption columns and attendant fallout deposits.

  14. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR, FEMs, and an adaptive mesh algorithm

    Science.gov (United States)

    Masterlark, Timothy; Lu, Zhong; Rykhus, Russell P.

    2006-01-01

    Interferometric synthetic aperture radar (InSAR) imagery documents the consistent subsidence, during the interval 1992–1999, of a pyroclastic flow deposit (PFD) emplaced during the 1986 eruption of Augustine Volcano, Alaska. We construct finite element models (FEMs) that simulate thermoelastic contraction of the PFD to account for the observed subsidence. Three-dimensional problem domains of the FEMs include a thermoelastic PFD embedded in an elastic substrate. The thickness of the PFD is initially determined from the difference between post- and pre-eruption digital elevation models (DEMs). The initial excess temperature of the PFD at the time of deposition, 640 °C, is estimated from FEM predictions and an InSAR image via standard least-squares inverse methods. Although the FEM predicts the major features of the observed transient deformation, systematic prediction errors (RMSE = 2.2 cm) are most likely associated with errors in the a priori PFD thickness distribution estimated from the DEM differences. We combine an InSAR image, FEMs, and an adaptive mesh algorithm to iteratively optimize the geometry of the PFD with respect to a minimized misfit between the predicted thermoelastic deformation and observed deformation. Prediction errors from an FEM, which includes an optimized PFD geometry and the initial excess PFD temperature estimated from the least-squares analysis, are sub-millimeter (RMSE = 0.3 mm). The average thickness (9.3 m), maximum thickness (126 m), and volume (2.1 × 107m3) of the PFD, estimated using the adaptive mesh algorithm, are about twice as large as the respective estimations for the a priori PFD geometry. Sensitivity analyses suggest unrealistic PFD thickness distributions are required for initial excess PFD temperatures outside of the range 500–800 °C.

  15. On the origin of heterogeneous structure in dense gas-solid flows

    NARCIS (Netherlands)

    Li, J.; Kuipers, J.A.M.

    2005-01-01

    The formation and evolution of flow structures in dense gas-fluidized beds with ideal collisional particles (elastic and frictionless) are investigated numerically by employing the discrete particle method, with special focus on the effect of gas¿particle interaction. It is clarified that

  16. Euler-like modelling of dense granular flows: application to a rotating drum

    Science.gov (United States)

    Bonamy, D.; Chavanis, P.-H.; Cortet, P.-P.; Daviaud, F.; Dubrulle, B.; Renouf, M.

    2009-04-01

    General conservation equations are derived for 2D dense granular flows from the Euler equation within the Boussinesq approximation. In steady flows, the 2D fields of granular temperature, vorticity and stream function are shown to be encoded in two scalar functions only. We checked such prediction on steady surface flows in a rotating drum simulated through the Non-Smooth Contact Dynamics method even though granular flows are dissipative and therefore not necessarily compatible with Euler equation. Finally, we briefly discuss some possible ways to predict theoretically these two functions using statistical mechanics.

  17. Influence of particle density on flow behavior and deposit architecture of concentrated pyroclastic density currents over a break in slope: Insights from laboratory experiments

    Science.gov (United States)

    Rodriguez-Sedano, L. A.; Sarocchi, D.; Sulpizio, R.; Borselli, L.; Campos, G.; Moreno Chavez, G.

    2016-12-01

    Geological granular flows are highly complex, gravity-driven phenomena whose different behaviors depend on the mechanical properties, density and granulometric distributions of the constituent materials. Years of research have produced significant advances in understanding transport and deposition processes in granular flows. However, the role and effects of clast densities and density contrast in a granular flow are still not fully understood. In this paper we show the effect that pumice has on dry granular flows; specifically on flow velocity and longitudinal segregation of the deposits. Our work confirms, by experimental results, field observations on pumice/lithic segregation and longer pumice runout. We report results of velocity decay and deposit architecture for a granular flow passing over a break in slope (from 38° to 4° inclination). The 30 experimental runs were carried out in a five-meter long laboratory flume equipped with a series of sensors that include laser gates and high-speed cameras (400 fps). We used two polydisperse mixtures of dacitic lithics and rhyolitic pumice in varying amounts, with Weibull and Gaussian particle size distributions. The pumice/lithic ratio changes the flow response passing over a break in slope. This effect is particularly evident starting from 10% of pumice volume into the flow mixture, independently of its granulometric distribution. Runout relates to mass following a power law, with an exponent close 0.2. The experiments confirm that pumice segregation affects polydispersed mixtures, similarly to what has been observed in real field deposits, where density decoupling produces lithic-enriched proximal areas and pumice-enriched distal areas. The results obtained prove that the presence of low-density materials in a dense granular flow has a strong influence on its behavior.

  18. Dynamic observations of the 8 January 2010 pyroclastic flow from the Soufriere Hills Volcano, Montserrat ascertained by high-definition and FLIR video analysis, as well as geometric analysis of the DEM

    Science.gov (United States)

    Molle, A.; Ogburn, S. E.; Calder, E. S.; Roche, O.; Harris, A. J.

    2012-12-01

    On January 8th 2010, Soufriere Hills Volcano (Montserrat) experienced a collapse of the northwestern part of its andesitic lava dome. The ensuing explosive event lead to a 8.3 km high eruption column and generated a pyroclastic density current (PDC) that propagated down the northern flank of the volcano, moving down the Belham valley. This PDC was recorded from the Montserrat Volcano Observatory using both normal High- Definition and Forward Looking Infrared (FLIR) video cameras. The flow front velocity profile, plus the vertical motion of discrete buoyant thermals ascending above the PDC, were measured by combining the video data with a deposit map and a high spatial-resolution DEM. A theoretical treatment was then applied to extract key parameters that describe the buoyant motion of thermals ascending above the current (including density, particle mass volume fraction, and temperature). Interaction of the PDC with topographic features corresponded to important changes in the dynamics of the PDC as well as the ascent of the buoyant ash-clouds These interactions included an increase of the ascent rate of buoyant thermals when the PDC encountered topographic barriers, and deceleration of the flow front velocity due of high degrees of valley sinuosity. Additionally, a major change in flow dynamics was visible in our data 2 - 3 km from the dome. To investigate this further, channel slope, sinuosity, and cross-sectional area were measured from high-resolution DEMs using GIS software; and were compared to geometric parameters of the mapped ash-cloud surge deposits. The data illustrate three surge generation regimes: a proximal area of rapid lateral expansion; a medial deflation zone; and a steadier distal surge 'fringe'. These surge regimes relate directly the dramatic change in buoyant thermal flow dynamics observed 2-3 km from the dome and are also correlated with velocity and inversely correlated with valley cross-sectional area. Several possible origins can be

  19. Rheology of cohesive granular materials across multiple dense-flow regimes.

    Science.gov (United States)

    Gu, Yile; Chialvo, Sebastian; Sundaresan, Sankaran

    2014-09-01

    We investigate the dense-flow rheology of cohesive granular materials through discrete element simulations of homogeneous, simple shear flows of frictional, cohesive, spherical particles. Dense shear flows of noncohesive granular materials exhibit three regimes: quasistatic, inertial, and intermediate, which persist for cohesive materials as well. It is found that cohesion results in bifurcation of the inertial regime into two regimes: (a) a new rate-independent regime and (b) an inertial regime. Transition from rate-independent cohesive regime to inertial regime occurs when the kinetic energy supplied by shearing is sufficient to overcome the cohesive energy. Simulations reveal that inhomogeneous shear band forms in the vicinity of this transition, which is more pronounced at lower particle volume fractions. We propose a rheological model for cohesive systems that captures the simulation results across all four regimes.

  20. Numerical evaluation of turbulence models for dense to dilute gas-solid flows in vertical conveyor

    Institute of Scientific and Technical Information of China (English)

    Salar Azizi; Dariush Mowla; Goodarz Ahmadi

    2012-01-01

    A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas-solid flows in vertical pneumatic conveyor.An axisymmetric 2-dimensional,vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain,same to that used for experimentation in the literature.The chosen particles are spherical,of diameter 1.91 mm and density 2500 kg/m3.Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles.Flow regimes transition and pressure drop were predicted.Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe.It was found that the voidage has a minimum,and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime.Slug length and pressure fluctuation reduction were predicted with increasing gas velocity,too.It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.

  1. Erosion and deposition in depth-averaged models of dense, dry, inclined, granular flows

    Science.gov (United States)

    Jenkins, James T.; Berzi, Diego

    2016-11-01

    We derive expressions for the rates of erosion and deposition at the interface between a dense, dry, inclined granular flow and an erodible bed. In obtaining these, we assume that the interface between the flowing grains and the bed moves with the speed of a pressure wave in the flow, for deposition, or with the speed of a disturbance through the contacting particles in the bed, for erosion. We employ the expressions for the rates of erosion and deposition to show that after an abrupt change in the angle of inclination of the bed the characteristic time for the motion of the interface is much shorter than the characteristic time of the flow. This eliminates the need for introducing models of erosion and deposition rate in the mass balance; and the instantaneous value of the particle flux is the same function of the instantaneous value of the flow depth as in a steady, uniform flow.

  2. IMPROVED SUBGRID SCALE MODEL FOR DENSE TURBULENT SOLID-LIQUID TWO-PHASE FLOWS

    Institute of Scientific and Technical Information of China (English)

    TANG Xuelin; QIAN Zhongdong; WU Yulin

    2004-01-01

    The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived.In comparison with the governing equations of a dilute two-phase flow, the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model,a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.

  3. Rheology of simple shear flows of dense granular assemblies in different regimes

    Science.gov (United States)

    Chialvo, Sebastian; Sun, Jin; Sundaresan, Sankaran

    2010-11-01

    Using the discrete element method, simulations of simple shear flow of dense assemblies of frictional particles have been carried out over a range of shear rates and volume fractions in order to characterize the transition from quasistatic or inertial flow to intermediate flow. In agreement with previous results for frictionless spheres [1], the pressure and shear stress in the intermediate regime are found to approach asymptotic power law relations with shear rate; curiously, these asymptotes appear to be common to all intermediate flows regardless of the value of the particle friction coefficient. The scaling relations for stress for the inertial and quasistatic regimes are consistent with a recent extension of kinetic theory to dense inertial flows [2] and a simple model for quasistatic flows [3], respectively. For the case of steady, simple shear flow, the different regimes can be bridged readily: a harmonic weighting function blends the inertial regime to the intermediate asymptote, while a simple additive rule combines the quasistatic and intermediate regimes. [4pt] [1] T. Hatano, et al., J. Phys. Soc. Japan 76, 023001 (2007). [0pt] [2] J. Jenkins, and D. Berzi, Granular Matter 12, 151 (2010). [0pt] [3] J. Sun, and S. Sundaresan, J. Fluid Mech. (under review).

  4. AN AERIAL-IMAGE DENSE MATCHING APPROACH BASED ON OPTICAL FLOW FIELD

    Directory of Open Access Journals (Sweden)

    W. Yuan

    2016-06-01

    Full Text Available Dense matching plays an important role in many fields, such as DEM (digital evaluation model producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching’s requirements. The comparison experiments demonstrated that our approach’s matching efficiency is higher than semi-global matching (SGM and Patch-based multi-view stereo matching (PMVS which verifies the feasibility and effectiveness of the algorithm.

  5. Gas suspension flows of a moderately dense binary mixture of solid particles in vertical tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zamankhan, P.; Huotari, J. [VTT Energy, Jyvaeskylae (Finland). Combustion and Conversion Lab.

    1996-12-01

    The turbulent, steady, fully-developed flow of a moderately dense (solid volume faction >>0.001) binary mixture of spherical particles in a gaseous carrier is investigated for the case of flow in a vertical riser. The suspended particles are considered to be in turbulent motion, driven by random aerodynamic forces acting between the particle and the gaseous carrier as well as particle-particle interactive forces. A model is constructed based on the combination of the time-averaged after volume-averaged conservation equations of mass, momentum and mechanical energy of the gas phase in the continuum theory and the corresponding equations for the solid particles obtained using the recently developed Enskog theory for dense multi-component mixtures of slightly inelastic spherical particles. The model properly takes into account the contributions of particle-particle collisions, as well as the fluid-dynamic fluctuating forces on individual particles. To demonstrate the validity of this approach, the fully-developed steady-state mean velocity and concentration distributions of a moderately dense binary mixture of solid particles in a turbulent vertical flow calculated by the present model are compared with available experimental measurements. The results provide a qualitative description of the experimentally observed motion of coarse particles in a fast bed of fine solids. (author)

  6. An Aerial-Image Dense Matching Approach Based on Optical Flow Field

    Science.gov (United States)

    Yuan, Wei; Chen, Shiyu; Zhang, Yong; Gong, Jianya; Shibasaki, Ryosuke

    2016-06-01

    Dense matching plays an important role in many fields, such as DEM (digital evaluation model) producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching's requirements. The comparison experiments demonstrated that our approach's matching efficiency is higher than semi-global matching (SGM) and Patch-based multi-view stereo matching (PMVS) which verifies the feasibility and effectiveness of the algorithm.

  7. Turbulent mixing and afterburn in post-detonation flow with dense particle clouds

    Science.gov (United States)

    Gottiparthi, Kalyana C.; Menon, Suresh

    2017-01-01

    Augmentation of the impact of an explosive is routinely achieved by packing metal particles in the explosive charge. When detonated, the particles in the charge are ejected and dispersed. The ejecta influences the post-detonation combustion processes that bolster the blast wave and determines the total impact of the explosive. While the classical Eulerian-Lagrangian (EL) methods can accurately handle the post-detonation mixing zone in the dilute regime, the Eulerian-Eulerian (EE) method is preferred for the initial dense clustering. Here, we summarize the results obtained using both EL and EE methods as well as demonstrate a new hybrid EE-EL approach. The EL method, which is also developed to handle both dense and dilute flows using the discrete equation method, is used initially to study the dispersion of a relatively dense particle shell by blast waves. The results show distinct clustering of particles that later leads to the formation of jet-like structures as seen in experiments. Then, the hybrid EE-EL method is used to study the dispersion of dense clouds from explosives packed with aluminum (reactive) or steel (inert) particles. A transitioning criterion is used to smoothly transfer the initially dense Eulerian mass to Lagrangian particles when dilute. Results are presented to demonstrate that the approach is computationally efficient and accurate for certain ranges of particle sizes and loading. It is shown that mixing between the ambient and post-detonation products can be enhanced when particles are present in the flow. Furthermore, the afterburn of aluminum particles increases in the average gas-phase temperature by 100 K - 200 K when compared to a case with non-reacting particles. More studies are still needed to establish a robust strategy for wider applications.

  8. Volcanism on Mercury (dikes, lava flows, pyroclastics): Crust/mantle density contrasts, the evolution of compressive stress and the presence of mantle volatiles

    Science.gov (United States)

    Wilson, L.; Head, J. W., III

    2008-09-01

    Background. There is great uncertainty about the internal structure of Mercury and the composition of the mantle [e.g., 1, 2]. The high mean density of the body suggests that it may have lost parts of its crust and mantle in a giant impact at some stage after most of its initial accretion was sufficiently complete that at least partial separation of a core had occurred. It is the uncertainty about the timing of the giant impact, and hence the physico-chemical state of proto-Mercury at the time that it occurred, that leads to difficulties in predicting the interior structure and mantle composition. However, it seems reasonable to assume that the Mercury we see today has some combination of a relatively low-density crust and a relatively highdensity mantle; uncertainty remains about the presence and types of volatiles [2]. The second uncertainty is the nature of the surface plains units, specifically, are these lava flows and pyroclastics erupted from the interior, or impact-reworked earlier crust [3-5] (Figs. 1-2)? The detection of candidate pyroclastic deposits [4] has very important implications for mantle volatiles. Furthermore, whatever the surface composition, the presence of planet-wide systems of wrinkle ridges and thrust faults implies that a compressive crustal stress regime became dominant at some stage in the planet's history [3, 6]. If the plains units are indeed lava flows, then the fact that the products of the compressive regime deform many plains units suggests that the development of the compressive stresses may have played a vital role in determining when and if surface eruptions of mantle-derived magmas could occur. This would be analogous to the way in which the change with time from extensional to compressive global stresses in the lithosphere of the Moon influenced the viability of erupting magmas from deep mantle sources [7-9]. Analysis: To investigate the relationship between lithospheric stresses and magma eruption conditions [e.g., 9-11] we

  9. Flow splitting in numerical simulations of oceanic dense-water outflows

    Science.gov (United States)

    Marques, Gustavo M.; Wells, Mathew G.; Padman, Laurie; Özgökmen, Tamay M.

    2017-05-01

    Flow splitting occurs when part of a gravity current becomes neutrally buoyant and separates from the bottom-trapped plume as an interflow. This phenomenon has been previously observed in laboratory experiments, small-scale water bodies (e.g., lakes) and numerical studies of small-scale systems. Here, the potential for flow splitting in oceanic gravity currents is investigated using high-resolution (Δx = Δz = 5 m) two-dimensional numerical simulations of gravity flows into linearly stratified environments. The model is configured to solve the non-hydrostatic Boussinesq equations without rotation. A set of experiments is conducted by varying the initial buoyancy number B0 =Q0N3 /g‧2 (where Q0 is the volume flux of the dense water flow per unit width, N is the ambient stratification and g‧ is the reduced gravity), the bottom slope (α) and the turbulent Prandtl number (Pr). Regardless of α or Pr, when B0 ≤ 0.002 the outflow always reaches the deep ocean forming an underflow. Similarly, when B0 ≥ 0.13 the outflow always equilibrates at intermediate depths, forming an interflow. However, when B0 ∼ 0.016, flow splitting always occurs when Pr ≥ 10, while interflows always occur for Pr = 1. An important characteristic of simulations that result in flow splitting is the development of Holmboe-like interfacial instabilities and flow transition from a supercritical condition, where the Froude number (Fr) is greater than one, to a slower and more uniform subcritical condition (Fr internal hydraulic jump and consequent mixing enhancement. Although our experiments do not take into account three-dimensionality and rotation, which are likely to influence mixing and the transition between flow regimes, a comparison between our results and oceanic observations suggests that flow splitting may occur in dense-water outflows with weak ambient stratification, such as Antarctic outflows.

  10. Realizing life-scalable experimental pyroclastic density currents

    Science.gov (United States)

    Cronin, S. J.; Lube, G.; Breard, E.; Jones, J.; Valentine, G.; Freundt, A.; Hort, M. K.; Bursik, M. I.

    2013-12-01

    Pyroclastic Density Currents (PDCs) - the most deadly threat from volcanoes - are extremely hot, ground-hugging currents of rock fragments and gas that descend slopes at hundreds of kilometers per hour. These hostile flows are impossible to internally measure, thus volcanologists are persistently blocked in efforts to realistically forecast their internal mechanics and hazards. Attempts to fill this gap via laboratory-scale experiments continue to prove difficult, because they usually mismatch the dynamic and kinematic scaling of real-world flows by several orders of magnitude. In a multi-institutional effort, the first large-scale pyroclastic flow generator that can synthesize repeatable hot high-energy gas-particle mixture flows in safety has been commissioned in New Zealand. The final apparatus stands 15 m high, consisting of a tower/elevator system; an instrumented hopper that can hold >6000 kg (or 3.2 m3) of natural volcanic materials, which can be discharged at a range of controlled rates onto an instrumented, variably inclinable (6-25°) glass-sided chute for examining the vertical profiles of PDCs in motion. The use of rhyolitic pyroclastic material from the 1800 AD Taupo Eruption (with its natural grain-size, sorting and shape characteristics) and gas ensures natural coupling between the solids and fluid phases. PDC analogues with runout of >15 meters and flow depths of 1.5-6 meters are created by generating variably heated falling columns of natural volcanic particles (50-1300 kg/s), dispersed and aerated to controlled particle densities between 3 and 60 vol.% at the base of the elevated hopper. The descending columns rapidly generate high-velocity flows (up to 14 m/s) once impacting on the inclined channel, reproducing many features of natural flows, including segregation into dense and dilute regimes, progressive aggradational and en masse deposition of particles and the development of high internal gas-pore-pressures during flow. The PDC starting

  11. Lattice Boltzmann Simulation of Permeability and Tortuosity for Flow through Dense Porous Media

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2014-01-01

    Full Text Available Discrete element method (DEM is used to produce dense and fixed porous media with rigid mono spheres. Lattice Boltzmann method (LBM is adopted to simulate the fluid flow in interval of dense spheres. To simulating the same physical problem, the permeability is obtained with different lattice number. We verify that the permeability is irrelevant to the body force and the media length along flow direction. The relationships between permeability, tortuosity and porosity, and sphere radius are researched, and the results are compared with those reported by other authors. The obtained results indicate that LBM is suited to fluid flow simulation of porous media due to its inherent theoretical advantages. The radius of sphere should have ten lattices at least and the media length along flow direction should be more than twenty radii. The force has no effect on the coefficient of permeability with the limitation of slow fluid flow. For mono spheres porous media sample, the relationship of permeability and porosity agrees well with the K-C equation, and the tortuosity decreases linearly with increasing porosity.

  12. Implementation and Re nement of a Comprehensive Model for Dense Granular Flows

    Energy Technology Data Exchange (ETDEWEB)

    Sundaresan, Sankaran [The Trustees Of Princeton University, Princeton, NJ (United States)

    2015-09-30

    Dense granular ows are ubiquitous in both natural and industrial processes. They manifest three di erent ow regimes, each exhibiting its own dependence on solids volume fraction, shear rate, and particle-level properties. This research project sought to develop continuum rheological models for dense granular ows that bridges multiple regimes of ow, implement them in open-source platforms for gas-particle ows and perform test simulations. The rst phase of the research covered in this project involved implementation of a steady- shear rheological model that bridges quasi-static, intermediate and inertial regimes of ow into MFIX (Multiphase Flow with Interphase eXchanges - a general purpose computer code developed at the National Energy Technology Laboratory). MFIX simulations of dense granular ows in hourglass-shaped hopper were then performed as test examples. The second phase focused on formulation of a modi ed kinetic theory for frictional particles that can be used over a wider range of particle volume fractions and also apply for dynamic, multi- dimensional ow conditions. To guide this work, simulations of simple shear ows of identical mono-disperse spheres were also performed using the discrete element method. The third phase of this project sought to develop and implement a more rigorous treatment of boundary e ects. Towards this end, simulations of simple shear ows of identical mono-disperse spheres con ned between parallel plates were performed and analyzed to formulate compact wall boundary conditions that can be used for dense frictional ows at at frictional boundaries. The fourth phase explored the role of modest levels of cohesive interactions between particles on the dense phase rheology. The nal phase of this project focused on implementation and testing of the modi ed kinetic theory in MFIX and running bin-discharge simulations as test examples.

  13. How granular vortices can help understanding rheological and mixing properties of dense granular flows

    Directory of Open Access Journals (Sweden)

    Rognon Pierre

    2017-01-01

    Full Text Available Dense granular flows exhibit fascinating kinematic patterns characterised by strong fluctuations in grain velocities. In this paper, we analyse these fluctuations and discuss their possible role on macroscopic properties such as effective viscosity, non-locality and shear-induced diffusion. The analysis is based on 2D experimental granular flows performed with the stadium shear device and DEM simulations. We first show that, when subjected to shear, grains self-organised into clusters rotating like rigid bodies. The average size of these so-called granular vortices is found to increase and diverge for lower inertial numbers, when flows decelerate and stop. We then discuss how such a microstructural entity and its associated internal length scale, possibly much larger than a grain, may be used to explain two important properties of dense granular flows: (i the existence of shear-induced diffusion of grains characterised by a shear-rate independent diffusivity and (ii the development of boundary layers near walls, where the viscosity is seemingly lower than the viscosity far from walls.

  14. CFD-DP Modeling of Multiphase Flow in Dense Medium Cyclone

    Directory of Open Access Journals (Sweden)

    Okan Topcu

    2012-03-01

    Full Text Available A numerical study of the gas-liquid-solid multi-phase flow in a hydrocyclone is summarized in this paper. The turbulent flow of the gas and the liquid is modelled using the realizable k-epsilon turbulence model, the interface between the liquid and the air core is modelled using the Eulerian multi-phase model and the simulation of the particle flow described by the dense discrete phase model in which the data of the multi-phase flow are used. Separation efficiency, particle trajectories, split ratios, flow field and pressure drop are the examined flow features. The results show that the flow fields in the hydrocyclones are possible to simulate by realizable k-epsilon model which is a fast solver for turbulent flows. The cut size is achieved between 3 and 15 µm. The air-core development is observed to be a transport effect due to the velocity of surrounding fluid rather than a pressure effect. The approach offers a useful method to observe the flow of a hydrocyclone in relation to design of the system and operational conditions.

  15. Universal Scaling Laws for Dense Particle Suspensions in Turbulent Wall-Bounded Flows

    CERN Document Server

    Costa, Pedro; Brandt, Luca; Breugem, Wim-Paul

    2016-01-01

    The macroscopic behavior of dense suspensions of neutrally-buoyant spheres in turbulent plane channel flow is examined. We show that particles larger than the smallest turbulence scales cause the suspension to deviate from the continuum limit in which its dynamics is well described by an effective suspension viscosity. This deviation is caused by the formation of a particle layer close to the wall with significant slip velocity. By assuming two distinct transport mechanisms in the near-wall layer and the turbulence in the bulk, we define an effective wall location such that the flow in the bulk can still be accurately described by an effective suspension viscosity. We thus propose scaling laws for the mean velocity profile of the suspension flow, together with a master equation able to predict the increase in drag as function of the particle size and volume fraction.

  16. Rheological aspects of dense lignite-water suspensions; structure development on consecutive flow loops

    Energy Technology Data Exchange (ETDEWEB)

    Goudoulas, Thomas B.; Kastrinakis, Eleftherios G.; Nychas, Stavros G. [Aristotle University of Thessaloniki, Department of Chemical Engineering, Univ. Box 453, Thessaloniki (Greece)

    2007-01-15

    Aspects of dense lignite-water slurries (LWS) rheology were investigated using controlled stress and controlled strain rheometers with parallel disks and Couette geometries. During the preparation of the slurries, the achieved solids volume fractions were up to 0.425 and the particle size distributions were polydispersed with sizes up to 300 {mu}m. In the ascending parts of consecutive flow loops, a slope transition of the flow curve was observed and studied in relation to the solids volume fraction. The obtained results with the different geometries and rheometers were qualitatively the same. By following the model proposed by Cheng (Rheol Acta 42:372-382, 2003) for thixotropic fluids, and taking into account the yield stress appearance, a suitable correlation for LWS is proposed, which is consistent with the experimental flow curves. (orig.)

  17. Stability analysis of unbounded uniform dense granular shear flow based on a viscoplastic constitutive law

    Science.gov (United States)

    Chen, Wen-Yau; Lai, Jeng-You; Young, D. L.

    2010-11-01

    Asymptotic and transient stability analyses of unbounded uniform granular shear flow at high solids volume fractions were carried out in the paper, based on a model composed of the viscoplastic constitutive law [P. Jop, Y. Forterre, and O. Pouliquen, Nature (London) 441, 727 (2006)] and the dilatancy law [O. Pouliquen et al., J. Stat. Mech.: Theory Exp. (2006) P07020]. We refer to this model as the VPDL (meaning of the "viscoplastic and dilatancy laws") thereinafter. In this model, dense granular flows were treated as a viscoplastic fluid with a Drucker-Prager-like yielding criterion. We compared our results to those obtained using the frictional-kinetic model (FKM) [M. Alam and P. R. Nott, J. Fluid Mech. 343, 267 (1997)]. Our main result is that unbounded uniform dense granular shear flows are always asymptotically stable at large time based on the VPDL model, at least for two-dimensional perturbations. This is valid for disturbances of layering modes (i.e., the perturbations whose wavenumber vectors are aligned along the transverse coordinate) as well as for nonlayering modes (the streamwise component of the wavenumber vector is nonzero). By contrast, layering modes can be unstable based on the FKM constitutive laws. Interestingly, in the framework of the VPDL, the analysis shows that significant transient growth may occur owing to the non-normality of the linear system, although disturbances eventually decay at large time.

  18. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  19. Flow regime transitions in dense non-Brownian suspensions: Rheology, microstructural characterization, and constitutive modeling

    Science.gov (United States)

    Ness, Christopher; Sun, Jin

    2015-01-01

    Shear flow of dense non-Brownian suspensions is simulated using the discrete element method taking particle contact and hydrodynamic lubrication into account. The resulting flow regimes are mapped in the parametric space of the solid volume fraction, shear rate, fluid viscosity, and particle stiffness. Below a critical volume fraction ϕc, the rheology is governed by the Stokes number, which distinguishes between viscous and inertial flow regimes. Above ϕc, a quasistatic regime exists for low and moderate shear rates. At very high shear rates, the ϕ dependence is lost, and soft-particle rheology is explored. The transitions between rheological regimes are associated with the evolving contribution of lubrication to the suspension stress. Transitions in microscopic phenomena, such as interparticle force distribution, fabric, and correlation length are found to correspond to those in the macroscopic flow. Motivated by the bulk rheology, a constitutive model is proposed combining a viscous pressure term with a dry granular model presented by Chialvo et al. [Phys. Rev. E 85, 021305 (2012), 10.1103/PhysRevE.85.021305]. The model is shown to successfully capture the flow regime transitions.

  20. DRAG FORCE IN DENSE GAS-PARTICLE TWO-PHASE FLOW

    Institute of Scientific and Technical Information of China (English)

    由长福; 祁海鹰; 徐旭常

    2003-01-01

    Numerical simulations of flow over a stationary particle in a dense gas-particle two-phase flow have been carried out for small Reynolds numbers (less than 100).In order to study the influence of the particles interaction on the drag force,three particle arrangements have been tested:a single particle,two particles placed in the flow direction and many particles located regularly in the flow field.The Navier-Stokes equations are discretized in the three-dimensional space using finite volume method.For the first and second cases,the numerical results agree reasonably well with the data in literature.For the third case,i.e.,the multiparticle case,the influence of the particle volume fraction and Reynolds numbers on the drag force has been investigated.The results show that the computational values of the drag ratio agree approximately with the published results at higher Reynolds numbers (from 34.2 to 68.4),but there is a large difference between them at small Reynolds numbers.

  1. Lethal thermal impact at periphery of pyroclastic surges: evidences at Pompeii

    National Research Council Canada - National Science Library

    Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Guarino, Fabio M

    2010-01-01

    The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized...

  2. Lethal Thermal Impact at Periphery of Pyroclastic Surges: Evidences at Pompeii: e11127

    National Research Council Canada - National Science Library

    Giuseppe Mastrolorenzo; Pierpaolo Petrone; Lucia Pappalardo; Fabio M Guarino

    2010-01-01

      Background The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized...

  3. Submarine pyroclastic deposits in Tertiary basins, NE Slovenia

    Directory of Open Access Journals (Sweden)

    Polona Kralj

    2013-12-01

    Full Text Available In Tertiary basins of NE Slovenia, Upper Oligocene volcanic activity occurred in a submarine environment that experienced contemporaneous clastic sedimentation. Pyroclastic deposits are essentially related to gas- and watersupported eruption-fed density currents. At Trobni Dol, the Lako Basin, an over 100 m thick deposit formed by a sigle sustained volcanic explosion that fed gas-supported pyroclastic flow. Diagnostic features are large matrixshard content, normal grading of pumice lapilli, collapsed pumice lapilli and the presence of charcoal. In the Smrekovec Volcanic Complex, several but only up to 5 m thick deposits related to eruption-fed gassupported pyroclastic flows occur. Deposits settled from water-supported eruption-fed density currents form fining- and thinning-upward sedimentary units which resemble the units of volcaniclastic turbidites. Pyroclastic deposits related to gas- and water-supported density currents occur in an up to 1000 m thick succession composed of coherent volcanics, autoclastic, pyroclastic, reworked volcaniclastic and mixed volcaniclastic-siliciclastic deposits that indicate a complex explosive and depositional history of the Smrekovec Volcanic Complex.

  4. A Low-Dissipation Technique for Computing Dense Granular Compressible Flows with Shock Waves

    CERN Document Server

    Houim, Ryan W

    2013-01-01

    A low-dissipation numerical method was developed for solving kinetic theory-based granular multiphase models with volume fractions ranging from very dilute to very dense in highly compressible flows containing shock waves. The proposed numerical method takes advantage of particle incompressibility and allows computation of gas-phase and granular-phase hyperbolic fluxes to be decoupled while treating non-conservative terms consistent with their physical meaning. The technique converges under grid refinement even with very high volume fraction granular interfaces and is compatible with high-order numerical algorithms. The method can advect sharp granular interfaces that coincide with multi-species gaseous contacts without violating the pressure non-disturbing conditions. The method also reproduces features from multiphase shock tube problems, granular shocks, transmission angles of compaction waves, and shock wave and dust layer interactions. The proposed scheme is relatively straight-forward to implement and c...

  5. DRAG FORCE IN DENSE GAS—PARTICLE TWO—PHASE FLOW

    Institute of Scientific and Technical Information of China (English)

    由长福; 祁海鹰; 徐旭常

    2003-01-01

    Numerical simulations of flow over a stationary particle in a dense gas-particle two-phase flow have been carried out for small Reynolds numbers (leas than 100). In order to study theinfluence of the particles interaction on the drag force, three particle arrangements have been tested: asingle particle, two particles placed in the flow direction and many particles located regularly in the flowfield. The Navier-Stokes equations are discretized in the three-dimensional space using finite volumemethod. For the first and second cases, the numerical results agree reasonably well with the data inliterature. For the third case, i.e., the multiparticle case, the influence of the particle volume fractionand Reynolds numbers on the drag force has been investigated. The results show that the computationalvalues of the drag ratio agree approximately with the published results at higher Reynolds numbers(from 34.2 to 68.4), but there is a large difference between them at small Reynolds numbers.

  6. Particle Dispersion Behaviors of Dense Gas-Particle Flows in Bubble Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Sihao Lv

    2013-01-01

    Full Text Available An Euler-Euler two-fluid model incorporating a developed momentum transfer empirical coefficient is developed to study the particle dispersion behaviors of dense gas-particle flows in gas-fluidization reactor. In this model, the four-way couplings among gas-particles, particle-gas, and particle-particle collisions are fully considered based on kinetic theory of granular flows and an improved smooth continuous drag coefficient is utilized. Gas turbulent flow is solved by large eddy simulation. The particle fraction, the time-averaged axial particle velocity, the histogram of particle fluctuation velocity, and the wavelet analysis of pressure signals are obtained. The results are in good agreement with experimental measurements. The mean value and the variance of axial particle velocity are greater than those of radial particle velocities. Particle collision frequencies at bubble vibrant movement regions along axial direction are much higher than those of radial direction and attenuated along height increase. Low-frequency component of pressure signal indicating the bubble movement behaviors in the center of reactor is stronger than wall regions. Furthermore, the negative values represent the passed bubble and positive peak values disclose the continuous motion of single bubble.

  7. Turbulent channel flow of dense suspensions of neutrally-buoyant spheres

    CERN Document Server

    Picano, F; Brandt, L

    2014-01-01

    Dense particle suspensions are widely encountered in many applications and in environmental flows. While many previous studies investigate their rheological properties in laminar flows, little is known on the behaviour of these suspensions in the turbulent/inertial regime. The present study aims to fill this gap by investigating the turbulent flow of a Newtonian fluid laden with solid neutrally-buoyant spheres at relatively high volume fractions in a plane channel. An Immersed Boundary Method has been used to account for the dispersed phase performing Direct Numerical Simulation in the range of volume fractions $\\Phi=0-0.2$. The results show that the mean velocity profiles are significantly altered by the presence of a solid phase with a decrease of the von K\\'arm\\'an constant in the log-law. The overall drag is found to increase with the volume fraction, more than one would expect just considering the increase of the system viscosity due to the presence of the particles. At the highest volume fraction here i...

  8. Test of a new heat-flow equation for dense-fluid shock waves.

    Science.gov (United States)

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  9. SECOND-ORDER MOMENT MODEL FOR DENSE TWO-PHASE TURBULENT FLOW OF BINGHAM FLUID WITH PARTICLES

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhuo-xiong; ZHOU Li-xing; LIU Zhi-he

    2006-01-01

    The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingharn fluid yield stress are taken into account. An algorithm for USM-θ model in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θ model has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θ model was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.

  10. Sensitivity analysis of Immersed Boundary Method simulations of fluid flow in dense polydisperse random grain packings

    Directory of Open Access Journals (Sweden)

    Knight Chris

    2017-01-01

    Full Text Available Polydisperse granular materials are ubiquitous in nature and industry. Despite this, knowledge of the momentum coupling between the fluid and solid phases in dense saturated grain packings comes almost exclusively from empirical correlations [2–4, 8] with monosized media. The Immersed Boundary Method (IBM is a Computational Fluid Dynamics (CFD modelling technique capable of resolving pore scale fluid flow and fluid-particle interaction forces in polydisperse media at the grain scale. Validation of the IBM in the low Reynolds number, high concentration limit was performed by comparing simulations of flow through ordered arrays of spheres with the boundary integral results of Zick and Homsy [10]. Random grain packings were studied with linearly graded particle size distributions with a range of coefficient of uniformity values (Cu = 1.01, 1.50, and 2.00 at a range of concentrations (ϕ ∈ [0.396; 0.681] in order to investigate the influence of polydispersity on drag and permeability. The sensitivity of the IBM results to the choice of radius retraction parameter [1] was investigated and a comparison was made between the predicted forces and the widely used Ergun correlation [3].

  11. New tools to investigate textures of pyroclastic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Sarocchi, Damiano [Instituto de GeologIa / Fac. IngenierIa UASLP, Dr. M. Nava No 5, Zona Universitaria 78240, San Luis PotosI (Mexico); Borselli, Lorenzo [Istituto di Ricerca per la Protezione Idrogeologica, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino (Italy); MacIas, Jose Luis [Departamento de VulcanologIa, Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Coyoacan 04510, D.F. (Mexico)

    2008-10-01

    A pyroclastic flow deposit keeps a fingerprint of the physical processes that occurred in the flow during transport and settling. Part of this information is recorded in the texture of the deposit offering an instantaneous view of the flow prior to freezing. In this work we introduce some texture's analysis techniques, based on image analysis, that we have developed or tuned during the last years.

  12. Proximal pyroclastic deposits from the 1989-1990 eruption of Redoubt Volcano, Alaska - stratigraphy, distribution, and physical characteristics

    Science.gov (United States)

    Gardner, C.A.; Neal, C.A.; Waitt, R.B.; Janda, R.J.

    1994-01-01

    More than 20 eruptive events during the 1989-1990 eruption of Redoubt Volcano emplaced a complex sequence of lithic pyroclastic-flow, -surge, -fall, ice-diamict, and lahar deposits mainly on the north side of the volcano. The deposits record the changing eruption dynamics from initial gas-rich vent-clearing explosions to episodic gas-poor lava-dome extrusions and failures. The repeated dome failures produced lithic pyroclastic flows that mixed with snow and glacial ice to generate lahars that were channelled off Drift glacier into the Drift River valley. Some of the dome failures occurred without precursory seismic warning and appeared to result solely from gravitational instability. Material from the disrupted lava domes avalanched down a steep, partly ice-filled canyon incised on the north flank of the volcano and came to rest on the heavily crevassed surface of the piedmont lobe of Drift glacier. Most dome-collapse events resulted in single, monolithologic, massive to reversely graded, medium- to coarse-grained, sandy pyroclastic-flow deposits containing abundant dense dome clasts. These deposits vary in thickness, grain size, and texture depending on distance from the vent and local topography; deposits are finer and better sorted down flow, thinner and finer on hummocks, and thicker and coarser where ponded in channels cut through the glacial ice. The initial vent-clearing explosions emplaced unusual deposits of glacial ice, snow, and rock in a frozen matrix on the north and south flanks of the volcano. Similar deposits were described at Nevado del Ruiz, Columbia and have probably been emplaced at other snow-and-ice-clad volcanoes, but poor preservation makes them difficult to recognize in the geologic record. In a like fashion, most deposits from the 1989-1990 eruption of Redoubt Volcano may be difficult to recognize and interpret in the future because they were emplaced in an environment where glacio-fluvial processes dominate and quickly obscure the primary

  13. Effect of pressure on gas-solid flow behavior in dense gas-fluidised beds: a discrete particle simulation study

    NARCIS (Netherlands)

    Li, Jie; Kuipers, J.A.M.

    2002-01-01

    A computational study has been carried out to assess the influence of pressure on the flow structures and regime transitions in dense gas-fluidized beds using the discrete particle simulation (DPS) approach. By employing particle level simulation, the particle–particle–fluid interactions were analyz

  14. Depth Averaged Equations Applied To Study of Defense Structures Effects On Dense Avalanche Flows

    Science.gov (United States)

    Naaim, M.; Bouvet-Naaim, F.; Faug, T.; Lachamp, P.

    Avalanche zoning and protection devices are the complementary tools used to assess avalanche risk and protect persons and human activities in mountainous areas. Despite the intensive use of defense structures as protection against avalanches, their hydraulic and structural effects are not well known. Many structures were designed empirically using expert knowledge or knowledge developed in other domain such as hydraulic. Defence structures effects in terms of energy dissipation, deviation and snow retention are difficult to study in situ. The cost and difficulties of experiments, the danger and the weak annual number of avalanches in a given site, are the reasons why scientists oriented their research towards the use of numerical or laboratory physical models. This paper presents and discuss the possibilities to use depth averaged equations to study dense avalanche flows around defence structures. The used numerical resolu- tion method is based on an upwind numerical scheme. Equations are integrated on each cell of the mesh and the numerical fluxes are calculated thanks to a simplified Riemann solver where the retained solution is obtained as a combination of shock and rarefaction founctions. This allows taking into account the topography variation and jets and surges presence. These two characteristics are needed because both exper- imental and in situ observations showed a significant topography modifications and jets and surges formations during interaction between avalanche flows and structures. The case of vertical surfaces such as those made of concrete destined to deviate flows are treated by appropriated boundary condition functions. A discussion about the best way to integrate defence structures in such model is presented and discussed. This modelisation has, in a first time, been tested on analytical solutions and on experimen- tal laboratory scale model results. These tests have shown the capacity of this model, despite the strong hypothesis, to

  15. A theoretical, two-layer, reduced-gravity model for descending dense water flow on continental shelves/slopes

    Science.gov (United States)

    Wang, Jia; Ikeda, Moto; Saucier, Francois J.

    2003-05-01

    A theoretical, two-layer, reduced-gravity model for descending dense water flow on continental shelves/slopes has been developed to investigate the dynamics of bottom dense water plumes. The model is nonsteady state and includes vertical viscosity, the Coriolis force, and bottom friction. An integral solution rather than a perfect analytical expression is derived and, thus, the Simpson's 1/3 rule to approximate the integral is applied. At the very bottom, the dense water plume moves about 45° to the right (left) in the Northern (Southern) Hemisphere, looking downslope. From the bottom, the velocity vector rotates anticyclonically upward, indicating a bottom Ekman spiral that mimics the atmospheric Ekman boundary layer. The dense water within the bottom Ekman layer obeys a three-force balance, while the dense water above the bottom Ekman layer is governed by a two-force balance, which is a geostrophic flow with superimposed cycloidal inertial oscillations oriented from about 25° to 140° to the right (left) of the downslope direction in the Northern (Southern) Hemisphere. The transport within the bottom Ekman layer is directed about 60-70° to the right (left) of the downslope direction in the Northern (Southern) Hemisphere, forming an offshore (cross-isobath) transport in the absence of eddy flux and wind-forcing. The ratio of offshore transport to alongshore transport within the bottom Ekman layer is about 0.19 (19%), while the ratio above the bottom Ekman layer (i.e., geostrophic layer of the dense water) is only 3% (negligible compared to its alongshore transport), which, however, is equivalent in magnitude to its counterpart in the bottom Ekman layer if O(DE/h) ˜ 0.1 (where DE is the bottom Ekman layer thickness and h is the dense water layer thickness). In other words, the bottom Ekman layer and the geostrophic (dense) layer contribute equivalent dense water offshore (each contributes 50%). The magnitude of the descending dense water velocity depends

  16. Dense Pellicular Agarose-Glass Beads for Expanded Bed Application: Flow Hydrodynamics and Solid Phase Classifications

    Institute of Scientific and Technical Information of China (English)

    周鑫; 史清洪; 白姝; 孙彦

    2004-01-01

    Two dense pellicular agarose-glass matrices of different sizes and densities, i.e., AG-S and AG-L, have been characterized for their bed expansion behavior, flow hydrodynamics and particle classifications in an expanded bed system. A 26 mm ID column with side ports was used for sampling the liquid-solid suspension during expanded bed operations. Measurements of the collected solid phase at different column positions yielded the particle size and density distribution data. It was found that the composite matrices showed particle size as well as density classifications along the column axis, i.e., both the size and density of each matrix decreased with increasing the axial bed height. Their axial classifications were expressed by a correlation related to both the particle size and density as a function of the dimensionless axial bed height. The correlation was found to fairly describe the solid phase classifications in the expanded bed system. Moreover, it can also be applied to other two commercial solid matrices designed for expanded bed applications.

  17. Numerical simulation of the flow field in a dense-media cyclone

    Institute of Scientific and Technical Information of China (English)

    SHEN Li-juan; HU Yan-feng; CHEN Jian-zhong; ZHANG Peng; DAI Hua-zhen

    2009-01-01

    An analytical study of the flow and pressure fields inside a small-diameter dense-media cyclone is presented.The simulations were done with the help of the CFD software FLUENT.The following conclusions were reached: the tangential velocity tends to increase when moving from the center toward the exterior.The velocity then begins to decrease when the maximum velocity point is reached.The velocity field divides into two different sections; an inner swirling zone and an outer swirling zone.The axial velocity points down at the wall and gradually decreases toward the bottom.Continuing toward the bottom, the axial velocity passes through zero and then gradually increases in the opposite direction.In the cyclone's central zone, the pressure is negative and the suction of air allows an air column to be formed therein.At the center of the radial negative zone the pressure drops to its lowest value-phenomenon that has been verified by theoretical analysis.Some discrepancies between the observed data and the simulated data are noted when an analysis in made on a cyclone operating with either fresh water only or with water with added heavy particles.

  18. Evidence for voluminous bimodal pyroclastic volcanism during rifting of a Paleoproterozoic arc at Snow Lake, Manitoba

    National Research Council Canada - National Science Library

    Lafrance, Bruno; Rubingh, Kate E; Gibson, Harold L

    2017-01-01

    ...) assemblage of the Flin Flon belt. Stratigraphic correlation of volcanic strata of the MB sequence with strata of the thrust-bounded Chisel sequence indicates that distinctive, submarine, eruption-fed, pyroclastic flow deposits...

  19. Numerical simulation of dense particle-gas two-phase flow using the minimal potential energy principle

    Institute of Scientific and Technical Information of China (English)

    Xiangjun Liu; Xuchang Xu; Wurong Zhang

    2006-01-01

    A simulation method of dense particle-gas two-phase flow has been developed. The binding force is introduced to present the impact of particle clustering and its expression is deduced according to the principle of minimal potential energy. The cluster collision,break-up and coalescence models are proposed based on the assumption that the particle cluster are treated as one discrete phase. These models are used to numerically study the two-phase flow field in a circulating fluidized bed (CFB). Detailed results of the cluster structure, cluster size, particle volume fraction, gas velocity, and particle velocity are obtained. The correlation between the simulation results and experimental data justifies that these models and algorithm are reasonable, and can be used to efficiently study the dense particle-gas two-phase flow.

  20. The eruption, pyroclastic flow behaviour, and caldera in-filling processes of the extremely large volume (> 1290 km3), intra- to extra-caldera, Permian Ora (Ignimbrite) Formation, Southern Alps, Italy

    Science.gov (United States)

    Willcock, M. A. W.; Cas, R. A. F.; Giordano, G.; Morelli, C.

    2013-09-01

    The Permian Ora Formation (277-274 Ma) preserves the products of the Ora caldera 'super-eruption', Northern Italy. The stratigraphic architecture of the exceptionally well preserved intra-caldera succession provides evidence for caldera collapse at the onset of the eruption, a multiple discharge point, fissure eruption style, and progressive, incremental caldera in-filling by numerous pyroclastic flow pulses within the caldera. The ignimbrites of the Ora Formation are voluminous (> 1290 km3), crystal-rich (~ 25 to 55%), and ubiquitously welded. The Ora Formation has been divided into four members (a-d), which also define the principal eruption phases. The eruption proceeded in four main stages: (1) early caldera collapse and vent opening, producing locally distributed, basal co-ignimbrite lithic breccia (member a); (2) vent clearing, which produced the eutaxitic, lithic-rich ignimbrite and minor thin ground and ash-cloud surge deposits (member b); (3) waxing and steady eruption, which produced the dominant eutaxitic, coarse-crystal-rich ignimbrite, with local lithic-rich and fine-crystal-rich ignimbrite and minor surge deposits (member c); and (4) waning eruption, recorded by the eutaxitic, fine-crystal-rich ignimbrite, with local lithic-rich ignimbrite deposits (member d).

  1. Lunar Pyroclastic Eruptions: Basin Volcanism's Dying Gasps

    Science.gov (United States)

    Kramer, G. Y.; Nahm, A.; McGovern, P. J.; Kring, D. A.

    2011-12-01

    The relationship between mare volcanism and impact basins has long been recognized, although the degree of influence basin formation has on volcanism remains a point of contention. For example, did melting of magma sources result from thermal energy imparted by a basin-forming event? Did basin impacts initiate mantle overturn of the unstable LMO cumulate pile, causing dense ilmenite to sink and drag radioactive KREEPy material to provide the thermal energy to initiate melting of the mare sources? Did the dramatically altered stress states provide pathways ideally suited for magma ascent? The chemistry of sampled lunar volcanic glasses indicates that they experienced very little fractional crystallization during their ascent to the surface - they have pristine melt compositions. Volatile abundances, including recent measurements of OH [1,2] suggest that the mantle source of at least the OH-analyzed glasses have a water abundance of ~700 ppm - comparable to that of Earth's upper mantle. More recently, [3] showed that the abundance of OH and other volatiles measured in these glasses is positively correlated with trace element abundances, which is expected since water is incompatible in a magma. Volatile enrichment in a deep mantle source would lower the melting temperature and provide the thrust for magma ascent through 500 km of mantle and crust [4]. We are exploring the idea that such basin-related lunar pyroclastic volcanism may represent the last phase of basaltic volcanism in a given region. Remote sensing studies have shown volcanic glasses are fairly common, and often found along the perimeter of mare-filled basins [5]. Recent modeling of the stresses related to the basin-forming process [6,7] show that basin margins provide the ideal conduit for low-volume lunar pyroclastic volcanism (compared with the high output of mare volcanism). Schrödinger's basin floor is largely composed of a compositionally uniform impact breccia. The exceptions are two distinct and

  2. A fast, calibrated model for pyroclastic density currents kinematics and hazard

    Science.gov (United States)

    Esposti Ongaro, Tomaso; Orsucci, Simone; Cornolti, Fulvio

    2016-11-01

    Multiphase flow models represent valuable tools for the study of the complex, non-equilibrium dynamics of pyroclastic density currents. Particle sedimentation, flow stratification and rheological changes, depending on the flow regime, interaction with topographic obstacles, turbulent air entrainment, buoyancy reversal, and other complex features of pyroclastic currents can be simulated in two and three dimensions, by exploiting efficient numerical solvers and the improved computational capability of modern supercomputers. However, numerical simulations of polydisperse gas-particle mixtures are quite computationally expensive, so that their use in hazard assessment studies (where there is the need of evaluating the probability of hazardous actions over hundreds of possible scenarios) is still challenging. To this aim, a simplified integral (box) model can be used, under the appropriate hypotheses, to describe the kinematics of pyroclastic density currents over a flat topography, their scaling properties and their depositional features. In this work, multiphase flow simulations are used to evaluate integral model approximations, to calibrate its free parameters and to assess the influence of the input data on the results. Two-dimensional numerical simulations describe the generation and decoupling of a dense, basal layer (formed by progressive particle sedimentation) from the dilute transport system. In the Boussinesq regime (i.e., for solid mass fractions below about 0.1), the current Froude number (i.e., the ratio between the current inertia and buoyancy) does not strongly depend on initial conditions and it is consistent to that measured in laboratory experiments (i.e., between 1.05 and 1.2). For higher density ratios (solid mass fraction in the range 0.1-0.9) but still in a relatively dilute regime (particle volume fraction lower than 0.01), numerical simulations demonstrate that the box model is still applicable, but the Froude number depends on the reduced

  3. Hydrodynamic modeling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2000-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  4. Hydrodynamic modeling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics.

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  5. Hydrodynamic modeling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    2000-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  6. Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics.

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    2001-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  7. The influence of molecular complexity on expanding flows of ideal and dense gases

    NARCIS (Netherlands)

    Harinck, J.; Guardone, A.; Colonna, P.

    2009-01-01

    This paper presents an investigation about the effect of the complexity of a fluid molecule on the fluid dynamic quantities sound speed, velocity, and Mach number in isentropic expansions. Ideal-gas and dense-gas expansions are analyzed, using the polytropic ideal gas and Van der Waals thermodynamic

  8. Combined effects of grain size, flow volume and channel width on geophysical flow mobility: three-dimensional discrete element modeling of dry and dense flows of angular rock fragments

    Science.gov (United States)

    Cagnoli, Bruno; Piersanti, Antonio

    2017-02-01

    We have carried out new three-dimensional numerical simulations by using a discrete element method (DEM) to study the mobility of dry granular flows of angular rock fragments. These simulations are relevant for geophysical flows such as rock avalanches and pyroclastic flows. The model is validated by previous laboratory experiments. We confirm that (1) the finer the grain size, the larger the mobility of the center of mass of granular flows; (2) the smaller the flow volume, the larger the mobility of the center of mass of granular flows and (3) the wider the channel, the larger the mobility of the center of mass of granular flows. The grain size effect is due to the fact that finer grain size flows dissipate intrinsically less energy. This volume effect is the opposite of that experienced by the flow fronts. The original contribution of this paper consists of providing a comparison of the mobility of granular flows in six channels with a different cross section each. This results in a new scaling parameter χ that has the product of grain size and the cubic root of flow volume as the numerator and the product of channel width and flow length as the denominator. The linear correlation between the reciprocal of mobility and parameter χ is statistically highly significant. Parameter χ confirms that the mobility of the center of mass of granular flows is an increasing function of the ratio of the number of fragments per unit of flow mass to the total number of fragments in the flow. These are two characteristic numbers of particles whose effect on mobility is scale invariant.

  9. Numerical investigation of influence on heat transfer characteristics to pneumatically conveyed dense phase flow by selecting models and boundary conditions

    Science.gov (United States)

    Zheng, Y.; Liu, Q.; Li, Y.

    2012-03-01

    Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with

  10. Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius Caldera

    Science.gov (United States)

    Cioni, Raffaello; Santacroce, Roberto; Sbrana, Alessandro

    The evolution of the Somma-Vesuvius caldera has been reconstructed based on geomorphic observations, detailed stratigraphic studies, and the distribution and facies variations of pyroclastic and epiclastic deposits produced by the past 20,000years of volcanic activity. The present caldera is a multicyclic, nested structure related to the emptying of large, shallow reservoirs during Plinian eruptions. The caldera cuts a stratovolcano whose original summit was at 1600-1900m elevation, approximately 500m north of the present crater. Four caldera-forming events have been recognized, each occurring during major Plinian eruptions (18,300 BP "Pomici di Base", 8000 BP "Mercato Pumice", 3400 BP "Avellino Pumice" and AD 79 "Pompeii Pumice"). The timing of each caldera collapse is defined by peculiar "collapse-marking" deposits, characterized by large amounts of lithic clasts from the outer margins of the magma chamber and its apophysis as well as from the shallow volcanic and sedimentary units. In proximal sites the deposits consist of coarse breccias resulting from emplacement of either dense pyroclastic flows (Pomici di Base and Pompeii eruptions) or fall layers (Avellino eruption). During each caldera collapse, the destabilization of the shallow magmatic system induced decompression of hydrothermal-magmatic and hydrothermal fluids hosted in the wall rocks. This process, and the magma-ground water interaction triggered by the fracturing of the thick Mesozoic carbonate basement hosting the aquifer system, strongly enhanced the explosivity of the eruptions.

  11. Investigating the use of Pyroclastics for Palaeointensity Determinations

    Science.gov (United States)

    Paterson, G. A.; Muxworthy, A. R.; Roberts, A. P.; Mac Niocaill, C.

    2008-12-01

    Palaeointensity experiments are time consuming and prone to failure, making it difficult to obtain good data. This limits the global palaeointensity database, which has inadequate spatial and temporal resolution. Developing reliable yet efficient experimental techniques is important for improving data quality, as is expanding the range of materials to investigate. By characterizing and understanding the behaviour of different materials, such as lithic clasts found within pyroclastic flows, we can assess their potential usefulness as palaeomagnetic recorders. Pre-existing lithic fragments are reheated as they are incorporated into pyroclastic density currents (PDCs) and their subsequent deposits. This partially resets their magnetization to record the ambient field at the time of eruption. The explosive nature of volcanic eruptions associated with PDCs frequently results in a wide range of lithic fragments in such deposits and the high temperatures involved (up to ~1200°C) can allow acquisition of an entirely new magnetization. We have studied the pyroclastic deposits of four historic volcanoes: Láscar in the Chilean Andes, Colima in Mexico, Mount St. Helens, USA, and Vesuvius, Italy. At Láscar, the emplacement temperature of the deposits exceeds the Curie temperature of the magnetic minerals, which maximizes the potential temperature range for obtaining palaeointensity determinations. Triple heating palaeointensity experiments, with strict selection criteria, yield a mean palaeointensity of 24.3±2.1 μT (N=22), which is in good agreement with the expected value of 24 μT. This indicates that the method has promise. The use of multiple lithologies in a single palaeointensity determination also provides confidence that the result is not biased by alteration within one of the lithologies. Pyroclastics, however, still suffer from the problems associated with palaeointensity experiments on lava flows. Samples collected from Mount St. Helens show a high degree of

  12. A Stratigraphic, Granulometric, and Textural Comparison of recent pyroclastic density current deposits exposed at West Island and Burr Point, Augustine Volcano, Alaska

    Science.gov (United States)

    Rath, C. A.; Browne, B. L.

    2011-12-01

    most display a fines-depleted distribution. Juvenile andesite clasts exist as either subrounded to subangular fragments with abundant vesicles that range in color from white to brown or dense clasts characterized by their porphyritic and glassy texture. Samples from neither eruption correlate in sorting or grain size with distance from the vent. Stratigraphic and granulometric data suggest differences in the manner in which these two pyroclastic density currents traveled and groundmass textures are interpreted as recording differences in how the two magmas ascended and erupted, whereas juvenile Burr Point clasts resemble other lava flows erupted from Augustine Volcano, vesicular and glassy juvenile West Island clasts bear resemblance to clasts derived from so-called "blast-generated" pyroclastic density deposits at Mt. St. Helens in 1980 and Bezymianny in 1956.

  13. Testing of porous SiC with dense coating under relevant conditions for Flow Channel Insert application

    Energy Technology Data Exchange (ETDEWEB)

    Ordás, N., E-mail: nordas@ceit.es [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Bereciartu, A.; García-Rosales, C. [CEIT and Tecnun (University of Navarra), Manuel de Lardizábal 15, 20018 San Sebastián (Spain); Moroño, A.; Malo, M.; Hodgson, E.R. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Abellà, J.; Colominas, S. [Institut Químic de Sarrià, University Ramon Llull, Via Augusta 390, 08017 Barcelona (Spain); Sedano, L. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)

    2014-10-15

    Highlights: • Porous SiC coated by CVD with a dense coating was developed for Flow Channel Inserts (FCI) in dual-coolant blanket concept. • Porous SiC was obtained following the sacrificial template technique, using Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} as sintering additives. • Flexural strength, thermal and electrical conductivity, and microstructure of uncoated and coated porous SiC are presented. • Adhesion of coating to porous SiC and its corrosion behavior under Pb-17.5Li at 700 °C are shown. - Abstract: Thermally and electrically insulating porous SiC ceramics are attractive candidates for Flow Channel Inserts (FCI) in dual-coolant blanket concepts thanks to its relatively inexpensive manufacturing route. To prevent tritium permeation and corrosion by Pb-15.7 a dense coating has to be applied on the porous SiC. Despite not having structural function, FCI must exhibit sufficient mechanical strength to withstand strong thermal gradients and thermo-electrical stresses during operation. This work summarizes the results on the development of coated porous SiC for FCI. Porous SiC was obtained following the sacrificial template technique, using Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} as sintering additives and a carbonaceous phase as pore former. Sintering was performed in inert gas at 1850–1950 °C during 15 min to 3 h, followed by oxidation at 650 °C to eliminate the carbonaceous phase. The most promising bulk materials were coated with a ∼30 μm thick dense SiC by CVD. Results on porosity, bending tests, thermal and electrical conductivity are presented. The microstructure of the coating, its adhesion to the porous SiC and its corrosion behavior under Pb-17.5Li are also shown.

  14. Alfv\\'en wave phase mixing in flows -- why over-dense solar coronal open magnetic field structures are cool?

    CERN Document Server

    Tsiklauri, D

    2015-01-01

    Our magnetohydrodynamic (MHD) simulations and analytical calculations show that, when a background flow is present, mathematical expressions for the Alfv\\'en wave (AW) damping via phase mixing are modified by a following substitution $C_A^\\prime(x) \\to C_A^\\prime(x)+V_0^\\prime(x)$, where $C_A$ and $V_0$ are AW phase and the flow speeds and prime denotes derivative in the direction across the background magnetic field. In uniform magnetic field and over-dense plasma structures, in which $C_A$ is smaller compared to surrounding plasma, the flow, that is confined to the structure, in the same direction as the AW, reduces the effect of phase mixing, because on the edges of the structure $C_A^\\prime$ and $V_0^\\prime$ have opposite sign. Thus, the wave damps via phase mixing {\\it slower} compared to the case without the flow. This is the consequence of the co-directional flow reducing the wave front stretching in the transverse direction. Although, the result is generic and is applicable to different laboratory or ...

  15. Toward a Facies Model for AMS Fabrics in Deposits from Pyroclastic Currents

    Science.gov (United States)

    Ort, M. H.; Newkirk, T.; Vilas, J. F.; Vazquez, J. A.

    2011-12-01

    Studies of the anisotropy of magnetic susceptibility (AMS) in deposits from pyroclastic density currents have been made for 30 years. Early studies sought to find vent locations, but later studies have also used AMS to interpret flow and depositional processes. These studies show that AMS fabrics reflect shear directions at the base of the depositional regime and thoughtful interpretations of the directions, coupled with good observations of the deposits, can lead to a better understanding of depositional and flow processes in the currents. Here, we compare the AMS fabrics and deposit characteristics of deposits of dense and dilute pyroclastic density currents in order to develop an AMS facies model for such deposits. Deposits from individual phreatomagmatic density currents produced in the NE Hopi Buttes volcanic field, NE Arizona, can be traced from the maar edge laterally for 1.5 km or more. This allows the depositional facies to be described and sampled for AMS. The most proximal facies, consisting of tuff breccias, is characterized by a disorganized AMS fabric, marked by some grouping of the AMS axes but a very weak foliation. By about 350 m from the maar rim and extending out over a kilometer, a well lineated and foliated fabric develops in the stratified to sand-wave-bearing lapilli-tuffs, reflecting the shear within the well-developed current. At distances over a km from the vent, where the deposits are plane-parallel tuffs, a girdled fabric develops, with overlapping K1 and K2 axes. This likely reflects weak shearing within the slowing flow. At Caviahue caldera, Neuquen, Argentina, lateral sampling of ignimbrites from within the caldera and on a SE transect to ~25 km from the caldera rim, reveals systematic changes in the AMS fabric, with less obvious changes in the sedimentary characteristics. Intracaldera ignimbrites are rheomorphic and very densely welded, and their AMS fabrics are very strongly foliated but with a weak lineation. Moving out from the

  16. Repetitive mixing events and Holocene pyroclastic activity at Pico de Orizaba and Popocatepetl, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cantagrel, J.M.; Gourgaud, A.; Robin, C.

    1984-01-01

    The Holocene volcanic activity which built up the present terminal cones of Pico de Orizaba and Popocatepetl in eastern Mexico, was characterized by repeated pyroclastic Saint-Vincent type eruptions. Radiocarbon data show that these paroxysmal events occurred at more or less regular intervals, and were followed by moderate activity producing ash and pumice falls and andesitic lava flows from the summit craters. Typical ash and scoria pyroclastic flows exhibit a heterogeneous composition given by the interaction of a dacitic component with a more basic andesitic one. Scoria bombs are characterized by banded to emulsified textures, mineralogical disequilibrium assemblages and linear chemical variations on element-element plots as exemplified by the Loma Grande flow at Pico. Periodic replenishments of the magmatic reservoir could be the major phenomenon that started mixing and consequently triggered the pyroclastic eruptions. 22 references.

  17. Repetitive mixing events and holocene pyroclastic activity at Pico de Orizaba and Popocatepetl (Mexico)

    Science.gov (United States)

    Cantagrel, J. M.; Gourgaud, A.; Robin, C.

    1984-12-01

    The Holocene volcanic activity which built up the present terminal cones of Pico de Orizaba and Popocatepetl in eastern Mexico, was characterized by repeated pyroclastic Saint-Vincent type eruptions. Radiocarbon data show that these paroxysmal events occurred at more or less regular intervals, and were followed by moderate activity producing ash and pumice falls and andesitic lava flows from the summit craters. Typical ash and scoria pyroclastic flows exhibit a heterogeneous composition given by the interaction of a dacitic component with a more basic andesitic one. Scoria bombs are characterized by banded to emulsified textures, mineralogical desequilibrium assemblages and linear chemical variations on element-element plots as exemplified by the Loma Grande flow at Pico. Periodic replenishments of the magmatic reservoir could be the major phenomenon that started mixing and consequently triggered the pyroclastic eruptions.

  18. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    Science.gov (United States)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product

  19. Insights into the October-November 2010 Gunung Merapi eruption (Central Java, Indonesia) from the stratigraphy, volume and characteristics of its pyroclastic deposits

    Science.gov (United States)

    Cronin, Shane J.; Lube, Gert; Dayudi, Devi S.; Sumarti, Sri; Subrandiyo, S.; Surono

    2013-07-01

    The 2010 eruption of Merapi was the second most deadly in the historic record of this volcano, claiming over 380 lives. By relating the observations of this eruption with detailed examination of deposit distribution, stratigraphy and sedimentology, a reconstruction of the properties of the pyroclastic density currents (PDCs) is presented, including the valley controlled block-and-ash flows (BAFs) and widespread, energetic pyroclastic surges. The distribution, volume and mobility characteristics of all types of PDC during the eruption sequence show evidence for levels of intensity unseen since the large-scale 1872 and 1930 eruption phases, especially during the climactic events of October 26 and November 5. Many tephra falls interbedded with PDC units show that most dome-collapse events occurred along with and between explosive vulcanian eruptions. The 2010 eruption produced very long-runout BAFs, reaching 16.1 km in the Kali Gendol on November 5. This runout could be explained by its large-volume (20 million m3), around 10 times that of previous Merapi BAFs during the last 130 years. Major avulsion of these dense BAFs to form overbank deposits became more common through the eruptive sequence as the valley was progressively filled with successive PDC deposits. Spreading avulsed BAFs were a particular hazard downstream of ~ 10 km where the landscape is less dissected. Less clear, however, is why pyroclastic surges extended up to 10 km from the vent on November 5 and > 6.4 km on October 26. These expanded much farther from BAF margins (~ 2 km) than ever seen before at Merapi. In one location they were decoupled from valley-centered BAFs with high momentum, traveling initially laterally across steep valley systems, before draining downslope. At this site, on the western side of the upper Gendol at around 3 km from source, surge decoupling was apparently exacerbated by upstream collision and deflection of high-flux, hot and gas-rich BAFs against the cliffs of Gunung

  20. Lubrication forces in dense granular flow with interstitial fluid: A simulation study with Discrete Element Method

    Science.gov (United States)

    Baran, Oleh; Ertas, Deniz; Halsey, Thomas; Zhou, Fuping

    2007-03-01

    Using three-dimensional molecular dynamics simulations, we study steady gravity-driven flows of frictional inelastic spheres of diameter d and density ρg down an incline, interacting through two-body lubrication forces in addition to granular contact forces. Scaling arguments suggest that, in 3D, these forces constitute the dominant perturbation of an interstitial fluid for small Reynolds number Re and low fluid densityρ. Two important parameters that characterize the strength of the lubrication forces are fluid viscosity and grain roughness. We observe that incline flows with lubrication forces exhibit a packing density that decreases with increasing distance from the surface. As the incline angle is increased, this results in a severely dilated basal layer that looks like ``hydroplaning'' similar to that observed in geological subaqueous debris flows. This is surprising since the model explicitly disallows any buildup of fluid pressure in the base of the flow, and suggests that hydroplaning might have other contributing factors besides this traditional explanation. The local packing density is still determined by the dimensionless strain rate I≡γ1ptd√ρg/p , where p is the average normal stress, obeying a ``dilatancy law'' similar to dry granular flows.

  1. Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows

    Science.gov (United States)

    Park, Joel T.; Mannheimer, Richard J.; Grimley, Terrence A.; Morrow, Thomas B.

    1989-06-01

    An experimental description of the flow structure of non-Newtonian slurries in the laminar, transitional, and fully-developed turbulent pipe flow regimes was the primary objective of this research. Experiments were conducted in a large-scale pipe slurry flow facility with an inside diameter of 51 mm (2 inches). Approximately, 550 liters (145 gal) of slurry were necessary in the operation of the loop. Detailed velocity profile measurements by a two-color, two-component laser Doppler anemometer (LDA) were accomplished in a transparent test section with an optically transparent slurry. These velocity measurements were apparently the first ever reported for a non-Newtonian slurry with a yield value. The transparent slurry was formulated for these experiments from silica with a particle size of one to two microns, mineral oil, and Stoddard solvent. From linear regression analysis of concentric-cylinder viscometer data, the slurry exhibited yield-power-law behavior with a yield stress of 100 dynes/cm(sup 2), and an exponent of 0.630 for a solids concentration of 5.65 percent by weight. Good agreement was attained with rheological data derived from the pressure drop data in the flow loop under laminar flow conditions. The rheological properties of the transparent slurry were similar to many industrial slurries, including coal slurries, which have a yield value.

  2. DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY

    Energy Technology Data Exchange (ETDEWEB)

    Moses Bogere

    2011-08-31

    The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.

  3. A study of dilute to dense flow in a circulating fluidized bed

    DEFF Research Database (Denmark)

    Ibsen, Claus Hübbe; Solberg, Tron; Hjertager, Bjørn H.

    2001-01-01

    This work concerns a experimental and numerical study on how the amount of particles influences the flow in the CFB. Experiments are performed with a 1D Laser and Phase doppler anemometry, whereby data of axial velocity, RMS velocity and particle diameter is obtained. The numerical simulations ar...

  4. Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows

    Science.gov (United States)

    Park, J. T.; Mannheimer, R. J.; Grimley, T. A.; Morrow, T. B.

    1988-05-01

    An experimental description of the flow structure of non-Newtonian slurries in the laminar, transitional, and full turbulent pipe flow regimes is the primary objective of this research. Measurements include rheological characterization of the fluid and local fluid velocity measurements with a Laser Doppler Velocimeter (LDV). Optical access to the flow is gained through a test section and model slurry which are both transparent. The model slurry is formulated from silica gel particles and hydrocarbon liquid mixture whose indices of refraction are matched so that light is not scattered from the particles. Experiments are being conducted in a large-scale pipe slurry. Flow measurements including turbulence quantities such as Reynolds stress were measured with a two-component two-color LDV. The present research indicates that non-Newtonian slurries are possible with concentrations of a few percent by weight of small particles whose sizes are two microns or less. A non-Newtonian slurry from small particles could maintain large particles (one millimeter size) at high concentrations in suspension almost indefinitely. Such a slurry would prevent particle fallout and its associated problems.

  5. Risk from lava flow inundations in densely populated areas: the case of Etna volcano

    Science.gov (United States)

    Del Negro, C.; Cappello, A.; Bilotta, G.; Ganci, G.; Herault, A.

    2016-12-01

    The ever-expanding use of areas near the volcano increases the potential impact of future eruptions on the regional economy and on the health and safety of the inhabitants. The increasing exposure of a larger population, which has almost tripled in the area around Mt. Etna during the last 150 years, is often derived from a poor assessment of the volcanic hazard, allowing inappropriate land use in vulnerable areas. Therefore, a correct assessment is an essential component in reducing the losses due to volcanic disasters. A detailed map showing areas that are likely to be inundated by future lava flows is extremely useful, allowing people living nearby to judge for themselves the relation between potentially dangerous areas and their daily lives. Here we quantify the lava flow risk at Etna volcano using a GIS-based methodology that integrates the hazard with the exposure of elements at stake. The hazard, showing the long-term probability related to lava flow inundation, is obtained combining three different kinds of information: the spatiotemporal probability for the future opening of new eruptive vents, the event probability associated with classes of expected eruptions, and the overlapping of lava flow paths simulated by the MAGFLOW model. Data including all elements at stake were gathered from different web portals and organized in four thematic layers: population, strategic buildings, other buildings and networks, and land use. The total exposure is given by a weighted linear combination of the four thematic layers, where weights are calculated using the Analytic Hierarchy Process (AHP). The resulting risk map shows the likely damage caused by a lava flow eruption, allowing rapidly visualizing the areas in which there would be the greatest amount of losses in case of a flank eruption occurs at Etna.

  6. Identifying pyroclastic and lahar deposits and assessing erosion and lahar hazards at active volcanoes using multi-temporal HSR image analysis and techniques for change detection

    Science.gov (United States)

    Kassouk, Zeineb; Thouret, Jean-Claude; Oehler, Jean-François; Solikhin, Akhmad

    2014-05-01

    The increasing availability of high-spatial resolution (HSR) remote sensing images leads to new opportunities for hazard assessment in the case of active volcanoes. Object-oriented analysis (OOA) of HSR images helps to simultaneously exploit spatial, spectral and contextual information. Here, we identify and delineate pyroclastic density current (PDC) and post-eruption lahar deposits on the south flank of Merapi volcano, Indonesia, after the large 2010 eruption. GeoEye-1 (2010 and 2011) and Pleiades (2012) images were analyzed with an adjusted object-oriented method. The PDC deposits include valley-confined block-and-ash flows (BAFs), unconfined, overbank pyroclastic flows (OPFs), and high-energy surges or ash-cloud surges. We follow up the evolution of the pyroclastic and lahar deposits through changes in the spectral indices calculated in segmented features, which represent the principal units of deposits and devastated areas. The object-oriented analysis has been applied to the pseudo image comprising of three spectral indices (NDWI water index; NDVI vegetation index; and NDRSI Red Soil Index). This pseudo image has enabled us to delineate fifteen units of PDC and lahar deposits, and damaged forests and settlements in the Gendol-Opak catchment (c.80 sqkm). The units represent 75% of classes obtained by photointerpretation of the same image and supported by field observations. A combination of NDWI and NDVI helps to separate areas affected by surges (NDWI 0.3 and NDWIsurges. The NDWI/NDRSI 2010 plot displays two clusters: NDRSI close to 0 is assigned to scoria-rich PFs while NDWI close to 0 and NDRSI4 x106/km2/year) from erosion acting in the Gendol valley, which characterize composite volcanoes after a large eruption. HSR images have also helped to measure geomorphic characteristics (channel capacity/wetted section; longitudinal change in channel confinement, and channel sinuosity) of river channels, which favor overbank and avulsion of lahars on a densely

  7. A two-phase solid/fluid model for dense granular flows including dilatancy effects

    Science.gov (United States)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys

    2016-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To

  8. A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows

    Science.gov (United States)

    Doisneau, François; Arienti, Marco; Oefelein, Joseph C.

    2017-01-01

    For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier-Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle-particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.

  9. A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows

    Energy Technology Data Exchange (ETDEWEB)

    Doisneau, François, E-mail: fdoisne@sandia.gov; Arienti, Marco, E-mail: marient@sandia.gov; Oefelein, Joseph C., E-mail: oefelei@sandia.gov

    2017-01-15

    For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier–Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle–particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.

  10. Investigation of proper modeling of very dense granular flows in the recirculation system of CFBs

    Institute of Scientific and Technical Information of China (English)

    Aristeidis Nikolopoulos; Nikos Nikolopoulos; Nikos Varveris; Sotirios Karellas; Panagiotis Grammelis; Emmanuel Kakaras

    2012-01-01

    The aim of this paper is the development of new models and/or the improvement of existing numerical models,used for simulating granular flow in CFB (circulating fluidized bed) recirculation systems.Most recent models follow the TFM (two-fluid model) methodology,but they cannot effectively simulate the inter-particle friction forces in the recirculation system,because the respective stress tensor does not incorporate compressibility of flow due to change of effective particle density.As a consequence,the induced normal and shear stresses are not modeled appropriately during the flow of the granular phase in the CFB recirculation system.The failure of conventional models,such as that of von Mises/Coulomb,is mainly caused by false approximation of the yield criterion which is not applicable to the CFB recirculation system.The present work adopts an alternative yield function,used for the first time in TFM Eulerian modeling.The proposed model is based on the Pitman-Schaeffer-Gray-Stiles yield criterion.Both the temporal deformation of the solid granular phase and the repose angle that the granular phase forms are more accurately simulated by this model.The numerical results of the proposed model agree well with experimental data,implying that frictional forces are efficiently simulated by the new model.

  11. Singular effective slip length for longitudinal flow over a dense bubble mattress

    CERN Document Server

    Schnitzer, Ory

    2016-01-01

    We consider the effective hydrophobicity of a Cassie-state liquid above a periodically grooved surface, with trapped shear-free bubbles protruding between no-slip ridges at a pi/2 contact angle. Specifically, we carry out a singular-perturbation analysis in the limit where the bubbles are closely separated, finding the effective slip length for longitudinal flow along the the ridges as a[pi*sqrt(a/d) - 2.53 + o(1)], a being the bubble radius and d the width of the no-slip segments; the square-root divergence with a/d highlights the strong hydrophobic character of this configuration. The leading singular term follows from a local analysis of the gap regions between the bubbles, together with general matching considerations and a global relation linking the applied shear, the protrusion geometry, and the variation of the flow speed transverse to the no-slip ridges. The corrective constant term is found as an integral quantity of the leading-order "outer" problem, where the bubbles appear to be touching. We find...

  12. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

    Science.gov (United States)

    McGrath, T.; St. Clair, J.; Balachandar, S.

    2017-06-01

    Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

  13. Singular effective slip length for longitudinal flow over a dense bubble mattress

    Science.gov (United States)

    Schnitzer, Ory

    2016-09-01

    We consider the effective hydrophobicity of a periodically grooved surface immersed in liquid, with trapped shear-free bubbles protruding between the no-slip ridges at a π /2 contact angle. Specifically, we carry out a singular-perturbation analysis in the limit ɛ ≪1 where the bubbles are closely spaced, finding the effective slip length (normalized by the bubble radius) for longitudinal flow along the ridges as π /√{2 ɛ }-(12 /π ) ln2 +(13 π /24 ) √{2 ɛ }+o (√{ɛ }) , the small parameter ɛ being the planform solid fraction. The square-root divergence highlights the strong hydrophobic character of this configuration; this leading singular term (along with the third term) follows from a local lubrication-like analysis of the gap regions between the bubbles, together with general matching considerations and a global conservation relation. The O (1 ) constant term is found by matching with a leading-order solution in the outer region, where the bubbles appear to be touching. We find excellent agreement between our slip-length formula and a numerical scheme recently derived using a unified-transform method [Crowdy, IMA J. Appl. Math. 80, 1902 (2015), 10.1093/imamat/hxv019]. The comparison demonstrates that our asymptotic formula, together with the diametric dilute-limit approximation [Crowdy, J. Fluid Mech. 791, R7 (2016), 10.1017/jfm.2016.88], provides an elementary analytical description for essentially arbitrary no-slip fractions.

  14. The dense ring in the Coalsack: the merging of two subsonic flows

    CERN Document Server

    Rathborne, J M; Walsh, W; Saul, M; Butner, H M

    2008-01-01

    A recent high angular resolution extinction map toward the most opaque molecular globule, Globule 2, in the Coalsack Nebula revealed that it contains a strong central ring of dust column density. This ring represents a region of high density and pressure that is likely a transient and possibly turbulent structure. Dynamical models suggest that the ring has formed as a result of a sudden increase in external pressure which is driving a compression wave into the Globule. Here we combine the extinction measurements with a detailed study of the C18O (1-0) molecular line profiles toward Globule 2 in order to investigate the overall kinematics and, in doing so, test this dynamical model. We find that the ring corresponds to an enhancement in the C18O non-thermal velocity dispersion and non-thermal pressure. We observe a velocity gradient across the Globule that appears to trace two distinct systematic subsonic velocity flows that happen to converge within the ring. We suggest, therefore, that the ring has formed as...

  15. Localized Pyroclastic Deposits in the Grimaldi Region of the Moon

    Science.gov (United States)

    Hawke, B. R.; Giguere, T. A.; Gaddis, L. R.; Gustafson, O.; Lawrence, S. J.; Stopar, J. D.; Peterson, C. A.; Bell, J. F.; Robinson, M. S.; LROC Science Team

    2012-03-01

    LRO Camera WAC and NAC images were used to identify and characterize previously unknown localized pyroclastic deposits in the Grimaldi region. Some are among the smallest pyroclastic deposits yet identified on the lunar surface.

  16. The compositional and physical properties of localized lunar pyroclastic deposits

    Science.gov (United States)

    Trang, David; Gillis-Davis, Jeffrey J.; Lemelin, Myriam; Cahill, Joshua T. S.; Hawke, B. Ray; Giguere, Thomas A.

    2017-02-01

    Lunar localized pyroclastic deposits are low albedo deposits with areas thermal-infrared-derived measures of surficial rock abundance and regolith density, and mineral abundances. Our goals are to (1) quantitatively characterize the physical and mineralogical properties of each localized pyroclastic deposit, (2) investigate the physical and mineralogical variations among localized pyroclastic deposits, (3) compare these properties of localized ( 2500 km2), and (4) provide useful parameters for future volcanological modeling. From this study, we find that: (1) localized pyroclastic deposits exhibit low relief structures, (2) the surface rock abundance and circular polarization ratio of localized pyroclastic deposits display a wide range of values (0.2-0.5% and 0.3-0.6, respectively), (3) the glass abundance of localized pyroclastic deposits vary between ∼0 and ∼80 wt.%, (4) there are four types of localized pyroclastic deposits based upon the surface rock abundance and glass abundance parameters, (5) pyroclastic deposits within the same floor-fractured crater tend to have similar properties, and (6) localized pyroclastic deposits are diverse with respect to regional pyroclastic deposits, but a subset of localized pyroclastic deposits have similar physical and mineralogical properties to regional pyroclastic deposits.

  17. Interaction of pyroclastic density currents with human settlements: Evidence from ancient Pompeii

    Science.gov (United States)

    Gurioli, Lucia; Pareschi, M. Teresa; Zanella, Elena; Lanza, Roberto; Deluca, Enrico; Bisson, Marina

    2005-06-01

    Integrating field observations and rock-magnetic measurements, we report how a turbulent pyroclastic density current interacted with and moved through an urban area. The data are from the most energetic, turbulent pyroclastic density current of the A.D. 79 eruption of Vesuvius, Italy, which partially destroyed the Roman city of Pompeii. Our results show that the urban fabric was able to divide the lower portion of the current into several streams that followed the city walls and the intracity roads. Vortices, revealed by upstream particle orientations and decreases in deposit temperature, formed downflow of obstacles or inside cavities. Although these perturbations affected only the lower part of the current and were localized, they could represent, in certain cases, cooler zones within which chances of human survival are increased. Our integrated field data for pyroclastic density current temperature and flow direction, collected for the first time across an urban environment, enable verification of coupled thermodynamic numerical models and their hazard simulation abilities.

  18. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps

    Science.gov (United States)

    Neri, Augusto; Bevilacqua, Andrea; Esposti Ongaro, Tomaso; Isaia, Roberto; Aspinall, Willy P.; Bisson, Marina; Flandoli, Franco; Baxter, Peter J.; Bertagnini, Antonella; Iannuzzi, Enrico; Orsucci, Simone; Pistolesi, Marco; Rosi, Mauro; Vitale, Stefano

    2015-04-01

    Campi Flegrei (CF) is an example of an active caldera containing densely populated settlements at very high risk of pyroclastic density currents (PDCs). We present here an innovative method for assessing background spatial PDC hazard in a caldera setting with probabilistic invasion maps conditional on the occurrence of an explosive event. The method encompasses the probabilistic assessment of potential vent opening positions, derived in the companion paper, combined with inferences about the spatial density distribution of PDC invasion areas from a simplified flow model, informed by reconstruction of deposits from eruptions in the last 15 ka. The flow model describes the PDC kinematics and accounts for main effects of topography on flow propagation. Structured expert elicitation is used to incorporate certain sources of epistemic uncertainty, and a Monte Carlo approach is adopted to produce a set of probabilistic hazard maps for the whole CF area. Our findings show that, in case of eruption, almost the entire caldera is exposed to invasion with a mean probability of at least 5%, with peaks greater than 50% in some central areas. Some areas outside the caldera are also exposed to this danger, with mean probabilities of invasion of the order of 5-10%. Our analysis suggests that these probability estimates have location-specific uncertainties which can be substantial. The results prove to be robust with respect to alternative elicitation models and allow the influence on hazard mapping of different sources of uncertainty, and of theoretical and numerical assumptions, to be quantified.

  19. Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region.

    Science.gov (United States)

    Shojaaee, Zahra; Roux, Jean-Noël; Chevoir, François; Wolf, Dietrich E

    2012-07-01

    We report on a numerical study of the shear flow of a simple two-dimensional model of a granular material under controlled normal stress between two parallel smooth frictional walls moving with opposite velocities ± V. Discrete simulations, which are carried out with the contact dynamics method in dense assemblies of disks, reveal that, unlike rough walls made of strands of particles, smooth ones can lead to shear strain localization in the boundary layer. Specifically, we observe, for decreasing V, first a fluidlike regime (A), in which the whole granular layer is sheared, with a homogeneous strain rate except near the walls, then (B) a symmetric velocity profile with a solid block in the middle and strain localized near the walls, and finally (C) a state with broken symmetry in which the shear rate is confined to one boundary layer, while the bulk of the material moves together with the opposite wall. Both transitions are independent of system size and occur for specific values of V. Transient times are discussed. We show that the first transition, between regimes A and B, can be deduced from constitutive laws identified for the bulk material and the boundary layer, while the second one could be associated with an instability in the behavior of the boundary layer. The boundary zone constitutive law, however, is observed to depend on the state of the bulk material nearby.

  20. Dune bedforms produced by dilute pyroclastic density currents from the August 2006 eruption of Tungurahua volcano, Ecuador.

    Science.gov (United States)

    Douillet, Guilhem Amin; Pacheco, Daniel Alejandro; Kueppers, Ulrich; Letort, Jean; Tsang-Hin-Sun, Ève; Bustillos, Jorge; Hall, Minard; Ramón, Patricio; Dingwell, Donald B

    A series of pyroclastic density currents were generated at Tungurahua volcano (Ecuador) during a period of heightened activity in August 2006. Dense pyroclastic flows were confined to valleys of the drainage network, while dilute pyroclastic density currents overflowed on interfluves where they deposited isolated bodies comprising dune bedforms of cross-stratified ash exposed on the surface. Here, the description, measurement, and classification of more than 300 dune bedforms are presented. Four types of dune bedforms are identified with respect to their shape, internal structure, and geometry (length, width, thickness, stoss and lee face angles, and stoss face length). (1) "Elongate dune bedforms" have smooth shapes and are longer (in the flow direction) than wide or thick. Internal stratification consists of stoss-constructional, thick lensoidal layers of massive and coarse-grained material, alternating with bedsets of fine laminae that deposit continuously on both stoss and lee sides forming aggrading structures with upstream migration of the crests. (2) "Transverse dune bedforms" show linear crests perpendicular to the flow direction, with equivalent lengths and widths. Internally, these bedforms exhibit finely stratified bedsets of aggrading ash laminae with upstream crest migration. Steep truncations of the bedsets are visible on the stoss side only. (3) "Lunate dune bedforms" display a barchanoidal shape and have stratification patterns similar to those of the transverse ones. Finally, (4) "two-dimensional dune bedforms" are much wider than long, exhibit linear crests and are organized into trains. Elongate dune bedforms are found exclusively in proximal deposition zones. Transverse, lunate, and two-dimensional dune bedforms are found in distal ash bodies. The type of dune bedform developed varies spatially within an ash body, transverse dune bedforms occurring primarily at the onset of deposition zones, transitioning to lunate dune bedforms in intermediate

  1. Identifying Distinguishing Characteristics of Secondary Pyroclastic Density Currents

    Science.gov (United States)

    Isom, S. L.; Brand, B. D.

    2014-12-01

    Pyroclastic density currents (PDCs) are ground-hugging mixtures of volcanic particles and gas that travel down the slopes of erupting volcanoes. The combination of high velocities, high bulk densities (due to particles in the current) and high temperatures make PDCs the most dangerous and deadly hazard associated with explosive volcanism. Secondary explosive phenomenon associated with PDCs, such as inland-directed surges (e.g., Montserrat, 2003) and phreatic explosions (e.g., Mt St Helens 1980) can increase the area affected and duration of the hazard. However, little work has been done on distinguishing the deposits of secondary explosive phenomenon from primary phenomenon. Samples have been acquired from the 1980 Mt St Helens phreatic explosion crater deposits and the 2003 eruptive event at Montserrat where a PDC flowed into the ocean, causing an inland-directed surge (Edmonds and Herd, 2005. Geology 33.4:245-248). The samples will be analyzed via depositional characteristics, granulometry, componentry, microscopic analysis and scanning electron microscope imaging. We hypothesize that thermal cracking or vesicle distortion (e.g., compression or hindered expansion) may occur in hot pyroclasts that enter a body of water, leading to a difference between the ash textures of primary PDCs, phreatic surges and inland-directed surge deposits. Analyzing granulometry and componentry from parent flows and secondary flows may also reveal distinguishing characteristics that will allow us to constrain differences in segregation mechanisms of particles for each phenomenon. Determining distinguishing depositional characteristics of these secondary phenomena is important for assessing their occurrence during past eruptions and identifying conditions conducive to the formation of secondary explosions. This will result in the ability to make more accurate hazard maps for volcanoes prone to explosive activity.

  2. The 2010 Pyroclastic Density Currents of Merapi Volcano, Central Java, Indonesia

    Science.gov (United States)

    Charbonnier, Sylvain; Germa, Aurelie; Connor, Chuck; Connor, Laura; Dixon, Tim; Komorowski, Jean-Christophe; Gertisser, Ralf; Lavigne, Franck; Preece, Katie

    2013-04-01

    The 2010 pyroclastic density currents (PDC) at Merapi present a rare opportunity to collect a uniquely detailed dataset of the source, extent, lateral variations and impact of various PDC deposits on a densely populated area. Using traditional volcanological field-based methods and multi-temporal dataset of high-resolution satellite imagery, a total of 23 PDC events have been recognized, including 5 main channeled flows, 15 overbank flows derived from overspill and re-channelization of the main PDCs into adjacent tributaries and two main surge events. The 2010 PDC deposits covered an area of ~22.3 km2, unequally distributed between valley-filling (6.9%), overbank (22.4%) and ash-cloud surge deposits (71.7%). Their total estimated volume is ~36.3×106 m3, with ~50.2% of this volume accounting for valley-filling deposits, 39.3% for overbank deposits and 10.5% for ash-cloud surge deposits. The internal architecture and facies variations of the 2010 PDC deposit were investigated using data collected from 30 stratigraphic sections measured after one rainy season of erosion. The results show that complex, local-scale variations in flow dynamics and deposit architectures are apparent and that the main factors that control the propagation of the main flows and their potential hazards for overbanking were driven by: (1) the rapid emplacement of several voluminous PDCs, associated with the steady infilling of the receiving landscape after the two first phases of the eruption; (2) longitudinal changes in channel capacity following increased sinuosity in the valley and decreased containment space; and (3) the effects of varying generation mechanisms (gravitational dome collapse, vertical or lateral dome explosions and column-collapse) and source materials involved during individual PDC forming events. Integration of these data into numerical simulations of the 3-5 November channeled and overbank PDCs using two well-established geophysical mass flow models, Titan2D and Volcflow

  3. Transport and deposition of pyroclastic material from the ˜1000 A.D. caldera-forming eruption of Volcán Ceboruco, Nayarit, Mexico

    Science.gov (United States)

    Browne, B. L.; Gardner, J. E.

    2005-06-01

    The complex eruption sequence from the ˜1000 A.D. caldera-forming eruption of Volcán Ceboruco, known as the Jala Pumice, offers an exceptional opportunity to examine how pyroclastic material is transported and deposited from pyroclastic density currents over variable topography. Three main pyroclastic surge deposits (S1, S2, and S3) and two pyroclastic flow deposits (Marquesado and North-Flank PFDs) were emplaced during this eruption. Pyroclastic surge deposits are massive, planar, or cross-bedded, poor-to-well sorted, and display fluctuations in thickness, median diameter, sorting, and lithology as a function of distance, topography, and flow dynamics. Marquesado pyroclastic flow deposits reveal lateral variations from massive, poorly sorted deposits located within 5 km of Ceboruco to planar bedded, moderately well sorted deposits located >15 km away over the nearly horizontal topography to the south of Ceboruco. North-Flank pyroclastic flow deposits also reveal lateral variations from massive, poorly sorted deposits located within 4 km of Ceboruco to planar bedded, moderately well sorted deposits located 8 km away atop an escarpment that steeply rises 230 m from the northern valley floor. Field observations, granulometric analyses, component analyses, and crystal sedimentation calculations along flow-parallel sampling transects all suggest that both surges and flows were density stratified currents, where deposition occurred from a basal region of higher particle concentration that was supplied from an overlying dilute layer that transports particles in suspension. This supports the idea of a transition between “flow” and “surge” end members with variations in particle concentration. Topography greatly affects the transport and depositional capacity of the pyroclastic density currents as a result of “blocking”, either by topographic obstacles or by abrupt breaks at the base of volcano slopes, whereas the origin of Jala Pumice surge deposits

  4. A two-layer depth-averaged model for both the dilute and the concentrated parts of pyroclastic currents

    Science.gov (United States)

    Kelfoun, Karim

    2017-06-01

    Pyroclastic currents are very destructive and their complex behavior makes the related hazards difficult to predict. A new numerical model has been developed to simulate the emplacement of both the concentrated and the dilute parts of pyroclastic currents using two coupled depth-averaged approaches. Interaction laws allow the concentrated current (pyroclastic flow) to generate a dilute current (pyroclastic surge) and, inversely, the dilute current to form a concentrated current or a deposit. The density of the concentrated current is assumed to be constant during emplacement, whereas the density of the dilute current changes depending on the particle supply from the concentrated current and the mass lost through sedimentation. The model is explored theoretically using simplified geometries as proxies for natural source conditions and topographies. It reproduces the relationships observed in the field between the surge genesis and the topography: the increase in surge production in constricted valleys, the decoupling between the concentrated and the dilute currents, and the formation of surge-derived concentrated flows. The strong nonlinear link between the surge genesis and the velocity of the concentrated flow beneath it could explain the sudden occurrence of powerful and destructive surges and the difficulty of predicting this occurrence. A companion paper compares the results of the model with the field data for the eruption of Merapi in 2010 and demonstrates that the approach is able to reproduce the natural emplacement of the concentrated and the dilute pyroclastic currents studied with good accuracy.

  5. Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data

    Directory of Open Access Journals (Sweden)

    R. Greco

    2013-10-01

    Full Text Available A one-dimensional hydrological model of a slope covered with pyroclastic materials is proposed. The soil cover is constituted by layers of loose volcanic ashes and pumices, with a total thickness between 1.8 m and 2.5 m, lying upon a fractured limestone bedrock. The mean inclination of the slope is around 40°, slightly larger than the friction angle of the ashes. Thus, the equilibrium of the slope, significantly affected by the cohesive contribution exerted by soil suction in unsaturated conditions, may be altered by rainfall infiltration. The model assumes a single homogeneous soil layer occupying the entire depth of the cover, and takes into account seasonally variable canopy interception of precipitation and root water uptake by vegetation, mainly constituted by deciduous chestnut woods with a dense underbrush growing during late spring and summer. The bottom boundary condition links water potential at the soil–bedrock interface with the fluctuations of the water table of the aquifer located in the fractured limestone, which is conceptually modelled as a linear reservoir. Most of the model parameters have been assigned according to literature indications or from experimental data. Soil suction and water content data measured between 1 January 2011 and 20 July 2011 at a monitoring station installed along the slope allowed the remaining parameters to be identified. The calibrated model, which reproduced very closely the data of the calibration set, has been applied to the simulation of the hydrological response of the slope to the hourly precipitation record of 1999, when a large flow-like landslide was triggered close to the monitored location. The simulation results show that the lowest soil suction ever attained occurred just at the time the landslide was triggered, indicating that the model is capable of predicting slope failure conditions.

  6. Palaeomagnetic Emplacement Temperature Determinations of Pyroclastic and Volcaniclastic Deposits in Southern African Kimberlite Pipes

    Science.gov (United States)

    Fontana, G.; Mac Niocaill, C.; Brown, R.; Sparks, R. S.; Matthew, F.; Gernon, T. M.

    2009-12-01

    Kimberlites are complex, ultramafic and diamond-bearing volcanic rocks preserved in volcanic pipes, dykes and craters. The formation of kimberlite pipes is a strongly debated issue and two principal theories have been proposed to explain pipe formation: (1) the explosive degassing of magma, and (2) the interaction of rising magma with groundwater (phreatomagmatism). Progressive thermal demagnetization studies are a powerful tool for determining the emplacement temperatures of ancient volcanic deposits and we present the first application of such techniques to kimberlite deposits. Lithic clasts were sampled from a variety of lithofacies, from three pipes for which the internal geology is well constrained (A/K1 pipe, Orapa Mine, Botswana and the K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions and layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Lithic clasts sampled from layered and massive vent-filling pyroclastic deposits in A/K1 were emplaced at >590° C. Results from K1 and K2 provide a maximum emplacement temperature limit for vent-filling breccias of 420-460° C; and constrain equilibrium deposit temperatures at 300-340° C. Crater-filling volcaniclastic kimberlite breccias and talus deposits from A/K1 were emplaced at ambient temperatures, consistent with infilling of the pipe by post-eruption epiclastic processes. Identified within the epiclastic crater-fill succession is a laterally extensive 15-20 metre thick kimberlite pyroclastic flow deposit emplaced at temperatures of 220-440° C. It overlies the post-eruption epiclastic units and is considered an extraneous pyroclastic kimberlite deposit erupted from another kimberlite vent. The results provide important constraints on kimberlite emplacement mechanisms and eruption dynamics. Emplacement temperatures of >590°C for pipe-filling pyroclastic deposits

  7. Towards the definition of AMS facies in the deposits of pyroclastic density currents

    Science.gov (United States)

    Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.; Ort, M.H.; Porreca, Massimiliano; Geissman, J.W.

    2014-01-01

    Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate–strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation.

  8. Vertical pneumatic conveying in dilute and dense-phase flows: experimental study of the influence of particle density and diameter on fluid dynamic behavior

    Directory of Open Access Journals (Sweden)

    Narimatsu C.P.

    2001-01-01

    Full Text Available In this work, the effects of particle size and density on the fluid dynamic behavior of vertical gas-solid transport of Group D particles in a 53.4 mm diameter transport tube were studied. For the conditions tested, the experimental curves of pressure gradient versus air velocity presented a minimum pressure gradient point, which is associated with a change in the flow regime from dense to dilute phase. The increases in particle size from 1.00 to 3.68 mm and in density from 935 to 2500 kg/m³ caused an increase in pressure gradient for the dense-phase transport region, but were not relevant in dilute transport. The transition velocity between dense and dilute flow (Umin also increased with increasing particle density and diameter. An empirical equation was fitted for predicting transition air velocity for the transport of glass spheres. Additional experiments, covering a wider range of conditions and particles properties, are still needed to allow the fitting of a generalized equation for prediction of Umin.

  9. Dense Breasts

    Science.gov (United States)

    ... also appear white on mammography, they can be hidden by or within dense breast tissue. Other imaging ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  10. Mercury's Pyroclastic Deposits and their spectral variability

    Science.gov (United States)

    Besse, Sebastien; Doressoundiram, Alain

    2016-10-01

    Observations of the MESSENGER spacecraft in orbit around Mercury have shown that volcanism is a very important process that has shaped the surface of the planet, in particular in its early history.In this study, we use the full range of the MASCS spectrometer (300-1400nm) to characterize the spectral properties of the pyroclastic deposits. Analysis of deposits within the Caloris Basin, and on other location of Mercury's surface (e.g., Hesiod, Rachmaninoff, etc.) show two main results: 1) Spectral variability is significant in the UV and VIS range between the deposits themselves, and also with respect to the rest of the planet and other features like hollows, 2) Deposits exhibit a radial variability similar to those found with the lunar pyroclastic deposits of floor fractured craters.These results are put in context with the latest analysis of other instruments of the MESSENGER spacecraft, in particular the visible observations from the imager MDIS, and the elemental composition given by the X-Ray spectrometer. Although all together, the results do not allow pointing to compositional variability of the deposits for certain, information on the formation mechanisms, the weathering and the age formation can be extrapolated from the radial variability and the elemental composition.

  11. Pyroclastics Northeast of Gassendi Crater: Discovery/Characteristics/Implications

    Science.gov (United States)

    Giguere, T. A.; Hawke, B. R.; Trang, D.; Gaddis, L. R.; Lawrence, S. J.; Stopar, J. D.; Gustafson, J. O.; Boyce, J. M.; Gillis-Davis, J. J.

    2017-01-01

    In our ongoing effort to better understand lunar volcanism on the Moon, we are investigating pyroclastic deposits in the Gassendi region. Interest in pyroclastics has remained high due to the availability of high-resolution data (LRO, Kaguya), which is used to build on previous remote sensing studies [e.g., 1, 2, 3] and also extensive studies of lunar pyroclastic glasses [4, 5]. Analyses conducted in the laboratory of pyroclastic spheres from several deposits show that this volcanic material had a greater depth of origin and lesser fractional crystallization than mare basalts [e.g., 4, 6]. Data indicates that pyroclastic glasses are the best examples of primitive materials on the Moon, and they are important for both characterizing the lunar interior and as a starting place for under-standing the origin and evolution of lunar basaltic magmatism [2].

  12. Swift snowmelt and floods (lahars) caused by great pyroclastic surge at Mount St Helens volcano, Washington, 18 May 1980

    Science.gov (United States)

    Waitt, R.B.

    1989-01-01

    The initial explosions at Mount St. Helens, Washington, on the moring of 18 May 1980 developed into a huge pyroclastic surge that generated catastrophic floods off the east and west flanks of the volcano. Near-source surge deposits on the east and west were lithic, sorted, lacking in accretionary lapilli and vesiculated ash, not plastered against upright obstacles, and hot enough to char wood - all attributes of dry pyroclastic surge. Material deposited at the surge base on steep slopes near the volcano transformed into high-concentration lithic pyroclastic flows whose deposits contain charred wood and other features indicating that these flows were hot and dry. Stratigraphy shows that even the tail of the surge had passed the east and west volcano flanks before the geomorphically distinct floods (lahars) arrived. This field evidence undermines hypotheses that the turbulent surge was itself wet and that its heavy components segregated out to transform directly into lahars. Nor is there evidence that meters-thick snow-slab avalanches intimately mixed with the surge to form the floods. The floods must have instead originated by swift snowmelt at the base of a hot and relatively dry turbulent surge. Impacting hot pyroclasts probably transferred downslope momentum to the snow surface and churned snow grains into the surge base. Melting snow and accumulating hot surge debris may have moved initially as thousands of small thin slushflows. As these flows removed the surface snow and pyroclasts, newly uncovered snow was partly melted by the turbulent surge base; this and accumulating hot surge debris in turn began flowing, a self-sustaining process feeding the initial flows. The flows thus grew swiftly over tens of seconds and united downslope into great slushy ejecta-laden sheetfloods. Gravity accelerated the floods to more than 100 km/h as they swept down and off the volcano flanks while the snow component melted to form great debris-rich floods (lahars) channeled into

  13. Secular variation study from non-welded pyroclastic deposits from Montagne Pelée volcano, Martinique (West Indies)

    Science.gov (United States)

    Genevey, A.; Gallet, Y.; Boudon, G.

    2002-07-01

    We present palaeomagnetic data obtained from large clasts collected in non-welded pyroclastic deposits from Montagne Pelée volcano (Martinique Island, West Indies). These deposits, dated by the 14C method from 5000 yr BP to the present, comprise block- and ash-flows, ash- and pumice-flows and pumice fallouts. Alternating fields treatment was as a routine chosen to demagnetise large samples for which the magnetisation was measured with a specially designed inductometer. The mean directions obtained from block- and ash-flow deposits of the 1902 and 1929 eruptions are in good agreement with the expected geomagnetic directions at these times in Martinique. The so-called P1 eruption (˜1345 AD), which is characterised by a rarely observed transition from a Peléean to a Plinian eruptive style, allows a direct comparison of the palaeomagnetic directions obtained from the three types of pyroclastic deposits. All deposits provide identical mean directions, which further demonstrates the suitability of the non-welded pyroclastic deposits for geomagnetic secular variation study with a very good accuracy and precision. The possibility of using pyroclastic deposits is promising for obtaining a wider distribution of sampling sites, which may better allow us to constrain our knowledge on the geomagnetic secular variation. We find that large geomagnetic changes occurred in Martinique during the last millennium, while the variations appear more limited prior to this period.

  14. Pyroclast/snow interactions and thermally driven slurry formation. Part 2: Experiments and theoretical extension to polydisperse tephra

    Science.gov (United States)

    Walder, J.S.

    2000-01-01

    Erosion of snow by pyroclastic flows and surges presumably involves mechanical scour, but there may be thermally driven phenomena involved as well. To investigate this possibility, layers of hot (up to 400??C), uniformly sized, fine- to medium-grained sand were emplaced vertically onto finely shaved ice ('snow'); thus there was no relative shear motion between sand and snow and no purely mechanical scour. In some cases large vapor bubbles, commonly more than 10 mm across, rose through the sand layer, burst at the surface, and caused complete convective overturn of the sand, which then scoured and mixed with snow and transformed into a slurry. In other cases no bubbling occurred and the sand passively melted its way downward into the snow as a wetting front moved upward into the sand. A continuum of behaviors between these two cases was observed. Vigorous bubbling and convection were generally favored by high temperature, small grain size, and small layer thickness. A physically based theory of heat- and mass transfer at the pyroclast/snow interface, developed in Part 1 of this paper, does a good job of explaining the observations as a manifestation of unstable vapor-driven fluidization. The theory, when extrapolated to the behavior of actual, poorly sorted pyroclastic flow sediments, leads to the prediction that the observed 'thermal-scour' phenomenon should also occur for many real pyroclastic flows passing over snow. 'Thermal scour' is therefore likely to be involved in the generation of lahars.

  15. The 1982 eruptions of El Chichon volcano, Mexico (3): Physical properties of pyroclastic surges

    Science.gov (United States)

    Sigurdsson, H.; Carey, S. N.; Fisher, R. V.

    1987-04-01

    Two major pyroclastic surges generated during the 4 April 1982 eruption of El Chichon devastated an area of 153 km2 with a quasi-radial distribution around the volcano. The hot surge clouds carbonized wood throughout their extent and were too hot to allow accretionary lapilli formation by vapor condensation. Field evidence indicates voidage fraction of 0.99 in the surge cloud with extensive entrainment of air. Thermal calculations indicate that heat content of pyroclasts can heat entrained air and maintain high temperatures in the surge cloud. The dominant bed form of the surge deposits are sand waves shaped in dune forms with vertical form index of 10 20, characterized by stoss-side erosion and lee-side deposition of 1 10 cm reversely graded laminae. A systematic decrease in maximum lithic diameter with distance from source is accompanied by decrease in wavelength and amplitude. Modal analysis indicates fractionation of glass and pumice from the surge cloud relative to crystals, resulting in loss of at least 10% 25% of the cloud mass due to winnowing out of fines during surge emplacement. Greatest fractionation from the -1.0 0.0-∅ grain sizes reflects relatively lower pumice particle density in this range and segregation in the formative stages of the surge cloud. Extensive pumice rounding indicates abrasion during bed-load transport. Flow of pyroclastic debris in the turbulent surge cloud was by combination of bed-load and suspended-load transport. The surges are viewed as expanding pyroclastic gravity flows, which entrain and mix with air during transport. The balance between sedimentation at the base of the surge cloud and expansion due to entrainment of air contributed to low cloud density and internal turbulence, which persisted to the distal edge of the surge zone.

  16. Unified rheology of vibro-fluidized dry granular media: From slow dense flows to fast gas-like regimes

    Science.gov (United States)

    Gnoli, Andrea; Lasanta, Antonio; Sarracino, Alessandro; Puglisi, Andrea

    2016-01-01

    Granular media take on great importance in industry and geophysics, posing a severe challenge to materials science. Their response properties elude known soft rheological models, even when the yield-stress discontinuity is blurred by vibro-fluidization. Here we propose a broad rheological scenario where average stress sums up a frictional contribution, generalizing conventional μ(I)-rheology, and a kinetic collisional term dominating at fast fluidization. Our conjecture fairly describes a wide series of experiments in a vibrofluidized vane setup, whose phenomenology includes velocity weakening, shear thinning, a discontinuous thinning transition, and gaseous shear thickening. The employed setup gives access to dynamic fluctuations, which exhibit a broad range of timescales. In the slow dense regime the frequency of cage-opening increases with stress and enhances, with respect to μ(I)-rheology, the decrease of viscosity. Diffusivity is exponential in the shear stress in both thinning and thickening regimes, with a huge growth near the transition. PMID:27924928

  17. Ilmenite-rich pyroclastic deposits - An ideal lunar resource

    Science.gov (United States)

    Hawke, B. R.; Clark, B.; Coombs, C. R.

    1990-01-01

    With a view of investigating possible economic benefits that a permanent lunar settlement might provide to the near-earth space infrastructures, consideration was given to the ilmenite-rich pyroclastic deposits as sources of oxygen (for use as a propellant) and He-3 (for nuclear fusion fuel). This paper demonstrates that ilmenite-rich pyroclastic deposits would be excellent sources of a wide variety of valuable elements besides O and He-3, including Fe, Ti, H2, N, C, S, Cu, Zn, Cd, Bi, and Pb. It is shown that several ilmenite-rich pyroclastic deposits of regional extent exist on the lunar surface. The suitability of regional pyroclastic deposits for lunar mining operations, construction activities, and the establishment of permanent lunar settlements is examined.

  18. Fast simulated annealing and adaptive Monte Carlo sampling based parameter optimization for dense optical-flow deformable image registration of 4DCT lung anatomy

    Science.gov (United States)

    Dou, Tai H.; Min, Yugang; Neylon, John; Thomas, David; Kupelian, Patrick; Santhanam, Anand P.

    2016-03-01

    Deformable image registration (DIR) is an important step in radiotherapy treatment planning. An optimal input registration parameter set is critical to achieve the best registration performance with the specific algorithm. Methods In this paper, we investigated a parameter optimization strategy for Optical-flow based DIR of the 4DCT lung anatomy. A novel fast simulated annealing with adaptive Monte Carlo sampling algorithm (FSA-AMC) was investigated for solving the complex non-convex parameter optimization problem. The metric for registration error for a given parameter set was computed using landmark-based mean target registration error (mTRE) between a given volumetric image pair. To reduce the computational time in the parameter optimization process, a GPU based 3D dense optical-flow algorithm was employed for registering the lung volumes. Numerical analyses on the parameter optimization for the DIR were performed using 4DCT datasets generated with breathing motion models and open-source 4DCT datasets. Results showed that the proposed method efficiently estimated the optimum parameters for optical-flow and closely matched the best registration parameters obtained using an exhaustive parameter search method.

  19. Transport properties of pyroclastic rocks from Montagne Pelée volcano (Martinique, Lesser Antilles)

    Science.gov (United States)

    Bernard, Marie-Lise; Zamora, Maria; GéRaud, Yves; Boudon, Georges

    2007-05-01

    The hydraulic and electrical properties of pyroclastic rocks have been investigated in laboratory on a representative sampling of Montagne Pelée (Martinique, France) deposits with renewed interest in geophysical applications. This sampling covers all the lithologic units of this volcano: lava dome and lava flows, pumices from ash-and-pumice fall and flow deposits, lava blocks from block-and-ash flow and Peléean "nuées ardentes" deposits, scoriae from scoria flow deposits. The connected porosity varies over a wide range from 3 to 62%. The unconnected porosity is important only on pumices where it can reach 15%. The permeability covers more than 5 orders of magnitude, ranging from 10-16 to 35 × 10-12 m2. The higher values are obtained on lava blocks and the scoriae, even if these rocks are less porous than the pumices. The formation factor ranges from 7 to 1139. The transport properties of these rocks are slightly correlated with porosity. This indicates that these properties are not only controlled by the connected porosity. To connect the transport properties to the textural characteristics of the pore network of pyroclastic rocks, different models, based on geometrical considerations or percolation theory, were tested. The pore access radius distribution and the tortuosity control the transport properties of pyroclastic rocks. Consequently, the models (electric and hydraulic) based on the concept of percolation (e.g., the models of Katz and Thompson), apply better than the equivalent channel model of Kozeny-Carman. In addition, the difference in transport properties observed on lava blocks and pumices confirms that the mechanisms of degassing and vesiculation are different for these two types of rock.

  20. Fluvial response to sudden input of pyroclastic sediments during the 2008-2009 eruption of the Chaitén Volcano (Chile): The role of logjams

    Science.gov (United States)

    Umazano, Aldo M.; Melchor, Ricardo N.; Bedatou, Emilio; Bellosi, Eduardo S.; Krause, Javier M.

    2014-10-01

    The rhyolitic Plinian eruption of the Chilean Chaitén Volcano, initiated on May 2, 2008, suddenly introduced abundant pyroclastic sediments in the Blanco River catchment area, which experienced important modifications. Before May 2, the river was characterised by gravelly and moderate to low-sinuosity channels crossing a vegetated and locally urbanised (Chaitén City) floodplain. This river, limited by steep and densely forested highlands, was connected with the Pacific Ocean via a tidally-influenced delta plain. After heavy rains in May 11-20, the river discharge increased and triggered several responses including logjam formation and breakage, crevassing, avulsion (and channel abandonment), changes in the pattern and dimensions of channels, and construction of a new delta plain area. In this context, the goals of this contribution were: i) to document the sedimentological processes within a detailed geomorphic framework and ii) to understand the influence of logjams on fluvial dynamics. Upstream of the logjam zone, the deposits are mostly composed of ash and lapilli with abundant palaeovolcanic (epiclastic) sediments, which were produced by dilute currents and debris flows. Downstream of the logjam zone, deposits are composed by ash and lapilli, both pumice-rich and lacking important participation of older (epiclastic) sediments. The abandoned and filled palaeochannel, and the proximal part of crevasse splays experienced transient dilute flows with variable sediment concentration and, subordinately, hyperconcentrated flows. The distal sectors of crevasse splays mostly record settling from suspension. At the delta plain, tephra transported by the Blanco River was mixed with older sediments by tide and wave action (dilute flows). We conclude that immediately after eruption, both geomorphic and sedimentary processes of the river were mainly controlled by a combination of high availability of incoherent pyroclastic sediments on steep slopes, abundant rains, large

  1. Evolution of the 120 ka caldera-forming eruption of Kutcharo volcano, eastern Hokkaido, Japan: Geologic and petrologic evidence for multiple vent systems and rapid generation of pyroclastic flow

    Science.gov (United States)

    Hasegawa, Takeshi; Matsumoto, Akiko; Nakagawa, Mitsuhiro

    2016-07-01

    We investigated the eruptive sequence and temporal evolution of juvenile materials during the 120 ka Kutcharo pumice flow IV (Kp IV) eruption, which was the most voluminous (175 km3: bulk volume) caldera-forming eruption of Kutcharo volcano. The eruptive deposits are divided into four units in ascending order. Unit 1 is widely dispersed and consists of silt-sized, cohesive ash. Unit 2 is a thin, moderately sorted pumice fall deposit with a restricted distribution and small volume (caldera. Juvenile materials consist mainly of rhyolite pumice (74%-78% SiO2) associated with a minor amount of scoria (52%-73% SiO2) that are found only northwest of the caldera in Unit 3 and Unit 4. These scoriae can be classified on the basis of the P2O5 contents of their matrix glass into low-P, medium-P, and high-P types, which are almost entirely restricted to the lower part of Unit 3, Unit 4, and the upper part of Unit 3, respectively. These three types display distinct mixing trends with the rhyolitic compositions in SiO2-P2O5 variation diagrams. This evidence indicates that three distinct mafic magmas were independently and intermittently injected into the main body of silicic magma to erupt from the northwestern part of the magma system. Mafic injections did not occur in the southern part of the magma system. This petrologic evidence implies that the northwestern and southeastern flows of Unit 3 are heterotopic, contemporaneous products derived from multiple vent systems. Although Unit 2 was derived from an eruptive column, its volume is very small compared to Plinian fall deposits of typical caldera-forming eruptions. In our interpretation, the activity of the Kp IV eruption reached its climax rapidly, depositing Unit 3, without first producing a stable Plinian column. The presence of multiple vent systems could have allowed the system to bypass an initial eruptive stage with a stable Plinian column and begin its climactic stage, represented by Unit 3, rapidly. Multiple vents

  2. The origin of an unusual tuff ring of perlitic rhyolite pyroclasts: The last explosive phase of the Ramadas Volcanic Centre, Andean Puna, Salta, NW Argentina

    Science.gov (United States)

    Tait, M. A.; Cas, R. A. F.; Viramonte, J. G.

    2009-05-01

    A thick sequence of bedded pyroclastic deposits, comprised largely of crystal poor, partially flow-banded perlite fragments defines the remains of a tuff ring around the eastern margin of the Miocene Ramadas Volcanic Centre (RVC), Central Andes, NW Argentina. In numerous quarry exposures, planar bed-forms dominate, but low-angle cross-stratification, lensoidal truncations and lateral pinching and swelling of cm-dm scale bed-forms occur, consistent with pyroclastic surge as the dominant transport and depositional mechanism. Intercalated are mantling, very fine grained, well-sorted, mm-cm scale planar ash layers that represent deposition from pyroclastic fall out and are most likely the products of co-surge ash clouds. Also observed are thick m-scale, laterally continuous, poorly-sorted horizons that are interpreted as pyroclastic flow deposits. Grainsize variations within the > 70 m thick succession range from fine ash to coarse lapilli, with occasional large blocks reaching 20 cm. Clast vesicularities are typically very low. The sequence constitutes a rhyolitic tuff ring around the proximal margins of the RVC. Stratigraphic relationships indicate that the tuff ring was developed following cessation of the major plinian eruption phase of the RVC. A series of pyroclastic density currents and associated ash clouds is inferred to have resulted in the construction of the rhyolitic tuff ring, with deposition focussed on the eastern and southern margins of the central vent. The fine-grained nature of the deposits and low clast vesicularity are consistent with some degree of magma:water interaction during fragmentation. Pervasive perlitic fracturing of clasts found within the tuff deposits also indicates hydration and an extended, post-depositional hydration of the pyroclastic sequence, due to the influence of meteoric water, is likely to have occurred, with deposit permeability, clast specific surface and climate influential in facilitating additional textural

  3. Landslide susceptibility assessment in ash-fall pyroclastic deposits surrounding Mount Somma-Vesuvius: Application of geophysical surveys for soil thickness mapping

    Science.gov (United States)

    De Vita, P.; Agrello, D.; Ambrosino, F.

    2006-06-01

    Along the steep slopes of the carbonate mountains that surround the Campanian Plain and Mount Somma-Vesuvius, rainfall-triggered debris slides occur in unconsolidated ash-fall pyroclastic deposits. The initial debris slides evolve into debris flows that often cause significant property damage and loss of human life in the towns located at the foot of the slopes. In this particular geological situation, the pyroclastic soil thickness, the slope angle, and the morphological variations of the slope profile are the most important factors that contribute to landslide susceptibility. In this paper, the results of an experimental application of shallow resistivity and refraction seismic soundings in mapping the thickness of pyroclastic soils are presented. These geophysical methods are proposed as low-cost and versatile methods to be used in the difficult morphological conditions of the steep slopes in which debris-slides initiate. The methods have been used experimentally in a sample area located on the upper slope of Mount Pizzo d'Alvano, from which debris flows initiated that dramatically hit the town of Sarno on 5-6 May 1998. The inversion of geoelectrical soundings has been calibrated with resistivity values measured directly on pyroclastic outcrops and with soil thickness estimations derived from refraction seismic soundings and from the application of a mobile dynamic penetrometer. The results of the field experimentation can be summarised as follows: (i) unconsolidated ash-fall pyroclastic deposits, ranging in particle size from fine ash to lapilli, can be differentiated from fractured carbonate bedrock by means of electrical resistivity and velocity values of longitudinal seismic waves; (ii) thickness of ash-fall pyroclastic soils can be empirically related to the slope angle using an inverse relationship; and (iii) the empirical model has been applied to Digital Elevation Model data, allowing pyroclastic soil thickness mapping in the sample area.

  4. First Volcanological-Probabilistic Pyroclastic Density Current and Fallout Hazard Map for Campi Flegrei and Somma Vesuvius Volcanoes.

    Science.gov (United States)

    Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.

    2005-05-01

    Integrated volcanological-probabilistic approaches has been used in order to simulate pyroclastic density currents and fallout and produce hazard maps for Campi Flegrei and Somma Vesuvius areas. On the basis of the analyses of all types of pyroclastic flows, surges, secondary pyroclastic density currents and fallout events occurred in the volcanological history of the two volcanic areas and the evaluation of probability for each type of events, matrixs of input parameters for a numerical simulation have been performed. The multi-dimensional input matrixs include the main controlling parameters of the pyroclasts transport and deposition dispersion, as well as the set of possible eruptive vents used in the simulation program. Probabilistic hazard maps provide of each points of campanian area, the yearly probability to be interested by a given event with a given intensity and resulting demage. Probability of a few events in one thousand years are typical of most areas around the volcanoes whitin a range of ca 10 km, including Neaples. Results provide constrains for the emergency plans in Neapolitan area.

  5. A two-scale second-order moment two-phase turbulence model for simulating dense gas-particle flows

    Institute of Scientific and Technical Information of China (English)

    Zhuoxiong Zeng; Lixing Zhou; Jian Zhang; Keren Wang

    2005-01-01

    A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision and through a unified treatment of these two kinds of fluctuations. The proposed model is used to simulate gas-particle flows in a channel and in a downer. Simulation results are in agreement with the experimental results reported in references and are near the results obtained using the single-scale second-order moment two-phase turbulence model superposed with a particle collision model (USM-θ model)in most regions.

  6. Stratigraphy of Pyroclastic Deposits of EL Aguajito Caldera, Baja California Sur, MÉXICO

    Science.gov (United States)

    Osorio Ocampo, L. S.; Macias, J. L.; García Sánchez, L.; Pola, A.; Saucedo, R.; Sánchez, J. M.; Avellán, D. R.; Cardona, S.; Reyes-Agustín, G.; Arce, J. L.

    2015-12-01

    El Aguajito caldera is located in the State of Baja California Sur, it comprises an area of 450 km2 and sits within the Santa Rosalía Basin which is controlled by NE-SW extensional structures and the NW-SE Cimarron Fault that transects the caldera structure. The oldest rocks are ~90 Ma granodiorites covered by an Oligocene-Miocene volcano-sedimentary sequence, the Miocene Santa Lucia Formation and La Esperanza basalt. Pliocene volcanism is represented by La Reforma caldera, El Aguajito caldera, and the Tres Vírgenes Volcanic complex. This study focuses on the cartography and stratigraphy of area in order to understand the evolution of the volcanic system. The stratigraphy from base to top consists of a series of shallow marine sediments (fossiliferous sandstones) covered by a thick sequence of ignimbrites and pyroclastic flows interbedded with volcaniclastic deposits (Gloria and El Infierno Formations). On top of these deposits is El Aguajito caldera, it consists of a 2 m thick pumice fallout followed by an ignimbrite with three transitional lithofacies: a ≤30-m thick light-pink pyroclastic flow enriched in pumice at the base that gradually becomes enrich in lithics towards the top with the occurrence of degasing pipes. On top rests a 15 m-thick light-purple ignimbrite slightly welded with fiammes and a sequence of pumiceous pyroclastic flows and fallouts. These deposits have been associate to the caldera formation with a collapse diameter of ~8 km marked by rhyolitic domes exposed along a ring collapse crowned the sequence as well as NW-SE aligned rhyolitic domes parallel to the seashore. This cartography allowed to present a preliminary new geological map with four stratigraphic units recognized so far, that were emplaced under subaerial conditions beginning with a Plinian column followed by the emplacement of El Aguajito ignimbrite with its subsequent caldera collapse and finally the extrusion of resurgent domes.

  7. Insect-Inspired Self-Motion Estimation with Dense Flow Fields--An Adaptive Matched Filter Approach.

    Science.gov (United States)

    Strübbe, Simon; Stürzl, Wolfgang; Egelhaaf, Martin

    2015-01-01

    The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD) algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion.

  8. Insect-Inspired Self-Motion Estimation with Dense Flow Fields--An Adaptive Matched Filter Approach.

    Directory of Open Access Journals (Sweden)

    Simon Strübbe

    Full Text Available The control of self-motion is a basic, but complex task for both technical and biological systems. Various algorithms have been proposed that allow the estimation of self-motion from the optic flow on the eyes. We show that two apparently very different approaches to solve this task, one technically and one biologically inspired, can be transformed into each other under certain conditions. One estimator of self-motion is based on a matched filter approach; it has been developed to describe the function of motion sensitive cells in the fly brain. The other estimator, the Koenderink and van Doorn (KvD algorithm, was derived analytically with a technical background. If the distances to the objects in the environment can be assumed to be known, the two estimators are linear and equivalent, but are expressed in different mathematical forms. However, for most situations it is unrealistic to assume that the distances are known. Therefore, the depth structure of the environment needs to be determined in parallel to the self-motion parameters and leads to a non-linear problem. It is shown that the standard least mean square approach that is used by the KvD algorithm leads to a biased estimator. We derive a modification of this algorithm in order to remove the bias and demonstrate its improved performance by means of numerical simulations. For self-motion estimation it is beneficial to have a spherical visual field, similar to many flying insects. We show that in this case the representation of the depth structure of the environment derived from the optic flow can be simplified. Based on this result, we develop an adaptive matched filter approach for systems with a nearly spherical visual field. Then only eight parameters about the environment have to be memorized and updated during self-motion.

  9. Derivation of FEO Abundances in Lunar Pyroclastic Deposits Using Diviner

    Science.gov (United States)

    Allen, Carlton C.; Greenhagen, Benjamin T.; DonaldsonHanna, Kerri L.; Oehler, Dorothy Z.; Paige, David A.

    2012-01-01

    Telescopic observations and orbital images of the Moon reveal at least 75 lunar pyroclastic deposits (LPDs), interpreted as the products of explosive volcanic eruptions [1]. The deposits are understood to be composed primarily of sub-millimeter beads of basaltic composition, ranging from glassy to partially-crystallized [2]. Delano [3] documented 25 distinct pyroclastic bead compositions in lunar soil samples, with a range of FeO abundances from 16.5 - 24.7 wt%. Green glasses generally have lower FeO abundances and red, yellow, and orange glasses generally have higher FeO abundances. The current study employs data from the Diviner Lunar Radiometer Experiment onboard the Lunar Reconnaissance Orbiter (LRO) to derive the FeO compositions of glasses from unsampled lunar pyroclastic deposits. The pyroclastic glasses are the deepest-sourced and most primitive basalts on the Moon [4]. Recent analyses have documented the presence of water in these glasses, demonstrating that the lunar interior is considerably more volatile-rich than previously understood [5]. Experiments have shown that the iron-rich pyroclastic glasses release the highest percentage of oxygen of any Apollo soils, making these deposits promising lunar resources [6].

  10. Hazard of pyroclastic density currents at the Campi Flegrei Caldera (Southern Italy) as deduced from the combined use of facies architecture, physical modeling and statistics of the impact parameters

    Science.gov (United States)

    Mele, D.; Dioguardi, F.; Dellino, P.; Isaia, R.; Sulpizio, R.; Braia, G.

    2015-06-01

    Pyroclastic density currents of the recent eruptions at Campi Flegrei Caldera (CFC - Southern Italy) have been studied with the aim of assessing the potential impact of similar events in the future. Eruptions of different scales have been investigated by means of the combined use of facies architecture, laboratory analysis and physical modeling. Both in the small (Averno 2) and intermediate (Astroni) scales, facies analysis indicates that deposits result from the emplacement of pyroclastic density currents like base-surge, formed by multiple closely-timed impulses of phreatomagmatic origin. In the large-scale event (Agnano-Monte Spina), the facies architecture suggests that the currents started as concentrated flows near the vent, as originating from the collapse of a dense eruptive column, and evolved laterally into expanded flows by the propagation of the basal shear current. Laboratory analyses on samples from the main layers of deposits allowed obtaining the input data for the PYFLOW code, which was used for reconstructing the flow dynamic characteristics of the currents. The expected damage is discussed in terms of the probability density function of dynamic pressure and particle volumetric concentration. In this way, the range of potential impact that similar pyroclastic density currents could cause to buildings, infrastructures and population is defined. In the large-scale event, the dynamic pressure ranges from 9.38 to 1.00 kPa (integrating the basal 10 m of the current) at distances of 1.5 and 4.0 km from the vent, respectively. The values are highly influenced by the local topography. In the intermediate-scale event, the dynamic pressure ranges from 2.43 to 0.26 kPa at distances of 1.1 and 1.4 km from the vent, respectively. In the small scale event, the dynamic pressure ranges from 1.49 to 0.39 kPa at distances of 0.5 and 1.1 km from the vent, respectively. The particle volumetric concentration at a height of 2 m within the current is always lower than 0

  11. Report on the 4th International Conference on monitoring, simulation, prevention and remediation of dense and debris flows - Debris Flow 2012

    Directory of Open Access Journals (Sweden)

    Daniele de Wrachien

    2012-09-01

    Full Text Available Debris and hyper-concentrated flows are amongst the most destructive of all water-related disasters. These hazards are likely to become more frequent and more important in the future due to the effects of the increase in population, urbanization, land subsidence and the impact of climate change. They affect both rural and urban environments, particularly in river basins and in mountain areas. In recent years, they have attracted more and more attention from the scientific and professional communities due to the number of lives lost, and there is growing public concern for the future. New methods and measures are required to cope with debris flow changes and to achieve a harmonious balance between the environment and economic forces.

  12. Clast comminution during pyroclastic density current transport: Mt St Helens

    Science.gov (United States)

    Dawson, B.; Brand, B. D.; Dufek, J.

    2011-12-01

    Volcanic clasts within pyroclastic density currents (PDCs) tend to be more rounded than those in fall deposits. This rounding reflects degrees of comminution during transport, which produces an increase in fine-grained ash with distance from source (Manga, M., Patel, A., Dufek., J. 2011. Bull Volcanol 73: 321-333). The amount of ash produced due to comminution can potentially affect runout distance, deposit sorting, the volume of ash lofted into the upper atmosphere, and increase internal pore pressure (e.g., Wohletz, K., Sheridan, M. F., Brown, W.K. 1989. J Geophy Res, 94, 15703-15721). For example, increased pore pressure has been shown to produce longer runout distances than non-comminuted PDC flows (e.g., Dufek, J., and M. Manga, 2008. J. Geophy Res, 113). We build on the work of Manga et al., (2011) by completing a pumice abrasion study for two well-exposed flow units from the May 18th, 1980 eruption of Mt St Helens (MSH). To quantify differences in comminution from source, sampling and the image analysis technique developed in Manga et al., 2010 was completed at distances proximal, medial, and distal from source. Within the units observed, data was taken from the base, middle, and pumice lobes within the outcrops. Our study is unique in that in addition to quantifying the degree of pumice rounding with distance from source, we also determine the possible range of ash sizes produced during comminution by analyzing bubble wall thickness of the pumice through petrographic and SEM analysis. The proportion of this ash size is then measured relative to the grain size of larger ash with distance from source. This allows us to correlate ash production with degree of rounding with distance from source, and determine the fraction of the fine ash produced due to comminution versus vent-fragmentation mechanisms. In addition we test the error in 2D analysis by completing a 3D image analysis of selected pumice samples using a Camsizer. We find that the roundness of PDC

  13. A new look at mobility metrics for pyroclastic density currents: collection, interpretation, and use

    Science.gov (United States)

    Ogburn, S. E.; Lopes, D.; Calder, E. S.

    2012-12-01

    Mitigation of risk associated with pyroclastic density currents (PDCs) depends upon accurate forecasting of possible flow paths, often using empirical models that rely on mobility metrics or the stochastic application of computational flow models. Mobility metrics often inform computational models, sometimes as direct model inputs (e.g. energy cone model), or as estimates for input parameters (e.g. basal friction parameter in TITAN2D). These mobility metrics are often compiled from PDCs at many volcanoes, generalized to reveal empirical constants, or sampled for use in probabilistic models. In practice, however, there are often inconsistencies in how mobility metrics have been collected, reported, and used. For instance, the runout of PDCs often varies depending on the method used (e.g. manually measured from a paper map, automated using GIS software); and the distance traveled by the center of mass of PDCs is rarely reported due to the difficulty in locating it. This work reexamines the way we measure, report, and analyze PDC mobility metrics. Several metrics, such as the Heim coefficient (height dropped/runout, H/L) and the proportionality of inundated area to volume (A∝V2/3) have been used successfully with PDC data (Sparks 1976; Nairn and Self 1977; Sheridan 1979; Hayashi and Self 1992; Calder et al. 1999; Widiwijayanti et al. 2008) in addition to the non-volcanic flows they were originally developed for. Other mobility metrics have been investigated by the debris avalanche community but have not yet been extensively applied to pyroclastic flows (e.g. the initial aspect ratio of collapsing pile). We investigate the relative merits and suitability of contrasting mobility metrics for different types of PDCs (e.g. dome-collapse pyroclastic flows, ash-cloud surges, pumice flows), and indicate certain circumstances under which each model performs optimally. We show that these metrics can be used (with varying success) to predict the runout of a PDC of given volume

  14. Magnetic fabric and remanent magnetization of pyroclastic surge deposits from Vulcano (Aeolian Islands, Italy)

    Science.gov (United States)

    Zanella, E.; De Astis, G.; Dellino, P.; Lanza, R.; La Volpe, L.

    1999-11-01

    Tufi di Grotte dei Rossi Inferiori are unwelded, fine-grained pyroclastic deposits of hydromagmatic origin emplaced between 21 and 11-8.6 ka at Vulcano (Aeolian Islands, Italy) by deposition through surges spreading laterally from inside the La Fossa caldera. In this study, the deposit's magnetic properties were investigated and interpreted in terms of eruptive and emplacement dynamics. Rock-magnetism data were supplemented by grain size and textural characteristic analyses as well as scanning electron microscope (SEM) investigations. Curie point measurements, isothermal remanent magnetization and microprobe analyses showed that magnetization is carried by low-Ti titanomagnetite. The size of the grains ranges from about 20 to 300 micrometres, their shape from equidimensional to highly elongated. The magnetic fabric is typical of fine-grained pyroclastics. Foliation is well developed and in most sites lineation is directed towards the source area of the La Fossa caldera. The remanent magnetization consists of two components whose blocking temperature spectra partially overlap. The direction of the low-temperature component is close to that of the axial dipole, and consistent with the palaeosecular variation curve for the Aeolian Islands. The high-temperature component is systematically shallowed and close to the direction of the magnetic lineation. The overall results suggest that the high-temperature component was acquired before, and the low-temperature component after, the actual deposition of grains. Immediately after eruption, the grains cooled and moved as free particles in the turbulent cloud during the expansion of the surge flows. Those particles with high blocking temperatures acquired a thermal remanence. They were then deposited and shear at the very base of the flow oriented them and imprinted the rock's fabric and high-temperature magnetization component. Volcanological and magnetic data suggest turbulent transportation and traction deposition of

  15. Hybrid fall deposits in the Bishop Tuff, California: A novel pyroclastic depositional mechanism

    Science.gov (United States)

    Wilson, C.J.N.; Hildreth, W.

    1998-01-01

    Hybrid fall deposits in the Bishop Tuff show features common to both archetypal fall and surge deposits. Like normal-fall deposits, they have an overall plane-parallel bedding and flat-lying pumice clasts but also, like surge deposits, they show variable development of cross-bedding, some crystal and pumice sorting, and some rounding of pumice clasts. All variations exist from normal-fall deposits, through streaky material with incipient development of cross-bedding, to the hybrid fall deposits with well-developed cross-bedding. The streaky and hybrid deposits are interpreted as fall material contemporaneously redeposited by strong (up to 40 m/s) swirling winds, comparable to firestorm whirlwinds, generated by air currents associated with coeval emplacement of pyroclastic flows. Recognition of hybrid fall deposits is important in interpreting the dynamics of explosive eruptions and correctly assessing volcanic hazards. However, although such deposits may be commonly produced by explosive eruptions, especially where pyroclastic flows accompany fall activity, they are likely to be overlooked, or wrongly interpreted as surge deposits or secondary, reworked material.

  16. Variations in Pyroclast Porosity: The 2010 Gunung Merapi Eruption

    Science.gov (United States)

    Genareau, K. D.; Cronin, S. J.; Lube, G.

    2014-12-01

    The 2010 eruption of Gunung Merapi (Java, Indonesia) began with an explosion resulting from the rapid development of shallow conduit overpressure, which destabilized the pre-existing lava dome and generated large PDCs on 26 October. This was followed by rapid ascent and extrusion of a juvenile dome that also collapsed, generating the largest surges of the series on 5 November. Lava lapilli within the PDC deposits were analyzed using helium pycnometry to determine variations in pyroclast porosity during the transition from dome collapse to rapid dome regrowth and subsequent collapse. Lapilli were separated into pyroclasts derived from the earlier phase of dome growth from those derived from the later and more voluminous phase of dome growth. For all lapilli, regardless of eruptive phase, open porosity of the pyroclasts averages 0.19 (0.08). However, closed porosities of the lapilli are generally higher for the earlier phase, which were derived from deposits of the 26 October PDCs. Efficient degassing during both stages of dome growth produced similar open porosities in pyroclasts, but a higher closed porosity in the 26 October samples resulted from late-stage vesiculation of the residual melt during the initial explosion. This vesiculation event was triggered by the rapid development of shallow conduit overpressure, evidence of which is provided by secondary ion mass spectrometry (SIMS) depth profiling analyses of plagioclase phenocrysts from the ash-sized component of the PDC deposits. Phenocrysts from the earlier phase of dome growth show a build-up of Li in the groundmass glass (attached to crystal surfaces) due to a stage of protracted gas accumulation prior to the 26 October explosion. Conversely, phenocrysts from the later stage of dome growth reveal decreasing Li contents in the groundmass glass due to efficient volatile loss during magma ascent. Vesiculation of the residual melt during the initial explosion resulted in a higher closed porosity in pyroclasts

  17. HOW GOOD IS A DENSE SHOP SCHEDULE?

    Institute of Scientific and Technical Information of China (English)

    陈礴; 俞文(鱼此)

    2001-01-01

    In this paper, we study a class of simple and easy-to-construct shop schedules, known as dense schedules. We present tight bounds on the maximum deviation in makespan of dense flow-shop and job-shop schedules from their optimal ones. For dense open-shop schedules, we do the same for the special case of four machines and thus add a stronger supporting case for proving a standing conjecture.

  18. Pyroclastic chronology of the Sancy stratovolcano (Mont-Dore, French Massif Central): New high-precision 40Ar/39Ar constraints

    Science.gov (United States)

    Nomade, Sébastien; Scaillet, Stéphane; Pastre, Jean-François; Nehlig, Pierre

    2012-05-01

    obtained by Cocherie et al. (2009) [Geochimica et Cosmochimica Acta, 73, 1095-1108] and suggests a short residence time of the magma in a shallow, short-lived, small magmatic chamber. Finally, the source of the t21d tephra layer found in the Piànico Séllere varved sequence (Northern Italy) is not the Rivaux pumice flow as proposed by Brauer et al. (2007) [Journal of Quaternary Science 22, 85-96] and neither one of the C. II pyroclastic units as suggested by Roulleau et al. (2009) [Quaternary International 204, 31-43]. Accordingly, the source for the t21d layer has yet to be found at Sancy or elsewhere.

  19. Numerical Simulation of Flow Regime in Dense-Phase Pneumatic Conveying with Different Pulverized Coal Particle Sizes%煤粉粒径对密相气力输送流型影响的数值模拟

    Institute of Scientific and Technical Information of China (English)

    彭小敏; 朱立平; 袁竹林

    2012-01-01

    The key problems of current numerical simulation of dense-phase pneumatic conveying were analyzed in this paper. To solve these problems, a new mathematical model for describing the contact force between particles was proposed, and the dense-phase gas-solid two-phase flow (even when the particles packed) could be simulated by the new model. Based on discrete particle modle (DEM), the new model used the solid phase volume concentration and the characteristics of particle motion to describe the contact force between particles to make sure that the new model can not only simulate dilute phase flow like dispersed flow regime but also dense gas-solid two-phase flow (even when the particles packed). The new model was used to numerically study the flow behaviors of dense phase pneumatic conveying at high pressure. The typical flow regimes, such as slug flow and dune flow which agreed well with experimental results, were obtained, and with the increase of particle size, the flow regime of pulverized coal in dense-phase pneumatic conveying changed into dune flow from sedimentation flow and then changed into slug flow from dune flow. The mean slug length decreased while the average solid concentration in horizontal pipe increased with the increase of particle size.%针对目前密相气力输送数值模拟过程中所存在的关键问题,提出了一种描述固相内部相互作用对颗粒运动影响的数学模型,采用该模型能够对稠密气固两相流动(乃至颗粒发生大量沉积的情况)进行数值模拟.新模型在离散颗粒模型的基础上,通过描述颗粒所在局部空间的固相浓度及颗粒群运动特征所建立,使其既能够模拟悬浮流动的稀相颗粒运动,又能模拟管内出现堆积情况的密相气固两相流.利用所建立的数学模型对高压密相煤粉气力输送的颗粒流动过程进行了数值模拟.模拟结果显示,随着颗粒粒径增大,粉体密相气力输送流型从沉积层流变化为沙丘

  20. Juvenile pumice and pyroclastic obsidian reveal the eruptive conditions necessary for the stability of Plinian eruption of rhyolitic magma

    Science.gov (United States)

    Giachetti, T.; Shea, T.; Gonnermann, H. M.; McCann, K. A.; Hoxsie, E. C.

    2016-12-01

    Significant explosive activity generally precedes or coexists with the large effusion of rhyolitic lava (e.g., Mono Craters; Medicine Lake Volcano; Newberry; Chaitén; Cordón Caulle). Such explosive-to-effusive transitions and, ultimately, cessation of activity are commonly explained by the overall waning magma chamber pressure accompanying magma withdrawal, albeit modulated by magma outgassing. The tephra deposits of such explosive-to-effusive eruptions record the character of the transition - abrupt or gradual - as well as potential changes in eruptive conditions, such as magma composition, volatiles content, mass discharge rate, conduit size, magma outgassing. Results will be presented from a detailed study of both the gas-rich (pumice) and gas-poor (obsidian) juvenile pyroclasts produced during the Plinian phase of the 1060 CE Glass Mountain eruption of Medicine Lake Volcano, California. In the proximal deposits, a multitude of pumice-rich sections separated by layers rich in dense clasts suggests a pulsatory behavior of the explosive phase. Density measurements on 2,600 pumices show that the intermediate, most voluminous deposits have a near constant median porosity of 65%. However, rapid increase in porosity to 75-80% is observed at both the bottom and the top of the fallout deposits, suggestive of rapid variations in magma degassing. In contrast, a water content of pyroclastic obsidians of approximately 0.6 wt% does remain constant throughout the eruption, suggesting that the pyroclastic obsidians degassed up to a constant pressure of a few megapascals. Numerical modeling of eruptive magma ascent and degassing is used to provide constraints on eruption conditions.

  1. An unusually energetic basaltic phreatomagmatic eruption: Using deposit characteristics to constrain dilute pyroclastic density current dynamics

    Science.gov (United States)

    Brand, Brittany D.; Clarke, Amanda B.

    2012-10-01

    Multiple, highly erosive base surges of the Table Rock Complex tuff ring (TRC2), Oregon, produced dune-bedded deposits with crest to crest bedform wavelengths up to 200 m, which are amongst the largest ever recognized in the deposits of pyroclastic density currents. Here we use bedform wavelength, surmounted obstacles, and a large chute-and-pool feature to estimate near-source velocities (118-233 m s- 1), lower-bound velocities at radial distances of 1.6, 2 and 4.7 km from source (34, 29 and 20 m s- 1, respectively), and corresponding column collapse heights (up to 2.8 km). This paper represents one of the few studies that attempt to quantify flow characteristics, such as emplacement velocities at different distances from source, eruption column collapse height, and eruptive energy, based on deposit characteristics.

  2. Hydrodynamic modelling of dense gas-fluidised beds: comparison of the kinetic theory of granular flow with 3D hard-sphere discrete particle simulations

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Beetstra, R.; Kuipers, J.A.M.

    2002-01-01

    A novel technique to sample particle velocity distributions and collision characteristics from dynamic discrete particle simulations of intrinsically unsteady, non-homogeneous systems, such as those encountered in dense gas-fluidised beds, is presented. The results are compared to the isotropic Maxw

  3. Fluctuating Eruption Style at Blue Lake Crater, Central Oregon Cascades: Insights from Deposit Granulometry and Componentry and Pyroclast Textures

    Science.gov (United States)

    Johnson, E. R.

    2016-12-01

    Blue Lake crater in the central Oregon Cascades is one of the youngest Cascades volcanoes, erupting pyroclastic deposits to better understand changes in eruption style as the eruption progressed. Based on a new isopach map of the deposit thickness, the volume of erupted material is 4 x 107 m3. The deposits also suggest that the eruption was dominantly magmatic; phreatomagmatic surge deposits (pyroclasts from throughout the deposit reveal more subtle changes in the influence of external water over time. Granulometry from a complete deposit section (130 cm) reveals that the average grain size is finest immediately overlying the basal surge deposits and increases upsection. Componentry from this section shows that lithic and dense clasts are most abundant below and directly above the surges (near the deposit base) and decrease in abundance upsection, where vesicular scoria dominates. High magnification SEM BSE images of tephra clasts from throughout the deposit were obtained in order to better assess the changing role of external water during the eruption. Preliminary assessment of the images reveals that clasts from the eruption initiation have a glassier matrix compared to those upsection, which have a highly microcrystalline matrix, suggesting that early-erupted samples were likely quenched with external water. Taken together, these datasets suggest that the eruption initiated as dominantly phreatomagmatic but then rapidly transitioned to dominantly magmatic for the eruption duration. Further investigation of clast vesicularity and crystallinity will aid in understanding the changing influence of external water during the Blue Lake eruption.

  4. Dense topological spaces and dense continuity

    Science.gov (United States)

    Aldwoah, Khaled A.

    2013-09-01

    There are several attempts to generalize (or "widen") the concept of topological space. This paper uses equivalence relations to generalize the concept of topological space via the concept of equivalence relations. By the generalization, we can introduce from particular topology on a nonempty set X many new topologies, we call anyone of these new topologies a dense topology. In addition, we formulate some simple properties of dense topologies and study suitable generalizations of the concepts of limit points, closeness and continuity, as well as Jackson, Nörlund and Hahn dense topologies.

  5. Remote Analysis of Grain Size Characteristic in Submarine Pyroclastic Deposits from Kolumbo Volcano, Greece

    Science.gov (United States)

    Smart, C.; Whitesell, D. P.; Roman, C.; Carey, S.

    2011-12-01

    Grain size characteristics of pyroclastic deposits provide valuable information about source eruption energetics and depositional processes. Maximum size and sorting are often used to discriminate between fallout and sediment gravity flow processes during explosive eruptions. In the submarine environment the collection of such data in thick pyroclastic sequences is extremely challenging and potentially time consuming. A method has been developed to extract grain size information from stereo images collected by a remotely operated vehicle (ROV). In the summer of 2010 the ROV Hercules collected a suite of stereo images from a thick pumice sequence in the caldera walls of Kolumbo submarine volcano located about seven kilometers off the coast of Santorini, Greece. The highly stratified, pumice-rich deposit was likely created by the last explosive eruption of the volcano that took place in 1650 AD. Each image was taken from a distance of only a few meters from the outcrop in order to capture the outlines of individual clasts with relatively high resolution. Mosaics of individual images taken as the ROV transected approximately 150 meters of vertical outcrop were used to create large-scale vertical stratigraphic columns that proved useful for overall documentation of the eruption sequence and intracaldera correlations of distinct tephra units. Initial image processing techniques, including morphological operations, edge detection, shape and size estimation were implemented in MatLab and applied to a subset of individual images of the mosiacs. A large variety of algorithms were tested in order to best discriminate the outlines of individual pumices. This proved to be challenging owing to the close packing and overlapping of individual pumices. Preliminary success was achieved in discriminating the outlines of the large particles and measurements were carried out on the largest clasts present at different stratigraphic levels. In addition, semi-quantitative analysis of the

  6. Simultaneous pyroclastic and effusive venting at rhyolite volcanoes: the cases of Puyehue-Cordón Caulle and Chaitén

    Science.gov (United States)

    Castro, J. M.; Schipper, C. I.; Tuffen, H.

    2012-04-01

    The recent silicic eruptions at volcán Chaiten and Puyehue-Cordón Caulle (PCC) demonstrate that ash and pyroclast production characterizes not only the vigorous initial stages of these eruptions, but can continue on for months, even during the effusive phases of activity. As we observed at PCC in January, 2012 and at Chaitén in 2008-2009, pyroclastic venting taking the form of ash jetting and punctuated Vulcanian blasts (Schipper et al. this session) occurs simultaneously with lava effusion (Tuffen et al., this session) and does so from what appears to be a common vent. This close spatial and temporal correlation implies a genetic and/or causal relation between two very different eruption styles. In this paper, we explore the chemical and physical signatures of this pyroclastic-effusive bridge, and discuss mechanisms by which silicic magma degasses to produce simultaneous, but apparently disparate eruption styles. Geochemical and textural analyses are underway on a range of eruption products from PCC and Chaitén, including early air-fall pyroclastic obsidian and pumice lapilli, ballistic bombs collected within 2 km of the vents, and glassy lavas. Ballistic bombs display a variety of textures ranging from homogeneous glassy obsidian through breadcrusted and highly brecciated bombs with re-annealing textures (e.g., collapsed foams and rewelded obsidian fragments). Bombs from Chaitén contain abundant tuffisites, comprising planar to anastomising veins filled with variably welded juvenile ash. At Chaiten, ballistic bomb water contents (~0.3-1.2 wt.% H2O) and H2O/OH speciation suggest that bombs are shallowly sourced (frequency of explosions and effusion and degassing rates, in order to evaluate the role of pyroclastic venting on the production of dense degassed rhyolite magma (lava). That explosive activity has persisted at PCC for several months suggests that a balance is maintained between the overpressure driving magma supply and the cycles of mechanical

  7. Welding of pyroclastic conduit infill: A mechanism for cyclical explosive eruptions

    Science.gov (United States)

    Kolzenburg, S.; Russell, J. K.

    2014-07-01

    Vulcanian-style eruptions are small- to moderate-sized, singular to cyclical events commonly having volcanic explosivity indices of 1-3. They produce pyroclastic flows, disperse tephra over considerable areas, and can occur as precursors to larger (e.g., Plinian) eruptions. The fallout deposits of the 2360 B.P. eruption of Mount Meager, BC, Canada, contain bread-crusted blocks of welded breccia as accessory lithics. They display a range of compaction/welding intensity and provide a remarkable opportunity to constrain the nature and timescales of mechanical processes operating within explosive volcanic conduits during repose periods between eruptive cycles. We address the deformation and porosity/permeability reduction within natural pyroclastic deposits infilling volcanic conduits. We measure the porosity, permeability, and ultrasonic wave velocities for a suite of samples and quantify the strain recorded by pumice clasts. We explore the correlations between the physical properties and deformation fabric. Based on these correlations, we reconstruct the deformation history within the conduit, model the permeability reduction timescales, and outline the implications for the repressurization of the volcanic conduit. Our results highlight a profound directionality in the measured physical properties of these samples related to the deformation-induced fabric. Gas permeability varies drastically with increasing strain and decreasing porosity along the compaction direction of the fabric but varies little along the elongation direction of the fabric. The deformation fabric records a combination of compaction within the conduit and postcompaction stretching associated with subsequent eruption. Model timescales of these processes are in good agreement with repose periods of cyclic vulcanian eruptions.

  8. Comparing Volcanic Terrains on Venus and Earth: How Prevalent are Pyroclastic Deposits on Venus?

    Science.gov (United States)

    Carter, Lynn M.; Campbell, B. A.; Glaze, L. S.

    2012-01-01

    In the last several years, astronomers have discovered several exoplanets with masses less than 10 times that of the Earth [1]. Despite the likely abundance of Earth-sized planets, little is known about the pathways through which these planets evolve to become habitable or uninhabitable. Venus and Earth have similar planetary radii and solar orbital distance, and therefore offer a chance to study in detail the divergent evolution of two objects that now have radically different climates. Understanding the extent, duration, and types of volcanism present on Venus is an important step towards understanding how volatiles released from the interior of Venus have influenced the development of the atmosphere. Placing constraints on the extent of explosive volcanism on Venus can provide boundary conditions for timing, volumes, and altitudes for atmospheric injection of volatiles. In addition, atmospheric properties such as near-surface temperature and density affect how interior heat and volatiles are released. Radar image data for Venus can be used to determine the physical properties of volcanic deposits, and in particular, they can be used to search for evidence of pyroclastic deposits that may result from explosive outgassing of volatiles. For explosive volcanism to occur with the current high atmospheric pressure, magma volatile contents must be higher than is typical on Earth (at least 2-4% by weight) [2,3]. In, addition, pyroclastic flows should be more prevalent on Venus than convective plumes and material may not travel as far from the vent source as it would on Earth [3]. Areas of high radar backscatter with wispy margins that occur near concentric fractures on Sapho Patera [4] and several coronae in Eastern Eistla Regio [5] have been attributed to collapse of eruption columns and runout of rough materials.

  9. Dynamics and style transition of a moderate, Vulcanian-driven eruption at Tungurahua (Ecuador) on February 2014: pyroclastic deposits and hazard considerations

    OpenAIRE

    Romero, Jorge Eduardo; Douillet, Guilhem Amin; Vallejo Vargas, Silvia; Bustillos, Jorge; Troncoso, Liliana; Díaz Alvarado, Juan; Ramón, Patricio

    2016-01-01

    The ongoing eruptive cycle of Tungurahua volcano (Ecuador) since 1999 has been characterized by over 15 paroxysmal phases interrupted by periods of relative calm. Those phases included Strombolians, Vulcanians and one Subplinian eruptions and they generated tephra fallouts, pyroclastic density currents (PDCs) and lava flows. The 01 February 2014 eruption occurred after 75 days of quiescence. Two days before the eruption, a gradual increase of seismicity associated with sporadic weak ash emiss...

  10. Geology and Stratigraphy of Four Candidate Pyroclastic Deposits on Mercury

    Science.gov (United States)

    Weinauer, Julia; Hiesinger, Harald; Bauch, Karin; Preusker, Frank

    2016-04-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft [1] to Mercury revealed numerous new findings, including the discovery of potential pyroclastic deposits [2-9]. Besides impact cratering, volcanic processes, including the deposition of pyroclastic materials are among the most important processes to shape the surface of a planet. Volcanic processes allow us to study the thermal evolution of the planet, and impacts provide insights into the composition of the crust, and possible the mantle. In this study we focus on four specific examples of potential pyroclastic deposits: Lermontov NE (-48.15°E, 15.80°), Lermontov SE (-49.08°E, 15.04°), Glinka (-112.42°E, 15.01°), and Unnamed crater 7 (88.20°E, 32.40°). For our investigation we used data of the Mercury Dual Imaging System (MDIS) [10]. In particular we studied narrow-angle Camera (NAC) images with a resolution of 25-100 m/pixel and wide-angle camera (WAC) images with a resolution of about 170-250 m/pixel. Our data set is complemented by Digital Terrain Models (DTM) based on photogrammetric analyses of stereo images [11]. The objectives of this study are to investigate the geologic context of the pyroclastic deposits, to map their morphological/compositional sub-units in detail, to derive volume estimates for these deposits, to study their eruption conditions, and to derive information on the timing of the emplacement of these units. In addition, absolute model ages are determined to develop a stratigraphy of the mapped units Several morphologic features were observed in association with the pyroclastic deposits, including lobate scarps, melt pools, and large irregular depressions, as well as small-scale irregularly shaped, shallow, rimless depressions, i.e., hollows [2]. In Lermontov, the large irregular depressions that can be plausibly interpreted as vent structures [6,7] occur within a roughly circular depression of about 50 km in diameter, located in the center of

  11. Dense with Sense

    Science.gov (United States)

    Aletras, Anthony H.; Ingkanisorn, W. Patricia; Mancini, Christine; Arai, Andrew E.

    2005-09-01

    Displacement encoding with stimulated echoes (DENSE) with a low encoding strength phase-cycled meta-DENSE readout and a two fold SENSE acceleration ( R = 2) is described. This combination reduces total breath-hold times for increased patient comfort during cardiac regional myocardial contractility studies. Images from phantoms, normal volunteers, and a patient are provided to demonstrate the SENSE-DENSE combination of methods. The overall breath-hold time is halved while preserving strain map quality.

  12. Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures

    Directory of Open Access Journals (Sweden)

    T. Faug

    2002-01-01

    Full Text Available An experimental investigation with dry granular flows passing over an obstacle down a rough inclined channel has been performed. The aim is to improve our understanding of the interaction between dense snow avalanches and defence structures. Specific attention was directed to the study of the zone of influence upstream from the obstacle, linked to the formation of a dead zone. The dead zone length L was systematically measured as a function of the obstacle height H and the channel inclination θ, for several discharges. In a whole range of channel inclinations, all the data are shown to collapse into a single curve when properly scaled. The scaling is based on the introduction of a theoretical deposit length (depending on H, θ and the internal friction angle of the material, φ and a Froude number of the flow depending on the obstacle height.

  13. Lethal Thermal Impact at Periphery of Pyroclastic Surges: Evidences at Pompeii

    Science.gov (United States)

    Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Guarino, Fabio M.

    2010-01-01

    Background The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. Methodology/Principal Findings Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250°C hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. Conclusions/Significance This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius and other explosive volcanoes. PMID:20559555

  14. Lethal thermal impact at periphery of pyroclastic surges: evidences at Pompeii.

    Directory of Open Access Journals (Sweden)

    Giuseppe Mastrolorenzo

    Full Text Available BACKGROUND: The evaluation of mortality of pyroclastic surges and flows (PDCs produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250 degrees C hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. CONCLUSIONS/SIGNIFICANCE: This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius and other explosive volcanoes.

  15. Lethal thermal impact at periphery of pyroclastic surges: evidences at Pompeii.

    Science.gov (United States)

    Mastrolorenzo, Giuseppe; Petrone, Pierpaolo; Pappalardo, Lucia; Guarino, Fabio M

    2010-06-15

    The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250 degrees C hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius and other explosive volcanoes.

  16. Compositional analyses of small lunar pyroclastic deposits using Clementine multispectral data

    Science.gov (United States)

    Gaddis, Lisa R.; Hawke, B. Ray; Robinson, Mark S.; Coombs, Cassandra

    2000-02-01

    Clementine ultraviolet-visible (UVVIS) data are used to examine the compositions of 18 pyroclastic deposits (15 small, three large) at 13 sites on the Moon. Compositional variations among pyroclastic deposits largely result from differing amounts of new basaltic (or juvenile) material and reworked local material entrained in their ejecta upon eruption. Characterization of pyroclastic deposit compositions allows us to understand the mechanisms of lunar explosive volcanism. Evidence for compositional differences between small pyroclastic deposits at a single site is observed at Atlas crater. At all sites, compositional variation among the small pyroclastic deposits is consistent with earlier classification based on Earth-based spectra: three compositional groups can be observed, and the trend of increasing mafic absorption band strength from Group 1 to Group 2 to Group 3 is noted. As redefined here, Group 1 deposits include those of Alphonsus West, Alphonsus Southeast, Alphonsus Northeast 2, Atlas South, Crüger, Franklin, Grimaldi, Lavoisier, Oppenheimer, Orientale, and Riccioli. Group 1 deposits resemble lunar highlands, with weak mafic bands and relatively high UV/VIS ratios. Group 2 deposits include those of Alphonsus Northeast 1, Atlas North, Eastern Frigoris East and West, and Aristarchus Plateau; Group 2 deposits are similar to mature lunar maria, with moderate mafic band depths and intermediate UV/VIS ratios. The single Group 3 deposit, J. Herschel, has a relatively strong mafic band and a low UV/VIS ratio, and olivine is a likely juvenile component. Two of the deposits in these groups, Orientale and Aristarchus, are large pyroclastic deposits. The third large pyroclastic deposit, Apollo 17/Taurus Littrow, has a very weak mafic band and a high UV/VIS ratio and it does not belong to any of the compositional groups for small pyroclastic deposits. The observed compositional variations indicate that highland and mare materials are also present in many large and

  17. Numerical simulation of flow patterns in dense pneumatic conveying at different superficial gas velocities%表观气速对密相气力输送流型影响的模拟

    Institute of Scientific and Technical Information of China (English)

    朱立平; 彭小敏; 黄飞; 袁竹林; 闫亚明; 罗登山; 王宏生; 李斌

    2012-01-01

    Due to the problem in available numerical simulations of flow patterns in dense pneumatic conveying, a new mathematical model, which uses solid-phase volume concentration of local space and kinematic characteristics of clusters to describe the interactions between particles, was proposed in this paper. This model was first used to numerically simulate the dense pneumatic conveying (even for the packing of particles), and then used to numerically study the flow behavior of dense phase pneumatic conveying in horizontal pipe at high pressures, in which the separation and sedimentation between gas phase and solid phase in the conveying process were investigated. The simulation results also illustrated the evolving characteristics of flow patterns such as dune flow and plug flow, which are consistent with the experimental phenomena. Moreover, some rules of flow patterns were revealed by qualitatively analyzing the distribution of solid-phase flow patterns at different superficial gas velocities. The results show that the new model is appropriate and can be used to study the dense pneumatic conveying.%针对目前密相气力输送数值模拟关于流型演变方面所存在的问题,提出了一种基于颗粒所在局部空间的固相浓度及颗粒群运动特征来描述颗粒间相互作用的数学模型.该模型能够对气力输送,甚至是颗粒发生大量堆积情况下的密相输送进行数值模拟,使得长期以来缺乏有效模型对密相输送流型进行数值模拟研究的问题得到一定解决.利用该模型,对水平管中煤粉高压密相气力输送的颗粒流动过程进行了数值模拟,获得了输送过程中管道内所发生的气固两相之间的分离、沉积现象,展现了沙丘流及栓寒流等流型的演变特征,模拟结果与实验观察到的现象吻合较好,从而进一步验证了新数学模型的有效性.此外,通过对不同表观气速下固相流态分布的定量分析,揭示了输送流型变化的一些内在规律.

  18. A Physical Model to Study the Effects of Nozzle Design on Dense Two-Phase Flows in a Slab Mold Casting Ultra-Low Carbon Steels

    Science.gov (United States)

    Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.

    2017-01-01

    Momentum transfer of argon-steel flows in a slab mold were studied through an air-water physical model and particle image velocimetry measurements under the effects of nozzle design (nozzles with square ports S, square ports with bottom design U and circular ports C) and gas flow rate. The ratio of drag momentum of the gas phase over the liquid phase defines the conditions for coupled (existence of momentum transfer between the phases) and channeled flows (defined as those conditions where there is not further momentum transfer between both phases). When the ratio of superficial velocities of the gas phase over the liquid phase in the nozzle bore is less than 0.14, the flow pattern in the mold is dependent on the nozzle design and flow rate of gas (2 to 10 L/minute). Above this magnitude, the flow pattern becomes uncoupled and independent from the nozzle design and from the flow rate of gas. The ratios of drag velocities of the gas phase on the liquid phase and their superficial velocities in the nozzle bore are strongly dependent on the volume fraction of the gas phase. Nozzle U delivers the smallest sizes of bubbles and the smaller amount of bubble swarms per unit time impacting on the narrow face of the mold. It is, therefore, the most recommendable to cast ultra-low carbon steels. Practical implications derived from these results are written down in the text.

  19. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  20. Quantum dense key distribution

    CERN Document Server

    Degiovanni, I P; Castelletto, S; Rastello, M L; Bovino, F A; Colla, A M; Castagnoli, G C

    2004-01-01

    This paper proposes a new protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than BB84 one. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  1. Formation of obsidian pyroclasts by sintering of ash particles in the volcanic conduit

    Science.gov (United States)

    Gardner, James E.; Llewellin, Edward W.; Watkins, James M.; Befus, Kenneth S.

    2017-02-01

    The ranges in intensity and style of volcanic eruptions, from highly explosive Plinian eruptions to quiescent lava extrusions, depend on the style and efficiency of gas loss from ascending magma. Obsidian pyroclasts - small, glassy pieces of quenched magma found in some volcanic tephra beds - may preserve valuable information about magma degassing in their vesicle textures and volatile contents. Accurate interpretation of their textures and volatiles, however, requires understanding the mechanism of formation of the pyroclasts. Obsidian pyroclasts from the ca. 1325-1350 C.E. North Mono eruption of Mono Craters (CA, USA) were analyzed and found to have H2O and CO2 contents indicating that they were formed at pressures in the approximate range of 3-40 MPa. Many also contain domains with differing vesicle textures, separated by boundaries containing xenocrystic material, indicating that they are composed of smaller fragments that have sutured together. More than half of the pyroclasts analyzed contained small (∼10 μm), highly distorted vesicles, with multi-cuspate morphology, interpreted as the remnants of interstitial gas trapped amongst sintered fragments of melt/glass. Rounded vesicles are also common and are interpreted to result from surface tension-driven relaxation of the distorted vesicles. Calculated timescales of sintering and relaxation are consistent with timescales for pyroclast formation indicated by H2O re-equilibration within the heterogeneous pyroclasts. This sintering model for the origin of obsidian pyroclasts is further supported by the observation that spherical vesicles are found mainly in H2O-rich pyroclasts, and distorted vesicles mainly in H2O-poor pyroclasts. We conclude that obsidian pyroclasts generated during the North Mono eruption were formed by cycles of fragmentation, sintering/suturing, and relaxation, over a very wide range of depths within the conduit; we find no evidence to support pumice (foam) collapse as the formation

  2. Pyroclast Tracking Velocimetry illuminates bomb ejection and explosion dynamics at Stromboli (Italy) and Yasur (Vanuatu) volcanoes

    Science.gov (United States)

    Gaudin, Damien; Taddeucci, Jacopo; Scarlato, Piergiorgio; Moroni, Monica; Freda, Carmela; Gaeta, Mario; Palladino, Danilo Mauro

    2014-07-01

    A new image processing technique—Pyroclast Tracking Velocimetry—was used to analyze a set of 30 high-speed videos of Strombolian explosions from different vents at Stromboli (Italy) and Yasur (Vanuatu) volcanoes. The studied explosions invariably appear to result from the concatenation of up to a hundred individual pyroclast ejection pulses. All these pulses share a common evolution over time, including (1) a non-linear decrease of the pyroclast ejection velocity, (2) an increasing spread of ejection angle, and (3) an increasing size of the ejected pyroclasts. These features reflect the dynamic burst of short-lived gas pockets, in which the rupture area enlarges while pressure differential decreases. We estimated depth of pyroclast release to be approximately 1 and 8 m below the surface at Stromboli and Yasur, respectively. In addition, explosions featuring more frequent pulses also have higher average ejection velocities and larger total masses of pyroclasts. These explosions release a larger overall amount of energy stored in the pressurized gas by a combination of more frequent and stronger ejection pulses. In this context, the associated kinetic energy per explosion, ranging 103-109 J appears to be a good proxy for the explosion magnitude. Differences in the pulse-defining parameters among the different vents suggest that this general process is modulated by geometrical factors in the shallow conduit, as well as magma-specific rheology. Indeed, the more viscous melt of Yasur, compared to Stromboli, is associated with larger vents producing fewer pulses but larger pyroclasts.

  3. Emplacement temperatures of pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa

    Science.gov (United States)

    Fontana, Giovanni; Mac Niocaill, Conall; Brown, Richard J.; Sparks, R. Stephen J.; Field, Matthew

    2011-10-01

    Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions, layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Basalt lithic clasts in the layered and massive vent-filling pyroclastic deposits in the A/K1 pipe at Orapa were emplaced at >570°C, in the pyroclastic crater-filling deposits at 200-440°C and in crater-filling talus breccias and volcaniclastic breccias at 560°C, although the interpretation of these results is hampered by the presence of Mesozoic magnetic overprints. These temperatures are comparable to the estimated emplacement temperatures of other kimberlite deposits and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. The temperatures are also comparable to those obtained for pyroclastic deposits in other, silicic, volcanic systems. Because the lithic content of the studied deposits is 10-30%, the initial bulk temperature of the pyroclastic mixture of cold lithic clasts and juvenile kimberlite magma could have been 300-400°C hotter than the palaeomagnetic estimates. Together with the discovery of welded and agglutinated juvenile pyroclasts in some pyroclastic kimberlites, the palaeomagnetic results indicate that there are examples of kimberlites where phreatomagmatism did not play a major role in the generation of the pyroclastic deposits. This study indicates that palaeomagnetic methods can successfully distinguish differences in the

  4. Development of Millimeter-Wave Velocimetry and Acoustic Time-of-Flight Tomography for Measurements in Densely Loaded Gas-Solid Riser Flow

    Energy Technology Data Exchange (ETDEWEB)

    Fort, James A.; Pfund, David M.; Sheen, David M.; Pappas, Richard A.; Morgen, Gerald P.

    2007-04-01

    The MFDRC was formed in 1998 to advance the state-of-the-art in simulating multiphase turbulent flows by developing advanced computational models for gas-solid flows that are experimentally validated over a wide range of industrially relevant conditions. The goal was to transfer the resulting validated models to interested US commercial CFD software vendors, who would then propagate the models as part of new code versions to their customers in the US chemical industry. Since the lack of detailed data sets at industrially relevant conditions is the major roadblock to developing and validating multiphase turbulence models, a significant component of the work involved flow measurements on an industrial-scale riser contributed by Westinghouse, which was subsequently installed at SNL. Model comparisons were performed against these datasets by LANL. A parallel Office of Industrial Technology (OIT) project within the consortium made similar comparisons between riser measurements and models at NETL. Measured flow quantities of interest included volume fraction, velocity, and velocity-fluctuation profiles for both gas and solid phases at various locations in the riser. Some additional techniques were required for these measurements beyond what was currently available. PNNL’s role on the project was to work with the SNL experimental team to develop and test two new measurement techniques, acoustic tomography and millimeter-wave velocimetry. Acoustic tomography is a promising technique for gas-solid flow measurements in risers and PNNL has substantial related experience in this area. PNNL is also active in developing millimeter wave imaging techniques, and this technology presents an additional approach to make desired measurements. PNNL supported the advanced diagnostics development part of this project by evaluating these techniques and then by adapting and developing the selected technology to bulk gas-solids flows and by implementing them for testing in the SNL riser

  5. Impact of Diluted Pyroclastic Density Currents on Distal Settlements: A Case Study From the Bronze Age Eruption of Avellino, Somma-Vesuvius, Italy

    Science.gov (United States)

    di Vito, M. A.; Zanella, E.; Gurioli, L.; Lanza, R.; Sulpizio, R.; Evdokia, T.; Laforgia, E.

    2006-12-01

    During the ancient Bronze Age (Palma Campania Facies) a violent plinian eruption, known as the Avellino eruption, occurred at the Somma-Vesuvius, Italy. The eruption was characterised by two main phases: plinian and phreatomagmatic, respectively. The plinian phase dispersed fallout products across the Italian peninsula in a NE direction, while the phreatomagmatic one generated dilute, turbulent pyroclastic density currents (PDCs). The latter phase impacted the plain NNW of Vesuvius, from Naples to Nola, extending tens of kilometers from the volcano. This territory was densely occupied by human settlements. These currents emplaced dune-bedded and thinly stratified deposits that reached a maximum thickness of 8-10 m in the vent area located in the western sector of the edifice. These deposits thin with distance downstream across the northwestern plain, reaching a maximum runout of up to 25 km. The onset of the phreatomagmatic phase of the eruption, during which highly efficient magma-water interaction triggered highly energetic PDCs is marked by lithic rich, fine grained ash deposits. Across the northwestern and northeastern sectors several human settlements were covered by these deposits. Volcanological field investigations integrated with a detailed facies analysis revealed that the presence of village huts (of wood and straw) affected the distribution and accumulation of these dilute PDCs. A multidisciplinary approach was applied to constrain a number of parameters for the PDCs cropping out in the excavated villages. These include PDC temperature (from the Thermal Remnant Magnetization of the lithics and pottery fragments found within the deposits) and the flow directions (from the magnetic fabric of the fine matrix). These data show that the currents, even if diluted and distal, were still hot, with temperatures of at-least 240-280 °C. The first PDC was able to engulf the village, entering huts, as well as to being locally diverted by these structures. Small

  6. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy)

    Science.gov (United States)

    de Vivo, B.; Rolandi, G.; Gans, P.B.; Calvert, A.; Bohrson, W.A.; Spera, F.J.; Belkin, H.E.

    2001-01-01

    The ∼ 150 km3 (DRE) trachytic Campanian Ignimbrite, which is situated north-west of Naples, Italy, is one of the largest eruptions in the Mediterranean region in the last 200 ky. Despite centuries of investigation, the age and eruptive history of the Campanian Ignimbrite is still debated, as is the chronology of other significant volcanic events of the Campanian Plain within the last 200–300 ky. New 40Ar/39Ar geochronology defines the age of the Campanian Ignimbrite at 39.28 ± 0.11 ka, about 2 ky older than the previous best estimate. Based on the distribution of the Campanian Ignimbrite and associated uppermost proximal lithic and polyclastic breccias, we suggest that the Campanian Ignimbrite magma was emitted from fissures activated along neotectonic Apennine faults rather than from ring fractures defining a Campi Flegrei caldera. Significantly, new volcanological, geochronological, and geochemical data distinguish previously unrecognized ignimbrite deposits in the Campanian Plain, accurately dated between 157 and 205 ka. These ages, coupled with a xenocrystic sanidine component > 315 ka, extend the volcanic history of this region by over 200 ky. Recent work also identifies a pyroclastic deposit, dated at 18.0 ka, outside of the topographic Campi Flegrei basin, expanding the spatial distribution of post-Campanian Ignimbrite deposits. These new discoveries emphasize the importance of continued investigation of the ages, distribution, volumes, and eruption dynamics of volcanic events associated with the Campanian Plain. Such information is critical for accurate assessment of the volcanic hazards associated with potentially large-volume explosive eruptions in close proximity to the densely populated Neapolitan region.

  7. A methodology for highly accurate results of direct numerical simulations: Drag force in dense gas–solid flows at intermediate Reynolds number

    NARCIS (Netherlands)

    Tang, Y.; Kriebitzsch, S.H.L.; van der Hoef, Martin Anton; Peters, E.A.J.F.; Kuipers, J.A.M.

    2014-01-01

    Simulations with an iterative immersed boundary method (IBM) are performed to predict the drag force for gas–solid flows at intermediate Reynolds number (Re). A methodology is developed to obtain highly accurate IBM results at relatively low computational cost. First of all, “resolution-free” gas–so

  8. Remote Identification of Pyroclastic Deposits on Mars and the Moon with Near-Infrared Spectroscopy

    Science.gov (United States)

    Horgan, B. H.; Chojnacki, M.; Lai, J. C.; Bennett, K. A.; Bell, J. F.

    2013-12-01

    A major challenge for interpreting the volcanic history of the terrestrial planets is differentiating effusive from explosive volcanic deposits, especially when these deposits are only exposed in cross section. One major difference between these deposits is the presence of glass. Pyroclastic flows and other explosive deposits can contain large quantities of glass, depending on factors including water content at the time of eruption, whereas glass is largely restricted to the fragile cooling rind in effusive deposits. Thus, the presence of significant glass in a deposit most likely indicates an explosive origin. Here we present a new method for discriminating lava flows from pyroclastic deposits using near-infrared spectroscopy. Iron-bearing glass exhibits a broad and shallow absorption band due to iron in the glass structure, centered between 1.10-1.18 μm. This band is longward of similar bands caused by other Fe-bearing phases (e.g., olivine and pyroxene), and therefore allows unique identification of glass where it is present at high abundances (>80 wt.% of Fe-bearing phases). Lower abundances of glass in a mixture with other Fe-bearing phases can still be detected based on the effects of the glass absorption band, which shifts the 1 μm band center and causes a high asymmetry in the shape of the band, both toward longer wavelengths. By analyzing near-infrared spectra from the Mars Express OMEGA imaging spectrometer for these 1 μm band characteristics consistent with Fe-bearing glass, we have mapped the distribution of glass-bearing deposits globally on Mars at 1 km resolution. Where available, we have confirmed our detections with high resolution observations from the MRO CRISM imaging spectrometer (18-36 m/pixel). Glass is a component of many dune fields, in sediments derived from local erosion of layered units, in the widespread dark sediments in the northern plains, and in deposits associated with linear features (possible fissures). These results suggest a

  9. Reworked pyroclastic beds in the early Miocene of Patagonia: Reaction in response to high sediment supply during explosive volcanic events

    Science.gov (United States)

    Cuitiño, José I.; Scasso, Roberto A.

    2013-05-01

    Two meter-scale pyroclastic levels are interbedded within the early Miocene succession of the Estancia 25 de Mayo (Patagoniense transgression) and Santa Cruz formations in the foreland Austral (or Magallanes) Basin, Argentina. The Lower Pyroclastic Level (LPL) is a tabular body interbedded within offshore marine deposits, laterally continuous for 30 km and varying in thickness from few centimeters to around 4 m. Grain-size grades from coarse to extremely fine ash with upward-fining along with a northeastern-fining trends. Structureless fine to very fine tuffs dominate and rare parallel laminations are the only tractive sedimentary structures. The Upper Pyroclastic Level (UPL) lies within low energy fluvial deposits and is laterally discontinuous, and it is composed by lenticular bodies reaching a maximum of 15 m thick and 100 m wide, with a concave-up base and a plane top. Grain-size range is similar to the LPL but it coarsens upward. The lower portion of the UPL shows parallel lamination, current ripple lamination and mud drapes with large pumice lapilli and plant debris, whereas the upper portion shows parallel lamination and trough cross-stratification. Both pyroclastic levels are composed mainly of pumice grains and glass shards with minor proportions of quartz and plagioclase crystals and lithic fragments. The LPL shows no mixing with epiclastic material whereas the UPL shows an upward increase in epiclastic material, and an upward increment in the scale of cross-bedding. The large thickness in relation to the possible emission center and the content of plant debris of the LPL does not suggest a direct, submarine, ash-fallout origin. The LPL is interpreted as a deposit of hyperpycnal-flows generated at the coastal zone when tephra-laden rivers plunged into the ocean. Large amounts of well preserved plant debris support the hypothesis of a terrestrial source of the sediments. The UPL is entirely composed of tractive deposits, so an ash fallout origin is

  10. Effects of thermal quenching on the breakup of pyroclasts

    Science.gov (United States)

    Patel, A.; Manga, M.; Carey, R. J.; Degruyter, W.; Dufek, J.

    2012-12-01

    It is often assumed that magma fragments when it contacts water. Obsidian chips and glass spheres crack when quenched. Vesicular pyroclasts are made of similar glass, so thermal quenching may cause them to break more easily. We performed a set of experiments on air fall pumice from Medicine Lake, California. Density and texture of similar samples are described in Manga et al., Bull Volc 2010. We made "quenched" samples by heating natural pyroclasts to 600 °C, quenching them in water at 21 °C, drying them at 105 °C, and then cooling them to room temperature. We compare these samples with untreated air fall pumice from the same deposit, hereafter referred to as "regular" pumice. We tested whether quenched pumice would 1) shatter more easily in collisions and 2) abrade faster. Our collision experiment methods are described in Dufek et al., Nature Geoscience 2012. Our abrasion experiment methods are described in Manga et al., Bull Volc 2010. We also tested whether individual clasts lose mass upon quenching and whether they increase in effective wet density. Effective wet density is defined as underwater density of a clast when water occupies part of the pore space. Effective wet density, measured as a function of time after immersion, indicates the volume fraction of the pore space that becomes occupied by water. We compare effective wet density of individual clasts pre-quenching with effective wet density after having been quenched, thoroughly dried and then cooled to room temperature. An increase in effective wet density would suggest that bubble walls had been damaged during quenching, allowing water to occupy the pore space faster. We also compare pre-quenching and post-quenching textures using X-Ray Tomography (XRT) and SEM images. Results from collision experiments show no obvious difference between quenched pumice and regular pumice. Quenched pumice abraded more quickly than regular pumice. We find that 1 to 2 % of mass was lost during quenching. Effective

  11. Tephra, trees, and trouble: forest dieback delays landslide response to pyroclastic eruption

    Science.gov (United States)

    Korup, Oliver; Seidemann, Jan; Mohr, Christian

    2017-04-01

    Large explosive eruptions may substantially transform landscapes by burying topography under thick layers of tephra. The excess pyroclastic sediment that is gradually washed into rivers following such eruptions is responsible for some of the highest specific sediment yields ever documented. The handful of detailed quantitative studies of such catastrophic fluvial response has hardly looked at how hillslopes respond to tephra loads, however. We studied whether three recent eruptions in Chile's Southern Volcanic Zone (SVZ) noticeably changed hillslope erosion rates, and found a strikingly delayed increase in shallow landslide activity. In the case of Chaitén volcano, which erupted in 2008, densely forested hillslopes nearby gained steadily in landslides abundance and area, and most rapidly some eight years after being covered by tephra. In 2016 alone, more than 75 per cent of the volume of all slope failures since the eruption (more than 2 million cubic metres) occurred in an area of 250 square kilometres around the volcano. Neighboring regions of comparable topography, forest cover, rainfall, and lithology have landslide rates at least ten times lower, so that we argue that successive loss of shear strength due to delayed tree-root decay and suppressed vegetation regrowth promotes slope failures near the volcano, especially where pristine rainforests were obliterated by tephra loads. These shallow landslides scrape sediment, soils, and dead wood from hillslopes, and reinforce the supply to rivers with high sediment and organic carbon loads nearly a decade after the eruption. We estimate that 0.1-0.2 Mt C were mobilized by these slope failures, and thus more than 25 per cent of the total post-eruptive organic carbon flux bound for the nearby north Patagonian fjords. Given that explosive eruptions in the SVZ have a mean return period of ca. 275 years, we propose that protracted landslide response of densely forested hillslopes to explosive eruptions plays an

  12. Truncation planes from a dilute pyroclastic density current: field data and analogue experiments.

    Science.gov (United States)

    Douillet, Guilhem Amin; Gegg, Lukas; Mato, Celia; Kueppers, Ulrich; Dingwell, Donald B.

    2016-04-01

    Pyroclastic density currents (PDCs) are a catastrophic transport mode of ground hugging gas-particle mixtures associated with explosive volcanic eruptions. The extremely high sedimentation rates and turbulence levels of these particulate density currents can freeze and preserve dynamic phenomena that happen but are not recorded in other sedimentary environments. Several intriguing and unanticipated features have been identified in outcrops and reproduced via analogue experiments, with the potential to change our views on morphodynamics and particle motion. Three types of small-scale (ca. 10 cm) erosion structures were observed on the stoss side of dune bedforms in the field: 1) vertical erosion planes covered with stoss-aggrading, vertical lamination, 2) overturned laminations at the preserved limit of erosion planes and 3) loss of stratification at erosion planes. These features are interpreted to indicate rapidly evolving velocities, undeveloped boundary layers, and a diffuse zone rather than a sharp border defining the flow-bed interface. Most experimental work on particle motion and erosion from the literature has been accomplished under constant conditions and with planar particle beds. Here, in order to reproduce the field observations, short-lived air-jets generated with a compressor-gun were shot into stratified beds of coarse particles (300 μm) of low density (1000 kg/m3). These "eroding jets" were filmed with a high speed camera and the deposits were sectioned after the experiments. The three natural types of erosion characteristics were experimentally generated. Vertical erosion planes are produced by small-scale, relatively sustained jets. Overturned laminations are due to a fluidization-like behavior at the erosion front of short-lived, strong jets, demonstrating that the fluid's velocity profile penetrates into the deposit. Loss of lamination seems related to the nature of erosion onset in packages. Rather than providing simple answers, the dataset

  13. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.

    2012-12-01

    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and 35 kPa can be expected within 3 km from source, ensuring complete destruction of the area; Pdyn > 15 kPa up to 5 km from source, resulting in heavy structural damage to most buildings and near destruction of weaker buildings; and Pdyn <10 kPa at ~6 km from source, resulting in severe damage to weaker structures at least up to this distance. This exercise illustrates our ability to combine field measurements with numerical techniques to explore controlling parameters of dilute PDC dynamics. These tools can be used to understand and estimate the damage potential and

  14. Magnetic petrofabric of igneous rocks: Lessons from pyroclastic density current deposits and obsidians

    Science.gov (United States)

    Cañón-Tapia, E.; Mendoza-Borunda, R.

    2014-12-01

    Measurement of the anisotropy of magnetic susceptibility (AMS) of igneous rocks can provide clues concerning their mechanism of formation and in particular are very helpful as flow direction indicators. Unlike other igneous rocks, however, pyroclastic density current deposits (PDCDs) present a challenge in the interpretation of AMS measurements due to the complexity of their mechanism of emplacement. In this paper we review the most common assumptions made in the interpretation of the AMS of PDCD, taking advantage of key lessons obtained from obsidians. Despite the complexities on the mechanism of formation of PDCDs, it is shown that a key element for the fruitful interpretation of AMS is to give proper attention to the various components likely to be involved in controlling their general petrofabric. The anisotropies of ferromagnetic crystals (whether as free phases or embedded within clasts or shards), and those of paramagnetic minerals (mainly ferrosilicates) need to be taken into consideration when interpreting the AMS measurements of PDCDs. Variations of the deposition regime both as a function of position and of time also need to be considered on the interpretations. Nevertheless, if a suitable sampling strategy is adopted, the potential of the AMS method as a petrofabric indicator is maximized.

  15. Evaluation of the impact of the 2010 pyroclastic density currents at Merapi volcano from high-resolution satellite imagery, field investigations and numerical simulations

    Science.gov (United States)

    Charbonnier, S. J.; Germa, A.; Connor, C. B.; Gertisser, R.; Preece, K.; Komorowski, J.-C.; Lavigne, F.; Dixon, T.; Connor, L.

    2013-07-01

    The 2010 pyroclastic density currents (PDC) at Merapi have presented a rare opportunity to collect a uniquely detailed dataset of the source, extent, lateral variations and impact of various PDC deposits on a densely populated area. Using traditional volcanological field-based methods and a multi-temporal dataset of high-resolution satellite imagery, a total of 23 PDC events have been recognized, including 5 main channeled flows, 15 overbank flows derived from overspill and re-channelization of the main PDCs into adjacent tributaries and two main surge events. The 2010 PDC deposits covered an area of ~ 22.3 km2, unequally distributed between valley-filling (6.9%), overbank (22.4%) and surge and associated fallout deposits (71.7%). Their total estimated non-DRE volume is ~ 36.3 × 106 m3, with 50.2% of this volume accounting for valley-filling deposits, 39.3% for overbank deposits and 10.5% for surge and associated fallout deposits. More than 70% of the total volume was deposited during the third eruptive phase (4-5 November), and only 16.6%, 11.5% and 0.9% during the first (26-29 October), second (30 October - 3 November) and fourth phase (6-23 November), respectively. The internal architecture and lithofacies variations of the 2010 PDC deposits were investigated using data collected from 30 stratigraphic sections measured after one rainy season of erosion. The results show that complex, local-scale variations in flow dynamics and deposit architectures are apparent and that the major factors controlling the propagation of the main flows and their potential hazards for overbanking were driven by: (1) the rapid emplacement of several voluminous PDCs, associated with the steady infilling of the receiving landscape after the two first phases of the eruption; (2) longitudinal changes in channel capacity following increased sinuosity in the valley and decreased containment space; and (3) the effects of varying source mechanisms (gravitational dome collapse, vertical or

  16. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;

    2012-01-01

    Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  17. Runout distance and dynamic pressure of pyroclastic density currents: Evidence from 18 May 1980 blast surge of Mount St. Helens

    Science.gov (United States)

    Gardner, J. E.; Andrews, B. J.

    2016-12-01

    Pyroclastic density currents (flows and surges) are one of the most deadly hazards associated with volcanic eruptions. Understanding what controls how far such currents will travel, and how their dynamic pressure evolves, could help mitigate their hazards. The distance a ground hugging, pyroclastic density current travels is partly limited by when it reverses buoyancy and lifts off into the atmosphere. The 1980 blast surge of Mount St. Helens offers an example of a current seen to lift off. Before lofting, it had traveled up to 20 km and leveled more than 600 km3 of thick forest (the blowdown zone). The outer edge of the devastated area - where burned trees that were left standing (the singe zone) - is where the surge is thought to have lifted off. We recently examined deposits in the outer parts of the blowdown and in the singe zone at 32 sites. The important finding is that the laterally moving surge travelled into the singe zone, and hence the change in tree damage does not mark the run out distance of the ground hugging surge. Eyewitness accounts and impacts on trees and vehicles reveal that the surge consisted of a fast, dilute "overcurrent" and a slower "undercurrent", where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that when the overcurrent began to lift off, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, burning trees but it lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from 30 m/s when it entered the singe zone to 3 m/s at the far end. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards.

  18. Local spectrophotometric properties of pyroclastic deposits at the Lavoisier lunar crater

    Science.gov (United States)

    Souchon, A. L.; Besse, S.; Pinet, P. C.; Chevrel, S. D.; Daydou, Y. H.; Josset, J.-L.; D'Uston, L.; Haruyama, J.

    2013-07-01

    We present a study of the Lavoisier lunar crater combining photometric data from the AMIE camera (SMART-1 mission) and hyperspectral data from the Moon Mineralogy Mapper M3 (Chandrayaan-1 mission), with a special emphasis on the pyroclastic deposits considered to be present on the crater floor. The photometric parameters are in agreement with the general photometric behaviors of the lunar regolith, especially the backscattering properties. The assumed pyroclastic materials within Lavoisier present at first order a rather homogeneous photometric behavior, in favor of their surface state homogeneity. However, they are not significantly different from other "non-dark" patches on the crater's floor, whereas the assumed pyroclastic deposit of Lavoisier F displays clearly different photometric parameters, indicative of distinct physical surface properties from the pyroclastic materials within Lavoisier. Using laboratory data to get hindsight on the reliability of results from orbital datasets, we show that the use of more or less depleted phase curves for photometric inversions has a clear impact on the photometric parameters that are derived. The hyperspectral analysis of Lavoisier crater shows that the various pyroclastic deposits present the same mineralogical composition, distinct from the floor of the crater and the mare basalts. M3 spectra do not differentiate between the pyroclastic deposits within Lavoisier and Lavoisier F. They have the same spectral signatures, share a similar mineralogical composition, and probably the same volcanic origin. Therefore, the differences seen in the photometric analysis from the AMIE observations are indicative of variations in grain sizes, and/or roughness, and/or particles scattering properties, and/or compaction state. The combined mineralogical and photometric analysis is a very useful approach to document the nature of the pyroclastic deposits of the Moon, and possibly of other objects of the Solar System (e.g., Mercury) as

  19. Erosion and basal forces in granular flow experiments

    Science.gov (United States)

    Sanvitale, Nicoletta; Bowman, Elisabeth

    2016-04-01

    Extreme mass wasting avalanche events such as rock, snow and ice avalanches, debris flows, and pyroclastic flows are among the most hazardous geological phenomena. These events driven by gravity, can travel for long distance and high speed, increasing their volumes as they can entertain material along their path. The erosion of material and its entrainment can greatly affect the overall dynamics of transportation, either enhancing or impeding the avalanche mobility depending on flow dynamics and characteristics of the substrate. However, the mechanisms and processes acting at the base as they travel over deformable or erodible substrates are still poor understood. Experiments, simulations and field measurements indicate that large fluctuations can occur in basal forces and stresses, which may be the result of non-uniform load transfer within the mass, and rolling, bouncing and sliding of the particles along the bed. In dense granular materials, force distributions can propagate through filamentary chain structures that carry a large fraction of the forces within the system. Photoelastic experiments on two-dimensional, monodisperse, gravity-driven flows have shown that force chains can transmit high localized forces to the boundary of dense granular flows. Here we describe the preliminary setup and results of 2D experiments on polydisperse granular flows of photoelastic disks down a small flume designed to acquire the forces exerted at the boundaries of the flow and to analyze their effects on an erodible bed. The intended outcome of this research is to provide better information on the complex mechanism of erosion and its effects on avalanche behaviour.

  20. Pyroclastic deposits:an important reservoir for hydrocarbon accumulation%火山碎屑沉积物是油气的重要储层

    Institute of Scientific and Technical Information of China (English)

    刘祥; 郎建军; 杨清福

    2011-01-01

    Pyroclastic deposits are important reservoirs and can be divided into fallout tephradeposits, pyroclastic flow deposits, lahar deposits and base surge deposits by their genesis. The four kinds of pyroclastic deposits have different reservoir characteristics and potential. The identification and interpretation of the pyroclastic deposits can significantly influence the exploration methods of volcaniclastic sequences and the prediction of reservoir geometry and quality. The Lower Jurassic Wrightson Formation in Arizona is a multi-crater complex. Its pyroclastic deposits and lavas with various genesis can be divided into crater, proximal, middle and distal facies. The influences of these facies on reservoir quality are discussed. Volcanic clasts are mostly composed of chemically active and unstable minerals that can change rapidly and extensively during burial diagenesis. The occurrence of volcanic clasts may contribute to the development of dissolution porosity which can enhance reservoir quality.%火山碎屑沉积物是重要的油气储层.火山碎屑沉积按成因划分为火山喷发空中降落堆积物、火山碎屑流状堆积物、火山泥流堆积物和火山基浪堆积物等.它们的特征和储层潜能是不同的.火山碎屑沉积物的识别和解释能够极大的影响火山碎屑层序的勘探方法、储油层几何形态和性能的预测.美国亚利桑那洲早侏罗世怀特申组是一个多喷发火山口复合体,把不同成因类型的火山碎屑堆积物和熔岩分为4个相:火口相、近火口相、中间相和远端相.讨论了这些相对储层性能的影响.火山碎屑大部分由化学性活泼的和不稳定矿物组成,在埋藏成岩期间具有迅速和广泛的变化.火山碎屑的赋存,有助于溶解孔隙的发育,能够增强储油层性能.

  1. Analysis of Heterogeneity in CO2, H2O and OH in Centimeter-Sized Obsidian Pyroclasts from Mono Craters, California

    Science.gov (United States)

    Conde, G. D.; Watkins, J. M.

    2014-12-01

    Volcanic tephra deposits typically contain inclusions or fragments of quenched melt that preserve pre-eruptive volatile concentrations within the volcanic conduit. The concentrations of CO2, H2O and OH in obsidian pyroclasts provide information on magma storage depths while gradients in these volatile species provide information on rates and mechanisms of gas loss (or gain) in magma during ascent. We are measuring CO2, H2O and OH profiles and area maps in six randomly selected pyroclastic obsidian clasts from Mono Craters, California using conventional Fourier Transform Infrared Spectroscopy (FTIR). Previous studies of these pyroclasts have focused on spot analyses of volatile concentrations within clast interiors, but our study targets clast rims, bubbles, flow bands, and texturally homogeneous regions of the clasts. The objective is to use the magnitude and spatial distribution of heterogeneities to assess the role of vapor fluxing and to determine timescales of magmatic processes such as bubble growth/resorption and mixing of magma from variable depths. The first clast that we have analyzed is relatively homogeneous in dissolved H2O and OH but exhibits millimeter-scale heterogeneities in dissolved CO2. The concentration of dissolved CO2 varies by a factor of two, ranging from 15 to 30 ppm with a patchy distribution throughout the clast. The patches of high CO2 concentration do not correspond to visible textures within the clast. Total water (H2Ot) varies from 1.5 to 1.7 wt% with higher water concentrations corresponding to darker regions of glass. The distribution of CO2 requires a mechanism for introducing millimeter-scale heterogeneity within minutes to hours prior to the eruption. Our interpretation is that obsidian pyroclasts are assembled during chaotic vertical mixing and thus sample a range of depths within the feeder system. This interpretation is consistent with previous inferences that resorption of bubbles within pyroclasts is caused by repeated

  2. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera (LROC) data

    Science.gov (United States)

    Gustafson, J. Olaf; Bell, James F.; Gaddis, Lisa R.R.; Hawke, B. Ray Ray; Giguere, Thomas A.

    2012-01-01

    We used a Lunar Reconnaissance Orbiter Camera (LROC) global monochrome Wide-angle Camera (WAC) mosaic to conduct a survey of the Moon to search for previously unidentified pyroclastic deposits. Promising locations were examined in detail using LROC multispectral WAC mosaics, high-resolution LROC Narrow Angle Camera (NAC) images, and Clementine multispectral (ultraviolet-visible or UVVIS) data. Out of 47 potential deposits chosen for closer examination, 12 were selected as probable newly identified pyroclastic deposits. Potential pyroclastic deposits were generally found in settings similar to previously identified deposits, including areas within or near mare deposits adjacent to highlands, within floor-fractured craters, and along fissures in mare deposits. However, a significant new finding is the discovery of localized pyroclastic deposits within floor-fractured craters Anderson E and F on the lunar farside, isolated from other known similar deposits. Our search confirms that most major regional and localized low-albedo pyroclastic deposits have been identified on the Moon down to ~100 m/pix resolution, and that additional newly identified deposits are likely to be either isolated small deposits or additional portions of discontinuous, patchy deposits.

  3. Posteruptive impacts of pyroclastic deposits from basaltic andesite stratovolcanoes on surface water composition

    Science.gov (United States)

    Genareau, K.; Cronin, S. J.; Stewart, C.; Bhattacharyya, S.; Donahoe, R.

    2016-05-01

    Volcanic ash deposition following explosive eruptions can pose significant hazards for water quality, human health, agriculture, and infrastructure functionality. Many studies have examined how fresh ash deposition may lower the pH of, and introduce a range of potentially toxic elements into, exposed surface waters. However, no study has yet determined the effects on water composition as a result of mechanical pyroclast disaggregation and production of new fresh particle surfaces and increasingly fine grained particles. Such disaggregation could result from natural posteruptive processes such as debris avalanches, lahars, or fluvial/aeolian transport and human activities such as cleanup efforts or mining of pyroclastic deposits. The posteruption time scales of pyroclast disaggregation may vary from months in moist tropical or temperate environments to years or decades in arid settings. Here we show, for the first time in experimental studies, that mechanical milling of pyroclasts will introduce a range of elements into exposed waters, including Al, which can be toxic at elevated levels, and Na, which increases the electrical conductivity of solutions. The pH of leaching solutions also increases by several log units. Such dramatic changes on the experimental scale may have implications for surface water composition in posteruptive settings, necessitating longer-term risk assessments for ecosystem health and consideration of the role of pyroclastic deposits in element cycling in volcanically active regions.

  4. Numerical Simulation on Dune Flow in Pressurized Dense Phase Pneumatic Conveying of Pulverized Coal in Horizontal Pipe%水平管加压密相煤粉气力输送沙丘流的数值模拟

    Institute of Scientific and Technical Information of China (English)

    蒲文灏; 赵长遂

    2011-01-01

    对Johnson等提出的摩擦正应力模型和Syamlal等提出的摩擦剪切黏度模型进行了修正,并将其与颗粒动理学理论相结合,建立了可以描述加压密相气力输送的气固湍流流动状况的三维多相流模型.该模型充分考虑了颗粒间碰撞和摩擦力作用,以及气相和颗粒团湍流脉动之间的相互作用.采用该模型对加压密相气力输送水平管沙丘流流动特性进行了三维数值模拟,并预测了单个沙丘和连续沙丘的形成及运动状况.结果表明:随着表观气速的增加,煤粉颗粒浓度减小,压降梯度呈现先减小后增大的趋势;在横截面上,煤粉颗粒分布呈现上窄下宽的趋势,且煤粉颗粒在管道底部沉积,并呈现月牙形状.模拟结果与试验结果吻合较好.%Modifications were made for the frictional normal stresses model proposed by Johnson et al. and the frictional shear viscosity model proposed by Syamlal et al. Combining the modified model with the kinetic theory for granular flow, a 3-D multi-phase flow model was built up for gas-solid turbulent flow in pressurized dense phase pneumatic conveying. The model sufficiently took account of the collision and friction action among particles, and the interaction among gas phase and turbulent fluctuation of particles.The model was used to carry out the 3-D numerical simulation for the dune flow characteristics in pressurized dense phase pneumatic conveying in a horizontal pipe. The formation and motion process of the single dune and the continuous dunes were predicted. Results show that with the increase of apparent gas velocity, the concentration of pulverized coal decreases, and the pressure drop gradient decreases at first and then increases. On the cross section, the distribution of pulverized coal appears to be narrow on the upper part and broad on the lower part. Besides, there are coal particles deposited on the bottom of the pipe to form the dune. The simulated results agree well

  5. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  6. In situ formation of welded tuff-like textures in the carapace of a voluminous silicic lava flow, Owyhee County, SW Idaho

    Science.gov (United States)

    Manley, C. R.

    1996-07-01

    The Badlands rhyolite, on the Owyhee Plateau of southwestern Idaho, can be demonstrated to be a large lava flow on the basis of its geometry of large and small flow lobes, its well-exposed near-vent features, and its response to pre-existing topography. However, samples of the dense upper vitrophyre of the unit reveal a range of annealed fragmental textures, including material which closely resembles the compressed, welded glass shards which are characteristic of ignimbrites. Formation of these tuff-like textures involved processes probably common to emplacement of most silicic lava flow units. Decompression upon extrusion causes inflation of pumice at the surface of the lava flow; some of this pumice is subsequently comminuted, producing loose bubble-wall shards, bits of pumice, chips of dense glass, and fragments of phenocrysts. This debris sifts down around loose blocks and into open fractures deeper in the flow, where it can be reheated, compressed, and annealed to varying degrees. The end result is a dense vitrophyre layer (beneath the true upper, non-welded carapace breccia) which can be extremely texturally heterogeneous, with areas of flow-foliated lava occurring very near lava which in many aspects looks like welded ignimbrite, complete with flattened pumices. Identical textures in other silicic units have been cited by previous workers as evidence that those units erupted as pyroclastic flows which then underwent sufficient rheomorphism to create a flow-foliated rock which otherwise appears to be lava. The textures described herein indicate that lava flows can come to mimic rheomorphic ignimbrites, at least at scales ranging from thin sections to outcrops. Voluminous silicic units with scattered fragmental textures, but with otherwise lava-like features, are probably true effusive lava flows.

  7. Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 2. Temperature of the deposits and hazard implications

    Science.gov (United States)

    Zanella, E.; Gurioli, L.; Pareschi, M. T.; Lanza, R.

    2007-05-01

    During the A.D. 79 eruption of Vesuvius, Italy, the Roman town of Pompeii was covered by 2.5 m of pyroclastic fall pumice and then partially destroyed by pyroclastic density currents (PDCs). Thermal remanent magnetization measurements performed on the lithic and roof tile fragments embedded in the PDC deposits allow us to quantify the variations in the temperature (Tdep) of the deposits within and around Pompeii. These results reveal that the presence of buildings strongly influenced the deposition temperature of the erupted products. The first two currents, which entered Pompeii at a temperature around 300-360°C, show drastic decreases in the Tdep, with minima of 100-140°C, found in the deposits within the town. We interpret these decreases in temperature as being the result of localized interactions between the PDCs and the city structures, which were only able to affect the lower part of the currents. Down flow of Pompeii, the lowermost portion of the PDCs regained its original physical characteristics, emplacing hot deposits once more. The final, dilute PDCs entered a town that was already partially destroyed by the previous currents. These PDCs left thin ash deposits, which mantled the previous ones. The lack of interaction with the urban fabric is indicated by their uniform temperature everywhere. However, the relatively high temperature of the deposits, between 140 and 300°C, indicates that even these distal, thin ash layers, capped by their accretionary lapilli bed, were associated with PDCs that were still hot enough to cause problems for unsheltered people.

  8. Dynamical compressibility of dense granular shear flows

    OpenAIRE

    Trulsson, Martin; Bouzid, Mehdi; Claudin, Philippe; Andreotti, Bruno

    2012-01-01

    It has been conjectured by Bagnold [1] that an assembly of hard non-deformable spheres could behave as a compressible medium when slowly sheared, as the average density of such a system effectively depends on the confining pressure. Here we use discrete element simulations to show the existence of transverse and sagittal waves associated to this dynamical compressibility. For this purpose, we study the resonance of these waves in a linear Couette cell and compare the results with those predic...

  9. Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius

    Science.gov (United States)

    Esposti Ongaro, T.; Neri, A.; Menconi, G.; de'Michieli Vitturi, M.; Marianelli, P.; Cavazzoni, C.; Erbacci, G.; Baxter, P. J.

    2008-12-01

    Numerical simulations of column collapse and pyroclastic density current (PDC) scenarios at Vesuvius were carried out using a transient 3D flow model based on multiphase transport laws. The model describes the dynamics of the collapse as well as the effects of the 3D topography of the volcano on PDC propagation. Source conditions refer to a medium-scale sub-Plinian event and consider a pressure-balanced jet. Simulation results provide new insights into the complex dynamics of these phenomena. In particular: 1) column collapse can be characterized by different regimes, from incipient collapse to partial or nearly total collapse, thus confirming the possibility of a transitional field of behaviour of the column characterized by the contemporaneous and/or intermittent occurrence of ash fallout and PDCs; 2) the collapse regime can be characterized by its fraction of eruptive mass reaching the ground and generating PDCs; 3) within the range of the investigated source conditions, the propagation and hazard potential of PDCs appear to be directly correlated with the flow-rate of the mass collapsing to the ground, rather than to the collapse height of the column (this finding is in contrast with predictions based on the energy-line concept, which simply correlates the PDC runout and kinetic energy with the collapse height of the column); 4) first-order values of hazard variables associated with PDCs (i.e., dynamic pressure, temperature, airborne ash concentration) can be derived from simulation results, thereby providing initial estimates for the quantification of damage scenarios; 5) for scenarios assuming a location of the central vent coinciding with that of the present Gran Cono, Mount Somma significantly influences the propagation of PDCs, largely reducing their propagation in the northern sector, and diverting mass toward the west and southeast, accentuating runouts and hazard variables for these sectors; 6) the 2D modelling approximation can force an artificial

  10. STAR FORMATION IN DENSE CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2011-12-10

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically {approx}1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of {approx}2, consistent with models of episodic disk accretion.

  11. Star formation in dense clusters

    CERN Document Server

    Myers, Philip C

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion, and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star IMF from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosi...

  12. Warm dense crystallography

    Science.gov (United States)

    Valenza, Ryan A.; Seidler, Gerald T.

    2016-03-01

    The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.

  13. Dense Suspension Splash

    Science.gov (United States)

    Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.

    2014-03-01

    Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).

  14. Dense Axion Stars

    CERN Document Server

    Braaten, Eric; Zhang, Hong

    2015-01-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure.If the axion mass energy is $mc^2= 10^{-4}$ eV, these dilute axion stars have a maximum mass of about $10^{-14} M_\\odot$. We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If $mc^2 = 10^{-4}$ eV, the first branch of these dense axion stars has mas...

  15. Dense Axion Stars

    Science.gov (United States)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-01

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10-14M⊙ if the axion mass is 10-4 eV . We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10-20M⊙ to about M⊙ . If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  16. Dense Axion Stars

    Science.gov (United States)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2016-03-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. If the axion mass energy is mc2 =10-4 eV, these dilute axion stars have a maximum mass of about 10-14M⊙ . We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If mc2 =10-4 4 eV, the first branch of these dense axion stars has mass ranging from about 10-11M⊙ toabout M⊙.

  17. DENSE MEDIUM CYCLONE OPTIMIZATON

    Energy Technology Data Exchange (ETDEWEB)

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  18. Sedimentological features of the surge emitted during the August, 2006 pyroclastic eruption at Tungurahua volcano (Ecuador)

    Science.gov (United States)

    Douillet, G.; Goldstein, F.; Lavallee, Y.; Hanson, J. B.; Kueppers, U.; Robin, C.; Ramon, P.

    2009-12-01

    Tungurahua volcano, Ecuador, is a stratovolcano, which began a new eruptive phase in 1999. Notable pyroclastic Density Currents (PDC) were generated in July (VEI 2) and August (VEI 3) 2006 and covered its N and W flanks. PDCs and associated lahars represent a major hazard for 20,000 inhabitants and an hydrological dam. The volcano has been monitored by the Instituto Geofisico of the Escuela Politécnica Nacional of Quito, since 1988. Field work carried out in 2009 provide information on the behavior of the fine-grained fraction of the PDC (i.e., surge) during transport and deposition. We mapped out the sedimentological characteristics of the deposits and distinguished three depositional environments: 1- The core of the deposit, up to several m in thickness, is confined to valleys and consists of poorly-sorted lapilli scoria and blocks (cm to m scale) and a small fraction of ash matrix. Ongoing analysis of the ash matrix will help to understand the link between the main PDC and the associated surge. 2- On ridges and outer margins of valleys, the deposits total a thickness of 10s to 100s cm and consist of fine- to coarse-grain ashes organized in cm-scale beds. Horizontal to cross bed laminations with 10-cm long wavelength prevail. They are typical of deposition under sustained high-energy current, which we associate with the flow of a surge. 3- In the distal part of surge deposits, we observe fine grained surge deposits with a thickness up to ca. 5 m. The characteristic structures are curved crested dunes, 10s of cm high and up to 10s of m long, with dip angles ranging from 15 to 35° and a strongly asymmetric shape. The steepest side tends to be the upslope face. Dunes show mainly a climbing structure, with beds cm in thickness, but some are more complicated, containing cut and fill structures, interpreted as late-stage pulses of energetic turbulence. No displacement dunes were observed in this area. Using the flow direction given by 100s of dunes, we provide

  19. Thorium abundances on the aristarchus plateau: Insights into the composition of the aristarchus pyroclastic glass deposits

    Science.gov (United States)

    Hagerty, J.J.; Lawrence, D.J.; Hawke, B.R.; Gaddis, L.R.

    2009-01-01

    Thorium (Th) data from the Lunar Prospector gamma ray spectrometer (LP-GRS) are used to constrain the composition of lunar pyroclastic glass deposits on top of the Aristarchus plateau. Our goal is to use forward modeling of LP-GRS Th data to measure the Th abundances on the plateau and then to determine if the elevated Th abundances on the plateau are associated with the pyroclastic deposits or with thorium-rich ejecta from Aristarchus crater. We use a variety of remote sensing data to show that there is a large, homogenous portion of the pyroclastics on the plateau that has seen little or no contamination from the Th-rich ejecta of Aristarchus crater. Our results show that the uncontaminated pyroclastic glasses on Aristarchus plateau have an average Th content of 6.7 ppm and ???7 wt % TiO2. These Th and Ti values are consistent with Th-rich, intermediate-Ti yellow glasses from the lunar sample suite. On the basis of this information, we use petrologic equations and interelement correlations for the Moon to estimate the composition of the source region from which the Aristarchus glasses were derived. We find that the source region for the Aristarchus glasses contained high abundances of heat-producing elements, which most likely served as a thermal driver for the prolonged volcanic activity in this region of the Moon. Copyright 2009 by the American Geophysical Union.

  20. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  1. Evaluation of eruptive energy of a pyroclastic deposit applying fractal geometry to fragment size distributions

    Science.gov (United States)

    Paredes Marino, Joali; Morgavi, Daniele; Di Vito, Mauro; de Vita, Sandro; Sansivero, Fabio; Perugini, Diego

    2016-04-01

    Fractal fragmentation theory has been applied to characterize the particle size distribution of pyroclastic deposits generated by volcanic explosions. Recent works have demonstrated that fractal dimension on grain size distributions can be used as a proxy for estimating the energy associated with volcanic eruptions. In this work we seek to establish a preliminary analytical protocol that can be applied to better characterize volcanic fall deposits and derive the potential energy for fragmentation that was stored in the magma prior/during an explosive eruption. The methodology is based on two different techniques for determining the grain-size distribution of the pyroclastic samples: 1) dry manual sieving (particles larger than 297μm), and 2) automatic grain size analysis via a CamSizer-P4®device, the latter measure the distribution of projected area, obtaining a cumulative distribution based on volume fraction for particles up to 30mm. Size distribution data have been analyzed by applying the fractal fragmentation theory estimating the value of Df, i.e. the fractal dimension of fragmentation. In order to test our protocol we studied the Cretaio eruption, Ischia island, Italy. Results indicate that size distributions of pyroclastic fall deposits follow a fractal law, indicating that the fragmentation process of these deposits reflects a scale-invariant fragmentation mechanism. Matching the results from manual and automated techniques allows us to obtain a value of the "fragmentation energy" from the explosive eruptive events that generate the Cretaio deposits. We highlight the importance of these results, based on fractal statistics, as an additional volcanological tool for addressing volcanic risk based on the analyses of grain size distributions of natural pyroclastic deposits. Keywords: eruptive energy, fractal dimension of fragmentation, pyroclastic fallout.

  2. Ground penetrating radar and terrestrial laser scanner surveys on deposits of dilute pyroclastic density current deposits: insights for dune bedform genesis

    Science.gov (United States)

    Rémi Dujardin, Jean; Amin Douillet, Guilhem; Abolghasem, Amir; Cordonnier, Benoit; Kueppers, Ulrich; Bano, Maksim; Dingwell, Donald B.

    2014-05-01

    Dune bedforms formed by dilute pyroclastic density currents (PDC) are often described or interpreted as antidunes and chute and pools. However, the interpretation remains essentially speculative and is not well understood. This is largely due to the seeming impossibility of in-situ measurements and experimental scaling, as well as the lack of recent, 3D exposures. Indeed, most dune bedform cross-stratifications from the dilute PDC record outcrop in 2D sections. The 2006 eruption of Tungurahua has produced well-developed bedforms that are well-exposed on the surface of the deposits with easy access. We performed a survey of these deposits combining ground penetrating radar (GPR) profiling with terrestrial laser scanning of the surface. The GPR survey was carried in dense arrays (from 10 to 25 cm spacing between profiles) over ca. 10 m long bedforms. GPR profiles were corrected for topography from photogrammetry data. An in-house software, RadLab (written in matlab), was used for common processing of individual profiles and 2D & 3D topographic migration. Each topography-corrected profile was then loaded into a seismic interpretation software, OpenDtect, for 3D visualization and interpretation. Most bedforms show high lateral stability that is independent of the cross-stratification pattern (that varies between stoss-aggrading bedsets, stoss-erosive bedsets and stoss-depositional lensoidal layers). Anecdotic bedforms have their profiles that evolve laterally (i.e. in a direction perpendicular to the flow direction). Cannibalization of two dune bedforms into a single one on one end of the profile can evolve into growth of a single bedform at the other lateral end. Also, lateral variation in the migration direction occurs, i.e. a single bedform can show upstream aggradation at one lateral end of the bedform, but show downstream migration at the other end. Some bedforms have great variations in their internal structure. Several episodes of growth and erosion can be

  3. Field Investigations of the July 2015 Pyroclastic Density Current Deposits of Volcán de Colima, Mexico

    Science.gov (United States)

    Atlas, Z. D.; Macorps, E.; Charbonnier, S. J.; Varley, N. R.

    2016-12-01

    Small-volume pyroclastic density currents (PDCs) occur relatively frequently and pose severe threats to surrounding populations and infrastructures at active explosive volcanoes. They are characterized by short duration and complex multiphase flow dynamics due to time and space variability in their properties, which include amongst others, particle concentration, granulometry, componentry, bulk rheology and velocity. Field investigations of the deposits emplaced by small-volume concentrated PDCs aim to improve our understanding of the transport and depositional processes of these flows: time and space variations in flow dynamics within a PDC moving downslope will reflect on the distribution, grainsize and component characteristics of its deposits. Our study focuses on the recent events of July 10th and 11th, 2015 at Volcán de Colima (Mexico) where the collapse of the recent lava dome complex and a portion of the southern crater rim led to the emplacement of successive pulses of small-volume concentrated PDCs on the southern flank, along the Montegrande and San Antonio ravines. A 3-dimensional field analysis of the PDCs' deposit architecture, total grain size distribution and component properties together with a geomorphic analysis of the affected ravines provide new insights on the lateral and vertical variations of flow dynamics for some of these small-volume concentrated PDCs. Preliminary results reveal three stratigraphic units with massive block, lapilli, ash facies within the valley confined and concentrated overbank deposits with increasing content in fines with distance from the summit, suggesting an increase in fragmentation processes within the PDCs. The middle unit is characterized by a finer grainsize, a higher accidental lithic content and a lower free crystal content. Moreover, direct correlations are found between rapid changes in channel morphology and generation of overbank (unconfined) flows that escaped valley confines, which could provide the

  4. Gas-particle interactions in dense gas-fluidised beds

    NARCIS (Netherlands)

    Li, J.; Kuipers, J.A.M.

    2003-01-01

    The occurrence of heterogeneous flow structures in gas-particle flows seriously affects gas¿solid contacting and transport processes in dense gas-fluidized beds. A computational study, using a discrete particle method based on Molecular Dynamics techniques, has been carried out to explore the

  5. Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows

    Science.gov (United States)

    Dartevelle, SéBastien

    2004-08-01

    Geophysical granular materials display a wide variety of behaviors and features. Typically, granular flows (1) are multiphase flows, (2) are very dissipative over many different scales, (3) display a wide range of grain concentrations, and (4), as a final result of these previous features, display complex nonlinear, nonuniform, and unsteady rheologies. Therefore the objectives of this manuscript are twofold: (1) setting up a hydrodynamic model which acknowledges the multiphase nature of granular flows and (2) defining a comprehensive rheological model which accounts for all the different forms of viscous dissipations within granular flows at any concentration. Hence three important regimes within granular flows must be acknowledged: kinetic (pure free flights of grain), kinetic-collisional, and frictional. The momentum and energy transfer will be different according to the granular regimes, i.e., strain rate dependent in the kinetic and kinetic-collisional cases and strain rate independent in the frictional case. A "universal" granular rheological model requires a comprehensive unified stress tensor able to adequately describe viscous stress within the flow for any of these regimes, and without imposing a priori what regime will dominate over the others. The kinetic-collisional viscous regime is defined from a modified Boltzmann's kinetic theory of dense gas. The frictional viscous regime is defined from the plastic potential and the critical state theories which account for compressibility of granular matter (e.g., dilatancy, consolidation, and critical state). In the companion paper [, 2004] we will introduce a multiphase computer code, (G)MFIX, which accounts for all the granular regimes and rheology and present typical simulations of diluted (e.g., plinian clouds) and concentrated geophysical granular flows (i.e., pyroclastic flows and surges).

  6. Probabilistic-Numerical assessment of pyroclastic current hazard at Campi Flegrei and Naples city: Multi-VEI scenarios as a tool for full-scale risk management

    CERN Document Server

    Mastrolorenzo, Giuseppe; Pappalardo, Lucia; Rossano, Sergio

    2016-01-01

    The Campi Flegrei volcanic field (Italy) poses very high risk to the highly urbanized Neapolitan area. Eruptive history was dominated by explosive activity producing pyroclastic currents (PDCs; (Proclastic Density Currents) ranging in scale from localized base surges to regional flows. Here we apply probabilistic numerical simulation approaches to produce PDC hazard maps, based on a comprehensive spectrum of flow properties and vent locations. These maps and provide all probable Volcanic Explosivity Index (VEI) scenarios from different source vents in the caldera, relevant for risk management planning. For each VEI scenario, we report the conditional probability for PDCs (i.e., the probability for a given area to be affected by the passage of PDCs) and related dynamic pressure. Model results indicate that PDCs from VEI<4 events would be confined within the Campi Flegrei caldera, PDC propagation being impeded by the northern and eastern caldera walls. Conversely, PDCs from VEI 4-5 events could invade a wide...

  7. Conductive dense hydrogen

    Science.gov (United States)

    Eremets, M.; Troyan, I.

    2012-12-01

    Hydrogen at ambient pressures and low temperatures forms a molecular crystal which is expected to display metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature Tc of 200-400 K. The superconductor may potentially be recovered metastably at ambient pressures, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. Recent experiments performed at low temperatures T 220 GPa, new Raman modes arose, providing evidence for the transformation to a new opaque and electrically conductive phase IV. Above 260 GPa, in the next phase V, hydrogen reflected light well. Its resistance was nearly temperature-independent over a wide temperature range, down to 30 K, indicating that the hydrogen was metallic. Releasing the pressure induced the metallic phase to transform directly into molecular hydrogen with significant hysteresis at 200 GPa and 295 K. These data were published in our paper: M. I. Eremets and I. A. Troyan "Conductive dense hydrogen." Nature Materials 10: 927-931. We will present also new results on hydrogen: phase diagram with phases IV and V determined in P,T domain up to 300 GPa and 350 K. We will also discuss possible structures of phase IV based on our Raman and infrared measurements up to 300 GPa.

  8. Dense Hypervelocity Plasma Jets

    Science.gov (United States)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  9. The antidune question for bedforms in deposits of dilute pyroclastic density currents

    Science.gov (United States)

    Amin Douillet, Guilhem; Kueppers, Ulrich; Dingwell, Donald B.

    2014-05-01

    Dilute pyroclastic density currents (PDCs) are mixture of volcanic particles and gas that can be produced during explosive volcanic eruptions. Like turbidites, they travel on the ground driven by their higher density compared to the ambient fluid, which is due to the load of suspended particles. Dilute PDCs have a low enough particle concentration so that their deposit can contain cross stratification, but high enough so that they do not lift off as ash clouds. Since the 1970's most dune bedform cross stratifications found within dilute PDC deposits have been interpreted as antidunes, mainly due to the fact that they can exhibit more aggradation on the stoss than on the lee side. However, several studies have challenged this interpretation in the last few years (stepwise aggradation, differential draping, flow reversal, near-bed load blocking). In order to decipher which are the valuable arguments to confirm or infirm the antidune interpretation, we document deposits from different eruptions: Tungurahua (Ecuador), Laacher See (Germany), Purrumbete (Australia), Ubehebe (USA), Stromboli (Italy), Yasur (Vanuatu). We consider fluid dynamics arguments on the formation of gravity waves within the shallow water approximation and for internal gravity waves within a stratified medium. Indeed, antidunes are by definition sedimentary prints of stationary gravity waves. We also consider the possibility of cyclic steps as a parental phenomenon for the formation of dilute PDC bedforms. Finally, results of wind tunnel experiments for boundary layer conditions give another independent set of data to interpret cross stratifications within dilute PDC deposits. Whereas we cannot rule out an interpretation as antidunes for some bedforms (lensoidal stoss-depositional structures, low aspect ratio bedforms in train), others can clearly be disregarded based on geometrical considerations. Overall, the interpretation as antidune cannot be simply based on stoss-deposition, and needs to take

  10. Emplacement of pyroclastic density currents (PDCs) in a deep-sea environment: The Val d'Aveto Formation case (Northern Apennines, Italy)

    Science.gov (United States)

    Di Capua, Andrea; Groppelli, Gianluca

    2016-12-01

    The occurrence of PDC deposits in a foredeep basin sequence, named Val d'Aveto Formation (32-29 Ma, Northern Apennines, Italy), provides new information on the behavior of pyroclastic density currents entering the water. In this work, stratigraphic, petrographic and mineralogical features that characterize three pyroclastic deposits have been described and analyzed in the field (facies and lithological analysis on the blocky-size fraction) and in the laboratory (image analyses on the blocky-size detritus, optical analyses of the microtextures, mineralogical analyses through X-ray powder diffraction (XRPD) and scanning electron microscope with energy dispersive X-ray spectometry (SEM-EDS). The deposits are lapilli- to blocky-size, with a blocky-size fraction constituted of accidental detritus. In thin sections, their groundmass texture varies from porphyritic to eutaxitic where coarser particles become close each others. Growth rims have been also detected around plagioclase crystals. Pyrite habits and oxidation, and plagioclase albitization are consistent with hydrothermal temperature conditions of 200 °C. All these results have been compared with the information provided by modern examples of PDC deposits and laboratory experiments on the behavior of water/hot particles mixing. Grain-to-grain collision has been considered as the main flow mechanism that sustained and avoided the disaggregation of the PDCs entering the water.

  11. Field-trip guide to Mount St. Helens, Washington - An overview of the eruptive history and petrology, tephra deposits, 1980 pyroclastic density current deposits, and the crater

    Science.gov (United States)

    Pallister, John S.; Clynne, Michael A.; Wright, Heather M.; Van Eaton, Alexa R.; Vallance, James W.; Sherrod, David R.; Kokelaar, B. Peter

    2017-08-02

    This field trip will provide an introduction to several fascinating features of Mount St. Helens. The trip begins with a rigorous hike of about 15 km from the Johnston Ridge Observatory (9 km north-northeast of the crater vent), across the 1980 Pumice Plain, to Windy Ridge (3.6 km northeast of the crater vent) to examine features that document the dynamics and progressive emplacement of pyroclastic flows. The next day, we examine classic tephra outcrops of the past 3,900 years and observe changes in thickness and character of these deposits as we traverse their respective lobes. We examine clasts in the deposits and discuss how the petrology and geochemistry of Mount St. Helens deposits reveal the evolution of the magmatic system through time. We also investigate the stratigraphy of the 1980 blast deposit and review the chronology of this iconic eruption as we travel through the remains of the blown-down forest. The third day is another rigorous hike, about 13 km round trip, climbing from the base of Windy Ridge (elevation 1,240 m) to the front of the Crater Glacier (elevation 1,700 m). En route we examine basaltic andesite and basalt lava flows emplaced between 1,800 and 1,700 years before present, a heterolithologic flow deposit produced as the 1980 blast and debris avalanche interacted, debris-avalanche hummocks that are stranded on the north flank and in the crater mouth, and shattered dacite lava domes that were emplaced between 3,900 and 2,600 years before present. These domes underlie the northern part of the volcano. In addition, within the crater we traverse well-preserved pyroclastic-flow deposits that were emplaced on the crater floor during the summer of 1980, and a beautiful natural section through the 1980 deposits in the upper canyon of the Loowit River.Before plunging into the field-trip log, we provide an overview of Mount St. Helens geology, geochemistry, petrology, and volcanology as background. The volcano has been referred to as a

  12. Compaction and gas loss in welded pyroclastic deposits as revealed by porosity, permeability, and electrical conductivity measurements of the Shevlin Park Tuff

    Science.gov (United States)

    Wright, Heather M.; Cashman, Katharine V.

    2014-01-01

    Pyroclastic flows produced by large volcanic eruptions commonly densify after emplacement. Processes of gas escape, compaction, and welding in pyroclastic-flow deposits are controlled by the physical and thermal properties of constituent material. Through measurements of matrix porosity, permeability, and electrical conductivity, we provide a framework for understanding the evolution of pore structure during these processes. Using data from the Shevlin Park Tuff in central Oregon, United States, and from the literature, we find that over a porosity range of 0%–70%, matrix permeability varies by almost 10 orders of magnitude (from 10–20 to 10–11 m2), with over three orders of magnitude variation at any given porosity. Part of the variation at a given porosity is due to permeability anisotropy, where oriented core samples indicate higher permeabilities parallel to foliation (horizontally) than perpendicular to foliation (vertically). This suggests that pore space is flattened during compaction, creating anisotropic crack-like networks, a geometry that is supported by electrical conductivity measurements. We find that the power law equation: k1 = 1.3 × 10–21 × ϕ5.2 provides the best approximation of dominant horizontal gas loss, where k1 = permeability, and ϕ = porosity. Application of Kozeny-Carman fluid-flow approximations suggests that permeability in the Shevlin Park Tuff is controlled by crack- or disk-like pore apertures with minimum widths of 0.3 and 7.5 μm. We find that matrix permeability limits compaction over short times, but deformation is then controlled by competition among cooling, compaction, water resorption, and permeable gas escape. These competing processes control the potential for development of overpressure (and secondary explosions) and the degree of welding in the deposit, processes that are applicable to viscous densification of volcanic deposits in general. Further, the general relationships among porosity, permeability, and

  13. Heavy mesons in dense matter

    NARCIS (Netherlands)

    Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; LlanesEstrada, FJ; Pelaez,

    2011-01-01

    Charmed mesons in dense matter are studied within a unitary coupled-channel approach which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense medium, and discuss their implications on hidden c

  14. Holocene phreatomagmatic eruptions alongside the densely populated northern shoreline of Lake Kivu, East African Rift: timing and hazard implications

    Science.gov (United States)

    Poppe, Sam; Smets, Benoît; Fontijn, Karen; Rukeza, Montfort Bagalwa; De Marie Fikiri Migabo, Antoine; Milungu, Albert Kyambikwa; Namogo, Didier Birimwiragi; Kervyn, François; Kervyn, Matthieu

    2016-11-01

    The Virunga Volcanic Province (VVP) represents the most active zone of volcanism in the western branch of the East African Rift System. While the VVP's two historically active volcanoes, Nyamulagira and Nyiragongo, have built scoria cones and lava flows in the adjacent lava fields, several small phreatomagmatic eruptive centers lie along Lake Kivu's northern shoreline, highlighting the potential for explosive magma-water interaction. Their presence in the densely urbanized Sake-Goma-Gisenyi area necessitates an assessment of their eruptive mechanisms and chronology. Some of these eruptive centers possess multiple vents, and depositional contacts suggest distinct eruptive phases within a single structure. Depositional facies range from polymict tuff breccia to tuff and loose lapilli, often impacted by blocks and volcanic bombs. Along with the presence of dilute pyroclastic density current (PDC) deposits, indicators of magma-water interaction include the presence of fine palagonitized ash, ash aggregates, cross-bedding, and ballistic impact sags. We estimate that at least 15 phreatomagmatic eruptions occurred in the Holocene, during which Lake Kivu rose to its current water level. Radiocarbon dates of five paleosols in the top of volcanic tuff deposits range between ˜2500 and ˜150 cal. year bp and suggest centennial- to millennial-scale recurrence of phreatomagmatic activity. A vast part of the currently urbanized zone on the northern shoreline of Lake Kivu was most likely impacted by products from phreatomagmatic activity, including PDC events, during the Late Holocene, highlighting the need to consider explosive magma-water interaction as a potential scenario in future risk assessments.

  15. Particle-size segregation in dense granular avalanches

    Science.gov (United States)

    Gray, John Mark Nicholas Timm; Gajjar, Parmesh; Kokelaar, Peter

    2015-01-01

    Particles of differing sizes are notoriously prone to segregate, which is a chronic problem in the manufacture of a wide variety of products that are used by billions of people worldwide every day. Segregation is the single most important factor in product non-uniformity, which can lead to significant handling problems as well as complete batches being discarded at huge financial loss. It is generally regarded that the most important mechanism for segregation is the combination of kinetic sieving and squeeze expulsion in shallow granular avalanches. These free-surface flows are more common than one might expect, often forming part of more complicated flows in drums, heaps and silos, where there is mass exchange with underlying regions of static or slowly moving grains. The combination of segregation and solid-fluid granular phase transitions creates incredibly complicated and beautiful patterns in the resulting deposits, but a full understanding of such effects lies beyond our capabilities at present. This paper reviews recent advances in our ability to model the basic segregation processes in a single avalanche (without mass exchange) and the subtle feedback effects that they can have on the bulk flow. This is particularly important for geophysical applications, where segregation can spontaneously self-channelize and lubricate the flow, significantly enhancing the run-out of debris-flows, pyroclastic flows, rock-falls and snow-slab avalanches.

  16. Impact of the AD 79 explosive eruption on Pompeii, I. Relations amongst the depositional mechanisms of the pyroclastic products, the framework of the buildings and the associated destructive events

    Science.gov (United States)

    Luongo, Giuseppe; Perrotta, Annamaria; Scarpati, Claudio

    2003-08-01

    , it is evident that the walls that happened to be parallel to the direction of the pyroclastic density currents produced during the second eruptive phase were minimally damaged in comparison to those walls oriented perpendicular to the flow direction. We suggest that the lower depositional parts of the pyroclastic currents were partially blocked (locally reflected) and slowed down because of recurring encounters with the closely spaced walls within buildings. Locally, the percentage of demolished walls decreases down-current, which has been interpreted as a loss in kinetic energy within the depositional system of the flow. However, it seems that the upper transport system by-passed these obstacles, then supplied new pyroclasts to the depositional system that restored its physical characteristics and restored enough kinetic energy to demolish the next walls and buildings further along its path.

  17. Emplacement temperatures of pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa

    OpenAIRE

    Fontana, Giovanni; Mac Niocaill, Conall; Brown, Richard J.; Sparks, R. Stephen J.; Field, Matthew

    2011-01-01

    Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling brecc...

  18. Obsidian Pyroclasts: Where Do They Come From and What Can They Tell Us?

    Science.gov (United States)

    Watkins, J. M.; Gardner, J. E.; Befus, K.

    2016-12-01

    Models for how volcanic gases behave during volcanic eruptions are constructed from measurements of volatiles (δD, H2O and CO2) in melt that has been quenched to glass. Volatile measurements on obsidian pyroclasts from Mono Craters, California, have been central to the development of open- versus closed-system and equilibrium versus non-equilibrium degassing models, and these models have been applied to the interpretation of volatile data from volcanic centers worldwide. Even for the well-studied Mono Craters system, however, there are several different degassing models that are compatible with existing data, and the origin of the vesicle-poor obsidian pyroclasts (upon which the degassing models have been built) remains ambiguous. To better establish the link between the volatiles in the pyroclasts and volcanic eruption processes, we combine textural analysis with area maps of CO2 and H2O. We show that obsidian pyroclasts are heterogeneous with respect to dissolved CO2 and H2O, and that many clasts have multiple textural and chemical domains that are sutured together. The observations suggest that clasts are assembled from non-equilibrated juvenile melt and ash during repeated melt fracturing and healing, ash sintering, and shearing along conduit margins. Melt fracturing promotes gas extraction from magma, whereas healing promotes gas resorption and glass densification. Some of the clasts have bands or patches of elevated CO2 associated with cuspate vesicles, which are evidence for CO2-rich vapor fluxing through the magmatic system. Collectively, the data support a model of open-system, non-equilibrium degassing with intermittent regassing caused by increases in pressure and exposure to different vapor compositions.

  19. Integrated Multispectral and Geophysical Datasets: A Global View of Lunar Pyroclastic Deposits

    Science.gov (United States)

    Gaddis, Lisa R.; Rosanova, C.; Hawke, B. R.; Coombs, Cassandra; Robinson, M.; Sable, J.

    1998-01-01

    We are integrating multispectral Clementine UVVIS data with crustal thickness data to examine the composition and distribution of lunar pyroclastic deposits. Examples are the large deposits of Apollo 17/Taurus Littrow and Aristarchus and the small deposits (or endogenic "dark-halo" craters) located along fractures in the floors of Alphonsus , Atlas, and Schrodinger craters. Our early efforts focus on the small pyroclastic deposits because of their relative youth (about 1 Ga in some cases), their broad global distribution, and the fact that their small sizes may have inhibited early Earth-based (about 500 m spectral spot size at best) spectral analyses. We are now studying a variety of small deposits, including those of the Atlas Crater, Franklin Crater, Eastern Frigoris highlands, Oppenheimer Crater, Lavoisier Crater. and Orientale Crater regions. Our goals are to: (1) understand the full extent of interdeposit compositional variations among small lunar pyroclastic deposits; (2) evaluate the possible effects of soil maturation and lateral mixing on the "true" compositions of these deposits; (3) determine the prevalence and nature of intradeposit compositional variations; (4) identify and characterize the juvenile components of these deposits; and (5) understand the implications of these results for studying lunar eruption mechanisms.

  20. 稠密可压缩气粒两相流动中的等熵声速计算建模及物理规律∗%On mo deling and physical laws of isentropic sp eed of sound in dense gas-particle two-phase compressible flows

    Institute of Scientific and Technical Information of China (English)

    陈大伟; 王裴; 蔚喜军; 孙海权; 马东军

    2016-01-01

    Study of isentropic sound speed of two-phase or multiphase flow has theoretical significance and wide application background. As is well known, the speed of sound in fluid containing particles in suspension differs from that in the pure fluid. In the particular case of bubbly liquids (gas liquid two-phase flow), the researches find that the differences can be drastic. Up to now, the isentropic speed of sound in the flow field with a small volume fraction of bubbles (less than 1%), has been investigated fully both experimentally and theoretically. In this paper, we consider another situation, as the case with solid particles in gas, which is the so-called gas particle two-phase flow. Although many results have been obtained in gas liquid two-phase flow, there is still a lot of basic work to do due to the large differences in the flow structure and flow pattern between gas particle two-phase flow and gas liquid two-phase flow. Treating the gas particle suspension as the relaxed equilibrium, thermodynamic arguments are used to obtain the isentropic speed of sound. Unlike the existing work, we are dedicated to developing the computational model under dense condition. The space volume occupied by particle phase and the interaction between particles are overall considered, then a new formula of isentropic sound speed is derived. The new formula includes formulae of the pure gas flow and the already existing dilute gas particle two-phase flow as a special case. On the one hand, the correctness of our formula is verified. On the other hand, the new formula is more general. The variations of sound speed with different mass fractions of particle phase are analyzed. The theoretical calculation results show that the overall physical law of sound speed change is that with the increase of the particle mass fraction, the sound speed first decreases and then increases. The velocity of sound propagation in gas particle two-phase flow is far smaller than in pure gas in a wide range

  1. Geological and geotechnical characterization of the debris avalanche and pyroclastic deposits of Cotopaxi Volcano (Ecuador). A contribute to instability-related hazard studies

    Science.gov (United States)

    Vezzoli, L.; Apuani, T.; Corazzato, C.; Uttini, A.

    2017-02-01

    The huge volcanic debris avalanche occurred at 4.5 ka is a major event in the evolution of the Cotopaxi volcano, Ecuador. The present volcanic hazard in the Cotopaxi region is related to lahars generated by volcanic eruptions and concurrent ice melting. This paper presents the geological and geotechnical field and laboratory characterization of the 4.5 ka Cotopaxi debris avalanche deposit and of the younger unconsolidated pyroclastic deposits, representing the probable source of future shallow landslides. The debris avalanche formed a deposit with a well-developed hummocky topography, and climbed a difference in height of about 260 m along the slopes of the adjacent Sincholagua volcano. The debris avalanche deposit includes four lithofacies (megablock, block, mixed, and sheared facies) that represent different flow regimes and degrees of substratum involvement. The facies distribution suggests that, in the proximal area, the debris avalanche slid predominantly confined to the valleys along the N and NE flank of the volcanic cone, emplacing a stack of megablocks. When the flow reached the break in slope at the base of the edifice, it became unconfined and spread laterally over most of the area of the Rio Pita valley. A dynamic block fragmentation and dilation occurred during the debris avalanche transport, emplacing the block facies. The incorporation of the older Chalupas Ignimbrite is responsible for the mixed facies and the sheared facies. Geotechnical results include a full-range grain size characterization, which enabled to make broader considerations on possible variability among the sampled facies. Consolidated drained triaxial compression tests, carried out on the fine fraction Failure surfaces are always well developed, indicating that the poorly consolidated pyroclastic cover could undergo failure leading to the formation of a gravity driven instability phenomena, like granular or debris flows, which are mainly controlled by the fine fraction. This work

  2. Pyroclastic density current hazard maps at Campi Flegrei caldera (Italy): the effects of event scale, vent location and time forecasts.

    Science.gov (United States)

    Bevilacqua, Andrea; Neri, Augusto; Esposti Ongaro, Tomaso; Isaia, Roberto; Flandoli, Franco; Bisson, Marina

    2016-04-01

    Today hundreds of thousands people live inside the Campi Flegrei caldera (Italy) and in the adjacent part of the city of Naples making a future eruption of such volcano an event with huge consequences. Very high risks are associated with the occurrence of pyroclastic density currents (PDCs). Mapping of background or long-term PDC hazard in the area is a great challenge due to the unknown eruption time, scale and vent location of the next event as well as the complex dynamics of the flow over the caldera topography. This is additionally complicated by the remarkable epistemic uncertainty on the eruptive record, affecting the time of past events, the location of vents as well as the PDCs areal extent estimates. First probability maps of PDC invasion were produced combining a vent-opening probability map, statistical estimates concerning the eruptive scales and a Cox-type temporal model including self-excitement effects, based on the eruptive record of the last 15 kyr. Maps were produced by using a Monte Carlo approach and adopting a simplified inundation model based on the "box model" integral approximation tested with 2D transient numerical simulations of flow dynamics. In this presentation we illustrate the independent effects of eruption scale, vent location and time of forecast of the next event. Specific focus was given to the remarkable differences between the eastern and western sectors of the caldera and their effects on the hazard maps. The analysis allowed to identify areas with elevated probabilities of flow invasion as a function of the diverse assumptions made. With the quantification of some sources of uncertainty in relation to the system, we were also able to provide mean and percentile maps of PDC hazard levels.

  3. PYFLOW_2.0. A new open-source software for quantifying impact parameters and deposition rates of dilute pyroclastic density currents

    Science.gov (United States)

    Dioguardi, Fabio; Dellino, Pierfrancesco; Mele, Daniela

    2016-04-01

    Dilute pyroclastic density currents (DPDCs) are one of the hazardous events that can happen during explosive eruptions. They are ground-hugging turbulent gas-particle flows that move down volcano slopes under the combined action of density contrast and gravity. DPDCs are dangerous for human lives and infrastructures both because they exert a dynamic pressure in their direction of motion and transport volcanic ash particles, which remain in the atmosphere during and after the passage of DPDC until they settle on the ground. Deposits formed by the passage of a DPDC show peculiar characteristics that can be linked to flow field variables. This has been the subject of extensive investigations in the past years leading to the formulation of a sedimentological model (Dellino et al. 2008), which has been used for evaluating the impact parameters of past eruptions on a statistical basis for hazard assessment purposes. The model has been recently translated in a Fortran code (PYFLOW, Dioguardi and Dellino, 2014). Here we present the latest release of this code (PYFLOW_2.0) which, besides significant improvements in the code structure, computation times and the introduction of a user friendly data input method, allows to calculate the deposition time and rate of the ash and lapilli layer formed by a DPDC by linking deposit (e.g. componentry, grainsize) to flow (e.g. flow average density and shear velocity) characteristics as calculated by the aforementioned sedimentological model. The deposition rate is calculated by summing the contributions of each grainsize class of all components constituting the deposit (e.g. juvenile particles, crystals, etc.), which are in turn computed as a function of particle density, terminal velocity, concentration and deposition probability. Here we apply the concept of deposition probability, previously introduced for estimating the deposition rates of turbidity currents (Stow and Bowen, 1980), to DPDCs, although with a different approach, i

  4. Temperature relaxation in dense plasma mixtures

    Science.gov (United States)

    Faussurier, Gérald; Blancard, Christophe

    2016-09-01

    We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.

  5. Numerical modeling for dilute and dense sprays

    Science.gov (United States)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.

  6. Densely crosslinked polycarbosiloxanes .1. Synthesis

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    Novel densely crosslinked polycarbosiloxanes were obtained by using functional branched prepolymers. Two types of soluble prepolymers were prepared from di- and trifunctional alkoxysilane monomers via cohydrolysis/condensation and for both final crosslinking occurred via hydrosilylation. The prepoly

  7. RESEARCH ON DENSITY STABILITY OF AIR DENSE MEDIUM FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    骆振福; 陈清如

    1994-01-01

    In this papcr on thc basis of studying the distribution of fine coal in the dense medium fluidized bed, the optimal size range of fine coal, which constitutes a fluidized bed together with the dense medium, has been found. In the separating process the fine coal will continuously accumulate in fluidized bed, thus inevitably reducing the density of the bed. In order to keep bed density stable, the authors adopted such measures as split-flow of used medium and complement of fresh dense medium. The experiment results in both lab and pilot systems of the air-dense medium fluidized bed show that these measures are effective and satisfactory. Then authors also have established some relative dynamic mathematical models for it.

  8. The relationship between weathering and welding degree of pyroclastic rocks in the Kilistra ancient city, Konya (Central Anatolia, Turkey)

    Science.gov (United States)

    Bozdaǧ, Ali; Bayram, A. Ferat; İnce, İsmail; Asan, Kürşad

    2016-11-01

    Pyroclastic rocks used in both historical and modern structures are inevitably exposed to various weathering processes, leading to damage and destruction of them. To reduce the effects of weathering caused by various atmospheric effects, geologists need to know what processes are more effective and how they affect rock bodies. In this study, our aim is to show the relationship between the weathering and welding degree of pyroclastic rocks, sampled around the Ancient City of Kilistra in Konya (Central Anatolia, Turkey). For this purpose, we conducted field trips, and used petrographic and laboratory techniques such as, physico-mechanical tests and accelerated weathering tests (i.e., Freeze-Thaw, F-T; Wetting-Drying, W-D and Salt Crystallization, SC). Pyroclastic rocks around Kilistra ancient city comprise two different sub-units: the unwelded, lower pyroclastic unit (LPU) and the welded, upper pyroclastic unit (UPU). Following cycles of F-T and SC tests, we observed an increase in porosity values, but a decrease in uniaxial compressive strength values, which was more evident in unwelded-LPU samples. Also, the significant macroscopic textural changes occurred in LPU samples, linked to their unwelded nature. However, physico-mechanical features of both LPU and UPU samples were not significantly changed after W-D tests. Altogether, our findings show that welding degree is one of the main factors controlling weathering and physico-mechanical properties of pyroclastic rocks, and also F-T and SC are more effective processes than W-D on weathering. Accordingly, our approach here could be used to protect the endangered historical structures carved into pyroclastic rocks around the world.

  9. Insights into Proximal-Medial Pyroclastic Density Current Deposits at a High-Risk Glaciated Volcano: Mt Ruapehu, New Zealand

    Science.gov (United States)

    Cowlyn, J.; Kennedy, B.; Gravley, D. M.; Cronin, S. J.; Pardo, N.; Wilson, T. M.; Leonard, G.; Townsend, D.; Dufek, J.

    2014-12-01

    Pyroclastic density currents (PDCs) are a destructive volcanic hazard. Quantifying the types, frequency and magnitudes of PDC events in the geological record is essential for effective risk management. However small-medium volume valley-confined PDC deposits have low preservation potential, especially when emplaced in active drainages or onto snow or ice. Where PDC deposits are preserved they can be difficult to distinguish from other surficial deposits and are frequently misinterpreted or overlooked. This is the case at Mt. Ruapehu; a much visited, high-risk active volcano in New Zealand with no historical PDCs. Through systematic field observations we identified several young proximal-medial andesitic PDC deposits exposed on Ruapehu's eastern flanks. The oldest deposits (Ohinewairua PDCs, 10km from source (South Crater) and correlates with Ruapehu's last known plinian eruption (~11.6 ka). Several younger locally preserved PDC deposits (Tukino PDCs) with denser juvenile clasts represent proximal PDCs from smaller eruptions at South Crater. Finally, a variably welded, bedded deposit containing clasts of welded spatter is interpreted to represent multiple failures of near-vent (North Ruapehu) accumulations of erupted material. Here, PDC initiation appears to have been controlled by the topographic gradient and deposition rate, without requiring a collapsing eruption column. The Ruapehu deposits highlight the limited preservation of PDC deposits, which appears to be favoured at PDC margins. Lateral and vertical flow stratification means the resulting deposits may not then represent the bulk flow. Additionally, deposit textures, distributions, and associations with moraines indicate that many of Ruapehu's PDCs encountered glacial ice during transport. This affected their distribution, mobility and preservation, and has implications for assessing the PDC hazard at Ruapehu and other glaciated volcanoes. The deposits reinforce that hazardous PDCs threatening life and

  10. Tephra architecture, pyroclast texture and magma rheology of mafic, ash-dominated eruptions: the Violent Strombolian phase of the Pleistocene Croscat (NE Spain) eruption.

    Science.gov (United States)

    Cimarelli, C.; Di Traglia, F.; Vona, A.,; Taddeucci, J.

    2012-04-01

    A broad range of low- to mid-intensity explosive activity is dominated by the emission of ash-sized pyroclasts. Among this activity, Violent Strombolian phases characterize the climax of many mafic explosive eruptions. Such phases last months to years, and produce ash-charged plumes several kilometers in height, posing severe threats to inhabited areas. To tackle the dominant processes leading to ash formation during Violent Strombolian eruptions, we investigated the magma rheology and the field and textural features of products from the 11 ka Croscat basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF). Field, grain-size, chemical (XRF, FE-SEM and electron microprobe) and textural analyses of the Croscat pyroclastic succession outlined the following eruption evolution: activity at Croscat began with fissural, Hawaiian-type fountaining that rapidly shifted towards Strombolian style from a central vent. Later, a Violent Strombolian explosion included several stages, with different emitted volumes and deposit features indicative of differences within the same eruptive style: at first, quasi-sustained fire-fountaining with ash jet and plume produced a massive, reverse to normal graded, scoria deposit; later, a long lasting series of ash-explosions produced a laminated scoria deposit. The eruption ended with a lava flow breaching the western-side of the volcano. Scoria clasts from the Croscat succession ubiquitously show micrometer- to centimeter-sized, microlite-rich domains (MRD) intermingled with volumetrically dominant, microlite-poor domains (MPD). MRD magmas resided longer in a relatively cooler, degassed zone lining the conduit walls, while MPD ones travelled faster along the central, hotter streamline, the two interminging along the interface between the two velocity zones. The preservation of two distinct domains in the short time-scale of the eruption was favoured by their rheological contrast related to the different microlite

  11. Monitoring and behavior of unsaturated volcanic pyroclastic in the Metropolitan Area of San Salvador, El Salvador.

    Science.gov (United States)

    Chávez, José Alexander; Landaverde, José; Landaverde, Reynaldo López; Tejnecký, Václav

    2016-01-01

    Field monitoring and laboratory results are presented for an unsaturated volcanic pyroclastic. The pyroclastic belongs to the latest plinian eruption of the Ilopango Caldera in the Metropolitan Area of San Salvador, and is constantly affected by intense erosion, collapse, slab failure, sand/silt/debris flowslide and debris avalanche during the rainy season or earthquakes. Being the flowslides more common but with smaller volume. During the research, preliminary results of rain threshold were obtained of flowslides, this was recorded with the TMS3 (a moisture sensor device using time domain transmission) installed in some slopes. TMS3 has been used before in biology, ecology and soil sciences, and for the first time was used for engineering geology in this research. This device uses electromagnetic waves to obtain moisture content of the soil and a calibration curve is necessary. With the behavior observed during this project is possible to conclude that not only climatic factors as rain quantity, temperature and evaporation are important into landslide susceptibility but also information of suction-moisture content, seepage, topography, weathering, ground deformation, vibrations, cracks, vegetation/roots and the presence of crust covering the surface are necessary to research in each site. Results of the field monitoring indicates that the presence of biological soil crusts a complex mosaic of soil, green algae, lichens, mosses, micro-fungi, cyanobacteria and other bacteria covering the slopes surface can protect somehow the steep slopes reducing the runoff process and mass wasting processes. The results obtained during the assessment will help explaining the mass wasting problems occurring in some pyroclastic soils and its possible use in mitigation works and early warning system.

  12. Quenching of steam-charged pumice: Implications for submarine pyroclastic volcanism

    Science.gov (United States)

    Allen, S. R.; Fiske, R. S.; Cashman, K. V.

    2008-09-01

    Huge quantities of silicic pumice have been deposited in intra-oceanic convergent margin settings throughout Earth's history. The association of submarine silicic calderas with thick proximal accumulations of pumice lapilli suggests that these pyroclasts were deposited as a direct result of submarine eruptions. Yet when first erupted, these highly vesicular, gas-filled clasts had densities significantly less than seawater. Experiments carried out 1-atm on heated pumice samples whose vesicles were charged with steam, the dominant component of magmatic volatiles show that buoyancy of freshly erupted submarine pumice is transient. Upon quenching, the phase change of steam-to-liquid water creates strong negative pore pressures within the pumice vesicles that accelerate the absorption of surrounding water, generating high-density pumice and promoting rapid clast sinking. Variations in the physical properties of steam with temperature and pressure have important implications for submarine pyroclastic eruptions. Firstly, highly vesicular pumice can be deposited on the seafloor at temperatures elevated significantly above ambient if they are erupted at sufficient depths to remain wholly submarine (> ˜ 200 m) and either the fluid in which they cool contains heated water and/or they only absorb sufficient water to sink. Secondly, the rapid increase in density of the eruption column caused by condensation and the transition from buoyant (gas-filled) to denser (water-saturated) pumice lapilli, together with turbulent mixing with the surrounding seawater favour collapse and transport of pyroclasts in water-supported gravity currents. Finally, this mixing of the ejecta with seawater and the ease of water ingestion into permeable pumice clasts suggest that water-supported transport mechanisms can operate as primary dispersal processes in explosive submarine eruptions.

  13. Investigating pyroclast ejection dynamics using shock-tube experiments: temperature, grain size and vent geometry effects.

    Science.gov (United States)

    Cigala, V.; Kueppers, U.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions eject large quantities of gas and particles into the atmosphere. The portion directly above the vent commonly shows characteristics of underexpanded jets. Understanding the factors that influence the initial pyroclast ejection dynamics is necessary in order to better assess the resulting near- and far-field hazards. Field observations are often insufficient for the characterization of volcanic explosions due to lack of safe access to such environments. Fortunately, their dynamics can be simulated in the laboratory where experiments are performed under controlled conditions. We ejected loose natural particles from a shock-tube while controlling temperature (25˚ and 500˚C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), sample-to-vent distance and vent geometry. For each explosion we quantified the velocity of individual particles, the jet spreading angle and the production of fines. Further, we varied the setup to allow for different sample-to-gas ratios and deployed four different vent geometries: 1) cylindrical, 2) funnel with a flaring of 30˚, 3) funnel with a flaring of 15˚ and 4) nozzle. The results showed maximum particle velocities up to 296 m/s, gas spreading angles varying from 21˚ to 37˚ and particle spreading angles from 3˚ to 40˚. Moreover we observed dynamically evolving ejection characteristics and variations in the production of fines during the course of individual experiments. Our experiments mechanistically mimic the process of pyroclast ejection. Thus the capability for constraining the effects of input parameters (fragmentation conditions) and conduit/vent geometry on ballistic pyroclastic plumes has been clearly established. These data obtained in the presence of well-documented conduit and vent conditions, should greatly enhance our ability to numerically model explosive ejecta in nature.

  14. Titanium dioxide in pyroclastic layers from volcanoes in the cascade range

    Science.gov (United States)

    Czamanske, G.K.; Porter, S.C.

    1965-01-01

    Rapid determinations of titanium dioxide have been made by x-ray emission techniques to evaluate the potentiality of using the TiO2 content of samples for checking field correlations and assisting in identification of pyroclastic units from Cascade volcanoes. Preliminary data suggest that the two most wide-spread units have characteristic ranges of TiO2 content and that other, less extensive layers have ranges which, though characteristic, often overlap the ranges of the more widespread layers. Relative to fresh samples, weathered samples from B and C soil horizons are enriched in TiO 2.

  15. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: new insights from flume experiments

    NARCIS (Netherlands)

    Cartigny, M.J.B.; Ventra, D.; Postma, G.; Berg, J.H. van den

    2012-01-01

    Particulate density currents, such as pyroclastic flows and turbidity currents, are prone to flow in a supercritical state, due to their small density difference in relation to the ambient fluid. Facies deposited in supercritical-flow conditions are therefore likely to be common, yet their recogniti

  16. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (USA)

    Science.gov (United States)

    Brand, Brittany D.; Mackaman-Lofland, Chelsea; Pollock, Nicholas M.; Bendaña, Sylvana; Dawson, Blaine; Wichgers, Pamela

    2014-04-01

    The May 18th, 1980 eruption of Mount St. Helens (MSH) produced multiple pyroclastic density currents (PDCs), burying the area north of the volcano under 10s of meters of deposits. Detailed measurements of recently exposed strata from these PDCs provide substantial insight into the dynamics of concentrated currents including inferences on particle-particle interactions, current mobility due to sedimentation fluidization and internal pore pressure, particle support mechanisms, the influence of surface roughness and the conditions that promote substrate erosion and self-channelization. Four primary flow units are identified along the extensive drainage system north of the volcano. Each flow unit has intricate vertical and lateral facies changes and complex cross-cutting relationships away from source. Each flow unit is an accumulation from an unsteady but locally sustained PDC or an amalgamation of several PDC pulses. The PDCs associated with Units I and II likely occurred during the pre-climactic, waxing phase of the eruption. These currents flowed around and filled in the hummocky topography, leaving the massive to diffusely-stratified deposits of Units I and II. The deposits of both Units I and II are generally more massive in low lying areas and more stratified in areas of high surface roughness, suggesting that surface roughness enhanced basal shear stress within the flow boundary. Units III and IV are associated with the climactic phase of the eruption, which produced the most voluminous and wide-spread PDCs. Both flow units are characteristically massive and enriched in vent-derived lithic blocks. These currents flowed over and around the debris avalanche deposits, as evidenced by the erosion of blocks from the hummocks. Unit III is massive, poorly sorted, and shows little to no evidence of elutriation or segregation of lithics and pumice, suggesting a highly concentrated current where size-density segregation was suppressed. Unit IV shows similar depositional

  17. Constructing dense genetic linkage maps

    NARCIS (Netherlands)

    Jansen, J.; Jong, de A.G.; Ooijen, van J.W.

    2001-01-01

    This paper describes a novel combination of techniques for the construction of dense genetic linkage maps. The construction of such maps is hampered by the occurrence of even small proportions of typing errors. Simulated annealing is used to obtain the best map according to the optimality criterion:

  18. Method for dense packing discovery.

    Science.gov (United States)

    Kallus, Yoav; Elser, Veit; Gravel, Simon

    2010-11-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit-cell parameters with the other packing variables in the definition of the configuration space. The method we present led to previously reported improvements in the densest-known tetrahedron packing. Here, we use the method to reproduce the densest-known lattice sphere packings and the best-known lattice kissing arrangements in up to 14 and 11 dimensions, respectively, providing numerical evidence for their optimality. For nonspherical particles, we report a dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845 and with a similar structure to the densest-known tetrahedron packing.

  19. Unconditional Continuous Variable Dense Coding

    CERN Document Server

    Ralph, T C

    2002-01-01

    We investigate the conditions under which unconditional dense coding can be achieved using continuous variable entanglement. We consider the effect of entanglement impurity and detector efficiency and discuss experimental verification. We conclude that the requirements for a strong demonstration are not as stringent as previously thought and are within the reach of present technology.

  20. Influence of topsoil of pyroclastic origin on microbial contamination of groundwater in fractured carbonate aquifers

    Science.gov (United States)

    Naclerio, Gino; Petrella, Emma; Nerone, Valentina; Allocca, Vincenzo; de Vita, Pantaleone; Celico, Fulvio

    2008-09-01

    The aim of the research was to analyse the influence of a topsoil of pyroclastic origin on microbial contamination of groundwater in a carbonate aquifer and verify the reliability of thermotolerant coliforms and fecal enterococci as bacterial indicators. The research was carried out through hydrogeological and microbiological monitoring at an experimental field site in Italy during two hydrologic years and through column tests in a laboratory. The taxonomic classification of fecal indicators detected in spring water samples was performed using API20 galleries. Fecal enterococci were also identified by means of 16S rRNA gene sequencing. The topsoil of pyroclastic origin significantly retains both thermotolerant coliforms and fecal enterococci. Results of column tests carried out in soil blocks collected randomly within the test site suggest that Escherichia coli was more retained than Enterococcus faecalis, even though this difference is statistically significant in only two out of six soil samples. Thus, a non-uniform difference in retention is expected at field scale. This suggestion is in agreement with the results of the microbiological monitoring. In fact, fecal enterococci were a more reliable indicator than thermotolerant coliforms for detecting contamination at both seasonal springs of the aquifer system, while no significant differences were observed at the perennial spring.

  1. Volcanic glass signatures in spectroscopic survey of newly proposed lunar pyroclastic deposits

    Science.gov (United States)

    Besse, S.; Sunshine, J.M.; Gaddis, L.R.

    2014-01-01

    Moon Mineralogy Mapper spectroscopic observations are used to assess the mineralogy of five sites that have recently been proposed to include lunar dark mantle deposits (DMDs). Volcanic glasses have, for the first time, clearly been identified at the location of three of the proposed pyroclastic deposits. This is the first time that volcanic glasses have been identified at such a small scale on the lunar surface from remote sensing observations. Deposits at Birt E, Schluter, and Walther A appear to be glassy DMDs. Deposits at Birt E and Schluter show (1) morphological evidence suggesting a likely vent and (2) mineralogical evidence indicative of the presence of volcanic glasses. The Walther A deposits, although they show no morphological evidence of vents, have the spectroscopic characteristics diagnostic of volcanic glasses. The deposits of the Freundlich-Sharonov basin are separated in two areas: (1) the Buys-Ballot deposits lack mineralogical and morphological evidence and thus are found to be associated with mare volcanism not with DMDs and (2) the Anderson crater deposits, which do not exhibit glassy DMD signatures, but they appear to be associated with possible vent structures and so may be classifiable as DMDs. Finally, dark deposits near the crater Kopff are found to be associated with likely mare volcanism and not associated with DMDs. The spectral identification of volcanic glass seen in many of the potential DMDs is a strong indicator of their pyroclastic origin.

  2. Analysis of three classes of small lunar pyroclastic deposits with Clementine data

    Science.gov (United States)

    Gaddis, Lisa; Robinson, Mark; Hawke, B. R.

    1997-03-01

    The U.S. Geological Survey's Integrated Software for Imaging Spectrometers (ISIS) software was used to create and examine Clementine UV-VIS multispectral mosaics (about 100 m/pixel) of areas representative of the three major compositional classes of small lunar pyroclastic deposits. Compositional analyses of these deposits may provide clues to the nature of deep-source late-stage volcanism and eruption mechanisms on the moon. Small deposits of the Atlas Crater, east of Aristoteles, and J. Herschel Crater regions are studied. The goals are (1) to understand the full extent of interdeposit compositional variations among small lunar pyroclastic deposits, (2) to evaluate the possible effects of soil maturation and lateral mixing on the 'true' compositions of these deposits, (3) to determine the prevalence and nature of intradeposit compositional variations previously observed in deposits of Alphonsus Crater, (4) to identify and characterize the juvenile components of these deposits, and (5) to understand the implications of these results for studying lunar eruption mechanisms.

  3. Archaeomagnetic results from mural paintings and pyroclastic rocks in Pompeii and Herculaneum

    Science.gov (United States)

    Zanella, E.; Gurioli, L.; Chiari, G.; Ciarallo, A.; Cioni, R.; De Carolis, E.; Lanza, R.

    2000-03-01

    This work investigates the magnetic remanence associated with red pigments from murals at Pompeii and compares their directions to those of the pyroclastic rocks from the Vesuvius AD 79 eruption. The remanence of the murals is shown, using X-ray analyses, to be carried by haematite. Murals in Thermae Stabianae, known to have been painted a few years before AD 79, yield an archaeomagnetic direction ( D=1.2°, I=58.0°; α95=5.5°) indistinguishable from that of a nearby kiln ( D=358.0°, I=59.1°; α95=1.7°) ( Evans and Mareschal, 1989) probably last used immediately prior to the eruption. The directions are also consistent with those of fine-grained pyroclastic rocks from the eruption ( D=351.2°, I=57.9°; α95=3.4°) and lithic and tile fragments embedded within them ( D=358.5°, I=60.4°; α95=8.5°). Other paintings of the 1st century AD yield similar directions, with a lower statistical definition. This study shows that murals can retain their remanent magnetization for centuries and demonstrates the viability in principle of pictorial remanence as an archaeomagnetic tool.

  4. The Influence of Grain Size and Crystal Content on Rheology and Deformation of Pyroclastic Material

    Science.gov (United States)

    Paquereau-Lebti, P.; Robert, G.; Grunder, A. L.; Russell, K. J.

    2007-12-01

    Pyroclastic deposits undergo variable degrees of sintering, viscous deformation of particles and loss of pore space, which combine to produce the dramatic textural variations that define welded facies. We here investigate the effects of grain size and crystal content on the rheology and welding of pyroclastic material.Uniaxial deformation experiments were conducted using sintered cores of natural rhyolite ash under conditions consistent with welding. Experiments were done in the University of British Columbia Volcanology Deformation Rig (VDR). This apparatus is designed to run experiments relevant to volcanology, by supporting low-load, high temperature, deformation experiments (Quane et al., 2004). We ran experiments at constant displacement rate (2.5.10-6 m.s-1), under ambient water pressure ("Dry"), at temperatures of 850 and 900°C and to maximal strain of 50%. Grain-size effect was investigated using sintered cores from three different sieving fractions of Rattlesnake Tuff (RST, Eastern Oregon, USA) ash: fine ash (grain size 15% crystal content inhibited sintering in a sample that welded under the same experimental conditions when phenocryst depleted (phenocryst content around 1% in whole Rattlesnake Tuff ash). Reference: Quane, S.L., Russell, J.K., and Kennedy, L.A. (2004). A low-load, high-temperature deformation apparatus for volcanological studies. American mineralogist, 89, 873-877.

  5. Probing the Physical Structures of Dense Filaments

    Science.gov (United States)

    Li, Di

    2015-08-01

    Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.

  6. Warm Dense Matter: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities

  7. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (Invited)

    Science.gov (United States)

    Brand, B. D.; Pollock, N. M.; Mackaman-Lofland, C. A.; Bendana, S.

    2013-12-01

    The May 18th, 1980 eruption of Mount St. Helens (MSH) produced multiple pyroclastic density currents (PDCs), burying the area north of the volcano under 10s of meters of deposits. Detailed measurements of recently exposed strata from these PDCs provide substantial insight into the dynamics of concentrated currents including inferences on particle-particle interactions, current mobility due to sedimentation fluidization and internal pore pressure, particle support mechanisms, the influence of surface roughness and the conditions that promote substrate erosion and self-channelization. Four primary flow units are identified along the extensive drainage system north of the volcano. The PDCs associated with Units I and II likely occurred during the pre-climactic, waxing phase of the eruption. These currents flowed around and filled in the hummocky topography left behind by the earlier debris avalanche, leaving the massive to diffusely-stratified deposits of Units I and II. The deposits of both Units I and II are generally massive in low lying areas and stratified in areas of high surface roughness, suggesting that surface roughness enhanced basal shear stress within the flow boundary. Units III and IV are associated with the climactic phase of the eruption, which produced the most voluminous and wide-spread PDCs. Both flow units are characteristically massive and enriched in vent-derived lithic blocks. However, an increase in the proportion and size of lithic blocks is found (1) downstream of debris avalanche hummocks, suggesting the PDCs flowed over and around debris avalanche hummocks and were energetic enough to locally entrain accidental lithics from the hummocks and transport them tens of meters downstream, and (2) within large channels cut by later PDCs into earlier PDC deposits, suggesting self-channelization of the flows increased the carrying capacity of the subsequent channelized currents. Unit III is massive, poorly sorted, and shows little to no evidence of

  8. Structural Transitions in Dense Networks

    CERN Document Server

    Lambiotte, R; Bhat, U; Redner, S

    2016-01-01

    We introduce an evolving network model in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability $p$. The resulting network is sparse for $p<\\frac{1}{2}$ and dense (average degree increasing with number of nodes $N$) for $p\\geq \\frac{1}{2}$. In the dense regime, individual networks realizations built by this copying mechanism are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at $p=\\frac{2}{3}$, $\\frac{3}{4}$, $\\frac{4}{5}$, etc., where the dependences on $N$ of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete---where all nodes are connected---is non-zero as $N\\to\\infty$.

  9. Holographic Renormalization in Dense Medium

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2014-01-01

    describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space.

  10. Radiative properties of dense nanofluids.

    Science.gov (United States)

    Wei, Wei; Fedorov, Andrei G; Luo, Zhongyang; Ni, Mingjiang

    2012-09-01

    The radiative properties of dense nanofluids are investigated. For nanofluids, scattering and absorbing of electromagnetic waves by nanoparticles, as well as light absorption by the matrix/fluid in which the nanoparticles are suspended, should be considered. We compare five models for predicting apparent radiative properties of nanoparticulate media and evaluate their applicability. Using spectral absorption and scattering coefficients predicted by different models, we compute the apparent transmittance of a nanofluid layer, including multiple reflecting interfaces bounding the layer, and compare the model predictions with experimental results from the literature. Finally, we propose a new method to calculate the spectral radiative properties of dense nanofluids that shows quantitatively good agreement with the experimental results.

  11. Dilatons for Dense Hadronic Matter

    CERN Document Server

    Lee, Hyun Kyu

    2009-01-01

    The idea that the explicit breaking of scale invariance by the trace anomaly of QCD can be rephrased as a spontaneous breaking has been recently exploited to capture the low-energy strong interaction dynamics of dense (and also hot) matter in terms of two dilaton fields, the "soft" (chi_s) and the "hard" (chi_h) fields, in the frame work of the hidden local gauge symmetry. In the Freund-Nambu model, the spontaneous symmetry breaking of scale symmetry is induced by an explicitly breaking term, while the spontaneous symmetry breaking is possible in the flat potential model which is scale symmetric. We discuss the interplay of the soft and hard dilatons using the spontaneously broken scale symmetry schemes and uncover a novel structure of dense matter hitherto unexplored.

  12. Prediction of shear strength of unsaturated pyroclastic ashes from water retention curves

    Science.gov (United States)

    Comegna, Luca; Damiano, Emilia; Gargano, Rudy; Greco, Roberto; Palladino, Mario; Romano, Nunzio

    2017-04-01

    Pyroclastic deposits covering steep slopes, characteristic of large mountainous areas of Campania (southern Italy), are often affected by shallow landslides triggered by rainfall. The equilibrium of such deposits is in fact usually guaranteed by the contribution to soil shear strength offered by soil suction, which decreases when soil approaches saturation. More specifically, soil suction exerts a compressive stress on solid particles, which increases shear strength thanks to friction. In this study, the model of Lu et al. (2010), which assumes that the fraction of soil suction effectively transmitted to solid particles is proportional to the degree of saturation of the soil, and a recently proposed model, based on the assumption that suction is transmitted to soil solid particles only through their wet external surface (Greco and Gargano, 2015), are applied to predict soil suction stress of pyroclastic ashes from their water retention curve. This latter is modeled by means of the equation of van Genuchten (1980), as well as by means of the model of Romano et al. (2011), which assumes a bimodal distribution of pore dimensions. Experimental data of shear strength of pyroclastic ashes from various sites in Campania are compared with the values of shear strength predicted with the various tested models. The investigated soils are loose silty sands, characterized by a porosity larger than 0.7, friction angle ranging between 36° and 38°, and small or even null cohesion. In all cases, the best agreement between modeled and experimental shear strength is obtained by means of the model of Greco and Gargano, applied with the adoption of the bimodal water retention model of Romano et al. The obtained results highlight the importance of accurate modeling soil suction stress to correctly predict landslide triggering conditions in slopes covered with shallow unsaturated granular deposits. References Greco R, Gargano R. A novel equation for determining the suction stress of

  13. A prediction model for uniaxial compressive strength of deteriorated pyroclastic rocks due to freeze-thaw cycle

    Science.gov (United States)

    İnce, İsmail; Fener, Mustafa

    2016-08-01

    Either directly or indirectly, building stone is exposed to diverse atmospheric interactions depending on the seasonal conditions. Due to those interactions, objects of historic and cultural heritage, as well as modern buildings, partially or completely deteriorate. Among processes involved in rock deterioration, the freeze-thaw (F-T) cycle is one of the most important. Even though pyroclastic rocks have been used as building stone worldwide due to their easy workability, they are the building stone most affected by the F-T cycle. A historical region in Central Anatolia, Turkey, Cappadoia encompasses exceptional natural wonders characterized by fairy chimneys and unique historical and cultural heritage. Human-created caves, places of worship and houses have been dug into the pyroclastic rocks, which have in turn been used in architectural construction as building stone. Using 10 pyroclastic rock samples collected from Cappadocia, we determined the rock's index-mechanical properties to develop a statistical model for estimating percentage loss of uniaxial compressive strength a critical parameter of F-T cycle's important value. We used dry density (ρd), ultrasonic velocity (Vp), point load strengths (IS(50)), and slake-durability test indexes (Id4) values of unweathered rocks in our model, which is highly reliable (R2 = 0.84) for predetermination of percentage loss of uniaxial compressive strengths of pyroclastic rocks without requiring any F-T tests.

  14. Paroxysmal dome explosion during the Merapi 2010 eruption: Processes and facies relationships of associated high-energy pyroclastic density currents

    Science.gov (United States)

    Komorowski, Jean-Christophe; Jenkins, Susanna; Baxter, Peter J.; Picquout, Adrien; Lavigne, Franck; Charbonnier, Sylvain; Gertisser, Ralf; Preece, Katie; Cholik, Noer; Budi-Santoso, Agus; Surono

    2013-07-01

    An 11-minute sequence of laterally-directed explosions and retrogressive collapses on 5 November 2010 at Merapi (Indonesia) destroyed a rapidly-growing dome and generated high-energy pyroclastic density currents (PDCs) spreading over 22 km2 with a runout of 8.4 km while contemporaneous co-genetic valley-confined PDCs reached 15.5 km. This event formed Stage 4 of the multi-stage 2010 eruption, the most intense eruptive episode at Merapi since 1872. The deposits and the widespread devastating impact of associated high-energy PDCs on trees and buildings show striking similarities with those from historical volcanic blasts (Montagne Pelée, Martinique, Bezymianny, Russia, Mount St. Helens, USA, Soufrière Hills, Montserrat). We provide data from stratigraphic and sedimentologic analyses of 62 sections of the first unequivocal blast-like deposits in Merapi's recent history. We used high resolution satellite imagery to map eruptive units and flow direction from the pattern of extensive tree blowdown. The stratigraphy of Stage 4 consists of three depositional units (U0, U1, U2) that we correlate to the second, third and fourth explosions of the seismic record. Both U1 and U2 show a bi-partite layer stratigraphy consisting each of a lower L1 layer and an upper L2 layer. The lower L1 layer is typically very coarse-grained, fines-poor, poorly-sorted and massive, and was deposited by the erosive waxing flow head. The overlying L2 layer is much finer grained, fines-rich, moderately to well-sorted, with laminar to wavy stratification. L2 was deposited from the waning upper part and wake of the PDC. Field observations indicate that PDC height reached ~ 330 m with an internal velocity of ~ 100 m s- 1 within 3 km from the source. The summit's geometry and the terrain morphology formed by a major transversal ridge and a funneling deep canyon strongly focused PDC mass towards a major constriction, thereby limiting the loss of kinetic energy. This favored elevated PDC velocities and

  15. The Utilization of Remotely Sensed Data to Analyze the Estimated Volume of Pyroclastic Deposits and Morphological Changes Caused by the 2010-2015 Eruption of Sinabung Volcano, North Sumatra, Indonesia

    Science.gov (United States)

    Yulianto, Fajar; Suwarsono; Sofan, Parwati

    2016-08-01

    In this research, remotely sensed data has been used to estimate the volume of pyroclastic deposits and analyze morphological changes that have resulted from the eruption of Sinabung volcano. Topographic information was obtained from these data and used for rapid mapping to assist in the emergency response. Topographic information and change analyses (pre- and syn- eruption) were conducted using digital elevation models (DEMs) for the period 2010-2015. Advanced spaceborne thermal emission and reflection radiometer (ASTER) global digital elevation model (GDEM) data from 2009 were used to generate the initial DEMs for the condition prior to the eruption of 2010. Satellite pour l'observation de la terre 6 (SPOT 6) stereo images acquired on 21 June 2015 and were used to make a DEM for that time. The results show that the estimated total volume of lava and pyroclastic deposits, produced during the period 2010 to mid-2015 is approximately 2.8 × 108 m3. This estimated volume of pyroclastic deposits can be used to predict the magnitude of future secondary lahar hazards, which are also related to the capacity of rivers in the area. Morphological changes are illustrated using cross-sectional analysis of the deposits, which are currently deposited to the east, southeast and south of the volcano. Such analyses can also help in forecasting the direction of the future flow hazards. The remote sensing and analysis methods used at Sinabung can also be applied at other volcanoes and to assess the threats of other types of hazards such as landslides and land subsidence.

  16. Fractal analysis of experimentally generated pyroclasts: A tool for volcanic hazard assessment

    Science.gov (United States)

    Perugini, Diego; Kueppers, Ulrich

    2012-06-01

    Rapid decompression experiments on natural volcanic rocks mimick explosive eruptions. Fragment size distributions (FSD) of such experimentally generated pyroclasts are investigated using fractal geometry. The fractal dimension of fragmentation, D, of FSD is measured for samples from Unzen (Japan) and Popocatépetl (Mexico) volcanoes. Results show that: (i) FSD are fractal and can be quantified by measuring D values; (ii) D increases linearly with potential energy for fragmentation (PEF) and, thus, with increasing applied pressure; (iii) the rate of increase of D with PEF depends on open porosity: the higher the open porosity, the lower the increase of D with PEF; (iv) at comparable open porosity, samples display a similar behavior for any rock composition. The method proposed here has the potential to become a standard routine to estimate eruptive energy of past and recent eruptions using values of D and open porosity, providing an important step towards volcanic hazard assessment.

  17. Human survival in volcanic eruptions: Thermal injuries in pyroclastic surges, their causes, prognosis and emergency management.

    Science.gov (United States)

    Baxter, Peter J; Jenkins, Susanna; Seswandhana, Rosadi; Komorowski, Jean-Christophe; Dunn, Ken; Purser, David; Voight, Barry; Shelley, Ian

    2017-08-01

    This study of burns patients from two eruptions of Merapi volcano, Java, in 1994 and 2010, is the first detailed analysis to be reported of thermal injuries in a large series of hospitalised victims of pyroclastic surges, one of the most devastating phenomena in explosive eruptions. Emergency planners in volcanic crises in populated areas have to integrate the health sector into disaster management and be aware of the nature of the surge impacts and the types of burns victims to be expected in a worst scenario, potentially in numbers and in severity that would overwhelm normal treatment facilities. In our series, 106 patients from the two eruptions were treated in the same major hospital in Yogyakarta and a third of these survived. Seventy-eight per cent were admitted with over 40% TBSA (total body surface area) burns and around 80% of patients were suspected of having at least some degree of inhalation injury as well. Thirty five patients suffered over 80% TBSA burns and only one of these survived. Crucially, 45% of patients were in the 40-79% TBSA range, with most suspected of suffering from inhalation injury, for whom survival was most dependent on the hospital treatment they received. After reviewing the evidence from recent major eruptions and outlining the thermal hazards of surges, we relate the type and severity of the injuries of these patients to the temperatures and dynamics of the pyroclastic surges, as derived from the environmental impacts and associated eruption processes evaluated in our field surveys and interviews conducted by our multi-disciplinary team. Effective warnings, adequate evacuation measures, and political will are all essential in volcanic crises in populated areas to prevent future catastrophes on this scale. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  18. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  19. Probing Cold Dense Nuclear Matter

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  20. Probing Cold Dense Nuclear Matter

    CERN Document Server

    Subedi, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Bertozzi, W; Boeglin, W; Chen, J -P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J -O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; De Jager, C W; Jans, E; Jiang, X; Kaufman, L; Kelleher, A; Kolarkar, A; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Širca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X -C; Zhu, L; 10.1126/science.1156675

    2009-01-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  1. Dilatons in Dense Baryonic Matter

    CERN Document Server

    Lee, Hyun Kyu

    2013-01-01

    We discuss the role of dilaton, which is supposed to be representing a special feature of scale symmetry of QCD, trace anomaly, in dense baryonic matter. The idea that the scale symmetry breaking of QCD is responsible for the spontaneous breaking of chiral symmetry is presented along the similar spirit of Freund-Nambu model. The incorporation of dilaton field in the hidden local symmetric parity doublet model is briefly sketched with the possible role of dilaton at high density baryonic matter, the emergence of linear sigma model in dilaton limit.

  2. A contribution to the hazards assessment at Copahue volcano (Argentina-Chile) by facies analysis of a recent pyroclastic density current deposit

    Science.gov (United States)

    Balbis, C.; Petrinovic, I. A.; Guzmán, S.

    2016-11-01

    We recognised and interpreted a recent pyroclastic density current (PDC) deposit at the Copahue volcano (Southern Andes), through a field survey and a sedimentological study. The relationships between the behaviour of the PDCs, the morphology of the Río Agrio valley and the eruptive dynamics were interpreted. We identified two lithofacies in the deposit that indicate variations in the eruptive dynamics: i) the opening of the conduit and the formation of a highly explosive eruption that formed a diluted PDC through the immediate collapse of the eruptive column; ii) a continued eruption which followed immediately and records the widening of the conduit, producing a dense PDC. The eruption occurred in 2000 CE, was phreatomagmatic (VEI ≤ 2), with a vesiculation level above 4000 m depth and fragmentation driven by the interaction of magma with an hydrothermal system at ca. 1500 m depth. As deduced from the comparison between the accessory lithics of this deposit and those of the 2012 CE eruption, the depth of onset of vesiculation and fragmentation level in this volcano is constant in depth. In order to reproduce the distribution pattern of this PDC's deposit and to simulate potential PDC's forming-processes, we made several computational modelling from "denser" to "more diluted" conditions. The latter fairly reproduces the distribution of the studied deposit and represents perhaps one of the most dangerous possible scenarios of the Copahue volcanic activity. PDCs occurrence has been considered in the last volcanic hazards map as a low probability process; evidences found in this contribution suggest instead to include them as more probable and thus very important for the hazards assessment of the Copahue volcano.

  3. Dilution in a Dense Bottom Jet in Cross Currents

    DEFF Research Database (Denmark)

    Petersen, O.; Larsen, Torben

    1998-01-01

    A 3-dimensional numerical model describing the dilution in the near field around dense vertical jets in a cross flow is formulated and validated against laboratory experiments. The validation shows that the model reproduces the flow pattern well, though the dilution is underestimated by 20%. The ......%. The model is applied to a case study where the dilution from two vertical jets at an angle in shallow water is described. It is demonstrated that a 20% increase in dilution is possible. It is concluded that the model may become a valuable tool in diffusor design....

  4. Dilution in a Dense Bottom Jet in Cross Currents

    DEFF Research Database (Denmark)

    Petersen, O.; Larsen, Torben

    1998-01-01

    A 3-dimensional numerical model describing the dilution in the near field around dense vertical jets in a cross flow is formulated and validated against laboratory experiments. The validation shows that the model reproduces the flow pattern well, though the dilution is underestimated by 20......%. The model is applied to a case study where the dilution from two vertical jets at an angle in shallow water is described. It is demonstrated that a 20% increase in dilution is possible. It is concluded that the model may become a valuable tool in diffusor design....

  5. Viscoelastic behavior of dense microemulsions

    Science.gov (United States)

    Cametti, C.; Codastefano, P.; D'arrigo, G.; Tartaglia, P.; Rouch, J.; Chen, S. H.

    1990-09-01

    We have performed extensive measurements of shear viscosity, ultrasonic absorption, and sound velocity in a ternary system consisting of water-decane-sodium di(2-ethylhexyl)sulfo- succinate(AOT), in the one-phase region where it forms a water-in-oil microemulsion. We observe a rapid increase of the static shear viscosity in the dense microemulsion region. Correspondingly the sound absorption shows unambiguous evidence of a viscoelastic behavior. The absorption data for various volume fractions and temperatures can be reduced to a universal curve by scaling both the absorption and the frequency by the measured static shear viscosity. The sound absorption can be interpreted as coming from the high-frequency tail of the viscoelastic relaxation, describable by a Cole-Cole relaxation formula with unusually small elastic moduli.

  6. Neutrino Oscillations in Dense Matter

    Science.gov (United States)

    Lobanov, A. E.

    2017-03-01

    A modification of the electroweak theory, where the fermions with the same electroweak quantum numbers are combined in multiplets and are treated as different quantum states of a single particle, is proposed. In this model, mixing and oscillations of particles arise as a direct consequence of the general principles of quantum field theory. The developed approach enables one to calculate the probabilities of the processes taking place in the detector at long distances from the particle source. Calculations of higher-order processes, including computation of the contributions due to radiative corrections, can be performed in the framework of the perturbation theory using the regular diagram technique. As a result, the analog to the Dirac-Schwinger equation of quantum electrodynamics describing neutrino oscillations and its spin rotation in dense matter can be obtained.

  7. DPIS for warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.

    2010-05-23

    Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.

  8. Determination of Trace and Volatile Element Abundance Systematics of Lunar Pyroclastic Glasses 74220 and 15426 Using LA-ICP-MS

    Science.gov (United States)

    McIntosh, E. Carrie; Porrachia, Magali; McCubbin, Francis M.; Day, James M. D.

    2017-01-01

    Since their recognition as pyroclastic glasses generated by volcanic fire fountaining on the Moon, 74220 and 15426 have garnered significant scientific interest. Early studies recognized that the glasses were particularly enriched in volatile elements on their surfaces. More recently, detailed analyses of the interiors of the glasses, as well as of melt inclusions within olivine grains associated with the 74220 glass beads, have determined high H2O, F, Cl and S contents. Such elevated volatile contents seem at odds with evidence from moderately volatile elements (MVE), such as Zn and K, for a volatile- depleted Moon. In this study, we present initial results from an analytical campaign to study trace element abundances within the pyroclastic glass beads. We report trace element data determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for 15426 and 74220.

  9. The reinterpretation of Leone Lake sediments as a pyroclastic surge deposit and its tectonic significance. [volcanics in Cascade Range of Oregon

    Science.gov (United States)

    Mcdonough, W. F.; Waibel, A. F.; Gannett, M. W.

    1984-01-01

    The Leone Lake sediments, previously interpreted as being of fluvial and lacustrine origin, are reinterpreted as subaerial pyroclastic surge and palagonite tuff cone deposits. This conclusion is based on bedforms, particle morphology, the primary mineral assemblage, and the nature and mineralogy of the alteration. The principal characteristics of the pyroclastic surge units and palagonite tuffs are examined, and the tectonic significance of the reinterpretation is briefly discussed.

  10. 5G Ultra-Dense Cellular Networks

    OpenAIRE

    Ge, Xiaohu; Tu, Song; Mao, Guoqiang; Wang, Cheng-xiang; Han, Tao

    2015-01-01

    Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output (MIMO) antennas and the millimeter wavecommunication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul ...

  11. Interference Coordination for Dense Wireless Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.; Jørgensen, Niels T.K.

    2015-01-01

    The promise of ubiquitous and super-fast connectivity for the upcoming years will be in large part fulfilled by the addition of base stations and spectral aggregation. The resulting very dense networks (DenseNets) will face a number of technical challenges. Among others, the interference emerges ...... simply react to an identified interference problem. As an example, we propose two algorithms to apply time domain and frequency domain small cell interference coordination in a DenseNet....

  12. Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Eike Möhlmann

    2015-06-01

    Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.

  13. A study of stability analysis of pyroclastic covers based on electrical resistivity measurements

    CERN Document Server

    Di Maio, Rosa

    2011-01-01

    Usually, the degree of stability of a slope is quantified by the Factor of Safety whose values depend on physical and mechanical soil properties analyzed on samples of much reduced sizes or referring to very small soil volumes around porous probes. To overcome the limit of punctual information, we propose a semi-empirical approach based on the use of geophysical methods and the employment of a geophysical Factor of Safety recently introduced by the authors in terms of local resistivities and slope angles. In this paper, we show an application of our proposal on a test area of about 2000 m2 on Sarno Mountains (Campania Region - Southern Italy), where shallow landslides involving pyroclastic soils periodically occur triggered by critical rainfall events. Starting from two resistivity tomography surveys performed on the test area in autumn and spring, we obtained maps of the geophysical Factor of Safety at different depths for the two seasons. We also estimated the values of the Factor of Safety by using the inf...

  14. Geologic factors contributing to landslide generation in a pyroclastic area: August 1998 Nishigo Village, Japan

    Science.gov (United States)

    Chigira, Masahiro

    2002-07-01

    Vertical contrasts in permeability, particularly where permeable surface materials overlie impermeable materials that prohibit the downward infiltration of groundwater, concentrate the groundwater and become an important focus of landslides that are triggered by intense rainfall. Just such a hydrogeological structure is present within the pyroclastics in Nishigo Village in Fukushima Prefecture, Japan, where intense rainfall of 1200 mm in 6 days generated more than 1000 landslides in August 1998. Three types of landslides occurred. The first type occurred along the edges of small plateaus, where horizontal beds of permeable ash, scoria, and pumice overlie impermeable mudflow deposits consisting of tuffaceous fines and andesite blocks, and massive, weakly consolidated ignimbrites. The rainfall on the plateaus infiltrated downward first, then laterally within the permeable beds, finally gushing out at the plateau edges and triggering landslides. The second type of landslide occurred where weathered tuff of the same ignimbrite was present with a slip surface at the base of the heavily weathered zone. Within this heavily weathered zone, the tuff exfoliated into thin weak plates running parallel to the slope surface. The third type of landslide involved failure of colluvium or ash that filled hollows. This type occurred as a result of subsurface erosion caused by the groundwater infiltrating the superficial beds above the impermeable tuff.

  15. Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy

    NARCIS (Netherlands)

    van der Hoef, Martin Anton; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    Dense gas-particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic and is related to the intrinsic complexities of these flows which are unfortunately not

  16. Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy

    NARCIS (Netherlands)

    van der Hoef, Martin Anton; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    Dense gas–particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic, which can be related to the intrinsic complexities of these flows which are

  17. Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy

    NARCIS (Netherlands)

    Hoef, van der M.A.; Sint Annaland, van M.; Kuipers, J.A.M.

    2004-01-01

    Dense gas–particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic, which can be related to the intrinsic complexities of these flows which are unfortunate

  18. Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy

    NARCIS (Netherlands)

    Hoef, van der M.A.; Sint Annaland, van M.; Kuipers, J.A.M.

    2005-01-01

    Dense gas-particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic and is related to the intrinsic complexities of these flows which are unfortunately not

  19. Rheology of dense suspensions of non colloidal particles

    Science.gov (United States)

    Guazzelli, Élisabeth

    2017-06-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers) or non-Newtonian fluids that we will also address.

  20. Rheology of dense suspensions of non colloidal particles

    Directory of Open Access Journals (Sweden)

    Guazzelli Élisabeth

    2017-01-01

    Full Text Available Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing and in natural phenomena (e.g. flows of slurries, debris, and lava. Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers or non-Newtonian fluids that we will also address.

  1. Optimal probabilistic dense coding schemes

    Science.gov (United States)

    Kögler, Roger A.; Neves, Leonardo

    2017-04-01

    Dense coding with non-maximally entangled states has been investigated in many different scenarios. We revisit this problem for protocols adopting the standard encoding scheme. In this case, the set of possible classical messages cannot be perfectly distinguished due to the non-orthogonality of the quantum states carrying them. So far, the decoding process has been approached in two ways: (i) The message is always inferred, but with an associated (minimum) error; (ii) the message is inferred without error, but only sometimes; in case of failure, nothing else is done. Here, we generalize on these approaches and propose novel optimal probabilistic decoding schemes. The first uses quantum-state separation to increase the distinguishability of the messages with an optimal success probability. This scheme is shown to include (i) and (ii) as special cases and continuously interpolate between them, which enables the decoder to trade-off between the level of confidence desired to identify the received messages and the success probability for doing so. The second scheme, called multistage decoding, applies only for qudits ( d-level quantum systems with d>2) and consists of further attempts in the state identification process in case of failure in the first one. We show that this scheme is advantageous over (ii) as it increases the mutual information between the sender and receiver.

  2. Collective waves in dense and confined microfluidic droplet arrays

    Science.gov (United States)

    Schiller, Ulf D.; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard

    Excitation mechanisms for collective waves in confined dense one-dimensional microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. Excited longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets. Transversely excited modes obey the dispersion relation of microfluidic phonons and induce a coupling between longitudinal and transverse modes, whose origin is the hydrodynamic interaction of the droplets with the confining walls. Moreover, we investigate the long-time behaviour of the oscillations and discuss possible mechanisms for the onset of instabilities. Our findings demonstrate that the collective dynamics of microfluidic droplet ensembles can be studied particularly well in dense and confined systems. Experimentally, the ability to control microfluidic droplets may allow to modulate the refractive index of optofluidic crystals which is a promising approach for the production of dynamically programmable metamaterials.

  3. Thermophysical properties of warm dense hydrogen

    CERN Document Server

    Holst, Bastian; Desjarlais, Michael P

    2007-01-01

    We study the thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. New results are presented for the pair distribution functions, the equation of state, the Hugoniot curve, and the reflectivity. We compare with available experimental data and predictions of the chemical picture. Especially, we discuss the nonmetal-to-metal transition which occurs at about 40 GPa in the dense fluid.

  4. Heavy meson production in hot dense matter

    NARCIS (Netherlands)

    Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Nieves, JM; Oset, E; Vacas, MJV

    2010-01-01

    The properties of charmed mesons in dense matter are studied using a unitary coupled-channel approach in the nuclear medium which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense nuclear env

  5. Finding dense locations in indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2014-01-01

    Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based mode...

  6. Dense image correspondences for computer vision

    CERN Document Server

    Liu, Ce

    2016-01-01

    This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems.   ·         Provides i...

  7. Multiscale Image Based Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Strzodka, Robert

    2006-01-01

    We present MIBFV, a method to produce real-time, multiscale animations of flow datasets. MIBFV extends the attractive features of the Image-Based Flow Visualization (IBFV) method, i.e. dense flow domain coverage with flow-aligned noise, real-time animation, implementation simplicity, and few (or no)

  8. Measurements, interpretation and climate change effects evaluation for pyroclastic bare soil evaporation

    Science.gov (United States)

    Rianna, G.; Pagano, L.; Mercogliano, P.; Montesarchio, M.

    2012-12-01

    A physical model has been designed to achieve the following goals: to mark out the main features of the soil-atmosphere interaction; to quantify the water and energy fluxes through the soil surface during several years; to monitor the trends of the main variables regulating the hydraulic and thermal conditions. It is constituted by a soil volume (about 1mc) exposed to weather forcing; it is instrumented at four depths by sensors for measuring suction, water content and temperature. Therefore, a station allows knowing the meteo variables (rainfall, wind velocity and direction, air temperature, air pressure and relative humidity) and the two directly measurable components of the energy balance at the soil surface (net radiation and soil heat flux). Under the soil specimen, three shear beam load cells measure the soil weight and, hence, because the soil particles weight can be assumed as constant, the sample water storage. As first attempt, the soil surface is kept bare to avoid the complications led by overlapping processes induced by vegetation (interception, transpiration). Since May 2010, the soil involved in testing is pyroclastic material (silty sand) representative of air fall deposits covering a large part of Campania (South Italy) and erupted in the last 10,000 years by different volcanic centres (Phlegrean fields, Vesuvius). Because of their genesis, these soils show peculiar features: high porosity, low weight of soil unit volume, high water retention capacity; they cause an unusual hydraulic behaviour, halfway between coarse and fine soils in terms of saturated hydraulic permeability and mean slope of soil-water characteristic curve. In turn, these elements induce, among other things, that the currently adopted predictive approaches to estimate, for example, infiltration and evaporation processes are not directly suitable for these soils as the available parameters, even for grain sizes comparable to those of pyroclastic soils, fail to reproduce the

  9. Volcán de Colima dome collapse of July, 2015 and associated pyroclastic density currents

    Science.gov (United States)

    Reyes-Dávila, Gabriel A.; Arámbula-Mendoza, Raúl; Espinasa-Pereña, Ramón; Pankhurst, Matthew J.; Navarro-Ochoa, Carlos; Savov, Ivan; Vargas-Bracamontes, Dulce M.; Cortés-Cortés, Abel; Gutiérrez-Martínez, Carlos; Valdés-González, Carlos; Domínguez-Reyes, Tonatiuh; González-Amezcua, Miguel; Martínez-Fierros, Alejandro; Ramírez-Vázquez, Carlos Ariel; Cárdenas-González, Lucio; Castañeda-Bastida, Elizabeth; Vázquez Espinoza de los Monteros, Diana M.; Nieto-Torres, Amiel; Campion, Robin; Courtois, Loic; Lee, Peter D.

    2016-06-01

    During July 10th-11th 2015, Volcán de Colima, Mexico, underwent its most intense eruptive phase since its Subplinian-Plinian 1913 AD eruption. Production of scoria coincident with elevated fumarolic activity and SO2 flux indicate a significant switch of upper-conduit dynamics compared with the preceding decades of dome building and vulcanian explosions. A marked increase in rockfall events and degassing activity was observed on the 8th and 9th of July. On the 10th at 20:16 h (Local time = UTM - 6 h) a partial collapse of the dome generated a series of pyroclastic density currents (PDCs) that lasted 52 min and reached 9.1 km to the south of the volcano. The PDCs were mostly channelized by the Montegrande and San Antonio ravines, and produced a deposit with an estimated volume of 2.4 × 106 m3. Nearly 16 h after the first collapse, a second and larger collapse occurred which lasted 1 h 47 min. This second collapse produced a series of PDCs along the same ravines, reaching a distance of 10.3 km. The total volume calculated for the PDCs of the second event is 8.0 × 106 m3. Including associated ashfall deposits, the two episodes produced a total of 14.2 × 106 m3 of fragmentary material. The collapses formed an amphitheater-shaped crater open towards the south. We propose that the dome collapse was triggered by arrival of gas-rich magma to the upper conduit, which then boiled-over and sustained the PDCs. A juvenile scoria sample selected from the second partial dome collapse contains hornblende, yet at an order of magnitude less abundant (0.2%) than that of 1913, and exhibits reaction rims, whereas the 1913 hornblende is unreacted. At present there is no compelling petrologic evidence for imminent end-cycle activity observed at Volcán de Colima.

  10. Probabilistic volcanic hazard assessments of Pyroclastic Density Currents: ongoing practices and future perspectives

    Science.gov (United States)

    Tierz, Pablo; Sandri, Laura; Ramona Stefanescu, Elena; Patra, Abani; Marzocchi, Warner; Costa, Antonio; Sulpizio, Roberto

    2014-05-01

    Explosive volcanoes and, especially, Pyroclastic Density Currents (PDCs) pose an enormous threat to populations living in the surroundings of volcanic areas. Difficulties in the modeling of PDCs are related to (i) very complex and stochastic physical processes, intrinsic to their occurrence, and (ii) to a lack of knowledge about how these processes actually form and evolve. This means that there are deep uncertainties (namely, of aleatory nature due to point (i) above, and of epistemic nature due to point (ii) above) associated to the study and forecast of PDCs. Consequently, the assessment of their hazard is better described in terms of probabilistic approaches rather than by deterministic ones. What is actually done to assess probabilistic hazard from PDCs is to couple deterministic simulators with statistical techniques that can, eventually, supply probabilities and inform about the uncertainties involved. In this work, some examples of both PDC numerical simulators (Energy Cone and TITAN2D) and uncertainty quantification techniques (Monte Carlo sampling -MC-, Polynomial Chaos Quadrature -PCQ- and Bayesian Linear Emulation -BLE-) are presented, and their advantages, limitations and future potential are underlined. The key point in choosing a specific method leans on the balance between its related computational cost, the physical reliability of the simulator and the pursued target of the hazard analysis (type of PDCs considered, time-scale selected for the analysis, particular guidelines received from decision-making agencies, etc.). Although current numerical and statistical techniques have brought important advances in probabilistic volcanic hazard assessment from PDCs, some of them may be further applicable to more sophisticated simulators. In addition, forthcoming improvements could be focused on three main multidisciplinary directions: 1) Validate the simulators frequently used (through comparison with PDC deposits and other simulators), 2) Decrease

  11. Thermal Conductivity of Pyroclastic Soil ( Pozzolana) from the Environs of Rome

    Science.gov (United States)

    McCombie, M. L.; Tarnawski, V. R.; Bovesecchi, G.; Coppa, P.; Leong, W. H.

    2017-02-01

    The paper reveals the experimental procedure and thermo-physical characteristics of a coarse pyroclastic soil ( Pozzolana), from the neighborhoods of Rome, Italy. The tested samples are comprised of 70.7 % sand, 25.9 % silt, and 3.4 % clay. Their mineral composition contained 38 % pyroxene, 33 % analcime, 20 % leucite, 6 % illite/muscovite, 3 % magnetite, and no quartz content was noted. The effective thermal conductivity of minerals was assessed to be about 2.14 W{\\cdot } m^{-1}{\\cdot } K^{-1}. A transient thermal probe method was applied to measure the thermal conductivity (λ ) over a full range of the degree of saturation (Sr), at two porosities ( n) of 0.44 and 0.50, and at room temperature of about 25°C. The λ data obtained were consistent between tests and showed an increasing trend with increasing Sr and decreasing n. At full saturation (Sr=1), a nearly quintuple λ increase was observed with respect to full dryness (Sr=0). In general, the measured data closely followed the natural trend of λ versus Sr exhibited by published data at room temperature for other unsaturated soils and sands. The measured λ data had an average root-mean-squared error (RMSE) of 0.007 W{\\cdot } m^{-1}{\\cdot } K^{-1} and 0.008 W{\\cdot } m^{-1}{\\cdot } K^{-1} for n of 0.50 and 0.44, respectively, as well as an average relative standard deviation of the mean at the 95 % confidence level (RSDM_{0.95}) of 2.21 % and 2.72 % for n of 0.50 and 0.44, respectively.

  12. An Integrative Approach for Defining Plinian and Sub-Plinian Eruptive Scenarios at Andesitic Volcanoes: Event-Lithostratigraphy, Eruptive Parameters and Pyroclast Textural Variations of the Largest Late-Holocene Eruptions of Mt. Taranaki, New Zealand.

    Science.gov (United States)

    Torres-Orozco, R.; Cronin, S. J.; Damaschke, M.; Kosik, S.; Pardo, N.

    2016-12-01

    Three eruptive scenarios were determined based on the event-lithostratigraphic reconstruction of the largest late-Holocene eruptions of the andesitic Mt. Taranaki, New Zealand: a) sustained dome-effusion followed by sudden stepwise collapse and unroofing of gas-rich magma; b) repeated plug and burst events generated by transient open-/closed-vent conditions; and c) open-vent conditions of more mafic magmas erupting from a satellite vent. Pyroclastic density currents (PDCs) are the most frequent outcome in every scenario. They can be produced in any/every eruption phase by formation and either repetitive-partial or total gravity-driven collapse of lava domes in the summit crater (block-and-ash flows), frequently followed by sudden magma decompression and violent, highly unsteady to quasi-steady lateral expansion (blast-like PDCs); by collapse or single-pulse fall-back of unsteady eruption columns (pyroclastic flow- and surge-type currents); or during highly unsteady and explosive hydromagmatic phases (wet surges). Fall deposits are produced during the climatic phase of each eruptive scenario by the emplacement of (i) high, sustained and steady, (ii) sustained and height-oscillating, (iii) quasi-steady and pulsating, or (iv) unsteady and totally collapsing eruption columns. Volumes, column heights and mass- and volume-eruption rates indicate that these scenarios correspond to VEI 4-5 plinian and sub-plinian multi-phase and style-shifting episodes, similar or larger than the most recent 1655 AD activity, and comparable to plinian eruptions of e.g. Apoyeque, Colima, Merapi and Tarawera volcanoes. Whole-rock chemistry, textural reconstructions and density-porosity determinations suggest that the different eruptive scenarios are mainly driven by variations in the density structure of magma in the upper conduit. Assuming a simple single conduit model, the style transitions can be explained by differing proportions of alternating gas-poor/degassed and gas-rich magma.

  13. Numerical modeling of the early interaction of a planar shock with a dense particle field

    Science.gov (United States)

    Regele, Jonathan; Blanquart, Guillaume

    2011-11-01

    Dense compressible multiphase flows are of interest for multiphase turbomachinary and energetic material detonations. Still, there is little understanding of the detailed interaction mechanisms between shock waves and dense (particle volume fraction αd > 0 . 001) particle fields. A recent experimental study [Wagner et al, AIAA Aero. Sci., Orlando, 2011-188] has focused on the impingement of a planar shock wave on a dense particle curtain. In the present work, numerical solutions of the Euler equations in one and two dimensions are performed for a planar shock wave impinging on a fixed particle curtain and are compared to the experimental data for early times. Comparison of the one- and two-dimensional results demonstrate that the one-dimensional description captures the large scale flow behavior, but is inadequate to capture all the details observed in the experiments. The two-dimensional solutions are shown to reproduce the experimentally observed flow structures and provide insight into how these details originate.

  14. Flow-induced structuring of dense protein dispersions

    NARCIS (Netherlands)

    Manski, J.M.

    2007-01-01

    Both health and sustainability are drivers for the increased interest in the creation of novel foods comprising a high protein content. The key challenge is the formation of an attractive, stable and palatable food texture, which is mainly determined by the food structure. In this research, new proc

  15. Energy Flow in Dense Off-Equilibrium Plasma

    Science.gov (United States)

    2016-07-15

    visible and UV light. Opacity is determined using calibrated time-resolved spectroscopy (W/nm). Bataller et al. DISTRIBUTION A: Distribution...Spectrum as function of time Plasmas at 12,000-18,000 K emit visible and UV light. Opacity is determined using calibrated time-resolved...different systems that all produce plasmas with a similar thermodynamic state. Probing sonoluminescence with visible -wavelength lasers yielded

  16. Droplet evolution in expanding flow of warm dense matter

    CERN Document Server

    Armijo, Julien; 10.1103/PhysRevE.83.051507

    2011-01-01

    We propose a simple, self-consistent kinetic model for the evolution of a mixture of droplets and vapor expanding adiabatically in vacuum after rapid, almost isochoric heating. We study the evolution of the two-phase fluid at intermediate times between the molecular and the hydrodynamic scales, focusing on out-of-equilibrium and surface effects. We use the van der Waals equation of state as a test bed to implement our model and study the phenomenology of the upcoming second neutralized drift compression experiment (NDCX-II) at Lawrence Berkeley National Laboratory (LBNL) that uses ion beams for target heating.We find an approximate expression for the temperature difference between the droplets and the expanding gas and we check it with numerical calculations. The formula provides a useful criterion to distinguish the thermalized and nonthermalized regimes of expansion. In the thermalized case, the liquid fraction grows in a proportion that we estimate analytically, whereas, in case of too rapid expansion, a s...

  17. Dense granular flow rheology in turbulent bedload transport

    CERN Document Server

    Maurin, Raphael; Frey, Philippe

    2016-01-01

    The local granular rheology is investigated numerically in idealised turbulent bedload transport configurations. Using a coupled fluid-discrete element model, the stress tensor is computed as a function of the depth for a series of simulations varying the Shields number, the specific density and the particle diameter. The results are analyzed in the framework of the $\\mu(I)$ rheology and exhibit a collapse of both the shear to normal stress ratio and the solid volume fraction over a wide range of inertial numbers. The effect of the interstitial fluid on the granular rheology is shown to be negligible, supporting recent work suggesting the absence of a clear transition between the free-fall and the turbulent regime. In addition, the data collapse is observed up to unexpectedly high inertial numbers $I\\sim2$, challenging the existing conceptions and parametrization of the $\\mu(I)$ rheology. Focusing upon bedload transport modelling, the results are pragmatically analyzed in the $\\mu(I)$ framework in order to pr...

  18. Modeling the jet quenching in hot and dense QCD matter

    CERN Document Server

    Lokhtin, I P; Petrushanko, S V; Snigirev, A M; Arsene, I; Tywoniuk, K

    2009-01-01

    One of the important perturbative ("hard") probes of hot and dense QCD matter is the medium-induced energy loss of energetic partons, so called "jet quenching", which is predicted to be very different in cold nuclear matter and in QGP, and leads to a number of phenomena which are already seen in the RHIC data on the qualitative level. The inclusion of jet quenching and other important collective effects, such as radial and elliptic flows, in the existing Monte-Carlo models of relativistic heavy ion collisions is discussed. Some issues on the corresponding physical observables at RHIC and LHC energies obtained with HYDJET++ model are presented.

  19. Coupling lattice Boltzmann and molecular dynamics models for dense fluids

    Science.gov (United States)

    Dupuis, A.; Kotsalis, E. M.; Koumoutsakos, P.

    2007-04-01

    We propose a hybrid model, coupling lattice Boltzmann (LB) and molecular dynamics (MD) models, for the simulation of dense fluids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The MD and LB formulations communicate via the exchange of velocities and velocity gradients at the interface. We validate the present LB-MD model in simulations of two- and three-dimensional flows of liquid argon past and through a carbon nanotube. Comparisons with existing hybrid algorithms and with reference MD solutions demonstrate the validity of the present approach.

  20. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  1. Dense Cloud Formation and Star Formation in a Barred Galaxy

    CERN Document Server

    Nimori, M; Sorai, K; Watanabe, Y; Hirota, A; Namekata, D

    2012-01-01

    We investigate the properties of massive, dense clouds formed in a barred galaxy and their possible relation to star formation, performing a two-dimensional hydrodynamical simulation with the gravitational potential obtained from the 2Mass data from the barred spiral galaxy, M83. Since the environment for cloud formation and evolution in the bar region is expected to be different from that in the spiral arm region, barred galaxies are a good target to study the environmental effects on cloud formation and the subsequent star formation. Our simulation uses for an initial 80 Myr an isothermal flow of non-self gravitating gas in the barred potential, then including radiative cooling, heating and self-gravitation of the gas for the next 40 Myr, during which dense clumps are formed. We identify many cold, dense gas clumps for which the mass is more than $10^4M_{\\odot}$ (a value corresponding to the molecular clouds) and study the physical properties of these clumps. The relation of the velocity dispersion of the i...

  2. Model studies of dense water overflows in the Faroese Channels

    Science.gov (United States)

    Cuthbertson, Alan; Davies, Peter; Stashchuk, Nataliya; Vlasenko, Vasiliy

    2014-01-01

    The overflow of dense water from the Nordic Seas through the Faroese Channel system was investigated through combined laboratory experiments and numerical simulations using the Massachusetts Institute of Technology General Circulation Model. In the experimental study, a scaled, topographic representation of the Faroe-Shetland Channel, Wyville-Thomson Basin and Ridge and Faroe Bank Channel seabed bathymetry was constructed and mounted in a rotating tank. A series of parametric experiments was conducted using dye-tracing and drogue-tracking techniques to investigate deep-water overflow pathways and circulation patterns within the modelled region. In addition, the structure of the outflowing dense bottom water was investigated through density profiling along three cross-channel transects located in the Wyville-Thomson Basin and the converging, up-sloping approach to the Faroe Bank Channel. Results from the dye-tracing studies demonstrate a range of parametric conditions under which dense water overflow across the Wyville-Thomson Ridge is shown to occur, as defined by the Burger number, a non-dimensional length ratio and a dimensionless dense water volume flux parameter specified at the Faroe-Shetland Channel inlet boundary. Drogue-tracking measurements reveal the complex nature of flow paths and circulations generated in the modelled topography, particularly the development of a large anti-cyclonic gyre in the Wyville-Thompson Basin and up-sloping approach to the Faroe Bank Channel, which diverts the dense water outflow from the Faroese shelf towards the Wyville-Thomson Ridge, potentially promoting dense water spillage across the ridge itself. The presence of this circulation is also indicated by associated undulations in density isopycnals across the Wyville-Thomson Basin. Numerical simulations of parametric test cases for the main outflow pathways and density structure in a similarly-scaled Faroese Channels model domain indicate excellent qualitative agreement with

  3. Plastic Models Designed to Produce Large Height-to-Length Ratio Steady-State Planar and Axisymmetric (Radial) Viscous Liquid Laminar Flow Gravity Currents

    Science.gov (United States)

    Blanck, Harvey F.

    2012-01-01

    Naturally occurring gravity currents include events such as air flowing through an open front door, a volcanic eruption's pyroclastic flow down a mountainside, and the spread of the Bhopal disaster's methyl isocyanate gas. Gravity currents typically have a small height-to-distance ratio. Plastic models were designed and constructed with a…

  4. Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: In situ trace element data of glass shards and mineral chemical constraints

    Science.gov (United States)

    Harangi, Szabolcs; Mason, Paul R. D.; Lukács, Réka

    2005-05-01

    The Neogene volcanism of the Carpathian-Pannonian Region, Eastern-Central Europe started with repeated explosive eruption of silicic magmas. Volcanic products consist mostly of non-welded and partially to densely welded ignimbrites, which cover large areas in the Pannonian Basin. Since this volcanism occurred during a long time interval, from 21 Ma to 13.5 Ma ago, these pyroclastic deposits have great stratigraphic importance, as well as providing valuable information about petrogenetic processes during the formation of the back-arc basin area. In this study, we used in situ trace element data of glasses (glass shards, pumice and fiamme glass) determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), combined with microprobe geochemical data of the main mineral phases (plagioclase, biotite), to correlate the scattered outcrops of the ignimbrite units. Based on these data, we distinguished four ignimbrite units in the Bükkalja Volcanic Field, Northern Pannonian Basin. Each of these units is characterized by specific geochemical fingerprints. Thorium, Nb, Y and the rare earth elements are the most effective discriminator elements in glasses. The modal composition of mineral phases (occurrence or lack of certain minerals) and chemistry of plagioclases and biotites are also good correlation tools, especially the Fe, Mg and Ti contents of biotites. We suggest that these correlation criteria, particularly the grain-specific LA-ICP-MS data, could be effectively used also in other ignimbrite fields and in wider tephrochronological studies. The in situ trace element composition of glasses, representing the liquid part of the erupted magma, can be also used to constrain the petrogenesis of the rhyolitic magmas. Trace element ratios such as La/Nb, La/Y and Th/Nb suggest the importance of minor (e.g., hornblende and ilmenite) and accessory (e.g., zircon, allanite) minerals controlling the composition of the erupted melt. Rhyolitic magmas probably

  5. Kinetic chemistry of dense interstellar clouds

    Energy Technology Data Exchange (ETDEWEB)

    Graedel, T.E.; Langer, W.D.; Frerking, M.A.

    1982-03-01

    A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded.

  6. Field-trip guide for exploring pyroclastic density current deposits from the May 18, 1980, eruption of Mount St. Helens, Washington

    Science.gov (United States)

    Brand, Brittany D.; Pollock, Nicholas; Sarocchi, Damiano; Dufek, Josef; Clynne, Michael A.

    2017-07-05

    Pyroclastic density currents (PDCs) are one of the most dangerous phenomena associated with explosive volcanism. To help constrain damage potential, a combination of field studies, laboratory experiments, and numerical modeling are used to establish conditions that influence PDC dynamics and depositional processes, including runout distance. The objective of this field trip is to explore field relations that may constrain PDCs at the time of emplacement.The PDC deposits from the May 18, 1980, eruption of Mount St. Helens are well exposed along the steep flanks (10–30° slopes) and across the pumice plain (5–12° slopes) as far as 8 km north of the volcano. The pumice plain deposits represent deposition from a series of concentrated PDCs and are primarily thick (3–12 m), massive, and poorly sorted. In contrast, the steep east-flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes.The PDCs that descended the west flank were largely nondepositional; they maintained a higher flow energy and carrying capacity than PDCs funneled through the main breach, as evidenced by the higher concentration of large blocks in their deposits. The PDC from the west flank collided with PDCs funneled through the breach at various points along the pumice plain. Evidence for flow collision will be explored and debated throughout the field trip.Evidence for substrate erosion and entrainment is found (1) along the steep eastern flank of the volcano, which has a higher degree of rough, irregular topography relative to the west flanks where PDCs were likely nonerosive, (2) where PDCs encountered debris-avalanche hummocks across the pumice plain, and (3) where PDCs eroded and entrained material deposited by PDCs produced during earlier phases of the eruption. Two features interpreted as large-scale (tens of meters wide) levees and a large (~200 m wide) channel scour-and-fill feature

  7. A Study of the Correlation Between Electrical Resistivity and Matric Suction for Unsaturated Ash-Fall Pyroclastic Soils in the Campania Region (Southern Italy)

    CERN Document Server

    De Vita, Pantaleone; Piegari, Ester

    2011-01-01

    In the territory of the Campania region (southern Italy), critical rainfall events periodically trigger dangerous fast slope movements involving ashy and pyroclastic soils originated by the explosive phases of the Mt. Somma-Vesuvius volcano and deposited along the surrounding mountain ranges. In this paper, an integration of engineering-geological and geophysical measurements is presented to characterize unsaturated pyroclastic samples collected in a test area on the Sarno Mountains (Salerno and Avellino provinces, Campania region). The laboratory analyses were aimed at defining both soil water retention and electrical resistivity curves versus water content. From the matching of the experimental data, a direct relationship between electrical resistivity and matric suction is retrieved for the investigated soil horizons typical of a ash-fall pyroclastic succession. The obtained relation turns out to be helpful in characterizing soils up to close saturation, which is a critical condition for the trigger of slo...

  8. The Effects of Vent Location, Event Scale, and Time Forecasts on Pyroclastic Density Current Hazard Maps at Campi Flegrei Caldera (Italy

    Directory of Open Access Journals (Sweden)

    Andrea Bevilacqua

    2017-09-01

    Full Text Available This study presents a new method for producing long-term hazard maps for pyroclastic density currents (PDC originating at Campi Flegrei caldera. Such method is based on a doubly stochastic approach and is able to combine the uncertainty assessments on the spatial location of the volcanic vent, the size of the flow and the expected time of such an event. The results are obtained by using a Monte Carlo approach and adopting a simplified invasion model based on the box model integral approximation. Temporal assessments are modeled through a Cox-type process including self-excitement effects, based on the eruptive record of the last 15 kyr. Mean and percentile maps of PDC invasion probability are produced, exploring their sensitivity to some sources of uncertainty and to the effects of the dependence between PDC scales and the caldera sector where they originated. Conditional maps representative of PDC originating inside limited zones of the caldera, or of PDC with a limited range of scales are also produced. Finally, the effect of assuming different time windows for the hazard estimates is explored, also including the potential occurrence of a sequence of multiple events. Assuming that the last eruption of Monte Nuovo (A.D. 1538 marked the beginning of a new epoch of activity similar to the previous ones, results of the statistical analysis indicate a mean probability of PDC invasion above 5% in the next 50 years on almost the entire caldera (with a probability peak of ~25% in the central part of the caldera. In contrast, probability values reduce by a factor of about 3 if the entire eruptive record is considered over the last 15 kyr, i.e., including both eruptive epochs and quiescent periods.

  9. The architecture and shallow conduits of Laki-type pyroclastic cones: insights into a basaltic fissure eruption

    Science.gov (United States)

    Reynolds, P.; Brown, R. J.; Thordarson, T.; Llewellin, E. W.

    2016-05-01

    Pyroclastic cones built along basaltic fissures provide important volcanological information, but it is often difficult to examine the early-erupted products due to burial by later products. Furthermore, it is rare to see the link between the feeder dyke and overlying cone fully exposed. In this study, we detail the architecture of a hybrid spatter cone, scoria half-cone and feeder dyke that has been dissected to below the pre-eruption surface by glacial floods. The cones were constructed during the 6-8 ka Rauðuborgir-Kvensöðul fissure eruption in North Iceland during Hawaiian- and Strombolian-style activities. Widening of their feeder dyke in the shallow sub-surface to produce an upward flaring morphology was accommodated by country rock removal and elastic host rock deformation. Ballistic calculations and stratigraphic relationships indicate that the scoria half-cone was constructed early in the eruption from the deposits of a lava fountain ~100 m high. A decline in fountain height and the generation of abundant welded deposits resulted in the formation of a nested spatter cone within the scoria half-cone. The cones are similar in structure and size to the hybrid scoria and spatter cones produced during the 15-km3 1783 Laki eruption and serve as a valuable window into the construction of pyroclastic edifices during basaltic fissure eruptions.

  10. Asbestiform tremolite within the Holocene late pyroclastic deposits of Colli Albani volcano (Latium, Italy): Occurrence and crystal-chemistry

    CERN Document Server

    Della Ventura, Giancarlo; Bellatreccia, Fabio; De Benedetti, Arnaldo A; Mottana, Annibale

    2013-01-01

    This work relates the occurrence and the characterization of fibrous tremolite within the latest pyroclastic deposits of the Colli Albani (Alban Hills) volcano, to the south-east of Rome (Italy). These mineralizations were observed during a systematic rock-sampling undertaken to complete the geological survey for the new 1:50 000 map of this volcanic area. The examined specimens were collected inside distal deposits correlated to the last Albano Maar activity, which are geographically located within the boundaries of the Nemi community. Tremolite occurs within both carbonate ejecta and the host pyroclastic rocks. It shows up as whitish to light gray coloured aggregates of crystals with fibrous aspect and sericeous brightness. Due to the extremely small crystal dimensions, never exceeding 0.5 micron in diameter, the micro-chemical composition of the fibres could be obtained only by combining P-XRD, SEM-EDX and FTIR methods. Infrared spectroscopy, in particular, proved to be a valuable technique to characterize...

  11. Large-eddy simulation of dense gas dispersion over a simplified urban area

    Science.gov (United States)

    Wingstedt, E. M. M.; Osnes, A. N.; Åkervik, E.; Eriksson, D.; Reif, B. A. Pettersson

    2017-03-01

    Dispersion of neutral and dense gas over a simplified urban area, comprising four cubes, has been investigated by the means of large-eddy simulations (LES). The results have been compared to wind tunnel experiments and both mean and fluctuating quantities of velocity and concentration are in very good agreement. High-quality inflow profiles are necessary to achieve physically realistic LES results. In this study, profiles matching the atmospheric boundary layer flow in the wind tunnel, are generated by means of a separate precursor simulation. Emission of dense gas dramatically alters the flow in the near source region and introduces an upstream dispersion. The resulting dispersion patterns of neutral and dense gas differ significantly, where the plume in the latter case is wider and shallower. The dense gas is highly affected by the cube array, which seems to act as a barrier, effectively deflecting the plume. This leads to higher concentrations outside of the array than inside. On the contrary, the neutral gas plume has a Gaussian-type shape, with highest concentrations along the centreline. It is found that the dense gas reduces the vertical and spanwise turbulent momentum transport and, as a consequence, the turbulence kinetic energy. The reduction coincides with the area where the gradient Richardson number exceeds its critical value, i.e. where the flow may be characterized as stably stratified. Interestingly, this region does not correspond to where the concentration of dense gas is the highest (close to the ground), as this is also where the largest velocity gradients are to be found. Instead there is a layer in the middle of the dense gas cloud where buoyancy is dynamically dominant.

  12. Injection of photoelectrons into dense argon gas

    CERN Document Server

    Borghesani, A F

    2010-01-01

    The injection of photoelectrons in a gaseous or liquid sample is a widespread technique to produce a cold plasma in a weakly--ionized system in order to study the transport properties of electrons in a dense gas or liquid. We report here the experimental results of photoelectron injection into dense argon gas at the temperatureT=142.6 K as a function of the externally applied electric field and gas density. We show that the experimental data can be interpreted in terms of the so called Young-Bradbury model only if multiple scattering effects due to the dense environment are taken into account when computing the scattering properties and the energetics of the electrons.

  13. Comparison of high-resolution P- and SH-wave reflection seismic data in alluvial and pyroclastic deposits in Indonesia

    Science.gov (United States)

    Wiyono, Wiyono; Polom, Ulrich; Krawczyk, Charlotte M.

    2013-04-01

    Seismic reflection is one of the stable methods to investigate subsurface conditions. However, there are still many unresolved issues, especially for areas with specific and complex geological environments. Here, each location has an own characteristic due to material compounds and the geological structure. We acquired high-resolution, P-and SH-wave seismic reflection profiles at two different locations in Indonesia. The first location was in Semarang (Central Java) and the second one was in Tiris (East Java). The first region is located on an alluvial plain with thick alluvial deposits of more than 100 m estimated thickness, and the second location was located on pyroclastic deposit material. The seismic measurements for both locations were carried out using a 48-channel recording system (14-Hz P-wave, 10-Hz SH-wave geophones) with geophone intervals of 5 m (P-waves) and 1 m (SH-waves), respectively. The seismic source for the P-wave was a ca. 4 kg sledge hammer which generated a seismic signal by by hitting on an aluminum plate of 30x30 cm, whereas the SH-wave source was a mini-vibrator ELVIS (Electrodynamic Vibrator System), version 3. Thirteen seismic profiles at Semarang and eighth profiles at Tiris were acquired. The results of seismic data in Semarang show fair to good seismic records for both P-and SH-waves. The raw data contain high signal-to-noise-ratio. Many clear reflectors can be detected. The P-wave data shows reflectors down to 250 ms two-way time while the SH-wave records show seismic events up to 600 ms two-way time. This result is in strong contrast to the seismic data result from the Tiris region. The P-wave data show very low signal to noise ratio, there is no reflection signal visible, only the surface waves and the ambient noise from the surrounding area are visible. The SH-waves give a fair to good result which enables reflector detection down to 300 ms two-way time. The results from the two seismic campaigns show that SH-wave reflection

  14. Neutrophils drive accelerated tumor progression in the collagen-dense mammary tumor microenvironment.

    Science.gov (United States)

    García-Mendoza, María G; Inman, David R; Ponik, Suzanne M; Jeffery, Justin J; Sheerar, Dagna S; Van Doorn, Rachel R; Keely, Patricia J

    2016-05-11

    High mammographic density has been correlated with a 4-fold to 6-fold increased risk of developing breast cancer, and is associated with increased stromal deposition of extracellular matrix proteins, including collagen I. The molecular and cellular mechanisms responsible for high breast tissue density are not completely understood. We previously described accelerated tumor formation and metastases in a transgenic mouse model of collagen-dense mammary tumors (type I collagen-α1 (Col1α1)(tm1Jae) and mouse mammary tumor virus - polyoma virus middle T antigen (MMTV-PyVT)) compared to wild-type mice. Using ELISA cytokine arrays and multi-color flow cytometry analysis, we studied cytokine signals and the non-malignant, immune cells in the collagen-dense tumor microenvironment that may promote accelerated tumor progression and metastasis. Collagen-dense tumors did not show any alteration in immune cell populations at late stages. The cytokine signals in the mammary tumor microenvironment were clearly different between wild-type and collagen-dense tumors. Cytokines associated with neutrophil signaling, such as granulocyte monocyte-colony stimulated factor (GM-CSF), were increased in collagen-dense tumors. Depleting neutrophils with anti-Ly6G (1A8) significantly reduced the number of tumors, and blocked metastasis in over 80 % of mice with collagen-dense tumors, but did not impact tumor growth or metastasis in wild-type mice. Our study suggests that tumor progression in a collagen-dense microenvironment is mechanistically different, with pro-tumor neutrophils, compared to a non-dense microenvironment.

  15. Pyroclastic density currents associated with the 2008-2009 eruption of Chaitén Volcano (Chile): forest disturbances, deposits, and dynamics

    Science.gov (United States)

    Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Moreno, Hugo

    2013-01-01

    Explosive activity at Chaitén Volcano in May 2008 and subsequent dome collapses over the following nine months triggered multiple, small-volume pyroclastic density currents (PDCs). The explosive activity triggered PDCs to the north and northeast, which felled modest patches of forest as far as 2 km from the caldera rim. Felled trees pointing in the down-current direction dominate the disturbance zones. The PDC on the north flank of Chaitén left a decimeters-thick, bipartite deposit having a basal layer of poorly sorted, fines-depleted pumice-and-lithic coarse ash and lapilli, which transitions abruptly to fines-enriched pumice-and-lithic coarse ash. The deposit contains fragments of mostly uncharred organics near its base; vegetation protruding above the deposit is uncharred. The nature of the forest disturbance and deposit characteristics suggest the PDC was dilute, of relatively low temperature (-1. It was formed by directionally focused explosions throughout the volcano's prehistoric, intracaldera lava dome. Dilute, low-temperature PDCs that exited the caldera over a low point on the east-southeast caldera rim deposited meters-thick fill of stratified beds of pumice-and-lithic coarse ash and lapilli. They did not fell large trees more than a few hundred of meters from the caldera rim and were thus less energetic than those on the north and northeast flanks. They likely formed by partial collapses of the margins of vertical eruption columns. In the Chaitén River valley south of the volcano, several-meter-thick deposits of two block-and-ash flow (BAF) PDCs are preserved. Both have a coarse ash matrix that supports blocks and lapilli predominantly of lithic rhyolite dome rock, minor obsidian, and local bedrock. One deposit was emplaced by a BAF that traveled an undetermined distance downvalley between June and November 2008, apparently triggered by partial collapse of a newly effused lava dome on that started growing on 12 May. A second, and larger, BAF related

  16. Dense matter at RAON: Challenges and possibilities

    Science.gov (United States)

    Lee, Yujeong; Lee, Chang-Hwan; Gaitanos, T.; Kim, Youngman

    2016-11-01

    Dense nuclear matter is ubiquitous in modern nuclear physics because it is related to many interesting microscopic and macroscopic phenomena such as heavy ion collisions, nuclear structure, and neutron stars. The on-going rare isotope science project in Korea will build up a rare isotope accelerator complex called RAON. One of the main goals of RAON is to investigate rare isotope physics including dense nuclear matter. Using the relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) transport code, we estimate the properties of nuclear matter that can be created from low-energy heavyion collisions at RAON.We give predictions for the maximum baryon density, the isospin asymmetry and the temperature of nuclear matter that would be formed during 197Au+197Au and 132Sn+64Ni reactions. With a large isospin asymmetry, various theoretical studies indicate that the critical densities or temperatures of phase transitions to exotic states decrease. Because a large isospin asymmetry is expected in the dense matter created at RAON, we discuss possibilities of observing exotic states of dense nuclear matter at RAON for large isospin asymmetry.

  17. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  18. Denseness of Numerical Radius Attaining Holomorphic Functions

    Directory of Open Access Journals (Sweden)

    Lee HanJu

    2009-01-01

    Full Text Available We study the density of numerical radius attaining holomorphic functions on certain Banach spaces using the Lindenstrauss method. In particular, it is shown that if a complex Banach space is locally uniformly convex, then the set of all numerical attaining elements of is dense in .

  19. Denseness of Numerical Radius Attaining Holomorphic Functions

    Directory of Open Access Journals (Sweden)

    Han Ju Lee

    2009-01-01

    Full Text Available We study the density of numerical radius attaining holomorphic functions on certain Banach spaces using the Lindenstrauss method. In particular, it is shown that if a complex Banach space X is locally uniformly convex, then the set of all numerical attaining elements of A(BX:X is dense in A(BX:X.

  20. Coalescence preference in dense packing of bubbles

    Science.gov (United States)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  1. APT: Action localization Proposals from dense Trajectories

    NARCIS (Netherlands)

    van Gemert, J.C.; Jain, M.; Gati, E.; Snoek, C.G.M.; Xie, X.; Jones, M.W.; Tam, G.K.L.

    2015-01-01

    This paper is on action localization in video with the aid of spatio-temporal proposals. To alleviate the computational expensive video segmentation step of existing proposals, we propose bypassing the segmentations completely by generating proposals directly from the dense trajectories used to repr

  2. Dense ceramic membranes for methane conversion

    NARCIS (Netherlands)

    Bouwmeester, Henny J.M.

    2003-01-01

    Dense ceramic membranes made from mixed oxygen-ionic and electronic conducting perovskite-related oxides allow separation of oxygen from an air supply at elevated temperatures (>700 °C). By combining air separation and catalytic partial oxidation of methane to syngas into a ceramic membrane reactor,

  3. Improvements in accuracy of dense OPC models

    Science.gov (United States)

    Kallingal, Chidam; Oberschmidt, James; Viswanathan, Ramya; Abdo, Amr; Park, OSeo

    2008-10-01

    Performing model-based optical proximity correction (MBOPC) on layouts has become an integral part of patterning advanced integrated circuits. Earlier technologies used sparse OPC, the run times of which explode when the density of layouts increases. With the move to 45 nm technology node, this increase in run time has resulted in a shift to dense simulation OPC, which is pixel-based. The dense approach becomes more efficient at 45nm technology node and beyond. New OPC model forms can be used with the dense simulation OPC engine, providing the greater accuracy required by smaller technology nodes. Parameters in the optical model have to be optimized to achieve the required accuracy. Dense OPC uses a resist model with a different set of parameters than sparse OPC. The default search ranges used in the optimization of these resist parameters do not always result in the best accuracy. However, it is possible to improve the accuracy of the resist models by understanding the restrictions placed on the search ranges of the physical parameters during optimization. This paper will present results showing the correlation between accuracy of the models and some of these optical and resist parameters. The results will show that better optimization can improve the model fitness of features in both the calibration and verification set.

  4. Building a dense surface map incrementally from semi-dense point cloud and RGB images

    Institute of Scientific and Technical Information of China (English)

    Qian-shan LI; Rong XIONG; Shoudong HUANG; Yi-ming HUANG

    2015-01-01

    Building and using maps is a fundamental issue for bionic robots in fi eld applications. A dense surface map, which offers rich visual and geometric information, is an ideal representation of the environment for indoor/outdoor localization, navigation, and recognition tasks of these robots. Since most bionic robots can use only small light-weight laser scanners and cameras to acquire semi-dense point cloud and RGB images, we propose a method to generate a consistent and dense surface map from this kind of semi-dense point cloud and RGB images. The method contains two main steps: (1) generate a dense surface for every single scan of point cloud and its corresponding image(s) and (2) incrementally fuse the dense surface of a new scan into the whole map. In step (1) edge-aware resampling is realized by segmenting the scan of a point cloud in advance and resampling each sub-cloud separately. Noise within the scan is reduced and a dense surface is generated. In step (2) the average surface is estimated probabilistically and the non-coincidence of different scans is eliminated. Experiments demonstrate that our method works well in both indoor and outdoor semi-structured environments where there are regularly shaped ob jects.

  5. Direct observation of dynamic shear jamming in dense suspensions

    Science.gov (United States)

    Peters, Ivo R.; Majumdar, Sayantan; Jaeger, Heinrich M.

    2016-04-01

    Liquid-like at rest, dense suspensions of hard particles can undergo striking transformations in behaviour when agitated or sheared. These phenomena include solidification during rapid impact, as well as strong shear thickening characterized by discontinuous, orders-of-magnitude increases in suspension viscosity. Much of this highly non-Newtonian behaviour has recently been interpreted within the framework of a jamming transition. However, although jamming indeed induces solid-like rigidity, even a strongly shear-thickened state still flows and thus cannot be fully jammed. Furthermore, although suspensions are incompressible, the onset of rigidity in the standard jamming scenario requires an increase in particle density. Finally, whereas shear thickening occurs in the steady state, impact-induced solidification is transient. As a result, it has remained unclear how these dense suspension phenomena are related and how they are connected to jamming. Here we resolve this by systematically exploring both the steady-state and transient regimes with the same experimental system. We demonstrate that a fully jammed, solid-like state can be reached without compression and instead purely with shear, as recently proposed for dry granular systems. This state is created by transient shear-jamming fronts, which we track directly. We also show that shear stress, rather than shear rate, is the key control parameter. From these findings we map out a state diagram with particle density and shear stress as variables. We identify discontinuous shear thickening with a marginally jammed regime just below the onset of full, solid-like jamming. This state diagram provides a unifying framework, compatible with prior experimental and simulation results on dense suspensions, that connects steady-state and transient behaviour in terms of a dynamic shear-jamming process.

  6. Generation of dense statistical connectomes from sparse morphological data

    Directory of Open Access Journals (Sweden)

    Robert eEgger

    2014-11-01

    Full Text Available Sensory-evoked signal flow, at cellular and network levels, is primarily determined by the synaptic wiring of the underlying neuronal circuitry. Measurements of synaptic innervation, connection probabilities and subcellular organization of synaptic inputs are thus among the most active fields of research in contemporary neuroscience. Methods to measure these quantities range from electrophysiological recordings over reconstructions of dendrite-axon overlap at light-microscopic levels to dense circuit reconstructions of small volumes at electron-microscopic resolution. However, quantitative and complete measurements at subcellular resolution and mesoscopic scales to obtain all local and long-range synaptic in/outputs for any neuron within an entire brain region are beyond present methodological limits. Here, we present a novel concept, implemented within an interactive software environment called NeuroNet, which allows (i integration of sparsely sampled (subcellular morphological data into an accurate anatomical reference frame of the brain region(s of interest, (ii up-scaling to generate an average dense model of the neuronal circuitry within the respective brain region(s and (iii statistical measurements of synaptic innervation between all neurons within the model. We illustrate our approach by generating a dense average model of the entire rat vibrissal cortex, providing the required anatomical data, and illustrate how to measure synaptic innervation statistically. Comparing our results with data from paired recordings in vitro and in vivo, as well as with reconstructions of synaptic contact sites at light- and electron-microscopic levels, we find that our in silico measurements are in line with previous results.

  7. The fractal nature of fragment size distributions of pyroclastic fall deposits from Cretaio eruption, Ischia Island (Italy)

    Science.gov (United States)

    Paredes Marino, Joali; Morgavi, Daniele; Di Vito, Mauro; de Vita, Sandro; Sansivero, Fabio; Perugini, Diego

    2016-04-01

    The principles of fractal theory have had a strong influence on the understanding of many geological processes. Combining laboratory experiments on natural deposits generated by explosive volcanic eruptions along with statistical fractal analysis allows us to characterize precisely pyroclastic deposits and opens the possibility for substantial advances in the quantification of fragmentation processes during explosive volcanic events. A set of samples from the Cretaio eruption (1.86 Ka B.P.) was analyzed using fractal geometry to characterize the particle size distribution (PSD) of pyroclastic fragments erupted during its fallout phase. PSD analyses were performed on ten samples corresponding to ten different explosive episodes during the eruption. Samples were divided in juvenile fraction, (JV) and lithic fraction, (LC). Each fraction was analyzed separately. The results for the investigated size range (3mm to 300μm) showed that the fragmentation process is well characterized by a fractal distribution, exhibiting a multi-fractal behavior, explained by different and sequential processes of fragmentation. Frequency-size distribution of JV and LC fractions exhibit opposite behavior: for JV-fraction smaller particles (<1mm) shows a higher dimension of fragmentation relative to the bigger particles, a feature that can be related to a secondary process of fragmentation; the opposite behavior is observed for the LC fraction (smallest dimensions of fragmentation correspond to the smaller particle sizes). These differences can be explained by the different rheology of the fragmented materials and/or the occurrence of different fragmentation processes. These results highlight the importance of fractal statistics as a tool for addressing volcanic risk based on the analyses of natural grain size distributions and allow discriminating different fragmentation processes occurring inside the conduit during the volcanic explosions. Keywords: volcanic fragmentation; juvenile

  8. Characterizing dense suspensions: two case studies from the pharmaceutical industry

    Science.gov (United States)

    Goldfarb, David J.; Khawaja, Nazia; Kazakevich, Irina; Bhattacharjee, Himanshu; Heslinga, Michael; Dalton, Chad

    2015-11-01

    Liquid suspensions of Active Pharmaceutical Ingredient powders are present as pharmaceutical dosage forms in the form of oral suspensions and injectables. We present two case studies, both dense (~ 30-40%) suspensions, in which the physical characterization of the product, specifically, particle size & shape and rheology were key to understanding the key product attributes as pertaining to the manufacturing process and to patient administration. For the one case study, an oral suspension, identifying variations in particle morphology during the wet milling of the product was key to the product understanding necessary to modify the milling process. Rheological measurements were applied as well. For the second case study, an injectable, results from different particle size measurement techniques and rheological measurements indicated the possibility of flocculation in a formulation. Additionally, measurements were obtained to assess the ``injectability'' of the product via rheometer and texture analyzer measurements and Poiseuille flow modeling. As a result, the relevant shear rate regime for this drug product administration was identified.

  9. Dynamic shear jamming in dense granular suspensions under extension

    Science.gov (United States)

    Majumdar, Sayantan; Peters, Ivo R.; Han, Endao; Jaeger, Heinrich M.

    2017-01-01

    Unlike dry granular materials, a dense granular suspension like cornstarch in water can strongly resist extensional flows. At low extension rates, such a suspension behaves like a viscous fluid, but rapid extension results in a response where stresses far exceed the predictions of lubrication hydrodynamics and capillarity. To understand this remarkable mechanical response, we experimentally measure the normal force imparted by a large bulk of the suspension on a plate moving vertically upward at a controlled velocity. We observe that, above a velocity threshold, the peak force increases by orders of magnitude. Using fast ultrasound imaging we map out the local velocity profiles inside the suspension, which reveal the formation of a growing jammed region under rapid extension. This region interacts with the rigid boundaries of the container through strong velocity gradients, suggesting a direct connection to the recently proposed shear-jamming mechanism.

  10. Microchannel cross load array with dense parallel input

    Science.gov (United States)

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  11. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2016-12-10

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.

  12. Consequences of the Solar System passage through dense interstellar clouds

    Directory of Open Access Journals (Sweden)

    A. G. Yeghikyan

    Full Text Available Several consequences of the passage of the solar system through dense interstellar molecular clouds are discussed. These clouds, dense (more than 100 cm-3, cold (10–50 K and extended (larger than 1 pc, are characterized by a gas-to-dust mass ratio of about 100, by a specific power grain size spectrum (grain radii usually cover the range 0.001–3 micron and by an average dust-to-gas number density ratio of about 10-12. Frequently these clouds contain small-scale (10–100 AU condensations with gas concentrations ranging up to 10 5 cm-3. At their casual passage over the solar system they exert pressures very much enhanced with respect to today’s standards. Under these conditions it will occur that the Earth is exposed directly to the interstellar flow. It is shown first that even close to the Sun, at 1 AU, the cloud’s matter is only partly ionized and should mainly interact with the solar wind by charge exchange processes. Dust particles of the cloud serve as a source of neutrals, generated by the solar UV irradiation of dust grains, causing the evaporation of icy materials. The release of neutral atoms from dust grains is then followed by strong influences on the solar wind plasma flow. The behavior of the neutral gas inflow parameters is investigated by a 2-D hydrodynamic approach to model the interaction processes. Because of a reduction of the heliospheric dimension down to 1 AU, direct influence of the cloud’s matter to the terrestrial environment and atmosphere could be envisaged.

    Key words. Interplanetary physics (heliopause and solar wind termination; interplanetary dust; interstellar gas

  13. Colloquium: Nonlinear Collective Interactions in Dense Plasmas

    CERN Document Server

    Shukla, P K

    2010-01-01

    The current understanding of some important collective processes in dense quantum plasmas is presented. After reviewing the basic properties of dense quantum plasmas with degenerate electrons, we present model equations (e.g. the quantum hydrodynamic and effective nonlinear Schr\\"odinger-Poisson equations) that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wave functions that result in a nonlinear quantum electron pressure and tunneling/diffusion of electrons through a nonlinear quantum Bohm potential. Since degenerate electrons have $1/2-$spin due to their Fermionic nature, there also appear a spin electron current and a spin force acting on the electrons due to the Bohr magnetization. The present nonlinear equations do not include strong electron correlations and electron-exchange interactions. The quantum effects caused by the electron degeneracy produce n...

  14. Active fluidization in dense glassy systems.

    Science.gov (United States)

    Mandal, Rituparno; Bhuyan, Pranab Jyoti; Rao, Madan; Dasgupta, Chandan

    2016-07-20

    Dense soft glasses show strong collective caging behavior at sufficiently low temperatures. Using molecular dynamics simulations of a model glass former, we show that the incorporation of activity or self-propulsion, f0, can induce cage breaking and fluidization, resulting in the disappearance of the glassy phase beyond a critical f0. The diffusion coefficient crosses over from being strongly to weakly temperature dependent as f0 is increased. In addition, we demonstrate that activity induces a crossover from a fragile to a strong glass and a tendency of active particles to cluster. Our results are of direct relevance to the collective dynamics of dense active colloidal glasses and to recent experiments on tagged particle diffusion in living cells.

  15. Strategies for Dense Optical CDMA Communication Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-bao; LIN Jin-tong

    2005-01-01

    In this paper,we have formulated a strategy that the limited available code sequences in pure Direct-Sequence(DS)or Frequency-Hopping(FH)system can be reused to realize dense optical CDMA:the strategy of novel hybrid DS/FH system.In which,the case that there are n users employing the same FH pattern but different DS code patterns is considered.On the condition that the impact of channel noises is neglected,the upper bound probability of error is evaluated based on the stationary random process theory.The results show that the hybrid system is suitable for Dense Optical CDMA(DOCDMA)communication.Moreover,the problems such as the link-impairment,dispersion of group velocity,etc.in the pure(DS or FH)system can be solved effectively.

  16. The kinetic chemistry of dense interstellar clouds

    Science.gov (United States)

    Graedel, T. E.; Langer, W. D.; Frerking, M. A.

    1982-01-01

    A model of the time-dependent chemistry of dense interstellar clouds is formulated to study the dominant chemical processes in carbon and oxygen isotope fractionation, the formation of nitrogen-containing molecules, and the evolution of product molecules as a function of cloud density and temperature. The abundances of the dominant isotopes of the carbon- and oxygen-bearing molecules are calculated. The chemical abundances are found to be quite sensitive to electron concentration since the electron concentration determines the ratio of H3(+) to He(+), and the electron density is strongly influenced by the metals abundance. For typical metal abundances and for H2 cloud density not less than 10,000 molecules/cu cm, nearly all carbon exists as CO at late cloud ages. At high cloud density, many aspects of the chemistry are strongly time dependent. Finally, model calculations agree well with abundances deduced from observations of molecular line emission in cold dense clouds.

  17. Topological Surface States in Dense Solid Hydrogen.

    Science.gov (United States)

    Naumov, Ivan I; Hemley, Russell J

    2016-11-11

    Metallization of dense hydrogen and associated possible high-temperature superconductivity represents one of the key problems of physics. Recent theoretical studies indicate that before becoming a good metal, compressed solid hydrogen passes through a semimetallic stage. We show that such semimetallic phases predicted to be the most stable at multimegabar (∼300  GPa) pressures are not conventional semimetals: they exhibit topological metallic surface states inside the bulk "direct" gap in the two-dimensional surface Brillouin zone; that is, metallic surfaces may appear even when the bulk of the material remains insulating. Examples include hydrogen in the Cmca-12 and Cmca-4 structures; Pbcn hydrogen also has metallic surface states but they are of a nontopological nature. The results provide predictions for future measurements, including probes of possible surface superconductivity in dense hydrogen.

  18. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X......-ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation...

  19. CFD analysis of dense gas dispersion in indoor environment for risk assessment and risk mitigation.

    Science.gov (United States)

    Siddiqui, M; Jayanti, S; Swaminathan, T

    2012-03-30

    Environmental risks are inherent in the operation of any complex chemical process industry. The indoor release of hazardous chemicals that are denser than air is a topic of special concern, since dense clouds tend to persist at ground level or human breath level which leads to a magnification of their harmful potential. In the present work, we propose a computational fluid dynamics (CFD) based model for indoor risk assessment considering accidental release of a sustained, small, undetected leak of a dense toxic gas (chlorine) in an industrial indoor environment. Results from simulations show that the denser chlorine gas spreads like a liquid and flows all along the floor. At the same time, its concentration at a point away from the ground level increases slowly, thus showing that both stratification and dilution effects are present as the dense gas spreads. The implications of this spreading pattern from a risk assessment and risk mitigation point of view are discussed.

  20. Accelerating Dense Linear Algebra on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi...... architecture). Most of the techniques I discuss for accelerating dense linear algebra are applicable to memory-bound GPU algorithms in general....

  1. Observations of Plasmons in Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S H; Landen, O L; Neumayer, P; Lee, R W; Widmann, K; Pollaine, S W; Wallace, R J; Gregori, G; Holl, A; Bornath, T; Thiele, R; Schwarz, V; Kraeft, W; Redmer, R

    2006-09-05

    We present the first collective x-ray scattering measurements of plasmons in solid-density plasmas. The forward scattering spectra of a laser-produced narrow-band x-ray line from isochorically heated beryllium show that the plasmon frequency is a sensitive measure of the electron density. Dynamic structure calculations that include collisions and detailed balance match the measured plasmon spectrum indicating that this technique will enable new applications to determine the equation of state and compressibility of dense matter.

  2. Splashing onset in dense suspension droplets

    OpenAIRE

    Peters, Ivo; Xu, Qin; Jaeger, Heinrich M.

    2013-01-01

    We investigate the impact of droplets of dense suspensions onto a solid substrate. We show that a global hydrodynamic balance is unable to predict the splash onset and propose to replace it by an energy balance at the level of the particles in the suspension. We experimentally verify that the resulting, particle-based Weber number gives a reliable, particle size and density dependent splash onset criterion. We further show that the same argument also explains why, in bimodal systems, smaller ...

  3. A method for dense packing discovery

    CERN Document Server

    Kallus, Yoav; Gravel, Simon

    2010-01-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and ...

  4. Hybrid-Based Dense Stereo Matching

    Science.gov (United States)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  5. Dense Visual SLAM with Probabilistic Surfel Map.

    Science.gov (United States)

    Yan, Zhixin; Ye, Mao; Ren, Liu

    2017-11-01

    Visual SLAM is one of the key technologies to align the virtual and real world together in Augmented Reality applications. RGBD dense Visual SLAM approaches have shown their advantages in robustness and accuracy in recent years. However, there are still several challenges such as the inconsistencies in RGBD measurements across multiple frames that could jeopardize the accuracy of both camera trajectory and scene reconstruction. In this paper, we propose a novel map representation called Probabilistic Surfel Map (PSM) for dense visual SLAM. The main idea is to maintain a globally consistent map with both photometric and geometric uncertainties encoded in order to address the inconsistency issue. The key of our PSM is proper modeling and updating of sensor measurement uncertainties, as well as the strategies to apply them for improving both the front-end pose estimation and the back-end optimization. Experimental results on publicly available datasets demonstrate major improvements with our approach over the state-of-the-art methods. Specifically, comparing with σ-DVO, we achieve a 40% reduction in absolute trajectory error and an 18% reduction in relative pose error in visual odometry, as well as an 8.5% reduction in absolute trajectory error in complete SLAM. Moreover, our PSM enables generation of a high quality dense point cloud with comparable accuracy as the state-of-the-art approach.

  6. Dense Correspondences across Scenes and Scales.

    Science.gov (United States)

    Tau, Moria; Hassner, Tal

    2016-05-01

    We seek a practical method for establishing dense correspondences between two images with similar content, but possibly different 3D scenes. One of the challenges in designing such a system is the local scale differences of objects appearing in the two images. Previous methods often considered only few image pixels; matching only pixels for which stable scales may be reliably estimated. Recently, others have considered dense correspondences, but with substantial costs associated with generating, storing and matching scale invariant descriptors. Our work is motivated by the observation that pixels in the image have contexts-the pixels around them-which may be exploited in order to reliably estimate local scales. We make the following contributions. (i) We show that scales estimated in sparse interest points may be propagated to neighboring pixels where this information cannot be reliably determined. Doing so allows scale invariant descriptors to be extracted anywhere in the image. (ii) We explore three means for propagating this information: using the scales at detected interest points, using the underlying image information to guide scale propagation in each image separately, and using both images together. Finally, (iii), we provide extensive qualitative and quantitative results, demonstrating that scale propagation allows for accurate dense correspondences to be obtained even between very different images, with little computational costs beyond those required by existing methods.

  7. Study on the Motion state of Powdery materials in Dense-phase Pneumatic Conveying Pipe

    Directory of Open Access Journals (Sweden)

    Lia Zhihua

    2016-01-01

    Full Text Available Using the method of computational fluid dynamics, a model is created about powdery materials flowing in the dense-phase pneumatic conveying pipe. the motion state powdery materials flowing in the horizontal and vertical pipe is simulated. It is found that in the horizontal pipe the powdery materials represent the flow of dune-like state, and continuously move forward in this form, the volume fraction of powdery materials at the pipe's bottom is large, the velocity is low; In the vertical pipe, the columnar solid-plug can form and scatter continuously, and the motion state is closer to fluidization.

  8. Dynamics and style transition of a moderate, Vulcanian-driven eruption at Tungurahua (Ecuador in February 2014: pyroclastic deposits and hazard considerations

    Directory of Open Access Journals (Sweden)

    J. E. Romero

    2017-06-01

    Full Text Available The ongoing eruptive cycle of Tungurahua volcano (Ecuador since 1999 has been characterised by over 15 paroxysmal phases interrupted by periods of relative calm. Those phases included one Subplinian as well as several Strombolian and Vulcanian eruptions and they generated tephra fallouts, pyroclastic density currents (PDCs and lava flows. The 1 February 2014 eruption occurred after 75 days of quiescence and only 2 days of pre-eruptive seismic crisis. Two short-lived Vulcanian explosions marked the onset of the paroxysmal phase, characterised by a 13.4 km eruptive column and the trigger of PDCs. After 40 min of paroxysm, the activity evolved into sporadic Strombolian explosions with discrete ash emissions and continued for several weeks. Both tephra fall and PDCs were studied for their dispersal, sedimentology, volume and eruption source parameters. At large scale, the tephra cloud dispersed toward the SSW. Based on the field data, two dispersal scenarios were developed forming either elliptical isopachs or proximally PDC-influenced isopachs. The minimum bulk tephra volumes are estimated to 4.55 × 106 m3, for an eruption size estimated at volcanic explosivity index (VEI 2–3. PDCs, although of small volume, descended by nine ravines of the NNW flanks down to the base of the edifice. The 1 February 2014 eruptions show a similar size to the late 1999 and August 2001 events, but with a higher intensity (I 9–10 and shorter duration. The Vulcanian eruptive mechanism is interpreted to be related to a steady magma ascent and the rise in over-pressure in a blocked conduit (plug and/or a depressurised solidification front. The transition to Strombolian style is well documented from the tephra fall componentry. In any of the interpretative scenarios, the short-lived precursors for such a major event as well as the unusual tephra dispersion pattern urge for renewed hazard considerations at Tungurahua.

  9. Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples

    Energy Technology Data Exchange (ETDEWEB)

    Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.

    2003-07-01

    -phase flow, current distribution and mass transfer along a vertical gas evolving electrode; a two-way coupled model for dilute multiphase flows. Topic 3: turbulence modulation by particles, droplets or bubbles in dense systems: influence of particles on the transition to turbulence in pipe flow; comparison between a point particle model and a finite-diameter-model for the particle turbulence interaction in a suspension; the effect on turbulence by bubbles rising through it under buoyancy; the physical mechanisms of modifying the structure of turbulent homogeneous shear flows by dispersed particles; influence of hydrodynamic interactions between particles on the turbulent flow in a suspension; review of relationships between Lagrangian and Eulerian scales; a two-point PDF for modelling turbulent dispersed two-phase flows and derivation of a two field model; mathematical and numerical modeling of two-phase compressible flows with micro-inertia. Topic 4: collective effects in dispersed two-phase flows clustering and phase distribution: hydrodynamic structure of downward bubbly flow; influence of gravity on the dynamics of a turbulent bubbly pipe flow; experimental study of two-phase flows; particle clusters formed in dispersed gas-solid flows: simulations and experiments; experimental study of the turbulence in bubbly flows at high void fraction; first step in the study of the correlation between air/water flow fluctuations and random buffering forces; clustering and settling velocity of micro-droplets in a grid turbulence. Topic 5: large scale instabilities and gravity driven dispersed flows: new 'non-isothermal' linear instability modes in fluidized beds and bubbly flows; large scale instability in a confined buoyant shear layer; convective instability in uniform dispersed layers; structures in gravity driven bubbly flows; effects of concentration profiles on velocity profiles in sewer; pyroclastic density currents viewed as mammoth scale two-phase flows; mixing and

  10. On the dense water spreading off the Ross Sea shelf (Southern Ocean)

    Science.gov (United States)

    Budillon, G.; Gremes Cordero, S.; Salusti, E.

    2002-07-01

    In this study, current meter and hydrological data obtained during the X Italian Expedition in the Ross Sea (CLIMA Project) are analyzed. Our data show a nice agreement with previous data referring to the water masses present in this area and their dynamics. Here, they are used to further analyze the mixing and deepening processes of Deep Ice Shelf Water (DISW) over the northern shelf break of the Ross Sea. In more detail, our work is focused on the elementary mechanisms that are the most efficient in removing dense water from the shelf: either classical mixing effects or density currents that interact with some topographic irregularity in order to drop to deeper levels, or also the variability of the Antarctic Circumpolar Current (ACC) which, in its meandering, can push the dense water off the shelf, thus interrupting its geostrophic flow. We also discuss in detail the (partial) evidence of dramatic interactions of the dense water with bottom particulate, of geological or biological origin, thus generating impulsive or quasi-steady density-turbidity currents. This complex interaction allows one to consider bottom particular and dense water as a unique self-interacting system. In synthesis, this is a first tentative analysis of the effect of bottom particulate on the dense water dynamics in the Ross Sea.

  11. Fast spectral solution of the generalized Enskog equation for dense gases

    Science.gov (United States)

    Wu, Lei; Zhang, Yonghao; Reese, Jason M.

    2015-12-01

    We propose a fast spectral method for solving the generalized Enskog equation for dense gases. For elastic collisions, the method solves the Enskog collision operator with a computational cost of O (M d - 1Nd log ⁡ N), where d is the dimension of the velocity space, and M d - 1 and Nd are the number of solid angle and velocity space discretizations, respectively. For inelastic collisions, the cost is N times higher. The accuracy of this fast spectral method is assessed by comparing our numerical results with analytical solutions of the spatially-homogeneous relaxation of heated granular gases. We also compare our results for force-driven Poiseuille flow and Fourier flow with those from molecular dynamics and Monte Carlo simulations. Although it is phenomenological, the generalized Enskog equation is capable of capturing the flow dynamics of dense granular gases, and the fast spectral method is accurate and efficient. As example applications, Fourier and Couette flows of a dense granular gas are investigated. In addition to the temperature profile, both the density and the high-energy tails in the velocity distribution functions are found to be strongly influenced by the restitution coefficient.

  12. Inferred Variable FeO Content in Medium-sized Lunar Pyroclastic Deposits from LRO Diviner Data

    Science.gov (United States)

    Bennett, K. A.; Horgan, B.; Greenhagen, B.; Allen, C.; Bell, J. F., III

    2014-01-01

    Lunar pyroclastic deposits (LPDs) are low albedo features that mantle underlying terrain (Gaddis et al. 1985). They are high priority targets for science and exploration as they are believed to originate from and therefore reflect the composition of the deep lunar interior (NRC, 2011). They are also the best potential resource of oxygen out of any Apollo samples (Allen et al. 1996). Historically, LPDs have been divided into regional versus local categories (Gaddis et al. 2003). The large (>1000 km2 area) regional deposits are deeply sourced (>400 km deep) and result from fire fountaining. Small (medium-sized deposits to characterize this potential new class of deposits and understand the magnitude of variations in inferred FeO among pyroclastic deposits. We use the method of Greenhagen et al. (2010) to calculate the wavelength of the Christiansen Feature (CF) from Lunar Reconnaissance Orbiter Diviner Lunar Radiometer instrument thermal-infrared observations for four medium-sized deposits. From the CF values, we estimate each deposit's FeO abundance using the method of Allen et al. (2012). The four LPDs that we examined (Oppenheimer South, Beer, Cleomedes, and J. Herschel) all have average CF values from 8.22-8.28 microns, corresponding to FeO abundances of approx. 10-15 wt.%. All of these values are within the range and uncertainties of FeO abundances measured in Apollo samples. As previously identified, the Oppenheimer South deposit exhibits an area of enhanced CF values (8.49 microns) that, if the methods of Allen et al. (2012) can be extrapolated, correspond to a highest observed approx. 30 wt.% FeO. Moon Mineralogy Mapper near-infrared spectra indicate that this area is glass-rich as opposed to olivine-rich. While we are still investigating the nature of the high CF wavelength in Oppenheimer South, spatially-resolved observations there and (to a smaller degree) in our other study sites, shows that FeO wt.% can vary within LPDs. Thus, obtaining only the average

  13. Joint M3 and Diviner Analysis of the Mineralogy, Glass Composition, and Country Rock Content of Pyroclastic Deposits in Oppenheimer Crater

    Science.gov (United States)

    Bennett, Kristen A.; Horgan, Briony H. N.; Greenhagen, Benjamin T.; Allen, Carlton C.; Paige, David A.; Bell, James F., III

    2013-01-01

    Here we present our analysis of the near- and mid-infrared spectral properties of pyroclastic deposits within the floor fractured Oppenheimer Crater that are hypothesized to be Vulcanian in origin. These are the first results of our global study of lunar pyroclastic deposits aimed at constraining the range of eruption processes on the Moon. In the near-infrared, we have employed a new method of spectral analysis developed in Horgan et al. (2013) of the 1 ?m iron absorption band in Chandrayaan-1 Moon Mineralogy Mapper (M3) spectra. By analyzing both the position and shape of the 1 ?m band we can detect and map the distribution of minerals, glasses, and mixtures of these phases in pyroclastic deposits. We are also using mid-infrared spectra from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment to develop 200 m/pixel Christiansen Feature (CF) maps, which correlate with silica abundance. One of the benefits of using CF maps for analysis of pyroclastic deposits is that they can be used to detect silicic country rock that may have been emplaced by Vulcanian-style eruptions, and are sensitive to iron abundance in glasses, neither of which is possible in the near-infrared. M3 analysis reveals that the primary spectral endmembers are low-calcium pyroxene and iron-bearing glass, with only minor high-calcium pyroxene, and no detectable olivine. The large deposit in the south shows higher and more extensive glass concentrations than the surrounding deposits. We interpret the M3 spectra of the pyroclastic deposits as indicating a mixture of low-calcium pyroxene country rock and juvenile glass, and no significant olivine. Analysis of Diviner CF maps of the Oppenheimer crater floor indicates an average CF value of 8.16, consistent with a mixture of primarily plagioclase and some pyroxene. The average CF values of the pyroclastic deposits range from 8.31 in the SW to 8.24 in the SE. Since CF values within the deposits are as high as 8.49, the lower average CF

  14. Leeuwpan fine coal dense medium plant

    CSIR Research Space (South Africa)

    Lundt, M

    2010-11-01

    Full Text Available availability to treat the higher grade coal (the bottom layer of coal) from the no. 2 Seam for a local and export metallurgical market. Following the path of evolution, in 2007, Leeuwpan commissioned the first double stage ultra-fines dense medium cyclone... plant in the coal industry, to form part of its overall DMS plant. It replaced the spirals to treat the -1 mm material. Spirals are still the most commonly and accepted method used by the industry, but it seems as if the pioneering cyclone process...

  15. Resolving Ultrafast Heating of Dense Cryogenic Hydrogen

    Science.gov (United States)

    Zastrau, U.; Sperling, P.; Harmand, M.; Becker, A.; Bornath, T.; Bredow, R.; Dziarzhytski, S.; Fennel, T.; Fletcher, L. B.; Förster, E.; Göde, S.; Gregori, G.; Hilbert, V.; Hochhaus, D.; Holst, B.; Laarmann, T.; Lee, H. J.; Ma, T.; Mithen, J. P.; Mitzner, R.; Murphy, C. D.; Nakatsutsumi, M.; Neumayer, P.; Przystawik, A.; Roling, S.; Schulz, M.; Siemer, B.; Skruszewicz, S.; Tiggesbäumker, J.; Toleikis, S.; Tschentscher, T.; White, T.; Wöstmann, M.; Zacharias, H.; Döppner, T.; Glenzer, S. H.; Redmer, R.

    2014-03-01

    We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300 fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ˜0.9 ps. The rise time agrees with radiation hydrodynamics simulations based on a conductivity model for partially ionized plasma that is validated by two-temperature density-functional theory.

  16. Oscillating propagators in heavy-dense QCD

    CERN Document Server

    Akerlund, Oscar; Rindlisbacher, Tobias

    2016-10-11

    Using Monte Carlo simulations and extended mean field theory calculations we show that the $3$-dimensional $\\mathbb{Z}_3$ spin model with complex external fields has non-monotonic correlators in some regions of its parameter space. This model serves as a proxy for heavy-dense QCD in $(3+1)$ dimensions. Non-monotonic correlators are intrinsically related to a complex mass spectrum and a liquid-like (or crystalline) behavior. A liquid phase could have implications for heavy-ion experiments, where it could leave detectable signals in the spatial correlations of baryons.

  17. Interference Alignment in Dense Wireless Networks

    CERN Document Server

    Niesen, Urs

    2009-01-01

    We consider arbitrary dense wireless networks, in which $n$ nodes are placed in an arbitrary (deterministic) manner on a square region of unit area and communicate with each other over Gaussian fading channels. We provide inner and outer bounds for the $n\\times n$-dimensional unicast and the $n\\times 2^n$-dimensional multicast capacity regions of such a wireless network. These inner and outer bounds differ only by a factor $O(\\log(n))$, yielding a fairly tight scaling characterization of the entire regions. The communication schemes achieving the inner bounds use interference alignment as a central technique and are surprisingly simple.

  18. Phase transitions in dense 2-colour QCD

    CERN Document Server

    Boz, Tamer; Fister, Leonard; Skullerud, Jon-Ivar

    2013-01-01

    We investigate 2-colour QCD with 2 flavours of Wilson fermion at nonzero temperature T and quark chemical potential mu, with a pion mass of 700 MeV (m_pi/m_rho=0.8). From temperature scans at fixed mu we find that the critical temperature for the superfluid to normal transition depends only very weakly on mu above the onset chemical potential, while the deconfinement crossover temperature is clearly decreasing with mu. We also present results for the Landau-gauge gluon propagator in the hot and dense medium.

  19. Flavour Oscillations in Dense Baryonic Matter

    Science.gov (United States)

    Filip, Peter

    2017-01-01

    We suggest that fast neutral meson oscillations may occur in a dense baryonic matter, which can influence the balance of s/¯s quarks in the nucleus-nucleus and proton-nucleus interactions, if primordial multiplicities of neutral K 0, mesons are sufficiently asymmetrical. The phenomenon can occur even if CP symmetry is fully conserved, and it may be responsible for the enhanced sub-threshold production of multi-strange hyperons observed in the low-energy A+A and p+A interactions.

  20. Genesis of low-Ba rhyolite by reheating of a crystal mush: The case of the 29 ka White Pyroclastic Sequence, Guangoche stratovolcano, Trans-Mexican Volcanic Belt, central Mexico

    Science.gov (United States)

    Rangel Granados, E.; Arce, J. L.; Macias, J. L.

    2016-12-01

    Rhyolitic magmas are commonly related to explosive eruptions, and its precursors are almost absent that makes the volcanoes very dangerous for the communities around them. The knowledge of pre-eruptive conditions of such magmas is important to decipher the mechanisms capable to produce explosive eruptions. In this work we studied the Guangoche stratovolcano located to the southwest of the Los Azufres Volcanic Field in central Mexico. Guangoche has a horse-shoe shaped (1.6 km wide) crater, opened to the south, and a central rhyolitic dome. During late Pleistocene the volcano produced several explosive eruptions one of which occurred 29 ka and deposited the so-called White Pyroclastic Sequence (WPS). This sequence was emplaced by a Plinian-subplinian eruption of moderate size (VEI 5). This eruption ejected 0.5 km3 of rhyolitic magma and deposited a pumice fallout followed by three pumice rich pyroclastic flow deposits. White and banded juvenile pumice, used to determine pre-eruptive storage conditions with hydrothermal experiments, have similar mineralogy and chemical composition. Petrography, coupled with mineral chemical data and hydrothermal experiments, suggest that prior to eruption, the melt was a high-silica rhyolite (77.3 + 0.3 wt. % SiO2) stagnated at a water pressure of 130-170 MPa (assuming vapor saturation at depth), at a temperature of 762-793°C (on the basis of Fe-Ti oxide thermometry) and had a mineral assemblage of sanidine, plagioclase, biotite, hornblende, Fe-Ti oxides and zircon. Quartz-hosted melt inclusions indicate the presence of a relatively cold (536-759°C; TitaniQ geothermometer) quartz-feldespathic crystal body (crystal mush), stored at depths between 3.2 and 8.9 km (74-204 MPa), thus quartz probably represents partially assimilated xenocrysts. We propose that the 29 ka rhyolitic WPS magma was produced by reheating of a crystal mush that partially melted and incorporated quartz xenocrysts. This rhyolitic low-Ba, Eu, and Sr melt was stored

  1. COMPUTATIONAL FLUID DYNAMICS FOR DENSE GAS-SOLID FLUIDIZED BEDS: A MULTI-SCALE MODELING STRATEGY

    Institute of Scientific and Technical Information of China (English)

    M.; A.; van; der; Hoef; M.; van; Sint; Annaland; J.; A.; M.; Kuipers

    2005-01-01

    Dense gas-particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic and is related to the intrinsic complexities of these flows which are unfortunately not yet fully understood despite significant efforts made in both academic and industrial research laboratories. In dense gas-particle flows both (effective) fluid-particle and (dissipative) particle-particle interactions need to be accounted for because these phenomena to a large extent govern the prevailing flow phenomena, i.e. the formation and evolution of heterogeneous structures. These structures have significant impact on the quality of the gas-solid contact and as a direct consequence thereof strongly affect the performance of the process. Due to the inherent complexity of dense gas-particles flows, we have adopted a multi-scale modeling approach in which both fluid-particle and particle-particle interactions can be properly accounted for. The idea is essentially that fundamental models, taking into account the relevant details of fluid-particle (lattice Boltzmann model) and particle-particle (discrete particle model) interactions, are used to develop closure laws to feed continuum models which can be used to compute the flow structures on a much larger (industrial) scale. Our multi-scale approach (see Fig. 1 ) involves the lattice Boltzmann model, the discrete particle model, the continuum model based on the kinetic theory of granular flow,and the discrete bubble model. In this paper we give an overview of the multi-scale modeling strategy, accompanied by illustrative computational results for bubble formation. In addition, areas which need substantial further attention will be highlighted.

  2. Experiments on the global instability of confined axisymmetric dense wakes.

    Science.gov (United States)

    Li, Larry; Juniper, Matthew

    2007-11-01

    Recent theoretical studies [M. Juniper, J. Fluid Mech. 565, 171-195 (2006); M. Juniper and S. Candel, J. Fluid Mech. 482, 257-269 (2003)] predict that confinement increases the hydrodynamic instability of wakes by causing the transition from convective to absolute instability to occur at lower values of shear. Experimental evidence supporting this prediction is presented here for a confined, axisymmetric wake at density ratios, S ≡ ρ1 /ρ2> 1 (i.e. dense wake). The wake was produced by a pair of convergent nozzles mounted concentrically, one within the other, in a low-turbulence wind tunnel facility. Variations in S were achieved by employing two high density gases (S = 1.53 and 5.11) in the inner flow with air in the outer flow. For a fixed S, there existed a critical value of shear above which dominant peaks appeared abruptly in the near-wake velocity spectra, as quantified by hot-wire anemometry. Corresponding high-speed video sequences revealed large-scale, sinuous wake motions. Results on the confined wake's response to externally-applied, acoustic forcing are also presented. The presence of discrete spectral peaks and coordinated instability oscillations suggests the emergence of a self-sustained, global mode.

  3. DESERT PAVEMENTS AND SOILS ON BASALTIC PYROCLASTIC DEPOSITS AT LATHROP WELLS AND RED CONE VOLCANOES, SOUTHERN NEVADA ABSTRACT

    Energy Technology Data Exchange (ETDEWEB)

    G.A. Valentine; C.D. Harrington

    2005-08-26

    Formation of desert pavement and ac