WorldWideScience

Sample records for dense kondo compound

  1. Neutron diffraction study of dense-Kondo compound CeNi2Al5

    International Nuclear Information System (INIS)

    Munoz, A.; Givord, F.; Boucherie, J.X.; Flouquet, J.; Isikawa, Y.; Mizushima, T.; Sakurai, J.; Mori, K.; Oliveira, I.S.

    1993-01-01

    Intermetallic CeNi 2 Al 5 is a dense-Kondo compound with a magnetic transition temperature at 2.6 K. We have carried out a neutron diffraction measurement to study a magnetic structure of CeNi 2 Al 5 using a powder sample and a single crystalline sample. It is found that the magnetic structure is an incommensurate sinusoidal one with a propagation vector k = (0.5, 0.405, 0.083) and that the amplitude of magnetic moment is 1.54 μ Β and the direction of magnetic moment is declined 8 deg. from the b-axis toward the a-axis. (authors). 3 refs., 2 figs

  2. Kondo effect and heavy fermions in Yb compounds

    International Nuclear Information System (INIS)

    Bonville, P.

    1987-01-01

    The Kondo properties of Yb dilute alloys and intermetallics have been investigated using Moessbauer spectroscopy on 170 Yb. In the dilute alloys AuYb and LaBe 13 Yb, the Kondo logarithmic anomaly of the impurity relaxation rate has been detected, and in the concentrated Yb compounds YbBe 13 , YbP and YbAs, and YbCuAl, the manifestations of the interplay between the Kondo effect and the magnetic ordering due to the RKKY interaction have been characterized

  3. Two stages of Kondo effect and competition between RKKY and Kondo in Gd-based intermetallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Vaezzadeh, Mehdi [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)]. E-mail: mehdi@kntu.ac.ir; Yazdani, Ahmad [Tarbiat Modares University, P.O. Box 14155-4838, Tehran (Iran, Islamic Republic of); Vaezzadeh, Majid [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Daneshmand, Gissoo [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Kanzeghi, Ali [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)

    2006-05-01

    The magnetic behavior of Gd-based intermetallic compound (Gd{sub 2}Al{sub (1-x)}Au{sub x}) in the form of the powder and needle, is investigated. All the samples are an orthorhombic crystal structure. Only the compound with x=0.4 shows the Kondo effect (other compounds have a normal behavior). Although, for the compound in the form of powder, with x=0.4, the susceptibility measurement {chi}(T) shows two different stages. Moreover for (T>T{sub K2}) a fall of the value of {chi}(T) is observable, which indicates a weak presence of ferromagnetic phase. About the two stages of Kondo effect, we observe at the first (T{sub K1}) an increase of {chi}(T) and in the second stage (T{sub K2}) a new remarkable decrease of {chi}(T) (T{sub K1}>T{sub K2}). For the sample in the form of needles, the first stage is observable only under high magnetic field. This first stage could be corresponds to a narrow resonance between Kondo cloud and itinerant electron. The second stage, which is remarkably visible for the sample in the form of the powder, can be attribute to a complete polarization of Kondo cloud. Observation of these two Kondo stages could be due to the weak presence of RKKY contribution.

  4. Two stages of Kondo effect and competition between RKKY and Kondo in Gd-based intermetallic compound

    International Nuclear Information System (INIS)

    Vaezzadeh, Mehdi; Yazdani, Ahmad; Vaezzadeh, Majid; Daneshmand, Gissoo; Kanzeghi, Ali

    2006-01-01

    The magnetic behavior of Gd-based intermetallic compound (Gd 2 Al (1-x) Au x ) in the form of the powder and needle, is investigated. All the samples are an orthorhombic crystal structure. Only the compound with x=0.4 shows the Kondo effect (other compounds have a normal behavior). Although, for the compound in the form of powder, with x=0.4, the susceptibility measurement χ(T) shows two different stages. Moreover for (T>T K2 ) a fall of the value of χ(T) is observable, which indicates a weak presence of ferromagnetic phase. About the two stages of Kondo effect, we observe at the first (T K1 ) an increase of χ(T) and in the second stage (T K2 ) a new remarkable decrease of χ(T) (T K1 >T K2 ). For the sample in the form of needles, the first stage is observable only under high magnetic field. This first stage could be corresponds to a narrow resonance between Kondo cloud and itinerant electron. The second stage, which is remarkably visible for the sample in the form of the powder, can be attribute to a complete polarization of Kondo cloud. Observation of these two Kondo stages could be due to the weak presence of RKKY contribution

  5. The ferromagnetic Kondo-lattice compound SmFe sub 4 P sub 1 sub 2

    CERN Document Server

    Takeda, N

    2003-01-01

    We report on the magnetic properties of a filled skutterudite compound, SmFe sub 4 P sub 1 sub 2. Magnetic susceptibility and specific heat measurements revealed a ferromagnetic transition at 1.6 K. The temperature dependence of the electrical resistivity exhibits a Kondo-lattice behaviour and the electronic specific heat coefficient attains values as large as 370 mJ mol sup - sup 1 K sup - sup 2. This compound is thereby the first Sm-based heavy-fermion system found with a ferromagnetic ground state. The Kondo temperature is estimated to be about 30 K. (letter to the editor)

  6. Pressure dependence of the Curie temperature in the Kondo lattice compound YbNiSn

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, G; Thompson, J D [Los Alamos National Lab., NM (United States); Hamzic, A [Dept. of Physics, Zagreb (Yugoslavia)

    1992-04-03

    We have measured the magnetic susceptibility (2 K < T < 300 K) and the electrical resistivity under pressure (1.2 K < T < 300 K; p < 20 kbar) of the Kondo lattice compound YbNiSn, which may be considered as the ''hole'' analogue of the isostructural compound CeNiSn. In contrast with CeNiSn, YbNiSn does not show an energy gap at low temperatures but instead undergoes a magnetic phase transition at T{sub M} = 5.5 K. The magnetic state might be either a weakly ferromagnetic or a complex antiferromagnetic state. By applying pressure the room temperature resistance {rho}{sub RT} decreases, while T{sub M} increases. This behavior can be interpreted with respect to Doniach's Kondo necklace model as a decrease in the local exchange coupling constant J with increasing pressure, which reduces Kondo spin compensation and favors long-range magnetic order. These results show that the idea that YbNiSn is the hole counterpart to CeNiSn holds well for the properties such as dT{sub M}/dP and d{rho}{sub RT}/dP but that it fails in more detailed aspects, such as the origin of the energy gap formation. (orig.).

  7. Different magnetic behaviour of the Kondo compounds Al3Ce and Al11Ce3

    International Nuclear Information System (INIS)

    Benoit, A.; Flouquet, J.; Palleau, J.; Buevoz, J.L.

    1979-08-01

    Neutron diffraction experiments on the Al 3 Ce and Al 11 Ce 3 compounds have been performed on the multidetector of the I.L.L. high flux reactor. No magnetic structure has been detected on the Al 3 Ce compound down to 20 mK. This confirms the non magnetic ground state of Al 3 Ce. For Al 11 Ce 3 , two magnetic structures have been observed: a ferromagnetic one at 4.2 K and an antiferromagnetic one at 2 K. The antiferromagnetic structure, which corresponds to a propagation vector (0,0,1/3), implies a strong reduction of the magnetic moment of determined sites; this reflects the Kondo character of the compounds

  8. Crystal structure and anisotropic magnetic properties of new ferromagnetic Kondo lattice compound Ce(Cu,Al,Si){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, A.; Thamizhavel, A.; Dhar, S.K. [Department of Condensed Matter Physics & Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Provino, A.; Pani, M.; Costa, G.A. [Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova (Italy); Institute SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy)

    2017-03-15

    Single crystals of the new compound CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58} have been grown by high-temperature solution growth method using a eutectic Al-Si mixture as flux. This compound is derived from the binary CeSi{sub 2} (tetragonal α-ThSi{sub 2}-type, Pearson symbol tI12, space group I4{sub 1}/amd) obtained by partial substitution of Si by Cu and Al atoms but showing full occupation of the Si crystal site (8e). While CeSi{sub 2} is a well-known valence-fluctuating paramagnetic compound, the CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58} phase orders ferromagnetically at T{sub C}=9.3 K. At low temperatures the easy-axis of magnetization is along the a-axis, which re-orients itself along the c-axis above 30 K. The presence of hysteresis in the magnetization curve, negative temperature coefficient of resistivity at high temperatures, reduced jump in the heat capacity and a relatively lower entropy released up to the ordering temperature, and enhanced Sommerfeld coefficient (≈100 mJ/mol K{sup 2}) show that CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58} is a Kondo lattice ferromagnetic, moderate heavy fermion compound. Analysis of the high temperature heat capacity data in the paramagnetic region lets us infer that the crystal electric field split doublet levels are located at 178 and 357 K, respectively, and Kondo temperature (8.4 K) is of the order of T{sub C} in CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58}.

  9. A S=1 underscreened Kondo lattice model

    International Nuclear Information System (INIS)

    Perkins, N.B.; Nunez-Regueiro, M.D.; Iglesias, J.R.; Coqblin, B.

    2006-01-01

    The underscreened Kondo lattice model presented here includes both an intra-site Kondo exchange interaction J K between the conduction band and localized 5f electrons described by S=1 spins, and an inter-site exchange f-f interaction J H . We write both localized and itinerant spins in a Fermionic representation, and then use a mean-field approximation. We obtain a coexistence of Kondo effect and magnetism which can account for the behavior of some Uranium compounds

  10. Two-Channel Kondo Physics due to As Vacancies in the Layered Compound ZrAs1.58Se0.39

    Science.gov (United States)

    Kirchner, Stefan; Cichorek, T.; Bochenek, L.; Schmidt, M.; Niewa, R.; Czuluccki, A.; Auffermann, G.; Steglich, F.; Kniep, R.

    We address the origin of the magnetic-field independent - | A | T 1 / 2 term observed in the low-temperature resistivity of several As-based metallic systems of the PbFCl structure type. For the layered compound ZrAs1.58Se0.39, we show that vacancies in the square nets of As give rise to the low-temperature transport anomaly over a wide temperature regime of almost two decades in temperature. This low-temperature behavior is in line with the non-magnetic version of the two-channel Kondo effect, whose origin we ascribe to a dynamic Jahn-Teller effect operating at the vacancy-carrying As layer with a C4 symmetry. The pair-breaking nature of the dynamical defects in the square nets of As explains the low superconducting transition temperature Tc 0 . 14 K of ZrAs1.58Se0.39, as compared to the free-of-vacancies homologue ZrP1.54S0.46 (Tc 3 . 7 K). Our findings should be relevant to a wide class of metals with disordered pnictogen layers.

  11. Response of Kondo lattice systems to pressure

    International Nuclear Information System (INIS)

    Thompson, J.D.; Borges, H.A.; Fisk, Z.; Horn, S.; Parks, R.D.; Wells, G.L.

    1987-01-01

    Yb-based Kondo lattice systems (YbAgCu 4 , YbCu 2 Si 2 , YbRh 2 Si 2 ) represent an interesting class of materials in which it is possible to study systematically the development of heavy electron behavior through the application of pressure. Certainly, additional experiments are required to determine to what extent Yb compounds are mirror images of their Ce counterparts. Finally, pressure reveals the presence of competing interactions for which a simple model exists that qualitatively accounts for the pressure response observed in a large number of Ce, U and Yb-based Kondo lattice systems

  12. Anisotropic magnetic phase diagram of Kondo-Lattice compound Ce3Pd20Ge6 with quadrupolar ordering

    International Nuclear Information System (INIS)

    Kitagawa, Jiro; Takeda, Naoya; Ishikawa, Masayasu; Yoshida, Toshiya; Ishiguro, Akiko; Kimura, Noriaki; Komatsubara, Takemi

    1999-01-01

    We have measured the specific heat and the electrical resistivity of Ce 3 Pd 20 Ge 6 in magnetic fields up to 4T applied along three principal directions. The compound shows the large negative magnetoresistance in the quadrupolar phase. The coefficient of the electronic specific heat and T 2 -coefficient of the electrical resistivity are considerably reduced at 4T. The magnetic phase diagram constructed from these measurements suggests the existence of a highly anisotropic interaction between the electric quadrupolar moments and the magnetic dipolar moments. (author)

  13. Competition of Kondo spin fluctuations and RKKY interactions in CeRh/sub 2/Si/sub 2-x/Ge/sub x/ and CeM/sub 2/X/sub 2/ compounds: a Kondo necklace problem

    Energy Technology Data Exchange (ETDEWEB)

    Godart, C; Gupta, L C; Tomy, C V; Vijayaraghavan, R; Thompson, J D

    1989-02-15

    We present the results of our measurements of the lattice constants and magnetic susceptibility of the pseudo-ternary system which crystallizes in the tetragonal ThCr/sub 2/Si/sub 2/ structure. Both of the cell constants a and c increase linearly with x. The magnetic ordering temperature T/sub N/ exhibits initially an enhancement with the increase in x and then decreases as x continues to increase further. These results, along with those on the pressure dependence of T/sub N/ in CeRh/sub 2/Si/sub 2/, can be understood on the basis of the Doniach's model of a Kondo necklace. We discuss also the applicability of this model to describe the strong correlation between the structural aspects and the ground-state properties of the whole series of Ce-based ternaries CeM/sub 2/X/sub 2/ (M = 3d, 4d and 5d elements; X = Si, Ge).

  14. Coexisting Kondo singlet state with antiferromagnetic long-range order: A possible ground state for Kondo insulators

    International Nuclear Information System (INIS)

    Zhang Guangming; Yu Lu

    2000-04-01

    The ground-state phase diagram of a half-filled anisotropic Kondo lattice model is calculated within a mean-field theory. For small transverse exchange coupling J perpendicular perpendicular c1 , the ground state shows an antiferromagnetic long-range order with finite staggered magnetizations of both localized spins and conduction electrons. When J perpendicular > J perpendicular c2 , the long-range order is destroyed and the system is in a disordered Kondo singlet state with a hybridization gap. Both ground states can describe the low-temperature phases of Kondo insulating compounds. Between these two distinct phases, there may be a coexistent regime as a result of the balance between local Kondo screening and magnetic interactions. (author)

  15. Kondo-Anderson transitions

    Science.gov (United States)

    Kettemann, S.; Mucciolo, E. R.; Varga, I.; Slevin, K.

    2012-03-01

    Dilute magnetic impurities in a disordered Fermi liquid are considered close to the Anderson metal-insulator transition (AMIT). Critical power-law correlations between electron wave functions at different energies in the vicinity of the AMIT result in the formation of pseudogaps of the local density of states. Magnetic impurities can remain unscreened at such sites. We determine the density of the resulting free magnetic moments in the zero-temperature limit. While it is finite on the insulating side of the AMIT, it vanishes at the AMIT, and decays with a power law as function of the distance to the AMIT. Since the fluctuating spins of these free magnetic moments break the time-reversal symmetry of the conduction electrons, we find a shift of the AMIT, and the appearance of a semimetal phase. The distribution function of the Kondo temperature TK is derived at the AMIT, in the metallic phase, and in the insulator phase. This allows us to find the quantum phase diagram in an external magnetic field B and at finite temperature T. We calculate the resulting magnetic susceptibility, the specific heat, and the spin relaxation rate as a function of temperature. We find a phase diagram with finite-temperature transitions among insulator, critical semimetal, and metal phases. These new types of phase transitions are caused by the interplay between Kondo screening and Anderson localization, with the latter being shifted by the appearance of the temperature-dependent spin-flip scattering rate. Accordingly, we name them Kondo-Anderson transitions.

  16. Kondo length in bosonic lattices

    Science.gov (United States)

    Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea

    2017-09-01

    Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.

  17. Multi-channel Kondo necklace

    International Nuclear Information System (INIS)

    Fazekas, P.; Kee Haeyoung.

    1993-06-01

    A multi-channel generalization of Doniach's Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins τ J , j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig

  18. Multi-channel Kondo necklace

    Energy Technology Data Exchange (ETDEWEB)

    Fazekas, P; Haeyoung, Kee

    1993-06-01

    A multi-channel generalization of Doniach`s Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins {tau}{sub J}, j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig.

  19. Quantum phase transitions and anomalous Hall effect in frustrated Kondo lattices

    Science.gov (United States)

    Paschen, Silke; Grefe, Sarah Elaine; Ding, Wenxin; Si, Qimiao

    Among the pyrochlore iridates, the metallic compound Pr2 Ir2O7 (Pr-227) has shown characteristics of a possible chiral spin liquid state and quantum criticality. An important question surrounding the significant anomalous Hall response observed in Pr-227 is the nature of the f-electron local moments, including their Kondo coupling with the conduction d-electrons. The heavy effective mass and related thermodynamic characteristics indicate the involvement of the Kondo effect in this system's electronic properties. In this work, we study the effects of Kondo coupling on candidate time-reversal-symmetry-breaking spin liquid states on frustrated lattices. Representing the f-moments as slave fermions Kondo-coupled to conduction electrons, we study the competition between Kondo-singlet formation and chiral spin correlations. We derive an effective chiral interaction between the local moments and the conduction electrons and calculate the anomalous Hall response across the quantum phase transition from the Kondo destroyed phase to the Kondo screened phase. We discuss our results' implications for Pr-227 and related frustrated Kondo-lattice systems.

  20. Fermi surfaces in Kondo insulators

    Science.gov (United States)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  1. Detecting Kondo Entanglement by Electron Conductance

    Science.gov (United States)

    Yoo, Gwangsu; Lee, S.-S. B.; Sim, H.-S.

    2018-04-01

    Quantum entanglement between an impurity spin and electrons nearby is a key property of the single-channel Kondo effects. We show that the entanglement can be detected by measuring electron conductance through a double quantum dot in an orbital Kondo regime. We derive a relation between the entanglement and the conductance, when the SU(2) spin symmetry of the regime is weakly broken. The relation reflects the universal form of many-body states near the Kondo fixed point. Using it, the spatial distribution of the entanglement—hence, the Kondo cloud—can be detected, with breaking of the symmetry spatially nonuniformly by electrical means.

  2. Devil's staircase in Kondo semimetals

    International Nuclear Information System (INIS)

    Ueda, K.; Shibata, N.; Science Univ. of Tokyo; Ishii, C.

    1996-01-01

    Complex magnetic phase diagrams of the trivalent cerium monopnictides are widely known as an example of the devil's staircase. We present an effective Hamiltonian for CeX which explains their complex magnetic phase diagrams in a unified way. The effective Hamiltonian consists of semimetallic conduction bands and localized f spins. A new feature is the inter-band transitions with spin exchange which frustrates with the usual intra-band Kondo couplings. (orig.)

  3. Phase diagram of the Kondo-Heisenberg model on honeycomb lattice with geometrical frustration

    Science.gov (United States)

    Li, Huan; Song, Hai-Feng; Liu, Yu

    2016-11-01

    We calculated the phase diagram of the Kondo-Heisenberg model on a two-dimensional honeycomb lattice with both nearest-neighbor and next-nearest-neighbor antiferromagnetic spin exchanges, to investigate the interplay between RKKY and Kondo interactions in the presence of magnetic frustration. Within a mean-field decoupling technology in slave-fermion representation, we derived the zero-temperature phase diagram as a function of Kondo coupling J k and frustration strength Q. The geometrical frustration can destroy the magnetic order, driving the original antiferromagnetic (AF) phase to non-magnetic valence bond solids (VBS). In addition, we found two distinct VBS. As J k is increased, a phase transition from AF to Kondo paramagnetic (KP) phase occurs, without the intermediate phase coexisting AF order with Kondo screening found in square lattice systems. In the KP phase, the enhancement of frustration weakens the Kondo screening effect, resulting in a phase transition from KP to VBS. We also found a process to recover the AF order from VBS by increasing J k in a wide range of frustration strength. Our work may provide predictions for future experimental observation of new processes of quantum phase transitions in frustrated heavy-fermion compounds.

  4. Quantum phase transitions in multi-impurity and lattice Kondo systems

    International Nuclear Information System (INIS)

    Nejati, Ammar

    2017-01-01

    The main purpose of this dissertation is to provide a detailed development of a self-consistent perturbative renormalization group (RG) method to investigate the quantum phases and quantum phase transitions of multi-impurity Kondo systems (e.g., two impurities or a lattice of impurities). The essence of the RG method is an extension of the standard ''poor man's scaling'' by including the dynamical effects of the magnetic fluctuations in the Kondo vertex. Such magnetic fluctuations arise due to the indirect carrier-mediated exchange interaction (RKKY interaction) between the impurities and compete with the Kondo effect to determine the ground-state. The aim is to take the most 'economic' route and avoid intensive numerical computations as far as possible. In general, it is shown in detail how a relatively small amount of such magnetic fluctuations can suppress and ultimately, destroy the Kondo-screened phase in a universal manner, and without incurring a magnetic instability in the system. The renormalization group method and its extensions are further applied to several distinct experimental realization of the multi-impurity Kondo effect; namely, Kondo adatoms studied via scanning tunneling spectroscopy, a highly-tunable double-quantum-dot system based on semiconducting heterostructures, and finally, the heavy fermionic compounds as Kondo lattices. We demonstrate the qualitative and quantitative agreement of the RG theory with the experimental findings, which supports the validity of the method. In the case of Kondo lattices, we further include the possibility of a magnetic ordering in the lattice to see whether a magnetic ordering can happen simultaneously with or before the Kondo breakdown (or even prevent it altogether). In the last chapter, we consider the fate of the local moments in the absence of full Kondo screening while Kondo fluctuations are still present. This partially-screened phase needs itself an extensive study

  5. Quantum phase transitions in multi-impurity and lattice Kondo systems

    Energy Technology Data Exchange (ETDEWEB)

    Nejati, Ammar

    2017-01-16

    The main purpose of this dissertation is to provide a detailed development of a self-consistent perturbative renormalization group (RG) method to investigate the quantum phases and quantum phase transitions of multi-impurity Kondo systems (e.g., two impurities or a lattice of impurities). The essence of the RG method is an extension of the standard ''poor man's scaling'' by including the dynamical effects of the magnetic fluctuations in the Kondo vertex. Such magnetic fluctuations arise due to the indirect carrier-mediated exchange interaction (RKKY interaction) between the impurities and compete with the Kondo effect to determine the ground-state. The aim is to take the most 'economic' route and avoid intensive numerical computations as far as possible. In general, it is shown in detail how a relatively small amount of such magnetic fluctuations can suppress and ultimately, destroy the Kondo-screened phase in a universal manner, and without incurring a magnetic instability in the system. The renormalization group method and its extensions are further applied to several distinct experimental realization of the multi-impurity Kondo effect; namely, Kondo adatoms studied via scanning tunneling spectroscopy, a highly-tunable double-quantum-dot system based on semiconducting heterostructures, and finally, the heavy fermionic compounds as Kondo lattices. We demonstrate the qualitative and quantitative agreement of the RG theory with the experimental findings, which supports the validity of the method. In the case of Kondo lattices, we further include the possibility of a magnetic ordering in the lattice to see whether a magnetic ordering can happen simultaneously with or before the Kondo breakdown (or even prevent it altogether). In the last chapter, we consider the fate of the local moments in the absence of full Kondo screening while Kondo fluctuations are still present. This partially-screened phase needs itself an extensive study

  6. Kondo peak splitting and Kondo dip in single molecular magnet junctions

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Pengbin, E-mail: 120233951@qq.com [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Shi, Yunlong; Sun, Zhu [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Nie, Yi-Hang [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-01-15

    Many factors containing bias, spin–orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin–orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments. - Highlights: • We study Kondo peak splitting in single molecular magnets. • We study Kondo effect by Hubbard operator Green's function method. • We find Kondo peak splitting structures and a Kondo dip at Fermi level. • The exchange coupling and magnetic anisotropy induce fine splitting structure. • The splitting structures are explained by inter-level or intra-level transitions.

  7. Filling-enforced nonsymmorphic Kondo semimetals in two dimensions

    Science.gov (United States)

    Pixley, J. H.; Lee, SungBin; Brandom, B.; Parameswaran, S. A.

    2017-08-01

    We study the competition between Kondo screening and frustrated magnetism on the nonsymmorphic Shastry-Sutherland Kondo lattice at a filling of two conduction electrons per unit cell. This model is known to host a set of gapless partially Kondo screened phases intermediate between the Kondo-destroyed paramagnet and the heavy Fermi liquid. Based on crystal symmetries, we argue that (i) both the paramagnet and the heavy Fermi liquid are semimetals protected by a glide symmetry; and (ii) partial Kondo screening breaks the symmetry, removing this protection and allowing the partially Kondo screened phase to be deformed into a Kondo insulator via a Lifshitz transition. We confirm these results using large-N mean-field theory and then use nonperturbative arguments to derive a generalized Luttinger sum rule constraining the phase structure of two-dimensional nonsymmorphic Kondo lattices beyond the mean-field limit.

  8. The Kondo effect in ferromagnetic atomic contacts.

    Science.gov (United States)

    Calvo, M Reyes; Fernández-Rossier, Joaquín; Palacios, Juan José; Jacob, David; Natelson, Douglas; Untiedt, Carlos

    2009-04-30

    Iron, cobalt and nickel are archetypal ferromagnetic metals. In bulk, electronic conduction in these materials takes place mainly through the s and p electrons, whereas the magnetic moments are mostly in the narrow d-electron bands, where they tend to align. This general picture may change at the nanoscale because electrons at the surfaces of materials experience interactions that differ from those in the bulk. Here we show direct evidence for such changes: electronic transport in atomic-scale contacts of pure ferromagnets (iron, cobalt and nickel), despite their strong bulk ferromagnetism, unexpectedly reveal Kondo physics, that is, the screening of local magnetic moments by the conduction electrons below a characteristic temperature. The Kondo effect creates a sharp resonance at the Fermi energy, affecting the electrical properties of the system; this appears as a Fano-Kondo resonance in the conductance characteristics as observed in other artificial nanostructures. The study of hundreds of contacts shows material-dependent log-normal distributions of the resonance width that arise naturally from Kondo theory. These resonances broaden and disappear with increasing temperature, also as in standard Kondo systems. Our observations, supported by calculations, imply that coordination changes can significantly modify magnetism at the nanoscale. Therefore, in addition to standard micromagnetic physics, strong electronic correlations along with atomic-scale geometry need to be considered when investigating the magnetic properties of magnetic nanostructures.

  9. Voltage Quench Dynamics of a Kondo System.

    Science.gov (United States)

    Antipov, Andrey E; Dong, Qiaoyuan; Gull, Emanuel

    2016-01-22

    We examine the dynamics of a correlated quantum dot in the mixed valence regime. We perform numerically exact calculations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibration times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. The time-dependent current saturation temperature connects the equilibrium Kondo temperature to a substantially increased value at voltages outside of the linear response. These signatures are directly observable by experiments in the time domain.

  10. Nonequilibrium Quasiparticle Distribution Induced by Kondo Defects

    Science.gov (United States)

    Kroha, J.; Zawadowski, A.

    2002-04-01

    It is shown that in resistive nanowires out of equilibrium containing either single- or two-channel Kondo impurities the distribution function f(E,U) obeys scaling behavior in terms of the quasiparticle energy E and the bias voltage U. The numerically calculated f(E,U) curves explain quantitatively recent experiments on Cu and Au nanowires. The systematics of the impurity concentration cimp extracted from the comparison between theory and results on various Cu and Au samples strongly suggests that in these systems the scaling arises from magnetic Kondo impurities.

  11. Importance of conduction electron correlation in a Kondo lattice, Ce₂CoSi₃.

    Science.gov (United States)

    Patil, Swapnil; Pandey, Sudhir K; Medicherla, V R R; Singh, R S; Bindu, R; Sampathkumaran, E V; Maiti, Kalobaran

    2010-06-30

    Kondo systems are usually described by the interaction of the correlation induced local moments with the highly itinerant conduction electrons. Here, we study the role of electron correlations among conduction electrons in the electronic structure of a Kondo lattice compound, Ce₂CoSi₃, using high resolution photoemission spectroscopy and ab initio band structure calculations, where Co 3d electrons contribute in the conduction band. High energy resolution employed in the measurements helped to reveal the signatures of Ce 4f states derived Kondo resonance features at the Fermi level and the dominance of Co 3d contributions at higher binding energies in the conduction band. The lineshape of the experimental Co 3d band is found to be significantly different from that obtained from the band structure calculations within the local density approximations, LDA. Consideration of electron-electron Coulomb repulsion, U, among Co 3d electrons within the LDA + U method leads to a better representation of experimental results. The signature of an electron correlation induced satellite feature is also observed in the Co 2p core level spectrum. These results clearly demonstrate the importance of the electron correlation among conduction electrons in deriving the microscopic description of such Kondo systems.

  12. Electrical resistivity of the Kondo system Ce{sub 1-x}La{sub x}Pt{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, K.; Du Plessis, P. de V [f-Electron Magnetism and Heavy-Fermion Physics Programme, Department of Physics, University of the Witwatersrand, Private Bag 3, PO Wits 2050, Johannesburg (South Africa)

    1999-04-19

    The electrical resistivities of the Kondo system Ce{sub 1-x}La{sub x}Pt{sub 2}Si{sub 2} (0 {<=} x {<=} 1) are reported. It is observed that the resistivities of the alloy samples are reduced considerably as a result of annealing the samples. The results furthermore indicate the evolution from dense Kondo behaviour to single-ion incoherent Kondo scattering as x is increased. The resistivity in the dense Kondo regime shows a maximum which drops from T{sub max}=62 K for CePt{sub 2}Si{sub 2} to T{sub max}=36 K for x=0.2. Using the relationship T{sub max} {proportional_to} T{sub K} {proportional_to} exp(-1/JN(E{sub F})) where T{sub K} is the Kondo temperature, J is the exchange integral and N(E{sub F}) is the density of states at the Fermi level E{sub F}, and the experimentally observed values of T{sub max}(X) leads to vertical bar JN(E{sub F})vertical bar {sub 0} = 0.0645 {+-} 0.0004. (author)

  13. Site dependence of the Kondo scale in CePd{sub 1-x}Rh{sub x} evidenced by thermopower

    Energy Technology Data Exchange (ETDEWEB)

    Stockert, Ulrike; Hartmann, Stefanie; Deppe, Micha; Caroca-Canales, Nubia; Geibel, Christoph; Steglich, Frank [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Sereni, Julian [Division Bajas Temperaturas, Centro Atomico Bariloche (Argentina)

    2015-07-01

    CePd{sub 1-x}Rh{sub x} undergoes a continuous evolution from ferromagnetic order in CePd to an intermediate-valence (IV) ground state for CeRh. Close to the disappearance of magnetic order at x{sub cr} ∼ 0.87 unusual behavior of the ac susceptibility and the specific heat was observed. It was explained with a broad distribution of local Kondo temperatures T{sub K} from below 2 K to above 50 K due to the disorder introduced by Pd-Rh exchange. The thermopower S is very sensitive to Kondo scattering even for diluted 4f systems. In Ce compounds a large positive maximum in S(T) is usually observed around T{sub K}. We studied S(T) in CePd{sub 1-x}Rh{sub x} in order to evaluate the presence of Kondo scattering and the involved energy scales. Pure CeRh shows typical IV behavior with a large maximum at 220 K and small values at low T. Already 5 % Pd substitution leads to a strong enhancement of the low-T thermopower. Even larger values are found around x{sub cr}, while the high-T maximum shifts only moderately. Our results are in line with the existence of low (local) Kondo scales in the presence of IV behavior at high Rh content x > x{sub cr}. For lower Rh content a decreasing (average) Kondo scale is found.

  14. Kesterite Cu2ZnSnS4 compounds via electrospinning: A facile route to mesoporous fibers and dense films

    International Nuclear Information System (INIS)

    Mu, Chunhong; Song, Yuanqiang; Wang, Xiaoning; Wu, Peng

    2015-01-01

    Highlights: • CZTS fibers, mesporous films and dense films are fabricated via electrospinning. • Controllable micromorphologies can be obtained. • Band gap decrease from 1.49 eV to 1.44 eV with the morphology changing. - Abstract: Kesterite Cu 2 ZnSnS 4 (CZTS) layers composed of either mesoporous fibers or dense films were successfully synthesized by electrospinning following sulfurization at high temperature. CZTS layers were characterized using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), Raman and X-ray photoelectronic spectroscopy (XPS), and X-ray diffraction (XRD). The optical properties were also recorded by UV–vis absorption spectroscopy. The results showed that, with the increasing of sulfurization temperature from 450 to 600 °C, the electrospun precursor fibers evolved from isolated CZTS fibers to interconnected fibers, and finally forming a compact films composing of sub-micro crystal flakes, just by simply adjusting the solutes concentration and sulfurization parameters. All the synthesized CZTS samples had a single phase, good crystallinity and a stoichiometric composition. Moreover, the band gap evolved from 1.49 eV to 1.44 eV with the morphology changing from porous microfibers to compact films. This work puts forward a facile route to both CZTS fibers and dense films, and would be meaningful for exploiting CZTS-based solar cells

  15. Coherence Kondo gap in CeNiSn and CeRhSb

    International Nuclear Information System (INIS)

    Takabatake, T.; Nakamoto, G.; Tanaka, H.; Bando, Y.; Fujii, H.; Nishigori, S.; Goshima, H.; Suzuki, T.; Fujita, T.; Oguro, I.; Hiraoka, T.; Malik, S.K.

    1994-01-01

    CeNiSn and CeRhSb are Kondo-lattice compounds showing the behavior of a small-gap semiconductor at temperatures below 7 K. We review and discuss the magnetic, transport and specific-heat measurements performed on single crystals of CeNiSn and polycrystals of CeRhSb. Prerequisites for gap formation are deduced from the effects of substitution and application of a magnetic field and pressure on the gapped state. ((orig.))

  16. Effects of pressure on doped Kondo insulators

    International Nuclear Information System (INIS)

    Lee, Chengchung; Xu, Wang

    1999-08-01

    The effects of pressure on the doped Kondo insulators (KI) are studied in the framework of the slave-boson mean-field theory under the coherent potential approximation (CPA). A unified picture for both electron-type KI and hole-type KI is presented. The density of states of the f-electrons under the applied pressures and its variation with the concentration of the Kondo holes are calculated self-consistently. The specific heat coefficient, the zero-temperature magnetic susceptibility as well as the low temperature electric resistivity of the doped KI under various pressures are obtained. The two contrasting pressure-dependent effects observed in the doped KI systems can be naturally explained within a microscopic model. (author)

  17. Nonequilibrium Floquet States in Topological Kondo Insulators

    Science.gov (United States)

    2016-02-04

    approximately 200 mW of power (given ~5 ohm sample Figure 2: Longitudinal resistance measured in SmB6 crystal with simultaneous ultrasound ...Research Triangle Park, NC 27709-2211 floquet Kondo topological ultrasound REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10...observation of a positive effect. Further work is required to understand the origin of the anomalous effect of ultrasound propagation on electrical

  18. Negativity as the Entanglement Measure to Probe the Kondo Regime in the Spin-Chain Kondo Model

    OpenAIRE

    Bayat, Abolfazl; Sodano, Pasquale; Bose, Sougato

    2009-01-01

    We study the entanglement of an impurity at one end of a spin chain with a block of spins using negativity as a true measure of entanglement to characterize the unique features of the gapless Kondo regime in the spin chain Kondo model. For this spin chain in the Kondo regime we determine- with a true entanglement measure- the spatial extent of the Kondo screening cloud, we propose an ansatz for its ground state and demonstrate that the impurity spin is indeed maximally entangled with the clou...

  19. Hybridization in Kondo lattice heavy fermions via quasiparticle scattering spectroscopy (QPS)

    Science.gov (United States)

    Narasiwodeyar, Sanjay; Dwyer, Matt; Greene, Laura; Park, Wan Kyu; Bauer, Eric; Tobash, Paul; Baumbach, Ryan; Ronning, Filip; Sarrao, John; Thompson, Joe; Canfield, Paul

    2014-03-01

    Band renormalization in a Kondo lattice via hybridization of the conduction band with localized states has been a hot topic over the last several years. In part, this has to do with recently reignited interest in the hidden order problem in URu2Si2. Despite recent developments regarding the electronic structure in this compound, it remains to be resolved whether the hidden order phase transition is related to the opening of a hybridization gap. Our quasiparticle scattering spectroscopy (QPS) has shown they are not related directly. This can be understood naturally since in principle band renormalization does not involve symmetry breaking. To deepen our understanding, we extend to other Kondo lattice compounds. For instance, when applied to YbAl3, a vegetable heavy-fermion system, QPS reveals conductance signatures for hybridization in a Kondo lattice such as asymmetric Fano background along with characteristic energy scales. Presenting new results on these materials, we will discuss a broader picture. The work at UIUC is supported by the NSF DMR 12-06766, the work at LANL is carried out under the auspices of the U.S. DOE, Office of Science, and the work done at Ames Lab. was supported under Contract No. DE-AC02-07CH11358.

  20. Two-stage multipolar ordering in Pr T2Al20 Kondo materials

    Science.gov (United States)

    Freyer, Frederic; Attig, Jan; Lee, SungBin; Paramekanti, Arun; Trebst, Simon; Kim, Yong Baek

    2018-03-01

    Among heavy fermion materials, there is a set of rare-earth intermetallics with non-Kramers Pr3 +4 f2 moments which exhibit a rich phase diagram with intertwined quadrupolar orders, superconductivity, and non-Fermi liquid behavior. However, more subtle broken symmetries such as multipolar orders in these Kondo materials remain poorly studied. Here, we argue that multi-spin interactions between local moments beyond the conventional two-spin exchange must play an important role in Kondo materials near the ordered to heavy Fermi liquid transition. We show that this drives a plethora of phases with coexisting multipolar orders and multiple thermal phase transitions, providing a natural framework for interpreting experiments on the Pr(T) 2Al20 class of compounds.

  1. Nanomechanical dissipation at a tip-induced Kondo onset

    Science.gov (United States)

    Baruselli, Pier Paolo; Fabrizio, Michele; Tosatti, Erio

    2017-08-01

    The onset or demise of Kondo effect in a magnetic impurity on a metal surface can be triggered, as sometimes observed, by the simple mechanical nudging of a tip. Such a mechanically driven quantum phase transition must reflect in a corresponding mechanical dissipation peak; yet, this kind of signature has not been focused upon so far. Aiming at the simplest theoretical modeling, we treat the impurity as an Anderson impurity model, the tip action as a hybridization switching, and solve the problem by numerical renormalization group. Studying this model as function of temperature and magnetic field we are able to isolate the Kondo contribution to dissipation. While that is, reasonably, of the order of the Kondo energy, its temperature evolution shows a surprisingly large tail even above the Kondo temperature. The detectability of Kondo mechanical dissipation in atomic force microscopy is also discussed.

  2. Fano-Kondo and the Kondo box regimes crossover in a quantum dot coupled to a quantum box

    Science.gov (United States)

    Apel, Victor M.; Orellana, Pedro A.; Pacheco, Monica; Anda, Enrique V.

    2013-12-01

    In this work, we study the Kondo effect of a quantum dot (QD) connected to leads and to a discrete set of one-particle states provided by a quantum box represented by a quantum ring (QR) pierced by a magnetic flux side attached to the QD. The interplay between the bulk Kondo effect and the so-called Kondo box regime is studied. In this system the QR energies can be continuously modified by the application of the magnetic field. The crossover between these two regimes is analyzed by changing the connection of the QD to the QR from the weak to the strong coupling regime. In the weak coupling regime, the differential conductance develops a sequence of Fano-Kondo anti-resonances due to destructive interference between the discrete quantum ring levels and the conducting Kondo channel provided by the leads. In the strong coupling regime the differential conductance has very sharp resonances when one of the Kondo discrete sub-levels characterizing the Kondo box is tuned by the applied potential. The conductance, the current fluctuations and the Fano coefficient result as being the relevant physical magnitudes to be analyzed to reveal the physical properties of these two Kondo regimes and the crossover region between them. The results were obtained by using the slave boson mean field theory (SBMFT).

  3. Studies on Kondo insulating FeSi

    International Nuclear Information System (INIS)

    Bharathi, A.; Mani, Awadhesh; Ravindran, Nithya; Mathi Jaya, S.; Sundar, C.S.; Hariharan, Y.

    2000-01-01

    Temperature dependent electrical resistivity measurements have been carried out in Fe (1-x) Ru x Si and FeSi (1-x) Ge x to examine the robustness of the Kondo Insulating gap to substitution in the Fe and Si sublattices. The gap is seen to decrease with Ge substitution, while for Ru substitution the gap shows an initial decrease followed by an increase at higher concentration. The results can be understood in terms of the shift in the mobility edge due to disorder and/or pressure effects in combination with changes in band structure

  4. Investigating the large degeneracy Kondo lattice metamagnet CeTiGe: Crystal growth and doping studies

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, T.; Caroca-Canales, N.; Deppe, M.; Geibel, C. [MPI fuer Chemische Physik fester Stoffe, 01187, Dresden (Germany); Sereni, J. [Centro Atomico Bariloche, 8400, S. C. de Bariloche (Argentina)

    2011-07-01

    CeTiGe is a paramagnetic Kondo lattice system with a large orbital degeneracy involved in the formation of the heavy Fermion ground state. Recently we discovered that this compound presents a huge metamagnetic transition at B{sub MMT} {approx} 13 T, with much larger anomalies in magnetization, magnetoresistance and magnetostriction than in the archetypical Kondo lattice metamagnet CeRu{sub 2}Si{sub 2}. Since CeTiGe forms in a pronounced peritectic reaction the growth of single crystals is difficult. We therefore studied the Ce-Ti-Ge ternary metallographic phase diagram to get a sound basis for future crystal growth attempts. Preliminary results of growth experiments based on these studies are promising and shall be discussed. Furthermore, Ti-rich CeTiGe was recently reported to present a high temperature phase crystallizing in the closely related CeScSi structure type. In order to study this structural instability and the effect on the physical properties, we studied the effect of substituting Sc for Ti, since pure CeScGe crystallizes in the CeScSi structure type. In well annealed samples we observed a two phase region in the range 10% - 25%-Sc-substitution. Preliminary investigations of the CeSc{sub x}Ti{sub 1-x}Ge alloy suggest it is a promising candidate for the observation of a ferromagnetic quantum critical point in a large degeneracy Kondo lattice system.

  5. Muon spin relaxation and nonmagnetic Kondo state in PrInAg2

    International Nuclear Information System (INIS)

    MacLaughlin, D. E.; Heffner, R. H.; Nieuwenhuys, G. J.; Canfield, P. C.; Amato, A.; Baines, C.; Schenck, A.; Luke, G. M.; Fudamoto, Y.; Uemura, Y. J.

    2000-01-01

    Muon spin relaxation experiments have been carried out in the Kondo compound PrInAg 2 . The zero-field muon relaxation rate is found to be independent of temperature between 0.1 and 10 K, which rules out a magnetic origin (spin freezing or a conventional Kondo effect) for the previously observed specific-heat anomaly at ∼0.5 K. At low temperatures the muon relaxation can be quantitatively understood in terms of the muon's interaction with nuclear magnetism, including hyperfine enhancement of the 141 Pr nuclear moment at low temperatures. This argues against a Pr 3+ ground-state electronic magnetic moment, and is strong evidence for the doublet Γ 3 crystalline-electric-field-split ground state required for a nonmagnetic route to heavy-electron behavior. The data imply the existence of an exchange interaction between neighboring Pr 3+ ions of the order of 0.2 K in temperature units, which should be taken into account in a complete theory of a nonmagnetic Kondo effect in PrInAg 2 . (c) 2000 The American Physical Society

  6. Engineering the Kondo state in two-dimensional semiconducting phosphorene

    Science.gov (United States)

    Babar, Rohit; Kabir, Mukul

    2018-01-01

    Correlated interaction between dilute localized impurity electrons and the itinerant host conduction electrons in metals gives rise to the conventional many-body Kondo effect below sufficiently low temperature. In sharp contrast to these conventional Kondo systems, we report an intrinsic, robust, and high-temperature Kondo state in two-dimensional semiconducting phosphorene. While absorbed at a thermodynamically stable lattice defect, Cr impurity triggers an electronic phase transition in phosphorene to provide conduction electrons, which strongly interact with the localized moment generated at the Cr site. These manifest into the intrinsic Kondo state, where the impurity moment is quenched in multiple stages and at temperatures in the 40-200 K range. Further, along with a much smaller extension of the Kondo cloud, the predicted Kondo state is shown to be robust under uniaxial strain and layer thickness, which greatly simplifies its future experimental realization. We predict the present study will open up new avenues in Kondo physics and trigger further theoretical and experimental studies.

  7. X-boson cumulant approach to the topological Kondo insulators

    Science.gov (United States)

    Ramos, E.; Franco, R.; Silva-Valencia, J.; Foglio, M. E.; Figueira, M. S.

    2014-12-01

    In this work we present a generalization of our previous work of the X-boson approach to the periodic Anderson model (PAM), adequate to study a novel class of intermetallic 4f and 5f orbitals materials: the topological Kondo insulators, whose paradigmatic material is the compound SmB6. For simplicity, we consider a version of the PAM on a 2D square lattice, adequate to describe Ce-based compounds in two dimensions. The starting point of the model is the 4f - Ce ions orbitals, with J = 5/2 multiplet, in the presence of spin-orbit coupling. Our technique works well for all of the parameters of the model and avoids the unwanted phase transitions of the slave boson mean field theory. We present a critical comparison of our results with those of the usual slave boson method, that has been intensively used to describe this class of materials. We also obtain a new valence first order transition which we attribute to the vec k dependence of the hybridization.

  8. Thermodynamics of the topological Kondo model

    Directory of Open Access Journals (Sweden)

    Francesco Buccheri

    2015-07-01

    Full Text Available Using the thermodynamic Bethe ansatz, we investigate the topological Kondo model, which describes a set of one-dimensional external wires, pertinently coupled to a central region hosting a set of Majorana bound states. After a short review of the Bethe ansatz solution, we study the system at finite temperature and derive its free energy for arbitrary (even and odd number of external wires. We then analyse the ground state energy as a function of the number of external wires and of their couplings to the Majorana bound states. Then, we compute, both for small and large temperatures, the entropy of the Majorana degrees of freedom localized within the central region and connected to the external wires. Our exact computation of the impurity entropy provides evidence of the importance of fermion parity symmetry in the realization of the topological Kondo model. Finally, we also obtain the low-temperature behaviour of the specific heat of the Majorana bound states, which provides a signature of the non-Fermi-liquid nature of the strongly coupled fixed point.

  9. Thermodynamics of the topological Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Buccheri, Francesco, E-mail: buccheri@iip.ufrn.br [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Babujian, Hrachya [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Yerevan Physics Institute, Alikhanian Brothers 2, Yerevan, 375036 (Armenia); Korepin, Vladimir E. [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); C. N. Yang Institute for Theoretical Physics, Stony Brook University, NY 11794 (United States); Sodano, Pasquale [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Departemento de Fisíca Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Trombettoni, Andrea [CNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, I-34136 Trieste (Italy); SISSA and INFN, Sezione di Trieste, Via Bonomea 265, I-34136 Trieste (Italy)

    2015-07-15

    Using the thermodynamic Bethe ansatz, we investigate the topological Kondo model, which describes a set of one-dimensional external wires, pertinently coupled to a central region hosting a set of Majorana bound states. After a short review of the Bethe ansatz solution, we study the system at finite temperature and derive its free energy for arbitrary (even and odd) number of external wires. We then analyse the ground state energy as a function of the number of external wires and of their couplings to the Majorana bound states. Then, we compute, both for small and large temperatures, the entropy of the Majorana degrees of freedom localized within the central region and connected to the external wires. Our exact computation of the impurity entropy provides evidence of the importance of fermion parity symmetry in the realization of the topological Kondo model. Finally, we also obtain the low-temperature behaviour of the specific heat of the Majorana bound states, which provides a signature of the non-Fermi-liquid nature of the strongly coupled fixed point.

  10. Collective Kondo effect in the Anderson-Hubbard lattice

    Science.gov (United States)

    Fazekas, P.; Itai, K.

    1997-02-01

    The periodic Anderson model is extended by switching on a Hubbard U for the conduction electrons. We use the Gutzwiller variational method to study the nearly integral valent limit. The lattice Kondo energy contains the U-dependent chemical potential of the Hubbard subsystem in the exponent, and the correlation-induced band narrowing in the prefactor. Both effects tend to suppress the Kondo scale, which can be understood to result from the blocking of hybridization. At half-filling, we find a Brinkman-Rice-type transition from a Kondo insulator to a Mott insulator.

  11. Correlated mean filed Ansatz for the Kondo necklace

    International Nuclear Information System (INIS)

    Kee, H.Y.; Fazekas, P.

    1993-08-01

    We study the ground state phase diagram of the pseudospin model introduced by Doniach to describe the essential physics of Kondo lattices. We use variational trial states which augment the usual mean field solution by incorporating various intersite correlations. A composite spin correlation describing the antiparallel alignment of fluctuating triplets is found to be particularly favourable for large Kondo couplings. With this trial state, the magnetic-to-Kondo transition is suppressed and the strong coupling ground state is ordered with strongly reduced moments. The relevance of the findings is discussed. (author). 19 refs, 4 figs

  12. Correlated mean filed Ansatz for the Kondo necklace

    Energy Technology Data Exchange (ETDEWEB)

    Kee, H Y; Fazekas, P

    1993-08-01

    We study the ground state phase diagram of the pseudospin model introduced by Doniach to describe the essential physics of Kondo lattices. We use variational trial states which augment the usual mean field solution by incorporating various intersite correlations. A composite spin correlation describing the antiparallel alignment of fluctuating triplets is found to be particularly favourable for large Kondo couplings. With this trial state, the magnetic-to-Kondo transition is suppressed and the strong coupling ground state is ordered with strongly reduced moments. The relevance of the findings is discussed. (author). 19 refs, 4 figs.

  13. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models

    Science.gov (United States)

    Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun

    2018-03-01

    The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.

  14. Nonequilibrium electron transport through quantum dots in the Kondo regime

    DEFF Research Database (Denmark)

    Wölfle, Peter; Paaske, Jens; Rosch, Achim

    2005-01-01

    Electron transport at large bias voltage through quantum dots in the Kondo regime is described within the perturbative renormalization group extended to nonequilibrium. The conductance, local magnetization, dynamical spin susceptibility and local spectral function are calculated. We show how...

  15. Kondo effect in single-molecule magnet transistors

    Science.gov (United States)

    Gonzalez, Gabriel; Leuenberger, Michael; Mucciolo, Eduardo

    2009-03-01

    We present a careful and thorough microscopic derivation of the anisotropic Kondo Hamiltonian for single-molecule magnet (SMM) transistors. When the molecule is strongly coupled to metallic leads, we show that by applying a transverse magnetic field it is possible to topologically induce or quench the Kondo effect in the conductance of a SMM with either an integer or a half-integer spin S>1/2. This topological Kondo effect is due to the Berry-phase interference between multiple quantum tunneling paths of the spin. We calculate the renormalized Berry-phase oscillations of the two Kondo peaks as a function of a transverse magnetic field by means of the poor man's scaling approach. We illustrate our findings with the SMM Ni4, which we propose as a possible candidate for the experimental observation of the conductance oscillations.

  16. Transport, Thermal, and Magnetic Properties of YbNi3X9 (X = Al, Ga): A Newly Synthesized Yb-Based Kondo Lattice System

    Science.gov (United States)

    Yamashita, Tetsuro; Miyazaki, Ryoichi; Aoki, Yuji; Ohara, Shigeo

    2012-03-01

    We have succeeded in synthesizing a new Yb-based Kondo lattice system, YbNi3X9 (X = Al, Ga). Our study reveals that YbNi3Al9 shows typical features of a heavy-fermion antiferromagnet with a Néel temperature of TN = 3.4 K. All of the properties reflect a competition between the Kondo effect and the crystalline electric field (CEF) effect. The moderate heavy-fermion state leads to an enhanced Sommerfeld coefficient of 100 mJ/(mol\\cdotK2), even if ordered antiferromagnetically. On the other hand, the isostructural gallide YbNi3Ga9 is an intermediate-valence system with a Kondo temperature of TK = 570 K. A large hybridization scale can overcome the CEF splitting energy, and a moderately heavy Fermi-liquid ground state with high local moment degeneracy should form at low temperatures. Note that the quality of single-crystalline YbNi3X9 is extremely high compared with those of other Yb-based Kondo lattice compounds. We conclude that YbNi3X9 is a suitable system for investigating the electronic structure of Yb-based Kondo lattice systems from a heavy-fermion system with an antiferromagnetically ordered ground state to an intermediate-valence system.

  17. Quantum quenches in a holographic Kondo model

    Science.gov (United States)

    Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.

    2017-04-01

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.

  18. Quantum quenches in a holographic Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, 97074 Würzburg (Germany); Flory, Mario [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institute of Physics, Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Newrzella, Max-Niklas; Strydom, Migael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Wu, Jackson M. S. [Department of Physics and Astronomy, University of Alabama,Tuscaloosa, AL 35487 (United States)

    2017-04-10

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/ gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU(N) spin. At large N, it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS{sub 2} and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν=1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ∼t{sup −a}sin (blog t). This indicates the emergence of a discrete scale invariance.

  19. Kondo Impurities Coupled to a Helical Luttinger Liquid: RKKY-Kondo Physics Revisited.

    Science.gov (United States)

    Yevtushenko, Oleg M; Yudson, Vladimir I

    2018-04-06

    We show that the paradigmatic Ruderman-Kittel-Kasuya-Yosida (RKKY) description of two local magnetic moments coupled to propagating electrons breaks down in helical Luttinger liquids when the electron interaction is stronger than some critical value. In this novel regime, the Kondo effect overwhelms the RKKY interaction over all macroscopic interimpurity distances. This phenomenon is a direct consequence of the helicity (realized, for instance, at edges of a time-reversal invariant topological insulator) and does not take place in usual (nonhelical) Luttinger liquids.

  20. Two-Channel Kondo Effect in a Modified Single Electron Transistor

    Science.gov (United States)

    Oreg, Yuval; Goldhaber-Gordon, David

    2003-04-01

    We suggest a simple system of two electron droplets which should display two-channel Kondo behavior at experimentally accessible temperatures. Stabilization of the two-channel Kondo fixed point requires fine control of the electrochemical potential in each droplet, which can be achieved by adjusting voltages on nearby gate electrodes. We study the conditions for obtaining this type of two-channel Kondo behavior, discuss the experimentally observable consequences, and explore the gener­alization to the multichannel Kondo case.

  1. Multi-pole orders and Kondo screening: Implications for quantum phase transitions in multipolar heavy-fermion systems

    Science.gov (United States)

    Lai, Hsin-Hua; Nica, Emilian; Si, Qimiao

    Motivated by the properties of the heavy-fermion Ce3Pd20Si6 compound which exhibits both antiferro-magnetic (AFM) and antiferro-quadrupolar (AFQ) orders, we study a simplified quantum non-linear sigma model for spin-1 systems, with generalized multi-pole Kondo couplings to conduction electrons. We first consider the case when an SU(3) symmetry relates the spin and quadrupolar channels. We then analyze the effect of breaking the SU(3) symmetry, so that the interaction parameters in the spin and quadrupolar sectors are no longer equivalent, and different stages of Kondo screenings are allowed. A renormalization group analysis is used to analyze the interplay between the Kondo effect and the AFM/AFQ orders. Our work paves the way for understanding the global phase diagram in settings beyond the prototypical spin-1/2 cases. We also discuss similar considerations in the non-Kramers systems such as the heavy fermion compound PrV2Al20

  2. Interaction effects in Aharonov-Bohm-Kondo rings

    Science.gov (United States)

    Komijani, Yashar; Yoshii, Ryosuke; Affleck, Ian

    2013-12-01

    We study the conductance through an Aharonov-Bohm ring, containing a quantum dot in the Kondo regime in one arm, at finite temperature and arbitrary electronic density. We develop a general method for this calculation based on changing the basis to the screening and nonscreening channels. We show that an unusual term appears in the conductance, involving the connected four-point Green's function of the conduction electrons. However, this term and the terms quadratic in the T matrix can be eliminated at sufficiently low temperatures, leading to an expression for the conductance linear in the Kondo T matrix. Explicit results are given for temperatures that are high compared to the Kondo temperature.

  3. Kondo and mixed-valence regimes in multilevel quantum dots

    International Nuclear Information System (INIS)

    Chudnovskiy, A. L.; Ulloa, S. E.

    2001-01-01

    We investigate the dependence of the ground state of a multilevel quantum dot on the coupling to an external fermionic system and on the interactions in the dot. As the coupling to the external system increases, the rearrangement of the effective energy levels in the dot signals the transition from the Kondo regime to a mixed-valence (MV) regime. The MV regime in a two-level dot is characterized by an intrinsic mixing of the levels in the dot, resulting in nonperturbative subtunneling and supertunneling phenomena that strongly influence the Kondo effect

  4. Critical Kondo destruction and the violation of the quantum-to-classical mapping of quantum criticality

    International Nuclear Information System (INIS)

    Kirchner, Stefan; Si Qimiao

    2009-01-01

    Antiferromagnetic heavy fermion metals close to their quantum critical points display a richness in their physical properties unanticipated by the traditional approach to quantum criticality, which describes the critical properties solely in terms of fluctuations of the order parameter. This has led to the question as to how the Kondo effect gets destroyed as the system undergoes a phase change. In one approach to the problem, Kondo lattice systems are studied through a self-consistent Bose-Fermi Kondo model within the extended dynamical mean field theory. The quantum phase transition of the Kondo lattice is thus mapped onto that of a sub-Ohmic Bose-Fermi Kondo model. In the present article we address some aspects of the failure of the standard order-parameter functional for the Kondo-destroying quantum critical point of the Bose-Fermi Kondo model.

  5. Field induced magnetic quantum critical behavior in the Kondo necklace model

    International Nuclear Information System (INIS)

    Reyes, Daniel; Continentino, Mucio

    2008-01-01

    The Kondo necklace model augmented by a Zeeman term, serves as a useful model for heavy fermion compounds in an applied magnetic field. The phase diagram and thermodynamic behavior for arbitrary dimensions d has been investigated previously in the zero field case [D. Reyes, M. Continentino, Phys. Rev. B 76 (2007) 075114. ]. Here we extend the treatment to finite fields using a generalized bond operator representation for the localized and conduction electrons spins. A decoupling scheme on the double time Green's functions yields the dispersion relation for the excitations of the system. Two critical magnetic fields are found namely, a critical magnetic field called henceforth h c1 and a saturation field nominated h c2 . Then three important regions can be investigated: (i) Kondo spin liquid state (KSL) at low fields h c1 ; (ii) destruction of KSL state at h≥h c1 and appearance of a antiferromagnetic state; and (iii) saturated paramagnetic region above the upper critical field h c2

  6. Magnetic order and Kondo effect in the Anderson-lattice model

    International Nuclear Information System (INIS)

    Bernhard, B.H.; Aguiar, C.; Kogoutiouk, I.; Coqblin, B.

    2007-01-01

    The Anderson-lattice model has been extensively developed to account for the properties of many anomalous rare-earth compounds and in particular for the competition between the Kondo effect and an antiferromagnetic (AF) phase in a cubic lattice. Here we apply the higher-order decoupling of the equations of motion for the Green Functions (GF) introduced in [H.G. Luo, S.J. Wang, Phys. Rev. B 62 (2000) 1485]. We obtain an improved description of the phase diagram, where the AF phase subsists in a smaller range of the model parameters. As higher-order GF are included in the chain of equations, we are able to calculate directly the local spin-flip correlation function † ↓ d † ↑ f ↑ d ↓ >. As a further improvement to the previous approximation of [B.H. Bernhard, C. Aguiar, B. Coqblin, Physica B 378-380 (2006) 712], we obtain a reduced range of existence for the AF phase for the symmetric half-filled case and then we discuss the competition between the AF order and the Kondo effect as a function of the band filling

  7. Kondo Effect of U Impurities in Dilute (YU)2Zn17

    Science.gov (United States)

    Takagi, Shigeru; Suzuki, Hiroyuki; Anzai, Kousuke

    2001-10-01

    Extending previous work on single-site properties of U ions in (LaU)2Zn17, we have investigated, from ρ(T), χ(T) and Cp(T) on single crystals, (Y1-xUx)2Zn17 with x=0.025 and 0.050, which has almost the same unit-cell volume as an antiferromagnetic heavy-electron compound U2Zn17. Remarkable features in the dilute-impurity limit have been clarified, which include Kondo behavior of ρ(T), large and almost isotropic χimp(T), and strongly enhanced Cimp(T)/T with gigantic γimp=2.02 2.05 J/K2·mole-U as T→0 due to a low characteristic energy-scale of the system. It is shown that gross features of the data are explained in terms of the conventional Kondo effect in the presence of the crystal field with the U3+ \\varGamma6 doublet ground state. It is also shown that the variation of γ with the unit-cell volume in related systems is not explained as a volume effect on TK and that even the behavior of fictitious “paramagnetic” U2Zn17 is not described as a collection of U impurities in dilute (YU)2Zn17.

  8. Three stage Kondo effect in a three quantum dot system

    Science.gov (United States)

    Chiappe, Guillermo; Costa Ribeiro, Laercio; Hamad, Ignacio; Victoriano Anda, Enrique

    2014-03-01

    In this work we study the transport properties of a series connected three quantum dot (QD) system with local strong Coulomb interaction and with one of the extremity QD connected to two metallic leads. We evaluate the local density of states (LDOS) in the QDs and the conductance between the metallic leads considering different magnitudes for the coupling between the central and the extremity QD which is not connected to the leads (side QDs). For small magnitudes of this coupling the LDOS of the QD coupled to the leads present a Kondo resonance with a dip and a very tiny peak at the Fermi level. The widths of these structures are associated to three energy scales, or three Kondo temperatures, which characterizes the three stage Kondo regime. Increasing the coupling between the side QDs we observe a transition to the conventional Kondo regime. We use the multi-configuration Lanczos calculations and the finite U slave-boson mean-field theory. The results present qualitative and quantitative agreement.

  9. Kondo effect in three-dimensional Dirac and Weyl systems

    NARCIS (Netherlands)

    Mitchell, Andrew K.; Fritz, Lars

    2015-01-01

    Magnetic impurities in three-dimensional Dirac and Weyl systems are shown to exhibit a fascinatingly diverse range of Kondo physics, with distinctive experimental spectroscopic signatures. When the Fermi level is precisely at the Dirac point, Dirac semimetals are in fact unlikely candidates for a

  10. Two-point functions in a holographic Kondo model

    Science.gov (United States)

    Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.

    2017-03-01

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i2, which is characteristic of a Kondo resonance.

  11. Two-point functions in a holographic Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, D-97074 Würzburg (Germany); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 Munich (Germany); Hoyos, Carlos [Department of Physics, Universidad de Oviedo, Avda. Calvo Sotelo 18, 33007, Oviedo (Spain); O’Bannon, Andy [STAG Research Centre, Physics and Astronomy, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom); Papadimitriou, Ioannis [SISSA and INFN - Sezione di Trieste, Via Bonomea 265, I 34136 Trieste (Italy); Probst, Jonas [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Wu, Jackson M.S. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-03-07

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0+1)-dimensional impurity spin of a gauged SU(N) interacting with a (1+1)-dimensional, large-N, strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU(N)-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O{sup †}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1+1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0+1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green’s function of the form −i〈O〉{sup 2}, which is characteristic of a Kondo resonance.

  12. Thermal properties of some cerium compounds, particularly CeB6

    International Nuclear Information System (INIS)

    Peysson, Y.

    1986-09-01

    Using measurements of specific heat between 0.3 to 250K in the absence of a magnetic field, and from 2 to 250K for magnetic fields between 0 and 8T, it is shown that the γ 8 quadruplet is the fundamental level of the Ce 3+ ion, the γ 8-7 separation energy being of the order of 500K. Detailed analysis suggests a lifting of degeneracy of the multiplet γ 8 in the paramagnetic phase, according to usual processes. Specific heat results obtained at very low temperatures reveal the importance of a significant gap in the spin wave energy spectra. Measurements under a strong magnetic field, around the two magnetic phase transitions of CeB6 show a spectacular reinforcement of the specific heat anomaly at a temperature of the order of T Q . Thermal conductivity of CEB6 is also studied in relation to the possible existence of a Jahn-Teller effect, likely to affect heat transfer by phonons. The problem of the different components of thermal transport prompts the analysis of the Weidemann-Franz law in the Kondo net, and also the study of the thermal conductivity of the compounds CeCu6, CeA12, the alloys Ce 0 . 7 5La 0 . 25 B 6 , Ce x La 1-x Cu 6 , and the fluctuating valence system SmB 6 . In all these bodies, an important contribution of phonons to electron transfer is shown. In the dense incoherent Kondo phase, it is not possible to envisage differences from the Weidemann-Franz law greater than those observed for highly diluted Kondo alloys [fr

  13. Kesterite Cu{sub 2}ZnSnS{sub 4} compounds via electrospinning: A facile route to mesoporous fibers and dense films

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Chunhong; Song, Yuanqiang, E-mail: yuanqiangsong@uestc.edu.cn; Wang, Xiaoning; Wu, Peng

    2015-10-05

    Highlights: • CZTS fibers, mesporous films and dense films are fabricated via electrospinning. • Controllable micromorphologies can be obtained. • Band gap decrease from 1.49 eV to 1.44 eV with the morphology changing. - Abstract: Kesterite Cu{sub 2}ZnSnS{sub 4} (CZTS) layers composed of either mesoporous fibers or dense films were successfully synthesized by electrospinning following sulfurization at high temperature. CZTS layers were characterized using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), Raman and X-ray photoelectronic spectroscopy (XPS), and X-ray diffraction (XRD). The optical properties were also recorded by UV–vis absorption spectroscopy. The results showed that, with the increasing of sulfurization temperature from 450 to 600 °C, the electrospun precursor fibers evolved from isolated CZTS fibers to interconnected fibers, and finally forming a compact films composing of sub-micro crystal flakes, just by simply adjusting the solutes concentration and sulfurization parameters. All the synthesized CZTS samples had a single phase, good crystallinity and a stoichiometric composition. Moreover, the band gap evolved from 1.49 eV to 1.44 eV with the morphology changing from porous microfibers to compact films. This work puts forward a facile route to both CZTS fibers and dense films, and would be meaningful for exploiting CZTS-based solar cells.

  14. Formation of spin-polarons in the ferromagnetic Kondo lattice model away from half-filling

    International Nuclear Information System (INIS)

    Arredondo, Y; Navarro, O; Vallejo, E; Avignon, M

    2012-01-01

    Even though realistic one-dimensional experiments in the field of half-metallic semiconductors are not at hand yet, we are interested in the underlying fundamental physics. In this regard we study a one-dimensional ferromagnetic Kondo lattice model, a model in which a conduction band is coupled ferromagnetically to a background of localized d moments with coupling constant J H , and investigate the T = 0 phase diagram as a function of the antiferromagnetic interaction J between the localized moments and the band-filling n, since it has been observed that doping of the compounds has led to formation of magnetic domains. We explore the spin-polaron formation by looking at the nearest-neighbour correlation functions in the spin and charge regimes for which we use the density matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems. (paper)

  15. Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots

    Science.gov (United States)

    Shang, Ru-Nan; Zhang, Ting; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping

    2018-02-01

    Besides the spin Kondo effect, other degrees of freedom can give rise to the pseudospin Kondo effect. We report a direct observation of the orbital spin Kondo effect in a series-coupled gallium arsenide (GaAs) double quantum dot device where orbital degrees act as pseudospin. Electron occupation in both dots induces a pseudospin Kondo effect. In a region of one net spin impurity, complete spectra with three resonance peaks are observed. Furthermore, we observe a pseudo-Zeeman effect and demonstrate its electrical controllability for the artificial pseudospin in this orbital spin Kondo process via gate voltage control. The fourfold degeneracy point is realized at a specific value supplemented by spin degeneracy, indicating a transition from the SU(2) to the SU(4) Kondo effect.

  16. Charge Fractionalization in the Two-Channel Kondo Effect

    Science.gov (United States)

    Landau, L. Aviad; Cornfeld, Eyal; Sela, Eran

    2018-05-01

    The phenomenon of charge fractionalization describes the emergence of novel excitations with fractional quantum numbers, as predicted in strongly correlated systems such as spin liquids. We elucidate that precisely such an unusual effect may occur in the simplest possible non-Fermi liquid, the two-channel Kondo effect. To bring this concept down to experimental test, we study nonequilibrium transport through a device realizing the charge two-channel Kondo critical point in a recent experiment by Iftikhar et al. [Nature (London) 526, 233 (2015), 10.1038/nature15384]. The shot noise at low voltages is predicted to result in a universal Fano factor e*/e =1 /2 . This allows us to experimentally identify elementary transport processes of emergent fermions carrying half-integer charge.

  17. Quantum critical scaling and fluctuations in Kondo lattice materials

    Science.gov (United States)

    Yang, Yi-feng; Pines, David; Lonzarich, Gilbert

    2017-01-01

    We propose a phenomenological framework for three classes of Kondo lattice materials that incorporates the interplay between the fluctuations associated with the antiferromagnetic quantum critical point and those produced by the hybridization quantum critical point that marks the end of local moment behavior. We show that these fluctuations give rise to two distinct regions of quantum critical scaling: Hybridization fluctuations are responsible for the logarithmic scaling in the density of states of the heavy electron Kondo liquid that emerges below the coherence temperature T∗, whereas the unconventional power law scaling in the resistivity that emerges at lower temperatures below TQC may reflect the combined effects of hybridization and antiferromagnetic quantum critical fluctuations. Our framework is supported by experimental measurements on CeCoIn5, CeRhIn5, and other heavy electron materials. PMID:28559308

  18. Inelastic tunneling spectroscopy for magnetic atoms and the Kondo resonance

    International Nuclear Information System (INIS)

    Goldberg, E C; Flores, F

    2013-01-01

    The interaction between a single magnetic atom and the metal environment (including a magnetic field) is analyzed by introducing an ionic Hamiltonian combined with an effective crystal-field term, and by using a Green-function equation of motion method. This approach describes the inelastic electron tunneling spectroscopy and the Kondo resonances as due to atomic spin fluctuations associated with electron co-tunneling processes between the leads and the atom. We analyze in the case of Fe on CuN the possible spin fluctuations between states with S = 2 and 3/2 or 5/2 and conclude that the experimentally found asymmetries in the conductance with respect to the applied bias, and its marked structures, are well explained by the 2↔3/2 spin fluctuations. The case of Co is also considered and shown to present, in contrast with Fe, a resonance at the Fermi energy corresponding to a Kondo temperature of 6 K. (paper)

  19. Interplay between Kondo and Majorana Interactions in Quantum Dots

    Directory of Open Access Journals (Sweden)

    Meng Cheng

    2014-09-01

    Full Text Available We study the properties of a quantum dot coupled to a topological superconductor and a normal lead and discuss the interplay between Kondo-and Majorana-induced couplings in quantum dots. The latter appears due to the presence of Majorana zero-energy modes localized, for example, at the ends of the one-dimensional superconductor. We investigate the phase diagram of the system as a function of Kondo and Majorana interactions using a renormalization-group analysis, a slave-boson mean-field theory, and numerical simulations using the density-matrix renormalization-group method. We show that, in addition to the well-known Kondo fixed point, the system may flow to a new fixed point controlled by the Majorana-induced coupling, which is characterized by nontrivial correlations between a localized spin on the dot and the fermion parity of the topological superconductor and the normal lead. We compute several measurable quantities, such as differential tunneling conductance and impurity-spin susceptibility, which highlight some peculiar features characteristic to the Majorana fixed point.

  20. Quantum quench of Kondo correlations in optical absorption.

    Science.gov (United States)

    Latta, C; Haupt, F; Hanl, M; Weichselbaum, A; Claassen, M; Wuester, W; Fallahi, P; Faelt, S; Glazman, L; von Delft, J; Türeci, H E; Imamoglu, A

    2011-06-29

    The interaction between a single confined spin and the spins of an electron reservoir leads to one of the most remarkable phenomena of many-body physics--the Kondo effect. Electronic transport measurements on single artificial atoms, or quantum dots, have made it possible to study the effect in great detail. Here we report optical measurements on a single semiconductor quantum dot tunnel-coupled to a degenerate electron gas which show that absorption of a single photon leads to an abrupt change in the system Hamiltonian and a quantum quench of Kondo correlations. By inferring the characteristic power-law exponents from the experimental absorption line shapes, we find a unique signature of the quench in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between the initial and final many-body wavefunctions. We show that the power-law exponent that determines the degree of orthogonality can be tuned using an external magnetic field, which unequivocally demonstrates that the observed absorption line shape originates from Kondo correlations. Our experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only.

  1. Spin-1 two-impurity Kondo problem on a lattice

    Science.gov (United States)

    Allerdt, A.; Žitko, R.; Feiguin, A. E.

    2018-01-01

    We present an extensive study of the two-impurity Kondo problem for spin-1 adatoms on a square lattice using an exact canonical transformation to map the problem onto an effective one-dimensional system that can be numerically solved using the density matrix renormalization group method. We provide a simple intuitive picture and identify the different regimes, depending on the distance between the two impurities, Kondo coupling JK, longitudinal anisotropy D , and transverse anisotropy E . In the isotropic case, two impurities on opposite (the same) sublattices have a singlet (triplet) ground state. However, the energy difference between the triplet ground state and the singlet excited state is very small and we expect an effectively fourfold-degenerate ground state, i.e., two decoupled impurities. For large enough JK the impurities are practically uncorrelated forming two independent underscreened states with the conduction electrons, a clear nonperturbative effect. When the impurities are entangled in an RKKY-like state, Kondo correlations persist and the two effects coexist: the impurities are underscreened, and the dangling spin-1 /2 degrees of freedom are responsible for the interimpurity entanglement. We analyze the effects of magnetic anisotropy in the development of quasiclassical correlations.

  2. Spins of adsorbed molecules investigated by the detection of Kondo resonance

    Science.gov (United States)

    Komeda, Tadahiro

    2014-12-01

    Surface magnetism has been one of the platforms to explore the magnetism in low dimensions. It is also a key component for the development of quantum information processes, which utilizes the spin degree of freedom. The Kondo resonance is a phenomenon that is caused by an interaction between an isolated spin and conduction electrons. First observed in the 1930s as an anomalous increase in the low-temperature resistance of metals embedded with magnetic atoms, the Kondo physics mainly studied the effects of bulk magnetic impurities in the resistivity. In the last 15 years it has undergone a revival by a scanning tunneling microscope (STM) which enables the measurement of the Kondo resonance at surfaces using an atomic scale point contact. The detection of the Kondo resonance can be a powerful tool to explore surface magnetism. In this article, I review recent studies of the surface spin of adsorbed molecules by the detection of the Kondo resonance. Researches on metal phthalocyanine (MPc) and porphyrin molecules will be examined. In addition, the Kondo resonance for double-decker lanthanoide Pc molecules will be discussed. Some of the double-decker Pc molecules show single-molecule magnet (SMM) behavior, which attracts attention as a material for electronic devices. For both classes, the ligand plays a crucial role in determining the parameters of the Kondo resonance, such as the Kondo temperature and the change of the shape from peak to Fano-dip. In addition, the spin in delocalized molecular orbital forms the Kondo resonance, which shows significant differences from the Kondo resonance formed by the metal spins. Since molecular orbital can be tuned in a flexible manner by the design of the molecule, the Kondo resonance formed by delocalized molecular orbital might expand the knowledge of this field.

  3. Quantum phase transitions and anomalous Hall effect in a pyrochlore Kondo lattice

    Science.gov (United States)

    Grefe, Sarah; Ding, Wenxin; Si, Qimiao

    The metallic variant of the pyrochlore iridates Pr2Ir2O7 has shown characteristics of a possible chiral spin liquid state [PRL 96 087204 (2006), PRL 98, 057203 (2007), Nature 463, 210 (2010)] and quantum criticality [Nat. Mater. 13, 356 (2014)]. An important question surrounding the significant anomalous Hall response observed in Pr2Ir2O7 is the nature of the f-electron local moments, including their Kondo coupling with the conduction d-electrons. The heavy effective mass and related thermodynamic characteristics indicate the involvement of the Kondo effect in this system's electronic properties. In this work, we study the effects of Kondo coupling on candidate time-reversal-symmetry-breaking spin liquid states on the pyrochlore lattice. Representing the f-moments as slave fermions Kondo-coupled to conduction electrons, we study the competition between Kondo-singlet formation and chiral spin correlations and determine the zero-temperature phase diagram. We derive an effective chiral interaction between the local moments and the conduction electrons and calculate the anomalous Hall response across the quantum phase transition from the Kondo destroyed phase to the Kondo screened phase. We discuss our results' implications for Pr2Ir2O7 and related frustrated Kondo-lattice systems.

  4. Spin dynamics of the Kondo insulator CeNiSn approaching the metallic phase

    DEFF Research Database (Denmark)

    Schröder, A.; Aeppli, G.; Mason, T.E.

    1997-01-01

    The spin dynamics of Kondo insulators has been studied by high-resolution magnetic neutron spectroscopy at a triple-axes spectrometer on CeNi1-xCuxSn single crystals using a vertical 9 T magnet. While upon doping (x = 0.13) the spin gap of the Kondo insulator CeNiSn collapses at the transition to...

  5. Kondo effect in a deformed molecule coupled asymmetrically to ferromagnetic electrodes

    International Nuclear Information System (INIS)

    Rui-Qiang, Wang; Kai-Ming, Jiang

    2009-01-01

    The nonequilibrium Kondo effect is studied in a molecule quantum dot coupled asymmetrically to two ferromagnetic electrodes by employing the nonequilibrium Green function technique. The current-induced deformation of the molecule is taken into account, modeled as interactions with a phonon system, and phonon-assisted Kondo satellites arise on both sides of the usual main Kondo peak. In the antiparallel electrode configuration, the Kondo satellites can be split only for the asymmetric dot-lead couplings, distinguished from the parallel configuration where splitting also exists, even though it is for symmetric case. We also analyze how to compensate the splitting and restore the suppressed zero-bias Kondo resonance. It is shown that one can change the TMR ratio significantly from a negative dip to a positive peak only by slightly modulating a local external magnetic field, whose value is greatly dependent on the electron–phonon coupling strength. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. From four- to two-channel Kondo effect in junctions of XY spin chains

    Directory of Open Access Journals (Sweden)

    Domenico Giuliano

    2016-08-01

    Full Text Available We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junction can be recasted in the form of a four-channel, spin-1/2 antiferromagnetic Kondo Hamiltonian, the number of channels effectively participating in the Kondo effect depends on the chain parameters, as well as on the boundary couplings at the junction. The system evolves from an effective four-channel topological Kondo effect for a junction of XX-chains with symmetric boundary couplings into a two-channel one at a junction of three quantum critical Ising chains. The effective number of Kondo channels depends on the properties of the boundary and of the bulk. The XX-line is a “critical” line, where a four-channel topological Kondo effect can be recovered by fine-tuning the boundary parameter, while along the line in parameter space connecting the XX-line and the critical Ising point the junction is effectively equivalent to a two-channel topological Kondo Hamiltonian. Using a renormalization group approach, we determine the flow of the boundary couplings, which allows us to define and estimate the critical couplings and Kondo temperatures of the different Kondo (pair channels. Finally, we study the local transverse magnetization in the center of the Y-junction, eventually arguing that it provides an effective tool to monitor the onset of the two-channel Kondo effect.

  7. From four- to two-channel Kondo effect in junctions of XY spin chains

    International Nuclear Information System (INIS)

    Giuliano, Domenico; Sodano, Pasquale; Tagliacozzo, Arturo; Trombettoni, Andrea

    2016-01-01

    We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junction can be recasted in the form of a four-channel, spin-1/2 antiferromagnetic Kondo Hamiltonian, the number of channels effectively participating in the Kondo effect depends on the chain parameters, as well as on the boundary couplings at the junction. The system evolves from an effective four-channel topological Kondo effect for a junction of XX-chains with symmetric boundary couplings into a two-channel one at a junction of three quantum critical Ising chains. The effective number of Kondo channels depends on the properties of the boundary and of the bulk. The XX-line is a “critical” line, where a four-channel topological Kondo effect can be recovered by fine-tuning the boundary parameter, while along the line in parameter space connecting the XX-line and the critical Ising point the junction is effectively equivalent to a two-channel topological Kondo Hamiltonian. Using a renormalization group approach, we determine the flow of the boundary couplings, which allows us to define and estimate the critical couplings and Kondo temperatures of the different Kondo (pair) channels. Finally, we study the local transverse magnetization in the center of the Y-junction, eventually arguing that it provides an effective tool to monitor the onset of the two-channel Kondo effect.

  8. From four- to two-channel Kondo effect in junctions of XY spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Giuliano, Domenico, E-mail: domenico.giuliano@fis.unical.it [Dipartimento di Fisica, Università della Calabria, Arcavacata di Rende I-87036, Cosenza (Italy); INFN, Gruppo collegato di Cosenza, Arcavacata di Rende I-87036, Cosenza (Italy); Sodano, Pasquale, E-mail: pasquale.sodano02@gmail.com [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Departemento de Física Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Tagliacozzo, Arturo, E-mail: arturo.tagliacozzo@na.infn.it [INFN, Gruppo collegato di Cosenza, Arcavacata di Rende I-87036, Cosenza (Italy); Dipartimento di Fisica, Università di Napoli “Federico II”, Monte S. Angelo-Via Cintia, I-80126 Napoli (Italy); CNR-SPIN, Monte S. Angelo-Via Cintia, I-80126 Napoli (Italy); Trombettoni, Andrea, E-mail: andreatr@sissa.it [CNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, I-34136 Trieste (Italy); SISSA and INFN, Sezione di Trieste, Via Bonomea 265, I-34136 Trieste (Italy)

    2016-08-15

    We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junction can be recasted in the form of a four-channel, spin-1/2 antiferromagnetic Kondo Hamiltonian, the number of channels effectively participating in the Kondo effect depends on the chain parameters, as well as on the boundary couplings at the junction. The system evolves from an effective four-channel topological Kondo effect for a junction of XX-chains with symmetric boundary couplings into a two-channel one at a junction of three quantum critical Ising chains. The effective number of Kondo channels depends on the properties of the boundary and of the bulk. The XX-line is a “critical” line, where a four-channel topological Kondo effect can be recovered by fine-tuning the boundary parameter, while along the line in parameter space connecting the XX-line and the critical Ising point the junction is effectively equivalent to a two-channel topological Kondo Hamiltonian. Using a renormalization group approach, we determine the flow of the boundary couplings, which allows us to define and estimate the critical couplings and Kondo temperatures of the different Kondo (pair) channels. Finally, we study the local transverse magnetization in the center of the Y-junction, eventually arguing that it provides an effective tool to monitor the onset of the two-channel Kondo effect.

  9. Dense ceramic articles

    International Nuclear Information System (INIS)

    Cockbain, A.G.

    1976-01-01

    A method is described for the manufacture of articles of substantially pure dense ceramic materials, for use in severe environments. Si N is very suitable for use in such environments, but suffers from the disadvantage that it is not amenable to sintering. Some disadvantages of the methods normally used for making articles of Si N are mentioned. The method described comprises mixing a powder of the substantially pure ceramic material with an additive that promotes densification, and which is capable of nuclear transmutation into a gas when exposed to radiation, and hot pressing the mixture to form a billet. The billet is then irradiated to convert the additive into a gas which is held captive in the billet, and it is then subjected to a hot forging operation, during which the captive gas escapes and an article of substantially pure dense ceramic material is forged. The method is intended primarily for use for Si N, but may be applied to other ceramic materials. The additive may be Li or Be or their compounds, to the extent of at least 5 ppm and not more than 5% by weight. Irradiation is effected by proton or neutron bombardment. (UK)

  10. The 1D Kondo lattice model at criticality

    International Nuclear Information System (INIS)

    Gulacsi, M.

    1998-01-01

    The transition from a ferromagnetic phase, to a disordered paramagnetic phase, which occurs in one-dimensional Kondo lattice models is described. The transition is the quantum order-disorder transition of the transverse-field Ising chain type, and reflects ferromagnetically ordered regions of localized spins being gradually destroyed as the coupling to the conduction electrons is reduced. For incommensurate conduction band fillings, the low-energy properties of the localized spins near the transition are dominated by anomalous ordered (disordered) regions of localized spins which survive into the ferromagnetic (paramagnetic) phase. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  11. Ultrafast terahertz spectroscopy study of a Kondo insulating thin-film Sm B6 : Evidence for an emergent surface state

    Science.gov (United States)

    Zhang, Jingdi; Yong, Jie; Takeuchi, Ichiro; Greene, Richard L.; Averitt, Richard D.

    2018-04-01

    We utilize terahertz time domain spectroscopy to investigate thin films of the heavy fermion compound Sm B6 , a prototype Kondo insulator. Temperature-dependent terahertz (THz) conductivity measurements reveal a rapid decrease in the Drude weight and carrier scattering rate at ˜T*=20 K , well below the hybridization gap onset temperature (100 K). Moreover, a low-temperature conductivity plateau (below 20 K) suggests the emergence of a surface state with an effective electron mass of 0.1 me . The conductivity dynamics following optical excitation is also measured and interpreted using Rothwarf-Taylor (R-T) phenomenology, yielding a hybridization gap energy of 17 meV. However, R-T modeling of the conductivity dynamics reveals a deviation from the expected thermally excited quasiparticle density at temperatures below 20 K, indicative of another channel opening up in the low-energy electrodynamics. Taken together, these results are consistent with the onset of a surface state well below the crossover temperature (100 K) after long-range coherence of the f -electron Kondo lattice is established.

  12. Splitting and Restoration of Kondo Peak in a Deformed Molecule Quantum Dot Coupled to Ferromagnetic Electrodes

    International Nuclear Information System (INIS)

    Wang Ruiqiang; Jiang Kaiming

    2010-01-01

    We adopt the nonequilibrium Green's function method to theoretically study the Kondo effect in a deformed molecule, which is treated as an electron-phonon interaction (EPI) system. The self-energy for phonon part is calculated in the standard many-body diagrammatic expansion up to the second order in EPI strength. We find that the multiple phonon-assisted Kondo satellites arise besides the usual Kondo resonance. In the antiparallel magnetic configuration the splitting of main Kondo peak and phonon-assisted satellites only happen for asymmetrical dot-lead couplings, but it is free from the symmetry for the parallel magnetic configuration. The EPI strength and vibrational frequency can enhance the spin splitting of both main Kondo and satellites. It is shown that the suppressed zero-bias Kondo resonance can be restored by applying an external magnetic field, whose magnitude is dependent on the phononic effect remarkably. Although the asymmetry in tunnel coupling has no contribution to the restoration of spin splitting of Kondo peak, it can shrink the external field needed to switch tunneling magnetoresistance ratio between large negative dip and large positive peak. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Single- or multi-flavor Kondo effect in graphene

    Science.gov (United States)

    Zhu, Zhen-Gang; Ding, Kai-He; Berakdar, Jamal

    2010-06-01

    Based on the tight-binding formalism, we investigate the Anderson and the Kondo model for an adatom magnetic impurity above graphene. Different impurity positions are analyzed. Employing a partial-wave representation we study the nature of the coupling between the impurity and the conducting electrons. The components from the two Dirac points are mixed while interacting with the impurity. Two configurations are considered explicitly: the adatom is above one atom (ADA), the other case is the adatom above the center the honeycomb (ADC). For ADA the impurity is coupled with one flavor for both A and B sublattice and both Dirac points. For ADC the impurity couples with multi-flavor states for a spinor state of the impurity. We show, explicitly for a 3d magnetic atom, dz2, (dxz,dyz), and (dx2- y2,dxy) couple respectively with the Γ1, Γ5(E1), and Γ6(E2) representations (reps) of C6v group in ADC case. The bases for these reps of graphene are also derived explicitly. For ADA we calculate the Kondo temperature.

  14. The Kondo effect of an adatom in graphene and its scanning tunneling spectroscopy

    International Nuclear Information System (INIS)

    Li Lin; Ni Yangyang; Zhong Yin; Fang Tiefeng; Luo Honggang

    2013-01-01

    We study the Kondo effect of a single magnetic adatom on the surface of graphene. The unique linear dispersion relation near the Dirac points in graphene makes it easier for the magnetic atom to form a local magnetic moment, which simply means that the Kondo resonance can be observed in a wider parameter region than in the metallic host. Our study indicates that the Kondo resonance, whenever the chemical potential is tuned away from the Dirac points, can indeed occur ranging from the Kondo regime, to the mixed valence, even to the empty orbital regime defined in the conventional metal host. While the Kondo resonance appears as a sharp peak in the Kondo regime, it has a peak-dip structure and/or an anti-resonance in the mixed valence and empty orbital regimes, which result from the Fano resonance due to the significant background due to dramatic broadening of the impurity level in graphene. We also study the scanning tunneling microscopy (STM) spectra of the adatom and they show obvious particle–hole asymmetry when the chemical potential is tuned by the gate voltages applied to the graphene. Finally, we explore the influence of the direct tunneling channel between the STM tip and the graphene on the Kondo resonance and find that the lineshape of the Kondo resonance is unaffected, which can be attributed to an unusually large asymmetry factor in graphene. Our study indicates that graphene is an ideal platform to systematically study Kondo physics and these results are useful to further stimulate relevant experimental studies on the system. (paper)

  15. Interaction effect in the Kondo energy of the periodic Anderson-Hubbard model

    Science.gov (United States)

    Itai, K.; Fazekas, P.

    1996-07-01

    We extend the periodic Anderson model by switching on a Hubbard U for the conduction band. The nearly integral valent limit of the Anderson-Hubbard model is studied with the Gutzwiller variational method. The lattice Kondo energy shows U dependence both in the prefactor and the exponent. Switching on U reduces the Kondo scale, which can be understood to result from the blocking of hybridization. At half filling, we find a Brinkman-Rice-type transition from a Kondo insulator to a Mott insulator. Our findings should be relevant for a number of correlated two-band models of recent interest.

  16. Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model.

    Science.gov (United States)

    Hong, Jongbae

    2011-07-13

    We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.

  17. Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model

    International Nuclear Information System (INIS)

    Hong, Jongbae

    2011-01-01

    We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.

  18. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng; Deng, Rui; Lin, Weinan; Tian, Yufeng; Peng, Haiyang; Yi, Jiabao; Yao, Bin; Wu, Tao

    2013-01-01

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  19. The Kondo temperature of a two-dimensional electron gas with Rashba spin–orbit coupling

    International Nuclear Information System (INIS)

    Chen, Liang; Lin, Hai-Qing; Sun, Jinhua; Tang, Ho-Kin

    2016-01-01

    We use the Hirsch–Fye quantum Monte Carlo method to study the single magnetic impurity problem in a two-dimensional electron gas with Rashba spin–orbit coupling. We calculate the spin susceptibility for various values of spin–orbit coupling, Hubbard interaction, and chemical potential. The Kondo temperatures for different parameters are estimated by fitting the universal curves of spin susceptibility. We find that the Kondo temperature is almost a linear function of Rashba spin–orbit energy when the chemical potential is close to the edge of the conduction band. When the chemical potential is far away from the band edge, the Kondo temperature is independent of the spin–orbit coupling. These results demonstrate that, for single impurity problems in this system, the most important reason to change the Kondo temperature is the divergence of density of states near the band edge, and the divergence is induced by the Rashba spin–orbit coupling. (paper)

  20. Thermoelectric Phenomena in a Quantum Dot Attached to Ferromagnetic Leads in Kondo Regime

    International Nuclear Information System (INIS)

    Chen Qiao; Zhao Li-Li

    2014-01-01

    We have studied the thermoelectric properties through ferromagnetic leads-QD coupled system (F-QD-F) in the Kondo regime by nonequilibrium Green's functions method. The spin-flip effect induced by ferromagnetic leads and Kondo effect influence the thermoelectric properties significantly. The peak-valley structure emerges at the low temperature due to Kondo resonance, and the peak-valley structure also relies on the polarization angle θ, the spin-dependent linewidth function Γ γσ and the energy level of QD ∈ d . Novel resonant peak also emerges in the curve of ZT c versus polarization angle θ. The Kondo effect suppresses the figure of merit ZT c and the spin-dependent figure of merit ZT s . In addition, the spin-dependent figure of merit ZT s is relate with the gap between Γ γ↑ and Γ γ↓ . (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Prediction of femtosecond oscillations in the transient current of a quantum dot in the Kondo regime

    KAUST Repository

    Goker, A.; Manchon, Aurelien; Schwingenschlö gl, Udo; Zhu, Zhiyong

    2010-01-01

    of a gate voltage. For an asymmetrically coupled system, we observe that the instantaneous conductance in the Kondo time scale exhibits beating with distinct frequencies, which are proportional to the separation between the Fermi level and the sharp

  2. Intra- and inter-shell Kondo effects in carbon nanotube quantum dots

    Science.gov (United States)

    Krychowski, Damian; Lipiński, Stanisław

    2018-01-01

    The linear response transport properties of carbon nanotube quantum dot in the strongly correlated regime are discussed. The finite-U mean field slave boson approach is used to study many-body effects. Magnetic field can rebuilt Kondo correlations, which are destroyed by the effect of spin-orbit interaction or valley mixing. Apart from the field induced revivals of SU(2) Kondo effects of different types: spin, valley or spin-valley, also more exotic phenomena appear, such as SU(3) Kondo effect. Threefold degeneracy occurs due to the effective intervalley exchange induced by short-range part of Coulomb interaction or due to the intershell mixing. In narrow gap nanotubes the full spin-orbital degeneracy might be recovered in the absence of magnetic field opening the condition for a formation of SU(4) Kondo resonance.

  3. Self-sustained oscillations in nanoelectromechanical systems induced by Kondo resonance

    International Nuclear Information System (INIS)

    Song, Taegeun; Kiselev, Mikhail N; Kikoin, Konstantin; Shekhter, Robert I; Gorelik, Leonid Y

    2014-01-01

    We investigate the instability and dynamical properties of nanoelectromechanical systems represented by a single-electron device containing movable quantum dots attached to a vibrating cantilever via asymmetric tunnel contacts. The Kondo resonance in electron tunneling between the source and shuttle facilitates self-sustained oscillations originating from the strong coupling of mechanical and electronic/spin degrees of freedom. We analyze a stability diagram for the two-channel Kondo shuttling regime due to limitations given by the electromotive force acting on a moving shuttle, and find that the saturation oscillation amplitude is associated with the retardation effect of the Kondo cloud. The results shed light on possible ways to experimentally realize the Kondo-cloud dynamical probe by using high mechanical dissipation tunability as well as supersensitive detection of mechanical displacement

  4. Self-sustained oscillations in nanoelectromechanical systems induced by Kondo resonance

    Science.gov (United States)

    Song, Taegeun; Kiselev, Mikhail N.; Kikoin, Konstantin; Shekhter, Robert I.; Gorelik, Leonid Y.

    2014-03-01

    We investigate the instability and dynamical properties of nanoelectromechanical systems represented by a single-electron device containing movable quantum dots attached to a vibrating cantilever via asymmetric tunnel contacts. The Kondo resonance in electron tunneling between the source and shuttle facilitates self-sustained oscillations originating from the strong coupling of mechanical and electronic/spin degrees of freedom. We analyze a stability diagram for the two-channel Kondo shuttling regime due to limitations given by the electromotive force acting on a moving shuttle, and find that the saturation oscillation amplitude is associated with the retardation effect of the Kondo cloud. The results shed light on possible ways to experimentally realize the Kondo-cloud dynamical probe by using high mechanical dissipation tunability as well as supersensitive detection of mechanical displacement.

  5. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng

    2013-04-29

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  6. Non-equilibrium scaling analysis of the Kondo model with voltage bias

    International Nuclear Information System (INIS)

    Fritsch, Peter; Kehrein, Stefan

    2009-01-01

    The quintessential description of Kondo physics in equilibrium is obtained within a scaling picture that shows the buildup of Kondo screening at low temperature. For the non-equilibrium Kondo model with a voltage bias, the key new feature are decoherence effects due to the current across the impurity. In the present paper, we show how one can develop a consistent framework for studying the non-equilibrium Kondo model within a scaling picture of infinitesimal unitary transformations (flow equations). Decoherence effects appear naturally in third order of the β-function and dominate the Hamiltonian flow for sufficiently large voltage bias. We work out the spin dynamics in non-equilibrium and compare it with finite temperature equilibrium results. In particular, we report on the behavior of the static spin susceptibility including leading logarithmic corrections and compare it with the celebrated equilibrium result as a function of temperature.

  7. Kondo lattice model: Unitary transformations, spin dynamics, strongly correlated charged modes, and vacuum instability

    OpenAIRE

    Prats, J. M.; Lopez-Aguilar, F.

    1996-01-01

    Using unitary transformations, we express the Kondo lattice Hamiltonian in terms of fermionic operators that annihilate the ground state of the interacting system and that represent the best possible approximations to the actual charged excitations. In this way, we obtain an effective Hamiltonian which, for small couplings, consists in a kinetic term for conduction electrons and holes, an RKKY-like term, and a renormalized Kondo interaction. The physical picture of the system implied by this ...

  8. Competition between direct interaction and Kondo effect: Renormalization-group approach

    International Nuclear Information System (INIS)

    Allub, R.

    1988-03-01

    Via the Wilson renormalization-group approach, the effect of the competition between direct interaction (J L ) and Kondo coupling is studied, in the magnetic susceptibility of a model with two different magnetic impurities. For the ferromagnetic interaction (J L > 0) between the localized impurities, we find a magnetic ground state and a divergent susceptibility at low temperatures. For (J L < 0), two different Kondo temperatures and a non-magnetic ground state are distinguished. (author). 12 refs, 1 fig

  9. Model for a Ferromagnetic Quantum Critical Point in a 1D Kondo Lattice

    Science.gov (United States)

    Komijani, Yashar; Coleman, Piers

    2018-04-01

    Motivated by recent experiments, we study a quasi-one-dimensional model of a Kondo lattice with ferromagnetic coupling between the spins. Using bosonization and dynamical large-N techniques, we establish the presence of a Fermi liquid and a magnetic phase separated by a local quantum critical point, governed by the Kondo breakdown picture. Thermodynamic properties are studied and a gapless charged mode at the quantum critical point is highlighted.

  10. Quenching of overcompensated Kondo impurities via channel asymmetry

    International Nuclear Information System (INIS)

    Schlottmann, P.; Lee, K.

    1996-01-01

    We consider a spin-1/2 impurity interacting with conduction electrons in two different orbital channels via an isotropic spin exchange. The exchange is the same for both channels, but a crystalline field breaks the symmetry between the orbital channels. This corresponds to a splitting of the conduction electron Γ 8 into two doublets in the quadrupolar Kondo effect and to the application of an external magnetic field in the electron assisted tunneling of an atom in a double-well potential. We study the ground-state properties of the impurity as a function of the magnetic and crystalline fields. The crystalline field quenches the critical behavior of the overcompensated fixed point: The impurity ground state is a singlet. (orig.)

  11. Correlated evolution of colossal thermoelectric effect and Kondo insulating behavior

    Directory of Open Access Journals (Sweden)

    M. K. Fuccillo

    2013-12-01

    Full Text Available We report the magnetic and transport properties of the Ru1−xFexSb2 solid solution, showing how the colossal thermoelectric performance of FeSb2 evolves due to changes in the amount of 3d vs. 4d electron character. The physical property trends shed light on the physical picture underlying one of the best low-T thermoelectric power factors known to date. Some of the compositions warrant further study as possible n- and p-type thermoelements for Peltier cooling well below 300 K. Our findings enable us to suggest possible new Kondo insulating systems that might behave similarly to FeSb2 as advanced thermoelectrics.

  12. Green's function approach to the anisotropic Kondo-necklace lattice

    International Nuclear Information System (INIS)

    Rezania, H.; Langari, A.; Thalmeier, P.

    2007-01-01

    Full text: We have studied the effect of anisotropy on the quantum phase transition of the 2D anisotropic Kondo necklace lattice [1] within a Green's function approach [2]. In the disordered phase the ground state is the product of all singlet bonds between itinerant and localized spins. It is separated by a finite energy gap from the triplet excited states. The quantum phase transition to the antiferromagnetically ordered phase takes place where the gap vanishes. In this approach we use the bond operator formalism introduced in Ref.[3] where each bond is represented by the singlet and triplet operators. The Kondo necklace Hamiltonian in the bond operator representation is composed of the kinetic energy and pairing part (H2), the two particle interaction (H4) of the boson gas and a term which includes three boson operators (H3). In order to ensure that the physical states are either singlets or triplets we impose the hard-core condition by introducing an infinite on-site repulsion between triplet bosons (H U ). The scattering vertex in the ladder approximation satisfies the Bethe-Salpeter equation [4]. By calculating the scattering vertex function we obtain the self energy contribution of the Hamiltonian H U . We have added the second order contribution of the self energy of H3 to the self energy of H U . It should be noted that the non conservation of triplet boson numbers requires the inclusion of the anomalous Green's functions. We treat H 4 in mean-field theory, by splitting the quartic operator into all possible pairs. Finally we obtain the renormalization of coefficients in the H 2 Hamiltonian and calculate the energy gap. Indeed at the critical point a condensation of triplet bosons occurs. We have numerically found the critical point of this model and compared our results with the corresponding mean field values [5]. Moreover, the critical exponent of the energy gap can be obtained more accurately than the mean field results. (authors)

  13. Nuclear orientation studies of manganese in copper Kondo system

    International Nuclear Information System (INIS)

    Bakalyar, D.

    1977-08-01

    The internal field seen by the 54 Mn nuclei in a dilute (about 1 part per billion) manganese in copper Kondo system was measured using nuclear orientation. The measurements were made at temperatures on the order of 4 mK in applied fields of 5 kG to 40 kG. Temperatures were measured using a 60 Co in nickel nuclear orientation thermometer and were achieved by adiabatically demagnetizing an ingot of the hyperfine enhanced nuclear coolant PrCu 6 from temperatures of about 30 mK (the mixing chamber temperature of a dilution refrigerator). The data was temperature independent but there was evidence of iteractions between the manganese atoms at manganese concentrations of 1 / 2 part per million. The data was interpreted by assuming that the internal field consisted of the hyperfine field minus the applied field (i.e. the hyperfine field and applied field were aligned in opposite directions). The hyperfine field versus applied field data was compared to three approximate solutions to the Kondo Hamiltonian. Two of the solutions, one by Luther and Emery and the other by Goetze and Schlottmann, fit the data very well. The third solution, that proposed by Ishii, does not fit the data. Fitted to the data, the Luther-Emery solution predicts a saturation value of the hyperfine field of 303 kG whereas the Goetze-Schlottmann solution predicts a saturation value of 297 kG. The hyperfine field is only beginning to reach its saturation value with applied fields of 40 kG

  14. Competition between heavy fermion and Kondo interaction in isoelectronic A-site-ordered perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, D.; Middey, S.; Cheng, J. -G.; Mukherjee, Swarnakamal; Gray, B. A.; Cao, Yanwei; Zhou, J. -S.; Goodenough, J. B.; Choi, Yongseong; Haskel, D.; Freeland, J. W.; Saha-Dasgupta, T.; Chakhalian, J.

    2014-12-17

    With current research efforts shifting towards the 4d and 5d transition metal oxides, understanding the evolution of the electronic and magnetic structure as one moves away from 3d materials is of critical importance. Here we perform X-ray spectroscopy and electronic structure calculations on A-site-ordered perovskites with Cu in the A-site and the B-sites descending along the ninth group of the periodic table to elucidate the emerging properties as d-orbitals change from partially filled 3d to 4d to 5d. The results show that when descending from Co to Ir, the charge transfers from the cuprate-like Zhang-Rice state on Cu to the t2g orbital of the B site. As the Cu d-orbital occupation approaches the Cu2þ limit, a mixed valence state in CaCu3Rh4O12 and heavy fermion state in CaCu3Ir4O12 are obtained. The investigated d-electron compounds are mapped onto the Doniach phase diagram of the competing RKKY and Kondo interactions developed for the f-electron systems.

  15. Fano–Kondo Effect in a Triple Quantum Dots Coupled to Ferromagnetic Leads

    International Nuclear Information System (INIS)

    Ai-Hua, Bi; Shao-Quan, Wu; Tao, Hou; Wei-Li, Sun

    2008-01-01

    Using the Keldysh nonequilibrium Green function and equation-of-motion technique, we have qualitatively studied the spin-dependent transport of a triple-QD system in the Kondo regime. It is shown that the Kondo resonance and Fano interference coexist, and in this system the Fano–Kondo effect shows dip behaviours richer than that in the T-shaped QDs. The interdot coupling, the energy level of the side coupled QDs and the spin polarization strength greatly influence the DOS of the central quantum dot QD 0 . Either the increase of the coupling strength between the two QDs or that of the energy levels of the side coupled QDs enhances the Kondo resonance. Especially, the Kondo resonance is strengthened greatly when the side dot energy is fixed at the Fermi energy. Meanwhile, the Kondo resonance splits for the spin-up and spin-down configurations due to the polarization: the down-spin resonance is enhanced, and the up-spin resonance is suppressed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Nonequilibrium Dynamics of Anisotropic Large Spins in the Kondo Regime: Time-Dependent Numerical Renormalization Group Analysis

    Science.gov (United States)

    Roosen, David; Wegewijs, Maarten R.; Hofstetter, Walter

    2008-02-01

    We investigate the time-dependent Kondo effect in a single-molecule magnet (SMM) strongly coupled to metallic electrodes. Describing the SMM by a Kondo model with large spin S>1/2, we analyze the underscreening of the local moment and the effect of anisotropy terms on the relaxation dynamics of the magnetization. Underscreening by single-channel Kondo processes leads to a logarithmically slow relaxation, while finite uniaxial anisotropy causes a saturation of the SMM’s magnetization. Additional transverse anisotropy terms induce quantum spin tunneling and a pseudospin-1/2 Kondo effect sensitive to the spin parity.

  17. Frustrated quantum magnetism in the Kondo lattice on the zigzag ladder

    Science.gov (United States)

    Peschke, Matthias; Rausch, Roman; Potthoff, Michael

    2018-03-01

    The interplay between the Kondo effect, indirect magnetic interaction, and geometrical frustration is studied in the Kondo lattice on the one-dimensional zigzag ladder. Using the density-matrix renormalization group, the ground-state and various short- and long-range spin- and density-correlation functions are calculated for the model at half filling as a function of the antiferromagnetic Kondo interaction down to J =0.3 t , where t is the nearest-neighbor hopping on the zigzag ladder. Geometrical frustration is shown to lead to at least two critical points: Starting from the strong-J limit, where almost local Kondo screening dominates and where the system is a nonmagnetic Kondo insulator, antiferromagnetic correlations between nearest-neighbor and next-nearest-neighbor local spins become stronger and stronger, until at Jcdim≈0.89 t frustration is alleviated by a spontaneous breaking of translational symmetry and a corresponding transition to a dimerized state. This is characterized by antiferromagnetic correlations along the legs and by alternating antiferro- and ferromagnetic correlations on the rungs of the ladder. A mechanism of partial Kondo screening that has been suggested for the Kondo lattice on the two-dimensional triangular lattice is not realized in the one-dimensional case. Furthermore, within the symmetry-broken dimerized state, there is a magnetic transition to a 90∘ quantum spin spiral with quasi-long-range order at Jcmag≈0.84 t . The quantum-critical point is characterized by a closure of the spin gap (with decreasing J ) and a divergence of the spin-correlation length and of the spin-structure factor S (q ) at wave vector q =π /2 . This is opposed to the model on the one-dimensional bipartite chain, which is known to have a finite spin gap for all J >0 at half filling.

  18. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs

  19. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  20. From Kondo to local singlet state in graphene nanoribbons with magnetic impurities

    Science.gov (United States)

    Diniz, G. S.; Luiz, G. I.; Latgé, A.; Vernek, E.

    2018-03-01

    A detailed analysis of the Kondo effect of a magnetic impurity in a zigzag graphene nanoribbon is addressed. An adatom is coupled to the graphene nanoribbon via a hybridization amplitude Γimp in a hollow- or top-site configuration. In addition, the adatom is also weakly coupled to a metallic scanning tunnel microscope (STM) tip by a hybridization function Γtip that provides a Kondo screening of its magnetic moment. The entire system is described by an Anderson-like Hamiltonian whose low-temperature physics is accessed by employing the numerical renormalization-group approach, which allows us to obtain the thermodynamic properties used to compute the Kondo temperature of the system. We find two screening regimes when the adatom is close to the edge of the zigzag graphene nanoribbon: (1) a weak-coupling regime (Γimp≪Γtip ), in which the edge states produce an enhancement of the Kondo temperature TK, and (2) a strong-coupling regime (Γimp≫Γtip ), in which a local singlet is formed, to the detriment of the Kondo screening by the STM tip. These two regimes can be clearly distinguished by the dependence of their characteristic temperature T* on the coupling between the adatom and the carbon sites of the graphene nanoribbon Vimp. We observe that in the weak-coupling regime T* increases exponentially with Vimp2. Differently, in the strong-coupling regime, T* increases linearly with Vimp2.

  1. A Kondo cluster-glass model for spin glass Cerium alloys

    International Nuclear Information System (INIS)

    Zimmer, F M; Magalhaes, S G; Coqblin, B

    2011-01-01

    There are clear indications that the presence of disorder in Ce alloys, such as Ce(Ni,Cu) or Ce(Pd,Rh), is responsible for the existence of a cluster spin glass state which changes continuously into inhomogeneous ferromagnetism at low temperatures. We present a study of the competition between magnetism and Kondo effect in a cluster-glass model composed by a random inter-cluster interaction term and an intra-cluster one, which contains an intra-site Kondo interaction J k and an inter-site ferromagnetic one J 0 . The random interaction is given by the van Hemmen type of randomness which allows to solve the problem without the use of the replica method. The inter-cluster term is solved within the cluster mean-field theory and the remaining intra-cluster interactions can be treated by exact diagonalization. Results show the behavior of the cluster glass order parameter and the Kondo correlation function for several sizes of the clusters, J k , J 0 and values of the ferromagnetic inter-cluster average interaction I 0 . Particularly, for small J k , the magnetic solution is strongly dependent on I 0 and J 0 and a Kondo cluster-glass or a mixed phase can be obtained, while, for large J k , the Kondo effect is still dominant, both in good agreement with experiment in Ce(Ni,Cu) or Ce(Pd,Rh) alloys.

  2. Lateral spin-orbit coupling and the Kondo effect in quantum dots

    Science.gov (United States)

    Vernek, Edson; Ngo, Anh; Ulloa, Sergio

    2010-03-01

    We present studies of the Coulomb blockade and Kondo regimes of transport of a quantum dot connected to current leads through spin-polarizing quantum point contacts (QPCs) [1]. This configuration, arising from the effect of lateral spin-orbit fields, results in spin-polarized currents even in the absence of external magnetic fields and greatly affects the correlations in the dot. Using an equation-of-motion technique and numerical renormalization group calculations we obtain the conductance and spin polarization for this system under different parameter regimes. Our results show that both the Coulomb blockade and Kondo regimes exhibit non-zero spin-polarized conductance. We analyze the role that the spin-dependent tunneling amplitudes of the QPC play in determining the charge and net magnetic moment in the dot. We find that the Kondo regime exhibits a strongly dependent Kondo temperature on the QPC polarizability. These effects, controllable by lateral gate voltages, may provide a new approach for exploring Kondo correlations, as well as possible spin devices. Supported by NSF DMR-MWN and PIRE. [1] P. Debray et al., Nature Nanotech. 4, 759 (2009).

  3. Conductance of closed and open long Aharonov-Bohm-Kondo rings

    Science.gov (United States)

    Shi, Zheng; Komijani, Yashar

    2017-02-01

    We calculate the finite temperature linear dc conductance of a generic single-impurity Anderson model containing an arbitrary number of Fermi liquid leads, and apply the formalism to closed and open long Aharonov-Bohm-Kondo (ABK) rings. We show that, as with the short ABK ring, there is a contribution to the conductance from the connected four-point Green's function of the conduction electrons. At sufficiently low temperatures this contribution can be eliminated, and the conductance can be expressed as a linear function of the T matrix of the screening channel. For closed rings we show that at temperatures high compared to the Kondo temperature, the conductance behaves differently for temperatures above and below vF/L , where vF is the Fermi velocity and L is the circumference of the ring. For open rings, when the ring arms have both a small transmission and a small reflection, we show from the microscopic model that the ring behaves like a two-path interferometer, and that the Kondo temperature is unaffected by details of the ring. Our findings confirm that ABK rings are potentially useful in the detection of the size of the Kondo screening cloud, the π /2 scattering phase shift from the Kondo singlet, and the suppression of Aharonov-Bohm oscillations due to inelastic scattering.

  4. Nonequilibrium Kondo effect by the equilibrium numerical renormalization group method: The hybrid Anderson model subject to a finite spin bias

    Science.gov (United States)

    Fang, Tie-Feng; Guo, Ai-Min; Sun, Qing-Feng

    2018-06-01

    We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction U is either attractive or repulsive. When the spin current is blockaded in the large-gap regime, this nonequilibrium strongly correlated problem maps into an equilibrium model solvable by the numerical renormalization group method. The Kondo spectra with characteristic splitting due to the nonequilibrium spin accumulation are thus obtained at high precision. It is shown that while the bias-induced decoherence of the spin Kondo effect is partially compensated by the superconductivity, the charge Kondo effect is enhanced out of equilibrium and undergoes an additional splitting by the superconducting proximity effect, yielding four Kondo peaks in the local spectral density. In the charge Kondo regime, we find a universal scaling of charge conductance in this hybrid device under different spin biases. The universal conductance as a function of the coupling to the superconducting lead is peaked at and hence directly measures the Kondo temperature. Our results are of direct relevance to recent experiments realizing a negative-U charge Kondo effect in hybrid oxide quantum dots [Nat. Commun. 8, 395 (2017), 10.1038/s41467-017-00495-7].

  5. Fano-Andreev effect in Quantum Dots in Kondo regime

    Science.gov (United States)

    Orellana, Pedro; Calle, Ana Maria; Pacheco, Monica; Apel, Victor

    In the present work, we investigate the transport through a T-shaped double quantum dot system coupled to two normal leads and to a superconducting lead. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot and by means of a slave boson mean field approximation at low temperature regime. We inquire into the influence of intradot interactions in the electronic properties of the system as well. Our results show that Fano resonances due to Andreev bound states are exhibited in the transmission from normal to normal lead as a consequence of quantum interference and proximity effect. This Fano effect produced by Andreev bound states in a side quantum dot was called Fano-Andreev effect, which remains valid even if the electron-electron interaction are taken into account, that is, the Fano-Andreev effect is robust against e-e interactions even in Kondo regime. We acknowledge the financial support from FONDECYT program Grants No. 3140053 and 11400571.

  6. Spin dynamics and Kondo physics in optical tweezers

    Science.gov (United States)

    Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.

    2016-05-01

    We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  7. Transport through semiconductor nanowire quantum dots in the Kondo regime

    Energy Technology Data Exchange (ETDEWEB)

    Schmaus, Stefan; Koerting, Verena; Woelfle, Peter [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe (Germany)

    2008-07-01

    Recent experiments on quantum dots made of semiconductor nanowires in the Coulomb blockade regime have shown the influence of several approximately equidistant levels on the conductance. We study a model with three levels occupied by three electrons. At finite bias voltage charge energy conserving excitations into several higher lying states occur leading to features in the differential conductance. We restrict our study to the six lowest lying states by performing a Schrieffer-Wolff type projection onto this subspace. The emerging effective Kondo Hamiltonian is treated in non-equilibrium perturbation theory in the coupling to the leads. For convenience we use a pseudoparticle representation and an exact projection method. The voltage-dependence of the occupation numbers is discussed. The density matrix on the dot turns out to be off-diagonal in the dot eigenstate Hilbert space in certain parameter regimes. The dependence of the differential conductance on magnetic field and temperature is calculated in lowest order in the dot-lead coupling and the results are compared with experiment.

  8. Quasiparticle scattering spectroscopy (QPS) of Kondo lattice heavy fermions

    Science.gov (United States)

    Greene, L. H.; Narasiwodeyar, S. M.; Banerjee, P.; Park, W. K.; Bauer, E. D.; Tobash, P. H.; Baumbach, R. E.; Ronning, F.; Sarrao, J. L.; Thompson, J. D.

    2013-03-01

    Point-contact spectroscopy (PCS) is a powerful technique to study electronic properties via measurements of non-linear current-voltage characteristic across a ballistic junction. It has been frequently adopted to investigate novel and/or unconventional superconductors by detecting the energy-dependent Andreev scattering. PCS of non-superconducting materials has been much rarely reported. From our recent studies on heavy fermions, we have frequently observed strongly bias-dependent and asymmetric conductance behaviors. Based on a Fano resonance model in a Kondo lattice, we attribute them to energy-dependent quasiparticle scattering off hybridized renormalized electronic states, dubbing it QPS. We will present our QPS results on several heavy-fermion systems and discuss QPS as a novel technique to probe the bulk spectroscopic properties of the electronic structure. For instance, it reveals that the hybridization gap in URu2Si2 opens well above the hidden order transition. The work at UIUC is supported by the U.S. DOE under Award No. DE-FG02-07ER46453 and the NSF DMR 12-06766, and the work at LANL is carried out under the auspices of the U.S. DOE, Office of Science.

  9. Study of the magnetic properties of the Ce{sub x} La{sub 1−x} Pt alloy system: Which interaction establishes ferromagnetism in Kondo systems?

    Energy Technology Data Exchange (ETDEWEB)

    Očko, M., E-mail: ocko@ifs.hr [Institute of Physics, Bijenička c 46, 10000 Zagreb (Croatia); Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička c. 54, Zagreb (Croatia); Zadro, K. [Department of Physics, University of Zagreb, Bijenička c. 32, 10000 Zagreb (Croatia); Drobac, Đ.; Aviani, I.; Salamon, K. [Institute of Physics, Bijenička c 46, 10000 Zagreb (Croatia); Mixson, D.; Bauer, E.D.; Sarrao, J.L. [Los Alamos National Laboratory, Mail Stop K 764, Los Alamos, NM 87545 (United States)

    2016-11-01

    In order to study Kondo ferromagnetism, particularly of the CePt compound, we investigate the magnetic properties of the Ce{sub x}La{sub 1−x}Pt alloy system in the temperature range from 1.8 K to 320 K. The results of these investigations can be summarized as follows: dc-susceptibility can be described by the Curie–Weiss law at higher temperatures down to about 100 K, but also at the low temperatures above the phase transition. At higher temperatures, the extracted Curie–Weiss constant, θ{sub p}, is negative in contrast to the low temperatures, where θ{sub C} is positive. The extracted effective magnetic moment from the higher temperatures is the same for all the alloys and is close to the theoretical value of the isolated Ce{sup 3+} ion, μ=2.54 μ{sub B}, indicating the hybridization is weak and, and consequently, Kondo interaction is weak. These observations confirm the main important conclusions inferred from an earlier transport properties investigation of this alloy system. The Curie temperature extracted by various approaches was compared to the extraction from the ac-susceptibility measurements. We show that its concentration dependence is not consistent with Doniach's diagram. Hence, RKKY interaction is not responsible for the ferromagnetism in this alloy system. - Highlights: • We have found that for Ce{sub x}La{sub 1−x}Pt the temperature of the ferromagnetic transition linearly depends on x. • The Kondo temperature is independent of x. • Hence, RKKY interaction is not responsible for the ferromagnetism. • The lattice parameters show that direct exchange interaction is possible. • We expect that the investigations of Ce{sub x}Y{sub 1−x} will confirm our conclusions.

  10. Prediction of femtosecond oscillations in the transient current of a quantum dot in the Kondo regime

    KAUST Repository

    Goker, A.

    2010-10-11

    We invoke the time-dependent noncrossing approximation in order to study the effects of the density of states of gold contacts on the instantaneous conductance of a single electron transistor which is abruptly moved into the Kondo regime by means of a gate voltage. For an asymmetrically coupled system, we observe that the instantaneous conductance in the Kondo time scale exhibits beating with distinct frequencies, which are proportional to the separation between the Fermi level and the sharp features in the density of states of gold. Increasing the ambient temperature or bias quenches the amplitude of the oscillations. We attribute the oscillations to interference between the emerging Kondo resonance and van-Hove singularities in the density of state. In addition, we propose an experimental realization of this model.

  11. Quantum dense key distribution

    International Nuclear Information System (INIS)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2004-01-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility

  12. Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms

    Science.gov (United States)

    Kanász-Nagy, Márton; Ashida, Yuto; Shi, Tao; Moca, Cǎtǎlin Paşcu; Ikeda, Tatsuhiko N.; Fölling, Simon; Cirac, J. Ignacio; Zaránd, Gergely; Demler, Eugene A.

    2018-04-01

    We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze the nonequilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on, we find that real-time dynamics shows crossovers reminiscent of poor man's renormalization group flow used to describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the formation of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic behavior. On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections to the well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate. Theoretical results discussed in our paper can be measured using currently available experimental techniques.

  13. Hybridization and crystal-field effects in Kondo insulators studied by means of core-level spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Strigari, Fabio

    2015-04-13

    This thesis is mainly focused on the class of Kondo insulators, which also comprises Kondo semiconductors and semimetals. When the right conditions are met - i.e. for a certain number of electrons per unit cell and for certain symmetries of the electronic structure - the interaction between the conduction and f electrons opens a narrow hybridization gap close to the Fermi level. Here we investigate the Kondo semiconductor CeNiSn, as well as the CeM{sub 2}Al{sub 10} compound family with M=Ru, Os and Fe. Many explanations for the low-temperature behavior have been suggested, all of which stress the significance of the 4f crystalline-electric-field (CEF) ground state, which is investigated in the framework of this thesis. We determine the CEF wave functions in this compound family and quantify the degree of c-f hybridization in order to address speculations about the impact of hybridization on the magnetic order. In addition, on the search for parameters which correlate with ground-state properties in heavy-fermion compounds, we investigate the CEF ground states of the intermetallic substitution series CeRh{sub 1-x}Ir{sub x}In{sub 5} since its phase diagram covers all phases of interest, from antiferromagnetic to superconducting as well as regions of phase coexistence. To shed light on the issues above, namely the CEF ground state and the hybridization strength, respectively, two new experimental approaches are used: polarization-dependent X-ray absorption spectroscopy (XAS) and hard X-ray photoelectron spectroscopy (HAXPES). Recently, linearly polarized XAS at the Ce M{sub 4,5} edge has been proven to be highly useful when it comes to the determination of the 4f ground-state wave function in tetragonal rare earth systems. In the present thesis the same technique is applied to the above-mentioned materials, demonstrating that linearly polarized XAS can be employed to obtain an unambiguous and reliable picture of the CEF ground state even in Kondo-insulating systems

  14. Chiral helimagnetic state in a Kondo lattice model with the Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi

    2018-05-01

    Monoaxial chiral magnets can form a noncollinear twisted spin structure called the chiral helimagnetic state. We study magnetic properties of such a chiral helimagnetic state, with emphasis on the effect of itinerant electrons. Modeling a monoaxial chiral helimagnet by a one-dimensional Kondo lattice model with the Dzyaloshinskii-Moriya interaction, we perform a variational calculation to elucidate the stable spin configuration in the ground state. We obtain a chiral helimagnetic state as a candidate for the ground state, whose helical pitch is modulated by the model parameters: the Kondo coupling, the Dzyaloshinski-Moriya interaction, and electron filling.

  15. Kondo effect and non-Fermi liquid behavior in metallic glasses containing Yb, Ce, and Sm

    Science.gov (United States)

    Huang, B.; Yang, Y. F.; Wang, W. H.

    2013-04-01

    The low temperature properties of metallic glasses containing different concentrations of ytterbium, cerium, and samarium are studied. It is found that the Kondo effect caused by exchange interactions between the conduction and 4f electrons and non-Fermi liquid behavior appear in the strongly disordered alloys. We study the origins for these unique features and demonstrate that the found Kondo effect is inherited from the crystalline counterparts. The results might have significance on investigating the strong electron-electron interaction systems with structural disorder and be helpful for designing new metallic glasses with functional properties.

  16. The Kondo contribution to the electrical resistivity in UCu sub 5 sub - sub x Ni sub x and the non-Fermi liquid behaviour of UCu sub 4 Ni

    CERN Document Server

    Torre, L D L; Ellerby, M; McEwen, K A

    2003-01-01

    We report on electrical resistivity measurements performed on polycrystalline samples of UCu sub 5 sub - sub x Ni sub x (x = 0.25, 1). In order to extract the Kondo contribution to the resistivity, the experiments were carried out over a wide temperature range (0.4-800 K). From the analysis of our results, we conclude that the Kondo temperature takes values of T sub K approx 240 K for x = 1 and T sub K approx 245 K for x = 0.25, and that for both Ni concentrations the dominant part of the remarkably high residual resistivity (rho(0) approx 400 mu OMEGA cm) corresponds to the Kondo contribution. These results are discussed in comparison with previous analysis of specific heat and magnetic susceptibility data that produced similar values of T sub K. We interpret our results in terms of disorder-driven non-Fermi liquid behaviour for UCu sub 4 Ni, as indicated by the anomalous temperature dependences of the electrical, thermal and magnetic properties previously observed in this compound.

  17. Spin-orbit interaction and asymmetry effects on Kondo ridges at finite magnetic field

    DEFF Research Database (Denmark)

    Grap, Stephan; Andergassen, Sabine; Paaske, Jens

    2011-01-01

    ridges, which are robust against SOI as time-reversal symmetry is preserved. As a result of the crossing of a spin-up and a spin-down level at vanishing SOI, two additional Kondo plateaus appear at finite B. They are not protected by symmetry and rapidly vanish if the SOI is turned on. Left......-right asymmetric level-lead couplings and detuned on-site energies lead to a simultaneous breaking of left-right and bonding-antibonding state symmetry. In this case, the finite-B Kondo ridges in the Vg-B plane are bent with respect to the Vg axis. For the Kondo ridge to develop, different level renormalizations......We study electron transport through a serial double quantum dot with Rashba spin-orbit interaction (SOI) and Zeeman field of amplitude B in the presence of local Coulomb repulsion. The linear conductance as a function of a gate voltage Vg equally shifting the levels on both dots shows two B=0 Kondo...

  18. Spin relaxation through Kondo scattering in Cu/Py lateral spin valves

    Science.gov (United States)

    Batley, J. T.; Rosaond, M. C.; Ali, M.; Linfield, E. H.; Burnell, G.; Hickey, B. J.

    Within non-magnetic metals it is reasonable to expect the Elliot-Yafet mechanism to govern spin-relaxation and thus the temperature dependence of the spin diffusion length might be inversely proportional to resistivity. However, in lateral spin valves, measurements have found that at low temperatures the spin diffusion length unexpectedly decreases. We have fabricated lateral spin valves from Cu with different concentrations of magnetic impurities. Through temperature dependent charge and spin transport measurements we present clear evidence linking the presence of the Kondo effect within Cu to the suppression of the spin diffusion length below 30 K. We have calculated the spin-relaxation rate and isolated the contribution from magnetic impurities. At very low temperatures electron-electron interactions play a more prominent role in the Kondo effect. Well below the Kondo temperature a strong-coupling regime exists, where the moments become screened and the magnetic dephasing rate is reduced. We also investigate the effect of this low temperature regime (>1 K) on a pure spin current. This work shows the dominant role of Kondo scattering, even in low concentrations of order 1 ppm, within pure spin transport.

  19. Spatial variations of order parameter around Kondo impurity for T<=Tsub(c)

    International Nuclear Information System (INIS)

    Yoksan, S.

    1980-04-01

    Analytic expressions for the spatial variations of the order parameter around a Kondo impurity are obtained. The oscillatory contribution due to the impurity scattering is calculated using the t matrix of Matsuura which conveniently yields the general results below Tsub(c). Differences between our values and those of Schlottmann are reported. (author)

  20. Charge dynamics in the Kondo insulator Ce3Bi4Pt3

    International Nuclear Information System (INIS)

    Bucher, B.; Schlesinger, Z.; Canfield, P.C.; Fisk, Z.

    1994-01-01

    We report the reflectivity and optical conductivity of the Kondo insulator Ce 3 Bi 4 Pt 3 . For temperatures less than 100 K, depletion of the conductivity below about 300 cm -1 signifies the development of a charge gap. The temperature dependence of the disappearance of the spectral weight scales with the quenching of the Ce 4f moments. ((orig.))

  1. Suppression of the ferromagnetic state by disorder in the Kondo lattice

    International Nuclear Information System (INIS)

    Crisan, M.; Popoviciu, C.

    1992-01-01

    This paper reports that ferromagnetic ground state of a Kondo lattice with a low concentration of conduction electrons is ferromagnetic. Assuming the existence of disorder in the Fermi liquid of the conduction electrons the authors show that the ferromagnetic state can be suppressed by the effect of the spin fluctuations of the disordered Fermi liquid

  2. Test of s-wave pairing in heavy-fermion systems due to Kondo volume collapse

    International Nuclear Information System (INIS)

    Svozil, K.

    1987-01-01

    It is proposed to utilize resonant Raman scattering on heavy-fermion superconductors as a test for Cooper pairing via an effective phonon-mediated attraction due to the Kondo volume collapse. The suggested experiment might help to discriminate between singlet and triplet pairing

  3. CePdAl. A frustrated Kondo lattice at a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, Veronika [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Karlsruhe Institute of Technology (Germany); Sakai, Akito; Gegenwart, Philipp [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Huesges, Zita; Lucas, Stefan; Stockert, Oliver [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Kittler, Wolfram; Taubenheim, Christian; Grube, Kai; Loehneysen, Hilbert von [Karlsruhe Institute of Technology (Germany); Huang, Chien-Lung [Karlsruhe Institute of Technology (Germany); Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)

    2016-07-01

    CePdAl is one of the rare frustrated Kondo lattice systems that can be tuned across a quantum critical point (QCP) by means of chemical pressure, i. e., the substitution of Pd by Ni. Magnetic frustration and Kondo effect are antithetic phenomena: The Kondo effect with the incipient delocalization of the magnetic moments, is not beneficial for the formation of a frustrated state. On the other hand, magnetic frustrated exchange interactions between the local moments can result in a breakdown of Kondo screening. Furthermore, the fate of frustration is unclear when approaching the QCP, since there is no simple observable to quantify the degree of frustration. We present thermodynamic and neutron scattering experiments on CePd{sub 1-x}Ni{sub x}Al close to the critical concentration x ∼0.14. Our experiments indicate that even at the QCP magnetic frustration is still present, opening the perspective to find new universality classes at such a quantum phase transition.

  4. Influence of kondo effect on the specific heat jump of anisotropic superconductors

    Science.gov (United States)

    Yoksan, S.

    1986-01-01

    A calculation for the specific heat jump of an anisotropic superconductor with Kondo impurities is presented. The impurities are treated within the Matsuura - Ichinose - Nagaoka framework and the anisotropy effect is described by the factorizable model of Markowitz and Kadanoff. We give explicit expressions for the change in specific heat jump due to anisotropy and impurities which can be tested experimentally.

  5. Influence of Kondo effect on the specific heat jump of anisotropic superconductors

    International Nuclear Information System (INIS)

    Yoksan, S.

    1986-01-01

    A calculation for the specific heat jump of an anisotropic superconductor with Kondo impurities is presented. The impurities are treated within the Matsuura - Ichinose - Nagaoka framework and the anisotropy effect is described by the factorizable model of Markowitz and Kadanoff. Explicit expressions are given for the change in specific heat jump due to anisotropy and impurities which can be tested experimentally. (author)

  6. SU(4) Kondo effect in double quantum dots with ferromagnetic leads

    Science.gov (United States)

    Weymann, Ireneusz; Chirla, Razvan; Trocha, Piotr; Moca, Cǎtǎlin Paşcu

    2018-02-01

    We investigate the spin-resolved transport properties, such as the linear conductance and the tunnel magnetoresistance, of a double quantum dot device attached to ferromagnetic leads and look for signatures of the SU (4 ) symmetry in the Kondo regime. We show that the transport behavior greatly depends on the magnetic configuration of the device, and the spin-SU(2) as well as the orbital and spin-SU(4) Kondo effects become generally suppressed when the magnetic configuration of the leads varies from the antiparallel to the parallel one. Furthermore, a finite spin polarization of the leads lifts the spin degeneracy and drives the system from the SU(4) to an orbital-SU(2) Kondo state. We analyze in detail the crossover and show that the Kondo temperature between the two fixed points has a nonmonotonic dependence on the degree of spin polarization of the leads. In terms of methods used, we characterize transport by using a combination of analytical and numerical renormalization group approaches.

  7. Numerical renormalization group studies of the partially brogen SU(3) Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Fuh Chuo, Evaristus

    2013-04-15

    The two-channel Kondo (2CK) effect with its exotic ground state properties has remained difficult to realize in physical systems. At low energies, a quantum impurity with orbital degree of freedom, like a proton bound in an interstitial lattice space, comprises a 3-level system with a unique ground state and (at least) doubly degenerate rotational excitations with excitation energy {Delta}{sub 0}. When immersed in a metal, electronic angular momentum scattering induces transitions between any two of these levels (couplings J), while the electron spin is conserved. We show by extensive numerical renormalization group (NRG) calculations that without fi ne-tuning of parameters this system exhibits a 2CK fixed point, due to Kondo correlations in the excited-state doublet whose degeneracy is stabilized by the host lattice parity, while the channel symmetry (electron spin) is guaranteed by time reversal symmetry. We find a pronounced plateau in the entropy at S(T{sub K}>{Delta}{sub 0})=k{sub B} ln 3, and the 2CK ground state value, S(0)=k{sub B} ln {radical}(2). This indicates a downward renormalization of the doublet below the non-interacting ground state, thus realizing the 2CK fixed point, in agreement with earlier conjectures. We mapped out the phase diagram of the model in the J-{Delta}{sub 0} plane. The Kondo temperature T{sub K} shows non-monotonic J-dependence, characteristic for 2CK systems. Beside the two-channel Kondo effect of the model, we also study the single-channel version, which is realized by applying a strong magnetic fi eld to the conduction band electrons so that their degeneracy is lifted and consequently having only one kind of electrons scattering off the impurity. This single-channel case is easier to analyze since the Hilbert space is not as large as that of the 2CK. We equally find a downward renormalization of the excited state energy by the Kondo correlations in the SU(2) doublet

  8. Numerical renormalization group studies of the partially brogen SU(3) Kondo model

    International Nuclear Information System (INIS)

    Fuh Chuo, Evaristus

    2013-04-01

    The two-channel Kondo (2CK) effect with its exotic ground state properties has remained difficult to realize in physical systems. At low energies, a quantum impurity with orbital degree of freedom, like a proton bound in an interstitial lattice space, comprises a 3-level system with a unique ground state and (at least) doubly degenerate rotational excitations with excitation energy Δ 0 . When immersed in a metal, electronic angular momentum scattering induces transitions between any two of these levels (couplings J), while the electron spin is conserved. We show by extensive numerical renormalization group (NRG) calculations that without fi ne-tuning of parameters this system exhibits a 2CK fixed point, due to Kondo correlations in the excited-state doublet whose degeneracy is stabilized by the host lattice parity, while the channel symmetry (electron spin) is guaranteed by time reversal symmetry. We find a pronounced plateau in the entropy at S(T K 0 )=k B ln 2 between the high-T value, S(T>>Δ 0 )=k B ln 3, and the 2CK ground state value, S(0)=k B ln √(2). This indicates a downward renormalization of the doublet below the non-interacting ground state, thus realizing the 2CK fixed point, in agreement with earlier conjectures. We mapped out the phase diagram of the model in the J-Δ 0 plane. The Kondo temperature T K shows non-monotonic J-dependence, characteristic for 2CK systems. Beside the two-channel Kondo effect of the model, we also study the single-channel version, which is realized by applying a strong magnetic fi eld to the conduction band electrons so that their degeneracy is lifted and consequently having only one kind of electrons scattering off the impurity. This single-channel case is easier to analyze since the Hilbert space is not as large as that of the 2CK. We equally find a downward renormalization of the excited state energy by the Kondo correlations in the SU(2) doublet. In a wide range of parameter values this stabilizes the single

  9. Towards quantum simulation of the Kondo-Lattice-Model

    Energy Technology Data Exchange (ETDEWEB)

    Kochanke, Andre

    2017-04-25

    Ultracold quantum gases of alkaline-earth-like metals are a versatile tool to investigate interacting many-body physics by realizing clean and controllable experimental model systems. Their intriguing properties range from energetically low-lying clock transitions, which allow for high-resolution spectroscopy, over meta-stable states, which can be regarded as a second species with orbital degree of freedom, to SU(N) symmetry, allowing novel magnetic phases. These open up new possibilities for quantum simulators. Using them in combination with optical lattices dissipative Fermi-Hubbard models and the Kondo-lattice-model can be realized, two promising examples for probing strongly correlated systems. This thesis presents an experimental apparatus for producing ultracold samples of fermionic {sup 173}Yb (N≤6). A new bicolor dipole trap was implemented with a final, average trap frequency of anti ω=36 Hz. Using optical, resonant pumping and an Optical-Stern-Gerlach scheme, the spin mixture can arbitrarily be changed from a six- to a one-component gas. Typically the degenerate Fermi gases consist of 87000 atoms at 17.5% T{sub F} (N=6) and of 47000 atoms at 19.4% T{sub F} (N=1). The lowest lying meta-stable state {sup 3}P{sub 0} (578 nm) is coherently controlled using a clock-laser setup with a linewidth of FWHM=1 Hz by means of Rabi oscillations or rapid adiabatic passage. By conducting spectroscopic measurements in a 3D magic lattice (759 nm) we demonstrate inter band transitions and observe the {sup 1}S{sub 0}<=>{sup 3}P{sub 0} excitation with a resolution of FWHM=50(2) Hz. Applying these techniques to a two-component spin mixture reveals a shift of the clock-transition caused by spin-exchange interaction between the orbital symmetric vertical stroke eg right angle {sup +} vertical stroke ↑↓ right angle {sup -} and the orbital antisymmetric vertical stroke eg right angle {sup -} vertical stroke ↑↓ right angle {sup +} state. Using the inelastic properties of

  10. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  11. Is dense codeswitching complex?

    NARCIS (Netherlands)

    Dorleijn, M.

    In this paper the question is raised to what extent dense code switching can be considered complex. Psycholinguistic experiments indicate that code switching involves cognitive costs, both in production and comprehension, a conclusion that could indicate that code switching is indeed complex. In

  12. Simulation of dense colloids

    NARCIS (Netherlands)

    Herrmann, H.J.; Harting, J.D.R.; Hecht, M.; Ben-Naim, E.

    2008-01-01

    We present in this proceeding recent large scale simulations of dense colloids. On one hand we simulate model clay consisting of nanometric aluminum oxide spheres in water using realistic DLVO potentials and a combination of MD and SRD. We find pronounced cluster formation and retrieve the shear

  13. Temperature-Independent Fermi Surface in the Kondo Lattice YbRh_{2}Si_{2}

    Directory of Open Access Journals (Sweden)

    K. Kummer

    2015-03-01

    Full Text Available Strongly correlated electron systems are one of the central topics in contemporary solid-state physics. Prominent examples for such systems are Kondo lattices, i.e., intermetallic materials in which below a critical temperature, the Kondo temperature T_{K}, the magnetic moments become quenched and the effective masses of the conduction electrons approach the mass of a proton. In Ce- and Yb-based systems, this so-called heavy-fermion behavior is caused by interactions between the strongly localized 4f and itinerant electrons. A major and very controversially discussed issue in this context is how the localized electronic degree of freedom gets involved in the Fermi surface (FS upon increasing the interaction between both kinds of electrons or upon changing the temperature. In this paper, we show that the FS of a prototypic Kondo lattice, YbRh_{2}Si_{2}, does not change its size or shape in a wide temperature range extending from well below to far above the single-ion Kondo temperature T_{K}∼25  K of this system. This experimental observation, obtained by means of angle-resolved photoemission spectroscopy, is in remarkable contrast to the widely believed evolution from a large FS, including the 4f degrees of freedom, to a small FS, without the 4f’s, upon increasing temperature. Our results explicitly demonstrate a need to further advance in theoretical approaches based on the periodic Anderson model in order to elucidate the temperature dependence of Fermi surfaces in Kondo lattices.

  14. Observations of the Kondo effect and its coexistence with ferromagnetism in a magnetically undoped metal oxide nanostructure

    Science.gov (United States)

    Sapkota, Keshab R.; Maloney, F. Scott; Wang, Wenyong

    2018-04-01

    In this work, we report unusual observations of Kondo effect and coexistence of Kondo effect and ferromagnetism in indium tin oxide (ITO) nanowires that were synthesized without incorporating any magnetic impurities. The temperature-dependent resistivity (ρ -T ) data exhibited an upturn below 80 K and then tended to saturate below 10 K. The ρ -T and magnetoresistance data were analyzed using the n -channel Kondo model, and from the obtained values of S =1 and n ˜1 , the nanowires were expected to be an underscreened Kondo system. A model was also proposed to explain the formation of localized S =1 spin centers in the ITO nanowires. This work could provide insights into the understanding of spin-related novel phenomena in metal oxide nanostructures.

  15. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1987-01-01

    This paper covers some aspects of the theory of atomic processes in dense plasmas. Because the topic is very broad, a few general rules which give useful guidance about the typical behavior of dense plasmas have been selected. These rules are illustrated by semiclassical estimates, scaling laws and appeals to more elaborate calculations. Included in the paper are several previously unpublished results including a new mechanism for electron-ion heat exchange (section II), and an approximate expression for oscillator-strengths of highly charged ions (section V). However the main emphasis is not upon practical formulas but rather on questions of fundamental theory, the structural ingredients which must be used in building a model for plasma events. What are the density effects and how does one represent them? Which are most important? How does one identify an incorrect theory? The general rules help to answer these questions. 106 references, 23 figures, 2 tables

  16. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  17. Reduction of Kondo lattice effects in Yb1-xLuxAl3 observed by soft x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Yamaguchi, J; Sekiyama, A; Imada, S; Yamasaki, A; Tsunekawa, M; Muro, T; Ebihara, T; Onuki, Y; Suga, S

    2007-01-01

    We have carried out the bulk-sensitive and high-resolution soft x-ray photoelectron spectroscopy on Lu substituted intermediate-valence compound Yb 1-x Lu x Al 3 (x = 0.4) at temperatures from 200 to 20 K. The temperature dependences of the bulk Yb 4f photoelectron spectra revealed in our preceding works on high purity YbAl 3 have not been observed in this Lu substituted system. The temperature dependences of the bulk Yb 4f peak positions and the Yb valence in this system can be well reproduced by the single impurity Anderson model (SIAM), whereas the spectral behaviors in YbAl 3 were not at all reproduced by the SIAM. These results confirm the importance of the Kondo lattice effects for YbAl 3 , for which the coherent lattice periodicity plays essential roles

  18. Orbital Kondo effect due to assisted hopping: Superconductivity, mass enhancement in Cooper oxides with apical oxygen

    International Nuclear Information System (INIS)

    Zawadowski, A.; Penc, K.; Zimanyi, G.

    1991-07-01

    Orbital Kondo effect is treated in a model, where additional to the conduction band there are localized orbitals with energy not very far from the Fermi energy. If the hopping between the conduction band and the localized heavy orbitals depends on the occupation of the conduction band orbital then orbital Kondo correlation occurs. The assisted hopping vertex is enhanced due to the Coulomb interaction between the heavy orbital and the conduction band. The enhanced hopping results in mass enhancement and attractive interaction in the conduction band. The superconductivity transition temperature is calculated. The models of this type can be applied to the high-T c superconductors where the non-bonding oxygen orbitals of the apical oxygens play the role of heavy orbitals. For an essential range of the parameters the T c obtained is about 100K. (author). 22 refs, 9 figs

  19. Interaction quench dynamics in the Kondo model in the presence of a local magnetic field.

    Science.gov (United States)

    Heyl, M; Kehrein, S

    2010-09-01

    In this work we investigate the quench dynamics in the Kondo model on the Toulouse line in the presence of a local magnetic field. It is shown that this setup can be realized by either applying the local magnetic field directly or by preparing the system in a macroscopically spin-polarized initial state. In the latter case, the magnetic field results from a subtlety in applying the bosonization technique where terms that are usually referred to as finite-size corrections become important in the present non-equilibrium setting. The transient dynamics are studied by analyzing exact analytical results for the local spin dynamics. The timescale for the relaxation of the local dynamical quantities turns out to be exclusively determined by the Kondo scale. In the transient regime, one observes damped oscillations in the local correlation functions with a frequency set by the magnetic field.

  20. Two-color Fermi-liquid theory for transport through a multilevel Kondo impurity

    Science.gov (United States)

    Karki, D. B.; Mora, Christophe; von Delft, Jan; Kiselev, Mikhail N.

    2018-05-01

    We consider a quantum dot with K ≥2 orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multilevel Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric point is governed by a two-channel S =1 Kondo model characterized by intrinsic channels asymmetry. Based on a conformal field theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamiltonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum impurity by a two-color local Fermi liquid. Using nonequilibrium (Keldysh) perturbation theory around the strong-coupling fixed point we analyze the transport properties of the model at finite temperature, Zeeman magnetic field, and source-drain voltage applied across the quantum dot. We compute the Fermi-liquid transport constants and discuss different universality classes associated with emergent symmetries.

  1. Tunable quantum criticality and super-ballistic transport in a "charge" Kondo circuit.

    Science.gov (United States)

    Iftikhar, Z; Anthore, A; Mitchell, A K; Parmentier, F D; Gennser, U; Ouerghi, A; Cavanna, A; Mora, C; Simon, P; Pierre, F

    2018-05-03

    Quantum phase transitions (QPTs) are ubiquitous in strongly-correlated materials. However the microscopic complexity of these systems impedes the quantitative understanding of QPTs. Here, we observe and thoroughly analyze the rich strongly-correlated physics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. Notably, an unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly-correlated phenomena. Copyright © 2018, American Association for the Advancement of Science.

  2. Evidence for charge Kondo effect in superconducting Tl-doped PbTe

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, I

    2010-01-11

    We report results of low-temperature thermodynamic and transport measurements of Pb{sub 1-x}Tl{sub x}Te single crystals for Tl concentrations up to the solubility limit of approximately x = 1.5%. For all doped samples, we observe a low-temperature resistivity upturn that scales in magnitude with the Tl concentration. The temperature and field dependence of this upturn are consistent with a charge Kondo effect involving degenerate Tl valence states differing by two electrons, with a characteristic Kondo temperature T{sub K} {approx} 6 K. The observation of such an effect supports an electronic pairing mechanism for superconductivity in this material and may account for the anomalously high T{sub c} values.

  3. Emery-Kivelson solution of the two-channel Kondo problem

    Science.gov (United States)

    Sengupta, Anirvan M.; Georges, Antoine

    1994-04-01

    We consider the two-channel Kondo model in the Emery-Kivelson approach, and calculate the total susceptibility enhancement due to the impurity χimp=χ-χbulk. We find that χimp exactly vanishes at the solvable point, in a completely analogous way to the singular part of the specific heat Cimp. A perturbative calculation around the solvable point yields the generic behavior χimp~log(1/T), Cimp~T logT and the known universal value of the Wilson ratio RW=8/3. From this calculation, the Kondo temperature can be identified and is found to behave as the inverse square of the perturbation parameter. The small-field, zero-temperature behavior χimp~log(1/h) is also recovered.

  4. Heavy Fermion Materials and Quantum Phase Transitions Workshop on Frontiers of the Kondo Effect

    Science.gov (United States)

    2016-02-12

    SECURITY CLASSIFICATION OF: The contemporary studies of the Kondo effect and heavy -fermion materials occur at the intersection of some of the most...magnetism. Electronic systems in this intermediate regime are particularly tunable. Correspondingly, heavy fermions have emerged as a promising setting...materials. Second, heavy -fermion materials typically contain heavy elements, and there is an increasing 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND

  5. Rodolia cardinalis (Mulsant) (Coleoptera: Coccinellidae), a new predator of Crypticerya multicicatrices Kondo and Unruh (Hemiptera: Monophlebidae)

    OpenAIRE

    Pinchao, Ever Camilo; Kondo, Takumasa; González F., Guillermo

    2016-01-01

    The Colombian fluted scale (CFS), Crypticerya multicicatrices Kondo & Unruh (Hemiptera: Monophlebidae) is a polyphagous scale insect which affects about 100 species of plants. Between 2010–2013, the species was reported as an invasive pest on the islands of San Andres and Old Providence, Colombian territory in the Caribbean sea. Currently, populations of the CFS also have increased in the city of Cali, Valle del Cauca State, mainland Colombia, affecting different host plants, especially l...

  6. Photoemission and the electronic properties of heavy fermions -- limitations of the Kondo model

    International Nuclear Information System (INIS)

    Joyce, J.J.; Arko, A.J.; Andrews, A.B.

    1993-01-01

    The electronic properties of Yb-based heavy fermions have been investigated by means of high resolution synchrotron radiation photoemission and compared with predictions of the Kondo model. The Yb heavy fermion photoemission spectra show massive disagreement with the Kondo model predictions (as calculated within the Gunnarsson-Schonhammer computational method). Moreover, the Yb heavy fermion photoemission spectra give very strong indications of core-like characteristics and compare favorable to purely divalent Yb metal and core-like Lu 4f levels. The heavy fermions YbCu 2 Si 2 , YbAgCu 4 and YbAl 3 were measured and shown to have lineshapes much broader and deeper in binding energy than predicted by the Kondo model. The lineshape of the bulk component of the 4f emission for these three heavy fermion materials was compared with that from Yb metal and the Lu 4f levels in LuAl 3 , the heavy fermion materials show no substantive spectroscopic differences from simple 4f levels observed in Yb metal and LuAl 3 . Also, the variation with temperature of the 4f fineshape was measured for Yb metal and clearly demonstrates that phonon broadening plays a major role in 4f level lineshape analysis and must be accounted for before considerations of correlated electron resonance effects are presumed to be at work

  7. Green's function approach to the Kondo effect in nanosized quantum corrals

    Science.gov (United States)

    Li, Q. L.; Wang, R.; Xie, K. X.; Li, X. X.; Zheng, C.; Cao, R. X.; Miao, B. F.; Sun, L.; Wang, B. G.; Ding, H. F.

    2018-04-01

    We present a theoretical study of the Kondo effect for a magnetic atom placed inside nanocorrals using Green's function calculations. Based on the standard mapping of the Anderson impurity model to a one-dimensional chain model, we formulate a weak-coupling theory to study the Anderson impurities in a hosting bath with a surface state. With further taking into account the multiple scattering effect of the surrounding atoms, our calculations show that the Kondo resonance width of the atom placed at the center of the nanocorral can be significantly tuned by the corral size, in good agreement with recent experiments [Q. L. Li et al., Phys. Rev. B 97, 035417 (2018), 10.1103/PhysRevB.97.035417]. The method can also be applied to the atom placed at an arbitrary position inside the corral where our calculation shows that the Kondo resonance width also oscillates as the function of its separation from the corral center. The prediction is further confirmed by the low-temperature scanning tunneling microscopy studies where a one-to-one correspondence is found. The good agreement with the experiments validates the generality of the method to the system where multiadatoms are involved.

  8. Angle-resolved photoemission on the Kondo surface alloy CePd{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Mulazzi, Mattia; Seibel, Christoph; Schwab, Holger [Universitaet Wuerzburg, Experimentelle Physik VII (Germany); Shimada, Kenya; Jiang, Jiang [Graduate School of Science, Hiroshima University, Higashi-Hiroshima (Japan); Reinert, Friedrich [Universitaet Wuerzburg, Experimentelle Physik VII (Germany); Karlsruhe Institute of Technology KIT, Gemeinschaftslabor fuer Nanoanalytik, Karlsruhe (Germany)

    2013-07-01

    This films of the Cerium were evaporated on a Pd(001) substrate an further annealed to obtain a thin surface alloy layer of stoichiometry CePd{sub 7}, as observed by Auger spectroscopy. From LEED measurements it was possible to determine that the alloy has a (√(5) x √(5))R26.6 {sup circle} reconstruction, commensurate to the Palladium substrate. Photon-energy dependent ARPES measurements crossing the 4d-4f resonance show the presence of a strong peak near the Fermi level, having actually two components, the actual Kondo peak at the Fermi level and the spin-orbit peak at 280 meV binding energy. Resonant and non-resonant Fermi surface maps shows large intensity variations of the Pd bands, when measured at the resonance, a sign of strong hybridization between the conduction and the 4f electrons. While previous work assigns the CePd7 to the class of intermediate valence systems, our work shows that it is actually a Kondo system, with a rather high Kondo temperature.

  9. Spin relaxation and the Kondo effect in transition metal dichalcogenide monolayers

    International Nuclear Information System (INIS)

    Rostami, Habib; Moghaddam, Ali G; Asgari, Reza

    2016-01-01

    We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenide monolayers. We show that momentum and spin relaxation times, due to the exchange interaction by magnetic impurities, are much longer when the Fermi level is inside the spin-split region of the valence band. In contrast to the spin relaxation, we find that the dependence of Kondo temperature T K on the doping is not strongly affected by the spin–orbit induced splitting, although only one of the spin species are present at each valley. This result, which is obtained using both perturbation theory and the poor man’s scaling methods, originates from the intervalley spin-flip scattering in the spin-split region. We further demonstrate the decline in the conductivity with temperatures close to T K , which can vary with the doping. Our findings reveal the qualitative difference with the Kondo physics in conventional metallic systems and other Dirac materials. (paper)

  10. Dressed topological insulators. Rashba impurity, Kondo effect, magnetic impurities, proximity-induced superconductivity, hybrid systems

    International Nuclear Information System (INIS)

    Posske, Thore Hagen

    2016-01-01

    Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

  11. Phonon-assisted Kondo effect in single-molecule quantum dots coupled to ferromagnetic leads

    International Nuclear Information System (INIS)

    Yu Hui; Wen Tingdun; Liang, J.-Q.; Sun, Q.F.

    2008-01-01

    Based on the infinite-U Anderson model spin-polarized transport through the tunnel magnetoresistance (TMR) system of single-molecule quantum dot is investigated under the interplay of strong electron correlation and electron-phonon (e-ph) coupling. The spectral density and the nonlinear differential conductance are studied using the extended non-equilibrium Green's function method through calculating the dot-level splitting self-consistently. The results exhibit that a serial of peaks emerge on the two sides of the main Kondo peak for the antiparallel magnetic configuration of electrodes, while for the parallel case both the main and phonon-assisted satellite Kondo peaks all split up into two asymmetric peaks even at zero-bias. Correspondingly, the nonlinear differential conductance displays a set of satellite-peaks around the Kondo-peak in the presence of the e-ph interaction. Furthermore, extra maxima and minima appear in the TMR curve. The TMR alternates between the positive and the negative values along with the variation of bias voltage

  12. Crossover from 2d to 3d in anisotropic Kondo lattices

    International Nuclear Information System (INIS)

    Reyes, D.; Continentino, M.A.

    2008-01-01

    We study the crossover from two to three dimensions in Kondo lattices (KLM) using the Kondo necklace model (KNM). In order to diagonalize the KNM, we use a representation for the localized and conduction electron spins in terms of bond operators and a decoupling for the relevant Green's functions. Both models have a quantum critical point at a finite value of the ratio (J/t) between the Kondo coupling (J) and the hopping (t). In 2d there is no line of finite temperature antiferromagnetic (AF) transitions while for d≥3 this line is given by, T N ∝|g| 1/(d-1) [D. Reyes, M.A. Continentino, Phys. Rev. B 76 (2007) 075114]. The crossover from 2d to 3d is investigated by turning on the electronic hopping (t -perpendicular ) of conduction electrons between different planes. The phase diagram as a function of temperature T, J/t -parallel and ξ=t -perpendicular /t -parallel , where t -parallel is the hopping within the planes is calculated

  13. Dressed topological insulators. Rashba impurity, Kondo effect, magnetic impurities, proximity-induced superconductivity, hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Posske, Thore Hagen

    2016-02-26

    Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

  14. Influences of a Side-Coupled Triple Quantum Dot on Kondo Transport Through a Quantum Dot

    International Nuclear Information System (INIS)

    Jiang Zhaotan; Yang Yannan; Qin Zhijie

    2010-01-01

    Kondo transport properties through a Kondo-type quantum dot (QD) with a side-coupled triple-QD structure are systematically investigated by using the non-equilibrium Green's function method. We firstly derive the formulae of the current, the linear conductance, the transmission coefficient, and the local density of states. Then we carry out the analytical and numerical studies and some universal conductance properties are obtained. It is shown that the number of the conductance valleys is intrinsically determined by the side-coupled QDs and at most equal to the number of the QDs included in the side-coupled structure in the asymmetric limit. In the process of forming the conductance valleys, the side-coupled QD system plays the dominant role while the couplings between the Kondo-type QD and the side-coupled structure play the subsidiary and indispensable roles. To testify the validity of the universal conductance properties, another different kinds of side-coupled triple-QD structures are considered. It should be emphasized that these universal properties are applicable in understanding this kind of systems with arbitrary many-QD side structures.

  15. DENSE MEDIUM CYCLONE OPTIMIZATON

    Energy Technology Data Exchange (ETDEWEB)

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  16. Valence skipping driven superconductivity and charge Kondo effect

    International Nuclear Information System (INIS)

    Yanagisawa, Takashi; Hase, Izumi

    2013-01-01

    Highlights: •Valence skipping in metallic compounds can give rise to an unconventional superconductivity. •Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. •The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. •We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. •There is a high temperature region near the boundary. -- Abstract: Valence skipping in metallic compounds can give rise to an unconventional superconductivity. Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. The superconducting state is changed into a metallic state with a local singlet as the attractive interaction |U| increases. There is a high temperature region near the boundary

  17. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  18. Hyperons in dense matter

    International Nuclear Information System (INIS)

    Dapo, Haris

    2009-01-01

    The hyperon-nucleon YN low momentum effective interaction (V low k ) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V low k can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V low k one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V low k potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three-body force with a density-dependent interaction. This

  19. Geometrical optics of dense aerosols: forming dense plasma slabs.

    Science.gov (United States)

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  20. On the zero-bias anomaly and Kondo physics in quantum point contacts near pinch-off.

    Science.gov (United States)

    Xiang, S; Xiao, S; Fuji, K; Shibuya, K; Endo, T; Yumoto, N; Morimoto, T; Aoki, N; Bird, J P; Ochiai, Y

    2014-03-26

    We investigate the linear and non-linear conductance of quantum point contacts (QPCs), in the region near pinch-off where Kondo physics has previously been connected to the appearance of the 0.7 feature. In studies of seven different QPCs, fabricated in the same high-mobility GaAs/AlGaAs heterojunction, the linear conductance is widely found to show the presence of the 0.7 feature. The differential conductance, on the other hand, does not generally exhibit the zero-bias anomaly (ZBA) that has been proposed to indicate the Kondo effect. Indeed, even in the small subset of QPCs found to exhibit such an anomaly, the linear conductance does not always follow the universal temperature-dependent scaling behavior expected for the Kondo effect. Taken collectively, our observations demonstrate that, unlike the 0.7 feature, the ZBA is not a generic feature of low-temperature QPC conduction. We furthermore conclude that the mere observation of the ZBA alone is insufficient evidence for concluding that Kondo physics is active. While we do not rule out the possibility that the Kondo effect may occur in QPCs, our results appear to indicate that its observation requires a very strict set of conditions to be satisfied. This should be contrasted with the case of the 0.7 feature, which has been apparent since the earliest experimental investigations of QPC transport.

  1. Temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom adsorbed on a surface

    International Nuclear Information System (INIS)

    Dino, Wilson Agerico; Kasai, Hideaki; Rodulfo, Emmanuel Tapas; Nishi, Mayuko

    2006-01-01

    Manifestations of the Kondo effect on an atomic length scale on and around a magnetic atom adsorbed on a nonmagnetic surface differ depending on the spectroscopic mode of operation of the scanning tunneling microscope. Two prominent signatures of the Kondo effect that can be observed at surfaces are the development of a sharp resonance (Yosida-Kondo resonance) at the Fermi level, which broadens with increasing temperature, and the splitting of this sharp resonance upon application of an external magnetic field. Until recently, observing the temperature and magnetic field dependence has been a challenge, because the experimental conditions strongly depend on the system's critical temperature, the so-called Kondo temperature T K . In order to clearly observe the temperature dependence, one needs to choose a system with a large T K . One can thus perform the experiments at temperatures T K . However, because the applied external magnetic field necessary to observe the magnetic field dependence scales with T K , one needs to choose a system with a very small T K . This in turn means that one should perform the experiments at very low temperatures, e.g., in the mK range. Here we discuss the temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom on a metal surface, in relation to recent experimental developments

  2. Mercury's Densely Cratered Surface

    Science.gov (United States)

    1974-01-01

    Mariner 10 took this picture (FDS 27465) of the densely cratered surface of Mercury when the spacecraft was 18,200 kilometers (8085 miles) from the planet on March 29. The dark line across top of picture is a 'dropout' of a few TV lines of data. At lower left, a portion of a 61 kilometer (38 mile) crater shows a flow front extending across the crater floor and filling more than half of the crater. The smaller, fresh crater at center is about 25 kilometers (15 miles) in diameter. Craters as small as one kilometer (about one-half mile) across are visible in the picture.The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.Image Credit: NASA/JPL/Northwestern University

  3. Hadrons in dense matter. Proceedings

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2000-03-01

    The following topics were dealt with: Elementary hadronic reactions, Delta dynamics in nuclei, in-medium s-wave ππ-correlations, strangeness in hot and dense matter, medium modifications of vector mesons and dilepton production, medium modifications of charmonium, thermal properties of hot and dense hadronic matter, nuclear matter, spectral functions and QCD sum rules

  4. Spin and charge controlled by antisymmetric spin-orbit coupling in a triangular-triple-quantum-dot Kondo system

    Science.gov (United States)

    Koga, M.; Matsumoto, M.; Kusunose, H.

    2018-05-01

    We study a local antisymmetric spin-orbit (ASO) coupling effect on a triangular-triple-quantum-dot (TTQD) system as a theoretical proposal for a new application of the Kondo physics to nanoscale devices. The electric polarization induced by the Kondo effect is strongly correlated with the spin configurations and molecular orbital degrees of freedom in the TTQD. In particular, an abrupt sign reversal of the emergent electric polarization is associated with a quantum critical point in a magnetic field, which can also be controlled by the ASO coupling that changes the mixing weight of different orbital components in the TTQD ground state.

  5. One- and two-channel Kondo model with logarithmic Van Hove singularity: A numerical renormalization group solution

    Science.gov (United States)

    Zhuravlev, A. K.; Anokhin, A. O.; Irkhin, V. Yu.

    2018-02-01

    Simple scaling consideration and NRG solution of the one- and two-channel Kondo model in the presence of a logarithmic Van Hove singularity at the Fermi level is given. The temperature dependences of local and impurity magnetic susceptibility and impurity entropy are calculated. The low-temperature behavior of the impurity susceptibility and impurity entropy turns out to be non-universal in the Kondo sense and independent of the s-d coupling J. The resonant level model solution in the strong coupling regime confirms the NRG results. In the two-channel case the local susceptibility demonstrates a non-Fermi-liquid power-law behavior.

  6. Photoemission study of the temperature-dependent energy-gap formation in the Kondo semiconductor CeRhAs

    International Nuclear Information System (INIS)

    Shimada, K.; Arita, M.; Takeda, Y.; Namatame, H.; Taniguchi, M.; Higashiguchi, M.; Oguchi, T.; Sasakawa, T.; Suemitsu, T.; Takabatake, T.

    2004-01-01

    Full text: The orthorhombic CeRhAs, known as a Kondo semiconductor, has attracted much interest for its unusual energy-gap formation associated with the successive 1st order phase transitions. In order to elucidate the mechanism of the energy- gap formation, we have done high-resolution temperature-dependent photoemission spectroscopy on the undulator beamlines of a compact electron-storage ring, HiSOR, at Hiroshima University. We have observed directly the energy-gap formation in the Ce 4f states and in the conduction bands. Comparing with the isostructural Kondo semimetal CeRhSb, we discuss the energy gap formation in CeRhAs

  7. Quantum size effects in Pb layers with absorbed Kondo adatoms: Determination of the exchange coupling constant

    KAUST Repository

    Schwingenschlö gl, Udo; Shelykh, I. A.

    2009-01-01

    We consider the magnetic interaction of manganese phtalocyanine (MnPc) absorbed on Pb layers that were grown on a Si substrate. We perform an ab initio calculation of the density of states and Kondo temperature as a function of the number of Pb monolayers. Comparison to experimental data [Y.-S. Fu et al., Phys. Rev. Lett. 99, 256601 (2007)] then allows us to determine the exchange coupling constant J between the spins of the adsorbed molecules and those of the Pb host. This approach gives rise to a general and reliable method for obtaining J by combining experimental and numerical results.

  8. Nonlinear susceptibility: A direct test of the quadrupolar Kondo effect in UBe13

    International Nuclear Information System (INIS)

    Ramirez, A.P.; Chandra, P.; Coleman, P.; Fisk, Z.; Smith, J.L.; Ott, H.R.

    1994-01-01

    We present the nonlinear susceptibility as a direct test of the quadrupolar Kondo scenario for heavy fermion behavior, and apply it to the case of cubic crystal-field symmetry. Within a single-ion model we compute the nonlinear susceptibility resulting from low-lying Γ 3 (5f 2 ) and Kramers (5f 3 ) doublets. We find that nonlinear susceptibility measurements on single-crystal UBe 13 are inconsistent with a quadrupolar (5f 2 ) ground state of the uranium ion; the experimental data indicate that the low-lying magnetic excitations of UBe 13 are predominantly dipolar in character

  9. Principle-theoretic approach of kondo and construction-theoretic formalism of gauge theories

    International Nuclear Information System (INIS)

    Jain, L.C.

    1986-01-01

    Einstein classified various theories in physics as principle-theories and constructive-theories. In this lecture Kondo's approach to microscopic and macroscopic phenomena is analysed for its principle theoretic pursuit as followed by construction. The fundamentals of his theory may be recalled as Tristimulus principle, Observation principle, Kawaguchi spaces, empirical information, epistemological point of view, unitarity, intrinsicality, and dimensional analysis subject to logical and geometrical achievement. On the other hand, various physicists have evolved constructive gauge theories through the phenomenological point of view, often a collective one. Their synthetic method involves fibre bundles and connections, path integrals as well as other hypothetical structures. They lead towards clarity, completeness and adaptability

  10. Kondo resonance in the neutron spectra of intermediate-valent YbAl3

    International Nuclear Information System (INIS)

    Walter, U.; Holland-Moritz, E.; Fisk, Z.

    1991-01-01

    We have measured the dynamic susceptibility of intermediate-valent YbAl 3 by means of cold-neutron scattering. We find two intense magnetic excitations below 40 meV. One of these, with location around 18 meV at helium temperatures, shifts steadily toward 0 meV with increasing temperatures. While crystal field interactions are unable to account for such a behavior, this excitation is in good agreement with a transition from the f ground state to a Kondo resonance as described by the Anderson model. In particular, it definitely excludes a gaplike magnetic response with gap width Δ=30 meV as asserted earlier

  11. A low-temperature derivation of spin-spin exchange in Kondo lattice model

    International Nuclear Information System (INIS)

    Feng Szeshiang; Mochena, Mogus

    2005-01-01

    Using Hubbard-Stratonovich transformation and drone-fermion representations for spin-12 and for spin-32, which is presented for the first time, we make a path-integral formulation of the Kondo lattice model. In the case of weak coupling and low temperature, the functional integral over conduction fermions can be approximated to the quadratic order and this gives the well-known RKKY interaction. In the case of strong coupling, the same quadratic approximation leads to an effective local spin-spin interaction linear in hopping energy t

  12. A low-temperature derivation of spin-spin exchange in Kondo lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Feng Szeshiang [Physics Department, Florida A and M University, Tallahassee, FL 32307 (United States)]. E-mail: shixiang.feng@famu.edu; Mochena, Mogus [Physics Department, Florida A and M University, Tallahassee, FL 32307 (United States)

    2005-11-01

    Using Hubbard-Stratonovich transformation and drone-fermion representations for spin-12 and for spin-32, which is presented for the first time, we make a path-integral formulation of the Kondo lattice model. In the case of weak coupling and low temperature, the functional integral over conduction fermions can be approximated to the quadratic order and this gives the well-known RKKY interaction. In the case of strong coupling, the same quadratic approximation leads to an effective local spin-spin interaction linear in hopping energy t.

  13. Quantum size effects in Pb layers with absorbed Kondo adatoms: Determination of the exchange coupling constant

    KAUST Repository

    Schwingenschlögl, Udo

    2009-07-01

    We consider the magnetic interaction of manganese phtalocyanine (MnPc) absorbed on Pb layers that were grown on a Si substrate. We perform an ab initio calculation of the density of states and Kondo temperature as a function of the number of Pb monolayers. Comparison to experimental data [Y.-S. Fu et al., Phys. Rev. Lett. 99, 256601 (2007)] then allows us to determine the exchange coupling constant J between the spins of the adsorbed molecules and those of the Pb host. This approach gives rise to a general and reliable method for obtaining J by combining experimental and numerical results.

  14. Unified approach to dense matter

    International Nuclear Information System (INIS)

    Park, Byung-Yoon; Lee, Hee-Jung; Vento, Vicente; Kim, Joon-Il; Min, Dong-Pil; Rho, Mannque

    2005-01-01

    We apply the Skyrme model to dense hadronic matter, which provides a unified approach to high density, valid in the large N c limit. In our picture, dense hadronic matter is described by the classical soliton configuration with minimum energy for the given baryon number density. By incorporating the meson fluctuations on such ground state we obtain an effective Lagrangian for meson dynamics in a dense medium. Our starting point has been the Skyrme model defined in terms of pions, thereafter we have extended and improved the model by incorporating other degrees of freedom such as dilaton, kaons and vector mesons

  15. Influence of nonmagnetic disorder on specific heat and electrical resistivity in Kondo lattice system CePd{sub 1−x}Ge{sub x}In

    Energy Technology Data Exchange (ETDEWEB)

    Gnida, D., E-mail: d.gnida@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław (Poland); Dominyuk, N.; Zaremba, V. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mephodiya Str. 6, 79005 Lviv (Ukraine); Kaczorowski, D. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław (Poland)

    2015-02-15

    Highlights: • Interplay of Kondo and RKKY interactions in the presence of nonmagnetic disorder. • Suppression of the coherent Kondo state by nonmagnetic impurities. • Observation of quantum interference phenomena in Ce-based Kondo system. • Coexistence of incoherent Kondo effect and Altshuler-Aronov quantum correction. - Abstract: The alloy system CePd{sub 1−x}Ge{sub x}In with 0.1⩽x⩽0.4 was investigated by means of heat capacity and electrical resistivity measurements. Its low-temperature behavior has been found to be governed by the interplay of Kondo effect and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions in the presence of atomic disorder in nonmagnetic atoms sublattice. The coherent Kondo state, observed for CePdIn, gradually vanishes with increasing the Ge-content. The incoherent Kondo state, which characterizes Ge-rich alloys, appears very sensitive to applied magnetic field. The observed systematic changes in the temperature- and field-dependent electrical transport in CePd{sub 1−x}Ge{sub x}In manifest the important role of quantum correction due to electron-electron interactions in weakly localized regime.

  16. Magnetic and orbital instabilities in a lattice of SU(4) organometallic Kondo complexes

    International Nuclear Information System (INIS)

    Lobos, A M; Aligia, A A

    2014-01-01

    Motivated by experiments of scanning tunneling spectroscopy (STS) on self- assembled networks of iron(II)-phtalocyanine (FePc) molecules deposited on a clean Au(111) surface [FePc/Au(111)] and its explanation in terms of the extension of the impurity SU(4) Anderson model to the lattice in the Kondo regime, we study the competition between the Kondo effect and the magneto-orbital interactions occurring in FePc/Au(111). We explore the quantum phases and critical points of the model using a large-N slave-boson method in the mean-field approximation. The SU(4) symmetry in the impurity appears as a combination of the usual spin and an orbital pseudospin arising from the degenerate 3d xz and 3d yz orbitals in the Fe atom. In the case of the lattice, our results show that the additional orbital degrees of freedom crucially modify the low-temperature phase diagram, and induce new types of orbital interactions among the Fe atoms, which can potentially stabilize exotic quantum phases with magnetic and orbital order. The dominant instability corresponds to spin ferromagnetic and orbital antiferromagnetic order

  17. Interplay between surface and bulk states in the Topological Kondo Insulator SmB6

    Science.gov (United States)

    Biswas, Sangram; Hatnean, Monica Ciomaga; Balakrishnan, Geetha; Bid, Aveek

    Kondo insulator SmB6 is predicted to have topologically protected conducting surface states(TSS). We have studied electrical transport through surface states(SS) at ultra-low temperatures in single crystals of SmB6 using local-nonlocal transport scheme and found a large nonlocal signal at temperatures lower than bulk Kondo gap scale. Using resistance fluctuation spectroscopy, we probed the local and nonlocal transport channels and showed that at low temperatures, transport in this system takes place only through SS. The measured noise in this temperature range arises due to Universal Conductance Fluctuations whose statistics was found to be consistent with theoretical predictions for that of 2D systems in the Symplectic symmetry class. We studied the temperature dependence of noise and found that, unlike the topological insulators of the dichalcogenide family, the noise in surface and bulk conduction channels in SmB6 are uncorrelated - at sufficiently low temperatures, the bulk has no discernible contribution to electrical transport in SmB6 making it an ideal platform for probing the physics of TSS. Nanomission, Department of Science & Technology (DST) and Indian Institute of Scienc and EPSRC, UK, Grant EP/L014963/1.

  18. Transport properties of a Kondo dot with a larger side-coupled noninteracting quantum dot

    International Nuclear Information System (INIS)

    Liu, Y S; Fan, X H; Xia, Y J; Yang, X F

    2008-01-01

    We investigate theoretically linear and nonlinear quantum transport through a smaller quantum dot in a Kondo regime connected to two leads in the presence of a larger side-coupled noninteracting quantum dot, without tunneling coupling to the leads. To do this we employ the slave boson mean field theory with the help of the Keldysh Green's function at zero temperature. The numerical results show that the Kondo conductance peak may develop multiple resonance peaks and multiple zero points in the conductance spectrum owing to constructive and destructive quantum interference effects when the energy levels of the large side-coupled noninteracting dot are located in the vicinity of the Fermi level in the leads. As the coupling strength between two quantum dots increases, the tunneling current through the quantum device as a function of gate voltage applied across the two leads is suppressed. The spin-dependent transport properties of two parallel coupled quantum dots connected to two ferromagnetic leads are also investigated. The numerical results show that, for the parallel configuration, the spin current or linear spin differential conductance are enhanced when the polarization strength in the two leads is increased

  19. Transport properties of dense matter

    International Nuclear Information System (INIS)

    Itoh, Naoki; Mitake, Shinichi; Iyetomi, Hiroshi; Ichimaru, Setsuo

    1983-01-01

    Transport coefficients, electrical and thermal conductivities in particular, are essential physical quantities for the theories of stellar structure. Since the discoveries of pulsars and X-ray stars, an accurate evaluation of the transport coefficients in the dense matter has become indispensable to the quantitative understanding of the observed neutron stars. The authors present improved calculations of the electrical and thermal conductivities of the dense matter in the liquid metal phase, appropriate to white dwarfs and neutron stars. (Auth.)

  20. Spin-Orbit Interaction and Kondo Scattering at the PrAlO3/SrTiO3 Interface

    Science.gov (United States)

    Mozaffari, Shirin; Guchhait, Samaresh; Markert, John

    We have investigated the effect of oxygen content, in the PO2 range of 6 ×10-6 - 1 ×10-3 torr, on the spin-orbit (SO) interaction at PrAlO3/SrTiO3 interface. The most-conducting 2-D-like PrAlO3 interfaces were not as conducting as comparable LaAlO3 samples, indicating either a steric or mixed-valent effect. The least-conducting, most oxygenated PrAlO3 interface exhibits hole conductivity, a departure from the typical electron-doped behavior. For 10-5 and 10-4 torr samples, high-temperature metallic behavior is accompanied by an upturn in resistivity at low temperatures, consistent with Kondo scattering theory; analysis gives a Kondo temperature 17 K. The magnetoresistance (MR) for the low PO2-grown samples was modeled with a positive part due to weak anti-localization (WAL) from a strong SO interaction, and a negative part due to the Kondo effect. The variation of MR suggests a strong SO interaction for the 10-5 torr sample with HSO = 1.25 T in both field orientations. The WAL effect is smaller for higher PO2-grown samples, where the high-field MR is dominated by the Kondo effect.

  1. Can Holstein-Kondo lattice model be used as a candidate for the theory of high transition temperature superconductors

    Directory of Open Access Journals (Sweden)

    R Nourafkan

    2009-08-01

    Full Text Available   It is a common knowledge that the formation of electron pairs is a necessary ingredient of any theoretical work describing superconductivity. Thus, finding the mechanism of the formation of the electron pairs is of utmost importance. There are some experiments on high transition temperature superconductors which support the electron-phonon (e-ph interactions as the pairing mechanism (ARPES, and there are others which support the spin fluctuations as their pairing mechanism (tunneling spectroscopy. In this paper, we introduce the Holstein-Kondo lattice model (H-KLM which incorporates the e-ph as well as the Kondo exchange interaction. We have used the dynamical mean field theory (DMFT to describe heavy fermion semiconductors and have employed the exact-diagonalization technique to obtain our results. The phase diagram of these systems in the parameter space of the e-ph coupling, g, and the Kondo exchange coupling, J, show that the system can be found in the Kondo insulating phase, metallic phase or the bi-polaronic phase. It is shown that these systems develop both spin gap and a charge gap, which are different and possess energies in the range of 1-100 meV. In view of the fact that both spin excitation energies and phonon energies lie in this range, we expect our work on H-KLM opens a way to formalize the theory of the high transition temperature superconductors .

  2. Removal of Cyclohexane from a Contaminated Air Stream Using a Dense Phase Membrane Bioreactor

    National Research Council Canada - National Science Library

    Roberts, Michael G

    2005-01-01

    The purpose of this research was to determine the ability of a dense phase membrane bioreactor to remove cyclohexane, a volatile organic compound in JP-8 jet fuel, from a contaminated air stream using...

  3. Dynamics of dense particle disks

    International Nuclear Information System (INIS)

    Araki, S.; Tremaine, S.; Toronto Univ., Canada)

    1986-01-01

    The present investigation of mechanical equilibrium and collisional transport processes in dense, differentially rotating particle disks is based on the Enskog (1922) theory of dense, hard sphere gases, with the single exception that the spheres are inelastic. The viscous instability suggested as a source of Saturn B ring structure does not arise in the models presented, although the ring may be subject to a phase transition analogous to the liquid-solid transition observed in molecular dynamics simulations of elastic hard spheres. In such a case, the ring would alternately exhibit zero-shear, or solid, and high shear, or liquid, zones. 29 references

  4. Landau quantization and spin-momentum locking in topological Kondo insulators

    Directory of Open Access Journals (Sweden)

    P. Schlottmann

    2016-05-01

    Full Text Available SmB6 has been predicted to be a strong topological Kondo insulator and experimentally it has been confirmed that at low temperatures the electrical conductivity only takes place at the surfaces of the crystal. Quantum oscillations and ARPES measurements revealed several Dirac cones on the (001 and (101 surfaces of the crystal. We considered three types of surface Dirac cones with an additional parabolic dispersion and studied their Landau quantization and the expectation value of the spin of the electrons. The Landau quantization is quite similar in all three cases and would give rise to very similar de Haas-van Alphen oscillations. The spin-momentum locking, on the other hand, differs dramatically. Without the additional parabolic dispersion the spins are locked in the plane of the surface. The parabolic dispersion, however, produces a gradual canting of the spins out of the surface plane.

  5. Transport properties of the topological Kondo insulator SmB6 under the irradiation of light

    International Nuclear Information System (INIS)

    Zhu Guo-Bao; Yang Hui-Min

    2016-01-01

    In this paper, we study transport properties of the X point in the Brillouin zone of the topological Kondo insulator SmB 6 under the application of a circularly polarized light. The transport properties at high-frequency regime and low-frequency regime as a function of the ratio ( κ ) of the Dresselhaus-like and Rashba-like spin–orbit parameter are studied based on the Floquet theory and Boltzmann equation respectively. The sign of Hall conductivity at high-frequency regime can be reversed by the ratio κ and the amplitude of the light. The amplitude of the current can be enhanced by the ratio κ . Our findings provide a way to control the transport properties of the Dirac materials at low-frequency regime. (paper)

  6. Variational local moment approach: From Kondo effect to Mott transition in correlated electron systems

    International Nuclear Information System (INIS)

    Kauch, Anna; Byczuk, Krzysztof

    2012-01-01

    The variational local moment approach (VLMA) solution of the single impurity Anderson model is presented. It generalizes the local moment approach of Logan et al. by invoking the variational principle to determine the lengths of local moments and orbital occupancies. We show that VLMA is a comprehensive, conserving and thermodynamically consistent approximation and treats both Fermi and non-Fermi liquid regimes as well as local moment phases on equal footing. We tested VLMA on selected problems. We solved the single- and multi-orbital impurity Anderson model in various regions of parameters, where different types of Kondo effects occur. The application of VLMA as an impurity solver of the dynamical mean-field theory, used to solve the multi-orbital Hubbard model, is also addressed.

  7. Fermionology in the Kondo-Heisenberg model: the case of CeCoIn5

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Lu, Han-Tao; Luo, Hong-Gang

    2015-09-01

    The Fermi surface of heavy electron systems plays a fundamental role in understanding their variety of puzzling phenomena, for example, quantum criticality, strange metal behavior, unconventional superconductivity and even enigmatic phases with yet unknown order parameters. The spectroscopy measurement of the typical heavy fermion superconductor CeCoIn5 has demonstrated multi-Fermi surface structure, which has not been studied in detail theoretically in a model system like the Kondo-Heisenberg model. In this work, we take a step toward such a theoretical model by revisiting the Kondo-Heisenberg model. It is found that the usual self-consistent calculation cannot reproduce the fermionology of the experimental observation of the system due to the sign binding between the hopping of the conduction electrons and the mean-field valence-bond order. To overcome such inconsistency, the mean-field valence-bond order is considered as a free/fitting parameter to correlate them with real-life experiments as performed in recent experiments [M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Nat. Phys. 9, 468 (2013); J. Van Dyke, F. Massee, M.P. Allan, J.C. Davis, C. Petrovic, D.K. Morr, Proc. Natl. Acad. Sci. 111, 11663 (2014)], which also explicitly reflects the intrinsic dispersion of local electrons observed in experimental measurements. Given the fermionology, the calculated effective mass enhancement, entropy, superfluid density and Knight shift are all in qualitative agreement with the experimental results of CeCoIn5, which confirms our assumption. Our result supports a d_{x^2 - y^2 }-wave pairing structure in the heavy fermion material CeCoIn5.

  8. Dense Crowds of Virtual Humans

    NARCIS (Netherlands)

    Stüvel, S.A.

    2016-01-01

    This thesis presents a novel crowd simulation method `Torso Crowds', aimed at the simulation of dense crowds. The method is based on the results of user studies and a motion capture experiment, which are also described in this thesis. Torso Crowds introduces a capsule shape to represent people in

  9. Analytical determination of Kondo and Fano resonances of electron Green's function in a single-level quantum dot

    International Nuclear Information System (INIS)

    Nguyen Bich Ha; Nguyen Van Hop

    2009-01-01

    The Kondo and Fano resonances in the two-point Green's function of the single-level quantum dot were found and investigated in many previous works by means of different numerical calculation methods. In this work we present the derivation of the analytical expressions of resonance terms in the expression of the two-point Green's function. For that purpose the system of Dyson equations for the two-point nonequilibrium Green's functions in the complex-time Keldysh formalism was established in the second order with respect to the tunneling coupling constants and the mean field approximation. This system of Dyson equations was solved exactly and the analytical expressions of the resonance terms are derived. The conditions for the existence of Kondo or Fano resonances are found.

  10. Transient dynamics of a quantum-dot: From Kondo regime to mixed valence and to empty orbital regimes

    Science.gov (United States)

    Cheng, YongXi; Li, ZhenHua; Wei, JianHua; Nie, YiHang; Yan, YiJing

    2018-04-01

    Based on the hierarchical equations of motion approach, we study the time-dependent transport properties of a strongly correlated quantum dot system in the Kondo regime (KR), mixed valence regime (MVR), and empty orbital regime (EOR). We find that the transient current in KR shows the strongest nonlinear response and the most distinct oscillation behaviors. Both behaviors become weaker in MVR and diminish in EOR. To understand the physical insight, we examine also the corresponding dot occupancies and the spectral functions, with their dependence on the Coulomb interaction, temperature, and applied step bias voltage. The above nonlinear and oscillation behaviors could be understood as the interplay between dynamical Kondo resonance and single electron resonant-tunneling.

  11. Warm Dense Matter: An Overview

    International Nuclear Information System (INIS)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-01-01

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities. The conclusion of this

  12. Anomalous Kondo-Switching Effect of a Spin-Flip Quantum Dot Embedded in an Aharonov-Bohm Ring

    International Nuclear Information System (INIS)

    Chen Xiongwen; Shi Zhengang; Song Kehui

    2009-01-01

    We theoretically investigate the Kondo effect of a quantum dot embedded in a mesoscopic Aharonov-Bohm (AB) ring in the presence of the spin flip processes by means of the one-impurity Anderson Hamiltonian. Based on the slave-boson mean-field theory, we find that in this system the persistent current (PC) sensitively depends on the parity and size of the AB ring and can be tuned by the spin-flip scattering (R). In the small AB ring, the PC is suppressed due to the enhancing R weakening the Kondo resonance. On the contrary, in the large AB ring, with R increasing, the peak of PC firstly moves up to max-peak and then down. Especially, the PC phase shift of π appears suddenly with the proper value of R, implying the existence of the anomalous Kondo effect in this system. Thus this system may be a candidate for quantum switch. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. First-Order 0-π Quantum Phase Transition in the Kondo Regime of a Superconducting Carbon-Nanotube Quantum Dot

    Directory of Open Access Journals (Sweden)

    Romain Maurand

    2012-02-01

    Full Text Available We study a carbon-nanotube quantum dot embedded in a superconducting-quantum-interference-device loop in order to investigate the competition of strong electron correlations with a proximity effect. Depending on whether local pairing or local magnetism prevails, a superconducting quantum dot will exhibit a positive or a negative supercurrent, referred to as a 0 or π Josephson junction, respectively. In the regime of a strong Coulomb blockade, the 0-to-π transition is typically controlled by a change in the discrete charge state of the dot, from even to odd. In contrast, at a larger tunneling amplitude, the Kondo effect develops for an odd-charge (magnetic dot in the normal state, and quenches magnetism. In this situation, we find that a first-order 0-to-π quantum phase transition can be triggered at a fixed valence when superconductivity is brought in, due to the competition of the superconducting gap and the Kondo temperature. The superconducting-quantum-interference-device geometry together with the tunability of our device allows the exploration of the associated phase diagram predicted by recent theories. We also report on the observation of anharmonic behavior of the current-phase relation in the transition regime, which we associate with the two accessible superconducting states. Our results finally demonstrate that the spin-singlet nature of the Kondo state helps to enhance the stability of the 0 phase far from the mixed-valence regime in odd-charge superconducting quantum dots.

  14. Yb-based heavy fermion compounds and field tuned quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Eundeok [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The motivation of this dissertation was to advance the study of Yb-based heavy fermion (HF) compounds especially ones related to quantum phase transitions. One of the topics of this work was the investigation of the interaction between the Kondo and crystalline electric field (CEF) energy scales in Yb-based HF systems by means of thermoelectric power (TEP) measurements. In these systems, the Kondo interaction and CEF excitations generally give rise to large anomalies such as maxima in ρ(T) and as minima in S(T). The TEP data were use to determine the evolution of Kondo and CEF energy scales upon varying transition metals for YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) compounds and applying magnetic fields for YbAgGe and YbPtBi. For YbT2Zn20 and YbPtBi, the Kondo and CEF energy scales could not be well separated in S(T), presumably because of small CEF level splittings. A similar effect was observed for the magnetic contribution to the resistivity. For YbAgGe, S(T) has been successfully applied to determine the Kondo and CEF energy scales due to the clear separation between the ground state and thermally excited CEF states. The Kondo temperature, TK, inferred from the local maximum in S(T), remains finite as magnetic field increases up to 140 kOe. In this dissertation we have examined the heavy quasi-particle behavior, found near the field tuned AFM quantum critical point (QCP), with YbAgGe and YbPtBi. Although the observed nFL behaviors in the vicinity of the QCP are different between YbAgGe and YbPtBi, the constructed H-T phase diagram including the two crossovers are similar. For both YbAgGe and YbPtBi, the details of the quantum criticality turn out to be complicated. We expect that YbPtBi will provide an additional example of field tuned quantum criticality, but clearly there are further experimental investigations left and more ideas needed to understand the basic physics of field-induced quantum

  15. Holographic Renormalization in Dense Medium

    International Nuclear Information System (INIS)

    Park, Chanyong

    2014-01-01

    The holographic renormalization of a charged black brane with or without a dilaton field, whose dual field theory describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space

  16. Suprathermal viscosity of dense matter

    International Nuclear Information System (INIS)

    Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai

    2010-01-01

    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.

  17. Dilute and dense axion stars

    Science.gov (United States)

    Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank

    2018-02-01

    Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.

  18. Numerical simulations of heavy fermion systems. From He-3 bilayers to topological Kondo insulators

    International Nuclear Information System (INIS)

    Werner, Jan

    2015-01-01

    In this thesis the results of model calculations based on an extended Periodic Anderson Model are presented. The three particle ring exchange, which is the dominant magnetic exchange process in layered He-3, is included in the model. In addition, the model incorporates the constraint of no double occupancy by taking the limit of large local Coulomb repulsion. By means of Cellular DMFT, the model is investigated for a range of values of the chemical potential μ and inverse temperature β=1/T. The method is a cluster extension to the Dynamical Mean-Field Theory (DMFT), and allows to systematically include non-local correlations beyond the DMFT. The auxiliary cluster model is solved by a hybridization expansion CTQMC cluster solver, which provides unbiased, numerically exact results for the Green's function and other observables of interest. As a first step, the onset of Fermi liquid coherence is studied. At low enough temperature, the self-energy is found to exhibit a linear dependence on Matsubara frequency. Meanwhile, the spin susceptibility crossed over from a Curie-Weiss law to a Pauli law. The heavy fermion state appears at a characteristic coherence scale T coh . While the density is rather high for small filling, for larger filling T coh is increasingly suppressed. This involves a decreasing quasiparticle residue Z∝T coh and an enhanced mass renormalization m * /m∝T coh -1 . Extrapolation leads to a critical filling, where the coherence scale is expected to vanish at a quantum critical point. At the same time, the effective mass diverges. This corresponds to a breakdown of the Kondo effect, which is responsible for the formation of quasiparticles, due to a vanishing of the effective hybridization between the layers. Cellular DMFT simulations are conducted for small clusters of size N c =2 and 3. Furthermore a simple two-band model for two-dimensional topological Kondo insulators is devised, which is based on a single Kramer's doublet coupled to

  19. Dense Breasts: Answers to Commonly Asked Questions

    Science.gov (United States)

    ... Cancer Prevention Genetics of Breast & Gynecologic Cancers Breast Cancer Screening Research Dense Breasts: Answers to Commonly Asked Questions What are dense breasts? Breasts contain glandular, connective, and fat tissue. Breast density is a term that describes the ...

  20. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  1. Screening in dense ionic fluids

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1991-01-01

    There has been great progress in recent years in determining and understanding the structure of molten salts. I focus on molten alkali halides and discuss two main points concerning their liquid structure and its relationship with static electrical response in these dense ionic conductors. These are (i) the nature of screening and the related definitions and properties of the screening length and of the dielectric function, and (ii) developments in integral equations techniques for the evaluation of molten salt structure and static screening from given pair potentials. (author). 26 refs, 3 figs, 2 tabs

  2. Interaction-driven sub-gap resonance in the topological Kondo insulator SmB6

    Science.gov (United States)

    Fuhrman, Wesley

    2015-03-01

    Samarium hexaboride (SmB6) is a strongly correlated Kondo Insulator with a non-trivial band-structure topology. I will discuss recent neutron scattering experiments and analysis that expose a 14 meV resonant mode in SmB6 and relate it to the low energy insulating band structure. Repeating outside the first Brillouin zone, the mode is coherent with a 5 d-like magnetic form factor. I will discuss how band inversion can be inferred from neutron scattering and show that a perturbative slave boson treatment of a hybridized 2 species (d/ f) band structure within an Anderson model can produce a spin exciton with the observed characteristics. This analysis provides a detailed physical picture of how the SmB6 band topology arises from strong electron interactions, and accounts for the 14 meV resonant mode as a magnetically active exciton. The work at IQM was supported by the US Department of Energy, office of Basic Energy Sciences, Division of Material Sciences and Engineering under Grant DE-FG02-08ER46544.

  3. Magnetic Doping and Kondo Effect in Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Cha, Judy J.; Williams, James R.; Kong, Desheng; Meister, Stefan; Peng, Hailin; Bestwick, Andrew J.; Gallagher, Patrick; Goldhaber-Gordon, David; Cui, Yi

    2010-01-01

    A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surfaceto-volume ratio, which enhances effects from the surface states; recently reported Aharonov-Bohm oscillation in topological insulator nanoribbons by some of us is a good example. Theoretically, introducing magnetic impurities in topological insulators is predicted to open a small gap in the surface states by breaking time-reversal symmetry. Here, we present synthesis of magnetically doped Bi 2Se3 nanoribbons by vapor-liquid-solid growth using magnetic metal thin films as catalysts. Although the doping concentration is less than ∼2 %. low-temperature transport measurements of the Fe-doped Bi2Se3 nanoribbon devices show a clear Kondo effect at temperatures below 30 K, confirming the presence of magnetic impurities in the Bi2Se3 nanoribbons. The capability to dope topological insulator nanostructures magnetically opens up exciting opportunities for spintronics. © 2010 American Chemical Society.

  4. NMR of Cu satellites in the Kondo alloy CuCr

    International Nuclear Information System (INIS)

    Azevedo, L.J.; Follstaedt, D.; Narath, A.

    1978-01-01

    Using pulsed NMR techniques, resonances of Cu nuclei which are near neighbors to Cr impurities (c = 100 and 200 ppM) in CuCr (theta/sub k/ approx. 3K) have been studied in the temperature range 1 to 4K and applied fields H 0 = 20 to 125 kOe. At the highest fields and lowest temperatures the satellite shifts approach saturation. Above approx. 40 kOe the spin-lattice relaxation rate T 1 -1 is proportional to T/H 0 2 , indicating that the dominant relaxation mechanism arises from transverse fluctuations of a polarized local moment. The measured rates yield a local-moment/conduction-electron exchange interaction vertical bar J 0 vertical bar/g = 0.30, where g is the Cr g-value. Below approx. 40 kOe T 1 -1 appears to be slightly enhanced in comparison with the high-field behavior, but becomes field independent below approx. 30 kOe. Both effects are attributed to Kondo anomalies

  5. Quenching of orbital momentum by crystalline fields in a multichannel Kondo impurity

    International Nuclear Information System (INIS)

    Schlottmann, P.; Lee, K.

    1995-01-01

    We consider an impurity of spin S interacting via an isotropic spin exchange with conduction electrons of spin 1/2. The conduction electrons can be in n different orbital channels. We assume that crystalline fields split the orbital degrees of freedom into two multiplets, the one with lower energy consisting of n * orbitals and the one of higher energy of n-n * orbitals. The exchange coupling is the same for all channels. We derive the thermodynamic Bethe ansatz equations for this model and discuss the ground-state properties of the impurity as a function of the spin S and the magnetic field. The solution of the ground-state Bethe ansatz equations is obtained numerically. Three situations have to be distinguished when the magnetic field is small compared to the Kondo temperature: (i) If S=n/2 or S=n * /2 the conduction electrons exactly compensate the impurity spin into a singlet ground state, (ii) if S>n/2 the impurity is undercompensated, i.e., only partially compensated leaving an effective spin S-n/2 at low temperatures, and (iii) in all other cases the impurity spin is overcompensated giving rise to critical behavior. The quenching of the orbits by the crystalline field dramatically affects the cases S * /2

  6. Effects of magnetic field on the pseudogap in the Kondo semiconductor CeRhAs

    International Nuclear Information System (INIS)

    Yoshii, S.; Kindo, K.; Sasakawa, T.; Suemitsu, T.; Takabatake, T.

    2004-01-01

    The magnetization and magnetoresistance of single-crystalline CeRhAs, which is the so-called Kondo semiconductor with an energygap of ∼280 K, have been measured in pulsed magnetic field up to 55 T. At 1.3 K, the slopes of the magnetization M for H parallel b and H parallel c decrease slightly at around 16 and 13 T, respectively, while M(H parallel a) shows monotonous dependence. Weak anisotropy is observed on the whole, M b (H)>M c (H)>M a (H). M b (H) reaches only to 0.07 μ B /f.u. at 55 T, which indicates the non-magnetic state being stable even in the high magnetic field. Strongly anisotropic behaviors are observed in the magnetoresistance. The longitudinal magnetoresistance (LMR) along the b- and c-axis show characteristic structures partly associated with the anomalies of the magnetizations, while the LMR along the a-axis shows only a broad maximum. The transverse magnetoresistances (TMR) for I parallel b and I parallel c follow the relation Δρ(H)/ρ(0)∝H α (α=1.5-1.7) below 5 T, whereas TMR for I parallel a exhibits only the weak field dependence. These results suggest the existence of a narrow and anisotropic structure within the wide pseudogap structure in the density of states

  7. Magnetic Doping and Kondo Effect in Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Cha, Judy J.

    2010-03-10

    A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surfaceto-volume ratio, which enhances effects from the surface states; recently reported Aharonov-Bohm oscillation in topological insulator nanoribbons by some of us is a good example. Theoretically, introducing magnetic impurities in topological insulators is predicted to open a small gap in the surface states by breaking time-reversal symmetry. Here, we present synthesis of magnetically doped Bi 2Se3 nanoribbons by vapor-liquid-solid growth using magnetic metal thin films as catalysts. Although the doping concentration is less than ∼2 %. low-temperature transport measurements of the Fe-doped Bi2Se3 nanoribbon devices show a clear Kondo effect at temperatures below 30 K, confirming the presence of magnetic impurities in the Bi2Se3 nanoribbons. The capability to dope topological insulator nanostructures magnetically opens up exciting opportunities for spintronics. © 2010 American Chemical Society.

  8. Deterministic and unambiguous dense coding

    International Nuclear Information System (INIS)

    Wu Shengjun; Cohen, Scott M.; Sun Yuqing; Griffiths, Robert B.

    2006-01-01

    Optimal dense coding using a partially-entangled pure state of Schmidt rank D and a noiseless quantum channel of dimension D is studied both in the deterministic case where at most L d messages can be transmitted with perfect fidelity, and in the unambiguous case where when the protocol succeeds (probability τ x ) Bob knows for sure that Alice sent message x, and when it fails (probability 1-τ x ) he knows it has failed. Alice is allowed any single-shot (one use) encoding procedure, and Bob any single-shot measurement. For D≤D a bound is obtained for L d in terms of the largest Schmidt coefficient of the entangled state, and is compared with published results by Mozes et al. [Phys. Rev. A71, 012311 (2005)]. For D>D it is shown that L d is strictly less than D 2 unless D is an integer multiple of D, in which case uniform (maximal) entanglement is not needed to achieve the optimal protocol. The unambiguous case is studied for D≤D, assuming τ x >0 for a set of DD messages, and a bound is obtained for the average . A bound on the average requires an additional assumption of encoding by isometries (unitaries when D=D) that are orthogonal for different messages. Both bounds are saturated when τ x is a constant independent of x, by a protocol based on one-shot entanglement concentration. For D>D it is shown that (at least) D 2 messages can be sent unambiguously. Whether unitary (isometric) encoding suffices for optimal protocols remains a major unanswered question, both for our work and for previous studies of dense coding using partially-entangled states, including noisy (mixed) states

  9. Defects in higher-dimensional quantum field theory. Relations to AdS/CFT-correspondence and Kondo lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.

    2007-03-15

    The present work is addressed to defects and boundaries in quantum field theory considering the application to AdS/CFT correspondence. We examine interactions of fermions with spins localised on these boundaries. Therefore, an algebra method is emphasised adding reflection and transmission terms to the canonical quantisation prescription. This method has already been applied to bosons in two space-time dimensions before. We show the possibilities of such reflection-transmission algebras in two, three, and four dimensions. We compare with models of solid state physics as well as with the conformal field theory approach to the Kondo effect. Furthermore, we discuss ansatzes of extensions to lattice structures. (orig.)

  10. Overscreening-underscreening transition in the two-channel Kondo model induced by electron-electron repulsion

    International Nuclear Information System (INIS)

    Zhang Yumei; Chen Hong.

    1995-09-01

    The effects of the repulsion between the electrons on the two-channel Kondo problem are studied by use of the bosonization technique. Following Emery and Kivelson, we define a special case in the spin density wave sector, in which the impurity spin is actually detached from the dynamics of the electrons. The model is thus mapped to a local Sine-Gordon system. For weak repulsion, the basic features of the overscreening picture are maintained. However, at sufficient strong repulsion the system is driven into the weak coupling regime, hence an overscreening-underscreening transition emerges. (author). 22 refs

  11. Enhancing the nonlinear thermoelectric response of a correlated quantum dot in the Kondo regime by asymmetrical coupling to the leads

    Science.gov (United States)

    Pérez Daroca, Diego; Roura-Bas, Pablo; Aligia, Armando A.

    2018-04-01

    We study the low-temperature properties of the differential response of the current to a temperature gradient at finite voltage in a single-level quantum dot including electron-electron interaction, nonsymmetric couplings to the leads, and nonlinear effects. The calculated response is significantly enhanced in setups with large asymmetries between the tunnel couplings. In the investigated range of voltages and temperatures with corresponding energies up to several times the Kondo energy scale, the maximum response is enhanced nearly an order of magnitude with respect to symmetric coupling to the leads.

  12. Numerical simulations of heavy fermion systems. From He-3 bilayers to topological Kondo insulators

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Jan

    2015-03-27

    In this thesis the results of model calculations based on an extended Periodic Anderson Model are presented. The three particle ring exchange, which is the dominant magnetic exchange process in layered He-3, is included in the model. In addition, the model incorporates the constraint of no double occupancy by taking the limit of large local Coulomb repulsion. By means of Cellular DMFT, the model is investigated for a range of values of the chemical potential μ and inverse temperature β=1/T. The method is a cluster extension to the Dynamical Mean-Field Theory (DMFT), and allows to systematically include non-local correlations beyond the DMFT. The auxiliary cluster model is solved by a hybridization expansion CTQMC cluster solver, which provides unbiased, numerically exact results for the Green's function and other observables of interest. As a first step, the onset of Fermi liquid coherence is studied. At low enough temperature, the self-energy is found to exhibit a linear dependence on Matsubara frequency. Meanwhile, the spin susceptibility crossed over from a Curie-Weiss law to a Pauli law. The heavy fermion state appears at a characteristic coherence scale T{sub coh}. While the density is rather high for small filling, for larger filling T{sub coh} is increasingly suppressed. This involves a decreasing quasiparticle residue Z∝T{sub coh} and an enhanced mass renormalization m{sup *}/m∝T{sub coh}{sup -1}. Extrapolation leads to a critical filling, where the coherence scale is expected to vanish at a quantum critical point. At the same time, the effective mass diverges. This corresponds to a breakdown of the Kondo effect, which is responsible for the formation of quasiparticles, due to a vanishing of the effective hybridization between the layers. Cellular DMFT simulations are conducted for small clusters of size N{sub c}=2 and 3. Furthermore a simple two-band model for two-dimensional topological Kondo insulators is devised, which is based on a single

  13. Antiferromagnetism and Kondo effect in a two quantum dot system: a slave boson approach

    International Nuclear Information System (INIS)

    Hamad, I.J.; Anda, E.V.

    2012-01-01

    Full text: In a recent experiment, Jakob et. al proposed a device consisting of a cobalt atom attached to the tip of a scanning tunneling microscope (STM) which interacts with another Co atom adsorbed on a gold surface. The high capacity to tune the tip-sample distance obtained by the authors, with a sub-picometre resolution, enabled the control of the electronic interaction between the two Co atoms and allowed the access to a very rich set of physical phenomena, specifically, those associated to the interplay of the antiferromagnetic interaction between the spins of the Co atoms and the Kondo correlation with the electronic reservoir spins. As well, it is possible to carefully study the geometrical aspects of the experimental disposition creating Fano anti resonances in the differential conductance as a function of the applied potential. In order to reproduce the physics observed in such an experiment we elaborate a model consisting of two sites where the electrons are highly correlated, that simulates the two Co atoms. Each atom interacts with an electronic reservoir and between themselves by means of a directed coupling and also, indirectly, through a coupling between the two electronic reservoirs. The many- body system is solved using a Slave Boson Formalism, solving the problem in the mean field approximation for finite values of U, the Coulomb electronic repulsion at the Co sites. Unlike the NRG calculations developed in the mentioned work, which partially explain the measurements, our results carries the physics information associated to the direct coupling between the Co atoms that permits to study the different regimes and the geometrical implications on the conductance results. Our study is able to explain the experimental results in all the parameter space. (author)

  14. Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Eike Möhlmann

    2015-06-01

    Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.

  15. Optimal super dense coding over memory channels

    OpenAIRE

    Shadman, Zahra; Kampermann, Hermann; Macchiavello, Chiara; Bruß, Dagmar

    2011-01-01

    We study the super dense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and non-unitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The super dense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where non-unitary encoding leads to an improvement in the super dense coding capacity.

  16. Dense module enumeration in biological networks

    Science.gov (United States)

    Tsuda, Koji; Georgii, Elisabeth

    2009-12-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  17. Dense module enumeration in biological networks

    International Nuclear Information System (INIS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-01-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  18. Dense sheet Z-pinches

    International Nuclear Information System (INIS)

    Tetsu, Miyamoto

    1999-01-01

    The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)

  19. STAR FORMATION IN DENSE CLUSTERS

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically ∼1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of ∼2, consistent with models of episodic disk accretion.

  20. Magnetic susceptibility of Dirac fermions, Bi-Sb alloys, interacting Bloch fermions, dilute nonmagnetic alloys, and Kondo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buot, Felix A., E-mail: fbuot@gmu.edu [Computational Materials Science Center, George Mason University, Fairfax, VA 22030 (United States); TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines); C& LB Research Institute, Carmen, Cebu 6005 (Philippines); Otadoy, Roland E.S.; Rivero, Karla B. [TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines)

    2017-03-01

    Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.

  1. Topological surface states interacting with bulk excitations in the Kondo insulator SmB6 revealed via planar tunneling spectroscopy.

    Science.gov (United States)

    Park, Wan Kyu; Sun, Lunan; Noddings, Alexander; Kim, Dae-Jeong; Fisk, Zachary; Greene, Laura H

    2016-06-14

    Samarium hexaboride (SmB6), a well-known Kondo insulator in which the insulating bulk arises from strong electron correlations, has recently attracted great attention owing to increasing evidence for its topological nature, thereby harboring protected surface states. However, corroborative spectroscopic evidence is still lacking, unlike in the weakly correlated counterparts, including Bi2Se3 Here, we report results from planar tunneling that unveil the detailed spectroscopic properties of SmB6 The tunneling conductance obtained on the (001) and (011) single crystal surfaces reveals linear density of states as expected for two and one Dirac cone(s), respectively. Quite remarkably, it is found that these topological states are not protected completely within the bulk hybridization gap. A phenomenological model of the tunneling process invoking interaction of the surface states with bulk excitations (spin excitons), as predicted by a recent theory, provides a consistent explanation for all of the observed features. Our spectroscopic study supports and explains the proposed picture of the incompletely protected surface states in this topological Kondo insulator SmB6.

  2. Tunneling observation at very low temperature of impurity bands within the gap of the Kondo superconducting system CuFe/Pb(T(K)>T(c))

    International Nuclear Information System (INIS)

    Dumoulin, Louis; Le Fur, Daniel

    1976-01-01

    Very low temperature superconducting tunneling experiments on CuFe(12.10 -6 ) backed by superconducting lead show a band of localized states next to the gap edge. There is no quantitative agreement with the perturbative approach of Mueller-Hartmann Zittartz in this system where the Kondo temperature is larger than the superconductive T(c) [fr

  3. Two strongly correlated electron systems: the Kondo mode in the strong coupling limit and a 2-D model of electrons close to an electronic topological transition

    International Nuclear Information System (INIS)

    Bouis, F.

    1999-01-01

    Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)

  4. Magnetic and transport properties of CePt.sub.3./sub.Ge Kondo lattice in crystallineand sub-micron state

    Czech Academy of Sciences Publication Activity Database

    Poltierová Vejpravová, Jana; Prokleška, J.; Pospíšil, J.; Kitazawa, H.; Goncalves, A.P.; Komatsubara, T.; Ritter, C.; Isnard, O.; Sechovský, V.

    2012-01-01

    Roč. 520, Apr (2012), s. 22-29 ISSN 0925-8388 Institutional research plan: CEZ:AV0Z10100520 Keywords : CePt 3 Ge * Kondo lattice * short-range magnetic order * size effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.390, year: 2012

  5. Dense image correspondences for computer vision

    CERN Document Server

    Liu, Ce

    2016-01-01

    This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems.   ·         Provides i...

  6. Composite systems of dilute and dense couplings

    International Nuclear Information System (INIS)

    Raymond, J R; Saad, D

    2008-01-01

    Composite systems, where couplings are of two types, a combination of strong dilute and weak dense couplings of Ising spins, are examined through the replica method. The dilute and dense parts are considered to have independent canonical disordered or uniform bond distributions; mixing the models by variation of a parameter γ alongside inverse temperature β we analyse the respective thermodynamic solutions. We describe the variation in high temperature transitions as mixing occurs; in the vicinity of these transitions we exactly analyse the competing effects of the dense and sparse models. By using the replica symmetric ansatz and population dynamics we described the low temperature behaviour of mixed systems

  7. 09 September 2013 - Japanese Members of Internal Affairs and Communications Committee House of Representatives visiting the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton. T. Kondo and K. Yoshida present.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    09 September 2013 - Japanese Members of Internal Affairs and Communications Committee House of Representatives visiting the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton. T. Kondo and K. Yoshida present.

  8. Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) representative H. Ikukawa visiting ATLAS experiment with Collaboration Spokesperson P. Jenni, KEK representative T. Kondo and Advisor to CERN DG J. Ellis on 15 May 2007.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) representative H. Ikukawa visiting ATLAS experiment with Collaboration Spokesperson P. Jenni, KEK representative T. Kondo and Advisor to CERN DG J. Ellis on 15 May 2007.

  9. Unstable magnetic moments in Ce compounds

    International Nuclear Information System (INIS)

    Aarts, J.

    1984-01-01

    The problems which are connected with the appearance or disappearance of local moments in metals are well reflected in the magnetic behaviour of Ce intermetallic compounds. This work describes experiments on two Ce compounds which are typical examples of unstable moment systems. The first of these is CeAl 2 which at low temperatures, shows coexistence of antiferromagnetic order and the Kondo effect. Measurements are presented of the magnetization and the susceptibility in different magnetic field and temperature regions. An analysis of these measurements, using a model for the crystal field effects, shows the agreement between the measurements and the calculations to be reasonably good for CeAl 2 , but this agreement becomes worse upon decreasing Ce concentration. A phenomenological description of the observations is given. The second compound reported on is CeCu 2 Si 2 , the first 'heavy-fermion' superconductor to be investigated. The superconducting state is possibly formed by the quasi-particles of a non-magnetic many body singlet state, and not simply by the (sd) conduction electrons. This being a novel phenomenon, a number of experiments were performed to test this picture and to obtain a detailed description of the behaviour of CeCu 2 Si 2 . Measurements of the Meissner volume, confirmed the superconductivity to be intrinsic. (Auth.)

  10. Intense, ultrashort light and dense, hot matter

    Indian Academy of Sciences (India)

    tiphoton and tunneling ionization, the physics of plasma formed in dense matter is .... A typical Gaussian laser pulse of 100 fs dura- .... J range) – and finally it is compressed back to its .... bond-hardening, molecular orientation and reori-.

  11. Finding dense locations in indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2014-01-01

    for semi-constrained indoor movement, and then uses this to map raw tracking records into mapping records representing object entry and exit times in particular locations. Then, an efficient indexing structure, the Dense Location Time Index (DLT-Index) is proposed for indexing the time intervals...... of the mapping table, along with associated construction, query processing, and pruning techniques. The DLT-Index supports very efficient aggregate point queries, interval queries, and dense location queries. A comprehensive experimental study with real data shows that the proposed techniques can efficiently......Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based model...

  12. Interference Coordination for Dense Wireless Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.; Jørgensen, Niels T.K.

    2015-01-01

    and dense deployment in Tokyo are compared. Evolution to DenseNets offers new opportunities for further development of downlink interference cooperation techniques. Various mechanisms in LTE and LTE-Advanced are revisited. Some techniques try to anticipate the future in a proactive way, whereas others......The promise of ubiquitous and super-fast connectivity for the upcoming years will be in large part fulfilled by the addition of base stations and spectral aggregation. The resulting very dense networks (DenseNets) will face a number of technical challenges. Among others, the interference emerges...... as an old acquaintance with new significance. As a matter of fact, the interference conditions and the role of aggressor and victim depend to a large extent on the density and the scenario. To illustrate this, downlink interference statistics for different 3GPP simulation scenarios and a more irregular...

  13. Skyrmions, dense matter and nuclear forces

    International Nuclear Information System (INIS)

    Pethick, C.J.

    1984-12-01

    A simple introduction to a number of properties of Skyrme's chiral soliton model of baryons is given. Some implications of the model for dense matter and for nuclear interactions are discussed. (orig.)

  14. Phase diagram of the Shastry-Sutherland Kondo lattice model with classical localized spins: a variational calculation study

    Science.gov (United States)

    Shahzad, Munir; Sengupta, Pinaki

    2017-08-01

    We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.

  15. Dynamical theory of dense groups of galaxies

    Science.gov (United States)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  16. Kinetic chemistry of dense interstellar clouds

    International Nuclear Information System (INIS)

    Graedel, T.E.; Langer, W.D.; Frerking, M.A.

    1982-01-01

    A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded

  17. Whole eggs enhance antioxidant activity when combined with energy dense, cooked breakfast foods

    Science.gov (United States)

    Acute metabolic changes following the consumption of energy dense foods high in saturated fat (SFA) and glycemic load (GL) may contribute to the pathogenesis of several chronic diseases. Eggs provide highly digestible protein, unsaturated fatty acids, carotenoids, and other antioxidant compounds tha...

  18. Two strongly correlated electron systems: the Kondo mode in the strong coupling limit and a 2-D model of electrons close to an electronic topological transition; Deux systemes d'electrons fortement correles: le modele de reseau Kondo dans la limite du couplage fort et un modele bidimensionnel d'electrons au voisinage d'une transition topologique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bouis, F

    1999-10-14

    Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)

  19. Topological Properties and the Dynamical Crossover from Mixed-Valence to Kondo-Lattice Behavior in the Golden Phase of SmS.

    Science.gov (United States)

    Kang, Chang-Jong; Choi, Hong Chul; Kim, Kyoo; Min, B I

    2015-04-24

    We have investigated temperature-dependent behaviors of electronic structure and resistivity in a mixed-valent golden phase of SmS, based on the dynamical mean-field-theory band-structure calculations. Upon cooling, the coherent Sm 4f bands are formed to produce the hybridization-induced pseudogap near the Fermi level, and accordingly the topology of the Fermi surface is changed to exhibit a Lifshitz-like transition. The surface states emerging in the bulk gap region are found to be not topologically protected states but just typical Rashba spin-polarized states, indicating that SmS is not a topological Kondo semimetal. From the analysis of anomalous resistivity behavior in SmS, we have identified universal energy scales, which characterize the Kondo-mixed-valent semimetallic systems.

  20. Constitutive law of dense granular matter

    International Nuclear Information System (INIS)

    Hatano, Takahiro

    2010-01-01

    The frictional properties of dense granular matter under steady shear flow are investigated using numerical simulation. Shear flow tends to localize near the driving boundary unless the coefficient of restitution is close to zero and the driving velocity is small. The bulk friction coefficient is independent of shear rate in dense and slow flow, whereas it is an increasing function of shear rate in rapid flow. The coefficient of restitution affects the friction coefficient only in such rapid flow. Contrastingly, in dense and slow regime, the friction coefficient is independent of the coefficient of restitution and mainly determined by the elementary friction coefficient and the rotation of grains. It is found that the mismatch between the vorticity of flow and the angular frequency of grains plays a key role to the frictional properties of sheared granular matter.

  1. Spin-orbit interaction and Kondo scattering at the PrAlO3/SrTiO3 interface: effects of oxygen content

    Science.gov (United States)

    Mozaffari, Shirin; Guchhait, Samaresh; Markert, John T.

    2017-10-01

    We report the effects of oxygen pressure during growth (PO2 ) on the electronic and magnetic properties of PrAlO3 films grown on TiO2 -terminated SrTiO3 substrates. Resistivity measurements show an increase in the sheet resistance as PO2 is increased. The saturation of the sheet resistance down to 0.3 K is consistent with Kondo theory for PO2 ≥slant 10-5 torr. Resistivity data fits indicate Kondo temperatures of 16-18 K. For the 10-4 sample, we measured a moderate positive magnetoresistance (MR) due to a strong spin-orbit (SO) interaction at low magnetic fields that evolves into a larger negative MR at high fields due to the Kondo effect. Analysis of the MR data permitted the extraction of the SO interaction critical field for the PO2=10-5 torr interface ( H_SO=1.25 T). We observed high positive MR for the least oxygenated sample, where a fraction of the n-type carriers are derived from oxygen vacancies and possible cation interdiffusion; for this 6×10-6 torr sample, Hall effect data indicate a thick conducting layer. Its extremely high MR (˜400% ) is attributed to classical behavior due to a distribution of mobilities.

  2. Nucleon structure and properties of dense matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Pethick, C.J.; Illinois Univ., Urbana, IL

    1988-01-01

    We consider the properties of dense matter in a framework of the Skyrme soliton model and the chiral bag model. The influence of the nucleon structure on the equation of state of dense matter is emphasized. We find that in both models the energy per unit volume is proportional to n 4/3 , n being the baryon number density. We discuss the properties of neutron stars with a derived equation of state. The role of many-body effects is investigated. The effect of including higher order terms in the chiral lagrangian is examined. The phase transition to quark matter is studied. 29 refs., 6 figs. (author)

  3. Fast Solvers for Dense Linear Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kauers, Manuel [Research Institute for Symbolic Computation (RISC), Altenbergerstrasse 69, A4040 Linz (Austria)

    2008-10-15

    It appears that large scale calculations in particle physics often require to solve systems of linear equations with rational number coefficients exactly. If classical Gaussian elimination is applied to a dense system, the time needed to solve such a system grows exponentially in the size of the system. In this tutorial paper, we present a standard technique from computer algebra that avoids this exponential growth: homomorphic images. Using this technique, big dense linear systems can be solved in a much more reasonable time than using Gaussian elimination over the rationals.

  4. NpX3 compounds under high pressure

    International Nuclear Information System (INIS)

    Zwirner, S.; Kalvius, G.M.

    1993-01-01

    The systematics of hyperfine interactions and the ordering temperature T ord in isostructural NpX 3 compounds (X=Al, Si, Ga, Ge, ln, Sn) are briefly reviewed. NpSn 3 has been viewed as a Kondo lattice system, similar to CeAl 2 , NpIn 3 shows a modulated magnetic structure including low moment and nonmagnetic contributions at ambient pressure and 4.2 K. Preliminary results of recent 237 Np Moessbauer studies on NpIn 3 at ambient pressure and various temperatures and at 4.0(8) GPa and 4.2 K are reported. At 4.0(8) GPa, T ord rises from 17 to 22 K, the low-moment contributions of the modulated structure are reduced and the non-magnetic site is lost below T ord . The variation of the hyperfine parameters and of T ord with pressure is similar to the behavior observed in NpSn 3 . (orig.)

  5. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  6. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  7. The electronic pressure in dense plasmas

    International Nuclear Information System (INIS)

    Pozwolski, A.E.

    1982-01-01

    A thermodynamic calculation of the electronic pressure in a dense plasma is given. Approximations involved by the use of the Debye length are avoided, so the above theory remains valid even if the Debye length is smaller than the interionic distance. (author)

  8. APT: Action localization Proposals from dense Trajectories

    NARCIS (Netherlands)

    van Gemert, J.C.; Jain, M.; Gati, E.; Snoek, C.G.M.; Xie, X.; Jones, M.W.; Tam, G.K.L.

    2015-01-01

    This paper is on action localization in video with the aid of spatio-temporal proposals. To alleviate the computational expensive video segmentation step of existing proposals, we propose bypassing the segmentations completely by generating proposals directly from the dense trajectories used to

  9. Dense Alternating Sign Matrices and Extensions

    Czech Academy of Sciences Publication Activity Database

    Fiedler, Miroslav; Hall, F.J.; Stroev, M.

    2014-01-01

    Roč. 444, 1 March (2014), s. 219-226 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : alternating sign matrix * dense matrix * totally unimodular matrix * combined matrix * generalized complementary basic matrix Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  10. Coalescence preference in dense packing of bubbles

    Science.gov (United States)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  11. Probing dense matter with strange hadrons

    CERN Document Server

    Rafelski, Johann; Rafelski, Johann; Letessier, Jean

    2002-01-01

    Analysis of hadron production experimental data allows to understand the properties of the dense matter fireball produced in relativistic heavy ion collisions. We interpret the analysis results and argue that color deconfined state has been formed at highest CERN-SPS energies and at BNL-RHIC.

  12. Photoemission of heavy fermion superconductor PrOs4Sb12 and other Pr compounds

    International Nuclear Information System (INIS)

    Imada, S.; Yamasaki, A.; Sekiyama, A.; Settai, R.; Onuki, Y.; Suga, S.; Sugawara, H.; Sato, H.; Ochiai, A.

    2004-01-01

    Full text: Strongly correlated electronic states due to Pr 4f electrons found in several Pr compounds have recently been attracting much attention. The Pr 4f electrons are much more localized than in Ce due to the lanthanoid contraction. Therefore, the number of the Pr systems that show strong electron correlation is much smaller than Ce systems. We will present a comparative study of Pr 4f electronic states in such systems as the heavy fermion superconductor PrOs 4 Sb 12 , the Kondo system PrSn 3 and the localized 4f systems Pr 4 X 3 (X = Sb and Bi). The Pr 4f electronic state was probed by means of the Pr 3d → 4f resonant photoemission (RPES). Because the kinetic energy (E K ) of the photoelectrons is as high as ∼ 900 eV, this method is much more bulk sensitive than the 4d → 4f RPES with E K ∼ 100 eV. The energy resolution could be set to about 100 meV by utilizing the soft X-rays from BL25SU in SPring-8 and the SCIENTA SES-200 analyzer. The Pr 4f excitation spectrum of PrSn 3 was found to show a very strong intensity at the Fermi level (E F ). This can be interpreted as the Kondo resonance which has been observed in the Kondo Ce and Yb compounds. In the Pr 4f spectrum of the heavy fermion superconductor PrOs 4 Sb 12 , the intensity at E F was smaller than in PrSn 3 . This clearly shows that the Kondo temperature (T K ) is much lower in PrOs 4 Sb 12 than in PrSn 3 . We have further found a strong excitation energy dependence in the RPES line shape. In the case of Pr 4 X 3 (X = Sb and Bi), the intensity at E B was much smaller than PrSn 3 and PrOs 4 Sb 12 , which is consistent with the localized character of Pr 4f electrons in Pr 4 X 3 . The Pr 4f spectra of these localized systems are qualitatively well reproduced by a cluster model calculation that takes into account the hybridization between the Pr 4f orbital and the conduction and valence bands made up by the X p and Pr 5d states

  13. Pressure dependence of magnetic ordering temperatures of rare earth-Sn/sub 3/ compounds

    Energy Technology Data Exchange (ETDEWEB)

    Foner, S [Massachusetts Inst. of Tech., Cambridge (USA). Francis Bitter National Magnet Lab.

    1979-12-01

    Measurements of the hydrostatic pressure dependence of the Neel temperatures, Tsub(N), are reported for PrSn/sub 3/, NdSn/sub 3/, GdSn/sub 3/ and CeIn/sub 3/. Tsub(N) is found to increase with applied pressure for PrSn/sub 3/ and NdSn/sub 3/, whereas Tsub(N) is pressure independent within experimental error for GdSn/sub 3/ and CeIn/sub 3/. Slightly Sn-deficient RESn/sub 3/ (RE = rare earth) compounds are found consistently to be weakly ferromagnetic. The physical properties of the RESn/sub 3/ compounds exhibit analogies with the corresponding properties of dilute superconducting (LaRE)Sn/sub 3/ alloys. The high pressure data for PrSn/sub 3/ and CeIn/sub 3/ are qualitatively consistent with a 'Kondo necklace' model for magnetically ordered RE compounds with unstable 4f shells.

  14. Pressure dependence of magnetic ordering temperatures of rare earth - Sn/sub 3/ compounds

    Energy Technology Data Exchange (ETDEWEB)

    DeLong, L E [Virginia Univ., Charlottesville (USA). Dept. of Physics; Guertin, R P; Foner, S

    1979-12-01

    Measurements of the hydrostatic pressure dependence of the Neel temperatures, Tsub(N), are reported for PrSn/sub 3/, NdSn/sub 3/, GdSn/sub 3/ and CeIn/sub 3/. Tsub(N) is found to increase with applied pressure for PrSn/sub 3/ and NdSn/sub 3/, whereas Tsub(N) is pressure independent within experimental error for GdSn/sub 3/ and CeIn/sub 3/. Slightly Sn-deficient RESn/sub 3/ (RE=rare earth) compounds are found consistently to be weakly ferromagnetic. The physical properties of the RESn/sub 3/ compounds exhibit analogies with the corresponding properties of dilute superconducting (LaRE)Sn/sub 3/ alloys. The high pressure data for PrSn/sub 3/ and CeIn/sub 3/ are qualitatively consistent with a 'Kondo necklace' model for magnetically ordered RE compounds with unstable 4f shells.

  15. Magnetic and superconducting order in some random pseudobinary compounds

    International Nuclear Information System (INIS)

    Dongen, J.C.M. van.

    1982-01-01

    This thesis presents the results of a study on the magnetic and superconducting ordering phenomena in some random pseudobinary compounds. In the investigations ternary systems are utilised in which two of the elements form a binary intermetallic compound, e.g. PdH, GdCu and YCo 2 . A third element is then randomly substituted into one of the sublattices without changing the basic intermetallic compound structure. In chapter II a study is presented on the Kondo effect and spin-glass freezing of the magnetic impurities Cr, Mn, and Fe in superconducting palladium hydride. Chapter III contains a study on crystal structure transformations and magnetic ordering phenomena in GdCusub(1-x)Gasub(x) and related pseudobinary compounds. In Chapter IV experiments on the magnetic properties and the electrical resistivity of the transition metal Laves phase compounds Y(Cosub(1-x)Fesub(x)) 2 , Y(Irsub(1-x)Fesub(x)) 2 and Hf(Cosub(1-x)Fesub(x)) 2 are described. (Auth.)

  16. Correlation effects in high-Tc superconductors and heavy fermion compounds

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.

    1993-10-01

    This paper describes certain aspects of Highly Correlated Systems (HCS) such as high Tc superconductors (HTSC) and some new class of Heavy Fermion (HF) systems which have been studied recently. The problem is discussed on how the charge and spin degrees of freedom participate in the specific character of superconductivity in the copper oxides and competition of the magnetism and Kondo screening in heavy fermions. The electronic structure and possible superconducting mechanisms of HTSC compounds are discussed. The similarity and dissimilarity with HF compounds is pointed out. It is shown that the spins and carriers in the copper oxides are coupled in a very nontrivial way in order to introduce the discussion and the comparison of the Emery model, the t - J-model and the Kondo-Heisenberg model. It concerns attempts to derive from fundamental multi-band Hamiltonian the reduced effective Hamiltonians to extract and separate the relevant low-energy physics. A short review of the arguments which seem to support the spin-polaron pairing mechanism in HTSC are presented. Many other topics like the idea of mixed valence states in oxides, the role of charge transfer (CT) excitations, phase separation, self-consistent nonperturbative technique, etc. are also discussed. (author). 161 refs

  17. Combining electronic structure and many-body theory with large databases: A method for predicting the nature of 4 f states in Ce compounds

    Science.gov (United States)

    Herper, H. C.; Ahmed, T.; Wills, J. M.; Di Marco, I.; Björkman, T.; Iuşan, D.; Balatsky, A. V.; Eriksson, O.

    2017-08-01

    Recent progress in materials informatics has opened up the possibility of a new approach to accessing properties of materials in which one assays the aggregate properties of a large set of materials within the same class in addition to a detailed investigation of each compound in that class. Here we present a large scale investigation of electronic properties and correlated magnetism in Ce-based compounds accompanied by a systematic study of the electronic structure and 4 f -hybridization function of a large body of Ce compounds. We systematically study the electronic structure and 4 f -hybridization function of a large body of Ce compounds with the goal of elucidating the nature of the 4 f states and their interrelation with the measured Kondo energy in these compounds. The hybridization function has been analyzed for more than 350 data sets (being part of the IMS database) of cubic Ce compounds using electronic structure theory that relies on a full-potential approach. We demonstrate that the strength of the hybridization function, evaluated in this way, allows us to draw precise conclusions about the degree of localization of the 4 f states in these compounds. The theoretical results are entirely consistent with all experimental information, relevant to the degree of 4 f localization for all investigated materials. Furthermore, a more detailed analysis of the electronic structure and the hybridization function allows us to make precise statements about Kondo correlations in these systems. The calculated hybridization functions, together with the corresponding density of states, reproduce the expected exponential behavior of the observed Kondo temperatures and prove a consistent trend in real materials. This trend allows us to predict which systems may be correctly identified as Kondo systems. A strong anticorrelation between the size of the hybridization function and the volume of the systems has been observed. The information entropy for this set of systems is

  18. Heavy-fermion behaviour and superconductivity of UPt3-based compounds

    International Nuclear Information System (INIS)

    Sprang, M. van.

    1989-01-01

    This thesis presents an experimental study of the low-temperature properties of the heavy-fermion superconductor UPt 3 and some related compounds, by measuring new properties or extending the variation of external parameters. In ch. 1 detailed information on the crystallographic structure of UPt 3 is presented. In ch. 2 the theory of the single-impurity Kondo effect is described, including the predictions for the physical properties and the parameters involved with it. The theoretical implications are extended to the case where the amount of magnetic impurities is so large that one cannot speak anymore of single-impurity (non-interacting) systems. The interactions lead to a state with quite different properties and can eventually lead to a coherent state when the magnetic moment distribution has the lattice periodicity. This is believed to be the case for UPt 3 , since the magnetic moments are present in very unit cell. Ch. 3 offers basic information on the experiments: sample preparation, characterization and measuring techniques are discussed. Ch. 4 deals with the thermal properties. The results of specific heat and thermal expansion experiments on UPt 3 , U(Pt 1-x Pd x ) 3 and UPt 3 B x are presented. With the use of the results the Grueneisen analysis is applied. The consequences for the interpretation in terms of the Kondo model are discussed. Ch. 5 discusses the transport and magnetic properties of the normal state. Results for UPt 3 as well as for the alloyed systems are presented and are, if possible, compared with the results obtained in the Kondo model. Ch. 6 deals with the superconducting state. Resistivity experiments are used to obtain the superconducting transition temperature; the influence of added impurities is investigated. Pd atoms (replacing Pt) are used as impurity, but also boron and carbon are interstitially alloyed. (author). 136 refs.; 105 figs.; 15 tabs

  19. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB6

    Science.gov (United States)

    Song, Qi; Mi, Jian; Zhao, Dan; Su, Tang; Yuan, Wei; Xing, Wenyu; Chen, Yangyang; Wang, Tianyu; Wu, Tao; Chen, Xian Hui; Xie, X. C.; Zhang, Chi; Shi, Jing; Han, Wei

    2016-01-01

    There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observe the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Furthermore, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6. PMID:27834378

  20. Reply to "Comment on `Conductance scaling in Kondo-correlated quantum dots: Role of level asymmetry and charging energy'"

    Science.gov (United States)

    Merker, L.; Kirchner, S.; Muñoz, E.; Costi, T. A.

    2014-08-01

    The Comment of A. A. Aligia claims that the superperturbation theory (SPT) approach [E. Muñoz, C. J. Bolech, and S. Kirchner, Phys. Rev. Lett. 110, 016601 (2013), 10.1103/PhysRevLett.110.016601] formulated using dual fermions [A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 77, 033101 (2008), 10.1103/PhysRevB.77.033101] and used by us to compare with numerical renormalization group (NRG) results for the conductance [L. Merker, S. Kirchner, E. Muñoz, and T. A. Costi, Phys. Rev. B 87, 165132 (2013), 10.1103/PhysRevB.87.165132], fails to correctly extend the results of the symmetric Anderson impurity model (SIAM) for general values of the local level Ed in the Kondo regime. We answer this criticism. We also compare new NRG results for cB, with cB calculated directly from the low-field conductance, with new higher-order SPT calculations for this quantity, finding excellent agreement for all Ed and for U /πΔ extending into the strong coupling regime.

  1. Impurity quadrupole Kondo ground state in a dilute Pr system Y1-xPrxIr2Zn20

    Science.gov (United States)

    Yamane, Yu; Onimaru, Takahiro; Uenishi, Kazuto; Wakiya, Kazuhei; Matsumoto, Keisuke T.; Umeo, Kazunori; Takabatake, Toshiro

    2018-05-01

    The electrical resistivity ρ and specific heat C of a dilute Pr system Y1-xPrxIr2Zn20 for 0 ≤ x ≤ 0.44 were measured to study the phenomena arising from active quadrupoles of the Pr3+ ion with 4f2 configuration. On cooling, ρ's of all samples monotonically decrease, while the residual resistivity ratio ρ(300 K)/ρ(3 K) drastically decreases with x. In the whole range x ≤ 0.44, the magnetic contribution to the specific heat divided by temperature Cm/T shows a broad maximum at around 10 K, which can be reproduced by a two-level model with a first-excited triplet separated by 30 K from a ground state doublet. This indicates that the crystalline electric field ground state of the Pr ions remains in the Γ3 doublet for the cubic Td point group. On cooling, the Cm/T data for x = 0.085 and 0.44 approach constant values at Texpected from the random two-level model. By contrast, Cm/T for x = 0.044 increases continuously down to 0.08 K, suggesting a non-Fermi liquid state due to the impurity quadrupole Kondo effect.

  2. WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE

    International Nuclear Information System (INIS)

    Shinnaga, Hiroko; Phillips, Thomas G.; Furuya, Ray S.; Kitamura, Yoshimi

    2009-01-01

    In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (∼30-70 K), extended (radius of ∼2400 AU), dense (a few times 10 5 cm -3 ) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, 'warm-in-cold core stage (WICCS)', i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.

  3. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2016-12-10

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.

  4. Dense plasma focus - a literature review

    International Nuclear Information System (INIS)

    Tendys, J.

    1976-01-01

    The dense plasma focus (DPF) is a convenient source of short, intense neutron pulses, and dense, high temperature plasma. This review of the literature on the DPF indicates that its operation is still not understood, and attempts to show where the present data is either inadequate or inconsistent. Because the plasma conditions and neutron and x-ray fluxes vary from shot to shot, it is maintained that, to resolve inconsistencies in the present data, spectra need to be measured with energy and time resolution simultaneously, and cannot be built up from a large number of shots. Time resolutions of the order of 1 nsec for pulse lengths of about 100 nsec make these requirements especially difficult. Some theoretical models are presented for the neutron output and its spectrum, but no self-consistent description of the plasma in the focus region is likely for some time. (author)

  5. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    -ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation......Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X...

  6. Anomalous properties of hot dense nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Ferrante, G; Zarcone, M; Uryupin, S A

    2005-01-01

    A concise overview of a number of anomalous properties of hot dense nonequilibrium plasmas is given. The possibility of quasistationary megagauss magnetic field generation due to Weibel instability is discussed for plasmas created in atom tunnel ionization. The collisionless absorption and reflection of a test electromagnetic wave normally impinging on the plasma with two-temperature bi-maxwellian electron velocity distribution function are studied. Due to the wave magnetic field influence on the electron kinetics in the skin layer the wave absorption and reflection significantly depend on the degree of the electron temperature anisotropy. The linearly polarized impinging wave during reflection transforms into an elliptically polarized one. The problem of transmission of an ultrashort laser pulse through a layer of dense plasma, formed as a result of ionization of a thin foil, is considered. It is shown that the strong photoelectron distribution anisotropy yields an anomalous penetration of the wave field through the foil

  7. Deterministic dense coding with partially entangled states

    Science.gov (United States)

    Mozes, Shay; Oppenheim, Jonathan; Reznik, Benni

    2005-01-01

    The utilization of a d -level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle is between d and 2d . In general, we numerically find that the maximal alphabet size is any integer in the range [d,d2] with the possible exception of d2-1 . We also find that states with less entanglement can have a greater deterministic communication capacity than other more entangled states.

  8. PHOTOCHEMICAL HEATING OF DENSE MOLECULAR GAS

    Energy Technology Data Exchange (ETDEWEB)

    Glassgold, A. E. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Najita, J. R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-09-10

    Photochemical heating is analyzed with an emphasis on the heating generated by chemical reactions initiated by the products of photodissociation and photoionization. The immediate products are slowed down by collisions with the ambient gas and then heat the gas. In addition to this direct process, heating is also produced by the subsequent chemical reactions initiated by these products. Some of this chemical heating comes from the kinetic energy of the reaction products and the rest from collisional de-excitation of the product atoms and molecules. In considering dense gas dominated by molecular hydrogen, we find that the chemical heating is sometimes as large, if not much larger than, the direct heating. In very dense gas, the total photochemical heating approaches 10 eV per photodissociation (or photoionization), competitive with other ways of heating molecular gas.

  9. Dense-plasma research using ballistic compressors

    International Nuclear Information System (INIS)

    Hess, H.

    1986-01-01

    An introduction is given to research on dense (or nonideal) plasmas which can be generated to advantage by ballistic compressors. Some properties of ballistic compressors are discussed especially in comparison with shock tubes. A short review is given on the history of these devices for high-pressure plasma generation. The present state of the art is reported including research on the two ZIE (Central Institute for Electron Physics) ballistic compressors. (author)

  10. Studying dense plasmas with coherent XUV pulses

    International Nuclear Information System (INIS)

    Stabile, H.

    2006-12-01

    The investigation of dense plasma dynamic requires the development of diagnostics able to ensure the measurement of electronic density with micro-metric space resolution and sub-nanosecond, or even subpicosecond, time resolution (indeed this must be at least comparable with the characteristic tune scale of plasma evolution). In contrast with low-density plasmas, dense plasmas cannot be studied using optical probes in the visible domain, the density range accessible being limited to the critical density (N c equals 1.1*10 21 λ -2 (μm) ∼ 10 21 cm -3 for infrared). In addition, light is reflected even at smaller densities if the medium exhibits sharp density gradients. Hence probing of dense plasmas, for instance those produced by laser irradiation of solids, requires using shorter wavelength radiation. Thanks to their physical properties, high order harmonics generated in rare gases are particularly adapted to the study of dense plasmas. Indeed, they can naturally be synchronized with the generating laser and their pulse duration is very short, which makes it possible to use them in pump-probe experiments. Moreover, they exhibit good spatial and temporal coherencies. Two types of diagnostics were developed during this thesis. The first one was used to study the instantaneous creation of hot-solid-density plasma generated by focusing a femtosecond high-contrast laser on an ultra-thin foil (100 nm) in the 10 18 W/cm 2 intensity regime. The use of high order harmonics, providing a probe beam of sufficiently short wavelengths to penetrate such a medium, enables the study of its dynamics on the 100 fs time scale. The second one uses the harmonics beam as probe beam (λ equals 32 nm) within an interferometric device. This diagnostic was designed to ensure a micro-metric spatial resolution and a temporal resolution in the femtosecond range. The first results in presence of plasma created by irradiation of an aluminum target underline the potentialities of this new

  11. Particle identification system based on dense aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Beloborodov, K.I., E-mail: K.I.Beloborodov@inp.nsk.su [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, 5, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Golubev, V.B. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Gulevich, V.V. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Martin, K.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Serednyakov, S.I. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); and others

    2013-12-21

    A threshold Cherenkov counter based on dense aerogel with refraction index n=1.13 is described. This counter is used for kaon identification at momenta below 1 GeV/c in the SND detector, which takes data at the VEPP-2000 e{sup +}e{sup −} collider. The results of measurements of the counter efficiency using electrons, muons, pions, and kaons produced in e{sup +}e{sup −} annihilation are presented.

  12. Leeuwpan fine coal dense medium plant

    CSIR Research Space (South Africa)

    Lundt, M

    2010-11-01

    Full Text Available Beneficiation 2010, 4–6 May 2010. 671The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 110 NOVEMBER 2010 L Leeuwpan fine coal dense medium plant mixed with magnetite in the launder and enters... with production. Plant equipment operational changes Cyclone spigot changes In an attempt to lower the cut-point density, the spigot on the L 672 NOVEMBER 2010 VOLUME 110 The Journal of The Southern African Institute of Mining and Metallurgy Figure 1...

  13. Collective dynamics in dense fluid mixtures

    International Nuclear Information System (INIS)

    Sinha, S.

    1992-01-01

    This thesis deals with the short wavelength collective dynamics of dense binary fluid mixtures. The analysis shows that at the level of linearized generalized hydrodynamics, the longitudinal modes of the system separates essentially into two parts - one involves the coupling of partial density fluctuations of the two species and the other involves coupling of longitudinal momentum and temperature fluctuations. The authors have shown that the coupling of longitudinal momentum and temperature fluctuations leads to an adequate description of sound propagation in such systems. In particular, they show that structural disorder controls the trapping of sound waves in dense mixtures. The coupling of the partial density fluctuations of the two species leads to a simple description of the partial dynamic structure factors. The results are in agreement with the molecular dynamics simulations of soft sphere mixtures. The partial density fluctuations are the slowest decaying fluctuations on molecular length scales and it turns out that nonlinear coupling of these slow modes leads to important corrections to the long time behavior of the time correlation functions determining the shear viscosity in dense mixtures

  14. Formation and fragmentation of protostellar dense cores

    International Nuclear Information System (INIS)

    Maury, Anaelle

    2009-01-01

    Stars form in molecular clouds, when they collapse and fragment to produce protostellar dense cores. These dense cores are then likely to contract under their own gravity, and form young protostars, that further evolve while accreting their circumstellar mass, until they reach the main sequence. The main goal of this thesis was to study the formation and fragmentation of protostellar dense cores. To do so, two main studies, described in this manuscript, were carried out. First, we studied the formation of protostellar cores by quantifying the impact of protostellar outflows on clustered star formation. We carried out a study of the protostellar outflows powered by the young stellar objects currently formed in the NGc 2264-C proto-cluster, and we show that protostellar outflows seem to play a crucial role as turbulence progenitors in clustered star forming regions, although they seem unlikely to significantly modify the global infall processes at work on clump scales. Second, we investigated the formation of multiple systems by core fragmentation, by using high - resolution observations that allow to probe the multiplicity of young protostars on small scales. Our results suggest that the multiplicity rate of protostars on small scales increase while they evolve, and thus favor dynamical scenarios for the formation of multiple systems. Moreover, our results favor magnetized scenarios of core collapse to explain the small-scale properties of protostars at the earliest stages. (author) [fr

  15. Hybrid-Based Dense Stereo Matching

    Science.gov (United States)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  16. Polarized-neutron study of spin dynamics in the Kondo insulator YbB12.

    Science.gov (United States)

    Nemkovski, K S; Mignot, J-M; Alekseev, P A; Ivanov, A S; Nefeodova, E V; Rybina, A V; Regnault, L-P; Iga, F; Takabatake, T

    2007-09-28

    Inelastic neutron scattering experiments have been performed on the archetype compound YbB(12), using neutron polarization analysis to separate the magnetic signal from the phonon background. With decreasing temperature, components characteristic for a single-site spin-fluctuation dynamics are suppressed, giving place to specific, strongly Q-dependent, low-energy excitations near the spin-gap edge. This crossover is discussed in terms of a simple crystal-field description of the incoherent high-temperature state and a predominantly local mechanism for the formation of the low-temperature singlet ground state.

  17. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.; Loczi, Lajos; Jangabylova, Aliya; Kusmanov, Adil

    2016-01-01

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step

  18. About chiral models of dense matter and its magnetic properties

    International Nuclear Information System (INIS)

    Kutschera, M.

    1990-12-01

    The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)

  19. Organolanthanoid compounds

    International Nuclear Information System (INIS)

    Schumann, H.

    1984-01-01

    Up to little more than a decade ago organolanthanoid compounds were still a curiosity. Apart from the description of an isolated number of cyclopentadienyl and indenyl derivatives, very few significant contributions had been made to this interesting sector of organometallic chemistry. However, subsequent systematic studies using modern preparative and analytical techniques, together with X-ray single crystal structure determinations, enabled the isolation and characterization of a large number of very interesting homoleptic and heteroleptic compounds in which the lanthanoid is bound to hydrogen, to substituted or unsubstituted cyclopentadienyl groups, to allyl or alkynyl groups, or even to phosphorus ylides, trimethylsilyl, and carbonylmetal groups. These compounds, which are all extremely sensitive to oxygen and water, open up new possibilities in the field of catalysis and have great potential in organic synthesis - as recent studies with pentamethylcyclopentadienyl derivatives, organolanthanoid(II) compounds, and hexamethyllanthanoid complexes have already shown. (orig.) [de

  20. Kondo effect and spin-glass freezing of the magnetic impurities Cr, Mn, and Fe in superconducting palladium hydride

    International Nuclear Information System (INIS)

    van Dongen, J.C.M.; van Dijk, D.; Mydosh, J.A.

    1981-01-01

    Through low-field ac susceptibility measurements we have determined the depression of the superconducting transition temperature T/sub c/ in palladium hydride (T/sub c/0 = 9.3 K) as a function of impurity concentration x for Cr, Mn, and Fe. For Cr and Fe similar values for the initial T/sub c/ depression were found, i.e., -150 K/at. % Cr and -145 K/at. % Fe. From resistivity experiments we are able to estimate the Kondo temperatures T/sub K/, i.e., T/sub K/approx. =10 K for Cr and T/sub K/approx. =5 K for Fe. Since i.e., T/sub K/approx. =10 K for Cr and T/sub K/approx. =5 K for Fe. Since systems exhibits an enhanced pair breaking as described by the theory of Mueller-Hartmann and Zittartz. In contrast, for Mn the initial T/sub c/ depression is -21 K/at. % and T/sub K/<< T/sub c/0, as can be concluded from our resistivity measurements. This means that Mn in PdH exhibits a temperature-independent pair breaking of the Abrikosov and Gor'kov type. However, at larger Mnx values a shoulder appears in T/sub c/(x). We interpret this enhanced superconductivity, according to the theory of Soukoulis and Grest, as being due to the onset of time correlations and short-range antiferromagnetic ordering between the Mn moments. These interaction effects are a precursor to the spin-glass freezing at a lower temperature T/sub f/. Our results suggest a favorable coexistance of superconductivity with the spin-glass state

  1. Evolution of dense spatially modulated electron bunches

    Science.gov (United States)

    Balal, N.; Bratman, V. L.; Friedman, A.

    2018-03-01

    An analytical theory describing the dynamics of relativistic moving 1D electron pulses (layers) with the density modulation affected by a space charge has been revised and generalized for its application to the formation of dense picosecond bunches from linear accelerators with laser-driven photo injectors, and its good agreement with General Particle Tracer simulations has been demonstrated. Evolution of quasi-one-dimensional bunches (disks), for which the derived formulas predict longitudinal expansion, is compared with that for thin and long electron cylinders (threads), for which the excitation of non-linear waves with density spikes was found earlier by Musumeci et al. [Phys. Rev. Lett. 106(18), 184801 (2011)] and Musumeci et al. [Phys. Rev. Spec. Top. -Accel. Beams 16(10), 100701 (2013)]. Both types of bunches can be used for efficiency enhancement of THz sources based on the Doppler frequency up-shifted coherent spontaneous radiation of electrons. Despite the strong Coulomb repulsion, the periodicity of a preliminary modulation in dense 1D layers persists during their expansion in the most interesting case of a relatively small change in particle energy. However, the period of modulation increases and its amplitude decreases in time. In the case of a large change in electron energy, the uniformity of periodicity is broken due to different relativistic changes in longitudinal scales along the bunch: the "period" of modulation decreases and its amplitude increases from the rear to the front boundary. Nevertheless, the use of relatively long electron bunches with a proper preliminary spatial modulation of density can provide a significantly higher power and a narrower spectrum of coherent spontaneous radiation of dense bunches than in the case of initially short single bunches with the same charge.

  2. Electron conductivity model for dense plasmas

    International Nuclear Information System (INIS)

    Lee, Y.T.; More, R.M.

    1984-01-01

    An electron conductivity model for dense plasmas is described which gives a consistent and complete set of transport coefficients including not only electrical conductivity and thermal conductivity, but also thermoelectric power, and Hall, Nernst, Ettinghausen, and Leduc--Righi coefficients. The model is useful for simulating plasma experiments with strong magnetic fields. The coefficients apply over a wide range of plasma temperature and density and are expressed in a computationally simple form. Different formulas are used for the electron relaxation time in plasma, liquid, and solid phases. Comparisons with recent calculations and available experimental measurement show the model gives results which are sufficiently accurate for many practical applications

  3. Dense hydrogen plasma: Comparison between models

    International Nuclear Information System (INIS)

    Clerouin, J.G.; Bernard, S.

    1997-01-01

    Static and dynamical properties of the dense hydrogen plasma (ρ≥2.6gcm -3 , 0.1< T<5eV) in the strongly coupled regime are compared through different numerical approaches. It is shown that simplified density-functional molecular-dynamics simulations (DFMD), without orbitals, such as Thomas-Fermi Dirac or Thomas-Fermi-Dirac-Weiszaecker simulations give similar results to more sophisticated descriptions such as Car-Parrinello (CP), tight binding, or path-integral Monte Carlo, in a wide range of temperatures. At very low temperature, screening effects predicted by DFMD are still less pronounced than CP simulations. copyright 1997 The American Physical Society

  4. Electrical and thermal conductivities in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  5. Dense ceramic membranes for methane conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bouwmeester, Henny J.M. [Laboratory for Inorganic Materials Science, Department of Science and Technology and MESA Research Institute, University of Twente, 7500 AE Enschede (Netherlands)

    2003-07-30

    Dense ceramic membranes made from mixed oxygen-ionic and electronic conducting perovskite-related oxides allow separation of oxygen from an air supply at elevated temperatures (>700C). By combining air separation and catalytic partial oxidation of methane to syngas into a ceramic membrane reactor, this technology is expected to significantly reduce the capital costs of conversion of natural gas to liquid added-value products. The present survey is mainly concerned with the material properties that govern the performance of the mixed-conducting membranes in real operating conditions and highlights significant developments in the field.

  6. The Magpie dense z-pinch project

    International Nuclear Information System (INIS)

    Chittenden, J.; Choi, P.; Mitchell, I.; Dangor, A.E.; Haines, M.G.

    1990-01-01

    The authors present a design study on the Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE), a project currently under construction at Imperial College London, to study radiative collapse of a dense Z-pinch plasma created from a 20 um diameter cryogenic hydrogen fiber. The 2 TW generator is composed of four individual 2.4 MV Marx banks of the HERMES III type design with a maximum stored energy of 336 kJ. They drive four 5 ohm Pulse Forming Lines which are combined into a single 1.25 MA in 150 ns to a 150 nH load

  7. Strange mesons in dense nuclear matter

    International Nuclear Information System (INIS)

    Senger, P.

    2000-10-01

    Experimental data on the production of kaons and antikaons in heavy ion collisions at relativistic energies are reviewed with respect to in-medium effects. The K - /K + ratios measured in nucleus-nucleus collisions are 1-2 orders of magnitude larger than in proton-proton collisions. The azimuthal angle distributions of K + mesons indicate a repulsive kaon-nucleon potential. Microscopic transport calculations consistently explain both the yields and the emission patterns of kaons and antikaons when assuming that their properties are modified in dense nuclear matter. The K + production excitation functions measured in light and heavy collision systems provide evidence for a soft nuclear equation-of-state. (orig.)

  8. Atomic physics in dense plasmas. Recent advances

    International Nuclear Information System (INIS)

    Leboucher-Dalimier, E.; Angelo, P.; Ceccotti, T.; Derfoul, H.; Poquerusse, A.; Sauvan, P.; Oks, E.

    2000-01-01

    This paper presents observations and simulations of novel density-dependent spectroscopic features in hot and dense plasmas. Both time-integrated and time-resolved results using ultra-high resolutions spectrometers are presented; they are justified within the standard spectral line shape theory or the quasi-molecular alternative treatment. A particular attention is paid to the impact of the spatio-temporal evolution of the plasma on the experimental spectra. Satellite-like features and molecular lines in the cases of Flyβ, Heβ are discussed emphasizing their importance for the density diagnostics when ion-ion correlations are significant. (authors)

  9. Structure of a new dense amorphous ice

    International Nuclear Information System (INIS)

    Finney, J.L.; Bowron, D.T.; Soper, A.K.; Loerting, T.; Mayer, E.; Hallbrucker, A.

    2002-01-01

    The detailed structure of a new dense amorphous ice, VHDA, is determined by isotope substitution neutron diffraction. Its structure is characterized by a doubled occupancy of the stabilizing interstitial location that was found in high density amorphous ice, HDA. As would be expected for a thermally activated unlocking of the stabilizing 'interstitial', the transition from VHDA to LDA (low-density amorphous ice) is very sharp. Although its higher density makes VHDA a better candidate than HDA for a physical manifestation of the second putative liquid phase of water, as for the HDA case, the VHDA to LDA transition also appears to be kinetically controlled

  10. Fabrication of dense panels in lithium fluoride

    International Nuclear Information System (INIS)

    Farcy, P.; Roger, J.; Pointud, R.

    1958-04-01

    The authors report a study aimed at the fabrication of large and dense lithium fluoride panels. This sintered lithium fluoride is then supposed to be used for the construction of barriers of protection against a flow of thermal neutrons. They briefly present the raw material which is used under the form of chamotte obtained through a pre-sintering process which is also described. Grain size measurements and sample preparation are indicated. Shaping, drying, and thermal treatment are briefly described, and characteristics of the sintered product are indicated

  11. Quasi-molecular processes in dense plasmas

    International Nuclear Information System (INIS)

    Younger, S.M.

    1991-01-01

    Quasi-molecular phenomena occur in dense plasmas when the interatomic spacing is comparable to the characteristic wavelength of the electrons. If the electronic states are bound, covalent orbitals arise with different excitation energies, radiative rates, and collisional rates than for isolated ions. For continuum electrons, charge localization near transient clusters of nuclei can influence many scattering and transport processes. We identify several novel consequences of quasi-molecular phenomena in plasmas and give a possible explanation of high energy features associated with helium-like emissions lines observed in recent inertial fusion experiments. 7 refs

  12. Graph Quasicontinuous Functions and Densely Continuous Forms

    Directory of Open Access Journals (Sweden)

    Lubica Hola

    2017-07-01

    Full Text Available Let $X, Y$ be topological spaces. A function $f: X \\to Y$ is said to be graph quasicontinuous if there is a quasicontinuous function $g: X \\to Y$ with the graph of $g$ contained in the closure of the graph of $f$. There is a close relation between the notions of graph quasicontinuous functions and minimal usco maps as well as the notions of graph quasicontinuous functions and densely continuous forms. Every function with values in a compact Hausdorff space is graph quasicontinuous; more generally every locally compact function is graph quasicontinuous.

  13. Neutrino interactions in hot and dense matter

    International Nuclear Information System (INIS)

    Reddy, S.; Prakash, M.; Lattimer, J.M.

    1998-01-01

    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star. copyright 1998 The American Physical Society

  14. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  15. Cold dense baryonic matter and compact stars

    International Nuclear Information System (INIS)

    Hyun Kyu Lee; Sang-Jin Sin; Mannque Rho

    2011-01-01

    Probing dense hadronic matter is thus far an uncharted field of physics. Here we give a brief summary of the highlights of what has been so far accomplished and what will be done in the years ahead by the World Class University III Project at Hanyang University in the endeavor to unravel and elucidate the multi-facet of the cold dense baryonic matter existing in the interior of the densest visible stable object in the universe, i.e. neutron stars, strangeness stars and/or quark stars, from a modest and simplified starting point of an effective field theory modeled on the premise of QCD as well as from a gravity dual approach of hQCD. The core of the matter of our research is the possible origin of the ∼ 99% of the proton mass that is to be accounted for and how the 'vacuum' can be tweaked so that the source of the mass generation can be uncovered by measurements made in terrestrial as well as space laboratories. Some of the issues treated in the program concern what can be done - both theoretically and experimentally - in anticipation of what's to come for basic physics research in Korea. (authors)

  16. Collective dynamics in dense Hg vapour

    International Nuclear Information System (INIS)

    Ishikawa, D; Inui, M; Matsuda, K; Tamura, K; Baron, A Q R; Tsutsui, S; Tanaka, Y; Ishikawa, T

    2004-01-01

    The dynamic structure factor, S(Q,ο), of dense Hg vapour has been measured by high resolution inelastic x-ray scattering for densities of 3.0, 2.1 and 1.0 g cm -3 corresponding to 0.52, 0.36 and 0.17 times the critical density, respectively, and for momentum transfers between 2.0 and 48 nm -1 . Analysis of the longitudinal current-current correlation function in the framework of generalized hydrodynamics reveals that the frequencies of the collective excitations increase faster with Q than estimated from the macroscopic speed of sound. The ratios of the frequencies were found to be 1.27 at 3.0 g cm -3 , 1.12 at 2.1 g cm -3 and 1.10 at 1.0 g cm -3 . The sound velocity obtained from the present experiments is well reproduced by a wavenumber dependent adiabatic sound velocity, which means that the collective modes remain in the spectra of dense Hg vapour. (letter to the editor)

  17. Redesigning Triangular Dense Matrix Computations on GPUs

    KAUST Repository

    Charara, Ali

    2016-08-09

    A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels fail to achieve the percentage of the theoretical peak performance on GPUs that one would expect when running kernels with similar surface-to-volume ratio on hardware accelerators, i.e., the standard matrix-matrix multiplication (GEMM). The authors propose adopting a recursive formulation, which enriches the TRMM and TRSM inner structures with GEMM calls and, therefore, reduces memory traffic while increasing the level of concurrency. The new implementation enables efficient use of the GPU memory hierarchy and mitigates the latency overhead, to run at the speed of the higher cache levels. Performance comparisons show up to eightfold and twofold speedups for large dense matrix sizes, against the existing state-of-the-art TRMM and TRSM implementations from NVIDIA cuBLAS, respectively, across various GPU generations. Once integrated into high-level Cholesky-based dense linear algebra algorithms, the performance impact on the overall applications demonstrates up to fourfold and twofold speedups, against the equivalent native implementations, linked with cuBLAS TRMM and TRSM kernels, respectively. The new TRMM/TRSM kernel implementations are part of the open-source KBLAS software library (http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx) and are lined up for integration into the NVIDIA cuBLAS library in the upcoming v8.0 release.

  18. Multipurpose Compound

    Science.gov (United States)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  19. Polymer compound

    NARCIS (Netherlands)

    1995-01-01

    A Polymer compound comprising a polymer (a) that contains cyclic imidesgroups and a polymer (b) that contains monomer groups with a 2,4-diamino-1,3,5-triazine side group. According to the formula (see formula) whereby themole percentage ratio of the cyclic imides groups in the polymer compoundwith

  20. Mesoionic Compounds

    Indian Academy of Sciences (India)

    Organic Chemistry. Kamatak University,. Dharwad. Her research interests are synthesis, reactions and synthetic utility of sydnones. She is currently working on electrochemical and insecticidal/antifungal activities for some of these compounds. Keywords. Aromaticity, mesoionic hetero- cycles, sydnones, tandem re- actions.

  1. RRh2Al10 (R = Ce, Yb): New intermetallic compounds in the 1 : 2 : 10 stoichiometry series

    Science.gov (United States)

    Strydom, A. M.; Djoumessi, R. F.; Blinova, M.; Tursina, A.; Nesterenko, S.; Avzuragova, V.

    2018-05-01

    The orthorhombic, space group Cmcm YbFe2Al10 structure type series of compounds are known to form with practically the entire series of rare-earth elements R, but only with the three d - electron elements Fe, Ru, and Os. The Ce-derivatives in particular have been of much interest since the first reports of their highly unusual physical properties. Classified as Kondo insulators, CeRu2Al10 and CeOs2Al10 controversially order magnetically and with uncharacteristically high Néel temperatures of ≃ 28 K. CeFe2Al10 on the other hand shows pronounced semiconducting and Kondo features but remains paramagnetic. As part of our ongoing studies into the rich physics of this class of materials we have succeeded in synthesizing new members of the 1:2:10 stoichiometry involving the chemical element Rh for the first time. CeRh2Al10 is found to crystallize in the tetragonal system with space group I41 / amd . Yb Rh2Al10 on the other hand forms in the serial Cmcm orthorhombic structure type. We discuss important similarities between the two types. At 5.310 Å the shortest Ce-Ce distance is, likewise to the situation in CeRu2Al10 and CeOs2Al10 , also well above the Hill limit of 3.40 Å. Despite the cage-like structure and large rare-earth separation distances, this study reveals the onset of long-range magnetic ordering in CeRh2Al10 at 3.9 K. The magnetic ordering develops out of an incoherent Kondo state that dominates the electrical resistivity below about 40 K.

  2. Electrical resistivity, susceptibility and heat capacity of cubic Kondo compound YbCu.sub.5./sub. prepared by melt-spinning technique

    Czech Academy of Sciences Publication Activity Database

    Reiffers, M.; Idzikowski, B.; Šebek, Josef; Šantavá, Eva; Ilkovič, S.; Pristáš, G.

    378-380, - (2006), s. 738-739 ISSN 0921-4526 Institutional research plan: CEZ:AV0Z10100520 Keywords : YbCu 5 * susceptibility * electrical resistivity * melt spinning Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.872, year: 2006

  3. Glaciations and dense interstellar clouds; and reply

    Energy Technology Data Exchange (ETDEWEB)

    McCrea, W H [Sussex Univ., Brighton (UK); Dennison, B; Mansfield, V N

    1976-09-16

    Reference is made to Dennison and Mansfield (Nature 261:32 (1976)) who offered comments on a previous paper by the author (Nature 255:607 (1975)), in which he suggested that a possible cause of an ice age on the Earth was the passage of the solar system through an interstellar matter compression region bordering a spiral arm of the Galaxy. Dennison and Mansfield criticised this suggestion because it led them to expect to find a dense cloud of interstellar matter still very close to the Earth, whereas no such cloud is known. It is stated here that this criticism ignores the structure of the Galaxy, that provided the basis of the suggestion. A reply by Dennison and Mansfield is appended.

  4. Charmonium propagation through a dense medium

    Directory of Open Access Journals (Sweden)

    Kopeliovich B.Z.

    2015-01-01

    Full Text Available Attenuation of a colourless c̄c dipole propagating with a large momentum through a hot medium originates from two sources, Debye screening (melting, and inelastic collisions with surrounding scattering centres (absorption. The former never terminates completely production of a bound charmonium in heavy ion collisions, even at very high temperatures. The latter, is controlled my the magnitude of the dipole cross section, related to the transport coefficient, which is the rate of transverse momentum broadening in the medium. A novel procedure of Lorentz boosting of the Schrödinger equation is developed, which allows to calculate the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. A novel mechanism of charmonium regeneration in a dense medium is proposed.

  5. Frontiers and challenges in warm dense matter

    CERN Document Server

    Desjarlais, Michael; Redmer, Ronald; Trickey, Samuel

    2014-01-01

    Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent...

  6. Intrinsically secure fast reactors with dense cores

    International Nuclear Information System (INIS)

    Slessarev, Igor

    2007-01-01

    Secure safety, resistance to weapons material proliferation and problems of long-lived wastes remain the most important 'painful points' of nuclear power. Many innovative reactor concepts have been developed aimed at a radical enhancement of safety. The promising potential of innovative nuclear reactors allows for shifting accents in current reactor safety 'strategy' to reveal this worth. Such strategy is elaborated focusing on the priority for intrinsically secure safety features as well as on sure protection being provided by the first barrier of defence. Concerning the potential of fast reactors (i.e. sodium cooled, lead-cooled, etc.), there are no doubts that they are able to possess many favourable intrinsically secure safety features and to lay the proper foundation for a new reactor generation. However, some of their neutronic characteristics have to be radically improved. Among intrinsically secure safety properties, the following core parameters are significantly important: reactivity margin values, reactivity feed-back and coolant void effects. Ways of designing intrinsically secure safety features in fast reactors (titled hereafter as Intrinsically Secure Fast Reactors - ISFR) can be found in the frame of current reactor technologies by radical enhancement of core neutron economy and by optimization of core compositions. Simultaneously, respecting resistance to proliferation, by using non-enriched fuel feed as well as a core breeding gain close to zero, are considered as the important features (long-lived waste problems will be considered in a separate paper). This implies using the following reactor design options as well as closed fuel cycles with natural U as the reactor feed: ·Ultra-plate 'dense cores' of the ordinary (monolithic) type with negative total coolant void effects. ·Modular type cores. Multiple dense modules can be embedded in the common reflector for achieving the desired NPP total power. The modules can be used also independently (as

  7. Coherent neutrino interactions in a dense medium

    International Nuclear Information System (INIS)

    Kiers, K.; Weiss, N.

    1997-01-01

    Motivated by the effect of matter on neutrino oscillations (the MSW effect) we study in more detail the propagation of neutrinos in a dense medium. The dispersion relation for massive neutrinos in a medium is known to have a minimum at nonzero momentum p∼G F ρ/√(2). We study in detail the origin and consequences of this dispersion relation for both Dirac and Majorana neutrinos both in a toy model with only neutral currents and a single neutrino flavor and in a realistic open-quotes standard modelclose quotes with two neutrino flavors. We find that for a range of neutrino momenta near the minimum of the dispersion relation, Dirac neutrinos are trapped by their coherent interactions with the medium. This effect does not lead to the trapping of Majorana neutrinos. copyright 1997 The American Physical Society

  8. Equation of state of dense baryonic matter

    International Nuclear Information System (INIS)

    Weber, F.; Weigel, M.K.

    1989-01-01

    In a previous investigation we treated nuclear matter as well as neutron matter at zero and finite temperatures in the frame of different relativistic field theoretical models, but with the restriction to nucleons as the only present baryons. This approach is extended by including a larger fraction of baryons and mesons, necessary for a description of baryon matter under extreme conditions. The equation of state (EOS) is calculated in both the Hartree and Hartree-Fock (HF) approximations for dense nuclear as well as neutron matter. Self-interactions of the σ field up to fourth order have been taken into account. For the treatment of many-baryon matter in the HF approach the parameters of the theory had to be readjusted. A phase transition of both many-baryon systems (neutron as well as nuclear matter) in the high-pressure and high-energy-density region has been found. (author)

  9. Nonlinear extraordinary wave in dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Russian University of Peoples’ Friendship (Russian Federation)

    2013-10-15

    Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.

  10. Statistical mechanics of dense granular media

    International Nuclear Information System (INIS)

    Coniglio, A; Fierro, A; Nicodemi, M; Ciamarra, M Pica; Tarzia, M

    2005-01-01

    We discuss some recent results on the statistical mechanics approach to dense granular media. In particular, by analytical mean field investigation we derive the phase diagram of monodisperse and bidisperse granular assemblies. We show that 'jamming' corresponds to a phase transition from a 'fluid' to a 'glassy' phase, observed when crystallization is avoided. The nature of such a 'glassy' phase turns out to be the same as found in mean field models for glass formers. This gives quantitative evidence for the idea of a unified description of the 'jamming' transition in granular media and thermal systems, such as glasses. We also discuss mixing/segregation transitions in binary mixtures and their connections to phase separation and 'geometric' effects

  11. A constitutive law for dense granular flows.

    Science.gov (United States)

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  12. Dense gas dispersion in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Morten

    1998-09-01

    Dense gas dispersion is characterized by buoyancy induced gravity currents and reduction of the vertical mixing. Liquefied gas releases from industrial accidents are cold because of the heat of evaporation which determines the density for a given concentration and physical properties. The temperature deficit is moderated by the heat flux from the ground, and this convection is an additional source of turbulence which affects the mixing. A simple model as the soil heat flux is used to estimate the ability of the ground to sustain the heat flux during release. The initial enthalpy, release rate, initial entrainment and momentum are discussed for generic source types and the interaction with obstacles is considered. In the MTH project BA experiments source with and without momentum were applied. The continuously released propane gas passed a two-dimensional removable obstacle perpendicular to the wind direction. Ground-level gas concentrations and vertical profiles of concentration, temperature, wind speed and turbulence were measured in front of and behind the obstacle. Ultrasonic anemometers providing fast velocity and concentration signals were mounted at three levels on the masts. The observed turbulence was influenced by the stability and the initial momentum of the jet releases. Additional information were taken from the `Dessert tortoise` ammonia jet releases, from the `Fladis` experiment with transition from dense to passive dispersion, and from the `Thorney Island` continuous releases of isothermal freon mixtures. The heat flux was found to moderate the negative buoyancy in both the propane and ammonia experiments. The heat flux measurements are compared to an estimate by analogy with surface layer theory. (au) 41 tabs., 146 ills., 189 refs.

  13. Dense Deposit Disease Mimicking a Renal Small Vessel Vasculitis

    Science.gov (United States)

    Singh, Lavleen; Bhardwaj, Swati; Sinha, Aditi; Bagga, Arvind; Dinda, Amit

    2016-01-01

    Dense deposit disease is caused by fluid-phase dysregulation of the alternative complement pathway and frequently deviates from the classic membranoproliferative pattern of injury on light microscopy. Other patterns of injury described for dense deposit disease include mesangioproliferative, acute proliferative/exudative, and crescentic GN. Regardless of the histologic pattern, C3 glomerulopathy, which includes dense deposit disease and C3 GN, is defined by immunofluorescence intensity of C3c two or more orders of magnitude greater than any other immune reactant (on a 0–3 scale). Ultrastructural appearances distinguish dense deposit disease and C3 GN. Focal and segmental necrotizing glomerular lesions with crescents, mimicking a small vessel vasculitis such as ANCA-associated GN, are a very rare manifestation of dense deposit disease. We describe our experience with this unusual histologic presentation and distinct clinical course of dense deposit disease, discuss the pitfalls in diagnosis, examine differential diagnoses, and review the relevant literature. PMID:26361799

  14. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.

    Science.gov (United States)

    Barako, Michael T; Isaacson, Scott G; Lian, Feifei; Pop, Eric; Dauskardt, Reinhold H; Goodson, Kenneth E; Tice, Jesse

    2017-12-06

    Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm 2 K W -1 , over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

  15. Compound odontoma

    Directory of Open Access Journals (Sweden)

    Monica Yadav

    2012-01-01

    Full Text Available Odontomas have been extensively reported in the dental literature, and the term refers to tumors of odontogenic origin. Though the exact etiology is still unknown, the postulated causes include: local trauma, infection, inheritance and genetic mutation. The majority of the lesions are asymptomatic; however, may be accompanied with pain and swelling as secondary complaints in some cases. Here, we report a case of a compound odontome in a 14 year old patient.

  16. Breast cancer screening in Korean woman with dense breast tissue

    International Nuclear Information System (INIS)

    Shin, Hee Jung; Ko, Eun Sook; Yi, Ann

    2015-01-01

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results

  17. Breast cancer screening in Korean woman with dense breast tissue

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Jung [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ko, Eun Sook [Dept. of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Yi, Ann [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-11-15

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results.

  18. Characterisation of Ferrosilicon Dense Medium Separation Material

    International Nuclear Information System (INIS)

    Waanders, F. B.; Mans, A.

    2003-01-01

    Ferrosilicon is used in the dense medium separation of iron ore at Kumba resources, Sishen, South Africa. Due to high cost and losses that occur during use, maximum recovery by means of magnetic separation is aimed for. The purpose of this project was to determine the characteristics of the unused Fe-Si and then to characterise the changes that occur during storage and use thereof. Scanning electron microscopy was used to determine the composition of each sample, whilst Moessbauer spectroscopy yielded a two-sextet spectrum with hyperfine magnetic field strengths of 20 and 31 T, respectively, for the fresh samples. Additional hematite oxide peaks appeared in the Moessbauer spectra after use of the Fe-Si over a length of time, but this did not result in a dramatic degradation of the medium. No definite changes occurred during correct storage methods. It was, however, found that the biggest loss of Fe-Si was due to the abrasion of the particles, which resulted in the formation of an oxihydroxide froth, during the process.

  19. Improved models of dense anharmonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rosenau, P., E-mail: rosenau@post.tau.ac.il; Zilburg, A.

    2017-01-15

    We present two improved quasi-continuous models of dense, strictly anharmonic chains. The direct expansion which includes the leading effect due to lattice dispersion, results in a Boussinesq-type PDE with a compacton as its basic solitary mode. Without increasing its complexity we improve the model by including additional terms in the expanded interparticle potential with the resulting compacton having a milder singularity at its edges. A particular care is applied to the Hertz potential due to its non-analyticity. Since, however, the PDEs of both the basic and the improved model are ill posed, they are unsuitable for a study of chains dynamics. Using the bond length as a state variable we manipulate its dispersion and derive a well posed fourth order PDE. - Highlights: • An improved PDE model of a Newtonian lattice renders compacton solutions. • Compactons are classical solutions of the improved model and hence amenable to standard analysis. • An alternative well posed model enables to study head on interactions of lattices' solitary waves. • Well posed modeling of Hertz potential.

  20. Load Designs For MJ Dense Plasma Foci

    Science.gov (United States)

    Link, A.; Povlius, A.; Anaya, R.; Anderson, M. G.; Angus, J. R.; Cooper, C. M.; Falabella, S.; Goerz, D.; Higginson, D.; Holod, I.; McMahon, M.; Mitrani, J.; Koh, E. S.; Pearson, A.; Podpaly, Y. A.; Prasad, R.; van Lue, D.; Watson, J.; Schmidt, A. E.

    2017-10-01

    Dense plasma focus (DPF) Z-pinches are compact pulse power driven devices with coaxial electrodes. The discharge of DPF consists of three distinct phases: first generation of a plasma sheath, plasma rail gun phase where the sheath is accelerated down the electrodes and finally an implosion phase where the plasma stagnates into a z-pinch geometry. During the z-pinch phase, DPFs can produce MeV ion beams, x-rays and neutrons. Megaampere class DPFs with deuterium fills have demonstrated neutron yields in the 1012 neutrons/shot range with pulse durations of 10-100 ns. Kinetic simulations using the code Chicago are being used to evaluate various load configurations from initial sheath formation to the final z-pinch phase for DPFs with up to 5 MA and 1 MJ coupled to the load. Results will be presented from the preliminary design simulations. LLNL-ABS-734785 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and with support from the Computing Grand Challenge program at LLNL.

  1. Kinetic Simulations of Dense Plasma Focus Breakdown

    Science.gov (United States)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Neutrino ground state in a dense star

    International Nuclear Information System (INIS)

    Kiers, K.; Tytgat, M.H.

    1998-01-01

    It has recently been argued that long range forces due to the exchange of massless neutrinos give rise to a very large self-energy in a dense, finite-ranged, weakly charged medium. Such an effect, if real, would destabilize a neutron star. To address this issue we have studied the related problem of a massless neutrino field in the presence of an external, static electroweak potential of finite range. To be precise, we have computed to one loop the exact vacuum energy for the case of a spherical square well potential of depth α and radius R. For small wells, the vacuum energy is reliably determined by a perturbative expansion in the external potential. For large wells, however, the perturbative expansion breaks down. A manifestation of this breakdown is that the vacuum carries a non-zero neutrino charge. The energy and neutrino charge of the ground state are, to a good approximation for large wells, those of a neutrino condensate with chemical potential μ=α. Our results demonstrate explicitly that long-range forces due to the exchange of massless neutrinos do not threaten the stability of neutron stars. copyright 1998 The American Physical Society

  3. Neutral helium spectral lines in dense plasmas

    International Nuclear Information System (INIS)

    Omar, Banaz; Wierling, August; Roepke, Gerd; Guenter, Sibylle

    2006-01-01

    Shift and broadening of isolated neutral helium lines 7281 A ring (2 1 P-3 1 S), 7065 A ring (2 3 P-3 3 S), 6678 A ring (2 1 P-3 1 D), 5048 A ring (2 1 P-4 1 S), 4922 A ring (2 1 P-4 1 D), and 4713 A ring (2 3 P-4 3 S) in a dense plasma are investigated. Based on a quantum statistical theory, the electronic contributions to the shift and width are considered, using the method of thermodynamic Green functions. Dynamic screening of the electron-atom interaction is included. Compared to the width, the electronic shift is more affected by dynamical screening. This effect increases at high density. A cut-off procedure for strong collisions is used. The contribution of the ions is taken into account in a quasi-static approximation, with both the quadratic Stark effect and the quadrupole interaction included. The results for shift and width agree well with the available experimental and theoretical data

  4. Deterministic dense coding and entanglement entropy

    International Nuclear Information System (INIS)

    Bourdon, P. S.; Gerjuoy, E.; McDonald, J. P.; Williams, H. T.

    2008-01-01

    We present an analytical study of the standard two-party deterministic dense-coding protocol, under which communication of perfectly distinguishable messages takes place via a qudit from a pair of nonmaximally entangled qudits in a pure state |ψ>. Our results include the following: (i) We prove that it is possible for a state |ψ> with lower entanglement entropy to support the sending of a greater number of perfectly distinguishable messages than one with higher entanglement entropy, confirming a result suggested via numerical analysis in Mozes et al. [Phys. Rev. A 71, 012311 (2005)]. (ii) By explicit construction of families of local unitary operators, we verify, for dimensions d=3 and d=4, a conjecture of Mozes et al. about the minimum entanglement entropy that supports the sending of d+j messages, 2≤j≤d-1; moreover, we show that the j=2 and j=d-1 cases of the conjecture are valid in all dimensions. (iii) Given that |ψ> allows the sending of K messages and has √(λ 0 ) as its largest Schmidt coefficient, we show that the inequality λ 0 ≤d/K, established by Wu et al. [Phys. Rev. A 73, 042311 (2006)], must actually take the form λ 0 < d/K if K=d+1, while our constructions of local unitaries show that equality can be realized if K=d+2 or K=2d-1

  5. Thermochemistry of dense hydrous magnesium silicates

    Science.gov (United States)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  6. Borehole stability in densely welded tuffs

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1992-07-01

    The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs

  7. Packing frustration in dense confined fluids.

    Science.gov (United States)

    Nygård, Kim; Sarman, Sten; Kjellander, Roland

    2014-09-07

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile--each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  8. Deuterium fractionation in dense interstellar clouds

    International Nuclear Information System (INIS)

    Millar, T.J.; Bennett, A.; Herbst, E.

    1989-01-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized. 60 refs

  9. Deuterium fractionation in dense interstellar clouds

    Science.gov (United States)

    Millar, T. J.; Bennett, A.; Herbst, Eric

    1989-05-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized.

  10. Matching Cost Filtering for Dense Stereo Correspondence

    Directory of Open Access Journals (Sweden)

    Yimin Lin

    2013-01-01

    Full Text Available Dense stereo correspondence enabling reconstruction of depth information in a scene is of great importance in the field of computer vision. Recently, some local solutions based on matching cost filtering with an edge-preserving filter have been proved to be capable of achieving more accuracy than global approaches. Unfortunately, the computational complexity of these algorithms is quadratically related to the window size used to aggregate the matching costs. The recent trend has been to pursue higher accuracy with greater efficiency in execution. Therefore, this paper proposes a new cost-aggregation module to compute the matching responses for all the image pixels at a set of sampling points generated by a hierarchical clustering algorithm. The complexity of this implementation is linear both in the number of image pixels and the number of clusters. Experimental results demonstrate that the proposed algorithm outperforms state-of-the-art local methods in terms of both accuracy and speed. Moreover, performance tests indicate that parameters such as the height of the hierarchical binary tree and the spatial and range standard deviations have a significant influence on time consumption and the accuracy of disparity maps.

  11. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  12. High-resolution photoemission study of Ce1-x La x RhAs: A collapse of the energy gap in the Kondo semiconductor

    International Nuclear Information System (INIS)

    Shimada, K.; Higashiguchi, M.; Fujimori, S.-I.; Saitoh, Y.; Fujimori, A.; Namatame, H.; Taniguchi, M.; Sasakawa, T.; Takabatake, T.

    2006-01-01

    High-resolution resonance-photoemission spectroscopy has been performed on the Ce 1- x La x RhAs (0≤x≤0.05) single crystal to elucidate a collapse of the energy gap in the Kondo semiconductor CeRhAs by La substitution. With increasing x, the spectral intensity of the Ce4f 1 derived states near the Fermi level decreases and new 4f derived spectral feature appears at a higher binding energy. The Rh4d-derived states, on the other hand, are not significantly changed by the substitution. New 4f-derived states have incoherent nature, which is responsible for the collapse of the semiconducting state for x>∼0.02

  13. Mining connected global and local dense subgraphs for bigdata

    Science.gov (United States)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  14. Dense chlorinated solvents and other DNAPLs in groundwater

    DEFF Research Database (Denmark)

    Broholm, K.

    1996-01-01

    Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996......Anmeldelse af Pankow,J.F. & Cherry,J.A.: Dense chlorinated solvents and other DNAPLs in groundwater. Waterloo Press, Portland, Oregon, USA, 1996...

  15. Dry processing versus dense medium processing for preparing thermal coal

    CSIR Research Space (South Africa)

    De Korte, GJ

    2013-10-01

    Full Text Available of the final product. The separation efficiency of dry processes is, however, not nearly as good as that of dense medium and, as a result, it is difficult to effectively beneficiate coals with a high near-dense content. The product yield obtained from some raw...

  16. Interparticle interaction and transport processes in dense semiclassical plasmas

    International Nuclear Information System (INIS)

    Baimbetov, F.B.; Giniyatova, Sh.G.

    2005-01-01

    On the basis of the density response formalism an expression for the pseudopotential of dense semiclassical plasma, which takes account of quantum-mechanical effects, local field corrections, and electronic screening effects is obtained. The static structure factors taking into account both local fields and quantum-mechanical effects are calculated. An electrical conductivity, thermal conductivity, and viscosity of dense semiclassical plasma are studied

  17. Peculiarities of the intermediate valence state of Ce in CeM2Si2 (M = Fe, Co, Ni) compounds

    International Nuclear Information System (INIS)

    Koterlyn, M.; Shcherba, I.; Yasnitskii, R.; Koterlyn, G.

    2007-01-01

    The results of thermoelectric power and the electrical resistivity measurements connected with the intermediate valence (IV) of Ce are presented for the compounds CeM 2 Si 2 (M = Fe, Co, Ni) in the temperature range of 4-800 K. It is shown that CeM 2 Si 2 are Kondo-lattices with the coherence scale T coh ∼ 60-80 K and the so-called single-site Kondo temperature T K ∼ 10 3 K. On the example of CeNi 2 Si 2 we have studied the changes in the structure of density of f states (f-DOS) near the Fermi energy caused by atomic substitutions. The results of structural, transport, magnetic, and Ce L III X-ray absorption spectra measurements in the series Ce 1-x La x Ni 2 Si 2 (0 ≤ x ≤ 0.6), Ce(Ni 1-y Cu y ) 2 Si 2 (0 ≤ y ≤ 0.6) and CeNi 2 (Si 1-z Ge z ) 2 (0 ≤ z ≤ 0.5) are presented. We found that the IV state of Ce in the CeM 2 Si 2 is an evidence of possible opening a wide pseudogap Δ ∼ kT K within the f-DOS structure slightly above the Fermi energy

  18. 16. Hot dense plasma atomic processes

    International Nuclear Information System (INIS)

    Werner, Dappen; Totsuji, H.; Nishii, Y.

    2002-01-01

    This document gathers 13 articles whose common feature is to deal with atomic processes in hot plasmas. Density functional molecular dynamics method is applied to the hydrogen plasma in the domain of liquid metallic hydrogen. The effects of the density gradient are taken into account in both the electronic kinetic energy and the exchange energy and it is shown that they almost cancel with each other, extending the applicability of the Thomas-Fermi-Dirac approximation to the cases where the density gradient is not negligible. Another article reports about space and time resolved M-shell X-ray measurements of a laser-produced gas jet xenon plasma. Plasma parameters have been measured by ion acoustic and electron plasma waves Thomson scattering. Photo-ionization becomes a dominant atomic process when the density and the temperature of plasmas are relatively low and when the plasma is submitted to intense external radiation. It is shown that 2 plasmas which have a very different density but have the same ionization parameters, are found in a similar ionization state. Most radiation hydrodynamics codes use radiative opacity data from available libraries of atomic data. Several articles are focused on the determination of one group Rosseland and Planck mean analytical formulas for several single elements used in inertial fusion targets. In another paper the plasma density effect on population densities, effective ionization, recombination rate coefficients and on emission lines from carbon and Al ions in hot dense plasma, is studied. The last article is devoted to a new atomic model in plasmas that considers the occupation probability of the bound state and free state density in the presence of the plasma micro-field. (A.C.)

  19. DENSE MOLECULAR CORES BEING EXTERNALLY HEATED

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwanjeong; Lee, Chang Won; Kim, Mi-Ryang [Radio Astronomy division, Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon, 34055 (Korea, Republic of); Gopinathan, Maheswar [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263129 (India); Jeong, Woong-Seob, E-mail: archer81@kasi.re.kr [Department of Astronomy and Space Science, University of Science and Technology, 217 Gajungro, Yuseong-gu, Daejeon, 34113 (Korea, Republic of)

    2016-06-20

    We present results of our study of eight dense cores, previously classified as starless, using infrared (3–160 μ m) imaging observations with the AKARI telescope and molecular line (HCN and N{sub 2}H{sup +}) mapping observations with the KVN telescope. Combining our results with the archival IR to millimeter continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosities of ∼0.3–4.4 L {sub ⊙}. The other six cores are found to remain starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3–6 K toward the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an overdominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory motion, probably due to the external heating. Most of the starless cores show a coreshine effect due to the scattering of light by the micron-sized dust grains. This may imply that the age of the cores is of the order of ∼10{sup 5} years, which is consistent with the timescale required for the cores to evolve into an oscillatory stage due to external perturbation. Our observational results support the idea that the external feedback from nearby stars and/or interstellar radiation fields may play an important role in the dynamical evolution of the cores.

  20. Compound odontoma

    Directory of Open Access Journals (Sweden)

    José Marcelo Vargas Pinto

    2008-01-01

    Full Text Available Odontomas are the most common types of odontogenic tumors, as they are considered more as a developmental anomaly (hamartoma than as a true neoplasia. The aim of the present study is to describe a clinical case of compound odontoma, analyzing its most commonsigns, its region of location, the decade of life and patient’s gender, disorders that may occur as well as the treatment proposed. In order to attain this objective, the method was description of the present clinical case and bibliographic revision, arriving at the result that the treatment for this type of lesion invariably is surgical removal (enucleation and curettage and the prognosis is excellent. The surgical result was followed up in the post-operative period by radiographic exam, and it was possible to conclude that there was complete cicatrization and tissue repair.

  1. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  2. Elastic and inelastic neutron scattering studies on 3d and 4f magnetic compounds

    International Nuclear Information System (INIS)

    Erkelens, W.A.C.

    1987-01-01

    First, some theoretical aspects of neutron scattering techniques are given, and the cyrogenic equipment and the neutron spectrometers employed are described. Experiments on a 3-d Ising system are described, performed at very low temperatures and in a magnetic field. Experimental proof has been obtained for the theoretical prediction that the critical behaviour of a d-dimensional Ising system in a transverse magnetic field near T=0 is identical to that of a d+1 dimensional Ising system as a function of temperature in zero field. Experiments are described on a Ni 2+ compound which represents a good example of a 1-d antiferromagnetic Heisenberg (HAF), spin s=1, system. The results give evidence for the so called 'Haldane conjecture', a theory which predicts that the ground state of HAF systems with integer spin is a nonmagnetic many-body singlet. The excited states are separated from the ground state by an energy gap. Contrastingly, half-integer spin systems are predicted to have no such gap. A short introduction is given to phenomena in rare earth, 4f compunds, like the Kondo effect and heavy fermion behaviour. Experimental results on the RE hexaborides are reported, among which CeB 6 , a typical Kondo system with complex magnetic orderings. Furthermore, inelastic neutron scattering experiments on NdB 6 and CeB 6 , performed in order to get insight in the various reaction mechanisms, are presented. Finally a report is given on magnetic correlations and excitations in two nonmagnetically ordered heavy fermion compounds, CeCu 6 and CeRu 2 Si 2 and their interpretation in the light of existing theories. 201 refs.; 61 figs.; 4 tabs

  3. Heavy fermion Ce3Co4Sn13 compound under pressure

    International Nuclear Information System (INIS)

    Collave, J. R.; Borges, H. A.; Ramos, S. M.; Hering, E. N.; Fontes, M. B.; Baggio-Saitovitch, E.; Bittar, E. M.; Mendonça-Ferreira, L.; Pagliuso, P. G.

    2015-01-01

    The non-magnetic heavy fermion compound Ce 3 Co 4 Sn 13 was studied under pressure. We report single crystalline measurements of electrical resistivity as a function of temperature ρ(T) under pressure. Some characteristic features related to a structural transition (T S ), crystalline field effects (T CEF ), and a low temperature maximum (T max ), possibly connected simultaneously to the onset of Kondo lattice coherence and short range magnetic correlations, were identified in the ρ(T) data. A pressure-temperature phase diagram with T S and T max was constructed by mapping these features. Like for most Ce-based heavy fermion compounds, T max moves to higher temperatures with pressure, indicating that it is related to the Kondo energy scale, due to the increase of hybridization induced by pressure. On the other hand, T S , associated to a superlattice distortion and probably combined with a charge density wave transition, decreases as a function of pressure. However, differently from the Sr 3−x Ca x Ir 4 Sn 13 system, where a superlattice quantum phase transition is observed [L. E. Klintberg et al., Phys. Rev. Lett. 109, 237 008 (2012)], in Ce 3 Co 4 Sn 13 T S  ∼ 154 K, at ambient pressure (P = 0), seems to stabilize at around 143 K for P ≥ 19 kilobars. We also investigated ρ(T) in external magnetic fields, at P = 0. Negative magnetoresistance and increase of T max are observed, suggesting suppression of low temperature short range magnetic correlations

  4. Fabrication of dense panels in lithium fluoride; Fabrication de panneaux denses en fluorure de lithium

    Energy Technology Data Exchange (ETDEWEB)

    Farcy, P.; Roger, J.; Pointud, R.

    1958-04-15

    The authors report a study aimed at the fabrication of large and dense lithium fluoride panels. This sintered lithium fluoride is then supposed to be used for the construction of barriers of protection against a flow of thermal neutrons. They briefly present the raw material which is used under the form of chamotte obtained through a pre-sintering process which is also described. Grain size measurements and sample preparation are indicated. Shaping, drying, and thermal treatment are briefly described, and characteristics of the sintered product are indicated.

  5. FttC-Based Fronthaul for 5G Dense/Ultra-Dense Access Network: Performance and Costs in Realistic Scenarios

    Directory of Open Access Journals (Sweden)

    Franco Mazzenga

    2017-10-01

    Full Text Available One distinctive feature of the next 5G systems is the presence of a dense/ultra-dense wireless access network with a large number of access points (or nodes at short distances from each other. Dense/ultra-dense access networks allow for providing very high transmission capacity to terminals. However, the deployment of dense/ultra-dense networks is slowed down by the cost of the fiber-based infrastructure required to connect radio nodes to the central processing units and then to the core network. In this paper, we investigate the possibility for existing FttC access networks to provide fronthaul capabilities for dense/ultra-dense 5G wireless networks. The analysis is realistic in that it is carried out considering an actual access network scenario, i.e., the Italian FttC deployment. It is assumed that access nodes are connected to the Cabinets and to the corresponding distributors by a number of copper pairs. Different types of cities grouped in terms of population have been considered. Results focus on fronthaul transport capacity provided by the FttC network and have been expressed in terms of the available fronthaul bit rate per node and of the achievable coverage.

  6. Rates of Thermonuclear Reactions in Dense Plasmas

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Bornatici, M.

    2000-01-01

    The problem of plasma screening of thermonuclear reactions has attracted considerable scientific interest ever since Salpeter's seminal paper, but it is still faced with controversial statements and without any definite conclusion. It is of relevant importance to thermonuclear reactions in dense astrophysical plasmas, for which charge screening can substantially affect the reaction rates. Whereas Salpeter and a number of subsequent investigations have dealt with static screening, Carraro, Schafer, and Koonin have drawn attention to the fact that plasma screening of thermonuclear reactions is an essentially dynamic effect. In addressing the issue of collective plasma effects on the thermonuclear reaction rates, the first critical overview of most of the work carried out so far is presented and the validity of the test particle approach is assessed. In contrast to previous investigations, we base our description on the kinetic equation for nonequilibrium plasmas, which accounts for the effects on the rates of thermonuclear reactions of both plasma fluctuations and screening and allows one to analyze explicitly the effects of the fluctuations on the reaction rates. Such a kinetic formulation is more general than both Salpeter's approach and the recently developed statistical approaches and makes it possible to obtain a more comprehensive understanding of the problem. A noticeable result of the fluctuation approach is that the static screening, which affects both the interaction and the self-energy of the reacting nuclei, does not affect the reaction rates, in contrast with the results obtained so far. Instead, a reduction of the thermonuclear reaction rates is obtained as a result of the effect of plasma fluctuations related to the free self-energy of the reacting nuclei. A simple physical explanation of the slowing down of the reaction rates is given, and the relation to the dynamically screened test particle approach is discussed. Corrections to the reaction rates

  7. Neutrino reactions in hot and dense matter

    International Nuclear Information System (INIS)

    Lohs, Andreas

    2015-01-01

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  8. Neutrino reactions in hot and dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lohs, Andreas

    2015-04-13

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  9. Dense-gas dispersion advection-diffusion model

    International Nuclear Information System (INIS)

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments

  10. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Seshadhri, Comandur [The Ohio State Univ., Columbus, OH (United States); Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sariyuce, Ahmet Erdem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Catalyurek, Umit [The Ohio State Univ., Columbus, OH (United States)

    2014-11-01

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account for overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.

  11. Dense interstellar cloud chemistry: Basic issues and possible dynamical solution

    International Nuclear Information System (INIS)

    Prasad, S.S.; Heere, K.R.; Tarafdar, S.P.

    1989-01-01

    Standing at crossroad of enthusiasm and frustration, dense intertellar cloud chemistry has a squarely posed fundamental problem: Why do the grains appear to play at best a minor role in the chemistry? Grain surface chemistry creates considerable difficulties when the authors treat dense clouds as static objects and ignore the implications of the processes by which the clouds became dense in the first place. A new generation of models which treat chemical and dynamical evolutions concurrently are therefore presented as possible solution to the current frustrations. The proposed modeling philosophy and agenda could make the next decade quite exciting for interstellar chemistry

  12. Dense time discretization technique for verification of real time systems

    International Nuclear Information System (INIS)

    Makackas, Dalius; Miseviciene, Regina

    2016-01-01

    Verifying the real-time system there are two different models to control the time: discrete and dense time based models. This paper argues a novel verification technique, which calculates discrete time intervals from dense time in order to create all the system states that can be reached from the initial system state. The technique is designed for real-time systems specified by a piece-linear aggregate approach. Key words: real-time system, dense time, verification, model checking, piece-linear aggregate

  13. Photons in dense nuclear matter: Random-phase approximation

    Science.gov (United States)

    Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay

    2018-04-01

    We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.

  14. Detailed investigation of thermal and electron transport properties in strongly correlated compound Ce6Pd12In5 and its nonmagnetic analog La6Pd12In5

    Science.gov (United States)

    Falkowski, M.; Krychowski, D.; Strydom, A. M.

    2016-11-01

    An in-depth study of thermal and electron transport properties including thermal conductivity κ(T), thermoelectric power S(T), and electrical resistivity ρ(T) of the heavy fermion Kondo lattice Ce6Pd12In5 and its nonmagnetic reference compound La6Pd12In5 is presented. The absolute κ(T) value of Ce6Pd12In5 is smaller that than of La6Pd12In5, which indicates that conduction electron-4f electron scattering has a large impact on the reduction of thermal conductivity. The isolated 4f electron contributions to the electrical resistivity ρ 4 f (T), electronic thermal resistivity displayed in the form W e l , 4 f (T) .T, and thermoelectric power S 4 f (T) reveal a low- and high-temperature -lnT behaviour characteristic of Kondo systems with strong crystal-electric field (CEF) interactions. The analysis of phonon scattering processes of lattice thermal conductivity κph(T) in (Ce, La)6Pd12In5 was performed over the whole accessible temperature range according to the Callaway model. In the scope of a theoretical approach based on the perturbation type calculation, we were able to describe our experimental data of ρ 4 f (T) and W e l , 4 f (T) .T by using the model incorporating simultaneously the Kondo effect in the presence of the CEF splitting, as it is foreseen in the framework of the Cornut-Coqblin and Bhattacharjee-Coqblin theory. Considering the fact that there are not many cases of similar studies at all, we also show the numerical calculations of temperature-dependent behaviour of spin-disorder resistivity ρs(T), magnetic resistivity ρ 4 f (T), and occupation number ⟨ N i ⟩ due to the various types of degeneracy of the ground state multiplet of Ce 3 + (J = 5/2).

  15. Isotopically modified compounds

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  16. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    Directory of Open Access Journals (Sweden)

    Mythili Prakasam

    2015-12-01

    Full Text Available In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes.

  17. Densely crosslinked polycarbosiloxanes .2. Thermal and mechanical properties

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Stenekes, R.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    The thermal and mechanical properties of two densely crosslinked polycarbosiloxane systems were investigated in relation to the molecular structure. The networks were prepared from functional branched prepolymers and crosslinked via a hydrosilylation curing reaction. The prepolymers having only

  18. Automated Motion Estimation for 2D Cine DENSE MRI

    Science.gov (United States)

    Gilliam, Andrew D.; Epstein, Frederick H.

    2013-01-01

    Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this article, we present the first fully automated solution for the estimation of tissue motion and strain from 2D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method. PMID:22575669

  19. Finding dense locations in symbolic indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2017-01-01

    presents two graph-based models for constrained and semi-constrained indoor movement, respectively, and then uses the models to map raw tracking records into mapping records that represent object entry and exit times in particular locations. Subsequently, an efficient indexing structure called Hierarchical...... Dense Location Time Index (HDLT-Index) is proposed for indexing the time intervals of the mapping table, along with index construction, query processing, and pruning techniques. The HDLT-Index supports very efficient aggregate point, interval, and duration queries as well as dense location queries......Finding the dense locations in large indoor spaces is very useful for many applications such as overloaded area detection, security control, crowd management, indoor navigation, and so on. Indoor tracking data can be enormous and are not immediately ready for finding dense locations. This paper...

  20. Dense Medium Machine Processing Method for Palm Kernel/ Shell ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Cracked palm kernel is a mixture of kernels, broken shells, dusts and other impurities. In ... machine processing method using dense medium, a separator, a shell collector and a kernel .... efficiency, ease of maintenance and uniformity of.

  1. Physics of dense matter, neutron stars, and supernova

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-02-01

    Nuclear and astrophysical evidence on the equation of state of dense matter is examined. The role of hyperonization of matter in the development of proto-neutron stars is briefly discussed. 7 refs., 4 figs

  2. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    Science.gov (United States)

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2015-01-01

    In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes. PMID:26703750

  3. Reply to 'Comment on 'Quantum dense key distribution''

    International Nuclear Information System (INIS)

    Degiovanni, I.P.; Berchera, I. Ruo; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2005-01-01

    In this Reply we propose a modified security proof of the quantum dense key distribution protocol, detecting also the eavesdropping attack proposed by Wojcik in his Comment [Wojcik, Phys. Rev. A 71, 016301 (2005)

  4. Dilemmas of Warfare in Densely Populated Civilian Areas

    OpenAIRE

    Moshe Tamir

    2012-01-01

    This essay attempts to present operational perspectives on conducting warfare in densely populated areas. It also distinguishes between three types of combat within this general category, with the goal of shedding light on this complex type of warfare.

  5. Dense medium ore concentrates of Bois-Noirs; Minerais des bois noirs, concentres de milieu dense

    Energy Technology Data Exchange (ETDEWEB)

    Le Bris, J; Leduc, M

    1959-01-20

    The chemical treatment of uranium concentrates of Bois-Noirs ore obtained by heavy medium are discussed. The first part deals with sulfuric acid attack on the concentrate, and the second part with the separation of the solution from residues by filtration. A third part deals with this separation by decantation. The fourth part deals with the carbonation of the pickling solutions obtained. (author) [French] Le present rapport est relatif a l'etude du traitement chimique de concentres uraniferes de minerais des Bois-Noirs obtenus par milieu dense. Une premiere partie est consacree a l'attaque sulfurique des concentres, une deuxieme partie a Ia separation de Ia solution d'attaque des residus par decantation. Une quatrieme partie a la carbonatation des solutions d'attaque obtenues. (auteur)

  6. Relating quantum discord with the quantum dense coding capacity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Qiu, Liang, E-mail: lqiu@cumt.edu.cn; Li, Song; Zhang, Chi [China University of Mining and Technology, School of Sciences (China); Ye, Bin [China University of Mining and Technology, School of Information and Electrical Engineering (China)

    2015-01-15

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.

  7. Rheology of dense suspensions of non colloidal particles

    OpenAIRE

    Guazzelli , Elisabeth

    2017-01-01

    International audience; Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liq...

  8. Rheology of dense suspensions of non colloidal particles

    OpenAIRE

    Guazzelli Élisabeth

    2017-01-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical co...

  9. Neutrinos and Nucleosynthesis in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, George [Univ. of California, San Diego, CA (United States)

    2016-01-14

    The Topical Collaboration for Neutrinos and Nucleosynthesis in Hot and Dense matter brought together researchers from a variety of nuclear science specialties and a number of institutions to address nuclear physics and neutrino physics problems associated with dense matter and the origin of the elements. See attached final technical reports for (1) the UCSD award and (2) a copy of the report for the whole TC

  10. Relating quantum discord with the quantum dense coding capacity

    International Nuclear Information System (INIS)

    Wang, Xin; Qiu, Liang; Li, Song; Zhang, Chi; Ye, Bin

    2015-01-01

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained

  11. Interaction of Interstellar Shocks with Dense Obstacles: Formation of ``Bullets''

    Science.gov (United States)

    Gvaramadze, V. V.

    The so-called cumulative effect take place in converging conical shock waves arising behind dense obstacles overtaken by incident interstellar shock. A significant part of energy of converging flow of matter swept-up by a radiative conical shock can be transferred to a dense jet-like ejection (``bullet'') directed along the cone axis. Possible applications of this effect for star-forming regions (e.g., OMC-1) and supernova remnants (e.g., Vela SNR) are discussed.

  12. Conductivity study of dense BaZr0.9Y0.1O(3 − δ) obtained by spark plasma sintering

    DEFF Research Database (Denmark)

    Ricote, Sandrine; Bonanos, Nikolaos; Wang, Hsiang-Jen

    2012-01-01

    10% yttrium doped barium zirconate (BZY10) was synthesized by solid state reaction and a 99.8% dense and transparent sample was prepared by spark plasma sintering (SPS) at 1700 °C for 5 minutes. A single phase compound was obtained, with no evaporation of barium. High-Resolution Transmission...

  13. Experimental Studies of the Transport Parameters of Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  14. Magnetic properties of Ce{sup 3+} in Pb{sub 1{minus}x}Ce{sub x}Se: Kondo and crystal-field effect

    Energy Technology Data Exchange (ETDEWEB)

    Gratens, X.; Charar, S.; Averous, M. [Groupe dEtude des Semiconducteurs URA 357, Universite Montpellier II, Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Isber, S. [Department of Physic, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec, H3G 1M8 (CANADA); Deportes, J. [Laboratoire Louis Neel, Avenue des Martyres, BP 166X, 38042 Grenoble Cedex 9 (France); Golacki, Z. [Institute of Physics, Polish Academy of Sciences, Pl. 02-668, Warsaw (Poland)

    1997-10-01

    Electron paramagnetic resonance (EPR) experiments were performed on a Pb{sub 1{minus}x}Ce{sub x}Se crystal at liquid-helium temperatures and show very clearly that the doublet {Gamma}{sub 7} is the ground state for cerium ions. The cubic symmetry is shown and the effective Land{acute e} factor for the Ce{sup 3+} is determined to be 1.354{plus_minus}0.003. An orbital reduction factor is introduced to explain the g experimental value. High-field magnetization results are in good agreement with the EPR results. The nominal Ce composition in PbSe deduced from saturation of the magnetization, x=0.0405{plus_minus}0.0003, is very closed to the value determined by microprobe analysis (x=0.04). At 1.5 K, an antiferromagnetic interaction between the nearest-neighbor cerium atoms is found, J{sub ex}/k{sub B}={minus}0.715thinspK. The low-field magnetic-susceptibility results show that the magnetic moment of cerium impurities is strongly temperature dependent, explained by the presence of the crystal-field effect and the Kondo effect. {copyright} {ital 1997} {ital The American Physical Society}

  15. sup 7 sup 5 As NQR/NMR study of successive phase transitions and energy gap formation in Kondo semiconductor CeRhAs

    CERN Document Server

    Matsumura, M; Takabatake, T; Tsuji, S; Tou, H; Sera, M

    2003-01-01

    sup 7 sup 5 As NQR/NMR studies were performed to investigate the successive phase transitions found recently, the gap formation and their interplay in a Kondo semiconductor CeRhAs. NQR/NMR spectra in their respective phases change, reflecting lattice modulation modes, q sub 1 = (0, 1/2, 1/2), q sub 2 = (0, 1/3, 1/3) and q sub 3 = (1/3, 0, 0). In particular for well-resolved three NQR lines corresponding to the q sub 3 mode in the lowest temperature phase, the nuclear spin-lattice relaxation rate (T sub 1 T) sup - sup 1 shows an activation type T-dependence, suggesting a gap opening over the entire Fermi surface, in contrast to the V-shaped gap in isostructural CeNiSn and CeRhSn. The evaluated gap of 272 K and the bandwidth of about 4000 K are one order of magnitude larger than those in CeNiSn and CeRhSb. A lattice modulation forms a gap different from the V-shaped gap. (author)

  16. Noncollinear magnetic ordering in the Shastry-Sutherland Kondo lattice model: Insulating regime and the role of Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Shahzad, Munir; Sengupta, Pinaki

    2017-12-01

    We investigate the necessary conditions for the emergence of complex, noncoplanar magnetic configurations in a Kondo lattice model with classical local moments on the geometrically frustrated Shastry-Sutherland lattice and their evolution in an external magnetic field. We demonstrate that topologically nontrivial spin textures, including a new canted flux state, with nonzero scalar chirality arise dynamically from realistic short-range interactions. Our results establish that a finite Dzyaloshinskii-Moriya (DM) interaction is necessary for the emergence of these novel magnetic states when the system is at half filling, for which the ground state is insulating. We identify the minimal set of DM vectors that are necessary for the stabilization of chiral magnetic phases. The noncoplanarity of such structures can be tuned continually by applying an external magnetic field. This is the first part in a series of two papers; in the following paper the effects of frustration, thermal fluctuations, and magnetic field on the emergence of novel noncollinear states at metallic filling of itinerant electrons are discussed. Our results are crucial in understanding the magnetic and electronic properties of the rare-earth tetraboride family of frustrated magnets with separate spin and charge degrees of freedom.

  17. Rubber compounding and processing

    CSIR Research Space (South Africa)

    John, MJ

    2014-06-01

    Full Text Available This chapter presents an overview on the compounding and processing techniques of natural rubber compounds. The introductory portion deals with different types of rubbers and principles of rubber compounding. The primary and secondary fillers used...

  18. Heavy fermion Ce{sub 3}Co{sub 4}Sn{sub 13} compound under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Collave, J. R.; Borges, H. A. [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22453-900, Rio de Janeiro, RJ (Brazil); Ramos, S. M.; Hering, E. N. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); SPSMS, UMR-E CEA/UJF-Grenoble 1, INAC, 38054, Grenoble (France); Fontes, M. B.; Baggio-Saitovitch, E.; Bittar, E. M., E-mail: bittar@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); Mendonça-Ferreira, L. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, SP (Brazil); Pagliuso, P. G. [Instituto de Física “Gleb Wataghin,” UNICAMP, Campinas, SP 13083-859 (Brazil)

    2015-05-07

    The non-magnetic heavy fermion compound Ce{sub 3}Co{sub 4}Sn{sub 13} was studied under pressure. We report single crystalline measurements of electrical resistivity as a function of temperature ρ(T) under pressure. Some characteristic features related to a structural transition (T{sub S}), crystalline field effects (T{sub CEF}), and a low temperature maximum (T{sub max}), possibly connected simultaneously to the onset of Kondo lattice coherence and short range magnetic correlations, were identified in the ρ(T) data. A pressure-temperature phase diagram with T{sub S} and T{sub max} was constructed by mapping these features. Like for most Ce-based heavy fermion compounds, T{sub max} moves to higher temperatures with pressure, indicating that it is related to the Kondo energy scale, due to the increase of hybridization induced by pressure. On the other hand, T{sub S}, associated to a superlattice distortion and probably combined with a charge density wave transition, decreases as a function of pressure. However, differently from the Sr{sub 3−x}Ca{sub x}Ir{sub 4}Sn{sub 13} system, where a superlattice quantum phase transition is observed [L. E. Klintberg et al., Phys. Rev. Lett. 109, 237 008 (2012)], in Ce{sub 3}Co{sub 4}Sn{sub 13} T{sub S} ∼ 154 K, at ambient pressure (P = 0), seems to stabilize at around 143 K for P ≥ 19 kilobars. We also investigated ρ(T) in external magnetic fields, at P = 0. Negative magnetoresistance and increase of T{sub max} are observed, suggesting suppression of low temperature short range magnetic correlations.

  19. Warm dense matter and Thomson scattering at FLASH

    International Nuclear Information System (INIS)

    Faeustlin, Roland Rainer

    2010-05-01

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  20. Probing warm dense lithium by inelastic X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Saiz, E; Riley, D [School of Mathematics and Physics, Queen' s University of Belfast, Belfast (United Kingdom); Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford (United Kingdom); Gregori, G; Clarke, R J; Neely, D; Notley, M M; Spindloe, C [Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX (United Kingdom); Gericke, D O; Vorberger, J; Wunsch, K [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Barbrel, B; Koenig, M [Laboratoire pour l' Utilisation des Laser Intenses, Ecole Polytechnique - Universite Paris-6, 91 - Palaiseau (France); Freeman, R R; Weber, R L; Van Woerkom, L [Department of Physics, The Ohio State University, Columbus, Ohio (United States); Glenzer, S H; Landen, O L; Neumayer, P; Price, D [Lawrence Livermore National Laboratory, Livermore, California (United States); Khattak, F Y [Department of Physics, Kohat University of Science and Technology, Kohat-26000, NWFP (Pakistan); Pelka, A; Roth, M; Schollmeier, M [Institut fur Kernphysik, Technische Universitat Darmstadt (Germany)

    2008-10-15

    One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars. Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure. (authors)

  1. Scale-chiral symmetry, ω meson, and dense baryonic matter

    Science.gov (United States)

    Ma, Yong-Liang; Rho, Mannque

    2018-05-01

    It is shown that explicitly broken scale symmetry is essential for dense skyrmion matter in hidden local symmetry theory. Consistency with the vector manifestation fixed point for the hidden local symmetry of the lowest-lying vector mesons and the dilaton limit fixed point for scale symmetry in dense matter is found to require that the anomalous dimension (|γG2| ) of the gluon field strength tensor squared (G2 ) that represents the quantum trace anomaly should be 1.0 ≲|γG2|≲3.5 . The magnitude of |γG2| estimated here will be useful for studying hadron and nuclear physics based on the scale-chiral effective theory. More significantly, that the dilaton limit fixed point can be arrived at with γG2≠0 at some high density signals that scale symmetry can arise in dense medium as an "emergent" symmetry.

  2. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S., E-mail: shahid.ali@ncp.edu.p [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); IPFN, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ahmed, Z. [COMSATS Institute of Information Technology, Department of Physics, Wah Campus (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, I. [COMSATS Institute of Information Technology, Department of Physics, Islamabad Campus (Pakistan)

    2009-08-10

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  3. Warm dense matter and Thomson scattering at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faeustlin, Roland Rainer

    2010-05-15

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  4. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    International Nuclear Information System (INIS)

    Ali, S.; Ahmed, Z.; Mirza, Arshad M.; Ahmad, I.

    2009-01-01

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  5. Arbitrary electron acoustic waves in degenerate dense plasmas

    Science.gov (United States)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  6. Pharmaceutical production of nano particles using supercritical or dense gas technology

    International Nuclear Information System (INIS)

    Regtop, H.

    2002-01-01

    Full text: The primary aim of our proposed research is to develop pharmaceutical formulations with enhanced pharmacokinetics and increased bioavailability. The particular drug delivery systems of interest are, oral, aerosols, injectable and topical with well-recognised and distinct problems of bioavailability. More than 40% of all drugs in the USP or BP are insoluble or have some problem with solubility. It is estimated in 2000, the total combined sales of drugs that are insoluble or poorly soluble was US$37 billion. Precise and predictable drug delivery is made more possible by producing uniform micron size particles or powders, which can improve the efficiency and effectiveness of therapeutical formulations. Hence the purpose of micronisation is to increase bioavailability and also to allow other modes of administration, eg insulin is a protein, which is an injectable for the treatment of diabetes, but recently particles of 1-4 microns of insulin are in phase 3 clinical trials to deliver the drug to diabetics as an inhalant. In addition aerosolised drugs such as mucolytics, antibiotics, antiinflammatory drugs and hormones have recently been trailed. Finely powdered pharmaceuticals are however difficult to process by current techniques. In spray drying the operating temperatures are often too high for heat sensitive drugs. Thermal degradation of compounds can also be experienced in milling due to high rates of shear and requires high energy inputs and do not produce particles within a narrow range distribution. A relatively new technique which has been used and developed by Eiffel Technologies to produce uniform micron and sub micron size particles is a dense gas process in which the gas is used as an antisolvent to precipitate compounds from solution. Pharmaceutical processing with dense gas is relatively new and is an efficient process for producing high purity micronised particles with defined morphological structures and with a narrow size distribution rate

  7. Eculizumab for dense deposit disease and C3 glomerulonephritis.

    Science.gov (United States)

    Bomback, Andrew S; Smith, Richard J; Barile, Gaetano R; Zhang, Yuzhou; Heher, Eliot C; Herlitz, Leal; Stokes, M Barry; Markowitz, Glen S; D'Agati, Vivette D; Canetta, Pietro A; Radhakrishnan, Jai; Appel, Gerald B

    2012-05-01

    The principle defect in dense deposit disease and C3 glomerulonephritis is hyperactivity of the alternative complement pathway. Eculizumab, a monoclonal antibody that binds to C5 to prevent formation of the membrane attack complex, may prove beneficial. In this open-label, proof of concept efficacy and safety study, six subjects with dense deposit disease or C3 glomerulonephritis were treated with eculizumab every other week for 1 year. All had proteinuria >1 g/d and/or AKI at enrollment. Subjects underwent biopsy before enrollment and repeat biopsy at the 1-year mark. The subjects included three patients with dense deposit disease (including one patient with recurrent dense deposit disease in allograft) and three patients with C3 glomerulonephritis (including two patients with recurrent C3 glomerulonephritis in allograft). Genetic and complement function testing revealed a mutation in CFH and MCP in one subject each, C3 nephritic factor in three subjects, and elevated levels of serum membrane attack complex in three subjects. After 12 months, two subjects showed significantly reduced serum creatinine, one subject achieved marked reduction in proteinuria, and one subject had stable laboratory parameters but histopathologic improvements. Elevated serum membrane attack complex levels normalized on therapy and paralleled improvements in creatinine and proteinuria. Clinical and histopathologic data suggest a response to eculizumab in some but not all subjects with dense deposit disease and C3 glomerulonephritis. Elevation of serum membrane attack complex before treatment may predict response. Additional research is needed to define the subgroup of dense deposit disease/C3 glomerulonephritis patients in whom eculizumab therapy can be considered.

  8. Pion condensation in cold dense matter and neutron stars

    International Nuclear Information System (INIS)

    Haensel, P.; Proszynski, M.

    1982-01-01

    We study possible influence, on the neutron star structure, of a pion condensation occurring in cold dense matter. Several equations of state with pion-condensed phase are considered. The models of neutron stars are calculated and confronted with existing observational data on pulsars. Such a confrontation appears to rule out the models of dense matter with an abnormal self-bound state, and therefore it seems to exclude the possibility of the existence of abnormal superheavy neutron nuclei and abnormal neutron stars with a liquid pion-condensed surface

  9. Matching of dense plasma focus devices with fission reactors

    International Nuclear Information System (INIS)

    Harms, A.A.; Heindler, M.

    1978-01-01

    The potential role of dense plasma focus devices as compact neutron sources for fissile fuel breeding in conjunction with existing fission reactors is considered. It is found that advanced plasma focus devices can be used effectively in conjunction with neutronically efficient fission reactors to constitute ''self-sufficient'' breeders. Correlations among the various parameters such as the power output and conversion ratio of the fission reactor with the neutron yield and capacitor bank energy of the dense plasma focus device are presented and discussed

  10. Kinetic theory of the interdiffusion coefficient in dense plasmas

    International Nuclear Information System (INIS)

    Boercker, D.B.

    1986-08-01

    Naive applications of Spitzer's theory to very dense plasmas can lead to negative diffusion coefficients. The interdiffusion coefficients in Binary Ionic Mixtures (two species of point ions in a uniform neutralizing background) have been calculated recently using molecular dynamics techniques. These calculations can provide useful benchmarks for theoretical evaluations of the diffusion coefficient in dense plasma mixtures. This paper gives a brief description of a kinetic theoretic approximation to the diffusion coefficient which generalizes Spitzer to high density and is in excellent agreement with the computer simulations. 15 refs., 1 fig., 2 tabs

  11. Pressure effects on the magnetic and transport properties of the Kondo lattice system Ce3RuSn6

    Science.gov (United States)

    Wakiya, Kazuhei; Tomaki, Takeru; Kimura, Minami; Uehara, Masatomo; Gouchi, Jun; Uwatoko, Yoshiya; Umehara, Izuru

    2018-05-01

    The magnetization and electrical resistivity of Ce3RuSn6 have been measured in the temperature range from 2 to 300 K and in the pressure range up to 1 GPa. At ambient pressure, the magnetization shows a ferromagnetic-like steep rise below 4 K. The electrical resistivity drops at TC = 3.3 K due to the magnetic transition. We found that TC is slightly enhanced by applying pressure, suggesting that this compound sits on the left side of the peak in the Doniach phase diagram.

  12. Anomalous optical and electronic properties of dense sodium

    International Nuclear Information System (INIS)

    Li Dafang; Liu Hanyu; Wang Baotian; Shi Hongliang; Zhu Shaoping; Yan Jun; Zhang Ping

    2010-01-01

    Based on the density functional theory, we systematically study the optical and electronic properties of the insulating dense sodium phase (Na-hp4) reported recently (Ma et al., 2009). The structure is found optically anisotropic. Through Bader analysis, we conclude that ionicity exists in the structure and becomes stronger with increasing pressure.

  13. Green-function description of dense polymeric systems

    NARCIS (Netherlands)

    Schoot, van der P.P.A.M.

    2000-01-01

    A self-consistent Green-function description of concentrated polymer solutions and dense polymeric melts is presented. The method, which applies to both uniform and nonuniform systems, is used in this work to calculate the static structure factor of a homogeneous fluid of Gaussian model chains.

  14. Planar simplification and texturing of dense point cloud maps

    NARCIS (Netherlands)

    Ma, L.; Whelan, T.; Bondarau, Y.; With, de P.H.N.; McDonald, J.

    2013-01-01

    Dense RGB-D based SLAM techniques and highfidelity LIDAR scanners are examples from an abundant set of systems capable of providing multi-million point datasets. These large datasets quickly become difficult to process and work with due to the sheer volume of data, which typically contains

  15. Incremental and batch planar simplification of dense point cloud maps

    NARCIS (Netherlands)

    Whelan, T.; Ma, L.; Bondarev, E.; With, de P.H.N.; McDonald, J.

    2015-01-01

    Dense RGB-D SLAM techniques and high-fidelity LIDAR scanners are examples from an abundant set of systems capable of providing multi-million point datasets. These datasets quickly become difficult to process due to the sheer volume of data, typically containing significant redundant information,

  16. Influence of Food Packaging on Children's Energy-dense Snack ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Childhood obesity is a major global public health concern. Rates of obese and overweight children have increased in low- and middle-income countries such as Guatemala. This research will study the influence of food packaging on Guatemalan preschool and school-aged children's energy-dense snack (EDS) food ...

  17. Plasma focus - dense Z pinch and their applications

    International Nuclear Information System (INIS)

    Ishii, Shozo

    1986-02-01

    ''Workshop on the possibility of Z-pinch as a intense pulse light source'' in 1983 and ''Research meeting on plasma focus and Z-pinch'' in 1984 were held at Institute of Plasma Physics, Nagoya University under a collaborating research program. Research activities reported at the meetings on plasma focus, dense Z-pinch, and related phenomena are summerized. (author)

  18. Mechanics of dense suspensions in turbulent channel flows

    NARCIS (Netherlands)

    Picano, F.; Costa, P.; Breugem, W.P.; Brandt, L.

    2015-01-01

    Dense suspensions are usually investigated in the laminar limit where inertial effects are insignificant. When the flow rate is high enough, i.e. at high Reynolds number, the flow may become turbulent and the interaction between solid and liquid phases modifies the turbulence we know in single-phase

  19. Estimation of Dense Image Flow Fields in Fluids

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Conradsen, Knut; Ersbøll, Bjarne Kjær

    or an estimate there-of is known. Estimated flow fields in weather satellite imagery might also be used on an operational basis as inputs to short-term weather prediction. In this article we describe a method for the estimation of dense flow fields. Local measurements of motion are obtained by analysis...

  20. A comparative study of fast dense stereo vision algorithms

    NARCIS (Netherlands)

    Sunyoto, H.; Mark, W. van der; Gavrila, D.M.

    2004-01-01

    With recent hardware advances, real-time dense stereo vision becomes increasingly feasible for general-purpose processors. This has important benefits for the intelligent vehicles domain, alleviating object segmentation problems when sensing complex, cluttered traffic scenes. In this paper, we

  1. Dense power-law networks and simplicial complexes

    Science.gov (United States)

    Courtney, Owen T.; Bianconi, Ginestra

    2018-05-01

    There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.

  2. Dense and accurate whole-chromosome haplotyping of individual genomes

    NARCIS (Netherlands)

    Porubsky, David; Garg, Shilpa; Sanders, Ashley D.; Korbel, Jan O.; Guryev, Victor; Lansdorp, Peter M.; Marschall, Tobias

    2017-01-01

    The diploid nature of the human genome is neglected in many analyses done today, where a genome is perceived as a set of unphased variants with respect to a reference genome. This lack of haplotype-level analyses can be explained by a lack of methods that can produce dense and accurate

  3. Sparse symmetric preconditioners for dense linear systems in electromagnetism

    NARCIS (Netherlands)

    Carpentieri, Bruno; Duff, Iain S.; Giraud, Luc; Monga Made, M. Magolu

    2004-01-01

    We consider symmetric preconditioning strategies for the iterative solution of dense complex symmetric non-Hermitian systems arising in computational electromagnetics. In particular, we report on the numerical behaviour of the classical incomplete Cholesky factorization as well as some of its recent

  4. Energy eigenvalues of helium-like atoms in dense plasmas

    International Nuclear Information System (INIS)

    Hashino, Tasuke; Nakazaki, Shinobu; Kato, Takako; Kashiwabara, Hiromichi.

    1987-04-01

    Calculations based on a variational method with wave functions including the correlation of electrons are carried out to obtain energy eigenvalues of Schroedinger's equation for helium-like atoms embedded in dense plasmas, taking the Debye-Hueckel approximation. Energy eigenvalues for the 1 1 S, 2 1 S, and 2 3 S states are obtained as a function of Debye screening length. (author)

  5. Formation of fibrous materials from dense caseinate dispersions

    NARCIS (Netherlands)

    Manski, J.M.; Goot, van der A.J.; Boom, R.M.

    2007-01-01

    Application of shear and cross-linking enzyme transglutaminase (Tgase) induced fibrous hierarchical structures in dense (30% w/w) calcium caseinate (Ca-caseinate) dispersions. Using Tgase was essential for the anisotropic structure formation. The fibrous materials showed anisotropy on both micro-

  6. Common intersection points in dense fluids via equations of state

    International Nuclear Information System (INIS)

    Parsafar, G. A.; Noorian, R.

    2001-01-01

    Some new of state which are derived for dense fluids in recent years, namely the linear isotherm regularity, the dense system equation of state, Ihm-Song-Mason equation of state, and a newly derived semi-empirical equation of state have used to investigate the common intersection point of isobaric expansivity (α p ) in dense fluids. We have shown that the accuracy of these equations of state in predicting such a common intersection point is reduced from the new semi-imperial equation of state, dense system equation of state, linear isotherm regularity, to Ihm-Song-Mason equation of state. respectively. Form physical point of view, the van der Waals equation of state is used to investigate such an intersection point. It is shown that the van der Waals repulsion forces and temperature dependency of the effective molecular diameter are important for existence of this common point. Finally, we have shown that the common intersection points of the isotherms of thermal pressure coefficient, the isotherms of heat capacity at constant volume, and the iso chores of internal pressure for a fluid are related to each other. Also, the common intersection points of the reduced bulk modulus and 1/(Tα p ) for isotherms of a fluid both appear at the same density

  7. Estimation of Dense Image Flow Fields in Fluids

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Conradsen, Knut; Ersbøll, Bjarne Kjær

    1998-01-01

    or an estimate there-of is known. Estimated flow fields in weather satellite imagery might also be used on an operational basis as inputs to short-term weather prediction. In this article we describe a method for the estimation of dense flow fields. Local measurements of motion are obtained by analysis...

  8. Gas-particle interactions in dense gas-fluidised beds

    NARCIS (Netherlands)

    Li, J.; Kuipers, J.A.M.

    2003-01-01

    The occurrence of heterogeneous flow structures in gas-particle flows seriously affects gas¿solid contacting and transport processes in dense gas-fluidized beds. A computational study, using a discrete particle method based on Molecular Dynamics techniques, has been carried out to explore the

  9. Multi-scaling of the dense plasma focus

    Science.gov (United States)

    Saw, S. H.; Lee, S.

    2015-03-01

    The dense plasma focus is a copious source of multi-radiations with many potential new applications of special interest such as in advanced SXR lithography, materials synthesizing and testing, medical isotopes and imaging. This paper reviews the series of numerical experiments conducted using the Lee model code to obtain the scaling laws of the multi-radiations.

  10. Interaction of ultrarelativistic electron and proton bunches with dense plasmas

    CERN Document Server

    Rukhadze, A A

    2012-01-01

    Here we discuss the possibility of employment of ultrarelativistic electron and proton bunches for generation of high plasma wakefields in dense plasmas due to the Cherenkov resonance plasma-bunch interaction. We estimate the maximum amplitude of such a wake and minimum system length at which the maximum amplitude can be generated at the given bunch parameters.

  11. Dense Descriptors for Optical Flow Estimation: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ahmadreza Baghaie

    2017-02-01

    Full Text Available Estimating the displacements of intensity patterns between sequential frames is a very well-studied problem, which is usually referred to as optical flow estimation. The first assumption among many of the methods in the field is the brightness constancy during movements of pixels between frames. This assumption is proven to be not true in general, and therefore, the use of photometric invariant constraints has been studied in the past. One other solution can be sought by use of structural descriptors rather than pixels for estimating the optical flow. Unlike sparse feature detection/description techniques and since the problem of optical flow estimation tries to find a dense flow field, a dense structural representation of individual pixels and their neighbors is computed and then used for matching and optical flow estimation. Here, a comparative study is carried out by extending the framework of SIFT-flow to include more dense descriptors, and comprehensive comparisons are given. Overall, the work can be considered as a baseline for stimulating more interest in the use of dense descriptors for optical flow estimation.

  12. Active and Nonlinear Microrheology of Dense Colloidal Suspensions

    OpenAIRE

    Harrer, Christian Josef

    2013-01-01

    In this work, we have investigated active and nonlinear microrheology of dense colloidal suspensions, i.e., the forced motion of a singled-out tracer particle by an external force, both in the framework of MCT and via event-driven Brownian Dynamics simulations.

  13. Ranks of dense alternating sign matrices and their sign patterns

    Czech Academy of Sciences Publication Activity Database

    Fiedler, Miroslav; Gao, W.; Hall, F.J.; Jing, G.; Li, Z.; Stroev, M.

    2015-01-01

    Roč. 471, April (2015), s. 109-121 ISSN 0024-3795 R&D Projects: GA ČR(CZ) GA14-07880S Institutional support: RVO:67985840 Keywords : alternating sign matrix * dense matrix * sign pattern matrix Subject RIV: BA - General Mathematics Impact factor: 0.965, year: 2015 http://www.sciencedirect.com/science/article/pii/S0024379515000257

  14. Light localization in cold and dense atomic ensemble

    International Nuclear Information System (INIS)

    Sokolov, Igor

    2017-01-01

    We report on results of theoretical analysis of possibilities of light strong (Anderson) localization in a cold atomic ensemble. We predict appearance of localization in dense atomic systems in strong magnetic field. We prove that in absence of the field the light localization is impossible. (paper)

  15. Energy Flow in Dense Off-Equilibrium Plasma

    Science.gov (United States)

    2016-07-15

    brings the electron density and light emission into LTE at the measured spectral temperature while leaving the ions cold. Because of their large mass... measurements of ionization potential lowering and collision times indense plasmas, allowing us to distinguish between competing dense-plasma models...Hydrodynamic analysis of shockwaves generated by sparks yielded similar measurements ina different, more accessible system. Ultra-fast observations

  16. Deterministic dense coding and faithful teleportation with multipartite graph states

    International Nuclear Information System (INIS)

    Huang, C.-Y.; Yu, I-C.; Lin, F.-L.; Hsu, L.-Y.

    2009-01-01

    We propose schemes to perform the deterministic dense coding and faithful teleportation with multipartite graph states. We also find the sufficient and necessary condition of a viable graph state for the proposed schemes. That is, for the associated graph, the reduced adjacency matrix of the Tanner-type subgraph between senders and receivers should be invertible.

  17. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    Science.gov (United States)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  18. OH megamasers: dense gas & the infrared radiation field

    Science.gov (United States)

    Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie

    2018-06-01

    To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.

  19. Effect of magnetic fields on the Kondo insulator CeRhSb: Magnetoresistance and high-field heat capacity measurements

    International Nuclear Information System (INIS)

    Malik, S.K.; Menon, L.; Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1997-01-01

    The compound CeRhSb is a mixed valent Ce-based compound which shows a gap in the electronic density of states at low temperatures. The gap manifests by a rise in electrical resistivity below about 8 K from which the gap energy is estimated to be about 4 K. We have carried out heat capacity measurements on this compound in various applied fields up to 9.85 T. The magnetic contribution to the heat capacity, ΔC, is found to have a maximum in ΔC/T vs T at 10 K, below which ΔC/T is linear with T. This is attributed to the fact that below this temperature, in the gapped state, the electronic density of states decreases linearly with decreasing temperature. On application of a magnetic field, the electronic specific heat coefficient γ in the gapped state increases by ∼4mJ/molK 2 . The maximum in ΔC/T vs T is observed in all fields, which shifts to lower temperatures ∼1K at 5.32 T and raises again at 9.85 T to about the same values as at H=0T. This suggests that the gap exists for all fields up to 9.85 T. Above 10 K, in the mixed-valent state, ΔC/T vs T decreases with increasing temperature in zero field. There is hardly any effect of application of field in the mixed-valent state. We have also carried out magnetoresistance measurements on CeRhSb up to fields of 5.5 T at 2, 4.5, 10, 20, and 30 K. The magnetoresistance in CeRhSb is positive at temperatures of 4.5 K and above, in applied fields up to 5.5 T. At 5.5 T, the magnetoresistance is maximum at 4.5 K (6%) and decreases with increasing temperature. The observation of the maximum is consistent with the observation of a maximum in ΔC/T vs T and is due to a change in the density of states. At a temperature of 2 K, a negative magnetoresistance is observed for magnetic fields greater than ∼3.5T which suggests reduction in the gap. copyright 1997 The American Physical Society

  20. Sanskrit Compound Processor

    Science.gov (United States)

    Kumar, Anil; Mittal, Vipul; Kulkarni, Amba

    Sanskrit is very rich in compound formation. Typically a compound does not code the relation between its components explicitly. To understand the meaning of a compound, it is necessary to identify its components, discover the relations between them and finally generate a paraphrase of the compound. In this paper, we discuss the automatic segmentation and type identification of a compound using simple statistics that results from the manually annotated data.

  1. Magnetic and electronic properties of some actinide intermetallic compounds

    International Nuclear Information System (INIS)

    Yaar, Ilan

    1992-06-01

    The electronic structure and magnetic properties of the light actinide intermetallic compounds are often related to interplay between localized and itinerant (band like) behavior of the 5f- electrons. In the present work, the properties of some actinide, mainly Np, intermetallic compounds were studied by Mossbauer effect, ac and dc susceptibility, X-ray and Neutron diffraction techniques. 1. NpX 2 (X=Ga,Si) - Both compounds order ferromagnetically at TC=55(2) and 48(2) K respectively. A comparison of our data with the results for other NpX 2 (X=Al,As,Sb,Tl) compounds indicates that NpGa 2 is a highly localized 5f electron system, whereas in NpSi 2 the 5f electrons are partially delocalized. The magnetic properties of NpX 2 compounds can neither be consistently explained within the conventional crystal electric field picture (CEF) nor by takink into account hybridization dressing of local spin density models. 2. NpX 3 (X=Ga,Si,In,Al) in the cubic AuCu 3 (Pm3m) crystallographic structure - From the Mossbauer isomer shift (IS) data we argue that the Np ion in the NpX 3 family is close to the formal 3+ (5I 4 ) charge state. The magnetic moment of the Np in NpSi 3 is totally suppressed whereas in NpGa 3 and NpAl 3 a localized (narrow band) moment is established. However, in NpIn 3 at 4.2 K, a modulated magnetic moment (0-1.5μB) is observed. Comparing the magnetic behavior of the NpX 3 family (X=Si,Ge,Ga, Al,In and Sn), we find an impressive variation of the magnetic properties, from temperature independent paramagnetism (TIP), localized and modulated ordered moments, to the formation of a concentrated Kondo lattice. Hybridization of 5f electrons with ligand electrons appears to play a crucial role in establishing these magnetic properties. However, at present a consistent theoretical picture can not be drawn. 3. XFe 4 Al 8 (X=Ho,Np,U) spin galss (SG) systems in the ThMn 12 (I 4 /mmm) crystallographic structure - Localized and itinerant behaviour of the f electrons

  2. The structure of protostellar dense cores: a millimeter continuum study

    International Nuclear Information System (INIS)

    Motte, Frederique

    1998-01-01

    A comprehensive theoretical scenario explains low-mass star formation and describes the gravitational collapse of an isolated 'ideal' dense core. The major aim of this thesis is to check the standard model predictions on the structure of protostellar dense cores (or envelopes). The earliest stages of star formation remain poorly known because the protostars are still deeply embedded in massive, opaque circumstellar cocoons. On the one hand, sensitive bolometer arrays very recently allow us to measure the millimeter continuum emission arising from dense cores. Such observations are a powerful tool to constrain the density structure of proto-stellar dense cores (on large length scale). In particular, we studied the structure of isolated proto-stellar envelopes in Taurus and protostars in the ρ Ophiuchi cluster. In order to accurately derive their envelope density power law, we simulated the observation of several envelope models. Then we show that most of the Taurus protostars present a density structure consistent with the standard model predictions. In contrast, dense cores in ρ Ophiuchi main cloud are highly fragmented and protostellar envelope have finite size. Moreover fragmentation appears to be essential in determining the final stellar mass of ρ Oph forming stars. In clusters, fragmentation may thus be at the origin of the stellar initial mass function (IMF). On the other hand, our interferometric millimeter continuum observations are tracing (with higher angular resolution) the inner part of protostellar envelopes. Our study show that disks during protostellar stages are not yet massive and thus do not perturb the analysis of envelope density structure. (author) [fr

  3. The Genetic Basis for Evolved Tolerance to Dioxin-Like Compounds in Wild Atlantic Killifish: More Than the Aryl Hydrocarbon Receptor

    Science.gov (United States)

    Populations of Atlantic killifish (Fundulus heteroclitus) resident to some US urban estuaries have independently evolved extreme and inherited tolerance to toxic dioxin-like compounds (DLCs). To further understand the genetic basis for this trait, we densely genotyped families o...

  4. Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments

    Science.gov (United States)

    Kilic, Ali Ihsan

    2017-09-01

    Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.

  5. Propagation of monochromatic light in a hot and dense medium

    Energy Technology Data Exchange (ETDEWEB)

    Masood, Samina S. [University of Houston Clear Lake, Department of Physical and Applied Sciences, Houston, TX (United States)

    2017-12-15

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe. (orig.)

  6. Dynamic conductivity and partial ionization in dense fluid hydrogen

    Science.gov (United States)

    Zaghoo, Mohamed

    2018-04-01

    A theoretical description for optical conduction experiments in dense fluid hydrogen is presented. Different quantum statistical approaches are used to describe the mechanism of electronic transport in hydrogen's high-temperature dense phase. We show that at the onset of the metallic transition, optical conduction could be described by a strong rise in atomic polarizability, due to increased ionization, whereas in the highly degenerate limit, the Ziman weak scattering model better accounts for the observed saturation of reflectance. The inclusion of effects of partial ionization in the highly degenerate region provides great agreement with experimental results. Hydrogen's fluid metallic state is revealed to be a partially ionized free-electron plasma. Our results provide some of the first theoretical transport models that are experimentally benchmarked, as well as an important guide for future studies.

  7. Projective block Lanczos algorithm for dense, Hermitian eigensystems

    International Nuclear Information System (INIS)

    Webster, F.; Lo, G.C.

    1996-01-01

    Projection operators are used to effect open-quotes deflation by restrictionclose quotes and it is argued that this is an optimal Lanczos algorithm for memory minimization. Algorithmic optimization is constrained to dense, Hermitian eigensystems where a significant number of the extreme eigenvectors must be obtained reliably and completely. The defining constraints are operator algebra without a matrix representation and semi-orthogonalization without storage of Krylov vectors. other semi-orthogonalization strategies for Lanczos algorithms and conjugate gradient techniques are evaluated within these constraints. Large scale, sparse, complex numerical experiments are performed on clusters of magnetic dipoles, a quantum many-body system that is not block-diagonalizable. Plane-wave, density functional theory of beryllium clusters provides examples of dense complex eigensystems. Use of preconditioners and spectral transformations is evaluated in a preprocessor prior to a high accuracy self-consistent field calculation. 25 refs., 3 figs., 5 tabs

  8. Propagation of monochromatic light in a hot and dense medium

    Science.gov (United States)

    Masood, Samina S.

    2017-12-01

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.

  9. Wave propagation through a dielectric layer containing densely packed fibers

    International Nuclear Information System (INIS)

    Lee, Siu-Chun

    2011-01-01

    This paper presents the theoretical formulation for the propagation of electromagnetic wave through a dielectric layer containing a random dense distribution of fibers. The diameter of the fibers is comparable to the inter-fiber spacing and wavelength of the incident radiation, but is much smaller than the thickness of the layer. Discontinuity of refractive index across the boundaries of the dielectric layer resulted in multiple internal reflection of both the primary source wave and the scattered waves. As a result the incident waves on the fibers consist of the multiply-reflected primary waves, scattered waves from other fibers, and scattered-reflected waves from the boundaries. The effective propagation constant of the dielectric fiber layer was developed by utilizing the Effective field-Quasicrystalline approximation. The influence of the refractive index of the dielectric medium on the radiative properties of a dense fiber layer was examined by means of numerical analyses.

  10. Observations of non-linear plasmon damping in dense plasmas

    Science.gov (United States)

    Witte, B. B. L.; Sperling, P.; French, M.; Recoules, V.; Glenzer, S. H.; Redmer, R.

    2018-05-01

    We present simulations using finite-temperature density-functional-theory molecular-dynamics to calculate dynamic dielectric properties in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew, Burke, Ernzerhof approximation, Strongly Constrained and Appropriately Normed Semilocal Density Functional, and Heyd, Scuseria, Ernzerhof (HSE) approximation indicates evident differences in the electron transition energies, dc conductivity, and Lorenz number. The HSE calculations show excellent agreement with x-ray scattering data [Witte et al., Phys. Rev. Lett. 118, 225001 (2017)] as well as dc conductivity and absorption measurements. These findings demonstrate non-Drude behavior of the dynamic conductivity above the Cooper minimum that needs to be taken into account to determine optical properties in the warm dense matter regime.

  11. Pulsar-irradiated stars in dense globular clusters

    Science.gov (United States)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  12. Temperature Measurements of Dense Plasmas by Detailed Balance

    International Nuclear Information System (INIS)

    Holl, A; Redmer, R; Ropke, G; Reinholz, H; Thiele, R; Fortmann, C; Forster, E; Cao, L; Tschentscher, T; Toleikis, S; Glenzer, S H

    2006-01-01

    Plasmas at high electron densities of n e = 10 20 - 10 26 cm -3 and moderate temperatures T e = 1 - 20 eV are important for laboratory astrophysics, high energy density science and inertial confinement fusion. These plasmas are usually referred to as Warm Dense Matter (WDM) and are characterized by a coupling parameter of Λ ∼> 1 where correlations become important. The characterization of such plasmas is still a challenging task due to the lack of direct measurement techniques for temperatures and densities. They propose to measure the Thomson scattering spectrum of vacuum-UV radiation off density fluctuations in the plasma. Collective Thomson scattering provides accurate data for the electron temperature applying first principles. Further, this method takes advantage of the spectral asymmetry resulting from detailed balance and is independent of collisional effects in these dense systems

  13. Quantum criticality in He3 bi-layers and heavy fermion compounds

    International Nuclear Information System (INIS)

    Benlagra, A.

    2009-11-01

    Despite intense experimental as well as theoretical efforts the understanding of physical phenomena peculiar to heavy fermion compounds remains one of the major problems in condensed matter physics; this research thesis considers the recently proposed theoretical approaches to describe the critical regime properties. This approach is based on the following idea: critical modes which are responsible for this regime are non-magnetic and are associated to the destruction of the Kondo effect between localized magnetic impurities and travelling conduction electrons at the quantum critical point. The author derives an analytic expression for the free energy within this model by using the Luttinger-Ward functional approach within the frame of the Eliashberg theory. The obtained expressions are transparently including the effect of critical fluctuations, integrated in a self-coherent way. The behaviour of different thermodynamic quantities is then deduced from these expressions. The result is compared with recent experiments on heavy fermion compounds as well as on a Helium-3 bilayer system adsorbed on graphite substrate in order to test the validity of such a model. Strengths and drawbacks of the model are outlined

  14. The EOS and neutrino interactions in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, M; Reddy, S [Dept. of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY (United States)

    1998-06-01

    The deleptonization and cooling times of a newly born neutron star depend on the equation of state (EOS) and neutrino opacities in dense matter. Through model calculations we show that effects of Pauli blocking and many-body correlations due to strong interactions reduce both the neutral and charged current neutrino cross sections by large factors compared to the case in which these effects are ignored. (orig.)

  15. Efficient and Invariant Convolutional Neural Networks for Dense Prediction

    OpenAIRE

    Gao, Hongyang; Ji, Shuiwang

    2017-01-01

    Convolutional neural networks have shown great success on feature extraction from raw input data such as images. Although convolutional neural networks are invariant to translations on the inputs, they are not invariant to other transformations, including rotation and flip. Recent attempts have been made to incorporate more invariance in image recognition applications, but they are not applicable to dense prediction tasks, such as image segmentation. In this paper, we propose a set of methods...

  16. Nucleation of strange matter in dense stellar cores

    International Nuclear Information System (INIS)

    Horvath, J.E.; Benvenuto, O.G.; Vucetich, H.

    1992-01-01

    We investigate the nucleation of strange quark matter inside hot, dense nuclear matter. Applying Zel'dovich's kinetic theory of nucleation we find a lower limit of the temperature T for strange-matter bubbles to appear, which happens to be satisfied inside the Kelvin-Helmholtz cooling era of a compact star life but not much after it. Our bounds thus suggest that a prompt conversion could be achieved, giving support to earlier expectations for nonstandard type-II supernova scenarios

  17. New look at radiative association in dense interstellar clouds

    International Nuclear Information System (INIS)

    Herbst, E.

    1980-01-01

    A corrected statistical theory of radiative association reactions is presented and discussed. Calculations are undertaken to determine the rate coefficients of a variety of radiative association reactions of possible importance in dense interstellar clouds. Our results confirm the suggestion of Smith and Adams that certain radiative association reactions occur quite rapidly at low temperature and are probably important in the synthesis of complex interstellar molecules

  18. Stark broadening in hot, dense laser-produced plasmas

    International Nuclear Information System (INIS)

    Tighe, R.J.; Hooper, C.F. Jr.

    1976-01-01

    Broadened Lyman-α x-ray lines from neon X and argon XVIII radiators, which are immersed in a hot, dense deuterium or deuterium-tritium plasma, are discussed. In particular, these lines are analyzed for several temperature-density cases, characteristic of laser-produced plasmas; special attention paid to the relative importance of ion, electron, and Doppler effects. Static ion microfield distribution functions are tabulated

  19. Proton Radiography for the Diagnostics of a Dense Plasma

    Science.gov (United States)

    Barminova, H. Y.

    2017-12-01

    The possibility of using high-energy proton radiography for dense plasma diagnostics is discussed. The designed telescopic ion optical system for a proton radiography installation with a 1 GeV beam is presented. The schematic diagram of the proton microscope is given. It is shown that the estimate of spatial resolution for the installation obtained with consideration of chromatic aberrations of magnetic quadrupole lenses is limited from below.

  20. Studies of RF Breakdown of Metals in Dense Gases

    CERN Document Server

    Hanlet, Pierrick M; Ankenbrandt, Charles; Johnson, Rolland P; Kaplan, Daniel; Kuchnir, Moyses; Moretti, Alfred; Paul, Kevin; Popovic, Milorad; Yarba, Victor; Yonehara, Katsuya

    2005-01-01

    A study of RF breakdown of metals in gases has begun as part of a program to develop RF cavities filled with dense hydrogen gas to be used for muon ionization cooling. A pressurized 800 MHz test cell has been used at Fermilab to compare the conditioning and breakdown behavior of copper, molybdenum, chromium, and beryllium electrodes as functions of hydrogen and helium gas density. These results are compared to the predicted or known RF breakdown behavior of these metals in vacuum.

  1. Vortex structures in dense electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Q [Theoretical Plasma Physics Division, PINSTECH, P O Nilore, Islamabad (Pakistan)], E-mail: qamar_haque@hotmail.com

    2009-11-15

    A linear dispersion relation for electrostatic quantum drift and acoustic waves has been found for dense electron-positron-ion magnetoplasmas. Both the fermion and thermal temperature effects have been considered for electrons and positrons. In the nonlinear regime, a stationary solution in the form of dipolar vortices has been obtained. For illustration, the results were applied to the astrophysical plasma of the atmosphere of neutron stars/pulsars.

  2. Pulsars and cosmic rays in the dense supernova shells

    International Nuclear Information System (INIS)

    Berezinsky, V.S.; Prilutsky, O.F.

    1977-01-01

    Cosmic rays (c.r.) injected by a young pulsar in the dense supernova shell are considered. The maintenance of the Galactic c.r. pool by pulsar production is shown to have a difficulty: adiabatic energy losses of c.r. in the expanding shell demand a high initial c.r. luminosity of pulsar, which results in too high flux of γ-radiation produced through π 0 -decays (in excess over diffuse γ-ray background). (author)

  3. Non-dense domain operator matrices and Cauchy problems

    International Nuclear Information System (INIS)

    Lalaoui Rhali, S.

    2002-12-01

    In this work, we study Cauchy problems with non-dense domain operator matrices. By assuming that the entries of an unbounded operator matrix are Hille-Yosida operators, we give a necessary and sufficient condition ensuring that the part of this operator matrix generates a semigroup in the closure of its domain. This allows us to prove the well-posedness of the corresponding Cauchy problem. Our results are applied to delay and neutral differential equations. (author)

  4. Memory-efficient analysis of dense functional connectomes

    Directory of Open Access Journals (Sweden)

    Kristian Loewe

    2016-11-01

    Full Text Available The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software are compared with regard to their computational efficiency in terms of memory requirements and computation time. The matrix implementation based on on-demand computations has very low memory requirements thus enabling

  5. Memory-Efficient Analysis of Dense Functional Connectomes.

    Science.gov (United States)

    Loewe, Kristian; Donohue, Sarah E; Schoenfeld, Mircea A; Kruse, Rudolf; Borgelt, Christian

    2016-01-01

    The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to

  6. Single-shot optical conductivity measurement of dense aluminum plasmas

    International Nuclear Information System (INIS)

    Churina, I. V.; Cho, B.-I.; Bernstein, A.; Stoker, D. S.; Dalton, A.; Symes, D. R.; Ditmire, T.

    2009-01-01

    The optical conductivity of a dense femtosecond laser-heated aluminum plasma heated to 0.1-1.5 eV was measured using frequency-domain interferometry with chirped pulses, permitting simultaneous observation of optical probe reflectivity and probe pulse phase shift. Coupled with published models of bound-electron contributions to the conductivity, these two independent experimental data yielded a direct measurement of both real and imaginary components of the plasma conductivity.

  7. Magnetic fields and dense chromospheres in dMe stars

    International Nuclear Information System (INIS)

    Mullan, D.J.

    1975-01-01

    We examine in a semi-quantitative fashion the hypothesis that dense chromospheres of dMe stars are heated by dissipation of hydromagnetic waves. We propose that dMe stars are a set of magnetic stars on the lower main sequence, with strong fields presumably generated by dynamo action in deep convective envelopes. We discuss how the combination of magnetic fields and dense chromospheres in dMe stars provides a consistent interpretation of the following features: 1) The dMe stars which are most likely to be flares stars are those with hydrogen lines in emission. However, it is proposed that in certain conditions, Balmer lines may appear in absorption, and we suggest that 'negative flares' can be explained at least in part by the occurrence of strong absorption in Hα. 2) The propagation of flare-initiated coronal waves can trigger sympathetic stellar flares. 3) Apart from flare activity, emission line strengths in dMe stars must exhibit time variations due to the emergence of new magnetic flux ropes through the stellar surface. 4) The combination of strong magnetic fields with dense chromospheres makes the Faraday rotation measure large enough to have potentially a detectable effect on polarized visible light. 5) It is suggested that grain formation occurs in starspots on dMe stars. (orig./WL) [de

  8. An extended GS method for dense linear systems

    Science.gov (United States)

    Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi

    2009-09-01

    Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.

  9. Rheology of dense suspensions of non colloidal particles

    Science.gov (United States)

    Guazzelli, Élisabeth

    2017-06-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers) or non-Newtonian fluids that we will also address.

  10. Inferring segmented dense motion layers using 5D tensor voting.

    Science.gov (United States)

    Min, Changki; Medioni, Gérard

    2008-09-01

    We present a novel local spatiotemporal approach to produce motion segmentation and dense temporal trajectories from an image sequence. A common representation of image sequences is a 3D spatiotemporal volume, (x,y,t), and its corresponding mathematical formalism is the fiber bundle. However, directly enforcing the spatiotemporal smoothness constraint is difficult in the fiber bundle representation. Thus, we convert the representation into a new 5D space (x,y,t,vx,vy) with an additional velocity domain, where each moving object produces a separate 3D smooth layer. The smoothness constraint is now enforced by extracting 3D layers using the tensor voting framework in a single step that solves both correspondence and segmentation simultaneously. Motion segmentation is achieved by identifying those layers, and the dense temporal trajectories are obtained by converting the layers back into the fiber bundle representation. We proceed to address three applications (tracking, mosaic, and 3D reconstruction) that are hard to solve from the video stream directly because of the segmentation and dense matching steps, but become straightforward with our framework. The approach does not make restrictive assumptions about the observed scene or camera motion and is therefore generally applicable. We present results on a number of data sets.

  11. Rheology of dense suspensions of non colloidal particles

    Directory of Open Access Journals (Sweden)

    Guazzelli Élisabeth

    2017-01-01

    Full Text Available Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing and in natural phenomena (e.g. flows of slurries, debris, and lava. Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers or non-Newtonian fluids that we will also address.

  12. Carbon chemistry in dense molecular clouds: Theory and observational constraints

    International Nuclear Information System (INIS)

    Blake, G.A.

    1990-01-01

    For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. Researchers present a brief review of the basic assumptions and results of large scale modeling of the carbon chemistry in dense molecular clouds. Particular attention is to the influence of the gas phase C/O ratio in molecular clouds, and the likely role grains play in maintaining this ratio as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation. Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate inventory of the gas phase carbon budget in several different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, larger molecules are especially difficult to study both experimentally and theoretically in such dense, cold regions, and some new methods are therefore outlined which may ultimately push the detectability of small carbon chains and rings to much heavier species

  13. Locating sources within a dense sensor array using graph clustering

    Science.gov (United States)

    Gerstoft, P.; Riahi, N.

    2017-12-01

    We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.

  14. On parametrised cold dense matter equation of state inference

    Science.gov (United States)

    Riley, Thomas E.; Raaijmakers, Geert; Watts, Anna L.

    2018-04-01

    Constraining the equation of state of cold dense matter in compact stars is a major science goal for observing programmes being conducted using X-ray, radio, and gravitational wave telescopes. We discuss Bayesian hierarchical inference of parametrised dense matter equations of state. In particular we generalise and examine two inference paradigms from the literature: (i) direct posterior equation of state parameter estimation, conditioned on observations of a set of rotating compact stars; and (ii) indirect parameter estimation, via transformation of an intermediary joint posterior distribution of exterior spacetime parameters (such as gravitational masses and coordinate equatorial radii). We conclude that the former paradigm is not only tractable for large-scale analyses, but is principled and flexible from a Bayesian perspective whilst the latter paradigm is not. The thematic problem of Bayesian prior definition emerges as the crux of the difference between these paradigms. The second paradigm should in general only be considered as an ill-defined approach to the problem of utilising archival posterior constraints on exterior spacetime parameters; we advocate for an alternative approach whereby such information is repurposed as an approximative likelihood function. We also discuss why conditioning on a piecewise-polytropic equation of state model - currently standard in the field of dense matter study - can easily violate conditions required for transformation of a probability density distribution between spaces of exterior (spacetime) and interior (source matter) parameters.

  15. Rheological Behavior of Dense Assemblies of Granular Materials

    International Nuclear Information System (INIS)

    Sundaresan, Sankaran; Tardos, Gabriel I.; Subramaniam, Shankar

    2011-01-01

    Assemblies of granular materials behave differently when they are owing rapidly, from when they are slowly deforming. The behavior of rapidly owing granular materials, where the particle-particle interactions occur largely through binary collisions, is commonly related to the properties of the constituent particles through the kinetic theory of granular materials. The same cannot be said for slowly moving or static assemblies of granular materials, where enduring contacts between particles are prevalent. For instance, a continuum description of the yield characteristics of dense assemblies of particles in the quasistatic ow regime cannot be written explicitly on the basis of particle properties, even for cohesionless particles. Continuum models for this regime have been proposed and applied, but these models typically assume that the assembly is at incipient yield and they are expressed in terms of the yield function, which we do not yet know how to express in terms of particle-level properties. The description of the continuum rheology in the intermediate regime is even less understood. Yet, many practically important flows in nature and in a wide range of technological applications occur in the dense flow regime and at the transition between dilute and dense regimes; the lack of validated continuum rheological models for particle assemblies in these regimes limits predictive modeling of such flows. This research project is aimed at developing such rheological models.

  16. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O' Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  17. Isotopologues of dense gas tracers in NGC 1068

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junzhi; Qiu, Jianjie [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, 200030, Shanghai (China); Zhang, Zhi-Yu [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Shi, Yong [School of Astronomy and Space Science, Nanjing University, Nanjing, 210093 (China); Zhang, Jiangshui [Center For Astrophysics, GuangZhou University, 510006, GuangZhou (China); Fang, Min, E-mail: jzwang@shao.ac.cn [ESO, Karl Schwarzschild Strasse 2, D-85748 Garching bei Munich (Germany)

    2014-11-20

    We present observations of isotopic lines of dense gas tracers toward the nuclear region of nearby Seyfert 2 galaxy NGC 1068 with the IRAM 30 m telescope and the Atacama Pathfinder Experiment (APEX) 12 m telescope. We detected four isotopic lines (H{sup 13}CN 1-0, H{sup 13}CO{sup +} 1-0, HN{sup 13}C 1-0, and HC{sup 18}O{sup +} 1-0) at the 3 mm band with the IRAM 30 m telescope and obtained upper limits of other lines. We calculated optical depths of dense gas tracers with the detected isotopic lines of HCN 1-0, HCO{sup +} 1-0, and HNC 1-0. We find that the {sup 14}N/{sup 15}N abundance ratio is greater than 420 if we adopt the upper limit of HC{sup 15}N(1-0) emission. Combining this with fluxes of 1-0 lines from IRAM 30 m observations and the upper limit of 3-2 lines from APEX 12 m observations, we also estimated the excitation condition of molecular gas in the nuclear region of NGC 1068, which is less dense than that in the extreme starburst regions of galaxies.

  18. Wet skins tanning with chromium in dense CO{sub 2} under pressure; Tannage au chrome de peaux humides en CO{sub 2} dense sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Saldinari, L. [Tanneries Roux SA, 26 - Romans Sur Isere (France)]|[Tanneries du Puy (France)]|[Tanneries d' Annonay, 07 (France); Dutel, Ch. [Societe ATC (France); Perre, Ch. [CEA Centre de Pierrelatte (DCC/DTE/SLC), 26 (France)

    2000-07-01

    An ancestral gesture steadily improved through the centuries, the transformation of skins into leather includes several stages of which the principal one is tanning. Today, 90 % of the world's leather products are tanned with chromium. However, this stage is an environmental liability, and reducing the volume and chromium content of the waste has become a major issue. A first study on skin degreasing by dense CO{sub 2} helped sharply reduce the volume of the fatty effluents. To replace water by dense CO{sub 2} as the tanning medium was the logical next step. The present study was carried out in cooperation with three tanneries in the Rhone-Alpes-Auvergne area of France and a manufacturer of tanning materials. The difficulty of the study was the chemically opposed character of the two media involved. CO{sub 2} is a non-polar and lipophilic solvent while inorganic chromium is insoluble. The water present in the treated skin is a polar and ionic reaction medium and one of the reagents in tanning chemistry. The mixture of these two partially miscible compounds gives a pH 3 by carbonic acid formation. Tanning is based on the reactivity of collagen, the main component of the skin, with hydroxylated complexes of chromium. Collagen is a protein containing some chemical functions, amines (R-NH{sub 2}) and carboxylic (R-COOH) for example. These functions impart an amphoteric character to the compound. The WERNER theory of complex salts explains the formation of hydroxylated complexes of chromium and their fixing on the carboxylic functions of collagen by oxolation. pH is the key parameter in tanning. The success of the process demands chromium impregnation without fixing it at a pH lower than 5, and then to fix it by increasing the pH. This opened two alternatives for transferring chromium in the skin: solubilize chromium in CO{sub 2} via soluble organometallic complexes; or put the chromium salt into suspension without solubilizing it. The best results were obtained

  19. Orientation-dependent Kondo resonance of the Ni{sub 2}(hfaa){sub 4}(bpm) and Mn{sub 2}(hfaa){sub 4}(bpm) single molecular magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Schackert, Michael; Miyamachi, Toshio; Yamada, Toyokazu; Wulfhekel, Wulf [Physikalisches Institut, Karlsruhe Institut of Technology (Germany); Schramm, Frank; Ruben, Mario [Institut of Nanotechnology, Karlsruhe Institut of Technology (Germany)

    2011-07-01

    Single molecular magnets (SMM) attract much interest due to their potential applications in spintronics. We investigated metal organic molecules based on (hfaa){sub 4}(bpm) containing two 3d ions (Ni or Mn) using low temperature scanning tunneling microscopy (STM) at 1 K in ultra-high vacuum. In the bulk, the two metallic ions couple antiferromagnetically leading to an S=0 ground state. The Ni{sub 2} and Mn{sub 2} molecules were sublimed onto atomically clean Cu(100) surfaces resulting in two different absorptions configurations. Scanning tunneling spectroscopy (STS) with a high energy resolution of 0.3 meV showed a strong Kondo resonance on the position of the metal ions inside the molecules indicating that the hybridization of the local spins with the substrate is more efficient than their antiferromagnetic coupling. The Fano resonance showed a pronounced dependence on the adsorption geometry indicating different Kondo temperatures and q-parameters. This is explained by a adsorption dependent hybridization between SMM and the substrate.

  20. Unconventional emergence of elastic softening induced by magnetic fields in the unusual heavy-fermion compound PrFe sub 4 P sub 1 sub 2

    CERN Document Server

    Nakanishi, Y; Yamaguchi, T; Hazama, H; Nemoto, Y; Goto, T; Matsuda, T D; Sugawara, H; Sato, H

    2002-01-01

    Ultrasonic measurement on the filled skutterudite compound PrFe sub 4 P sub 1 sub 2 exhibits a mysterious temperature dependence of the elastic constant (C sub 1 sub 1 - C sub 1 sub 2)/2. Pronounced elastic softening at low temperatures is revived by applying a magnetic field. This fact strongly suggests the 4f-multiplet ground state of the Pr ion split by the crystalline electric field (CEF) to be a GAMMA sub 3 non-Kramers doublet. The expectation value of a quadrupole moment with GAMMA sub 3 symmetry in the CEF ground state, which leads to elastic softening at low temperature, was evaluated by theoretical fitting to the present results. This may imply that suppression of the electric quadrupole Kondo effect occurs in PrFe sub 4 P sub 1 sub 2 and the quadrupole moment becomes steady due to the application of a magnetic field. (letter to the editor)

  1. About the nature of competing interactions in cerium based 1-9-4 compounds; Ueber die Natur konkurrierender Wechselwirkungen in Cer-basierten 1-9-4 Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Christian

    2014-02-04

    In addition to the high-temperature superconductors, the so-called heavy fermion systems are among the most fascinating representatives of strongly correlated electron systems. Caused by the competition of Kondo effect, RKKY interaction and electrostatic crystal field effects these compounds reveal a wide variety of different ground state properties. For example, many of these systems are located in the vicinity of a magnetic instability. At such a quantum critical point a continuous transition between two states with different symmetry occurs at absolute zero temperature. Apart from the three classic tuning parameters (i) chemical substitution, (ii) hydrostatic pressure, and (iii) external magnetic field also the reduction of the effective spin degeneracy N, i.e. the reduction of the number of crystal field levels which are shielded by the Kondo effect seems to induce quantum critical behavior. The proximity to a quantum critical point together with an unusually high effective spin degeneracy of N=4 make the ternary 1-9-4 compound CeNi{sub 9}Ge{sub 4} the perfect starting system for experimental studies of this new parameter. For the first and so far only time such a scenario could be observed in the substitution series CeNi{sub 9-x}Cu{sub x}Ge{sub 4} (0≤x≤1). Extensive studies show that in this system quantum criticality is not only caused by the balance between Kondo effect and RKKY interaction but also by a reduction of the effective spin degeneracy. The results on the copper series provided the incentive to synthesize and analyze related systems with regard to quantum criticality in the scope of this work. The focus here was on the systems CeNi{sub 9}Ge{sub 4-x}Si{sub x}, CeNi{sub 9}Ge{sub 4-x}Ga{sub x}, CeNi{sub 9-x}Fe{sub x}Ge{sub 4} and CeNi{sub 9-x}Co{sub x}Ge{sub 4}. This thesis was methodologically supported by X-ray studies, theoretical LDA+U calculations and extensive thermodynamic and magnetic investigations on the macroscopic and microscopic

  2. Ultra High Intensity laser produced fast electron transport in under-dense and over-dense matter

    International Nuclear Information System (INIS)

    Manclossi, Mauro

    2006-01-01

    This thesis is related to inertial fusion research, and particularly concerns the approach to fast ignition, which is based on the use of ultra-intense laser pulses to ignite the thermonuclear fuel. Until now, the feasibility of this scheme has not been proven and depends on many fundamental aspects of the underlying physics, which are not yet fully understood and which are also very far from controls. The main purpose of this thesis is the experimental study of transport processes in the material over-dense (solid) and under-dense (gas jet) of a beam of fast electrons produced by pulse laser at a intensity of some 10 19 Wcm -2 . (author)

  3. 31st August 2011 - Government of Japan R. Chubachi, Executive Member of the Council for Science and Technology Policy, Cabinet Office, Vice Chairman, Representative Corporate Executive Officer and Member of the Board, Sony Corporation, visiting the ATLAS experimental area with Former Collaboration Spokesperson P. Jenni and Senior physicist T. Kondo.

    CERN Multimedia

    Raphaël Piguet

    2011-01-01

    31st August 2011 - Government of Japan R. Chubachi, Executive Member of the Council for Science and Technology Policy, Cabinet Office, Vice Chairman, Representative Corporate Executive Officer and Member of the Board, Sony Corporation, visiting the ATLAS experimental area with Former Collaboration Spokesperson P. Jenni and Senior physicist T. Kondo.

  4. 2nd September 2010 - Japanese Senior Vice-Minister of the Environment I. Tajima signing the guest book with Director-General R. Heuer and visiting the ATLAS control room with physicists T. Kondo and H. Fukuda, Members of the ATLAS Collaboration and KEK.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    2nd September 2010 - Japanese Senior Vice-Minister of the Environment I. Tajima signing the guest book with Director-General R. Heuer and visiting the ATLAS control room with physicists T. Kondo and H. Fukuda, Members of the ATLAS Collaboration and KEK.

  5. 30 August 2013 - Senior Vice Minister for Foreign Affairs in Japan M. Matsuyama signing the guest book with CERN Director-General; visit the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton and visiting the LHC tunnel at Point 1 with former ATLAS Japan national contact physicist T. Kondo. R. Voss and K. Yoshida present throughout.

    CERN Multimedia

    Jean-Claude Gadmer

    2013-01-01

    30 August 2013 - Senior Vice Minister for Foreign Affairs in Japan M. Matsuyama signing the guest book with CERN Director-General; visit the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton and visiting the LHC tunnel at Point 1 with former ATLAS Japan national contact physicist T. Kondo. R. Voss and K. Yoshida present throughout.

  6. 19 September 2011 - Japan Science and Technology Agency President K. Kitazawa visiting the LHC superconducting magnet test hall with engineer M. Bajko; the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni and Senior Scientist T. Kondo; signing the guest book with Adviser R.Voss and Head of International Relations F. Pauss.

    CERN Multimedia

    2011-01-01

    19 September 2011 - Japan Science and Technology Agency President K. Kitazawa visiting the LHC superconducting magnet test hall with engineer M. Bajko; the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni and Senior Scientist T. Kondo; signing the guest book with Adviser R.Voss and Head of International Relations F. Pauss.

  7. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    Science.gov (United States)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  8. Dense ceramic membranes: A review of the state of the art

    Directory of Open Access Journals (Sweden)

    Kozhukharov, V.

    1999-02-01

    Full Text Available During the past several years the concepts of oxygen permeation through mixed valency ceramic membranes possess special interest. In this context, a classification and brief review of the major membrane ceramic materials will be presented. The focus will be on dense ceramic membranes as elements for advanced application. A discussion will be proposed for mixed conductor ceramics as perovskite ABO3 compounds. Dense membranes on perovskite base are the object of the present review and some details about processing and characterization of double (A- and B-site substituted La1-x Sr(BaxCo0.8Fe0.2O3-d perovskites will be presented.

    El concepto de permeación de oxígeno a través de membranas cerámicas de valencia mixta, ha venido adquiriendo especial relevancia a lo largo de los últimos años. En este contexto se hace se efectúa una clasificación y breve revisión de los materiales cerámicos más relevantes utilizados como membranas. En particular se orienta la descripción hacia las membranas cerámicas densas para aplicaciones avanzadas. Se propone un análisis de los conductores cerámicos mixtos, como los compuestos de tipo perovskita ABO3. Se realiza una revisión de los materiales de este tipo existentes, así como se describen algunos aspectos sobre el procesamiento y caracterización de las perovskitas tipo La1-x Sr(BaxCo0.8Fe0.2O3-d doblemente sustituidas (lugares A- y B-.

  9. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas

    International Nuclear Information System (INIS)

    Ichimaru, S.; Tajima, T.

    1991-10-01

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas

  10. Dynamics of photoexcited quasiparticles in heavy electron compounds

    International Nuclear Information System (INIS)

    Demsar, Jure; Sarrao, John L; Taylor, Antoinette J

    2006-01-01

    Femtosecond real-time spectroscopy is an emerging new tool for studying low energy electronic structure in correlated electron systems. Motivated by recent advances in understanding the nature of relaxation phenomena in various correlated electron systems (superconductors, density wave systems) the technique has been applied to heavy electron compounds in comparison with their non-magnetic counterparts. While the dynamics in their non-magnetic analogues are similar to the dynamics observed in noble metals (only weak temperature dependences are observed) and can be treated with a simple two-temperature model, the photoexcited carrier dynamics in heavy electron systems show dramatic changes as a function of temperature and excitation level. In particular, below some characteristic temperature the relaxation rate starts to decrease, dropping by more than two orders of magnitude upon cooling down to liquid He temperatures. This behaviour has been consistently observed in various heavy fermion metals as well as Kondo insulators, and is believed to be quite general. In order to account for the experimental observations, two theoretical models have been proposed. The first treats the heavy electron systems as simple metals with very flat electron dispersion near the Fermi level. An electron-phonon thermalization scenario can account for the observed slowing down of the relaxation provided that there exists a mechanism for suppression of electron-phonon scattering when both the initial and final electronic states lie in the region of flat dispersion. An alternative scenario argues that the relaxation dynamics in heavy electron systems are governed by the Rothwarf-Taylor bottleneck, where the dynamics are governed by the presence of a narrow gap in the density of states near the Fermi level. The so-called hybridization gap results from hybridization between localized moments and the conduction electron background. Remarkable agreement with the model suggests that carrier

  11. Bayesian quantification of thermodynamic uncertainties in dense gas flows

    International Nuclear Information System (INIS)

    Merle, X.; Cinnella, P.

    2015-01-01

    A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the thermodynamic behavior of the so-called dense gas flows, – i.e. flows of gases characterized by high molecular weights and complex molecules, working in thermodynamic conditions close to the liquid–vapor saturation curve – are calibrated by means of Bayesian inference from reference aerodynamic data for a dense gas flow over a wing section. Flow thermodynamic conditions are such that the gas thermodynamic behavior strongly deviates from that of a perfect gas. In the aim of assessing the proposed methodology, synthetic calibration data – specifically, wall pressure data – are generated by running the numerical solver with a more complex and accurate thermodynamic model. The statistical model used to build the likelihood function includes a model-form inadequacy term, accounting for the gap between the model output associated to the best-fit parameters and the true phenomenon. Results show that, for all of the relatively simple models under investigation, calibrations lead to informative posterior probability density distributions of the input parameters and improve the predictive distribution significantly. Nevertheless, calibrated parameters strongly differ from their expected physical values. The relationship between this behavior and model-form inadequacy is discussed. - Highlights: • Development of a Bayesian inference procedure for calibrating dense-gas flow solvers. • Complex thermodynamic models calibrated by using aerodynamic data for the flow. • Preliminary Sobol analysis used to reduce parameter space. • Piecewise polynomial surrogate model constructed to reduce computational cost. • Calibration results show the crucial role played by model-form inadequacies

  12. Monocular oral reading after treatment of dense congenital unilateral cataract

    Science.gov (United States)

    Birch, Eileen E.; Cheng, Christina; Christina, V; Stager, David R.

    2010-01-01

    Background Good long-term visual acuity outcomes for children with dense congenital unilateral cataracts have been reported following early surgery and good compliance with postoperative amblyopia therapy. However, treated eyes rarely achieve normal visual acuity and there has been no formal evaluation of the utility of the treated eye for reading. Methods Eighteen children previously treated for dense congenital unilateral cataract were tested monocularly with the Gray Oral Reading Test, 4th edition (GORT-4) at 7 to 13 years of age using two passages for each eye, one at grade level and one at +1 above grade level. In addition, right eyes of 55 normal children age 7 to 13 served as a control group. The GORT-4 assesses reading rate, accuracy, fluency, and comprehension. Results Visual acuity of treated eyes ranged from 0.1 to 2.0 logMAR and of fellow eyes from −0.1 to 0.2 logMAR. Treated eyes scored significantly lower than fellow and normal control eyes on all scales at grade level and at +1 above grade level. Monocular reading rate, accuracy, fluency, and comprehension were correlated with visual acuity of treated eyes (rs = −0.575 to −0.875, p < 0.005). Treated eyes with 0.1-0.3 logMAR visual acuity did not differ from fellow or normal control eyes in rate, accuracy, fluency, or comprehension when reading at grade level or at +1 above grade level. Fellow eyes did not differ from normal controls on any reading scale. Conclusions Excellent visual acuity outcomes following treatment of dense congenital unilateral cataracts are associated with normal reading ability of the treated eye in school-age children. PMID:20603057

  13. Parallel Access of Out-Of-Core Dense Extendible Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Otoo, Ekow J; Rotem, Doron

    2007-07-26

    Datasets used in scientific and engineering applications are often modeled as dense multi-dimensional arrays. For very large datasets, the corresponding array models are typically stored out-of-core as array files. The array elements are mapped onto linear consecutive locations that correspond to the linear ordering of the multi-dimensional indices. Two conventional mappings used are the row-major order and the column-major order of multi-dimensional arrays. Such conventional mappings of dense array files highly limit the performance of applications and the extendibility of the dataset. Firstly, an array file that is organized in say row-major order causes applications that subsequently access the data in column-major order, to have abysmal performance. Secondly, any subsequent expansion of the array file is limited to only one dimension. Expansions of such out-of-core conventional arrays along arbitrary dimensions, require storage reorganization that can be very expensive. Wepresent a solution for storing out-of-core dense extendible arrays that resolve the two limitations. The method uses a mapping function F*(), together with information maintained in axial vectors, to compute the linear address of an extendible array element when passed its k-dimensional index. We also give the inverse function, F-1*() for deriving the k-dimensional index when given the linear address. We show how the mapping function, in combination with MPI-IO and a parallel file system, allows for the growth of the extendible array without reorganization and no significant performance degradation of applications accessing elements in any desired order. We give methods for reading and writing sub-arrays into and out of parallel applications that run on a cluster of workstations. The axial-vectors are replicated and maintained in each node that accesses sub-array elements.

  14. Laterally cyclic loading of monopile in dense sand

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte; Hededal, Ole; Svensson, M.

    2011-01-01

    In order to investigate the response from laterally cyclic loading of monopiles a large centrifuge tests series is ongoing at the Technical University of Denmark (DTU). This paper will present some of the tests carried out with a focus on the influence of accumulation of rotation when changing...... the loading conditions. In these tests the load conditions are controlled by two load characteristics, one controlling the level of the cyclic loading and one controlling the characteristic of the cyclic loading. The centrifuge tests were performed in dense dry sand on a pile with prototype dimensions...

  15. Repetitively pulsed capacitor bank for the dense-plasma focus

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R.; Long, J.; Luce, J.; Sahlin, H.

    1975-12-01

    This report describes a 1 pulse per second capacitor bank designed to energize a dense-plasma focus (DPF). The DPF is a neutron source capable (with moderate scaling) of delivering a minimum of 10 15 neutrons per pulse or neutron flux of 2 x 10 13 N/cm 2 .s. The average power consumption, which has become a major issue due to the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. This small source size high flux neutron source could be extemely useful to qualify fission reactor material irradiation results for fusion reactor design

  16. Chemical potential calculations in dense liquids using metadynamics

    Science.gov (United States)

    Perego, C.; Giberti, F.; Parrinello, M.

    2016-10-01

    The calculation of chemical potential has traditionally been a challenge in atomistic simulations. One of the most used approaches is Widom's insertion method in which the chemical potential is calculated by periodically attempting to insert an extra particle in the system. In dense systems this method fails since the insertion probability is very low. In this paper we show that in a homogeneous fluid the insertion probability can be increased using metadynamics. We test our method on a supercooled high density binary Lennard-Jones fluid. We find that we can obtain efficiently converged results even when Widom's method fails.

  17. Coherent scattering of neutrinos by 'nuclear pasta' in dense matter

    International Nuclear Information System (INIS)

    Sonoda, Hidetaka

    2007-01-01

    We examine coherent scattering cross section of neutrino and nucleon systems via weak-neutral current at subnuclear densities, which will be important in supernova cores. Below melting density and temparature of nuclei, nuclear shape becomes rodlike and slablike; this is called nuclear 'pasta'. Transition of structure will greatly influence coherent effects which can not easily be predicted. We calculate static structure factor of nuclear matter using data of several nuclear models, and discuss the effects of existence of nuclear pasta on neutrino opacity in hot dense matter

  18. Performance analysis of simultaneous dense coding protocol under decoherence

    Science.gov (United States)

    Huang, Zhiming; Zhang, Cai; Situ, Haozhen

    2017-09-01

    The simultaneous dense coding (SDC) protocol is useful in designing quantum protocols. We analyze the performance of the SDC protocol under the influence of noisy quantum channels. Six kinds of paradigmatic Markovian noise along with one kind of non-Markovian noise are considered. The joint success probability of both receivers and the success probabilities of one receiver are calculated for three different locking operators. Some interesting properties have been found, such as invariance and symmetry. Among the three locking operators we consider, the SWAP gate is most resistant to noise and results in the same success probabilities for both receivers.

  19. On the spatial distributions of dense cores in Orion B

    Science.gov (United States)

    Parker, Richard J.

    2018-05-01

    We quantify the spatial distributions of dense cores in three spatially distinct areas of the Orion B star-forming region. For L1622, NGC 2068/NGC 2071, and NGC 2023/NGC 2024, we measure the amount of spatial substructure using the Q-parameter and find all three regions to be spatially substructured (Q Orion B, the mass segregation cannot be dynamical. Our results are also inconsistent with simulations in which the most massive stars form via competitive accretion, and instead hint that magnetic fields may be important in influencing the primordial spatial distributions of gas and stars in star-forming regions.

  20. Spherically symmetric relativistic model for spiral galaxies and dense stars

    International Nuclear Information System (INIS)

    Hojman, R.; Rodrigues, L.M.C.; Sasse, F.D.

    1990-01-01

    The behaviour of the pressure and the density as well as the gravitational field of a dense star are studied in some detail. For such a purpose and to take into account relativistic effects, we find a family of exact solutions of the Tolman-Oppenheimer-Volkov equation, which contains as a particular case solutions corresponding to a γ-law equation of state. The mentioned family can also be used to model the (luminous or dark) matter content of spiral galaxies, as it fits the observed data for their orbital velocities profiles. (author)