WorldWideScience

Sample records for dense inorganic membrane

  1. Dense inorganic membranes - studies on transport properties, defect chemistry and catalytic behaviour

    NARCIS (Netherlands)

    Elshof, ten Johan Evert

    1997-01-01

    Oxygen separation with dense oxide membranes may be an attractive method for the production of oxygen from air. Another possible application is the direct supply of oxygen in membrane reactors for the (partial) oxidation of hydrocarbons. The driving force for oxygen permeation through dense mixed io

  2. Microporous Inorganic Membranes as Proton Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, F.M. Tejedor-Tejedor, M.I. Anderson, Marc A

    2002-08-28

    Porous oxide electrolyte membranes provide an alternative approach to fabricating proton exchange membrane fuel cells based on inorganic materials. This study focused on elucidating the properties of these inorganic membranes that make them good electrolyte materials in membrane electrode assemblies; in particular, we investigated several properties that affect the nature of proton conductivity in these membranes. This report discusses our findings on the effect of variables such as site density, amount of surface protonation and surface modification on the proton conductivity of membranes with a fixed pore structure under selected conditions. Proton conductivities of these inorganic membranes are similar to conductivities of nafion, the polymeric membrane most commonly used in low temperature fuel cells.

  3. Hierarchy in inorganic membranes.

    Science.gov (United States)

    Caro, Juergen

    2016-06-13

    Thin films of a few μm thickness for particle filtration and gas separation cannot be applied as self-supporting layers since they are mechanically insufficiently strong. Therefore, these top layers for particle filtration and gas separation are usually deposited on porous mechanically strong supports with a hierarchical pore structure. To reduce the pressure drop of a gas stream over the membrane and to ensure high fluxes in filtration and gas separation, the cross section of the support is usually asymmetric or graded with a small thickness of the layer with the smallest pore size called the top layer. Since the pressure drop over a capillary with radius r is ∼r(4), the layer with the smallest pore size should be as thin as possible. The disk-like planar supports are usually prepared by sequential tape casting which is an expensive technology. Tubular supports with a hierarchical cross section can be prepared in one step by hollow fiber spinning, double mantle spinning or centrifugal casting.

  4. NOVEL INORGANIC MEMBRANES FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Y.S. Lin

    2003-02-01

    We studied feasibility of two types of dense inorganic membranes which are fundamentally different from those porous inorganic membranes reported in the literature for separation of carbon dioxide from gas streams at high temperatures. The first is a symmetric, dense membrane made of Li{sub 2}ZrO{sub 3} and the second is a dual-phase metal-carbonate membrane. We have identified a unique CO{sub 2} sorption/desorption mechanism on lithium zirconate. Considering the all obtained data, we proposed a double layer model to describe the CO{sub 2} sorption/desorption behavior of lithium zirconate. In the model, final product after CO{sub 2} sorption is a particle which consists of a ZrO{sub 2} core inside and a Li{sub 2}CO{sub 3} shell. The understanding of CO{sub 2} sorption mechanisms suggests a means to improve CO{sub 2} sorption rate on this group of oxides. It also leads to the conclusion that lithium zirconate is not a suitable material for the proposed dense ceramic membrane for CO{sub 2} separation. Following the second concept of dense membrane for CO{sub 2} separation, we succeeded in preparing the hermetic (gas-tight) dense inorganic membrane consisting of a porous metal phase and a molten carbonate phase. The metal phase not only provides the mechanical support but also is electronically conducting, reducing the overall mass transfer resistance for CO{sub 2} permeation through the membrane. Permeation data showed that nitrogen or helium is not permeable through these membranes (only CO{sub 2}, with O{sub 2}, can permeate through the membrane based on the transport mechanism). This dual-phase membrane may offer promising properties for applications in membrane processes for separation of CO{sub 2} from flue (or coal gasification gas) at high temperatures (350-550 C).

  5. Dense ceramic membranes for methane conversion

    NARCIS (Netherlands)

    Bouwmeester, Henny J.M.

    2003-01-01

    Dense ceramic membranes made from mixed oxygen-ionic and electronic conducting perovskite-related oxides allow separation of oxygen from an air supply at elevated temperatures (>700 °C). By combining air separation and catalytic partial oxidation of methane to syngas into a ceramic membrane reactor,

  6. Research on vacuum membrane distillation technique disposing of high concentration inorganic salt reverse osmosis dense dewatering%减压膜蒸馏技术处理无机高盐 RO 浓排水研究

    Institute of Scientific and Technical Information of China (English)

    郭建中; 路全忠; 杨才伟

    2012-01-01

      针对无机高盐 RO 浓排水具有含盐量高难处理的特点,本文研究了减压膜蒸馏技术处理无机高盐RO 浓排水试验阶段中不同料液温度、真空度、流速对膜通量的影响.结果表明:料液温度、真空度、流速与膜通量存在相关性.随着料液温度和真空度的提高,膜通量会相应增加;随着料液流速的增加膜通量也有增加,但流速小于0.2 m/s 时对膜通量的影响明显,当流速大于0.2m/s 时对膜通量影响小%  Aimed at the characteristic of high salinity and difficult dispose of high concentration inorganic salt reverse osmosis dewatering, this paper studies the vacuum membrane distillation technique dispose of high concentration inorganic salt reverse osmosis dewatering, and analyse the influence of different vacuum, material fluid temperature, flow velocity to membrane flux. The result shows that there is a correlation between membrane flux and vacuum, material fluid temperature and flow velocity. With increasing of vacuum and material fluid temperature, membrane flux increased accordingly; and when the velocity increased and membrane flux increased at the same time. With the velocity was less than 0.2 m/s, the influence to membrane flux came to be obvious, when the velocity was above 0.2 m/s, the influence to membrane flux went light.

  7. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Timothy L. Ward

    2000-06-30

    . This successfully reduced cracking, however the films retained open porosity. The investigation of this concept will be continued in the final year of the project. Investigation of a metal organic chemical vapor deposition (MOCVD) method for defect mending in dense membranes was also initiated. An appropriate metal organic precursor (iron tetramethylheptanedionate) was identified whose deposition can be controlled by access to oxygen at temperatures in the 280-300 C range. Initial experiments have deposited iron oxide, but only on the membrane surface; thus refinement of this method will continue.

  8. Electrostatically gated membrane permeability in inorganic protocells

    Science.gov (United States)

    Li, Mei; Harbron, Rachel L.; Weaver, Jonathan V. M.; Binks, Bernard P.; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization.

  9. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Timothy L. Ward

    2002-07-01

    Mixed-conducting ceramics have the ability to conduct oxygen with perfect selectivity at elevated temperatures, making them extremely attractive as membrane materials for oxygen separation and membrane reactor applications. While the conductivity of these materials can be quite high at elevated temperatures (typically 800-1000 C), much higher oxygen fluxes, or, alternatively, equivalent fluxes at lower temperatures, could be provided by supported thin or thick film membrane layers. Based on that motivation, the objective of this project was to explore the use of ultrafine aerosol-derived powder of a mixed-conducting ceramic material for fabrication of supported thick-film dense membranes. The project focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} (SCFO) because of the desirable permeability and stability of that material, as reported in the literature. Appropriate conditions to produce the submicron SrCo{sub 0.5}FeO{sub x} powder using aerosol pyrolysis were determined. Porous supports of the same composition were produced by partial sintering of a commercially obtained powder that possessed significantly larger particle size than the aerosol-derived powder. The effects of sintering conditions (temperature, atmosphere) on the porosity and microstructure of the porous discs were studied, and a standard support fabrication procedure was adopted. Subsequently, a variety of paste and slurry formulations were explored utilizing the aerosol-derived SCFO powder. These formulations were applied to the porous SCFO support by a doctor blade or spin coating procedure. Sintering of the supported membrane layer was then conducted, and additional layers were deposited and sintered in some cases. The primary characterization methods were X-ray diffraction and scanning electron microscopy, and room-temperature nitrogen permeation was used to assess defect status of the membranes.We found that non-aqueous paste/slurry formulations incorporating

  10. Carbon dioxide removal with inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  11. Casting fine grained, fully dense, strong inorganic materials

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  12. Inorganic membrane reactor technology CRADA {number_sign}1176; Final report and assessment of membrane technology

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, R.W.; Collins, J.P.; Ng, M.F. [and others

    1997-04-01

    This project focused on the fabrication and evaluation of supported inorganic membranes for hydrogen and oxygen separation in petrochemical processes. A variety of fabrication techniques, including CVD (Chemical Vapor Deposition), electroless plating, solution deposition and conventional ceramic processing methods were used for membrane fabrication. For the oxygen separation membrane materials studied, the high surface roughness of the commercially available (and chemically compatible) MgO supports for high flux oxygen materials (SrCo{sub 0.5}FeO{sub x} and SrCo{sub 0.8}Fe{sub 0.2}O{sub x}) hindered the development of supported membranes of these materials. More encouraging results were obtained for the supported hydrogen separation membranes. Both dense palladium (prepared by CVD and electroless plating) and ultramicroporous silica (prepared by solution deposition) membranes were fabricated onto porous alumina supports. Gas separation characteristics and reactor performance of the membranes were both studied. Of the two classes of membranes, when incorporated into a membrane reactor the silica membranes demonstrated the best performance. Propane and isobutane dehydrogenation processes were studied and the silica membrane reactors displayed modest improvements in performance compared to the conventional reactors. In propane dehydrogenation, an increase in propylene yield of 34% was obtained with the membrane reactor (compared to the conventional reactor); in isobutane dehydrogenation, an increase in isobutylene yield of 40% at 525 C was obtained. However, these performance gains decreased somewhat with time on stream, due to membrane instability. Further improvements in membrane stability and permselectivity, as well as catalyst stability are needed before membrane reactors can be considered as a realistic alternative to the existing conventional technology.

  13. High temperature inorganic membranes for separating hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1995-08-01

    Effort has continued to accumulate data on the transport of gases over the temperature range from room temperature to 275{degrees}C with inorganic membranes having a range of pore radii from approximately 0.25 nm to 3 mn. An experimental alumina membrane having an estimated mean pore radius of 0.25 nm has been fabricated and tested. Extensive testing of this membrane indicated that the separation factor for helium and carbon tetrafluoride at 250{degrees}C was 59 and the extrapolated high temperature separation factor was 1,193. For safety reasons, earlier flow measurements concentrated on helium, carbon dioxide, and carbon tetrafluoride. New data have been acquired with hydrogen to verify the agreement with the other gases. During the measurements with hydrogen, it was noted that a considerable amount of moisture was present in the test gas. The source of this moisture and its effect on permeance was examined. Improvements were implemented to the flow test system to minimize the water content of the hydrogen test gas, and subsequent flow measurements have shown excellent results with hydrogen. The extrapolation of separation factors as a function of temperature continues to show promise as a means of using the hard sphere model to determine the pore size of membranes. The temperature dependence of helium transport through membranes appears to be considerably greater than other gases for the smallest pore sizes. The effort to extend temperature dependence to the hard sphere model continues to be delayed, primarily because of a lack of adequate adsorption data.

  14. Dense, layered membranes for hydrogen separation

    Science.gov (United States)

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  15. Relaxation phenomena in dense gas separation membranes

    NARCIS (Netherlands)

    Wessling, Matthias

    1993-01-01

    Solution-diffusion membranes are widely used for the separation of gaseous and liquid mixtures. The separation of air (O2/N2), landfill gas (CH4/CO2) and purge gas streams (NH3/H2) in the ammonia synthesis are examples for state-of-the-art membrane gas separation processes. For the separation of liq

  16. Relaxation phenomena in dense gas separation membranes

    NARCIS (Netherlands)

    Wessling, Matthias

    1993-01-01

    Solution-diffusion membranes are widely used for the separation of gaseous and liquid mixtures. The separation of air (O2/N2), landfill gas (CH4/CO2) and purge gas streams (NH3/H2) in the ammonia synthesis are examples for state-of-the-art membrane gas separation processes. For the separation of

  17. Easy Fabrication of Dense Ceramic Membrane for Oxygen Separation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A combined EDTA-citrate complexing method was developed for the easy preparation of mixed oxygen-ionic and electronic conducting dense ceramic membrane for oxygen separation.The new method takes the advantage of lower calcination temperature for phase formation, lower membrane sintering temperature and higher relative density over the standard ceramic method.

  18. Research and development of hydrogen separation technology with inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.

    1999-07-01

    Inorganic membrane technology has long been expected to provide new economical methods for industrial and waste management processes. At this time, the only commercially valuable inorganic membranes are the ultra filters derived from the French process that was used to produce the barrier for the French Gaseous Diffusion Plants. But these membranes are very expensive and have limited areas of application. Over the past fifteen years, scientists now in the Inorganic Membrane Technology Laboratory (IMTL) in Oak Ridge, Tennessee have developed theories and processes for inorganic membranes that can be used to design and produce inorganic membranes for a very broad range of applications. A part of the fabrication process is an adaptive spinoff from the still classified process used to manufacture barriers for the U.S. Gaseous Diffusion Process. Although that part of the process is classified, it is a very flexible and adaptable process and it can be used with a broad range of materials. With the theories and design capabilities developed in the last fifteen years, this new adaptive manufacturing technology can be used to manufacture commercial inorganic membranes that are not useful for the separation of uranium isotopes and they have little or no relation to the barriers that were used to separate uranium isotopes. The development and deployment of such inorganic membranes can be very beneficial to U.S. industry. Inorganic membranes can be specifically designed and manufactured for a large number of different applications. Such membranes can greatly improve the efficiency of a broad range of industrial processes and provide new technology for waste management. These inorganic membranes have the potential for major energy savings and conservation of energy. They can provide the means for significant improvements in the competitiveness of US Industry and improve the economy and health and welfare of the nation.

  19. Ionic Transfer in Hybrid Inorganic/Organic Membranes

    Institute of Scientific and Technical Information of China (English)

    A.B.Yaroslavtsev; I.A.Stenina; A.S.Shalimov

    2007-01-01

    1 Results In last years increasing interest has been devoted to the development and research of transport properties of hybrid organic/inorganic membranes. Traditionally, these membranes are used as electrolyte in fuel cells. However a number of their properties allow considering them as perspective materials for water treatment and substance purification. In this work transport properties of some ion exchange membranes modified by inorganic nanoparticles (hydrated oxides or solid acids) are discussed. ...

  20. Gas Permeation Properties of Organic-inorganic Ultrathin Membranes

    Institute of Scientific and Technical Information of China (English)

    H. Kawakami

    2005-01-01

    @@ 1Introduction Recently, a great interest has been noted in the synthesis of inorganic membranes for gas separation. One of the candidates is a carbon molecular sieve (CMS) membrane, which is synthesized by the pyrolysis of a polymer. However, CMS membranes are very brittle and fragile. Additionally, it requires more careful handling and it is very difficult to prepare a thin CMS membrane because of its poor mechanical property. Therefore, the gas permeances of CMS membranes were not very high.

  1. Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications.

    Science.gov (United States)

    Dong, Xueliang; Jin, Wanqin; Xu, Nanping; Li, Kang

    2011-10-21

    Catalytic membrane reactors which carry out separation and reaction in a single unit are expected to be a promising approach to achieve green and sustainable chemistry with less energy consumption and lower pollution. This article presents a review of the recent progress of dense ceramic catalytic membranes and membrane reactors, and their potential applications in energy and environmental areas. A basic knowledge of catalytic membranes and membrane reactors is first introduced briefly, followed by a short discussion on the membrane materials including their structures, composition and strategies for material development. The configuration of catalytic membranes, the design of membrane reaction processes and the high temperature sealing are also discussed. The performance of catalytic membrane reactors for energy and environmental applications are summarized and typical catalytic membrane reaction processes are presented and discussed. Finally, current challenges and difficulties related to the industrialization of dense ceramic membrane reactors are addressed and possible future research is also outlined.

  2. Myoglobin entrapment in poly(vinyl alcohol dense membranes

    Directory of Open Access Journals (Sweden)

    K. C. S. Figueiredo

    2014-09-01

    Full Text Available Our goal in this study was the immobilization of myoglobin in poly(vinyl alcohol dense membranes. Glutaraldehyde was investigated both as the crosslinking agent, aiming to increase the membrane stability in aqueous medium, and as the vehicle to bind myoglobin and PVA. Reaction and membrane synthesis were carried simultaneously in mild operating conditions in order to maintain the native protein folding. Membrane characterization comprised the water swelling degree, DSC, TGA, UV-visible spectroscopy, FTIR analysis and oxygen transport in a dialysis cell. The incorporation of myoglobin in the film decreased the water swelling degree and improved the membrane thermal properties compared to unmodified PVA membrane. The reduction of ferric iron in the prosthetic group of the protein to the ferrous form was observed. The increased affinity between oxygen and the immobilized myoglobin did not favor the release of this solute from the biocarrier.

  3. Gas Permeation Characteristics across Nano-Porous Inorganic Membranes

    Directory of Open Access Journals (Sweden)

    M.R Othman, H. Mukhtar

    2012-10-01

    Full Text Available An overview of parameters affecting gas permeation in inorganic membranes is presented. These factors include membrane physical characteristics, operational parameters and gas molecular characteristics. The membrane physical characteristics include membrane materials and surface area, porosity, pore size and pore size distribution and membrane morphology. The operational parameters include feed flow rate and concentration, stage cut, temperature and pressure. The gas molecular characteristics include gas molecular weight, diameter, critical temperature, critical pressure, Lennard-Jones parameters and diffusion volumes. The current techniques of material characterization may require complementary method in describing microscopic heterogeneity of the porous ceramic media. The method to be incorporated in the future will be to apply a stochastic model and/or fractal dimension. Keywords: Inorganic membrane, surface adsorption, Knudsen diffusion, Micro-porous membrane, permeation, gas separation.

  4. New inorganic membranes for pervaporation. Preparation and first results

    Energy Technology Data Exchange (ETDEWEB)

    Van Veen, H.M.; Vente, J.F.; Wolfs, D.P.; Kreiter, R.; Pex, P.P.A.C. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2006-08-15

    The expected high chemical and thermal stability of inorganic membranes compared to polymer membranes has resulted in a growing research activity with the aim of replacing polymer membranes with inorganic ones. The superior separation performance, i.e. selectivity and flux, of silica-based membranes in the dehydration of alcohols and solvents at elevated temperatures has raised the interest even further. High flux performance is required especially to overcome the higher unit cost price of the inorganic membranes. It is proven that the required water flux of at least 3 kg/m{sup 2}.h, for the dehydration of 5wt.% water in butanol as a representative standard application, can be achieved easily. The profitable application of inorganic membranes depends also on a reliable, stable long-term behaviour. Unfortunately, information on this topic is still very limited. Dehydration experiments at temperatures below 100C indicate a fast decrease of the water flux through silica membranes during the first few days of operation. The origin of this decline has not been determined yet, but we believe that sorption processes on the membrane surface play an important role. In an attempt to overcome this fast decline, we have prepared methylated silica (Me-SiO2) membranes. By incorporating methyl groups in the silica structure, the water flux decline during the first weeks is only in the order of 20% and is stable hereafter. Dehydration experiments performed up to 165C using these Me-SiO2 membranes showed membrane failure after 4 to 40 days due to reorganisation of the silica structure. In all cases we observe a strong increase in the organic flux, indicating that the pore size increases over time. As a consequence, we conclude that the application window of state-of-the-art Me-SiO2 membranes for use in dehydration processes is limited to 95C. Microporous titania, zirconia and organic/inorganic hybrid silica materials are expected to have a much higher hydrothermal stability than

  5. Inorganic porous hollow fiber membranes : with tunable small radial dimensions

    NARCIS (Netherlands)

    Luiten-Olieman, M.W.J.

    2012-01-01

    The objectives of this thesis are twofold. The first aim is to develop of robust coating procedures for thin supported films onto porous ceramic supports. The second aim is the development of a preparation methodology for high quality porous inorganic membranes, with large membrane surface area. A r

  6. Facile synthesis of zirconia doped hybrid organic inorganic silica membranes

    NARCIS (Netherlands)

    Hove, ten M.; Nijmeijer, A.; Winnubst, A.J.A.

    2015-01-01

    Hybrid organic inorganic silica membranes are interesting candidates for gas-separation applications due to their excellent hydrothermal stability. However, up to now these membranes lack the separation performance required to separate hydrogen from carbon dioxide. In this work a procedure for dopin

  7. Organic and inorganic osmolytes at lipid membrane interfaces

    DEFF Research Database (Denmark)

    Westh, P.; Peters, Günther H.j.

    2008-01-01

    This chapter discusses the interactions of organic osmolytes and membranous interfaces, and the effects of these interactions on the properties of the membrane. It also includes a treatment of inorganic ions at the membrane interface since osmolyte effects involve a balance between organic...... and inorganic components. Before turning to the physicochemical discussion of interfacial interactions, the chapter outlines some central parts of the biology and biotechnology of organic osmolytes. It reviews the central relationships in preferential interaction theory, which we use in subsequent paragraphs...

  8. Determination of some electrical parameters for composite inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Benavente, J.; Ramos-Barrado, J.R.; Cabeza, A. [Universidad de Malaga (Spain)

    1994-12-31

    Composite inorganic membranes were obtained by deposition of an inorganic precipitate layer (uranyl phosphonate: UO{sub 2}(O{sub 3}PC{sub 6}H{sub 5}) or UPP) on a commercial porous alumina membrane (Anopore{trademark}, 0.2 {mu}m pore size). Salt diffusion and membrane potential for the whole membrane were measured for NaCl and other electrolytes containing the precipitate generating ions, and for concentration ranging between 10{sup -4}M and 210{sup -2}M. Dielectric parameters (resistance and capacitance) were obtained from impedance spectroscopy measurements, and the equivalent circuits associated to the membrane/electrolyte systems were also determined. From the experimental results, other parameters such as cation transport numbers and ionic permeabilities were obtained. Concentration dependence of all these parameters was also considered. Measurements were carried out with the composite inorganic membrane and the alumina porous support. A comparison of the results found for both membranes gives information about the value of all these parameters in the layer formed by the inorganic UPP precipitate.

  9. Organic-inorganic membranes for filtration of corn distillery

    Directory of Open Access Journals (Sweden)

    Myronchuk Valeriy G.

    2016-01-01

    Full Text Available Organic-inorganic membranes were obtained by modification of polymer microfiltration membrane with inorganic ion-exchangers, which form secondary porosity inside macroporous substrate (zirconium hydrophosphate or simultaneously in the macroporous substrate and active layer, depending of the particle size (from ≈50 nm up to several microns. Precipitation of the inorganic constituent is considered from the point of view of Ostwald-Freundlich equation. Such processes as pressing test in deionized water and filtration of corn distillery at 1-6 bar were investigated. Theoretical model allowing to establish fouling mechanism, was applied. It was found that the particles both in the substrate and active layer prevent fouling of the membrane with organics and provide rejection of colloidal particles.

  10. PVDF-Based Micro Inorganic Fillers-Containing Polymer Electrolyte Membranes

    Institute of Scientific and Technical Information of China (English)

    BAI Ying; WU Feng; WU Chuan

    2006-01-01

    Polymer electrolyte membranes based on poly (vinylidene fluoride-co-hexafluoropropylene) (PVDFHFP) with and without different types of micro inorganic fillers were prepared by phase-inversion process.Morphologies, porosities and electrochemical properties of the as-prepared membranes were investigated by means of scanning electronic microscopy (SEM), PC (propylene carbonate) uptake and alternating current(AC) impedance technique. Compared with other membranes, the membrane with micro SiO2 filler shows a dense morphology so that its PC uptake is the highest, namely, 339%. The membrane filled with micro TiO2exhibits good electrochemical performances: the ion conductivity is as high as 1.1 × 10-3 S/cm at 18 ℃,which can meet the demand of lithium ion batteries. Moreover, its initial charge-discharge efficiency exceeds89 %. The composite membranes with micro SiO2, TiO2 and A12O3 are more suitable for the utilization in lithium ion batteries due to better cycleability, whereas the battery assembled with the blank membrane containing no inorganic fillers encounters a short circuit after the 5th cycle.

  11. Organic and inorganic osmolytes at lipid membrane interfaces

    DEFF Research Database (Denmark)

    Westh, P.; Peters, Günther H.j.

    2008-01-01

    on membrane–osmolyte interactions. The physical properties of lipid membranes are strongly affected by the presence of “foreign molecules”—that is, components other than water and lipids—at the interface. In many cases, the solute-induced perturbations are rather complex and cannot be rationalized......This chapter discusses the interactions of organic osmolytes and membranous interfaces, and the effects of these interactions on the properties of the membrane. It also includes a treatment of inorganic ions at the membrane interface since osmolyte effects involve a balance between organic...

  12. Development of taste sensing system using inorganic membrane

    Science.gov (United States)

    Kojima, Yohichiro; Hasegawa, Yuki

    2011-09-01

    We developed a novel taste sensor for liquid and verified its effectiveness using coffee. We fabricated an inorganic metal oxide membrane liquid sensor using the laser ablation method. The sensor shows a sufficient sensitivity for electrolyte solutions, while it shows a relatively low response for non-electrolyte solutions. We differentiated and identified five brands of commercially available coffee using the sensor.

  13. Functionalized inorganic membranes for gas separation

    Science.gov (United States)

    Ku, Anthony Yu-Chung; Ruud, James Anthony; Molaison, Jennifer Lynn; Schick, Louis Andrew ,; Ramaswamy, Vidya

    2008-07-08

    A porous membrane for separation of carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity. The porous membrane comprises a porous support layer comprising alumina, silica, zirconia or stabilized zirconia; a porous separation layer comprising alumina, silica, zirconia or stabilized zirconia, and a functional layer comprising a ceramic oxide contactable with the fluid stream to preferentially transport carbon dioxide. In particular, the functional layer may be MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3 or a mixture thereof; wherein A is Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; and A.sup.3 is Sr or Ba.

  14. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  15. Dense Persistent Pupillary Membrane in an Adult Patient

    Directory of Open Access Journals (Sweden)

    Yesim Altay

    2014-06-01

    Full Text Available Persistent pupillary membranes (PPM are congenital abnormalities which results from an incomplete involution of tunica vasculosa lentis and are rarely seen in adults. A thirty-year old man applied to the hospital with the complaint of uncommon-looking pupils and progressive blurring of vision in the left eye. On examination, uncorrected visual acuity (Snellen were 20/100 in the right eye and 20/640 in the left eye with amblyopia. On biomicroscopic examination, there were bilateral dense PPM and cataract in the left eye. Visual field analysis of right and left eyes showed great narrowing of visual fields. We present our case in order to emphasize that analysis of visual field of patients with PPM is as important as central vision when planning its treatment. For planning treatment of patients with PPM, visual impairment, size of pupillary opening, and visual field analysis should be considered.

  16. Formation of the organic-inorganic proton exchange membrane

    Directory of Open Access Journals (Sweden)

    A.O. Maizelis

    2016-09-01

    Full Text Available The use of electrolyzers for the low-temperature water electrolysis with the solid polymer membrane is perspective for production of hydrogen using renewable energy sources. However, the high cost of membrane materials obstructs the mass commissioning of such electrolyzers. Most of the researches devoted to the technologies of membranes formation, alternative to Nafion®, deal only with organic materials. Aim: The aim of this research is to develop the method for formation of the competitive proton exchange membrane based on polyvinyl alcohol (PVA and inorganic hydrates. Materials and Methods: The hydrated oxide of tin was added to the 2...10% PVA solution, mixed and applied to inert base layer by layer for formation of the membrane. Then the membrane was separated from the base. The reinforcing mesh was used to improve mechanical properties of the membrane. The hydrated tin oxide was prepared by reaction of tin chloride and ammonium hydroxide solutions. Results: The conditions of formation of proton-exchange membranes based on polyvinyl alcohol and hydrated oxide of tin were investigated. The series of membranes containing 30, 50, 70, 80 and 90% of hydrated tin oxide are obtained. It is shown that a solid membrane film with the thickness over 100 μm can be obtained if the content of PVA exceeds 30%. It is shown that it is necessary to crosslink the chains of PVA in the resulting film. The structure of the obtained proton exchange membrane consists of PVA chains crosslinked by aldehyde, between which the globules of hydrated tin oxide are situated. The membrane conductivity is provided by both proton mobility of hydroxyl group of PVA and H3O+/H2O and OH–/H2O groups that are formed due to the partial dissociation of hydrated oxide on the surface of the globules.

  17. Fouling of inorganic membrane and flux enhancement in membrane-coupled anaerobic bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S.H.; Kang, I.J.; Lee, C.H. [Seoul National Univ. (Korea, Republic of). Dept. of Chemical Technology

    1999-03-01

    The fouling mechanism of an inorganic membrane was studied during the operation of a membrane-coupled anaerobic bioreactor (MCAB) when alcohol distillery wastewater was used as a digester feed. It was observed that the fouling mechanism of an inorganic membrane was significantly different from that of conventional membrane filtration processes. The main foulant was identified to be an inorganic precipitate, struvite (MgNH{sub 4}PO{sub 4}{center_dot}6H{sub 2}O), rather than anaerobic microbial flocs. Struvite appears to be precipitated not only on the membrane surface but also inside the membrane pores. The amount of struvite generated during the bioreaction was estimated to be about 2 g/L alcohol distillery wastewater. The inorganic foulant was not easily removed by general physical cleaning such as depressurization, lumen flushing, and backflushing. Based on these findings, the membrane fouling was alleviated and thus flux was enhanced by adopting a backfeeding mode which has dual purpose of feeding and backflushing with particle-free acidic wastewater used as the feed for anaerobic digestion.

  18. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  19. Dense film polyimide membranes for aggressive sour gas feed separations

    KAUST Repository

    Kraftschik, Brian

    2013-02-01

    Dense film membranes of the copolyimide 6FDA-DAM:DABA (3:2) are studied for simultaneous removal of CO2 and H2S from sour natural gas streams. Pure and mixed gas permeation as well as pure gas sorption data are reported at 35°C and pressures up to 62bar. The H2S partial pressures used are representative of highly aggressive field operations. Penetrant-induced plasticization effects are evident at feed pressures below 1bar in pure H2S feeds; sub-Tg thermal annealing is used to effectively mitigate this effect, and these annealed films are used throughout the study. Surprisingly, H2S/CH4 selectivity nearly doubles for mixed gas testing in comparison to the pure component ideal selectivity values and approaches the level of a state-of-the-art glassy polymer, cellulose acetate (CA), at H2S partial pressures above 2bar. Furthermore, permeation experiments using a 9.95% H2S, 19.9% CO2, 70.15% CH4 mixture at low feed pressures give CO2/CH4 selectivity of up to 49-over 30% greater than the pure component selectivity for 6FDA-DAM:DABA (3:2). The overall sour gas separation performance of this polyimide is comparable to high-performance rubbery polymer membranes, which have been reported for only moderate H2S partial pressure feeds, and is superior to that for CA based on a practical combined acid gas separation efficiency metric that we introduce. Finally, methods for continued development of the current polyimide membrane material for aggressive sour gas separations are presented. © 2012 Elsevier B.V.

  20. Large magnetocaloric effect in a dense and stable inorganic-organic hybrid cobridged by in situ generated sulfate and oxalate.

    Science.gov (United States)

    Han, Song-De; Miao, Xiao-Hong; Liu, Sui-Jun; Bu, Xian-He

    2014-11-01

    A dense and stable inorganic-organic hybrid with distorted cubic [Gd4O4] units as building blocks bridged by in situ generated sulfate and oxalate was synthesized. Magnetic measurements indicate that the title complex features a -ΔS(m)(max)=51.49 J kg(-1) K(-1), which is among the highest values reported so far.

  1. Oxidative coupling of methane using inorganic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G. [Worcester Polytechnic Institute, MA (United States)] [and others

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  2. Inorganic membranes for carbon capture and power generation

    Science.gov (United States)

    Snider, Matthew T.

    Inorganic membranes are under consideration for cost-effective reductions of carbon emissions from coal-fired power plants, both in the capture of pollutants post-firing and in the direct electrochemical conversion of coal-derived fuels for improved plant efficiency. The suitability of inorganic membrane materials for these purposes stems as much from thermal and chemical stability in coal plant operating conditions as from high performance in gas separations and power generation. Hydrophilic, micro-porous zeolite membrane structures are attractive for separating CO2 from N2 in gaseous waste streams due to the attraction of CO2 to the membrane surface and micropore walls that gives the advantage to CO2 transport. Recent studies have indicated that retention of the templating agent used in zeolite synthesis can further block N2 from the micropore interior and significantly improve CO2/N2 selectivity. However, the role of the templating agent in micro-porous transport has not been well investigated. In this work, gas sorption studies were conducted by high-pressure thermo-gravimetric analysis on Zeolite Y membrane materials to quantify the effect of the templating agent on CO2, N2, and H2O adsorption/desorption, as well as to examine the effect of humidification on overall membrane performance. In equilibrium conditions, the N2 sorption enthalpy was nearly unchanged by the presence of the templating agent, but the N2 pore occupation was reduced ˜1000x. Thus, the steric nature of the blocking of N2 from the micropores by the templating agent was confirmed. CO2 and H2O sorption enthalpies were similarly unaffected by the templating agent, and the micropore occupations were only reduced as much as the void volume taken up by the templating agent. Thus, the steric blocking effect did not occur for molecules more strongly attracted to the micropore walls. Additionally, in time-transient measurements the CO 2 and H2O mobilities were significantly enhanced by the presence

  3. A Novel Dense Mixed-Conducting Membrane for Oxygen Permeation

    Institute of Scientific and Technical Information of China (English)

    徐南平; 李世光; 金万勤; 时钧

    2000-01-01

    Perovskite type SrCo0.4Fe0.6O3-δ(SCF) membrane and a novel perovskite-related ZrO2 doped SrCo0.4Fe0.6O3-δ(SCFZ) membrane were successfully prepared by isostatic pressing. The sintered membranes were characterized by high-temperature X-ray diffraction (HTXRD) and energy dispersive spectroscopy (EDS). The oxygen permeabilities of membranes have been measured in the temperature range of 923 K to 1243 K. The oxygen permeation flux at 1123K and activation energy of SCFZ membrane with the thickness of 2mm are respectively 2.68×10-7 mol·cm-2·min-1 and 97.76 kJ·mol-1. The results of HTXRD in argon atmosphere and the oxygen permeation experiment indicate that the SCFZ membrane is stable at elevated temperature and low oxygen partial pressure.

  4. Linearly concatenated cyclobutane (ladderane) lipids form a dense bacterial membrane

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Strous, M.; Rijpstra, W.I.C.; Hopmans, E.C.; Geenevasen, J.A.J.; Duin, A.C.T. van; Niftrik, L.A.; Jetten, M.S.M.

    2002-01-01

    Lipid membranes are essential to the functioning of cells, enabling the existence of concentration gradients of ions and metabolites. Microbial membrane lipids can contain three-, five-, six- and even seven-membered aliphatic rings, but four-membered aliphatic cyclobutane rings have never been obser

  5. Prospects and problems of dense oxygen permeable membranes

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Larsen, P.H.; Mogensen, Mogens Bjerg

    2000-01-01

    The prospects of using mixed ionic/electronic conducting ceramics for syngas production in a catalytic membrane reactor are analysed. Problems relating to limited thermodynamic stability and poor dimensional stability of candidate materials are addressed, The consequences for these problems......, of flux improving measures like minimization of membrane thickness and minimization of the losses due to oxygen exchange over the membrane surfaces, are discussed. The analysis is conducted on two candidate materials: La0.6Sr0.4Co0.2Fe0.8O3-delta and SrFeCo0.5Ox. Finally. experimental investigations...

  6. Thermal and chemical degradation of inorganic membrane materials. Final report, August 1992--May 1995

    Energy Technology Data Exchange (ETDEWEB)

    Damle, A.S.; Krishnan, G.N.; Sanjurjo, A.; Wood, B.J.; Lau, K.H.

    1995-05-01

    SRI International conducted a theoretical and experimental program to evaluate the long-term thermal and chemical degradation of inorganic membranes that are being developed to separate the gaseous products of coal gasification. A variety of developmental efforts are underway, including a number of projects sponsored by the US Department of Energy (DOE), to improve the selectivity and permeability of porous inorganic membranes. DOE is also sponsoring efforts to extend the use of metallic membranes to new applications. Most developmental efforts have focused on hydrogen separation by inorganic membranes, which may be used to maximize hydrogen production from coal gas or to remove H{sub 2}S and NH{sub 3} contaminants via thermal or catalytic decomposition in integrated-gasification combined-cycle (IGCC) systems. Inorganic membranes that have a high separation efficiency and exhibit both thermal and chemical stability would improve the economics of power generation from coal. Membrane materials that have been investigated include glass (silica), alumina, carbon, and metals (Pd and Pt). This report describes inorganic membrane materials, long term membrane exposure tests, membrane permeation tests, coal gasifier exposure tests, conclusions, and recommendations.

  7. Homogeneous porous perovskite supports for thin dense oxygen separation membranes

    NARCIS (Netherlands)

    Haar, van der L.M.; Verweij, H.

    2000-01-01

    Porous La1−xSrxCoO3−δ substrates (x=0.7, 0.5 and 0.2) were prepared as supports for thin mixed ionic-electronic conducting perovskite membranes. The preparation method is based on pyrolythic powder preparation, followed by high temperature calcination to reduce the sinter activity of the powder. Sub

  8. Dense pulmonary opacification in neonates treated with extracorporeal membrane oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, A.E.; Cornish, J.D.; Null, D.M.

    1986-09-01

    Chest radiographic findings in three neonates with respiratory failure secondary to meconium aspiration treated with extracorporeal membrane oxygenation (ECMO) are described. The degree of pulmonary opacification on the chest radiographs failed to correlate with the patients' clinical status as measured by the arterial oxygen levels but correlated well with the peak airway pressure (PAP) and continuous positive airway pressure (CPAP) settings on the mechanical ventilator. Because a variable portion of the arterial blood oxygenation is performed by the extracorporeal membrane oxygenator and unusually large fluctuations in airway pressure settings can occur in these patients while on ECMO, it is important to realize that the chest radiography may not be an accurate predictor of the patients' clinical status.

  9. CFD-based optimization and design of multi-channel inorganic membrane tubes☆

    Institute of Scientific and Technical Information of China (English)

    Zhao Yang; Jingcai Cheng; Chao Yang; Bin Liang

    2016-01-01

    As a major configuration of membrane elements, multi-channel porous inorganic membrane tubes were studied by means of theoretical analysis and simulation. Configuration optimization of a cylindrical 37-channel porous inorganic membrane tube was studied by increasing membrane filtration area and increasing permeation effi-ciency of inner channels. An optimal ratio of the channel diameter to the inter-channel distance was proposed so as to increase the total membrane filtration area of the membrane tube. The three-dimensional computational fluid dynamics (CFD) simulation was conducted to study the cross-flow permeation flow of pure water in the 37-channel ceramic membrane tube. A model combining Navier–Stokes equation with Darcy's law and the porous jump boundary conditions was applied. The relationship between permeation efficiency and channel locations, and the method for increasing the permeation efficiency of inner channels were proposed. Some novel multi-channel membrane configurations with more permeate side channels were put forward and evaluated.

  10. Electrospun Superhydrophobic Organic/Inorganic Composite Nanofibrous Membranes for Membrane Distillation.

    Science.gov (United States)

    Li, Xiong; Yu, Xufeng; Cheng, Cheng; Deng, Li; Wang, Min; Wang, Xuefen

    2015-10-07

    Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes exhibiting excellent direct contact membrane distillation (DCMD) performance were fabricated by a facile route combining the hydrophobization of silica nanoparticles (SiO2 NPs) and colloid electrospinning of the hydrophobic silica/poly(vinylidene fluoride) (PVDF) matrix. Benefiting from the utilization of SiO2 NPs with three different particle sizes, the electrospun nanofibrous membranes (ENMs) were endowed with three different delicate nanofiber morphologies and fiber diameter distribution, high porosity, and superhydrophobic property, which resulted in excellent waterproofing and breathability. Significantly, structural attributes analyses have indicated the major contributing role of fiber diameter distribution on determining the augment of permeate vapor flux through regulating mean flow pore size (MFP). Meanwhile, the extremely high liquid entry pressure of water (LEPw, 2.40 ± 0.10 bar), robust nanofiber morphology of PVDF immobilized SiO2 NPs, remarkable mechanical properties, thermal stability, and corrosion resistance endowed the as-prepared membranes with prominent desalination capability and stability for long-term MD process. The resultant choreographed PVDF/silica ENMs with optimized MFP presented an outstanding permeate vapor flux of 41.1 kg/(m(2)·h) and stable low permeate conductivity (∼2.45 μs/cm) (3.5 wt % NaCl salt feed; ΔT = 40 °C) over a DCMD test period of 24 h without membrane pores wetting detected. This result was better than those of typical commercial PVDF membranes and PVDF and modified PVDF ENMs reported so far, suggesting them as promising alternatives for MD applications.

  11. Preparation of geopolymer-based inorganic membrane for removing Ni(2+) from wastewater.

    Science.gov (United States)

    Ge, Yuanyuan; Yuan, Yuan; Wang, Kaituo; He, Yan; Cui, Xuemin

    2015-12-15

    A type of novel free-sintering and self-supporting inorganic membrane for wastewater treatment was fabricated in this study. This inorganic membrane was synthesised using metakaolin and sodium silicate solutions moulded according to a designed molar ratio (SiO2/Al2O3=2.96, Na2O/Al2O3=0.8 and H2O/Na2O=19) which formed a homogenous structure and had a relative concentration pore size distribution, via scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analyses. In this work, the Ni(2+) removal effect of geopolymer inorganic membrane was studied under different pH value, initial concentration of Ni(2+) solutions and initial operation temperature. Results showed that geopolymer inorganic membrane efficiently removes Ni(2+) from wastewater because of the combined actions of the adsorption and rejection of this membrane on Ni(2+) during membrane separation. Therefore, geopolymer inorganic membrane may have positive potential applications in removing Ni(2+) or other heavy metal ions from aqueous industrial wastewater.

  12. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu

    2017-02-13

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  13. A numerical study of helium-heated inorganic membrane reformer coupling to HTGR

    Institute of Scientific and Technical Information of China (English)

    YIN Huaqiang; JIANG Shengyao; JU Huaiming; ZHANG Youjie

    2007-01-01

    Based on one-dimensional quasi-homogeneous model,a steady-state model and its computer program were developed for helium-heated inorganic membrane reformer coupling to high temperature gas-cooled reactor (HTGR).The results show that the average heat flux of inorganic membrane reformer is 25% higher than that of the conventional one.A compact reformer can be designed,which is significant in making the system safer and more economical.A methane conversion rate of 95% can be achieved by inorganic membrane reformer with a little increase in pressure loss.With thinner membrane and higher sweep ratio,methane conversion rate increases with high reforming pressure,which will change the unfavorable condition of high pressure of HTGR methane reforming hydrogen production system into a favorable one.

  14. Combined organic-inorganic fouling of forward osmosis hollow fiber membranes.

    Science.gov (United States)

    Arkhangelsky, Elizabeth; Wicaksana, Filicia; Tang, Chuyang; Al-Rabiah, Abdulrahman A; Al-Zahrani, Saeed M; Wang, Rong

    2012-12-01

    This research focused on combined organic-inorganic fouling and cleaning studies of forward osmosis (FO) membranes. Various organic/inorganic model foulants such as sodium alginate, bovine serum albumin (BSA) and silica nanoparticles were applied to polyamide-polyethersulfone FO hollow fiber membranes fabricated in our laboratory. In order to understand all possible interactions, experiments were performed with a single foulant as well as combinations of foulants. Experimental results suggested that the degree of FO membrane fouling could be promoted by synergistic effect of organic foulants, the presence of divalent cations, low cross-flow velocity and high permeation drag force. The water flux of fouled FO hollow fibers could be fully restored by simple physical cleaning. It was also found that hydrodynamic regime played an important role in combined organic-inorganic fouling of FO membranes.

  15. 无机纳滤膜的应用%Application of inorganic nanofiltration membrane

    Institute of Scientific and Technical Information of China (English)

    陈雪; 谷景华

    2013-01-01

    无机纳滤膜具有良好的热稳定性和化学稳定性、机械强度高、易再生、抗微生物侵蚀等优点,已成为膜分离技术中一类引人瞩目的膜材料.文章介绍了无机纳滤膜的结构、组成和分离性能;综述了无机纳滤膜在水处理、食品、制药及化工领域的应用;并展望了无机纳滤膜的研究目标和发展前景.%Inorganic nanofiltration membrane has many advantages such as excellent thermal stability and chemical stability,high mechanical strength,easy regeneration,and anti-bacterial attack.It has become a kind of remarkable membrane materials in the field of membrane separation technology.This paper introduced the structure,composition and separation property of inorganic nanofiltration membranes.The applications of inorganic nanofiltration membranes in the field of water treatment,food,pharmacy and chemical industry were reviewed.The research objectives and development prospects of inorganic nanofiltration membrane were mentioned.

  16. Effects of chitosan solution concentration and incorporation of chitin and glycerol on dense chitosan membrane properties.

    Science.gov (United States)

    Dallan, Paula Rulf Marreco; Moreira, Patrícia da Luz; Petinari, Leandro; Malmonge, Sônia Maria; Beppu, Marisa Masumi; Genari, Selma Candelária; Moraes, Angela Maria

    2007-02-01

    The aim of this work was to perform a systematic study about the effects induced by chitosan solution concentration and by chitin or glycerol incorporation on dense chitosan membranes with potential use as burn dressings. The membrane properties analyzed were total raw material cost, thickness, morphology, swelling ratio, tensile strength, percentage of strain at break, crystallinity, in vitro enzymatic degradation with lysozyme, and in vitro Vero cells adhesion. While the use of the most concentrated chitosan solution (2.5% w/w) increased membrane cost, it also improved the biomaterial mechanical resistance and ductility, as well as reduced membrane degradation when exposed for 2 months to lysozyme. The remaining evaluated properties were not affected by initial chitosan solution concentration. Chitin incorporation, on the other hand, reduced the membranes cost, swelling ratio, mechanical properties, and crystallinity, resulting in thicker biomaterials with irregular surface more easily degradable when exposed to lysozyme. Glycerol incorporation also reduced the membranes cost and crystallinity and increased membranes degradability after exposure to lysozyme. Strong Vero cells adhesion was not observed in any of the tested membrane formulations. The overall results indicate that the majority of the prepared membranes meet the performance requirements of temporary nonbiodegradable burn dressings (e.g. adequate values of mechanical resistance and ductility, low values of in vitro cellular adhesion on their surfaces, low extent of degradation when exposed to lysozyme solution, and high stability in aqueous solutions).

  17. Development of thin film inorganic membranes for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyo Jeong

    2012-08-22

    Membrane-based gas separation systems are noteworthy among technological options for carbon capture and storage (CCS), which is an important strategy to reduce CO{sub 2} emitted from point sources, e.g. mainly fossil power plants. In Oxyfuel-Combustion and Pre-Combustion of CCS power plant concepts oxygen separation from air is required. To meet this requirement oxygen transport membranes (OTM) consisting of gastight mixed ionic electronic conductors (MIEC) are proposed, which are associated with significantly lower efficiency losses compared with conventional air separation technologies. For cost effective application a maximum oxygen flux has to be achieved to reduce the membrane area. This can be met by reduction of membrane thickness. Therefore, the reduction of the membrane thickness to the micrometer range or even below is aimed in the present thesis. Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} (CGO) with fluorite crystal structure and La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF) with perovskite crystal structure were developed as thin film membrane. CGO is expected to be more stable than other potential MIEC membranes in reducing atmospheres and to achieve sufficient oxygen permeation, e.g. in syngas production or petrol chemistry. LSCF is expected to be highly permeable with an acceptable chemical stability in Oxyfuel-combustion. Various porous ceramic substrates were prepared by vacuum-slip-casting and warm-pressing, and then characterized for porosity, gas-permeability and surface roughness. Subsequently, two approaches to fabrication of thin film membranes were investigated, which are wetchemical deposition (WCD) and physical vapor deposition (PVD). For WCD, nano-dispersions and colloidal sols were prepared for membrane top-layer and/or interlayer. When CGO nano-dispersion (NDCGO) was spin-coated as thin film membrane, the gastightness of sintered membranes was increased with decrease in spinning time and increase in concentration of

  18. Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation

    OpenAIRE

    Dzyazko, Yuliya S; Volfkovich, Yurii M; Sosenkin, Valentin E; Nikolskaya, Nadejda F; Gomza, Yurii P

    2014-01-01

    The aim of the work was to elucidate the nature of charge-selective properties of macroporous composite inorganic membranes modified with nanoparticles of hydrated zirconium dioxide. The membranes have been investigated using methods of standard contact porosimetry, potentiometry, electron microscopy and small-angle X-ray scattering. The ion exchanger has been found to deposit inside pores of ceramics. Differential curves of pore volume distribution have been resolved using Lorentz functions;...

  19. Heavy metals and color retention by a synthesized inorganic membrane

    Directory of Open Access Journals (Sweden)

    A. Chougui

    2014-11-01

    The ceramic membranes were tested for the removal of cadmium, zinc, Methylene Blue and Malachite Green from water under a pressure of 5 bar and a treatment time of 2 h. Liquid filtration and flow tests through these membranes resulted in a rejection rate of 100% for Methylene Blue and Malachite Green. This paper also presents the ability of the tubular membrane prepared to separate heavy metals (cadmium and zinc from their synthetic aqueous solutions. The influence of the applied pressure, feed solute concentration, feed pH on the rejection of cadmium and zinc ions was studied. Retention rates of cadmium and zinc ions of 100% were observed for an initial feed concentration of 10−4 mol/L.

  20. Supported liquid inorganic membranes for nuclear waste separation

    Energy Technology Data Exchange (ETDEWEB)

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  1. Structure of hybrid organic-inorganic sols for the preparation of hydrothermally stable membranes

    NARCIS (Netherlands)

    Castricum, H.L.; Sah, A.; Geenevasen, J.A.J.; Kreiter, R.; Blank, D.H.A.; Vente, J.F.; ten Elshof, J.E.

    2008-01-01

    A procedure for the preparation of hybrid sols for the synthesis of organic-inorganic microporous materials and thin film membranes is reported. We describe silane reactivity and sol structure for acid-catalysed colloidal sols from mixtures of either tetraethylorthosilicate (TEOS) and methyltriethox

  2. Development of Pd Alloy Hydrogen Separation Membranes with Dense/Porous Hybrid Structure for High Hydrogen Perm-Selectivity

    Directory of Open Access Journals (Sweden)

    Jae-Yun Han

    2014-01-01

    Full Text Available For the commercial applications of hydrogen separation membranes, both high hydrogen selectivity and permeability (i.e., perm-selectivity are required. However, it has been difficult to fabricate thin, dense Pd alloy composite membranes on porous metal support that have a pore-free surface and an open structure at the interface between the Pd alloy films and the metal support in order to obtain the required properties simultaneously. In this study, we fabricated Pd alloy hydrogen separation membranes with dense/porous hybrid structure for high hydrogen perm-selectivity. The hydrogen selectivity of this membrane increased owing to the dense and pore-free microstructure of the membrane surface. The hydrogen permeation flux also was remarkably improved by the formation of an open microstructure with numerous open voids at the interface and by an effective reduction in the membrane thickness as a result of the porous structure formed within the Pd alloy films.

  3. Preparations of an inorganic-framework proton exchange nanochannel membrane

    Science.gov (United States)

    Yan, X. H.; Jiang, H. R.; Zhao, G.; Zeng, L.; Zhao, T. S.

    2016-09-01

    In this work, a proton exchange membrane composed of straight and aligned proton conducting nanochannels is developed. Preparation of the membrane involves the surface sol-gel method assisted with a through-hole anodic aluminum oxide (AAO) template to form the framework of the PEM nanochannels. A monomolecular layer (SO3Hsbnd (CH2)3sbnd Sisbnd (OCH3)3) is subsequently added onto the inner surfaces of the nanochannels to shape a proton-conducting pathway. Straight nanochannels exhibit long range order morphology, contributing to a substantial improvement in the proton mobility and subsequently proton conductivity. In addition, the nanochannel size can be altered by changing the surface sol-gel condition, allowing control of the active species/charge carrier selectivity via pore size exclusion. The proton conductivity of the nanochannel membrane is reported as high as 11.3 mS cm-1 at 70 °C with a low activation energy of 0.21 eV (20.4 kJ mol-1). First-principle calculations reveal that the activation energy for proton transfer is impressively low (0.06 eV and 0.07 eV) with the assistance of water molecules.

  4. Inorganic nitrogen removal of toilet wastewater with an airlift external circulation membrane bioreactor

    Institute of Scientific and Technical Information of China (English)

    LI Gang; WU Lin-lin; DONG Chun-song; WU Guang-xia; FAN Yao-bo

    2007-01-01

    Removal of inorganic nitrogen (inorganic-N) removal of toilet wastewater with a pilot-scale airlift external circulation membrane bioreactor (AEC-MBR) was studied in this paper. The results showed that in the AEC-MBR, with a limited addition of alkalinity and the volumetric loading rates of inorganic-N at 0.19-0.40 kg inorganic-N/(m3·d), the desired nitrification and denitrification were achieved. Furthermore, the effects of pH and DO on inorganic-N removal were examined. Under the condition of MLSS at 1.56-2.35 g/L, BOD5/NH4+-N at 1.0, pH at 7.0-7.5 and DO at 1.0-2.0 mg/L, the removal efficiencies of NH4+-N and inorganic-N were 91.5% and 70.0% respectively in the AEC-MBR. The cost of addition of alkaline reagent was approximately 0.5-1.5 RMB Yuan/m3,and the energy consumption was approximately 0.72 kWh/m3 at the flux of 8 L/(m2·h).

  5. Water and vapor permeability at different temperatures of poly (3-Hydroxybutyrate dense membranes

    Directory of Open Access Journals (Sweden)

    Luiz H. Poley

    2005-03-01

    Full Text Available Polyhydroxyalkanoates (PHAs are polymers produced from renewable resources with biodegradability and biocompatibility, being therefore attractive for medical and pharmaceutical purposes. Poly (3-hydroxybutyrate (PHB is the most important polymer of this family by considering the biotechnology process of its synthesis. In the present study, dense films of PHB were prepared by casting from chloroform solutions (1% m/m. Permeability studies with water, methanol, ethanol and n-propanol were performed using the gravimetric method at different temperatures (from 50 ºC to 65 ºC. Results provide new data on permeability coefficients of PHB membranes.

  6. Strength degradation and failure limits of dense and porous ceramic membrane materials

    DEFF Research Database (Denmark)

    Pećanac, G.; Foghmoes, Søren Preben Vagn; Lipińska-Chwałek, M.;

    2013-01-01

    Thin dense membrane layers, mechanically supported by porous substrates, are considered as the most efficient designs for oxygen supply units used in Oxy-fuel processes and membrane reactors. Based on the favorable permeation properties and chemical stability, several materials were suggested...... as promising membrane and substrate materials: Ba0.5Sr0.5Co0.8Fe0.2O3−δ, La0.6−xSr0.4Co0.2Fe0.8O3−δ (x=0, 0.02) and Ce0.9Gd0.1O1.95−δ. Although membranes operate at elevated temperatures, the ends of tubes in certain three-end concepts remain almost at room temperature. The current work concentrates...... on the failure potential of these membrane parts, where in a complex device also the highest residual stresses should arise due to differences in thermal expansion. In particular, sensitivity of the materials to subcritical crack growth was assessed since the long-term reliability of the component does not only...

  7. Assessment of the potential for refinery applications of inorganic membrane technology: An identification and screening analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H.E.; Schulman, B.L.

    1993-05-01

    Commercial application of membrane technology in the separation of gas, liquid, and solid streams has grown to a business with worldwide revenues exceeding $1 billion annually. Use of organic membranes for industrial gas separation, particularly in the refining industry, is one of the major growth areas. However, organic membranes based on polymeric separation barriers, are susceptible to damage by liquids, and careful precautions must be taken to retain the system integrity. Researchers are currently developing small pore sized inorganic membranes which may substantially increase the efficiency and economics in selected refinery separation applications. Expected advantages of these advanced inorganic membranes include high permeability, high selectivity, and low manufacturing cost. SFA Pacific conducted a screening analysis to identify applications for inorganic membrane technology in the petroleum refining industry and their potential cost advantages over competing separation systems. Two meetings were held in connection with this project. Copies of Viewgraphs presented by SFA Pacific at these meetings are attached in Appendices A and C. Potential high priority applications and market impacts of advanced inorganic membrane technology in the refining industry are addressed in this report, and include the following areas: Competitive separation technologies; application of those technologies; incentives for inorganic membranes; market benefits and impacts of inorganic membranes.

  8. Preparation and characterization of self-crosslinked organic/inorganic proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Shuangling; Dou, Sen; Liu, Wencong [College of Resources and Environment, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118 (China); Cui, Xuejun [College of Chemistry, Jilin University, Changchun 130012 (China)

    2010-07-01

    A series of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) nanoparticles are successfully synthesized via simple emulsion polymerization method. The Si-sPS/A latexes show good film-forming capability and the self-crosslinked organic/inorganic proton exchange membranes are prepared by pouring the Si-sPS/A nanoparticle latexes into glass plates and drying at 60 C for 10 h and 120 C for 2 h. The potential of the membranes in direct methanol fuel cells (DMFCs) is characterized preliminarily by studying their thermal stability, ion-exchange capacity, water uptake, methanol diffusion coefficient, proton conductivity and selectivity (proton conductivity/methanol diffusion coefficient). The results indicate that these membranes possess excellent thermal stability and methanol barrier due to the existence of self-crosslinked silica network. In addition, the proton conductivity of the membranes is in the range of 10{sup -3}-10{sup -2} S cm{sup -1} and all the membranes show much higher selectivity in comparison with Nafion {sup registered} 117. These results suggest that the self-crosslinked organic/inorganic proton exchange membranes are particularly promising in DMFC applications. (author)

  9. Preparation and characterization of self-crosslinked organic/inorganic proton exchange membranes

    Science.gov (United States)

    Zhong, Shuangling; Cui, Xuejun; Dou, Sen; Liu, Wencong

    A series of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) nanoparticles are successfully synthesized via simple emulsion polymerization method. The Si-sPS/A latexes show good film-forming capability and the self-crosslinked organic/inorganic proton exchange membranes are prepared by pouring the Si-sPS/A nanoparticle latexes into glass plates and drying at 60 °C for 10 h and 120 °C for 2 h. The potential of the membranes in direct methanol fuel cells (DMFCs) is characterized preliminarily by studying their thermal stability, ion-exchange capacity, water uptake, methanol diffusion coefficient, proton conductivity and selectivity (proton conductivity/methanol diffusion coefficient). The results indicate that these membranes possess excellent thermal stability and methanol barrier due to the existence of self-crosslinked silica network. In addition, the proton conductivity of the membranes is in the range of 10 -3-10 -2 S cm -1 and all the membranes show much higher selectivity in comparison with Nafion ® 117. These results suggest that the self-crosslinked organic/inorganic proton exchange membranes are particularly promising in DMFC applications.

  10. Dense ceramic membranes: A review of the state of the art

    Directory of Open Access Journals (Sweden)

    Kozhukharov, V.

    1999-02-01

    Full Text Available During the past several years the concepts of oxygen permeation through mixed valency ceramic membranes possess special interest. In this context, a classification and brief review of the major membrane ceramic materials will be presented. The focus will be on dense ceramic membranes as elements for advanced application. A discussion will be proposed for mixed conductor ceramics as perovskite ABO3 compounds. Dense membranes on perovskite base are the object of the present review and some details about processing and characterization of double (A- and B-site substituted La1-x Sr(BaxCo0.8Fe0.2O3-d perovskites will be presented.

    El concepto de permeación de oxígeno a través de membranas cerámicas de valencia mixta, ha venido adquiriendo especial relevancia a lo largo de los últimos años. En este contexto se hace se efectúa una clasificación y breve revisión de los materiales cerámicos más relevantes utilizados como membranas. En particular se orienta la descripción hacia las membranas cerámicas densas para aplicaciones avanzadas. Se propone un análisis de los conductores cerámicos mixtos, como los compuestos de tipo perovskita ABO3. Se realiza una revisión de los materiales de este tipo existentes, así como se describen algunos aspectos sobre el procesamiento y caracterización de las perovskitas tipo La1-x Sr(BaxCo0.8Fe0.2O3-d doblemente sustituidas (lugares A- y B-.

  11. Membrane and Adsorption Processes for Removing of Organics and Inorganics from Urban Wastewaters

    OpenAIRE

    Majlinda Daci-Ajvazi; Bashkim Thaçi; Nexhat Daci; Salih Gash

    2016-01-01

    Since in Kosovo there are still no water purification plants and untreated wastewaters are discharged in environment, in this paper we’ve studied methods for removing of different organic and inorganic pollutants from Kosovo urban wastewaters. For best results we’ve used two methods, reverse osmosis and adsorption. For reverse osmosis, all samples were pretreated with coagulant (FeSO4) and flocculant (CaO) and then treated with reverse osmosis membranes. For adsorption, we used Kosovo coal as...

  12. Synthesis and characterization of microporous inorganic membranes for propylene/propane separation

    Science.gov (United States)

    Ma, Xiaoli

    Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H 8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H 6/C3H8 separation properties of MFI zeolite membrane and CMS membrane. MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H 6/C3H8 mixture separation. CMS membranes were synthesized by coating/pyrolysis method on mesoporous gamma-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H 6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N 2 and C3H6 and C3H6/C 3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores. CMS membranes demonstrate excellent C3H6/C 3H8 separation

  13. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2015-04-21

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  14. Complexation-induced phase separation: preparation of composite membranes with a nanometer-thin dense skin loaded with metal ions.

    Science.gov (United States)

    Villalobos, Luis Francisco; Karunakaran, Madhavan; Peinemann, Klaus-Viktor

    2015-05-13

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  15. Characterization of Pores in Dense Nanopapers and Nanofibrillated Cellulose Membranes: A Critical Assessment of Established Methods.

    Science.gov (United States)

    Orsolini, Paola; Michen, Benjamin; Huch, Anja; Tingaut, Philippe; Caseri, Walter R; Zimmermann, Tanja

    2015-11-25

    Nanofibrillated cellulose (NFC) is a natural fibrous material that can be readily processed into membranes. NFC membranes for fluid separation work in aqueous medium, thus in their swollen state. The present study is devoted to a critical investigation of porosity, pore volume, specific surface area, and pore size distribution of dry and wet NFC nanopapers, also known as membranes, with various established techniques, such as electron microscopy, helium pycnometry, mercury intrusion, gas adsorption (N2 and Kr), and thermoporometry. Although these techniques can be successfully applied to inorganic materials (e.g., mesoporous silica), it is necessary to appraise them for organic and hydrophilic products such as NFC membranes. This is due to different phenomena occurring at the materials interfaces with the probing fluids. Mercury intrusion and gas adsorption are often used for the characterization of porosity-related properties; nevertheless, both techniques characterize materials in the dry state. In parallel, thermoporometry was employed to monitor the structure changes upon swelling, and a water permeance test was run to show the accessibility of the membranes to fluids. For the first time, the methods were systematically screened, and we highlighted the need of uniform sample treatments prior to the measurements (i.e., sample cutting and outgassing protocols) in order to harmonize results from the literature. The need for revising the applicability range of mercury intrusion and the inappropriateness of nitrogen adsorption were pointed out. We finally present a table for selecting the most appropriate method to determine a desired property and propose guidelines for results interpretation from which future users could profit.

  16. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    Science.gov (United States)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  17. Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment

    Energy Technology Data Exchange (ETDEWEB)

    Rich Ciora; Paul KT Liu

    2012-06-27

    inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

  18. Membranas Inorgânicas e reatores catalíticos Inorganic membranes and catalytic reactors

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Rangel

    1997-10-01

    Full Text Available Membrane reactors are reviewed with emphasis in their applications in catalysis field. The basic principles of these systems are presented as well as a historical development. The several kinds of catalytic membranes and their preparations are discussed including the problems, needs and challenges to be solved in order to use these reactors in commercial processes. Some applications of inorganic membrane reactors are also shown. It was concluded that these systems have a great potential for improving yield and selectivity of high temperature catalytic reactions. However, it is still an imerging technology with a need for a lot of fundamental research; several challenges should be overcome for the successful commercial application of these systems.

  19. ORGANIC PERMSELECTIVE PERVAPORATION CHARACTERISTICS OF POLY(SILYLPROPYNE) AND COPOLYMER DENSE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    WANG Xinwei; SHI Yanqiao; CHEN Guanwen

    1997-01-01

    An investigation into the organic permselective separation through poly [1-trimethylsilyl1-propyne] (PTMSP) and (1-trimethylsily1)-1-(1-penta-methyl-disilyl)-l-propyne copolymer (TMSP-PMDSP) dense membranes was made to gain an insight into the effect of the chemical structure of membrane materials on pervaporation (PV) characteristics. The results show that the copolymer has a higher separation factor αorg/water but with a relatively Lower value of flux Jt(g/m2·h)than pure PTMSP.This phenomenon may be attributed to the introduction of side chain with large bulk volume in copolymer, which brought about a decrease of excess free volume and the improvement of diffusion selectivity to some extent. With the same molar concentration of organic liquids in feed, THF/water solutions have the highest value of αorg/water as well as Jt in comparison with ethanol/water,iso-propanol/water and THF/water mixtures.

  20. Synthesis and characterization of gallium-based perovskitetype dense membrane with oxygen semipermeability

    Institute of Scientific and Technical Information of China (English)

    丛铀; 邵宗平; 杨维慎; 熊国兴; 林励吾

    2001-01-01

    La0.15Sr0.85Ga0.3Fe0.7O3-δ(LSGFO) and La0.15Sr0.85Co0.3Fe0.7O3-δ(LSCFO) mixed oxygen-ion and electron conducting oxides were synthesized by using a combined EDTA and citrate complexing method, and the corresponding dense membranes were fabricated. The properties of the oxide powders and membranes were characterized with combined SEM, XRD, H2-TPR, O2-TPD techniques, mechanical strength and oxygen permeation measurement. The results showed that LSGFO had much higher thermochemical stability than LSCFO due to the higher valence stability of Ga3+. After the temperature-programmed reduction by 5% H2 in Ar from 20℃to 1020℃, the basic perovskite structure of LSGFO was successfully preserved. LSGFO also favors the oxygen vacancy formation better than LSCFO. Oxygen permeation measurement demonstrated that LSGFO had higher oxygen permeation flux than LSCFO, but they had similar activation energy for oxygen transportation, with a value of 110 and 117 kJ ?mol-1, respectively. The difference in oxygen permeation f

  1. Synthesis and characterization of gallium-based perovskite- type dense membrane with oxygen semipermeability

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    La0.15Sr0.85Ga0.3Fe0.7O3-d (LSGFO) and La0.15Sr0.85Co0.3Fe0.7O3-d (LSCFO) mixed oxygen-ion and electron conducting oxides were synthesized by using a combined EDTA and citrate complexing method, and the corresponding dense membranes were fabricated. The properties of the oxide powders and membranes were characterized with combined SEM, XRD, H2-TPR, O2-TPD techniques, mechanical strength and oxygen permeation measurement. The results showed that LSGFO had much higher thermochemical stability than LSCFO due to the higher valence stability of Ga3+. After the temperature-programmed reduction by 5% H2 in Ar from 20℃ to 1020℃, the basic perovskite structure of LSGFO was successfully preserved. LSGFO also favors the oxygen vacancy formation better than LSCFO. Oxygen permeation measurement demonstrated that LSGFO had higher oxygen permeation flux than LSCFO, but they had similar activation energy for oxygen transportation, with a value of 110 and 117 kJ omol-1, respectively. The difference in oxygen permeation fluxes was correlated with the difference in oxygen vacancy concentrations for the two materials.

  2. Preparation and Conducting Behavior of Amphibious Organic/Inorganic Hybrid Proton Exchange Membranes Based on Benzyltetrazole

    Institute of Scientific and Technical Information of China (English)

    QIAO Li-gen; SHI Wen-fang

    2012-01-01

    A series of novel amphibious organic/inorganic hybrid proton exchange membranes with H3PO4 doped which could be used under both wet and dry conditions was prepared through a sol-gel process based on acrylated triethoxysilane(A-TES)and benzyltetrazole-modified triethoxysilane(BT-TES).The dual-curing approach including UV-curing and thermal curing was used to obtain the crosslinked membranes.Polyethylene glycol(400)diacrylate(PEGDA)was used as an oligomer to form the polymeric matrix.The molecular structures of precursors were characterized by 1H,13C and 29Si NMR spectra.The thermogravimetric analysis(TGA)results show that the membranes exhibit acceptable thermal stability for their application at above 200 ℃.The differential scanning calorimeter(DSC)determination indicates that the crosslinked membranes with the mass ratios of below 1.6 of BT-TES to A-TES and the same mass of H3PO4 doped as that of A-TES possess the-Tgs,and the lowest Tg(-28.9 ℃)exists for the membrane with double mass of H3PO4 doped as well.The high proton conductivity in a range of 9.4-17.3 mS/cm with the corresponding water uptake of 19.1%-32.8% of the membranes was detected at 90 ℃ under wet conditions.Meanwhile,the proton conductivity in a dry environment for the membrane with a mass ratio of 2.4 of BT-TES to A-TES and double H3PO4 loading increases from 4.89× 10-2 mS/cm at 30 ℃ to 25.7 mS/cm at 140 ℃.The excellent proton transport ability under both hydrous and anhydrous conditions demonstrates a potential application in the polymer electrolyte membrane fuel cells.

  3. Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation.

    Science.gov (United States)

    Dzyazko, Yuliya S; Volfkovich, Yurii M; Sosenkin, Valentin E; Nikolskaya, Nadejda F; Gomza, Yurii P

    2014-01-01

    The aim of the work was to elucidate the nature of charge-selective properties of macroporous composite inorganic membranes modified with nanoparticles of hydrated zirconium dioxide. The membranes have been investigated using methods of standard contact porosimetry, potentiometry, electron microscopy and small-angle X-ray scattering. The ion exchanger has been found to deposit inside pores of ceramics. Differential curves of pore volume distribution have been resolved using Lorentz functions; each maximum has been related to structure elements of the matrix and ion exchanger by means of calculations according to homogeneous and heterogeneous geometrical models. It was found that the voids, the radius of which is 4 to 8 nm, are responsible for charge selectivity of the composite membranes. These pores are formed due to blocking of macropores of ceramics with aggregates of nanoparticles of the ion exchanger; the radius of these aggregates is 20 to 24 nm. The membranes were applied to desalination of the solution containing NaCl. The removal degree of the salt from the solution reached 95% and 9% for the composite and unmodified membranes, respectively.

  4. Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation

    KAUST Repository

    Rungta, Meha

    2012-04-01

    Development of dense film carbon molecular sieve (CMS) membranes for ethylene/ethane (C 2H 4/C 2H 6) separation is reported. A commercial polyimide, Matrimid®, was pyrolyzed under vacuum and inert argon atmosphere, and the resultant CMS films were characterized using pure C 2H 4 and C 2H 6 permeation at 35 °C, 50 psia feed pressure. The effects on C 2H 4/C 2H 6 separation caused by different final vacuum pyrolysis temperatures from 500 to 800 °C are reported. For all pyrolysis temperatures separation surpassed the estimated \\'upper bound\\' solution processable polymer line for C 2H 4 permeability vs. C 2H 4/C 2H 6 selectivity. C 2H 4 permeability decreased and selectivity increased with increasing pyrolysis temperature until 650-675 °C where an optimum combination of C 2H 4 permeability ∼14-15 Barrer with C 2H 4/C 2H 6 selectivity ∼12 was observed. A modified heating rate protocol for 675 °C showed further increase in permeability with no selectivity loss. CMS films produced from argon pyrolysis showed results comparable to vacuum pyrolysis. Further, mixed gas (63.2 mol% C 2H 4 + 36.8 mol% C 2H 6) permeation showed a slightly lower C 2H 4 permeability with C 2H 4/C 2H 6 selectivity increase rather than a decrease that is often seen with polymers. The high selectivity of these membranes was shown to arise from a high \\'entropic selection\\' indicating that the \\'slimmer\\' ethylene molecule has significant advantage over ethane in passing through the rigid \\'slit-shaped\\' CMS pore structure. © 2011 Elsevier Ltd. All rights reserved.

  5. Bridged polysilsesquioxanes: Hybrid organic-inorganic materials as fuel cell polyelectrolyte membranes and functional nanoparticles

    Science.gov (United States)

    Khiterer, Mariya

    2007-05-01

    This dissertation describes the design, fabrication, and characterization of organic-inorganic hybrid materials. Several classes of bridged polysilsesquioxanes are presented. The first class is a membrane material suitable for fuel cell technology as a proton conducting polyelectrolyte. The second class includes hybrid nanoparticles for display device applications and chromatographic media. Chapter 1 is an introduction to hybrid organic-inorganic materials. Sol-gel chemistry is discussed, followed by a survey of prominent examples of silica hybrids. Examples of physical organic-silica blends and covalent organo-silicas, including ORMOCERSRTM, polyhedral oligomeric silsesquioxanes, and bridged polysilsesquioxanes are discussed. Bridged polysilsesquioxanes are described in great detail. Monomer synthesis, sol-gel chemistry, processing, characterization, and physical properties are included. Chapter 2 describes the design of polyelectrolyte bridged polysilsesquioxane membranes. The materials contain covalently bound sulfonic acid groups originating from the corresponding disulfides. These organic-inorganic hybrid materials integrate a network supporting component which is systematically changed to fine-tune their physical properties. The membranes are characterized as PEM fuel cell electrolytes, where proton conductivities of 4-6 mS cm-1 were measured. In Chapter 3 techniques for the preparation of bridged polysilsesquioxane nanoparticles are described. An inverse water-in-oil microemulsion polymerization method is developed to prepare cationic nanoparticles, including viologen-bridged materials with applications in electrochromic display devices. An aqueous ammonia system is used to prepare neutral nanoparticles containing hydrocarbon bridging groups, which have potential applications as chromatographic media. Chapter 4 describes electrochromic devices developed in collaboration with the Heflin group of Virginia Tech, which incorporate viologen bridged nanoparticles

  6. Inorganic-organic Composite Membranes with Novel Microstructure for High Temperature Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Zhigang Ma; Jiandong Gao; Jing Guo; Zhenghua Deng; Jishuan Suo

    2007-01-01

    Nowadays,more and more fossil fuels are consumed and air pollurion has become a threat to the survival of people.Therefore,we need some other power sources to provide energy without damaging the environment.Proton exchange membrane fuel cells(PEMFCs)have received wide attention due to their advantages Such as high energy density and zero emission[1].Particularly, direct methanol fuel cells (DMFCs)were considered as the most suitable energy sources for electric vehicles(EVs)and portable electronics.

  7. Novel Inorganic/Polymer Composite Membranes for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.S. Winston [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Dutta, Prabir K. [The Ohio State Univ., Columbus, OH (United States). Depts. of Chemical and Biomolecular Engineering, Chemistry, and Materials Science and Engineering; Schmit, Steve J. [Gradient Technology, Elk River, MN (United States)

    2016-10-01

    The objective of this project is to develop a cost-effective design and manufacturing process for new membrane modules that capture CO2 from flue gas in coal-fired power plants. The membrane consisted of a thin selective layer including inorganic (zeolite) embedded in a polymer structure so that it can be made in a continuous manufacturing process. The membrane was incorporated in spiral-wound modules for the field test with actual flue gas at the National Carbon Capture Center (NCCC) in Wilsonville, AL and bench scale tests with simulated flue gas at the Ohio State University (OSU). Using the modules for post-combustion CO2 capture is expected to achieve the DOE target of $40/tonne CO2 captured (in 2007 dollar) for 2025. Membranes with the amine-containing polymer cover layer on zeolite-Y (ZY) nanoparticles deposited on the polyethersulfone (PES) substrate were successfully synthesized. The membranes showed a high CO2 permeance of about 1100 GPU (gas permeation unit, 1 GPU = 10-6 cm3 (STP)/(cm2 • s • cm Hg), 3000 GPU = 10-6 mol/(m2 • s • Pa)) with a high CO2/N2 selectivity of > 200 at the typical flue gas conditions at 57°C (about 17% water vapor in feed gas) and > 1400 GPU CO2 permeance with > 500 CO2/N2 selectivity at 102°C (~ 80% water vapor). The synthesis of ZY nanoparticles was successfully scaled up, and the pilot-scale membranes were also successfully fabricated using the continuous membrane machine at OSU. The transport performance of the pilot-scale membranes agreed reasonably well with the lab-scale membranes. The results from both the lab-scale and scale-up membranes were used for the techno-economic analysis. The scale-up membranes were fabricated into prototype spiral-wound membrane modules for continuous testing with simulated or real flue gas. For real flue gas testing, we worked with NCCC, in

  8. Membrane and Adsorption Processes for Removing of Organics and Inorganics from Urban Wastewaters

    Directory of Open Access Journals (Sweden)

    Majlinda Daci-Ajvazi

    2016-10-01

    Full Text Available Since in Kosovo there are still no water purification plants and untreated wastewaters are discharged in environment, in this paper we’ve studied methods for removing of different organic and inorganic pollutants from Kosovo urban wastewaters. For best results we’ve used two methods, reverse osmosis and adsorption. For reverse osmosis, all samples were pretreated with coagulant (FeSO4 and flocculant (CaO and then treated with reverse osmosis membranes. For adsorption, we used Kosovo coal ash and bentonite, both natural and low cost adsorbents. The analysis of experimental results shows that removing of organic and inorganic pollutants by reverse osmosis was very effective and removed from 93-98% of organics and almost 100% of heavy metal ions. Efficiency of coal ash in removing organics from natural waters was from 88-95%, while the efficiency of bentonite was 77-88%, while removing of heavy metal ions by coal ash was from 79-100% and by bentonite was from 50-92% respectively.

  9. Inorganic nanoparticles kill Toxoplasma gondii via changes in redox status and mitochondrial membrane potential

    Science.gov (United States)

    Adeyemi, Oluyomi Stephen; Murata, Yuho; Sugi, Tatsuki; Kato, Kentaro

    2017-01-01

    This study evaluated the anti-Toxoplasma gondii potential of gold, silver, and platinum nanoparticles (NPs). Inorganic NPs (0.01–1,000 µg/mL) were screened for antiparasitic activity. The NPs caused >90% inhibition of T. gondii growth with EC50 values of ≤7, ≤1, and ≤100 µg/mL for gold, silver, and platinum NPs, respectively. The NPs showed no host cell cytotoxicity at the effective anti-T. gondii concentrations; the estimated selectivity index revealed a ≥20-fold activity toward the parasite versus the host cell. The anti-T. gondii activity of the NPs, which may be linked to redox signaling, affected the parasite mitochondrial membrane potential and parasite invasion, replication, recovery, and infectivity potential. Our results demonstrated the antiparasitic potential of NPs. The findings support the further exploration of NPs as a possible source of alternative and effective anti-T. gondii agents.

  10. Synthesis and characterization of dense membranes of silk fibroin with glycerin;Sintese e caracterizacao de membranas densas de fibroina de seda com glicerina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mariana F.; Moraes, Mariana A. de; Weska, Raquel F.; Nogueira, Grinia M.; Beppu, Marisa M., E-mail: beppu@feq.unicamp.b [Universidade Estadual de Campinas (FEQ/UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica

    2009-07-01

    The addition of plasticizers seeks improvements in mechanical properties of dense membranes of silk fibroin with possible interactions by hydrogen bonds. The aim of the present study was to produce and characterize dense membranes of silk fibroin containing glycerin in two different concentrations. The characterization of the membranes was performed from scanning electron microscopy (SEM), mechanical traction tests, infrared spectroscopy (FTIR-ATR) and X-ray diffraction (XRD). The results indicated that the addition of glycerin allowed obtaining homogeneous and more crystalline membranes and improved their properties of elongation. (author)

  11. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations

    Directory of Open Access Journals (Sweden)

    Edson V. Perez

    2016-09-01

    Full Text Available Gas separation for industrial, energy, and environmental applications requires low energy consumption and small footprint technology to minimize operating and capital costs for the processing of large volumes of gases. Among the separation methods currently being used, like distillation, amine scrubbing, and pressure and temperature swing adsorption, membrane-based gas separation has the potential to meet these demands. The key component, the membrane, must then be engineered to allow for high gas flux, high selectivity, and chemical and mechanical stability at the operating conditions of feed composition, pressure, and temperature. Among the new type of membranes studied that show promising results are the inorganic-based and the metal-organic framework-based mixed-matrix membranes (MOF-MMMs. A MOF is a unique material that offers the possibility of tuning the porosity of a membrane by introducing diffusional channels and forming a compatible interface with the polymer. This review details the origins of these membranes and their evolution since the first inorganic/polymer and MOF/polymer MMMs were reported in the open literature. The most significant advancements made in terms of materials, properties, and testing conditions are described in a chronological fashion.

  12. Structural, chemical surface and transport modifications of regenerated cellulose dense membranes due to low-dose {gamma}-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.I. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Heredia-Guerrero, J.A., E-mail: jose.alejandro@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Galan, P. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Benitez, J.J. [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Benavente, J. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain)

    2011-04-15

    Research highlights: {yields} Low dose {gamma}-radiation causes slight structural, chemical and morphological changes on regenerated cellulose films. {yields} Induced structural changes increase the fragility of irradiated films. {yields} Structural modifications reduce ion permeability of films. - Abstract: Modifications caused in commercial dense regenerated cellulose (RC) flat membranes by low-dose {gamma}-irradiation (average photons energy of 1.23 MeV) are studied. Slight structural, chemical and morphological surface changes due to irradiation in three films with different RC content were determined by ATR-FTIR, XRD, XPS and AFM. Also, the alteration of their mechanical elasticity has been studied. Modification of membrane performance was determined from solute diffusion coefficient and effective membrane fixed charge concentration obtained from NaCl diffusion measurements. Induced structural changes defining new and effective fracture propagation directions are considered to be responsible for the increase of fragility of irradiated RC membranes. The same structural changes are proposed to explain the reduction of the membrane ion permeability through a mechanism involving either ion pathways elongation and/or blocking.

  13. Asymmetric polymeric membranes containing a metal-rich dense layer with a controlled thickness and method of making same

    KAUST Repository

    Peinemann, Klaus-Viktor

    2016-01-21

    A structure, and methods of making the structure are provided in which the structure can include: a membrane having a first layer and a second layer, the first layer comprising polymer chains formed with coordination complexes with metal ions, and the second layer consisting of a porous support layer formed of polymer chains substantially, if not completely, lacking the presence of metal ions. The structure can be an asymmetric polymeric membrane containing a metal-rich layer as the first layer. In various embodiments the first layer can be a metal-rich dense layer. The first layer can include pores. The polymer chains of the first layer can be closely packed. The second layer can include a plurality of macro voids and can have an absence of the metal ions of the first layer.

  14. Pro-apoptotic Bax molecules densely populate the edges of membrane pores.

    Science.gov (United States)

    Kuwana, Tomomi; Olson, Norman H; Kiosses, William B; Peters, Bjoern; Newmeyer, Donald D

    2016-06-03

    How the pro-apoptotic Bax protein permeabilizes the mitochondrial outer membrane is not fully understood. Previously, using cryo-electron microscopy (cryo-EM), we showed that activated Bax forms large, growing pores. Whether formed in liposomes or in mitochondrial outer membranes, Bax-induced pores exhibit the same morphology, with negative curvature flanking the edges and with no visible protein structure protruding from the membranes. Here we used cryo-EM to show that gold-labeled Bax molecules, after activation by Bid, became localized strictly at pore edges. This argues that Bax acts at short range to deform the membrane. Also, Bax molecules populated the walls of both small and large pores at the same density, implying that Bax is continuously recruited to the pores as they widen. Moreover, because all Bax molecules became oligomerized after membrane insertion, we infer that Bax oligomers are present at pore edges. We suggest that oligomerization may promote pore enlargement.

  15. Dry adhesive bonding of nanoporous inorganic membranes to microfluidic devices using the OSTE(+) dual-cure polymer

    Science.gov (United States)

    Saharil, Farizah; Forsberg, Fredrik; Liu, Yitong; Bettotti, Paolo; Kumar, Neeraj; Niklaus, Frank; Haraldsson, Tommy; van der Wijngaart, Wouter; Gylfason, Kristinn B.

    2013-02-01

    We present two transfer bonding schemes for incorporating fragile nanoporous inorganic membranes into microdevices. Such membranes are finding increasing use in microfluidics, due to their precisely controllable nanostructure. Both schemes rely on a novel dual-cure dry adhesive bonding method, enabled by a new polymer formulation: OSTE(+), which can form bonds at room temperature. OSTE(+) is a novel dual-cure ternary monomer system containing epoxy. After the first cure, the OSTE(+) is soft and suitable for bonding, while during the second cure it stiffens and obtains a Young’s modulus of 1.2 GPa. The ability of the epoxy to react with almost any dry surface provides a very versatile fabrication method. We demonstrate the transfer bonding of porous silicon and porous alumina membranes to polymeric microfluidic chips molded into OSTE(+), and of porous alumina membranes to microstructured silicon wafers, by using the OSTE(+) as a thin bonding layer. We discuss the OSTE(+) dual-cure mechanism, describe the device fabrication and evaluate the bond strength and membrane flow properties after bonding. The membranes bonded to OSTE(+) chips delaminate at 520 kPa, and the membranes bonded to silicon delaminate at 750 kPa, well above typical maximum pressures applied to microfluidic circuits. Furthermore, no change in the membrane flow resistance was observed after bonding.

  16. Effect of "bridge" on the performance of organic-inorganic crosslinked hybrid proton exchange membranes via KH550

    Science.gov (United States)

    Han, Hailan; Li, Hai Qiang; Liu, Meiyu; Xu, Lishuang; Xu, Jingmei; Wang, Shuang; Ni, Hongzhe; Wang, Zhe

    2017-02-01

    A series of novel organic-inorganic crosslinked hybrid proton exchange membranes were prepared using sulfonated poly(arylene ether ketone sulfone) polymers containing carboxyl groups (C-SPAEKS), (3-aminopropyl)-triethoxysilane (KH550), and tetraethoxysilane (TEOS). KH550 acted as a "bridge" after reacting with carboxyl and sulfonic groups of C-SPAEKS to form covalent and ionic crosslinked structure between the C-SPAEKS and SiO2 phase. The crosslinked hybrid membranes (C-SPAEKS/K-SiO2) were characterized by FT-IR spectroscopy, TGA, and electrochemistry, etc. The thermal stability, mechanical properties and proton conductivity of the crosslinked hybrid membranes were improved by the presence of both crosslinked structure and inorganic phase. The proton conductivity of C-SPAEKS/K-SiO2-8 was recorded as 0.110 S cm-1, higher than that of Nafion® (0.028 S cm-1) at 120 °C. Moreover, the methanol permeability of the C-SPAEKS/K-SiO2-8 was measured as 3.86 × 10-7 cm2 s-1, much lower than that of Nafion® 117 membranes (29.4 × 10-7 cm2 s-1) at 25 °C.

  17. Preparation and oxygen permeation properties of SrFe(Cu)O3-δ dense ceramic membranes

    Institute of Scientific and Technical Information of China (English)

    Heng Zhang; Tingting Wang; Xinfa Dong; Weiming Lin

    2009-01-01

    Mixed oxygen-ionic and electronic conducting membranes of SrFe(Cu)O3-δ were prepared by solid-state reaction method.The crystal structure,oxygen nonstoichiometry,and phase stability of the materials were studied by TGA and XRD.Oxygen permeation fluxes through these membranes were studied at operating temperature ranging from 750 to 950 ℃.Results showed that doping Cu in SrFeO3-δ compound had a significant effect on the formation of single-phased perovskite structure.For SrFe1-xCuxO3-δ series materials,the oxygen nonstoichiometry and the oxygen permeation flux increased considerably with the increase of Cu-doping content (x = 0.1-0.3).The sintering property of the membrane decreased significantly when the Cu substitution amount reached 40%.SrFe0.7CU0.3O3-δ showed high oxygen permeation flux,but SrCuO2 and Sr2Fe2O5 phases formed in the compound after oxygen permeation test induced cracks in the membrane.

  18. Structure and distribution of inorganic components in the cake layer of a membrane bioreactor treating municipal wastewater.

    Science.gov (United States)

    Zhou, Lijie; Xia, Siqing; Alvarez-Cohen, Lisa

    2015-11-01

    A laboratory-scale submerged anoxic-oxic membrane bioreactor treating municipal wastewater was operated to investigate the structure and distribution of the inorganic cake layer buildup on the membrane. BCR (European Community Bureau of Reference) sequential extraction, X-ray photoelectron spectroscopy (XPS), and both map and line scan of energy-dispersive X-ray analysis (EDX) were performed for cake layer characterization. BCR results showed that Si, Al, Ca, Mg, Fe, and Ba were the predominant inorganic elements in the cake layer, and they occurred mostly as crystal particles. Crystal SiO2 was the dominant inorganic compound while Ca in the form of CaSO4 (dominant) and CaCO3 were also present, but exerted little effect on the cake layer structure because most of these compounds were deposited as precipitates on the reactor bottom. EDX results indicated that Si and Al accumulated together along the cross-sectional cake layer in the form of Si-Al (SiO2-Al2O3) crystal particles.

  19. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J Douglas

    2011-01-21

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  20. Enhancement of Hybrid SPEEK Based Polymer–Cyclodextrin-Silica Inorganic Membrane for Direct Methanol Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2017-06-01

      Keywords: Direct Methanol Fuel Cell, Poly(ether ether ketone, cyclodextrin-silica, sulfonation, ionic conductivity. Article History: Received January 18th 2017; Received in revised form April 21st 2017; Accepted June 22nd 2017; Available online How to Cite This Article: Kusworo, T.D., Hakim, M.F. and Hadiyanto, H. (2017 Enhancement of Hybrid SPEEK Based Polymer–Cyclodextrin-Silica Inorganic Membrane for Direct Methanol Fuel Cell Application. International Journal of Renewable Energy Development, 6(2, 165-170. https://doi.org/10.14710/ijred.6.2.165-170

  1. Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-Hee [School of Chemical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea); Polymer Electrolyte Fuel Cell Research Center, Hydrogen and Fuel Cell Department, Korea Institute of Energy Research (KIER), 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Park, Jin-Soo; Yim, Sung-Dae; Park, Seok-Hee; Kim, Chang-Soo [Polymer Electrolyte Fuel Cell Research Center, Hydrogen and Fuel Cell Department, Korea Institute of Energy Research (KIER), 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea); Lee, Young-Moo [School of Chemical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea)

    2008-07-01

    Organic/inorganic composite membranes were prepared using two different polymers. BPO{sub 4} particles were introduced into polymers via an in situ sol-gel process. Pre-/post-sulfonated polymers were used to prepare composite membranes as matrix. Pre-sulfonated poly(aryl ether ketone) (SPAEK-6F) copolymer was synthesized via nucleophilic aromatic substitution. Degree of sulfonation was adjusted by the percentage of sulfonated monomer. Post-sulfonated poly(ether ether ketone) (SPEEK) was prepared using concentrated sulfuric acid as sulfonation agent. The membranes were characterized in terms of the ion-exchange capacity (IEC), proton conductivity, water uptake, AFM, SEM and their thermal properties. The SPAEK-6F plain membranes showed higher proton conductivity than that of the SPEEK plain membranes at similar water uptake or IEC due to their structural difference. SEM images of the composite membranes showed that the BPO{sub 4} particles were homogenously dispersed in the polymer matrices and BPO{sub 4} particle size was greatly influenced by polymer matrix. The SPAEK-6F/BPO{sub 4} composite membranes had much smaller BPO{sub 4} particle size than the SPEEK/BPO{sub 4} composite membranes due to well dispersion of BPO{sub 4} sol-like particulates in SPAEK-6F polymer solutions forming more hydrophobic/hydrophilic nanophase than SPEEK polymer solutions. The latter containing a few micrometer-scale BPO{sub 4} particles showed higher proton conductivity than the former containing hundreds nanometer-scale BPO{sub 4} particles at similar water uptake due to the increase in freezable water and effect of particle size. (author)

  2. Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol-gel process

    Science.gov (United States)

    Park, Seung-Hee; Park, Jin-Soo; Yim, Sung-Dae; Park, Seok-Hee; Lee, Young-Moo; Kim, Chang-Soo

    Organic/inorganic composite membranes were prepared using two different polymers. BPO 4 particles were introduced into polymers via an in situ sol-gel process. Pre-/post-sulfonated polymers were used to prepare composite membranes as matrix. Pre-sulfonated poly(aryl ether ketone) (SPAEK-6F) copolymer was synthesized via nucleophilic aromatic substitution. Degree of sulfonation was adjusted by the percentage of sulfonated monomer. Post-sulfonated poly(ether ether ketone) (SPEEK) was prepared using concentrated sulfuric acid as sulfonation agent. The membranes were characterized in terms of the ion-exchange capacity (IEC), proton conductivity, water uptake, AFM, SEM and their thermal properties. The SPAEK-6F plain membranes showed higher proton conductivity than that of the SPEEK plain membranes at similar water uptake or IEC due to their structural difference. SEM images of the composite membranes showed that the BPO 4 particles were homogenously dispersed in the polymer matrices and BPO 4 particle size was greatly influenced by polymer matrix. The SPAEK-6F/BPO 4 composite membranes had much smaller BPO 4 particle size than the SPEEK/BPO 4 composite membranes due to well dispersion of BPO 4 sol-like particulates in SPAEK-6F polymer solutions forming more hydrophobic/hydrophilic nanophase than SPEEK polymer solutions. The latter containing a few micrometer-scale BPO 4 particles showed higher proton conductivity than the former containing hundreds nanometer-scale BPO 4 particles at similar water uptake due to the increase in freezable water and effect of particle size.

  3. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures.

    Science.gov (United States)

    Bäuerlein, Edmund

    2003-02-10

    With evolution, Nature has ingeniously succeeded in giving rise to an impressive variety of inorganic structures. Every organism that synthesizes biogenic minerals does so in a form that is unique to that species. This biomineralization is apparently biologically controlled. It is thus expected that both the synthesis and the form of every specific biogenic mineral is genetically determined and controlled. An investigation of the mechanism of biomineralization has only become possible with the development of modern methods in molecular biology. Unicellular organisms such as magnetic bacteria, calcareous algae, and diatoms, all of which are amongst the simplest forms of life, are particularly suited to be investigated by these methods. Crystals and composites of proteins and amorphous inorganic polymers are formed as complex structures within these organisms; these structures are not known in conventional inorganic chemistry.

  4. Zeolite inorganic scaffolds for novel biomedical application: Effect of physicochemical characteristic of zeolite membranes on cell adhesion and viability

    Science.gov (United States)

    Tavolaro, Palmira; Catalano, Silvia; Martino, Guglielmo; Tavolaro, Adalgisa

    2016-09-01

    The design, preparation and selection of inorganic materials useful as functional scaffolds for cell adhesion is a complex question based both on the understanding of the chemical behavior of the materials and individual cells, and on their interactions. Pure zeolite membranes formed from synthetic crystals offer chemically-capable being modulated silanolic surfaces that are amenable to adhesion and growth of fibroblasts. We report the facile preparation of reusable, very longlasting, biocompatible, easily sterilized synthetic scaffolds in a zeolite membrane configuration, which are very stable in aqueous media (apart from ionic strength and pH values), able to adsorb pollutant species and to confine undesired toxic ions (present in culture media). This may ultimately lead to the development of cell supports for economic antibiotic-free culture media.

  5. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O{sub 2}, N{sub 2} and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO

  6. Gas permeability of ENR/PVC membrane with the addition of inorganic fillers

    Science.gov (United States)

    Nor, Farhan Mohd; Abdullah, Ibrahim; Othaman, Rizafizah

    2013-11-01

    Epoxidized natural rubber (ENR) was blended with polyvinyl chloride to form a flexible and porous membrane. SiO2 and MgO were added into the membrane for pore formation and the effects of the addition was investigated by means of FTIR, TGA, SEM, EDX and gas permeability towards CO2 and N2 gases. FTIR result showed the presence of Si-O-Si asymmetric stretching at the absorption peak of 467 cm-1 for ENR/PVC/SiO2 membrane and MgO signature peak at 3700 cm-1 for ENR/PVC/MgO membrane. Thermal analysis showed that the thermal stability of ENR/PVC membrane increased with the addition of fillers. Morphological studies prove that subsequently, the pores in the membranes increased showing that some of the added fillers were drawn towards the water leaving empty spaces and tracks. The remaining fillers are homogenously distributed on the surface of the membranes. CO2 and N2 gas permeability increased with increasing filler content and the permeability of ENR/PVC/SiO2 membranes towards CO2 and N2 gasses was higher than ENR/PVC/MgO membranes.

  7. A density functional theory study of hydrogen occupation in VNiTi alloys used for dense metal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Evtimova, Jenny, E-mail: j.evtimova@itm.cnr.it [Institute on Membrane Technology (CNR-ITM), Italian National Research Council, Rende, CS 87030 (Italy); Department of Environmental and Chemical Engineering (DIATIC), University of Calabria, Rende, CS 87030 (Italy); Drioli, Enrico; De Luca, Giorgio [Institute on Membrane Technology (CNR-ITM), Italian National Research Council, Rende, CS 87030 (Italy)

    2016-04-25

    Attempting to further the development of non-noble dense metal membranes for H{sub 2} separation we conduct a density functional theory study of hydrogen occupancy in V-based alloys with Ni and Ti substitutional solutes. Clusters consisting of 19 quasi-randomly coordinated metal atoms are built to model body-centred cubic VNi and VNiTi alloys with different stoichiometry. The total energy of the target systems is calculated using spatially localised functions. The disposition of a pair of hydrogen atoms within the metal lattice is explored and the binding energy in both tetrahedral and octahedral interstices is evaluated. Large spatial distance between absorbed H atoms is favoured for each of the interstitial sites, rejecting the idea of H clustering in the investigated solid solutions. Moreover, simultaneous occupation of both tetrahedral and octahedral interstices is found to be energetically feasible despite the common believe for solely tetrahedral occupancy in metals with body-centred cubic structure. Nonetheless, the most favourable absorption site depends on the solute concentration in the V-based alloys. Calculations of the binding energy using cluster models with different metal atomic ratio provide information on the hydrogen absorption affinity as a function of alloy composition. Enhancement of the absorption affinity with added Ti until certain limit is found, while Ni solutes influence this property in the opposite direction. The applied methodology can be used further in high-throughput calculations to screen various metal alloys for hydrogen separation membranes. - Highlights: • Large distance between H atoms in VNiTi is favoured for sites of the same symmetry. • Simultaneous occupation of T and O sites in VNiTi alloys is energetically feasible. • Variation of alloy composition influences the site preference for H occupation. • Increase of the Ti:Ni ratio by V = const increases the hydrogen absorption affinity.

  8. Microfiltration Process by Inorganic Membranes for Clarification of TongBi Liquor

    Directory of Open Access Journals (Sweden)

    Minyan Huang

    2012-02-01

    Full Text Available Membrane separation is an alternative separation technology to the conventional method of filtration. Hence, it has attracted use in the purification and concentration of Chinese Herbal Medicine Extracts (CHMEs. The purpose of this work was to study the process of microfiltration of Tongbi liquor (TBL, a popular Chinese herbal drink, using ceramic membranes. Zirconium oxide and aluminum oxide membranes with pore mean sizes of 0.2 μm and 0.05 μm, respectively, are used for comparisons in terms of flux, transmittance of the ingredients, physical-chemical parameters, removal of macromolecular materials and fouling resistance. The results show that 0.2 μm zirconium oxide membrane is more suitable. The stable permeate flux reaches 135 L·h−1·m−2, the cumulative transmittance of the indicator is 65.53%. Macromolecular materials, such as starch, protein, tannin, pectin and total solids were largely eliminated in retentate after filtration using 0.2 μm ZrO2 ceramic membrane, resulting in clearer TBL. Moreover, this work also reveals that continuous ultrasound could strengthen membrane process that the permeate flux increases significantly. This work demonstrates that the purification of CHME with ceramic membranes is possible and yielded excellent results.

  9. Microfiltration process by inorganic membranes for clarification of TongBi liquor.

    Science.gov (United States)

    Li, Bo; Huang, Minyan; Fu, Tingming; Pan, Linmei; Yao, Weiwei; Guo, Liwei

    2012-02-01

    Membrane separation is an alternative separation technology to the conventional method of filtration. Hence, it has attracted use in the purification and concentration of Chinese Herbal Medicine Extracts (CHMEs). The purpose of this work was to study the process of microfiltration of Tongbi liquor (TBL), a popular Chinese herbal drink, using ceramic membranes. Zirconium oxide and aluminum oxide membranes with pore mean sizes of 0.2 μm and 0.05 μm, respectively, are used for comparisons in terms of flux, transmittance of the ingredients, physical-chemical parameters, removal of macromolecular materials and fouling resistance. The results show that 0.2 μm zirconium oxide membrane is more suitable. The stable permeate flux reaches 135 L·h(-1)·m(-2), the cumulative transmittance of the indicator is 65.53%. Macromolecular materials, such as starch, protein, tannin, pectin and total solids were largely eliminated in retentate after filtration using 0.2 μm ZrO2 ceramic membrane, resulting in clearer TBL. Moreover, this work also reveals that continuous ultrasound could strengthen membrane process that the permeate flux increases significantly. This work demonstrates that the purification of CHME with ceramic membranes is possible and yielded excellent results.

  10. Hydrogen Permeation Properties of Perovskite-type BaCe0.9Mn0.1O3-δDense Ceramic Membrane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The electrical conduction properties of dense BaCe0.9Mn0.1O3-δ (BCM10) membrane were investigated in the temperature range of 600-900℃. High ionic and electronic conductivities at elevated temperatures make BCM10 a potential ceramic material for hydrogen separation. Hydrogen permeation through BCM10 membranes was studied using a hightemperature permeation cell. Little hydrogen could be detected at the sweep side. However,appreciable hydrogen can permeate through BCM10 membrane coated with porous platinum black,which shows that the process of hydrogen permeation through BCM10 membranes was controlled by the catalytic decomposition and recomposition of hydrogen on the surfaces of BCM10 membranes.

  11. Microfiltration Process by Inorganic Membranes for Clarification of TongBi Liquor

    OpenAIRE

    Li, Bo; HUANG, MINYAN; Fu, Tingming; Pan, Linmei; Yao, Weiwei; Guo, Liwei

    2012-01-01

    Membrane separation is an alternative separation technology to the conventional method of filtration. Hence, it has attracted use in the purification and concentration of Chinese Herbal Medicine Extracts (CHMEs). The purpose of this work was to study the process of microfiltration of Tongbi liquor (TBL), a popular Chinese herbal drink, using ceramic membranes. Zirconium oxide and aluminum oxide membranes with pore mean sizes of 0.2 μm and 0.05 μm, respectively, are used for comparisons in ter...

  12. Inorganic-organic hybrid membranes with anhydrous proton conduction prepared from 3-aminopropyltriethoxysilane and sulfuric acid by the sol-gel method.

    Science.gov (United States)

    Tezuka, Teruaki; Tadanaga, Kiyoharu; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2006-12-27

    Inorganic-organic hybrid membranes with anhydrous proton conduction were prepared from 3-aminopropyltriethoxysilane and H2SO4 by the sol-gel method. The membrane has a unique structure: a hexagonal phase formed by the stacking of rodlike polysiloxanes with ion complexes of ammonium groups and HSO4- extruded outside. The membranes showed high conductivity of 2 x 10-3 S cm-1 at 200 degrees C under dry atmosphere. In the membrane, protons probably migrate through the outside of the rodlike polysiloxanes along hydrogen-bond chains formed among HSO4- anions.

  13. Inorganic fouling of an anaerobic membrane bioreactor treating leachate from the organic fraction of municipal solid waste (OFMSW) and a polishing aerobic membrane bioreactor.

    Science.gov (United States)

    Trzcinski, Antoine P; Stuckey, David C

    2016-03-01

    The treatment of leachate (Average TCOD=11.97 g/L, 14.4% soluble) from the organic fraction of municipal solid waste was investigated using a Submerged Anaerobic Membrane BioReactor (SAMBR), followed by an aerobic membrane bioreactor (AMBR) to polish this effluent. This paper investigated the exact nature and composition of the inorganic precipitate in each of the reactors in the process. The flux decreased due to precipitation of calcium as monohydrocalcite (CaCO3·H2O) containing traces of metals onto the SAMBR membrane because of high CO2 partial pressures. Precipitation of calcium in the AMBR was also observed due to a higher pH. In this case, phosphorus also precipitated with calcium in two different phases: the background layer contained calcium, oxygen, carbon and small amounts of phosphorus (2-6.7%), while flakes containing calcium, oxygen and higher amounts of phosphorus (10-17%) were probably hydroxyapatite (Ca5(PO4)3OH). Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A positively charged silver nanowire membrane for rapid on-site swabbing extraction and detection of trace inorganic explosives using a portable Raman spectrometer

    Institute of Scientific and Technical Information of China (English)

    Yu-e Shi; Wenshou Wang; Jinhua Zhan

    2016-01-01

    The sensitive and on-site detection of inorganic explosives has raised serious concerns regarding public safety.However,high stability and non-volatility features currently limit their rapid on-site detection.Surface-enhanced Raman spectroscopy (SERS) is emerging as a powerful technique for the trace-level detection of different molecules.Plasmonic Ag nanowires were produced by a hydrothermal synthesis method using polyvinylpyrrolidone (PVP) as a negatively charged stabilizer.Here,we report a rapid detection method for inorganic explosives based on a simple surface swab with a positively charged diethyldithiocarbamate-modified Ag nanowire membrane coupled with SERS.This membrane,serving as an excellent SERS substrate with high uniformity,stability,and reusability,can capture both typical oxidizers in inorganic explosives and organic nitro-explosives,via electrostatic interaction.The detection level of perchlorates (ClO4-),chlorates (ClO3-),nitrates (NO3-),picric acid,and 2,4-dinitrophenol is as high as 2.0,1.7,0.1,45.8,and 36.6 ng,respectively.In addition,simulated typical inorganic explosives such as black powders,firecrackers,and match heads could also be detected.We believe that this membrane represents an attractive alternative for rapid on-site detection of inorganic explosives with high efficiency.

  15. Composite Membranes Containing Nanoparticles of Inorganic Ion Exchangers for Electrodialytic Desalination of Glycerol

    Science.gov (United States)

    Dzyazko, Yu S.; Rozhdestvenska, L. M.; Vasilyuk, S. L.; Kudelko, K. O.; Belyakov, V. N.

    2017-06-01

    Composite membranes were obtained by modification of heterogeneous polymer cation and anion-exchange membranes with nanoparticles of zirconium hydrophosphate and hydrated zirconium dioxide, respectively. The ion-exchange materials were investigated with the methods of electron microscopy, potentiometry, voltammetry, and impedance spectroscopy. Single nanoparticles, which were precipitated in aqueous media, form aggregates, when the composites are in a contact with polar organic solvent. Both single nanoparticles (up to 10 nm) and their aggregates (up to 200 nm) were precipitated in ion-exchange polymers in glycerol media. Non-aggregated nanoparticles improve electrical conductivity of the ion-exchange materials, the aggregates are barriers against fouling. The membranes were applied to NaCl removal from highly concentrated glycerine-water mixture containing organic additives (byproduct of biodiesel production). As opposite to pristine materials, the composites demonstrate stability against fouling.

  16. SPEEK-MO{sub 2} (M = Zr, Sn) composite membranes for direct ethanol fuel cell: an inorganic modification of proton conductive

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguti, Carla A.; Gomes, Ailton S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano], e-mail: kawagutica@gmail.com

    2007-07-01

    Organic-inorganic composite membranes based on sulfonated poly(ether ether ketone) (SPEEK) for application in the direct ethanol fuel cell (DEFC) were synthesized. Particle of sulfated zirconia/tin oxide (SO{sub 4}{sup 2-}/ZrO{sub 2}, SnO{sub 2}, SO{sub 3}-/SnO{sub 2}) was synthesized by sol-gel method, and composite membranes with different oxide and different oxide contents were prepared from a mixture of SO{sub 4}{sup 2-}/ZrO{sub 2} or SnO{sub 2} or SO{sub 3}-/SnO{sub 2} powder and SPEEK solution. The physico-chemical properties of the membranes were studied by water or ethanol solution uptake measurements, scanning electron microscopy (SEM), the membrane's water and ethanol permeabilities were evaluated in pervaporation experiments and the conductivity determined by impedance spectroscopy. The ethanol permeabilities were decreased by inorganic modification. At several temperatures analysed, all SPEEK-MO{sub 2} composite exhibited better ethanol solution uptake than water uptake and this sorption is decreased when inorganic particles are add. A reduction of the proton conductivity by the inorganic modification was observed. (author)

  17. Sialic acid mediates the initial binding of positively charged inorganic particles to alveolar macrophage membranes.

    Science.gov (United States)

    Gallagher, J E; George, G; Brody, A R

    1987-06-01

    Pulmonary macrophages phagocytize inhaled particles and are postulated to play a role in the development of pulmonary interstitial fibrogenesis. The basic biologic mechanisms through which inhaled particles bind to macrophage membranes and subsequently are phagocytized remain unclear. We hypothesize that positively charged particles bind to negatively charged sialic acid (SA) residues on macrophage membranes. Alveolar Macrophages (AM) were collected by saline lavage from normal rat lungs. The cells adhered to plastic coverslips in serum-free phosphate buffered saline at 37 degrees C for 45 min and then were maintained at 4 degrees C for the binding experiments. Even distribution of SA groups on AM surfaces was demonstrated by scanning electron microscopy of wheat germ agglutinin (WGA) conjugated to 50 nm gold spheres. The WGA is a lectin that binds specifically to sialic acid, and pretreatment of AM with this lectin prevented the binding of positively charged carbonyl iron (C-Fe) spheres, aluminum (Al) spheres, and chrysotile asbestos fibers to AM surfaces. Limulus protein, another lectin with binding specificity for SA, similarly blocked the binding of positively charged spheres and chrysotile asbestos fibers but not negatively charged glass spheres or crocidolite asbestos fibers. Con A and ricin, lectins that bind to mannose and galactose residues, respectively, did not block particle binding. When both positively charged iron spheres and negatively charged glass spheres were prebound to AM membranes, subsequent treatment with WGA displaced only the positively charged spheres from macrophage surfaces. Con A and ricin had no effect on prebound positively charged C-Fe and Al spheres.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Inorganic Thin-film Sensor Membranes with PLD-prepared Chalcogenide Glasses: Challenges and Implementation

    Directory of Open Access Journals (Sweden)

    Michael J. Schöning

    2004-10-01

    Full Text Available Abstract: Chalcogenide glasses offer an excellent “challenge” for their use and implementation in sensor arrays due to their good sensor-specific advantages in comparison to their crystalline counterparts. This paper will give an introduction on the preparation of chalcogenide glasses in the thin-film state. First, single microsensors have been prepared with the methods of semiconductor technology. In a next step, three microsensors are implemented onto one single silicon substrate to an “one chip” sensor array. Different ionselective chalcogenide glass membranes (PbSAgIAs2S3, CdSAgIAs2S3, CuAgAsSeTe and TlAgAsIS were prepared by means of the pulsed laser deposition (PLD process. The different sensor membranes and structures have been physically characterized by means of Rutherford backscattering spectrometry, scanning electron microscopy and video microscopy. The electrochemical behavior has been investigated by potentiometric measurements.

  19. Oxygen permeation in thin, dense Ce0.9Gd0.1O 1.95- membranes II. experimental determination

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Søgaard, Martin; Glasscock, Julie

    2011-01-01

    Thin (∼30 m), dense Ce0.9Gd0.1O1.95- (CGO10) membranes (5 5 cm2+) supported on a porous NiO/YSZ substrate were fabricated by tape casting, wet powder spraying and lamination. A La 0.58Sr0.4Co0.2Fe0.8O 3-δ/Ce0.9Gd0.1O1.95- (LSCF/CGO10) composite cathode was applied by screen printing. Oxygen...... compartment. The performance of the membrane was also investigated under varying CH 4 and H2O gas mixtures at 1106 K. The oxygen flux increased with decreasing steam to carbon ratio and was found to exceed 10 N mL min-1 cm-2 of O2 for steam to carbon ratios below 4:3. Post-test analysis of the tested membrane...

  20. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.

    2012-05-03

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics are correlated with the suitability of such materials in the fabrication of LTA/Matrimid mixed-matrix membranes (MMMs) for CO 2/CH 4 separations. The four functionalization methods studied in this work produce surface nanostructures that may appear superficially similar under SEM observation but in fact differ considerably in shape, size, surface coverage, surface area/roughness, degree of attachment to the zeolite surface, and degree of zeolite pore blocking. The evaluation of these characteristics by a combination of TEM, HRTEM, N 2 physisorption, multiscale compositional analysis (XPS, EDX, and ICP-AES elemental analysis), and diffraction (ED and XRD) allows improved understanding of the origin of disparate gas permeation properties observed in MMMs made with four types of surface-modified zeolite LTA materials, as well as a rational selection of the method expected to result in the best enhancement of the desired properties (in the present case, CO 2/CH 4 selectivity increase without sacrificing permeability). A method based on ion exchange of the LTA with Mg 2+, followed by base-induced precipitation and growth of MgO xH y nanostructures, deemed "ion exchange functionalization" here, offers modified particles with the best overall characteristics resulting in the most effective MMMs. LTA/Matrimid MMMs containing ion exchange functionalized particles had a considerably higher CO 2/CH 4 selectivity (∼40) than could be obtained with the other functionalization techniques (∼30), while maintaining a CO 2 permeability of ∼10 barrers. A parallel study on pure silica MFI surface nanostructures is also presented to compare and contrast with the zeolite LTA case. © 2012 American Chemical Society.

  1. 无机陶瓷膜在含油废水处理中的应用%Application of Inorganic Ceramic Membrane in Treatment of Oily Wastewater

    Institute of Scientific and Technical Information of China (English)

    张庆国

    2013-01-01

    The research and development of inorganic ceramic membrane were introduced, and preparation methods of inorganic ceramic membrane were discussed as well as their application in treatment of oily waste water,such as emulsion wastewater, oil field produced water, cleaning fluid, food industry oily wastewater and petrochemical oily wastewater.%  介绍无机陶瓷膜的研究发展概况,并简要介绍无机陶瓷膜的制备方法及其在含油废水(乳化液废水、油田采出水、清洗液、食品工业含油废水和石油化工含油废水)处理中的应用。

  2. Co-current and counter-current configurations for ethanol steam reforming in a dense Pd–Ag membrane reactor

    NARCIS (Netherlands)

    Gallucci, F.; De Falco, M.; Tosti, S.; Marrelli, L.; Basile, A.

    2008-01-01

    The ethanol steam-reforming reaction to produce pure hydrogen has been studied theoretically. A mathematical model has been formulated for a traditional system and a palladium membrane reactor packed with a Co-based catalyst and the simulation results related to the membrane reactor for both co-curr

  3. Imidazolium-Functionalized Poly(arylene ether sulfone) Anion-Exchange Membranes Densely Grafted with Flexible Side Chains for Fuel Cells.

    Science.gov (United States)

    Guo, Dong; Lai, Ao Nan; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Liu, Qing Lin

    2016-09-28

    With the intention of optimizing the performance of anion-exchange membranes (AEMs), a set of imidazolium-functionalized poly(arylene ether sulfone)s with densely distributed long flexible aliphatic side chains were synthesized. The membranes made from the as-synthesized polymers are robust, transparent, and endowed with microphase segregation capability. The ionic exchange capacity (IEC), hydroxide conductivity, water uptake, thermal stability, and alkaline resistance of the AEMs were evaluated in detail for fuel cell applications. Morphological observation with the use of atomic force microscopy and small-angle X-ray scattering reveals that the combination of high-local-density-type and side-chain-type architectures induces distinguished nanophase separation in the AEMs. The as-prepared membranes have advantages in effective water management and ionic conductivity over traditional main-chain polymers. Typically, the conductivity and IEC were in the ranges of 57.3-112.5 mS cm(-1) and 1.35-1.84 mequiv g(-1) at 80 °C, respectively. Furthermore, the membranes exhibit good thermal and alkaline stability and achieve a peak power density of 114.5 mW cm(-2) at a current density of 250.1 mA cm(-2). Therefore, the present polymers containing clustered flexible pendent aliphatic imidazolium promise to be attractive AEM materials for fuel cells.

  4. Organic-inorganic crosslinked and hybrid membranes derived from sulfonated poly(arylene ether sulfone)/silica via sol-gel process

    Science.gov (United States)

    Feng, Shaoguang; Shang, Yuming; Wang, Yingzi; Xie, Xiaofeng; Mathur, V. K.; Xu, Jingming

    A series of covalently crosslinkable organic-inorganic hybrid membranes have been prepared from sulfonated poly(arylene ether sulfone) (SPAES) with pendant propenyl moiety and various amounts of vinyl substituted silica via sol-gel process which are then thermally crosslinked in the presence of benzoyl peroxide (BPO) initiator. The obtained membranes are characterized in terms of oxidative stability, thermal property, ion exchange capacity (IEC), water uptake, swelling ratio in methanol aqueous solution, proton conductivity, and methanol permeability coefficient. The results indicate that the oxidative stability and thermal stability of the hybrid membranes are improved. Moreover, introduction of silica reduces the water uptake and methanol swelling of membranes. The swelling ratio of membranes in 2 mol L -1 methanol aqueous solution at 80 °C slowly decreases from 26 to 19% with the increase of SiO 2 content from 0 to 12 wt.%. Furthermore, with the increase in silica content, the methanol permeability coefficient of the hybrid membranes decreases at first and then increases. When the silica content reaches 8 wt.%, the methanol permeability coefficient is at the minimum of 6.02 × 10 -7 cm 2 s -1, a 2.64-fold decrease compared with that of the pristine SPAES membrane. Moreover, the proton conductivity is found to be at about 95% of that of pristine polymer at that silica content.

  5. Organic-inorganic crosslinked and hybrid membranes derived from sulfonated poly(arylene ether sulfone)/silica via sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shaoguang; Shang, Yuming; Wang, Yingzi; Xie, Xiaofeng; Xu, Jingming [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Mathur, V.K. [Department of Chemical Engineering, University of New Hampshire, NH 03824 (United States)

    2010-05-01

    A series of covalently crosslinkable organic-inorganic hybrid membranes have been prepared from sulfonated poly(arylene ether sulfone) (SPAES) with pendant propenyl moiety and various amounts of vinyl substituted silica via sol-gel process which are then thermally crosslinked in the presence of benzoyl peroxide (BPO) initiator. The obtained membranes are characterized in terms of oxidative stability, thermal property, ion exchange capacity (IEC), water uptake, swelling ratio in methanol aqueous solution, proton conductivity, and methanol permeability coefficient. The results indicate that the oxidative stability and thermal stability of the hybrid membranes are improved. Moreover, introduction of silica reduces the water uptake and methanol swelling of membranes. The swelling ratio of membranes in 2 mol L{sup -1} methanol aqueous solution at 80 C slowly decreases from 26 to 19% with the increase of SiO{sub 2} content from 0 to 12 wt.%. Furthermore, with the increase in silica content, the methanol permeability coefficient of the hybrid membranes decreases at first and then increases. When the silica content reaches 8 wt.%, the methanol permeability coefficient is at the minimum of 6.02 x 10{sup -7} cm{sup 2} s{sup -1}, a 2.64-fold decrease compared with that of the pristine SPAES membrane. Moreover, the proton conductivity is found to be at about 95% of that of pristine polymer at that silica content. (author)

  6. Dual effective organic/inorganic hybrid star-shaped polymer coatings on ultrafiltration membrane for bio- and oil-fouling resistance.

    Science.gov (United States)

    Kim, Dong-Gyun; Kang, Hyo; Han, Sungsoo; Lee, Jong-Chan

    2012-11-01

    Amphiphilic organic/inorganic hybrid star-shaped polymers (SPP) were prepared by atom transfer radical polymerization (ATRP) using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and 3-(3,5,7,9,11,13,15-heptacyclohexyl-pentacyclo[9.5.1.1³,⁹.1⁵,¹⁵.1⁷,¹³]-octasiloxane-1-yl)propyl methacrylate (MA-POSS) as monomers and octakis(2-bromo-2-methylpropionoxypropyldimethylsiloxy)-octasilsesquioxane (OBPS) as an initiator. Star-shaped polymers (SPM) having PEGMA and methyl methacrylate (MMA) moieties were also prepared for comparative purposes. Polysulfone (PSf) ultrafiltration membranes coated with the SPP showed higher bio- and oil-fouling resistance and flux-recovery ability than the bare PSf membrane. Moreover, the SPP-coated membranes exhibited better antifouling properties than the SPM-coated membrane when they were used for oil/water emulsion filtration. The dual effective antifouling properties of the SPP were ascribed to the simultaneous enrichment of hydrophilic PEG and hydrophobic POSS moieties on the membrane surfaces resulting in the decrease in interactions with proteins and the increase in repellence to oils.

  7. Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera

    Science.gov (United States)

    Mitchell, Kathryn J.; Pinton, Paolo; Varadi, Aniko; Tacchetti, Carlo; Ainscow, Edward K.; Pozzan, Tullio; Rizzuto, Rosario; Rutter, Guy A.

    2001-01-01

    The role of dense core secretory vesicles in the control of cytosolic-free Ca2+ concentrations ([Ca2+]c) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2–synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet β-cells: (a) increases in [Ca2+]c cause a prompt increase in intravesicular-free Ca2+ concentration ([Ca2+]SV), which is mediated by a P-type Ca2+-ATPase distinct from the sarco(endo) plasmic reticulum Ca2+-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca2+ pumps; (b) steady state Ca2+ concentrations are 3–5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca2+; (c) inositol (1,4,5) trisphosphate has no impact on [Ca2+]SV in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca2+]SV. Thus, secretory vesicles represent a dynamic Ca2+ store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca2+-induced Ca2+ release from vesicles docked at the plasma membrane could participate in triggering exocytosis. PMID:11571310

  8. Dense core secretory vesicles revealed as a dynamic Ca(2+) store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera.

    Science.gov (United States)

    Mitchell, K J; Pinton, P; Varadi, A; Tacchetti, C; Ainscow, E K; Pozzan, T; Rizzuto, R; Rutter, G A

    2001-10-01

    The role of dense core secretory vesicles in the control of cytosolic-free Ca(2+) concentrations ([Ca(2+)](c)) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2-synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet beta-cells: (a) increases in [Ca(2+)](c) cause a prompt increase in intravesicular-free Ca(2+) concentration ([Ca(2+)]SV), which is mediated by a P-type Ca(2+)-ATPase distinct from the sarco(endo) plasmic reticulum Ca(2+)-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca(2+) pumps; (b) steady state Ca(2+) concentrations are 3-5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca(2+); (c) inositol (1,4,5) trisphosphate has no impact on [Ca(2+)](SV) in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca(2+)](SV). Thus, secretory vesicles represent a dynamic Ca(2+) store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca(2+)-induced Ca(2+) release from vesicles docked at the plasma membrane could participate in triggering exocytosis.

  9. One-pot biosynthesis of polymer-inorganic nanocomposites

    Science.gov (United States)

    Geng, Jiaqing; Yang, Dong; Zhu, Yong; Cao, Lichao; Jiang, Zhongyi; Sun, Yan

    2011-06-01

    A biological method is demonstrated to fabricate the polymer-inorganic nanocomposites (PINCs) utilizing bacterium as an efficient and versatile biofactory. Gluconacetobacter xylinum that can produce bacterial cellulose is incubated in the culture medium containing titanium or silica precursor. The PINCs can be acquired under the elaborate control of the culturing condition of G. xylinum, in which the formation of inorganic nanoparticles about several tens of nanometers in size synchronizes the fabrication of reticulated bacterial cellulose membrane composed of dense and finely branched nanofibers about 60-120 nm in diameter. The composition and chemical states, morphology, thermal stability of the inorganic nanoparticles, and nanocomposites were extensively characterized. A tentative mechanism for the formation of PINCs is proposed. It is hoped that this study may establish a generic platform toward facile and green synthesis of nanocomposite materials.

  10. One-pot biosynthesis of polymer-inorganic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Geng Jiaqing [Tianjin University, Key Laboratory for Green Technology, School of Chemical Engineering and Technology (China); Yang Dong [Tianjin University, Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology (China); Zhu Yong; Cao Lichao; Jiang Zhongyi, E-mail: zhyjiang@tju.edu.cn [Tianjin University, Key Laboratory for Green Technology, School of Chemical Engineering and Technology (China); Sun Yan [Tianjin University, Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology (China)

    2011-06-15

    A biological method is demonstrated to fabricate the polymer-inorganic nanocomposites (PINCs) utilizing bacterium as an efficient and versatile biofactory. Gluconacetobacter xylinum that can produce bacterial cellulose is incubated in the culture medium containing titanium or silica precursor. The PINCs can be acquired under the elaborate control of the culturing condition of G. xylinum, in which the formation of inorganic nanoparticles about several tens of nanometers in size synchronizes the fabrication of reticulated bacterial cellulose membrane composed of dense and finely branched nanofibers about 60-120 nm in diameter. The composition and chemical states, morphology, thermal stability of the inorganic nanoparticles, and nanocomposites were extensively characterized. A tentative mechanism for the formation of PINCs is proposed. It is hoped that this study may establish a generic platform toward facile and green synthesis of nanocomposite materials.

  11. COOH-terminal isoleucine of lysosome-associated membrane protein-1 is optimal for its efficient targeting to dense secondary lysosomes.

    Science.gov (United States)

    Akasaki, Kenji; Suenobu, Michihisa; Mukaida, Maki; Michihara, Akihiro; Wada, Ikuo

    2010-12-01

    Lysosome-associated membrane protein-1 (LAMP-1) consists of a highly glycosylated luminal domain, a single-transmembrane domain and a short cytoplasmic tail that possesses a lysosome-targeting signal (GYQTI(382)) at the COOH terminus. It is hypothesized that the COOH-terminal isoleucine, I(382), could be substituted with any other bulky hydrophobic amino acid residue for LAMP-1 to exclusively localize in lysosomes. In order to test this hypothesis, we compared subcellular distribution of four substitution mutants with phenylalanine, leucine, methionine and valine at the COOH-terminus (termed I382F, I382L, I382M and I382V, respectively) with that of wild-type (WT)-LAMP-1. Double-labelled immunofluorescence analyses showed that these substitution mutants were localized as significantly to late endocytic organelles as WT-LAMP-1. However, the quantitative subcellular fractionation study revealed different distribution of WT-LAMP-1 and these four COOH-terminal mutants in late endosomes and dense secondary lysosomes. WT-LAMP-1 was accumulated three to six times more in the dense lysosomal fraction than the four mutants. The level of WT-LAMP-1 in late endosomal fraction was comparable to those of I382F, I382M and I382V. Conversely, I382L in the late endosomal fraction was approximately three times more abundant than WT-LAMP-1. These findings define the presence of isoleucine residue at the COOH-terminus of LAMP-1 as critical in governing its efficient delivery to secondary lysosomes and its ratio of lysosomes to late endosomes.

  12. Dense Breasts

    Science.gov (United States)

    ... also appear white on mammography, they can be hidden by or within dense breast tissue. Other imaging ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  13. Superhydrophobic and superhydrophilic surface-enhanced separation performance of porous inorganic membranes for biomass-to-biofuel conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Michael Z.; Engtrakul, Chaiwat; Bischoff, Brian L.; Jang, Gyoung G.; Theiss, Timothy J.; Davis, Mark F.

    2016-11-14

    A new class of porous membranes is introduced to provide unique separation mechanisms by surface interactions and capillary condensation. High-performance architectural surface selective (HiPAS) membranes were designed for high perm-selective flux and high-temperature tolerance for hot vapor processing and liquid processing Due to surface-enhanced selectivity, larger-fluxes were achieved by utilizing larger pore sizes (~8 nm for vapor phase and micron-sized pores for liquid phase separations). This paper describes a membrane-based separation concept for biomass conversion pathways and demonstrates the initial data for selective permeation of toluene-water and toluene-phenol-water relevant to biofuel processing.

  14. Research progress in inorganic-organic hybrid proton exchange membrane based on phosphonic(phosphoric) acid%膦(磷)酸基无机-有机杂化质子交换膜的研究进展

    Institute of Scientific and Technical Information of China (English)

    郭芷含; 沈春晖; 陈成; 孔更金

    2012-01-01

    综述了通过溶胶-凝胶法制备的质子交换膜(PEM),即膦(磷)酸基无机-有机杂化PEM的发展状况.对比分析了掺杂磷酸和键合膦酸无机-有机杂化膜的稳定性以及膦(磷)酸与聚硅氧烷网络结构的连接方式对膜性能的影响.对膦酸基无机.有机杂化膜的发展前景进行了展望.%The development of inorganic-organic hybrid proton exchange membrane(PEM) based on phosphonic(phosphoric) acid was summarized, which were prepared from organosiloxane by sol-gel method. The stability between inorganic-organic hybrid membranes doped phosphoric acid and inorganic-organic hybrid membranes chemically grafted phosphonic acid was compared, then effect of connection ways of phosphonic (phosphoric) acid with the polysiloxane network structure on the membrane performance was discussed. The prospect development of inorganic-organic hybrid membranes based on phosphoric acid was described.

  15. Inorganic Fe2+ formation upon Fe-S protein thermodestruction in the membranes of thermophilic cyanobacteria: Mössbauer spectroscopy study.

    Science.gov (United States)

    Kaurov YuN; Novakova, A A; Davletshina, L N; Aleksandrov AYu; Khval'kovskaya, E A; Semin, B K; Belevich, N P; Ivanov, I I; Rubin, A B

    1999-04-30

    A model description of the Mössbauer spectrum (80 K) of native membranes of the thermophilic cyanobacterium Synechococcus elongatus is suggested on the basis of the known values of quadrupole splitting (deltaE(Q)) and isomer shift (deltaFe) for the iron-containing components of the photosynthetic apparatus. Using this approach, we found that heating the membranes at 70-80 K results in a decrease of doublet amplitudes belonging to F(X), F(A), F(B) and ferredoxin and simultaneous formation of a new doublet with deltaE(Q) = 3.10 mm/s and delta-Fe = 1.28 mm/s, typical of inorganic hydrated forms of Fe2+. The inhibition of electron transfer via photosystem I to oxygen, catalyzed by ferredoxin, occurs within the same range of temperatures. The data demonstrate that the processes of thermoinduced Fe2+ formation and distortions in the photosystem I electron transport in the membranes are interrelated and caused mainly by the degradation of ferredoxin. The possible role of Fe2+ formation in the damage of the photosynthetic apparatus resulting from heating and the action of other extreme factors is discussed.

  16. A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes

    Science.gov (United States)

    Gong, Chunli; Zheng, Xuan; Liu, Hai; Wang, Guangjin; Cheng, Fan; Zheng, Genwen; Wen, Sheng; Law, Wing-Cheung; Tsui, Chi-Pong; Tang, Chak-Yin

    2016-09-01

    Remarkable progress has been made on the use of polymer electrolyte membranes (PEMs) for renewable-energy-related research. In particular, carbon nanotubes (CNTs) have emerged as versatile nanomaterials to modify PEMs. However, the inert ionic conduction ability and possible short-circuiting risk are the two major obstacles to their further development. In this work, CNTs are firstly functionalized with an inorganic proton conductor, boron phosphate (BPO4), using a facile polydopamine-assisted sol-gel method to yield BPO4@CNTs. This new additive is then used to modify sulfonated poly(ether ether ketone) (SPEEK). Polydopamine coating layer can act as an extraordinary glue to homogeneously adhere BPO4 nanoparticles on CNTs, thereby not only reducing the risk of short-circuiting, but also fabricating new proton-conducting pathways in the composite membranes. A comprehensive characterization reveals that the thermal stability, tensile properties, and dimensional stability of PEMs are significantly improved. Compared with pure SPEEK, the proton conductivity of SPEEK/BPO4@CNTs-2 is improved by 45% and 150% at 20 °C and at 80 °C, respectively. Furthermore, the H2/O2 cell performance of SPEEK/BPO4@CNTs-2 membrane exhibits a peak power density of 340.7 mW cm-2 at 70 °C, which is significantly better than that of pure SPEEK (254.2 mW cm-2), demonstrating the great potential of proton conductors-functionalized CNTs in PEMs.

  17. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations

    National Research Council Canada - National Science Library

    Perez, Edson; Karunaweera, Chamaal; Musselman, Inga; Balkus, Kenneth; Ferraris, John

    2016-01-01

    .... Among the separation methods currently being used, like distillation, amine scrubbing, and pressure and temperature swing adsorption, membrane-based gas separation has the potential to meet these demands...

  18. Towards H2 selective porous inorganic membranes: Pore size control through combined Sol-Gel and Atomic Layer Deposition Processes

    NARCIS (Netherlands)

    Tran, T.H.Y.

    2011-01-01

    Carbon capture and storage (CCS) can significantly contribute to the reduction of the emission of the greenhouse gas CO2. Capture by means of CO2 sorption or membrane-based separation processes is a promising way for achieving decarbonization of fuel or flue gas cleaning. In the field of separation

  19. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong

    2015-04-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  20. Effects of inorganic ions on morphology of octacalcium phosphate grown on cation selective membrane at physiological temperature and pH in relation to enamel formation

    Science.gov (United States)

    Iijima, Mayumi; Moriwaki, Yutaka

    1989-05-01

    The crystal growth of octacalcium phosphate (OCP) is of particular interest, since there is a possibility that OCP is formed in the early stage of tooth enamel formation. In this study, the effects of CO2-3, Mg2+ and F-ions on the morphology of OCP were investigated in a membrane system, where a cation selective membrane was used to simulate amelogenesis. Reactions were carried out at pH 6.3, 6.5 and 6.8 for 3 days at 37°C. In most cases, these ions suppressed the crystal growth in the c-axis direction of OCP, particularly when they coexisted. The morphology of OCP crystal changed from ribbon-like to flake-like, depending on the inhibitory activity. The inhibitory activity, particularly that of F - ion, was suppressed at pH lower than pH 6.8. Antagonistic effect of Mg2+ and F-ion was observed at pH 6.5. In the case of F - ion, OCP crystals showed a unique pattern, which suggests hydrolysis of OCP and subsequent growth of apatite. These findings indicate that inorganic ions, particularly F - ion, influence the growth of OCP. Although CO2-3, Mg2+andF-ions coexisted, extended growth in the c-axis direction of OCP took place at pH 6.0.

  1. Funky inorganic fibers

    NARCIS (Netherlands)

    de Wit, Patrick

    2017-01-01

    Inorganic porous hollow fibers (IPHF) are interesting for various applications that can benefit from a high surface-area-to-volume ratio. Examples include membranes, catalysts, electrodes, and combinations of these. The thesis starts with providing an overview of conceivable materials of which IPHF

  2. Study of the effects of different sterilization methods on the properties of dense and porous silk fibroin membranes;Estudo dos efeitos de diferentes metodos de esterilizacao nas propriedades de membranas densas de fibroina de seda

    Energy Technology Data Exchange (ETDEWEB)

    Weska, Raquel F.; Moraes, Mariana A. de; Beppu, Marisa M., E-mail: raquelweska@terra.com.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Quimica

    2009-07-01

    Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing, and it must not alter in a negative way the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical and chemical characteristics of dense silk fibroin membranes. Dense fibroin membranes were sterilized by ultraviolet radiation, 70% ethanol, autoclave, ethylene oxide and gamma radiation, and were analyzed by SEM, FTIR-ATR and XRD. The results for sterilization indicated that the methods didn't cause degradation of the membranes, but the methods that used organic solvent, or increase of humidity and/or temperature (70% ethanol, autoclave and ethylene oxide) altered the molecular conformation of fibroin, increasing the proportion of beta-sheet structure, what indicates an increase of crystallinity. This effect may be positive when a slower degradation of the membranes is desired, depending on the application as a bio material. (author)

  3. 针对污水处理的无机膜的制备与应用研究%PREPARATION OF INORGANIC CERAMIC MEMBRANE AND APPLICATION IN WATER WASTE TREATMENT

    Institute of Scientific and Technical Information of China (English)

    黄宾; 冯斌; 周耀

    2011-01-01

    无机膜分离技术是当今世界上发展较快的一门技术,采用膜分离技术对气相、液相进行分离过滤具有操作简单、能耗低的特点,应用日益广泛.本文研究了无机陶瓷膜管的制备过程中缺陷产生原因和解决办法,分析了无机膜的性能和在污水处理中的应用,并对无机膜技术的发展进行了展望.%Inorganic ceramic membrane was an advanced separation filter. It was very convenient for inorganic membrane to separate gases, liquids with simple operation and low energy consumption. Preparing process and properties of ceramic support and membrane were reported. Their defects were analysised. The inorganic membrane products were used in water waste treatment with good effect.

  4. Organic/inorganic nanocomposite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    Li Qi; Shao Jun Dong

    2007-01-01

    The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocom posites membrane materials and their lithium salt complexes have been found thermally stable below 200 ℃. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10-6 S/cm.

  5. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane.

    Science.gov (United States)

    Kwak, S Y; Kim, S H; Kim, S S

    2001-06-01

    Hybrid organic/inorganic reverse osmosis (RO) membranes composed of aromatic polyamide thin films underneath titanium dioxide (TiO2) nanosized particles have been fabricated by a self-assembly process, aiming at breakthrough of biofouling problems. First, positively charged particles of the colloidal TiO2 were synthesized by a sol-gel process, and the diameter of the resulting particles in acidic aqueous solution was estimated to be approximately 2 nm by analyzing the UV-visible absorption characteristics with a quantum mechanical model developed by Brus. Transmission electron microscopy (TEM) further confirmed the formation of the quantum-sized TiO2 particles (approximately 10 nm or less). The TiO2 particles appeared to exist in the crystallographic form of anatase as observed with the X-ray diffraction (XRD) pattern in comparison with those of commercial 100% rutile and commercial 70:30% anatase-to-rutile mixture. The hybrid thin-film-composite (TFC) aromatic polyamide membranes were prepared by self-assembly of the TiO2 nanoparticles on the polymer chains with COOH groups along the surface. They showed improved RO performance in which the water flux even increased, though slightly. Field-emission scanning electron microscopy (FESEM) exhibited the TiO2 nanoparticles well adsorbed onto the surface. X-ray photoelectron spectroscopy (XPS) demonstrated quantitatively that a considerable amount of the adsorbed particles were tightly self-assembled at the expense of the initial loss of those that were loosely bound, and became stabilized even after exposure to the various washing and harsh RO operating conditions. The antibacterial fouling potential of the TiO2 hybrid membrane was examined and verified by measuring the viable numbers and determining the survival ratios of the Escherichia coli (E. coli) as a model bacterium, both with and without UV light illumination. The photocatalytic bactericidal efficiency was remarkably higher for the TiO2 hybrid membrane under UV

  6. Synthesis, Multinuclear NMR Characterization and Dynamic Property of Organic–Inorganic Hybrid Electrolyte Membrane Based on Alkoxysilane and Poly(oxyalkylene Diamine

    Directory of Open Access Journals (Sweden)

    Hsien-Ming Kao

    2012-06-01

    Full Text Available Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol-block-poly(ethylene glycol-block-poly(propylene glycol bis(2-aminopropyl ether complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS and 3-(triethoxysilylpropyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC, Fourier transform infrared (FTIR spectroscopy, alternating current (AC impedance and solid-state nuclear magnetic resonance (NMR spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains.

  7. Synthesis, Multinuclear NMR Characterization and Dynamic Property of Organic–Inorganic Hybrid Electrolyte Membrane Based on Alkoxysilane and Poly(oxyalkylene) Diamine

    Science.gov (United States)

    Saikia, Diganta; Pan, Yu-Chi; Kao, Hsien-Ming

    2012-01-01

    Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS) and 3-(triethoxysilyl)propyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, alternating current (AC) impedance and solid-state nuclear magnetic resonance (NMR) spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher)-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains. PMID:24958176

  8. Fouling behaviour of ultrafiltration membrane by the mixtures of organic and inorganic matter%无机颗粒与腐殖酸复合共存时的超滤膜污染行为研究

    Institute of Scientific and Technical Information of China (English)

    王磊; 高哲; 米娜; 李松山

    2016-01-01

    To further determine the fouling mechanism of the mixtures of inorganic and organic matters. and different sizes of silica and kaolinite were used as the inorganic foulant, humic acid (HA) was used as the organic foulant. Fouling experiments with HA, silica, kaolinite and organic-inorganic mixtures were carried out with PVDF ultrafiltration membranes. The interaction forces be-tween PVDF membrane and each type of foulant and between foulant and foulant were investigated. Results show that the flux de-cline rate and extent of HA-fouled membrane was more seriousl than that for any kind of inorganic-fouled membrane. This was mainly due to the stronger interaction forces among inorganic particles, which resulted in the fact that the inorganic particles aggre-gate into large clusters, and reduced the risk of inorganic particles passing into membrane pores. Compared with single HA foulant, in the experiments results with HA-nano silica mixtures, significant synergistic effects from HA and nano-silica particle enhances membrane fouling. On the contrary, as for the mixtures of HA-micro silica or kaolinite particles, much lower fouling resistance was observed as compared with that of the HA-fouled membrane. Moreover, the fouling behavior of the inorganic -organic mixtures was different during different filtration stages.%选用不同尺寸的二氧化硅及高岭土代表无机膜污染物,腐殖酸(HA)代表有机物膜污染物,分别进行单种污染物及无机-有机污染物共混时的膜污染试验,结合膜-污染物及污染物-污染物间的微观作用力测定,评价无机颗粒与有机物复合共存时对膜污染的机制。结果表明,HA对膜污染幅度明显大于任一种无机颗粒所引起的膜污染幅度,主要是因为无机颗粒之间有较强的相互作用力致使形成较大尺寸的团聚体,不易进入膜孔。与HA污染膜相比,大尺寸的无机颗粒与HA共存时,膜污染减缓,而纳米级二氧化

  9. Oxygen permeation in thin, dense Ce0.9Gd0.1O 1.95- membranes I. Model study

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Søgaard, Martin; Hendriksen, Peter Vang

    2011-01-01

    at the feed and permeate side of the membrane, related to the gaseous oxygen reduction and fuel oxidation, respectively, as well as the gas conversion and gas diffusion resistances in the porous support structure at the permeate side. The temperature and oxygen activity dependence of the oxide ionic......A model of a supported planar Ce0.9Gd0.1O 1.95-δ oxygen membrane in a plug-flow setup was constructed and a sensitivity analysis of its performance under varying operating conditions and membrane parameters was performed. The model takes into account the driving force losses at the catalysts...... and electronic conductivity and the oxygen nonstoichiometry of Ce0.9Gd0.1O1.95-δ were described based on literature data. The performance of the membrane was characterised by the delivered oxygen flux and the membrane voltage. The dependence of the performance on the various membrane and operating parameters...

  10. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  11. 偏高岭土基地质聚合物自支撑无机膜制备及表征%Preparation and Characterization of Metakaolin-Based Geopolymer Inorganic Membrane

    Institute of Scientific and Technical Information of China (English)

    袁媛; 李巧云; 贺艳; 王开拓; 崔学民

    2015-01-01

    Geopolymer inorganic membrane was synthesised using metakaolin,water,and water-glass according to a mixing ratio model (SiO2/Na2O=1.3,Na2O/Al2O3=0.8,SiO2/Al2O3=2.96 and H2O/Na2O=19). After mechanical stirring,the geopolymer slurry was cast in a circular mould with the diameter of 40mm,cured at 60℃for 24 h and then demoulded. Geopolymer-based inorganic membrane formed a homogenous structure and had a narrow pore size distribution from about 11.88-26.82 nm. Scanning electron microscopy (SEM),ultraviolet spectrophotometer,compressive strength test and water flux test characterized various properties of the geopolymer-based inorganic membrane. The geopolymer-based inorganic membrane has shown greater potential than the organic membrane for application in wastewater treatment due to its stability and narrow pore size distribution.%采用传统注浆法,以工业级水玻璃为碱激发剂,偏高岭土以及水为原料,以理论摩尔配比(SiO2/Na2O=1.3,Na2O/Al2O3=0.8,SiO2/Al2O3=2.96,H2O/Na2O=19)混合后经机械搅拌均匀制备得到地质聚合物浆料,注浆在直径为40 mm的圆形模具中,60 ℃条件下养护24 h后脱模即可得到平均孔径范围为11.88-26.82 nm的地聚物片式无机膜.研究采用扫描电镜(SEM)、紫外分光光度计、抗压强度测试、水通量测试等对地质聚合物自支撑无机膜的各项性能进行表征,由于地质聚合物自支撑无机膜具有良好的稳定性和较窄的孔径分布,使其在废水处理中表现出比有机膜更大的潜力.

  12. 无机陶瓷膜在液体树脂浓缩过程中的性能分析%Performance of Inorganic Ceramic Membrane Used for Concentration of Liquid Resin

    Institute of Scientific and Technical Information of China (English)

    曾孟祥; 李元高; 严滨; 洪昱斌; 林丽华

    2012-01-01

    采用无机陶瓷膜处理液体树脂,考察分析了无机陶瓷膜过滤操作条件.结果表明无机陶瓷膜过滤操作条件为:平均进口压力400 kPa,平均出口压力200 kPa;操作温度小于50℃;浓缩倍数在40倍以上,膜通量在95~120 dm3/(m2·h)之间.用去离子水在45℃下清洗2次,膜通量可以恢复到实验前的水平.%The processing of disposing liquid inorganic ceramic membrane filtration operation resin with inorganic ceramic membrane was studied and the conditions were analyzed. The result indicated that the operation conditions were that the average inlet pressure was 4.0bar, outlet pressure was 2.0bar, the operation temperature was less than 50℃; and the average flux retained between 95 - 120 dm3/( mL h), the cycle of concentration was beyond 40times. After the experiment, the membrane flux was recovered to normal level when cleaned twice with deionized water in 45 ℃.

  13. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  14. Dense-cored vesicles, smooth endoplasmic reticulum, and mitochondria are closely associated with non-specialized parts of plasma membrane of nerve terminals: implications for exocytosis and calcium buffering by intraterminal organelles.

    Science.gov (United States)

    Lysakowski, A; Figueras, H; Price, S D; Peng, Y Y

    1999-01-18

    To determine whether there are anatomical correlates for intraterminal Ca2+ stores to regulate exocytosis of dense-cored vesicles (DCVs) and whether these stores can modulate exocytosis of synaptic vesicles, we studied the spatial distributions of DCVs, smooth endoplasmic reticulum (SER), and mitochondria in 19 serially reconstructed nerve terminals in bullfrog sympathetic ganglia. On average, each bouton had three active zones, 214 DCVs, 26 SER fragments (SERFs), and eight mitochondria. DCVs, SERFs and mitochondria were located, on average, 690, 624, and 526 nm, respectively, away from active zones. Virtually no DCVs were within "docking" (i.e., similar to those for exocytosis of synaptic vesicles. Because there were virtually no SERFs or mitochondria within 50 nm of any active zone, Ca2+ modulation by these organelles is unlikely to affect ACh release evoked by a single action potential. In contrast, 30% of DCVs and 40% of SERFs were located within 50 nm of the nonspecialized regions of the plasma membrane. Because each bouton had at least one SERF within 50 nm of the plasma membrane and most of these SERFs had DCVs, but not mitochondria, near them, it is possible for Ca2+ release from the SER to provide the Ca2+ necessary for DCV exocytosis. The fact that 60% of the mitochondria had some part within 50 nm of the plasma membrane means that it is possible for mitochondrial Ca2+ buffering to affect DCV exocytosis.

  15. Development of Inorganic-organic Blend Ultrofiltration Membranes Based on Nanomaterials%基于纳米材料有机-无机复合超滤膜的研究进展

    Institute of Scientific and Technical Information of China (English)

    王宗花; 于海容; 夏建飞; 张菲菲; 夏延致; 李延辉

    2012-01-01

    The latest development and application of nanomaterials in inorganic- organic blend ultrafiltration membranes were reviewed, which included blend ultrafiltration membranes based on carbon nanomaterials (carbon nanotube and graphene), metal and nonmetal oxides (A12O3, TiO2, Fe3O4, SiO2) and polymer nanofibers.%综述了近年来纳米材料在有机-无机复合超滤膜方面的最新发展和应用,主要包括基于纳米碳材料(碳纳米管、石墨烯)的复合超滤膜,基于金属、非金属氧化物( Al2O3、TiO2、Fe3O4、SiO2)的复合超滤膜,基于聚合物纳米纤维的复合超滤膜.

  16. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  17. Dense topological spaces and dense continuity

    Science.gov (United States)

    Aldwoah, Khaled A.

    2013-09-01

    There are several attempts to generalize (or "widen") the concept of topological space. This paper uses equivalence relations to generalize the concept of topological space via the concept of equivalence relations. By the generalization, we can introduce from particular topology on a nonempty set X many new topologies, we call anyone of these new topologies a dense topology. In addition, we formulate some simple properties of dense topologies and study suitable generalizations of the concepts of limit points, closeness and continuity, as well as Jackson, Nörlund and Hahn dense topologies.

  18. 纳米无机小分子物质对PVC/PVDF/PMMA共混膜性能的影响%Effects of inorganic material on the property of PVC/PVDF/PMMA blend membrane

    Institute of Scientific and Technical Information of China (English)

    刘师卓; 叶文婷; 王君翔; 洪倩倩; 王军

    2012-01-01

    讨论了纳米无机小分子物质TiO2、SiO2、Al2O3对PVC/PVDF/PMMA共混溶液的剪切黏度及其共混膜形态结构、水通量及机械性能等性能的影响,结果表明,无机小分子TiO2、SiO2、Al2O3的加入均能使PVC/PVDF/PMMA共混溶液的剪切粘度增加,但TiO2增加的程度最大,SiO2、Al2 O3增加的程度相当;纳米TiO2、SiO2、Al2O3对使PVC/PVDF/PMMA共混膜的水通量和韧性有较大程度的提高,且加入量为2%时,提高程度最大;SiO2、Al2O3对共混膜的结构有一定程度的影响,并使共混膜的拉伸强度略有降低,TiO2的加入对膜的结构没有太大的影响,但能使共混膜的拉伸强度略有提高.%Effects of nano particle inorganic material TiO2, SiO2, Al2O3 on the viscosity of PVC/PVDF/ PMMA blended solution and jts property of membranes were investigated. Results indicated that nano particle inorganic material TiO2 ,SiO2, A12O3 all could raise the viscosity of PVC/PVDF/PMMA blended solution, but the extent increased by T1O2 was the most and that by SiO2 and Al2 O3 were almost the same. On the other hand , nano particle inorganic material TiO2, SiO2, A12O3 all could improve the flux and flexibility of PVC/PVDF/PMMA blended membranes and the improvement got to the greatest extent when their content was 2%, however, the extents of improvement for nano particle inorganic material TiO2 ,SiO2, A12O3 were different due to their effects on the microstructure of cross-section of PVC/PVDF/ PMMA blended membranes. On the other hand, effects of TiO2 on the flexibility of PVC/PVDF/PMMA blended membranes were little but on the tensile strength were great but SiO2, A12O3 made the tensile strength of PVC/PVDF/PMMA blended membranes decreased to some extent.

  19. Inorganic Materials

    Science.gov (United States)

    Černý, Radovan

    The separation of compounds by inorganic/organic boundary is of less importance for the structure determination by diffraction methods. More important for the diffraction is how the atoms build up larger building units and the crystal itself. A molecular/non-molecular boundary is therefore relevant for the choice of a structure determination method. Non-molecular compounds - also called extended solids - are constructed by bonds that extend "infinitely" in three dimensions through a crystal. These non-molecular crystals usually crystallize with higher symmetries, and atoms often occupy special Wyckoff positions. A review of actual methodology is given first, and then highlights and pitfalls of structure determination from powder diffraction, its problems and their solutions are shown and discussed using selected examples.

  20. 陶瓷膜超滤技术浓缩乳清的工艺参数研究%Research of processing parameters of whey protein concentrate by inorganic ceramic membrane ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    高红艳; 刘振民; 莫蓓红

    2012-01-01

    The whey protein concentrate was ultrafiltrated by the inorganic ceramic membrane tubes whose aperture was 20nm to concentrate the by-product cheese whey. The optimal condition of pressure of membrane, temperature of material, and pH were studied.The results showed that the pressure of membrane at 0.25MPa, temperature of material at 51℃, and pH at 6.1, the flux of membrane was 169.37L/m2 · h under the optimal conditions.In addition,the whey protein could be concentrated to 5.4% in whey concentrate liquid, and the whey protein concentrate could reach 38.2% by spray drying.%采用孔径为20nm的无机陶瓷膜超滤干酪副产物乳清,浓缩乳清蛋白。通过对膜过滤压力、温度以及乳清pH三个因素进行单因素分析以及正交实验优化,得到最佳工艺条件:操作压力0.25MPa,温度51℃,pH6.1,此条件下超滤膜渗透通量达到169.37I/m2·h,乳清蛋白可浓缩至5.4%,经喷雾干燥制得WPC蛋白质含量为38.2%。

  1. Science Update: Inorganic Chemistry.

    Science.gov (United States)

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  2. Dense with Sense

    Science.gov (United States)

    Aletras, Anthony H.; Ingkanisorn, W. Patricia; Mancini, Christine; Arai, Andrew E.

    2005-09-01

    Displacement encoding with stimulated echoes (DENSE) with a low encoding strength phase-cycled meta-DENSE readout and a two fold SENSE acceleration ( R = 2) is described. This combination reduces total breath-hold times for increased patient comfort during cardiac regional myocardial contractility studies. Images from phantoms, normal volunteers, and a patient are provided to demonstrate the SENSE-DENSE combination of methods. The overall breath-hold time is halved while preserving strain map quality.

  3. Inorganic chemistry of O2 in a dense primitive atmosphere

    Science.gov (United States)

    Rosenqvist, J; Chassefière, E

    1995-01-01

    A simple steady-state photochemical model is developed in order to determine typical molecular oxygen concentrations for a comprehensive range of primitive abiotic atmospheres. Carbon dioxide is assumed to be the dominant constituent in these atmospheres since CO2 photodissociation may potentially result in the enhancement of the O2 partial pressure. The respective effects of the H2O content, temperature, eddy diffusion coefficient and UV flux on the results are investigated. It is shown that for any pressure at the surface, the partial pressure of molecular oxygen does not exceed 10 mbar. The peculiar case of a runaway greenhouse which has possibly taken place on Venus is qualitatively envisaged. Although O2 is basically absent in the present Venus atmosphere, a transient presence in a primitive stage cannot be ruled out. Possible mechanisms for O2 removal in such an atmosphere are reviewed. At the present stage, we think that the detection of large O2 amounts would be at least a good clue for the presence of life on an extrasolar planet.

  4. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  5. Quantum dense key distribution

    CERN Document Server

    Degiovanni, I P; Castelletto, S; Rastello, M L; Bovino, F A; Colla, A M; Castagnoli, G C

    2004-01-01

    This paper proposes a new protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than BB84 one. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  6. Study on a Controllable Oxidative Dehydrogenation of Butene in a Novel Inorganic Membrane Reactor%膜控制氧化反应器中丁烯氧化脱氢的研究

    Institute of Scientific and Technical Information of China (English)

    李志华; 刘长厚; 王连军; 葛善海

    2001-01-01

    在气体均布的无机膜控制氧化反应器上进行了丁烯氧化脱氢制丁二烯反应,并将其与固定床方式反应的实验结果进行了对比,结果表明在实验范围内膜反应器比传统的固定床反应更为有效。建立了描述控制氧化膜反应器操作性能的数学模型,并将模型求解值与实验值对比,吻合良好。%Controllable oxidative dehydrogenation of butene to butadiene was carried out in a novel inorganic membrane reactor(IMR) with oxygen uniform distribution. In this reactor butene and air (oxygen) were introduced into the two sides of the membrane separately. By means of adjusting the pressure difference across the membrane the permeation of air into the reaction region was controllable. The main reaction was promoted and the excessive oxidation of the hydrocarbons is eliminated. The experimental result showed that both the yield and selectivity of the butadiene obtained in the IMR were higher than those obtained in FBR obviously. The kinetic equations of oxidative dehydrogenation of butene over a ferrite catalyst were suggested and the mathematical model for simulating the operation characteristic of IMR was derived. The simulating results agree well with the experimental results. It appears that this kind of reactor can be used for other oxidation reactions.

  7. Development of the separation of small molecular organic/inorganic salt mixtures by nanofiltration membrane:A review%有机小分子/无机盐混合溶液纳滤膜分离研究进展

    Institute of Scientific and Technical Information of China (English)

    王韬; 王枢; 张兆利; 柳琦杰; 王娇

    2012-01-01

    工业生产中料液体系成分复杂,用纳滤技术对其中小分子有机物及电解质盐实施有效分离越发重要。本文概述了小分子有机物及电解质盐的纳滤分离机制,从纳滤膜分离糖类、氨基酸、染料、PEG等有机小分子及电解质盐混合溶液出发,总结了纳滤技术分离溶液中有机小分子及电解质盐的研究进展,但该体系各溶质截留情况未得出一致结论。同时指出分离机制的研究、高性能膜的制备、扩大溶质种类及不同条件进行试验是纳滤技术分离有机/无机复杂体系的研究方向,并对纳滤技术用于该体系分离的应用前景进行了展望。%This paper summarized the separation mechanisms of small molecular organic compounds(such as sugars,amino acids,PEG,dyes) and electrolyte salt with nanofiltration membranes.This paper reviewed the development of the small molecular organic and electrolyte salt mixtures separations.The key factors of the separation of organic/inorganic complex system using nanofiltration technologies,such as separation mechanism,preparation of membranes with high performance,expanding the solute types and different conditions were also discussed.The application of the separation form the complex system by nanofiltration membrane was prospected.

  8. New Polymeric Membranes for Organic Solvent Nanofiltration

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-01

    The focus of this dissertation was the development, synthesis and modification of polymers for the preparation of membranes for organic solvent nanofiltration. High chemical stability in a wide range of solvents was a key requirement. Membranes prepared from synthesized polymers as well as from commercial polymers were designed and chemically modified to reach OSN requirements. A solvent stable thin-film composite (TFC) membrane is reported, which is fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate. The membranes exhibited high fluxes towards solvents like THF, DMF and DMSO ranging around 20 L/m2 h at 5 bar with a MWCO of around 1000 g/mol. Ultrafiltration PTSC membranes were prepared by non-solvent induced phase separation and crosslinked with GPTMS. The crosslinking reaction was responsible for the formation of an inorganic-type-network that tuned the membrane pore size. The crosslinked membranes acquired high solvent stability in DMSO, DMF and THF with a MWCO above 1300 g/mol. Reaction Induced Phase Separation (RIPS) was introduced as a new method for the preparation of skinned asymmetric membranes. These membranes have two distinctive layers with different morphologies both from the same polymer. The top dense layer is composed of chemically crosslinked polymer chains while the bottom layer is a porous structure formed by non-crosslinked polymer chains. Such membranes were tested for vitamin B12 in solvents after either crosslinking the support or dissolving the support and fixing the freestanding membrane on alumina. Pebax® 1657 was utilized for the preparation of composite membranes by simple coating. Porous PAN membranes were coated with Pebax® 1657 which was then crosslinked using TDI. Crosslinked Pebax® membranes show high stability towards ethanol, propanol and acetone. The membranes were also stable in DMF once crosslinked PAN supports were used. Sodium alginate polymer was investigated for the preparation of thin film composite

  9. Attachment of inorganic moieties onto aliphatic polyurethanes

    Directory of Open Access Journals (Sweden)

    Eliane Ayres

    2007-06-01

    Full Text Available Polyurethanes have been used in a series of applications due basically to their versatility in terms of controlling the behavior by altering basically the type of reagents used. However, for more specific and advanced applications, such as in membranes, biomaterials and sensors, well-organized and defined chemical functionalities are necessary. In this work, inorganic functionalities were incorporated into aliphatic polyurethanes (PU having different macromolecular architectures. Polyurethanes were synthesized using a polyether diol and dicyclohexylmethane 4,4' diisocyanate (H12-MDI. Polyurethanes having carboxylic acid groups were also produced by introducing 2,2- bis (hydroxymethyl propionic acid in the polymerization process. Inorganic functionalities were inserted into polyurethanes by reacting isocyanate end capped chains with aminopropyltriethoxysilane followed by tetraethoxysilane. PU having carboxylic acid groups yielded transparent samples after the incorporation of inorganic entities, as an evidence of smaller and better dispersed inorganic entities in the polymer network. FTIR and swelling measurements showed that polyurethanes having carboxylic acid groups had inorganic domains less packed, condensed and cross-linked when compared to polyurethanes with no carboxylic acid groups. Results also suggested that the progressive incorporation of inorganic moieties in both types of polyurethanes occurred in regions previously activated with inorganic functionalities, instead of by the creation of new domains. The temperatures of thermal decomposition and glass transition were also shifted to higher temperatures when inorganic functionalities were incorporated into polyurethanes.

  10. 双极膜技术在无机盐工业中的应用%Application of Bipolar Membrane Technique on Inorganic Salt Industry

    Institute of Scientific and Technical Information of China (English)

    陈巧平; 谢鸿芳; 肖艳春; 陈双; 陈震

    2011-01-01

    The new achivement of bipolar membrane(BPM) technique in the last decade was introduced.Especially,the application of BPM on the chlorone-base industry without evolution of chlorone at the anode was described in detail.The application of the bipolar membrane cell in the chlorone-base factrories will construct a new balance between chlorone and base,and it also is efficient for preparing the acid and base in the kali salt industries.%介绍了近十年来双极膜技术的最新研究成果及其在无机盐产酸、产碱工艺中的应用。将双极膜技术应用于氯碱工业中,在阳极上,以析氧反应替代传统的析氯反应。将双极膜电解槽与现行的氯氢离子膜电解槽连用,可构建出新的氯氢平衡的体系,以实现氯碱厂中析氯量的有效控制。在钾盐生产的工艺中联产硫酸和烧碱。

  11. Magnetic field processing of inorganic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kunerth, D.C.; Peterson, E.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States)

    1995-05-01

    The purpose of this project is to investigate, understand, and demonstrate the use of magnetic field processing (MFP) to modify the properties of inorganic-based polymers and to develop the basic technical knowledge required for industrial implementation. Polyphosphazene membranes for chemical separation applications are being emphasized by this project. Previous work demonstrated that magnetic fields, appropriately applied during processing, can be used to beneficially modify membrane morphology. MFP membranes have significantly increased flux capabilities while maintaining the same chemical selectivity as the unprocessed membranes.

  12. 光催化高级氧化与无机陶瓷膜分离技术耦合的研究%Study on the coupling of photocatalytic advanced oxidation process with inorganic membrane separation technology

    Institute of Scientific and Technical Information of China (English)

    田蒙奎; 尚百伟; 陶文亮

    2012-01-01

    近年来,光催化高级氧化技术在深度水处理中已引起广泛关注.悬浮式光催化反应器作为一种高效光催化反应器,传质效果好、光利用率高,但光催化剂尤其是纳米光催化剂从悬浮液中的分离回收成为光催化高级氧化技术应用的难题.引入无机陶瓷膜分离技术来解决这一难题,设计了工艺流程,搭建了耦合装置并优化了工艺参数.该耦合系统在光催化高级氧化降解甲基橙(降解率达到99.1%以上)后能实现光催化剂的高效分离回收再利用,对光催化剂能达到99%以上的截留率.同时,研究更廉价、阻力降更小的膜材料及新型可见光响应光催化剂成为该技术发展的关键.%Photocatalysis advanced oxidation technology has attracted more and more attention in sewage treatment in recent years. Slurry reactor as a high efficient photo catalytic reactor has the advantages of good mass transfer effect and high luminous efficiency. While the separation and recovery of nano-scaled photocatalyst from suspension limited the application of photocatalysis technology. A liquid-solid separation technology using inorganic ceramic membrane as separation membrane was developed to solve this technical bottleneck; the coupling device was designed and the operation parameters were optimized. This coupling device was applied for treatment of methyl orange containing wastewater; it presented perfect treatment efficiency with the methyl orange degradation rate of over 99. 1% , the interception rate of photo catalyst could reach over 99%. In the future, developing cheaper membrane materials with small resistance drop and new visible light response photo catalyst was the key of the development of this technology.

  13. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;

    2012-01-01

    Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  14. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard; Taylor, Dale M.

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  15. Three-dimensional biomimetic mineralization of dense hydrogel templates.

    Science.gov (United States)

    Liu, Gao; Zhao, Dacheng; Tomsia, Antoni P; Minor, Andrew M; Song, Xiangyun; Saiz, Eduardo

    2009-07-29

    An electric-current-assisted method was used to mineralize dense hydrogels and create hydroxyapatite/hydrogel composites with unique hierarchical structures. The microstructure of the final material can be controlled by the mineralization technique and the chemistry of the organic matrix. A hydroxyapatite/hydrogel composite was obtained with a large inorganic content (approximately 60% of the weight of the organics). After being heated to 1050 degrees C, the sintered inorganic phase has a very uniformly distributed porosity and its Brunauer-Emmett-Teller (BET) surface area is 0.68 m(2)/g.

  16. Removal of cesium from nuclear liquid waste using hybrid organic-inorganic membranes grafted by immobilized calixarenes; Synthese et caracterisation de membranes hybrides organo-minerales contenant des calixarenes. Application au traitement des effluents radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Duhart, A

    1998-07-01

    The aim of the Actinex program is to reduce massively the noxiousness of the vitrified wastes mainly due to actinides and other long-lived fission products such as {sup 129}I, {sup 99}Tc or {sup 135}Cs. Specific treatment means applicable to the industrial processes of spent fuel reprocessing have to be defined. The selective extraction of these radioelements for their transmutation or packaging in specific matrices is one of the research theme of this program. Different studies allowing the extraction of radioelements such as cesium, americium and plutonium by preferential diffusional transport through a supported liquid membrane of complexes (formed between a selective transport compound and the radioelements) are at the present time carried out in the ETPL (Effluents Treatment Processes Laboratory). Calix-4-arenes mono/bis-crown-6 are used as selective transport compounds. Meanwhile the possible losses of the selective transport compound by dissolution in the aqueous phases have oriented our researches towards a solid material in which the selective transport compound is chemically bound or trapped in the matrix. The transport compound is a calixarene, dissymmetrical and double grafted. It has been specifically synthesized for this study. It allows both to complex the cesium and to chemically bind a hetero-poly-siloxane. These monomers have poly-condensable groups which lead by sol-gel process to the formation of a three-dimensional bonds lattice. The matrix, thus obtained, can be supported either on a mineral material or on a porous organic material. Pre-polymers and the deposited layers have been characterized and correlations between the materials preparation and their properties, applied to cesium extraction, have been established. Experiments of cesium transfer through the solid membrane containing between 2 to 40% of selective transport compound, located between 2 compartments containing upstream, an acidic solution with strong salinity doped with Cs 137

  17. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  18. Interaction of Inorganic Nanoparticles With Cell Membranes

    Science.gov (United States)

    2008-10-20

    Apart from differences in glucose content the main differences lie in the presence/absence of e.g. sodium pyruvate pyridoxine , L-arginine, L-proline and...Science Foundation Projects., especially in the Framework of the new Swiss National Research Program “Changes and Risk of Nanotechnology” which is

  19. Mixed Matrix Composite Membranes Containing POSS Molecules for Carbon Dioxide Removal Application

    KAUST Repository

    Rini, Eki Listya

    2011-05-10

    CO2 removal by membrane processes is considerably potential for several applications such as natural gas and synthesis gas purification, enhanced oil recovery application, and carbon dioxide capture in combat against global warming. Dense polymeric membranes are commonly utilized for these type of gas separation applications. Nevertheless, the intrinsic properties of dense polymeric membranes, which commonly characterize by the low gas permeability versus high gas selectivity trade–off or vice versa, is less desirable. In order to meet the increased demand of CO2 removal, a strategy to improve the gas separation performance of a polymeric membrane is investigated in this study. With this regard, mixed matrix membranes in which inorganic non porous fillers are incorporated into a polymeric matrix were prepared to achieve the aforementioned objective. The mixed matrix membranes were prepared from Pebax® block copolymers and PEG POSS® molecules. These hybrid membranes were formed as both dense and multilayer composite membranes. The dense transparent membranes with well–dispersed fillers could be obtained by variation of the solvent mixture. The DSC analyses showed that incorporation of PEG POSS® into Pebax® matrix altered the thermal properties of the matrix. The multilayer composite membranes were then prepared from a PTMSP gutter layer deposited on a PAN porous support and an adjacent hybrid Pebax®/PEG POSS® as the top layer. These hybrid multilayer composite membranes exhibited an enhanced CO2 selectiv4 ity by a factor of two relative to the pure Pebax®. In these hybrid systems, the CO2 separation was presumably enhanced by the high ether oxides content from PEG POSS® that has high affinities for CO2. For particular composition of Pebax® and PEG POSS® concentrations, the PTMSP gutter layer harnessed the CO2 selectivity without losing the CO2 permeation rate. At the same time, these membrane, however, suffered severe adhesion between the gutter layer

  20. Effects of APTEOS content and electron beam irradiation on physical and separation properties of hybrid nylon-66 membranes

    Energy Technology Data Exchange (ETDEWEB)

    Linggawati, A. [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Mohammad, A.W., E-mail: wahabm@eng.ukm.my [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Leo, C.P. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, S.P.S., Penang (Malaysia)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Hybrid nylon-66 membranes were prepared using APTEOS and modified by EB irradiation. Black-Right-Pointing-Pointer APTEOS increase the formation of cellular pores. Black-Right-Pointing-Pointer EB irradiation causes the growth of dense layer. Black-Right-Pointing-Pointer 10 wt% of APTEOS and irradiation at 70 kGy shows satisfactory separation of salt. - Abstract: Nylon-66 contains functional groups which form hydrogen bonds with inorganic silica networks and allow the creation of hybrid membranes. As a typical semicrystalline polymer, nylon-66 can be crosslinked through electron beam (EB) irradiation to form nanofiltration membranes. The effects of {gamma}-aminopropyltriethoxylsilane (APTEOS) and EB irradiation on the physical and separation properties of nylon-66 membranes were studied in this work. Hybrid nylon-66 membranes were prepared by adding an APTEOS solution (5 wt%, 10 wt% and 20 wt%) into nylon-66 which was dissolved in formic acid. Before air drying, membranes were irradiated at 60 kGy, 70 kGy and 80 kGy. More cellular pores were formed in nylon-66 membranes with the addition of APTEOS. However, increased irradiation dose caused the formation of a dense layer in nylon-66 membranes. Crosslinked silica in nylon-66 membranes was confirmed by FT-IR and DMA, while XRD results showed that there was a high degree of crystallinity in some membranes after irradiation. With improvements in membrane pore size and the ratio of membrane thickness to porosity, nylon-66 membrane with 10 wt% of APTEOS irradiated at 70 kGy exhibited satisfactory permeability, excellent removal of neutral solutes and improved rejection of divalent ions.

  1. Ion-conduction pathways in self-organised ureidoarene-heteropolysiloxane hybrid membranes.

    Science.gov (United States)

    Michau, Mathieu; Barboiu, Mihail; Caraballo, Rémi; Arnal-Hérault, Carole; Perriat, Pascal; van der Lee, Arie; Pasc, A

    2008-01-01

    This paper reports on hybrid organic-inorganic dense membrane materials in which protons and ions are envisioned to diffuse along the hydrophilic pathways. The hierarchical generation of functional hybrid materials was realised in two steps. First, the self-assembling properties of 3-(ureidoarene)propyltriethoxysilane compounds 1-5 in aprotic solvents were determined, revealing the formation of supramolecular oligomers. Compounds 1-5 generate organogels in chloroform or in acetone, leading in a second sol-gel transcription step to hybrid membrane materials on a nanoscopic scale. The crystal structures of 1-5 indicate that the arrangement is mainly defined by periodic parallel sheets, resulting from the alignment of hydrophobic organic and inorganic silica layers. Hybrid materials MB 1-MB 4, with a similar lamellar structure, define particularly attractive functional transport devices; they are oriented along the organic layers and sandwiched between the two siloxane layers. These systems have been employed successfully to design solid dense membranes and illustrate how the self-organised hybrid materials perform interesting and potentially useful functions.

  2. Dense deposit disease in a child with febrile sore throat

    Directory of Open Access Journals (Sweden)

    Giovanni Conti

    2017-01-01

    Full Text Available Dense deposit disease or membranoproliferative glomerulonephritis type II is a rare glomerulopathy characterized on renal biopsy by deposition of abnormal electron-dense material in the glomerular basement membrane. The pathophysiologic basis is uncontrolled systemic activation of the alternate pathway of the complement cascade. C3 nephritic factor, an autoantibody directed against the C3 convertase of the alternate pathway, plays a key role. In some patients, complement gene mutations have been identified. We report the case of a child who had persistent microscopic hematuria, proteinuria, and hypocomplementemia C3 for over 2 months. Renal biopsy confirmed the diagnosis of dense deposit disease.

  3. Biosynthetic inorganic chemistry.

    Science.gov (United States)

    Lu, Yi

    2006-08-25

    Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed.

  4. Mesoporous and microporous titania membranes

    NARCIS (Netherlands)

    Sekulic-Kuzmanovic, Jelena

    2004-01-01

    The research described in this thesis deals with the synthesis and properties of ceramic oxide membrane materials. Since most of the currently available inorganic membranes with required separation properties have limited reliability and long-term stability, membranes made of new oxide materials tha

  5. Warm dense crystallography

    Science.gov (United States)

    Valenza, Ryan A.; Seidler, Gerald T.

    2016-03-01

    The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.

  6. Dense Suspension Splash

    Science.gov (United States)

    Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.

    2014-03-01

    Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).

  7. Dense Axion Stars

    CERN Document Server

    Braaten, Eric; Zhang, Hong

    2015-01-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure.If the axion mass energy is $mc^2= 10^{-4}$ eV, these dilute axion stars have a maximum mass of about $10^{-14} M_\\odot$. We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If $mc^2 = 10^{-4}$ eV, the first branch of these dense axion stars has mas...

  8. Dense Axion Stars

    Science.gov (United States)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-01

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10-14M⊙ if the axion mass is 10-4 eV . We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10-20M⊙ to about M⊙ . If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  9. Dense Axion Stars

    Science.gov (United States)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2016-03-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. If the axion mass energy is mc2 =10-4 eV, these dilute axion stars have a maximum mass of about 10-14M⊙ . We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If mc2 =10-4 4 eV, the first branch of these dense axion stars has mass ranging from about 10-11M⊙ toabout M⊙.

  10. DENSE MEDIUM CYCLONE OPTIMIZATON

    Energy Technology Data Exchange (ETDEWEB)

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  11. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  12. Attachment of inorganic moieties onto aliphatic polyurethanes

    OpenAIRE

    Eliane Ayres; Wander Luiz Vasconcelos; Rodrigo Lambert Oréfice

    2007-01-01

    Polyurethanes have been used in a series of applications due basically to their versatility in terms of controlling the behavior by altering basically the type of reagents used. However, for more specific and advanced applications, such as in membranes, biomaterials and sensors, well-organized and defined chemical functionalities are necessary. In this work, inorganic functionalities were incorporated into aliphatic polyurethanes (PU) having different macromolecular architectures. Polyurethan...

  13. Science Update: Inorganic Chemistry

    Science.gov (United States)

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  14. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  15. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  16. Hybrid organic-inorganic rotaxanes and molecular shuttles.

    Science.gov (United States)

    Lee, Chin-Fa; Leigh, David A; Pritchard, Robin G; Schultz, David; Teat, Simon J; Timco, Grigore A; Winpenny, Richard E P

    2009-03-19

    The tetravalency of carbon and its ability to form covalent bonds with itself and other elements enables large organic molecules with complex structures, functions and dynamics to be constructed. The varied electronic configurations and bonding patterns of inorganic elements, on the other hand, can impart diverse electronic, magnetic, catalytic and other useful properties to molecular-level structures. Some hybrid organic-inorganic materials that combine features of both chemistries have been developed, most notably metal-organic frameworks, dense and extended organic-inorganic frameworks and coordination polymers. Metal ions have also been incorporated into molecules that contain interlocked subunits, such as rotaxanes and catenanes, and structures in which many inorganic clusters encircle polymer chains have been described. Here we report the synthesis of a series of discrete rotaxane molecules in which inorganic and organic structural units are linked together mechanically at the molecular level. Structural units (dialkyammonium groups) in dumb-bell-shaped organic molecules template the assembly of essentially inorganic 'rings' about 'axles' to form rotaxanes consisting of various numbers of rings and axles. One of the rotaxanes behaves as a 'molecular shuttle': the ring moves between two binding sites on the axle in a large-amplitude motion typical of some synthetic molecular machine systems. The architecture of the rotaxanes ensures that the electronic, magnetic and paramagnetic characteristics of the inorganic rings-properties that could make them suitable as qubits for quantum computers-can influence, and potentially be influenced by, the organic portion of the molecule.

  17. Conductive dense hydrogen

    Science.gov (United States)

    Eremets, M.; Troyan, I.

    2012-12-01

    Hydrogen at ambient pressures and low temperatures forms a molecular crystal which is expected to display metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature Tc of 200-400 K. The superconductor may potentially be recovered metastably at ambient pressures, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. Recent experiments performed at low temperatures T 220 GPa, new Raman modes arose, providing evidence for the transformation to a new opaque and electrically conductive phase IV. Above 260 GPa, in the next phase V, hydrogen reflected light well. Its resistance was nearly temperature-independent over a wide temperature range, down to 30 K, indicating that the hydrogen was metallic. Releasing the pressure induced the metallic phase to transform directly into molecular hydrogen with significant hysteresis at 200 GPa and 295 K. These data were published in our paper: M. I. Eremets and I. A. Troyan "Conductive dense hydrogen." Nature Materials 10: 927-931. We will present also new results on hydrogen: phase diagram with phases IV and V determined in P,T domain up to 300 GPa and 350 K. We will also discuss possible structures of phase IV based on our Raman and infrared measurements up to 300 GPa.

  18. Dense Hypervelocity Plasma Jets

    Science.gov (United States)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  19. Heavy mesons in dense matter

    NARCIS (Netherlands)

    Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; LlanesEstrada, FJ; Pelaez,

    2011-01-01

    Charmed mesons in dense matter are studied within a unitary coupled-channel approach which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense medium, and discuss their implications on hidden c

  20. Inorganic UV filters

    Directory of Open Access Journals (Sweden)

    Eloísa Berbel Manaia

    2013-06-01

    Full Text Available Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years and the permeability, the safety and other characteristics of the new generation of inorganic filters.

  1. Microfluidics in inorganic chemistry.

    Science.gov (United States)

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie

    2010-08-23

    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  2. Geological and Inorganic Materials.

    Science.gov (United States)

    Jackson, L. L.; And Others

    1989-01-01

    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  3. Densely crosslinked polycarbosiloxanes .1. Synthesis

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    Novel densely crosslinked polycarbosiloxanes were obtained by using functional branched prepolymers. Two types of soluble prepolymers were prepared from di- and trifunctional alkoxysilane monomers via cohydrolysis/condensation and for both final crosslinking occurred via hydrosilylation. The prepoly

  4. Ion-Conducting Organic/Inorganic Polymers

    Science.gov (United States)

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  5. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  6. ZrO2无机陶瓷膜精制黄芪水提液的污染和防治研究%Pollution prevention and control of aqueous extract of Astragali Radix processed with ZrO2 inorganic ceramic membrane micro-filtration

    Institute of Scientific and Technical Information of China (English)

    潘林梅; 黄敏燕; 郭立玮

    2012-01-01

    目的:研究无机陶瓷膜微滤黄芪水提液的污染机制,寻找有效的膜污染防治手段.方法:通过对不同孔径的氧化锆膜在膜微滤过程中的阻力分布、高分子去除率、物理化学参数变化等的测定,分析污染物的存在状态或位置以及形成规律,同时采用反冲、超声2种物理手段强化膜过程,从而探索膜污染的防治方法.结果:0.2μm Zr02微滤黄芪水提液时污染度较高,达44.9%;堵孔阻力和浓差极化阻力是主要的过滤阻力,表面沉积阻力随膜孔径的减小而增大;微滤后药液浊度显著降低,pH和黏度变化均较小,0.2μm ZrO2膜对电导率的降低作用略高于0.05 μmZrO2膜管.0.2,0.05 μm ZrO2膜均对果胶的去除作用最为显著.超声强化膜过程手段更适用于本体系,其通量提高率达41.7%.结论:优化膜过程工艺参数,采用适当膜污染防治手段可以减少膜的污染,使膜的性能有较大恢复,提高滤过效率.%Objective: To study the measures for preventing and controlling the pollution of aqueous extract of Astragali Radix proceeded with inorganic ceramic membrane micro-filtration, in order to find effective measures for preventing and controlling the membrane pollution. Method: The resistance distribution, polymer removal and changes in physical and chemical parameters of the zirconium oxide fdm of different pore diameters were determined to analyze the state or location of pollutants as well as the regularity of formation. Meanwhile, recoil and ultrasonic physical measures were adopted to strengthen the membrane process, in order to explore the methods for preventing and controlling the membrane pollution. Result: When 0. 2 μm of ZrO2 micro-filtrated aqueous extract of Astragali Radix, the rate of pollution was as high as 44. 9%. The hole blocking resistance and the concentration polarization resistance were the main filtration resistances, while the surface deposit resistance decreased with the

  7. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  8. Inorganic Analytical Chemistry

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The book is a treatise on inorganic analytical reactions in aqueous solution. It covers about half of the elements in the periodic table, i.e. the most important ones : H, Li, B, C, N, O, Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, I, Ba, W,...

  9. An all-inorganic polyoxometalate–polyoxocation chemical garden

    OpenAIRE

    Points, Laurie J.; Cooper, Geoffrey J.T.; Dolbecq, Anne; Mialane, Pierre; Cronin, Leroy

    2016-01-01

    Herein, we show it is possible to produce wholly inorganic chemical gardens from a cationic polyoxometalate (POM) seed in an anionic POM solution, demonstrating a wholly POM-based chemical garden system that produces architectures over a wide concentration range. Six concentration dependent growth regimes have been discovered and characterized: clouds, membranes, slugs, tubes, jetting and budding.

  10. An all-inorganic polyoxometalate-polyoxocation chemical garden.

    Science.gov (United States)

    Points, Laurie J; Cooper, Geoffrey J T; Dolbecq, Anne; Mialane, Pierre; Cronin, Leroy

    2016-01-31

    Herein, we show it is possible to produce wholly inorganic chemical gardens from a cationic polyoxometalate (POM) seed in an anionic POM solution, demonstrating a wholly POM-based chemical garden system that produces architectures over a wide concentration range. Six concentration dependent growth regimes have been discovered and characterized: clouds, membranes, slugs, tubes, jetting and budding.

  11. Novel quasi-symmetric thin-film inorganic membrane for elimination of Cd2+in aqueous solution by forward osmosis%新型准对称无机膜的正渗透去除Cd2+的效能

    Institute of Scientific and Technical Information of China (English)

    钟溢健; 张济辞; 吴子焱; 尤世界; 王秀蘅; 任南琪

    2015-01-01

    Forward osmosis (FO) is an emerging membrane process for desalination driven by the difference of osmotic pressure between feed solution and draw solution (DS). We previously developed a novel quasi-symmetric thin film inorganic (QSTFI) membrane with several advantages compared with conventional polymeric FO membranes. In this paper, elimination of Cd2+ in aqueous solution was investigated by using FO process with QSTFI membrane. Scanning electron microscope (SEM) was used to characterize membrane micro-scale morphology, and energy dispersive spectrometer (EDS) and Fourier transform infrared spectroscope (FTIR) were used to characterize chemical properties of the membrane. Besides, atomic force microscopy (AFM) was used to identify membrane surface electrical potential. The effects of Cd2+concentration, DS concentration and membrane surface potential on Cd2+rejection were examined and discussed. The surface of QSTFI membrane was negatively charged, which promoted formation of electric double layer structure through interacting with Cd2+in bulk solution. The Debye length of electric double layer was positively correlated to Cd2+ rejection by the membrane. The FO experiments showed that the QSTFI membrane was able to successfully reject Cd2+ with overall efficiency up to 99%, at the same time achieving water flux of 69 L·m−2·h−1 at initial Cd2+concentration of 10 mg·L−1 and DS concentration of 2.0 mol·L−1 NaCl. This study provides a promising approach to using FO process for elimination of heavy metals in waste water in practical applications.%正向渗透(forward osmosis,FO)是一种以溶液渗透压差为驱动力的新型膜技术。课题组在先前研究中使用微界面溶胶凝胶法制备了一种全新的准对称结构无机薄膜(QSTFI膜),与传统的有机聚合FO膜相比具有更大的优势。本文考察了 QSTFI 膜分离去除水中重金属 Cd2+的效能,讨论了 Cd2+浓度、提取液浓度

  12. Inorganic Analytical Chemistry

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The book is a treatise on inorganic analytical reactions in aqueous solution. It covers about half of the elements in the periodic table, i.e. the most important ones : H, Li, B, C, N, O, Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, I, Ba, W......, Hg, Tl, Pb, Bi. The subjects of compound identification and bringing insoluble compounds in solution by alcaline melt digestion are also treated. A high number of small experiments are described....

  13. Constructing dense genetic linkage maps

    NARCIS (Netherlands)

    Jansen, J.; Jong, de A.G.; Ooijen, van J.W.

    2001-01-01

    This paper describes a novel combination of techniques for the construction of dense genetic linkage maps. The construction of such maps is hampered by the occurrence of even small proportions of typing errors. Simulated annealing is used to obtain the best map according to the optimality criterion:

  14. Method for dense packing discovery.

    Science.gov (United States)

    Kallus, Yoav; Elser, Veit; Gravel, Simon

    2010-11-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit-cell parameters with the other packing variables in the definition of the configuration space. The method we present led to previously reported improvements in the densest-known tetrahedron packing. Here, we use the method to reproduce the densest-known lattice sphere packings and the best-known lattice kissing arrangements in up to 14 and 11 dimensions, respectively, providing numerical evidence for their optimality. For nonspherical particles, we report a dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845 and with a similar structure to the densest-known tetrahedron packing.

  15. Unconditional Continuous Variable Dense Coding

    CERN Document Server

    Ralph, T C

    2002-01-01

    We investigate the conditions under which unconditional dense coding can be achieved using continuous variable entanglement. We consider the effect of entanglement impurity and detector efficiency and discuss experimental verification. We conclude that the requirements for a strong demonstration are not as stringent as previously thought and are within the reach of present technology.

  16. Nanoporous ultra-high specific surface inorganic fibres

    Science.gov (United States)

    Kanehata, Masaki; Ding, Bin; Shiratori, Seimei

    2007-08-01

    Nanoporous inorganic (silica) nanofibres with ultra-high specific surface have been fabricated by electrospinning the blend solutions of poly(vinyl alcohol) (PVA) and colloidal silica nanoparticles, followed by selective removal of the PVA component. The configurations of the composite and inorganic nanofibres were investigated by changing the average silica particle diameters and the concentrations of colloidal silica particles in polymer solutions. After the removal of PVA by calcination, the fibre shape of pure silica particle assembly was maintained. The nanoporous silica fibres were assembled as a porous membrane with a high surface roughness. From the results of Brunauer-Emmett-Teller (BET) measurements, the BET surface area of inorganic silica nanofibrous membranes was increased with the decrease of the particle diameters. The membrane composed of silica particles with diameters of 15 nm showed the largest BET surface area of 270.3 m2 g-1 and total pore volume of 0.66 cm3 g-1. The physical absorption of methylene blue dye molecules by nanoporous silica membranes was examined using UV-vis spectrometry. Additionally, the porous silica membranes modified with fluoroalkylsilane showed super-hydrophobicity due to their porous structures.

  17. Nanoporous ultra-high specific surface inorganic fibres

    Energy Technology Data Exchange (ETDEWEB)

    Kanehata, Masaki [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Ding Bin [Fiber and Polymer Science, University of California, Davis, CA 95616 (United States); Shiratori, Seimei [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan)

    2007-08-08

    Nanoporous inorganic (silica) nanofibres with ultra-high specific surface have been fabricated by electrospinning the blend solutions of poly(vinyl alcohol) (PVA) and colloidal silica nanoparticles, followed by selective removal of the PVA component. The configurations of the composite and inorganic nanofibres were investigated by changing the average silica particle diameters and the concentrations of colloidal silica particles in polymer solutions. After the removal of PVA by calcination, the fibre shape of pure silica particle assembly was maintained. The nanoporous silica fibres were assembled as a porous membrane with a high surface roughness. From the results of Brunauer-Emmett-Teller (BET) measurements, the BET surface area of inorganic silica nanofibrous membranes was increased with the decrease of the particle diameters. The membrane composed of silica particles with diameters of 15 nm showed the largest BET surface area of 270.3 m{sup 2} g{sup -1} and total pore volume of 0.66 cm{sup 3} g{sup -1}. The physical absorption of methylene blue dye molecules by nanoporous silica membranes was examined using UV-vis spectrometry. Additionally, the porous silica membranes modified with fluoroalkylsilane showed super-hydrophobicity due to their porous structures.

  18. Nanoscale Organic−Inorganic Hybrid Lubricants

    KAUST Repository

    Kim, Daniel

    2011-03-15

    Silica (SiO2) nanoparticles densely grafted with amphiphilic organic chains are used to create a family of organic-inorganic hybrid lubricants. Short sulfonate-functionalized alkylaryl chains covalently tethered to the particles form a dense corona brush that stabilizes them against aggregation. When these hybrid particles are dispersed in poly-α-olefin (PAO) oligomers, they form homogeneous nanocomposite fluids at both low and high particle loadings. By varying the volume fraction of the SiO2 nanostructures in the PAO nanocomposites, we show that exceptionally stable hybrid lubricants can be created and that their mechanical properties can be tuned to span the spectrum from simple liquids to complex gels. We further show that these hybrid lubricants simultaneously exhibit lower interfacial friction coefficients, enhanced wear and mechanical properties, and superior thermal stability in comparison with either PAO or its nanocomposites created at low nanoparticle loadings. Profilometry and energy dispersive X-ray spectroscopic analysis of the wear track show that the enhanced wear characteristics in PAO-SiO2 composite lubricants originate from two sources: localization of the SiO2 particles into the wear track and extension of the elastohydrodynamic lubrication regime to Sommerfeld numbers more than an order of magnitude larger than for PAO. © 2011 American Chemical Society.

  19. Inorganic Crystal Structure Database (ICSD)

    Science.gov (United States)

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  20. Warm Dense Matter: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities

  1. Structural Transitions in Dense Networks

    CERN Document Server

    Lambiotte, R; Bhat, U; Redner, S

    2016-01-01

    We introduce an evolving network model in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability $p$. The resulting network is sparse for $p<\\frac{1}{2}$ and dense (average degree increasing with number of nodes $N$) for $p\\geq \\frac{1}{2}$. In the dense regime, individual networks realizations built by this copying mechanism are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at $p=\\frac{2}{3}$, $\\frac{3}{4}$, $\\frac{4}{5}$, etc., where the dependences on $N$ of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete---where all nodes are connected---is non-zero as $N\\to\\infty$.

  2. Holographic Renormalization in Dense Medium

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2014-01-01

    describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space.

  3. Radiative properties of dense nanofluids.

    Science.gov (United States)

    Wei, Wei; Fedorov, Andrei G; Luo, Zhongyang; Ni, Mingjiang

    2012-09-01

    The radiative properties of dense nanofluids are investigated. For nanofluids, scattering and absorbing of electromagnetic waves by nanoparticles, as well as light absorption by the matrix/fluid in which the nanoparticles are suspended, should be considered. We compare five models for predicting apparent radiative properties of nanoparticulate media and evaluate their applicability. Using spectral absorption and scattering coefficients predicted by different models, we compute the apparent transmittance of a nanofluid layer, including multiple reflecting interfaces bounding the layer, and compare the model predictions with experimental results from the literature. Finally, we propose a new method to calculate the spectral radiative properties of dense nanofluids that shows quantitatively good agreement with the experimental results.

  4. Dilatons for Dense Hadronic Matter

    CERN Document Server

    Lee, Hyun Kyu

    2009-01-01

    The idea that the explicit breaking of scale invariance by the trace anomaly of QCD can be rephrased as a spontaneous breaking has been recently exploited to capture the low-energy strong interaction dynamics of dense (and also hot) matter in terms of two dilaton fields, the "soft" (chi_s) and the "hard" (chi_h) fields, in the frame work of the hidden local gauge symmetry. In the Freund-Nambu model, the spontaneous symmetry breaking of scale symmetry is induced by an explicitly breaking term, while the spontaneous symmetry breaking is possible in the flat potential model which is scale symmetric. We discuss the interplay of the soft and hard dilatons using the spontaneously broken scale symmetry schemes and uncover a novel structure of dense matter hitherto unexplored.

  5. Structural crystallography of inorganic oxysalts

    CERN Document Server

    Krivovichev, Sergey V

    2009-01-01

    Inorganic oxysalts are chemical compounds that contain oxygen - the most abundant element in the Earth's core. This book is the first systematic survey of structures of inorganic oxysalts considered from the viewpoint of modern scientific methods of description and visualisation of complex atomic arrangements.

  6. Dense Membranes for Anode Supported all Perovskite IT-SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu Bobba

    2006-09-14

    During this first year of the project, a post doctoral fellow (Dr. Hrudananda Jena), and two graduate students (Mr. Vinay B. V. Sivareddy, Aswin Somuru), were supported through this project funds. Also, partial support was provided to three undergraduate students (Jonthan Dooley, India Snowden, Jeremy Gilmore) majoring in Chemistry, Physics, and Engineering disciplines. Various wet chemical methods of synthesis have been attempted to prepare perovskite oxide powders with a hope to improve and engineer its properties to meet the requirements of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCs) components. Various compounds were synthesized, characterized by XRD, TEM, SEM, XPS, electron microprobe and their electrical transport properties were measured by EIS at elevated temperatures and compared. Sonochemical technique (power of ultra sonic probe 750 watt) combined with hydrothermal treatment of precursors for the preparation of calcium hydroxy apatites (Ca-HAp) was used for the first time. Ca-HAp was substituted with Sr and Mg (50% replacement of Ca in Ca-HAp) to study the effect of substitution on Ca-HAp. Calcium hydroxy apatite is a bioceramic and has potential applications as artificial bone, enamel materials. In this study we tried to investigate its use as proton conductors in PC-SOFC. The properties like electrical conductivity, crystal structure, compositions of CaHAp were studied and compared with the natural bone material. The comparison found to be excellent indicating the efficiency of the preparation techniques. The typical value of conductivity measured is 0.091 x 10{sup -6} Scm{sup -1} at 25 C and 19.26 x 10{sup -6} Scm{sup -1} at 850 C with an applied frequency of 100 kHz. The conductivity increases on increasing frequency and temperature and reaches 0.05mS/cm at 500 C. The crystal structure and phase stability of perovskites as well as apatites were investigated with respect to substitution of various iso-valent and alivalent ions to determine the % of solubility in the crystal lattice of perovskite, apatites. Various electrode and electrolyte material compositions were prepared and characterized by XRD, SEM, XPS and electron microprobe. The material compositions were selected based on their thermo-physical properties to achieve compatibility with each other in ideal fuel cell operating conditions. The series of electrode materials investigated are LaGa{sub 1-x}M{sub x}O{sub 3} (M = Mn, Mg, x = 0.1), LaCr{sub 1-x}M{sub x}O{sub 3} (M = Mn, Mg, Co, x=0.1), LaNi{sub 1-x}Fe{sub x}O{sub 3} (0 < x < 0.6) and Gd{sub 1-x}M{sub x}CoO{sub 3} (M=Ca, x=0.1). Attempts were made to prepare proton-conducting perovskites of SrCe{sub 1-x} M{sub x}O{sub 3} (M= Dy, Eu, Er, Tb, x=0.1) by using sonochemical and hydrothermal technique followed by microwave sintering processes. These compositions were prepared characterized by XRD, TEM, SEM and electrical conductivity of the pellets was measured. The interest of low temperature proton conducting electrolyte is to replace the well known oxide ion conducting solid electrolyte in SOFCs, thereby reducing the operating temperature of SOFC to lower temperature (i.e 400-600 C) and named it as PC-SOFC (proton conducting-solid oxide fuel cell).

  7. Composite oxygen transport membrane

    Energy Technology Data Exchange (ETDEWEB)

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2016-11-15

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  8. Composite oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  9. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  10. Probing Cold Dense Nuclear Matter

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  11. Probing Cold Dense Nuclear Matter

    CERN Document Server

    Subedi, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Bertozzi, W; Boeglin, W; Chen, J -P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J -O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; De Jager, C W; Jans, E; Jiang, X; Kaufman, L; Kelleher, A; Kolarkar, A; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Širca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X -C; Zhu, L; 10.1126/science.1156675

    2009-01-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  12. Dilatons in Dense Baryonic Matter

    CERN Document Server

    Lee, Hyun Kyu

    2013-01-01

    We discuss the role of dilaton, which is supposed to be representing a special feature of scale symmetry of QCD, trace anomaly, in dense baryonic matter. The idea that the scale symmetry breaking of QCD is responsible for the spontaneous breaking of chiral symmetry is presented along the similar spirit of Freund-Nambu model. The incorporation of dilaton field in the hidden local symmetric parity doublet model is briefly sketched with the possible role of dilaton at high density baryonic matter, the emergence of linear sigma model in dilaton limit.

  13. Metal doped hybrid silica membranes for separation

    NARCIS (Netherlands)

    Ru, Yanfei

    2014-01-01

    The present study describes the e ect of di erent factors such as the type of dopants and the percentage of dopants on the stability and permeance of membranes. Di erent dopants such as zirconia, yttrium were used to produce organic-inorganic hybrid silica membranes. During the programme, zirconia d

  14. Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation

    OpenAIRE

    Dzyazko, Yuliya S; Rozhdestvenskaya, Ludmila M; Zmievskii, Yu G; Vilenskii, Alexander I; Myronchuk, Valerii G; Kornienko, Ludmila V; Vasilyuk, Sergey V; Tsyba, Nikolay N

    2015-01-01

    Organic-inorganic membranes were obtained by stepwise modification of poly(ethyleneterephthalate) track membrane with nanoparticles of zirconium hydrophosphate. The modifier was inserted inside pores of the polymer, a size of which is 0.33 μm. Inner active layer was formed by this manner. Evolution of morphology and functional properties of the membranes were investigated using methods of porosimetry, potentiometry and electron microscopy. The nanoparticles (4 to 10 nm) were found to form agg...

  15. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations

    KAUST Repository

    Dai, Ying

    2012-05-01

    Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem ® 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13wt% (17vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO 2/N 2 gas pairs was observed for both pure gas and mixed gas feeds. © 2012 Elsevier B.V.

  16. Ultem((R))/ZIF-8 mixed matrix hollow fiber membranes for CO2/N-2 separations

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Y; Johnson, JR; Karvan, O; Sholl, DS; Koros, WJ

    2012-05-15

    Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem((R)) 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13 wt% (17 vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO2/N-2 gas pairs was observed for both pure gas and mixed gas feeds. (C) 2012 Elsevier B.V. All rights reserved.

  17. Essentials of inorganic materials synthesis

    CERN Document Server

    Rao, C N R

    2015-01-01

    This compact handbook describes all the important methods of synthesis employed today for synthesizing inorganic materials. Some features: Focuses on modern inorganic materials with applications in nanotechnology, energy materials, and sustainability Synthesis is a crucial component of materials science and technology; this book provides a simple introduction as well as an updated description of methods Written in a very simple style, providing references to the literature to get details of the methods of preparation when required

  18. Inorganic materials in industrial processes

    OpenAIRE

    Demadis, Konstantinos

    2015-01-01

    Although inorganic materials represent a small number to the extreme number of the organic ones, they play a number of crucial roles in several processes of industrial interest. Two significant technologically processes have been selected as “case studies” for this presentation: metallic corrosion and its control, and mitigation of inorganic deposits, both related to industrial water systems. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.

  19. Ion conducting organic/inorganic hybrid polymers

    Science.gov (United States)

    Meador, Maryann B. (Inventor); Kinder, James D. (Inventor)

    2010-01-01

    This invention relates to a series of organic/inorganic hybrid polymers that are easy to fabricate into dimensionally stable films with good ion-conductivity over a wide range of temperatures for use in a variety of applications. The polymers are prepared by the reaction of amines, preferably diamines and mixtures thereof with monoamines with epoxy-functionalized alkoxysilanes. The products of the reaction are polymerized by hydrolysis of the alkoxysilane groups to produce an organic-containing silica network. Suitable functionality introduced into the amine and alkoxysilane groups produce solid polymeric membranes which conduct ions for use in fuel cells, high-performance solid state batteries, chemical sensors, electrochemical capacitors, electro-chromic windows or displays, analog memory devices and the like.

  20. The possibility of the application of the zeolyte powders for the construction of the membranes for the carbon dioxide separation

    Directory of Open Access Journals (Sweden)

    Nedeljković Dragutin M.

    2015-01-01

    Full Text Available The task of this work was to construct the mixed matrix membrane based on polymer that could be used for the treatment of the waste gases. Therefore, high permeability for the carbon dioxide and low permeability for other gases commonly present in the industrial combustion waste gases (nitrogen, oxygen, hydrogen, methane are essential. Those membranes belong to the group of dense composite membranes, and mechanism for separation is based on the solution-diffusion mechanism. In this paper, feasibility of the application of poly(ethyleneoxid-copoly(phtalamide was tested. In order to enchase the permeability of carbon dioxide, three different zeolites were incorporated, and in order to improve compatibility between the inorganic particles and polymer chains, n-tetradecyldimethylamonium bromide (NTAB.was added. Three zeolites were with the 2-dimensional pores (IHW, NSI and TER. The best results in carbon dioxide/hydrogen selectivity were obtained with the membrane constructed with PEBAX 1657 and surface treated zeolites, while the better results concerning selectivity were gained with membranes based on the Polyactive. [Projekat Ministarstva nauke Republike Srbnije, br. TR 34011 i br. III 45019

  1. Viscoelastic behavior of dense microemulsions

    Science.gov (United States)

    Cametti, C.; Codastefano, P.; D'arrigo, G.; Tartaglia, P.; Rouch, J.; Chen, S. H.

    1990-09-01

    We have performed extensive measurements of shear viscosity, ultrasonic absorption, and sound velocity in a ternary system consisting of water-decane-sodium di(2-ethylhexyl)sulfo- succinate(AOT), in the one-phase region where it forms a water-in-oil microemulsion. We observe a rapid increase of the static shear viscosity in the dense microemulsion region. Correspondingly the sound absorption shows unambiguous evidence of a viscoelastic behavior. The absorption data for various volume fractions and temperatures can be reduced to a universal curve by scaling both the absorption and the frequency by the measured static shear viscosity. The sound absorption can be interpreted as coming from the high-frequency tail of the viscoelastic relaxation, describable by a Cole-Cole relaxation formula with unusually small elastic moduli.

  2. Neutrino Oscillations in Dense Matter

    Science.gov (United States)

    Lobanov, A. E.

    2017-03-01

    A modification of the electroweak theory, where the fermions with the same electroweak quantum numbers are combined in multiplets and are treated as different quantum states of a single particle, is proposed. In this model, mixing and oscillations of particles arise as a direct consequence of the general principles of quantum field theory. The developed approach enables one to calculate the probabilities of the processes taking place in the detector at long distances from the particle source. Calculations of higher-order processes, including computation of the contributions due to radiative corrections, can be performed in the framework of the perturbation theory using the regular diagram technique. As a result, the analog to the Dirac-Schwinger equation of quantum electrodynamics describing neutrino oscillations and its spin rotation in dense matter can be obtained.

  3. DPIS for warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.

    2010-05-23

    Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.

  4. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Masanobu Chiku

    2011-09-01

    Full Text Available Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1 at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  5. 5G Ultra-Dense Cellular Networks

    OpenAIRE

    Ge, Xiaohu; Tu, Song; Mao, Guoqiang; Wang, Cheng-xiang; Han, Tao

    2015-01-01

    Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output (MIMO) antennas and the millimeter wavecommunication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul ...

  6. Interference Coordination for Dense Wireless Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.; Jørgensen, Niels T.K.

    2015-01-01

    The promise of ubiquitous and super-fast connectivity for the upcoming years will be in large part fulfilled by the addition of base stations and spectral aggregation. The resulting very dense networks (DenseNets) will face a number of technical challenges. Among others, the interference emerges ...... simply react to an identified interference problem. As an example, we propose two algorithms to apply time domain and frequency domain small cell interference coordination in a DenseNet....

  7. HOW GOOD IS A DENSE SHOP SCHEDULE?

    Institute of Scientific and Technical Information of China (English)

    陈礴; 俞文(鱼此)

    2001-01-01

    In this paper, we study a class of simple and easy-to-construct shop schedules, known as dense schedules. We present tight bounds on the maximum deviation in makespan of dense flow-shop and job-shop schedules from their optimal ones. For dense open-shop schedules, we do the same for the special case of four machines and thus add a stronger supporting case for proving a standing conjecture.

  8. Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Eike Möhlmann

    2015-06-01

    Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.

  9. Biomimetic aquaporin membranes coming of age

    DEFF Research Database (Denmark)

    Tang, Chuyang; Wang, Zhining; Petrinić, Irena

    2015-01-01

    Membrane processes have been widely used for water purification because of their high stability, efficiency, low energy requirement and ease of operation. Traditional desalting membranes are mostly dense polymeric films with a "trade off" effect between permeability and selectivity. Biological me...

  10. Optimal probabilistic dense coding schemes

    Science.gov (United States)

    Kögler, Roger A.; Neves, Leonardo

    2017-04-01

    Dense coding with non-maximally entangled states has been investigated in many different scenarios. We revisit this problem for protocols adopting the standard encoding scheme. In this case, the set of possible classical messages cannot be perfectly distinguished due to the non-orthogonality of the quantum states carrying them. So far, the decoding process has been approached in two ways: (i) The message is always inferred, but with an associated (minimum) error; (ii) the message is inferred without error, but only sometimes; in case of failure, nothing else is done. Here, we generalize on these approaches and propose novel optimal probabilistic decoding schemes. The first uses quantum-state separation to increase the distinguishability of the messages with an optimal success probability. This scheme is shown to include (i) and (ii) as special cases and continuously interpolate between them, which enables the decoder to trade-off between the level of confidence desired to identify the received messages and the success probability for doing so. The second scheme, called multistage decoding, applies only for qudits ( d-level quantum systems with d>2) and consists of further attempts in the state identification process in case of failure in the first one. We show that this scheme is advantageous over (ii) as it increases the mutual information between the sender and receiver.

  11. STAR FORMATION IN DENSE CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2011-12-10

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically {approx}1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of {approx}2, consistent with models of episodic disk accretion.

  12. Star formation in dense clusters

    CERN Document Server

    Myers, Philip C

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion, and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star IMF from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosi...

  13. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  14. Cycling of dense core vesicles involved in somatic exocytosis of serotonin by leech neurons

    Directory of Open Access Journals (Sweden)

    Citlali eTrueta

    2012-06-01

    Full Text Available We studied the cycling of dense core vesicles producing somatic exocytosis of serotonin. Our experiments were made using electron microscopy and vesicle staining with fluorescent dye FM1-43 in Retzius neurons of the leech, which secrete serotonin from clusters of dense core vesicles in a frequency-dependent manner. Electron micrographs of neurons at rest or after 1 Hz stimulation showed two pools of dense core vesicles. A perinuclear pool near Golgi apparatuses, from which vesicles apparently form, and a peripheral pool with vesicle clusters at a distance from the plasma membrane. By contrast, after 20 Hz electrical stimulation 47% of the vesicle clusters were apposed to the plasma membrane, with some omega exocytosis structures. Dense core and small clear vesicles apparently originating from endocytosis were incorporated in multivesicular bodies. In another series of experiments, neurons were stimulated at 20 Hz while bathed in a solution containing peroxidase. Electron micrographs of these neurons contained gold particles coupled to anti-peroxidase antibodies in dense core vesicles and multivesicular bodies located near the plasma membrane. Cultured neurons depolarized with high potassium in the presence of FM1-43 displayed superficial fluorescent spots, each reflecting a vesicle cluster. A partial bleaching of the spots followed by another depolarization in the presence of FM1-43 produced restaining of some spots, other spots disappeared, some remained without restaining and new spots were formed. Several hours after electrical stimulation the FM1-43 spots accumulated at the center of the somata. This correlated with electron micrographs of multivesicular bodies releasing their contents near Golgi apparatuses. Our results suggest that dense core vesicle cycling related to somatic serotonin release involves two steps: the production of clear vesicles and multivesicular bodies after exocytosis, and the formation of new dense core vesicles in

  15. Recent developments in Inorganic polymers: A Review with focus on Si-Al based inorganic polymers

    Directory of Open Access Journals (Sweden)

    Shrray Srivastava

    2015-12-01

    Full Text Available Inorganic polymers are a unique classification of polymers. They contain inorganic atoms in the main chain. Hybrids with organic polymers as well as those chains that contain metals as pendant groups are considered in a special sub-classification as organo-metallic polymers. The networks containing only inorganic elements in main chain are called inorganic polymers. The silicone rubber is the most commercial inorganic polymer. The organo-metallic and inorganic polymers have a different set of applications. The current paper is a review of current applications of polymers with inorganic back-bone networks, especially focusing on Si and Al based inorganic polymeric materials.

  16. Thermophysical properties of warm dense hydrogen

    CERN Document Server

    Holst, Bastian; Desjarlais, Michael P

    2007-01-01

    We study the thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. New results are presented for the pair distribution functions, the equation of state, the Hugoniot curve, and the reflectivity. We compare with available experimental data and predictions of the chemical picture. Especially, we discuss the nonmetal-to-metal transition which occurs at about 40 GPa in the dense fluid.

  17. Heavy meson production in hot dense matter

    NARCIS (Netherlands)

    Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Nieves, JM; Oset, E; Vacas, MJV

    2010-01-01

    The properties of charmed mesons in dense matter are studied using a unitary coupled-channel approach in the nuclear medium which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense nuclear env

  18. Finding dense locations in indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2014-01-01

    Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based mode...

  19. Dense image correspondences for computer vision

    CERN Document Server

    Liu, Ce

    2016-01-01

    This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems.   ·         Provides i...

  20. A rationale for the preparation of asymmetric pervaporation membranes

    NARCIS (Netherlands)

    Mulder, M.H.V.; Oude Hendrikman, J.; Wijmans, J.G.; Smolders, C.A.

    1985-01-01

    Pervaporation is carried out primarily with homogeneous membranes. An improvement in permeation rate can be achieved by using asymmetric or composite membranes. In order to maintain a high selectivity, very dense top layers are needed. The formation of asymmetric pervaporation membranes will be disc

  1. Inorganic Reaction Mechanisms. Part I

    Science.gov (United States)

    Cooke, D. O.

    1976-01-01

    Provides a collection of data on the mechanistic aspects of inorganic chemical reactions. Wherever possible includes procedures for classroom demonstration or student project work. The material covered includes gas phase reactions, reactions in solution, mechanisms of electron transfer, the reaction between iron III and iodine, and hydrolysis. (GS)

  2. Inorganic nanomedicine--part 1.

    Science.gov (United States)

    Sekhon, Bhupinder S; Kamboj, Seema R

    2010-08-01

    Inorganic nanomedicine refers to the use of inorganic or hybrid nanomaterials and nanosized objects to achieve innovative medical breakthroughs for drug and gene discovery and delivery, discovery of biomarkers, and molecular diagnostics. Potential uses for fluorescent quantum dots include cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. Biocompatible quantum dot conjugates have been used successfully for sentinel lymph node mapping, tumor targeting, tumor angiogenesis imaging, and metastatic cell tracking. Magnetic nanowires applications include biosensing and construction of nucleic acids sensors. Magnetic cell therapy is used for the repair of blood vessels. Magnetic nanoparticles (MNPs) are important for magnetic resonance imaging, drug delivery, cell labeling, and tracking. Superparamagnetic iron oxide nanoparticles are used for hyperthermic treatment of tumors. Multifunctional MNPs applications include drug and gene delivery, medical imaging, and targeted drug delivery. MNPs could have a vital role in developing techniques to simultaneously diagnose, monitor, and treat a wide range of common diseases and injuries. From the clinical editor: This review serves as an update about the current state of inorganic nanomedicine. The use of inorganic/hybrid nanomaterials and nanosized objects has already resulted in innovative medical breakthroughs for drug/gene discovery and delivery, discovery of biomarkers and molecular diagnostics, and is likely to remain one of the most prolific fields of nanomedicine.

  3. Les réacteurs à membranes : possibilités d'application dans l'industrie pétrolière et pétrochimique Membrane Reactors: Possibilities of Application in the Petroleum and Petrochemical Industry

    Directory of Open Access Journals (Sweden)

    Guy C.

    2006-11-01

    use is very limited in membrane reactors as they cannot withstand temperatures higher than 150°C. Metal, ceramic or glass membrane are preferred. Published work on membrane reactors is mainly concerned with dehydrogenation reactions and the in-situ separation of hydrogen. Dense palladium membranes or microporous inorganic membranes are used. A typical membrane reactor is presented in Fig. 1. The catalyst constitutes a fixed bed in the inside tube where dehydrogenation of cyclohexane into benzene takes place. Hydrogen produced by the reaction, permeates through the palladium wall. Carrier argon is used on the permeate side to lower the partial pressure of hydrogen and therefore increase the permeation rate. The main factors enhancing the equilibrium shift and therefore the conversion are presented in Table 1. Potential applications in the petroleum and petrochemical industry. Three potentially interesting applications are identified and the advantages of using a membrane reactor are discussed. They are : propane dehydrogenation into propylene, cyclohexanic naphthene dehydrogenation and natural gas steam reforming. For these chemical reactions, palladium based membranes show the best performance in terms of temperature resistance, hydrogen selectivity and permeability. The conversion of the dehydrogenation reaction of propane is increased by a higher temperature or a lower pressure as presented in Table 2. Selective draw-off of hydrogen from the reactor through a permeable wall increases the conversion from 48. 6% to 75. 5% (Table 3 or decreases the reaction temperature from 600 to 500°C (Table 4. Table 5 presents the effect of the selective draw-off of hydrogen on the conversion or the operating temperature for conditions found in industrial propane dehydrogenation processes. For a specified conversion, the use of a membrane reactor results in a lower operating temperature which reduces considerably catalyst coking. It allows also the use of common materials for the

  4. Organic - Inorganic Hybrids made from Polymerizable Precursors

    NARCIS (Netherlands)

    Uricanu, V.I.; Donescu, D.; Banu, A.G.; Serban, S.; Olteanu, M.; Dudau, M.

    2004-01-01

    Organic–inorganic hybrid films were prepared based on a recipe using organoalkoxysilanes’ ability to create an inorganic network combined with polymer network formation via radical polymerization of the organic groups. The starting mixtures included different triethoxysilanes (RTES), where the

  5. Polymer-nanoinorganic particles composite membranes: a brief overview

    Institute of Scientific and Technical Information of China (English)

    Zhenliang XU; Liyun YU; Lingfeng HAN

    2009-01-01

    Polymer-nanoinorganic particles composite membranes present an interesting approach for improving the physical and chemical, as well as separation properties of polymer membranes, because they possess character-istics of both organic and inorganic membranes such as good permeability, selectivity, mechanical strength, ther-mal stability and so on. The preparations and structures of polymer-nanoinorganic particles composite membranes and their unique properties are reviewed.

  6. Hybrid and Mixed Matrix Membranes for Separations from Fermentations

    Directory of Open Access Journals (Sweden)

    Christopher John Davey

    2016-02-01

    Full Text Available Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s, Greater understanding of the compatibility between the polymer and inorganic phase(s, Improved methods for homogeneously dispersing the inorganic phase.

  7. Hybrid and Mixed Matrix Membranes for Separations from Fermentations

    Science.gov (United States)

    Davey, Christopher John; Leak, David; Patterson, Darrell Alec

    2016-01-01

    Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase. PMID:26938567

  8. Problems in structural inorganic chemistry

    CERN Document Server

    Li, Wai-Kee; Mak, Thomas Chung Wai; Mak, Kendrew Kin Wah

    2013-01-01

    This book consists of over 300 problems (and their solutions) in structural inorganic chemistry at the senior undergraduate and beginning graduate level. The topics covered comprise Atomic and Molecular Electronic States, Atomic Orbitals, Hybrid Orbitals, Molecular Symmetry, Molecular Geometry and Bonding, Crystal Field Theory, Molecular Orbital Theory, Vibrational Spectroscopy, and Crystal Structure. The central theme running through these topics is symmetry, molecular or crystalline. The problems collected in this volume originate in examination papers and take-home assignments that have been part of the teaching of the book's two senior authors' at The Chinese University of Hong Kong over the past four decades. The authors' courses include Chemical Bonding, Elementary Quantum Chemistry, Advanced Inorganic Chemistry, X-Ray Crystallography, etc. The problems have been tested by generations of students taking these courses.

  9. Inorganic semiconductors for flexible electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Rogers, J. A.; Center for Nanoscale Materials; Univ. of Illinois

    2007-08-03

    This article reviews several classes of inorganic semiconductor materials that can be used to form high-performance thin-film transistors (TFTs) for large area, flexible electronics. Examples ranging from thin films of various forms of silicon to nanoparticles and nanowires of compound semiconductors are presented, with an emphasis on methods of depositing and integrating thin films of these materials into devices. Performance characteristics, including both electrical and mechanical behavior, for isolated transistors as well as circuits with various levels of complexity are reviewed. Collectively, the results suggest that flexible or printable inorganic materials may be attractive for a range of applications not only in flexible but also in large-area electronics, from existing devices such as flat-panel displays to more challenging (in terms of both cost and performance requirements) systems such as large area radiofrequency communication devices, structural health monitors, and conformal X-ray imagers.

  10. Kinetic chemistry of dense interstellar clouds

    Energy Technology Data Exchange (ETDEWEB)

    Graedel, T.E.; Langer, W.D.; Frerking, M.A.

    1982-03-01

    A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded.

  11. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors

    DEFF Research Database (Denmark)

    He, Ronghuan; Qingfeng, Li; Gang, Xiao

    2003-01-01

    Phosphoric acid doped polybenzimidazole (PBI) and PBI composite membranes have been prepared in the present work. The PBI composites contain inorganic proton conductors including zirconium phosphate (ZrP), (Zr(HPO4)2·nH2O), phosphotungstic acid (PWA), (H3PW12O40·nH2O) and silicotungstic acid (Si...

  12. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli

    NARCIS (Netherlands)

    van Veen, H.W; Abee, T.; Kortstee, G.J J; Konings, W.N; Zehnder, A.J B

    1994-01-01

    P-i transport via the phosphate inorganic transport system (Pit) of Escherichia coil was studied in natural and artificial membranes. P-i uptake via Pit is dependent on the presence of divalent cations, like Mg2+, Ca2+, Co2+, or Mn2+, which form a soluble, neutral metal phosphate (MeHPO(4)) complex.

  13. Revelation of intertwining organic and inorganic fractal structures in polymer coatings.

    Science.gov (United States)

    Hughes, A E; Trinchi, A; Chen, F F; Yang, Y S; Cole, I S; Sellaiyan, S; Carr, J; Lee, P D; Thompson, G E; Xiao, T Q

    2014-07-09

    X-ray microtomography and serial block face scanning electron microscopy are used to reveal independent clusters of inorganic particles embedded within a polymer. These clusters are interpenetrating, of varying size, and have fractal dimensions that strongly influence transport and structure-property relations. This interpretation forms a baseline for designing hybrid materials for applications in self-healing, drug delivery, and membranes.

  14. Preparation and characterization of UV-cured hybrid polyvinyl alcohol nanofiber membranes by electrospinning

    OpenAIRE

    2014-01-01

    The present study investigated the possibility of preparing polyvinyl alcoholic (PVA) organic-inorganic hybrid nanofiber membranes by electrospinning with UV irradiation. To this end, PVA, PVA/SiO2 organic-inorganic hybrid obtained with Geniosil® XL 33 as a SiO2 source, and imidazole-functionalized mesoporous PVA/SiO2/N=N nanofiber membranes were synthesized. These membranes were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differen...

  15. Design of targeting ligands in medicinal inorganic chemistry.

    Science.gov (United States)

    Storr, Tim; Thompson, Katherine H; Orvig, Chris

    2006-06-01

    This tutorial review will highlight recent advances in medicinal inorganic chemistry pertaining to the use of multifunctional ligands for enhanced effect. Ligands that adequately bind metal ions and also include specific targeting features are gaining in popularity due to their ability to enhance the efficacy of less complicated metal-based agents. Moving beyond the traditional view of ligands modifying reactivity, stabilizing specific oxidation states, and contributing to substitution inertness, we will discuss recent work involving metal complexes with multifunctional ligands that target specific tissues, membrane receptors, or endogenous molecules, including enzymes.

  16. Membrane reactor. Membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y.; Wakabayashi, K. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1990-08-05

    Many reaction examples were introduced of membrane reactor, to be on the point of forming a new region in the field of chemical technology. It is a reactor to exhibit excellent function, by its being installed with membrane therein, and is generally classified into catalyst function type and reaction promotion type. What firstly belongs to the former is stabilized zirconia, where oxygen, supplied to the cathodic side of membrane with voltage, impressed thereon, becomes O {sup 2 {minus}} to be diffused through the membrane and supplied, as variously activated oxygenous species, on the anodic side. Examples with many advantages can be given such as methane coupling, propylene oxidation, methanating reaction of carbon dioxide, etc. Apart, palladium film and naphion film also belong to the former. While examples of the latter comprise, among others, decomposition of hydrogen sulfide by porous glass film and dehydrogenation of cyclohexane or palladium alloy film, which are expected to be developed and materialized in the industry. 33 refs., 8 figs.

  17. Catalyst containing oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  18. Catalyst containing oxygen transport membrane

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Jonathan A.; Wilson, Jamie R.; Christie, Gervase Maxwell; Petigny, Nathalie; Sarantopoulos, Christos

    2017-02-07

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a microstructure exhibiting substantially uniform pore size distribution as a result of using PMMA pore forming materials or a bi-modal particle size distribution of the porous support layer materials. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  19. Biobased Membrane

    NARCIS (Netherlands)

    Koenders, E.A.B.; Zlopasa, J.; Picken, S.J.

    2015-01-01

    The present invention is in the field of a composition for forming a bio-compatible membrane applicable to building material, such as concrete, cement, etc., to a meth od of applying said composition for forming a bio-compatible membrane, a biocompatible membrane, use of said membrane for various pu

  20. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  1. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  2. Failure Modes of thin supported Membranes

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Høgsberg, J.R.; Kjeldsen, Ane Mette;

    2007-01-01

    Four different failure modes relevant to tubular supported membranes (thin dense films on a thick porous support) were analyzed. The failure modes were: 1) Structural collapse due to external pressure 2) burst of locally unsupported areas, 3) formation of surface cracks in the membrane due to TEC......-mismatches, and finally 4) delamination between membrane and support due to expansion of the membrane on use. Design criteria to minimize risk of failure by the four different modes are discussed. The theoretical analysis of the two last failure modes is compared to failures observed on actual components....

  3. The "Origin-of-Life Reactor" and Reduction of CO2 by H2 in Inorganic Precipitates.

    Science.gov (United States)

    Jackson, J Baz

    2017-08-01

    It has been suggested that inorganic membranes were forerunners of organic membranes at the origin of life. Such membranes, interposed between alkaline fluid in submarine vents and the more acidic Hadean ocean, were thought to house inorganic molecular machines. H(+) flowed down the pH gradient (ΔpH) from ocean to vent through the molecular machines to drive metabolic reactions for early life. A set of experiments was performed by Herschy et al. (J Mol Evol 79:213-227, 2014) who followed earlier work to construct inorganic precipitate membranes which, they argued, would be transected by a ΔpH. They supposed that inorganic molecular machines might assemble by chance in the precipitate membranes, and be capable of using the ΔpH to drive unfavourable reduction of CO2 by H2 to formate and formaldehyde. Indeed, these workers detected both of these compounds in their origin-of-life reaction vessel and contend this was proof of principle for their hypothesis. However, it is shown here by a straightforward calculation that the formate produced was only that which reached on approach to equilibrium without any driving force from ΔpH. We conclude that the reaction was facilitated by isotropic catalysts in the precipitate membrane but not by an anisotropic ΔpH-driven molecular machine.

  4. The inorganic constituents of echinoderms

    Science.gov (United States)

    Clarke, F.W.; Wheeler, W.C.

    1915-01-01

    In a recent paper on the composition of crinoid skeletons we showed that crinoids contain large quantities of magnesia, and that its proportion varies with the temperature of the water in which the creatures live. This result was so novel and surprising that it seemed desirable to examine other echinoderms and to ascertain whether they showed the same characteristics and regularity. A number of sea urchins and starfishes were therefore studied, their inorganic constituents being analyzed in the same manner as those of the crinoids

  5. Plasma chemistry for inorganic materials

    Science.gov (United States)

    Matsumoto, O.

    1980-01-01

    Practical application of plasma chemistry to the development of inorganic materials using both low temperature and warm plasmas are summarized. Topics cover: the surface nitrification and oxidation of metals; chemical vapor deposition; formation of minute oxide particles; the composition of oxides from chloride vapor; the composition of carbides and nitrides; freezing high temperature phases by plasma arc welding and plasma jet; use of plasma in the development of a substitute for petroleum; the production of silicon for use in solar cell batteries; and insulating the inner surface of nuclear fusion reactor walls.

  6. Injection of photoelectrons into dense argon gas

    CERN Document Server

    Borghesani, A F

    2010-01-01

    The injection of photoelectrons in a gaseous or liquid sample is a widespread technique to produce a cold plasma in a weakly--ionized system in order to study the transport properties of electrons in a dense gas or liquid. We report here the experimental results of photoelectron injection into dense argon gas at the temperatureT=142.6 K as a function of the externally applied electric field and gas density. We show that the experimental data can be interpreted in terms of the so called Young-Bradbury model only if multiple scattering effects due to the dense environment are taken into account when computing the scattering properties and the energetics of the electrons.

  7. Composite perfluorohydrocarbon membranes, their preparation and use

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong; Bikson, Benjamin

    2017-04-04

    Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly (aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly (aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.

  8. Composite oxygen transport membrane

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zigui; Plonczak, Pawel J.; Lane, Jonathan A.

    2016-11-08

    A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.

  9. Interface interaction induced ultra-dense nanoparticles assemblies.

    Science.gov (United States)

    Song, Yujun; Wang, Yan; Li, Bin Bin; Fernandes, Carlos; Ruda, Harry E

    2013-08-07

    We demonstrate a simple and clean physical methodology for fabricating such nanoparticle assemblies (dense arrays and/or dendrites) related to the interfacial interaction between the constructed materials and the anodized aluminum oxide (AAO) porous templates. The interfacial interaction can be regulated by the surface tension of the constructed materials and the AAO membrane, and the AAO-template structure, such as pore size, membrane thickness and surface morphologies. Depending on the interfacial interaction between the constructed materials and the AAO templates, NP arrays with mean particle diameters from 3.8 ± 1.0 nm to 12.5 ± 2.9 nm, mean inter-edge spacings from 3.5 ± 1.4 nm to 7.9 ± 3.4 nm and areal densities from 5.6 × 10(11) NPs per cm(2) to 1.5 × 10(12) NPs per cm(2) are fabricated over large areas (currently ~2 cm × 3 cm). The fabrication process includes firstly thermal evaporation of metal layers no more than 10 nm thick on the pre-coated Si wafer by AAO templates with a thickness of less than 150 nm and mean pore sizes no more than 12 nm, and then removal of the AAO templates. The NP arrays can be stable for hours at a temperature slightly below the melting point of the constructed materials (e.g., ~800 °C for Au NPs for 4 hours) with little change in size and inter-particle separation. Using one of them (e.g., 11.8 nm Au NPs) as growth-oriented catalysts, ultra-thin (12.1 ± 2.3 nm) dense nanowires can be conveniently obtained. Furthermore, dendrite superstructures can be generated easily from eutectic alloy NPs with diameters of ~10 nm pre-formed by thermal evaporation of metal layers more than 20 nm thick on surface-patterned thick AAO templates (e.g., 500 nm). The resulting dendrites, dense arrays and other superstructures (i.e., nanorods and nanowires) formed using NP arrays as catalysts, should have broad applications in catalysis, information technology, photovoltaics and biomedical engineering.

  10. Heat-resistant inorganic binders.

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich,

    2017-04-01

    Full Text Available The authors consider some aspects of production of inorganic heat-resistant composite materials in which new classes of inorganic binders - the basic salts of various metals – are applied. The possibility to use hydroxochlorides and hydroxonitrates of aluminum, zirconium, chromium and a number of other metals as the binder has been shown. The main products of the thermal decomposition of all types of binders discussed in this paper are nano-dispersed highly refractory oxides. Increased pressure in the manufacture of these materials shifts the position of the minimum of the dependence «production strength – production temperature» in the direction of low temperatures. This effect is caused by decreased film thickness of the binder located between filler particles and hence by increased rate of transfer of the matter to the interface and by facilitated sintering process. Materials based on the systems containing chromium and some other elements in transitional oxidation states are colour. For this reason, they have the worst thermal conductivity under the same heat resistance compared to colorless materials.

  11. Infrared Spectra of Simple Inorganic Ion Pairs in Solid Solution: A Physical Inorganic Chemistry Experiment.

    Science.gov (United States)

    Miller, Philip J.; Tong, William G.

    1980-01-01

    Presents a physical inorganic experiment in which large single crystals of the alkali halides doped with divalent ion impurities are prepared easily. Demonstrates the ion pairing of inorganic ions in solid solution. (CS)

  12. The effects of inorganic particles of lunar soil simulant on brain nerve terminals

    Science.gov (United States)

    Borisova, Tatiana; Krisanova, Natalia; Sivko, Roman; Borisov, Arseniy

    2012-07-01

    The health effects from lunar soil exposure are almost completely unknown, whereas the observations suggest that it can be deleterious to human physiology. It is important that the components of lunar soil may be internalized with lipid fractions of the lung epithelium, which in turn may help ions to overcome the blood-brain barrier. The study focused on the effects of JSC-1a Lunar Soil Simulant (LSS) (Orbital Technologies Corporation, Madison, USA) on rat brain nerve terminals (synaptosomes). We revealed that brain nerve terminals were not indifferent to the exposure to LSS inorganic particles. Using Zetasizer Nanosystem (Malvern Instruments) with helium-neon laser for dynamic light scattering (DLS), the synaptosomal size before and after the addition of LSS was measured and the binding of LSS inorganic particles to nerve terminals was demonstrated. Using potential-sensitive fluorescent dye rhodamine 6G, we showed that LSS inorganic particles did not influence the potential of the plasma membrane of nerve terminals. Acidification of synaptic vesicles of nerve terminals did not change in the presence of LSS inorganic particles that was revealed with pH-sensitive fluorescent dye acridine orange. However, LSS inorganic particles influenced accumulation of glutamate, the main excitatory neurotransmitter in the CNS, by nerve terminals. Thus, we report that inorganic particles of LSS influence accumulation of glutamate in brain nerve terminals and this fact may have harmful consequences to human physiology, in particular glutamate homeostasis in the mammalian CNS.

  13. Inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood materials

    OpenAIRE

    Bergamonti, Laura

    2015-01-01

    Inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood materials The research has focused on the synthesis, characterization and application of inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood. The wood preservatives synthesized and tested for biocidal activity are polyamidoamines functionalized with hydroxyl and siloxane groups, while the coatings applied on the stones are water based TiO2 nanosols with ...

  14. Microbial Relevant Fouling in Membrane Bioreactors: Influencing Factors, Characterization, and Fouling Control

    OpenAIRE

    Anthony G. Fane; Bing Wu

    2012-01-01

    Microorganisms in membrane bioreactors (MBRs) play important roles on degradation of organic/inorganic substances in wastewaters, while microbial deposition/growth and microbial product accumulation on membranes potentially induce membrane fouling. Generally, there is a need to characterize membrane foulants and to determine their relations to the evolution of membrane fouling in order to identify a suitable fouling control approach in MBRs. This review summarized the factors in MBRs that inf...

  15. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  16. Membranes for Environmentally Friendly Energy Processes

    Directory of Open Access Journals (Sweden)

    Xuezhong He

    2012-10-01

    Full Text Available Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature and the impurities in a gas stream (such as SO2, NOx, H2S, etc.. Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation.

  17. DNS of turbulent flows of dense gases

    Science.gov (United States)

    Sciacovelli, L.; Cinnella, P.; Gloerfelt, X.; Grasso, F.

    2017-03-01

    The influence of dense gas effects on compressible turbulence is investigated by means of numerical simulations of the decay of compressible homogeneous isotropic turbulence (CHIT) and of supersonic turbulent flows through a plane channel (TCF). For both configurations, a parametric study on the Mach and Reynolds numbers is carried out. The dense gas considered in these parametric studies is PP11, a heavy fluorocarbon. The results are systematically compared to those obtained for a diatomic perfect gas (air). In our computations, the thermodynamic behaviour of the dense gases is modelled by means of the Martin-Hou equation of state. For CHIT cases, initial turbulent Mach numbers up to 1 are analyzed using mesh resolutions up to 5123. For TCF, bulk Mach numbers up to 3 and bulk Reynolds numbers up to 12000 are investigated. Average profiles of the thermodynamic quantities exhibit significant differences with respect to perfect-gas solutions for both of the configurations. For high-Mach CHIT, compressible structures are modified with respect to air, with weaker eddy shocklets and stronger expansions. In TCF, the velocity profiles of dense gas flows are much less sensitive to the Mach number and collapse reasonably well in the logarithmic region without any special need for compressible scalings, unlike the case of air, and the overall flow behaviour is midway between that of a variable-property liquid and that of a gas.

  18. Dense matter at RAON: Challenges and possibilities

    Science.gov (United States)

    Lee, Yujeong; Lee, Chang-Hwan; Gaitanos, T.; Kim, Youngman

    2016-11-01

    Dense nuclear matter is ubiquitous in modern nuclear physics because it is related to many interesting microscopic and macroscopic phenomena such as heavy ion collisions, nuclear structure, and neutron stars. The on-going rare isotope science project in Korea will build up a rare isotope accelerator complex called RAON. One of the main goals of RAON is to investigate rare isotope physics including dense nuclear matter. Using the relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) transport code, we estimate the properties of nuclear matter that can be created from low-energy heavyion collisions at RAON.We give predictions for the maximum baryon density, the isospin asymmetry and the temperature of nuclear matter that would be formed during 197Au+197Au and 132Sn+64Ni reactions. With a large isospin asymmetry, various theoretical studies indicate that the critical densities or temperatures of phase transitions to exotic states decrease. Because a large isospin asymmetry is expected in the dense matter created at RAON, we discuss possibilities of observing exotic states of dense nuclear matter at RAON for large isospin asymmetry.

  19. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  20. Denseness of Numerical Radius Attaining Holomorphic Functions

    Directory of Open Access Journals (Sweden)

    Lee HanJu

    2009-01-01

    Full Text Available We study the density of numerical radius attaining holomorphic functions on certain Banach spaces using the Lindenstrauss method. In particular, it is shown that if a complex Banach space is locally uniformly convex, then the set of all numerical attaining elements of is dense in .

  1. Denseness of Numerical Radius Attaining Holomorphic Functions

    Directory of Open Access Journals (Sweden)

    Han Ju Lee

    2009-01-01

    Full Text Available We study the density of numerical radius attaining holomorphic functions on certain Banach spaces using the Lindenstrauss method. In particular, it is shown that if a complex Banach space X is locally uniformly convex, then the set of all numerical attaining elements of A(BX:X is dense in A(BX:X.

  2. Coalescence preference in dense packing of bubbles

    Science.gov (United States)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  3. APT: Action localization Proposals from dense Trajectories

    NARCIS (Netherlands)

    van Gemert, J.C.; Jain, M.; Gati, E.; Snoek, C.G.M.; Xie, X.; Jones, M.W.; Tam, G.K.L.

    2015-01-01

    This paper is on action localization in video with the aid of spatio-temporal proposals. To alleviate the computational expensive video segmentation step of existing proposals, we propose bypassing the segmentations completely by generating proposals directly from the dense trajectories used to repr

  4. Improvements in accuracy of dense OPC models

    Science.gov (United States)

    Kallingal, Chidam; Oberschmidt, James; Viswanathan, Ramya; Abdo, Amr; Park, OSeo

    2008-10-01

    Performing model-based optical proximity correction (MBOPC) on layouts has become an integral part of patterning advanced integrated circuits. Earlier technologies used sparse OPC, the run times of which explode when the density of layouts increases. With the move to 45 nm technology node, this increase in run time has resulted in a shift to dense simulation OPC, which is pixel-based. The dense approach becomes more efficient at 45nm technology node and beyond. New OPC model forms can be used with the dense simulation OPC engine, providing the greater accuracy required by smaller technology nodes. Parameters in the optical model have to be optimized to achieve the required accuracy. Dense OPC uses a resist model with a different set of parameters than sparse OPC. The default search ranges used in the optimization of these resist parameters do not always result in the best accuracy. However, it is possible to improve the accuracy of the resist models by understanding the restrictions placed on the search ranges of the physical parameters during optimization. This paper will present results showing the correlation between accuracy of the models and some of these optical and resist parameters. The results will show that better optimization can improve the model fitness of features in both the calibration and verification set.

  5. Building a dense surface map incrementally from semi-dense point cloud and RGB images

    Institute of Scientific and Technical Information of China (English)

    Qian-shan LI; Rong XIONG; Shoudong HUANG; Yi-ming HUANG

    2015-01-01

    Building and using maps is a fundamental issue for bionic robots in fi eld applications. A dense surface map, which offers rich visual and geometric information, is an ideal representation of the environment for indoor/outdoor localization, navigation, and recognition tasks of these robots. Since most bionic robots can use only small light-weight laser scanners and cameras to acquire semi-dense point cloud and RGB images, we propose a method to generate a consistent and dense surface map from this kind of semi-dense point cloud and RGB images. The method contains two main steps: (1) generate a dense surface for every single scan of point cloud and its corresponding image(s) and (2) incrementally fuse the dense surface of a new scan into the whole map. In step (1) edge-aware resampling is realized by segmenting the scan of a point cloud in advance and resampling each sub-cloud separately. Noise within the scan is reduced and a dense surface is generated. In step (2) the average surface is estimated probabilistically and the non-coincidence of different scans is eliminated. Experiments demonstrate that our method works well in both indoor and outdoor semi-structured environments where there are regularly shaped ob jects.

  6. Experimental and Modeling Studies of the Methane Steam Reforming Reaction at High Pressure in a Ceramic Membrane Reactor

    OpenAIRE

    Hacarlioglu, Pelin

    2007-01-01

    This dissertation describes the preparation of a novel inorganic membrane for hydrogen permeation and its application in a membrane reactor for the study of the methane steam reforming reaction. The investigations include both experimental studies of the membrane permeation mechanism and theoretical modeling of mass transfer through the membrane and simulation of the membrane reactor with 1-D and 2-D models. A hydrothermally stable and hydrogen selective membrane composed of silica and a...

  7. Membranous nephropathy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000472.htm Membranous nephropathy To use the sharing features on this page, please enable JavaScript. Membranous nephropathy is a kidney disorder that leads to changes ...

  8. Improved Membrane Materials for PEM Fuel Cell Application

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  9. Firing membranes

    NARCIS (Netherlands)

    Kappert, Emiel Jan

    2015-01-01

    Thermal processing is commonly employed to alter the chemistry and microstructure of membrane layers. It can shape, strengthen, and give functionality to a membrane. A good understanding of the processes taking place during the thermal processing of a membrane material allows for optimization and tu

  10. 29 CFR 1926.1118 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  11. 29 CFR 1915.1018 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  12. Microsystem technology for high-flux hydrogen separation membranes

    NARCIS (Netherlands)

    Gielens, F.C.; Tong, H.D.; Rijn, van C.J.M.; Vorstman, M.A.G.; Keurentjes, J.T.F.

    2004-01-01

    The application of thin hydrogen-selective membranes suffers from the occurrence of pinholes and a significant resistance to mass transfer in the porous support. To overcome these problems, Pd, Pd/Ag and Pd–Ta–Pd membranes with a thickness between 0.5 and 1.2 μm have been deposited on a dense and sm

  13. Centrifugal Casting of Tubular Perovskite Membranes

    NARCIS (Netherlands)

    Mertins, Frederic H.B.; Kruidhof, Henk; Bouwmeester, Henny J.M.

    2005-01-01

    Dense tubular membranes were produced by centrifugal casting of an aqueous suspension, containing powder particles of the mixed-conducting perovskite La0.5Sr0.5CoO3−δ and a dispersant. The resulting green bodies were dried and sintered to produce tubes with a maximum length of 12 cm, having a relat

  14. Inorganic materials synthesis in ionic liquids

    Directory of Open Access Journals (Sweden)

    Christoph Janiak

    2014-01-01

    Full Text Available The field of "inorganic materials from ionic liquids" (ILs is a young and dynamically growing research area for less than 10 years. The ionothermal synthesis in ILs is often connected with the preparation of nanomaterials, the use of microwave heating and in part also ultrasound. Inorganic material synthesis in ILs allows obtaining phases which are not accessible in conventional organic or aqueous solvents or with standard methods of solid-state chemistry or under such mild conditions. Cases at hand include "ligand-free" metal nanoparticles without added stabilizing capping ligands, inorganic or inorganic-organic hybrid solid-state compounds, large polyhedral clusters and exfoliated graphene from low-temperature synthesis. There are great expectations that ILs open routes towards new, possibly unknown, inorganic materials with advantageous properties that cannot (or only with great difficulty be made via conventional processes.

  15. On some problems of inorganic supramolecular chemistry.

    Science.gov (United States)

    Pervov, Vladislav S; Zotova, Anna E

    2013-12-02

    In this study, some features that distinguish inorganic supramolecular host-guest objects from traditional architectures are considered. Crystalline inorganic supramolecular structures are the basis for the development of new functional materials. Here, the possible changes in the mechanism of crystalline inorganic supramolecular structure self-organization at high interaction potentials are discussed. The cases of changes in the host structures and corresponding changes in the charge states under guest intercalation, as well as their impact on phase stability and stoichiometry are considered. It was demonstrated that the deviation from the geometrical and topological complementarity conditions may be due to the additional energy gain from forming inorganic supramolecular structures. It has been assumed that molecular recognition principles can be employed for the development of physicochemical analysis and interpretation of metastable states in inorganic crystalline alloys.

  16. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  17. [Membrane fouling by secondary effluent of urban sewage and the membrane properties].

    Science.gov (United States)

    Meng, Xiao-rong; Zhang, Hai-zhen; Wang, Lei; Wang, Xu-dong; Zhao, Liang

    2013-05-01

    The fouling behavior of UF membranes by secondary effluent of municipal wastewater was investigated using both original PVDF membranes and PVA, PVP and PMMA modified PVDF membranes. The results showed that the structure parameters of UF membranes were optimized by blending; PVP and PVA could effectively improve the hydrophilicity and permeate flux of the membranes. The hydrophilicity and structure properties of UF membrane had stronger effect on the anti-fouling properties. Pore plugging resistance was the main reason for the unrecoverable fouling. For UF membranes with stronger hydrophilicity, there was some flux reduction in the initial filtration, which was attributed to the formation of concentration polarization layer. However, this layer can be easily removed and the irreversible fouling index (r(ir)) was 0, thus guaranteeing the membrane a better anti-fouling property. The dense membrane surface could prevent low-molecular-weight pollutants from entering the internal pores of the membrane. For UF membrane with fully developed macropores in the cross-section and loose spongy layer structure, pollutants deposition to membrane internal pores, which would cause membrane pore plugging, could be effectively inhibited. In contrast, for membranes with porous surface and not fully developed macropores in the cross-section, pore plugging was more prone to occur. As a result, flux declined seriously and was difficult to be recovered by physical cleaning, which gave rise to the irreversible fouling.

  18. Welcome to Inorganics: A New Open Access, Inclusive Forum for Inorganic Chemistry

    Directory of Open Access Journals (Sweden)

    Duncan H. Gregory

    2013-06-01

    Full Text Available One of the beauties of inorganic chemistry is its sheer diversity. Just as chemistry sits at the centre of the sciences, inorganic chemistry sits at the centre of chemistry itself. Inorganic chemists are fortunate in having the entire periodic table at their disposal, providing a palette for the creation of a multitude of rich and diverse compounds and materials from the simplest salts to the most complex of molecular species. It follows that the language of inorganic chemistry can thus be a demanding one, accommodating sub-disciplines with very different perspectives and frames of reference. One could argue that it is the unequivocal breadth of inorganic chemistry that empowers inorganic chemists to work at the interfaces, not just between the traditional Inorganic-Organic-Physical boundaries of the discipline, but in the regions where chemistry borders the other physical and life sciences, engineering and socio-economics. [...

  19. Organic/Inorganic Hybrid Nanostructures for Chemical Plasmonic Sensors

    Science.gov (United States)

    Chang, Sehoon

    2011-12-01

    depending on the exact location and orientation of decorated silver nanoparticles nearby silver nanowire crossbars. As an alternative approach for the template-assisted nanostructure design, porous alumina membrane (PAM) can be utilized as a sacrificial template for the fabrication of the nanotube structure. The study seeks to investigate the design aspects of polymeric/inorganic hybrid nanotube structures with plasmonic properties, which can be dynamically tuned by external stimuli such as pH. This research suggests several different organic/inorganic nanostructure assemblies by various template-assisted techniques. The polymeric/inorganic hybrid nanostructures including SERS property, pH responsive characteristics, and large surface area will enable us to understand and design the novel chemical plasmonic sensors.

  20. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2016-12-10

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.

  1. Polymer blend membranes for CO2 separation from natural gas

    Science.gov (United States)

    Mukhtar, H.; Mannan, H. A.; Minh, D.; Nasir, R.; Moshshim, D. F.; Murugesan, T.

    2016-06-01

    Polymeric membranes are dominantly used in industrial gas separation membrane processes. Enhancement in membranes permeability and/or selectivity is a key challenge faced by membrane researchers. The current work represents the effect of poyetherimide blending on separation performance of polysulfone membranes. Polysulfone/poyetherimide (PSF/PEI) blend flat sheet dense membranes were synthesized and tested for permeation analysis of CO2 and CH4 gases at 6, 8 and 10 bar pressure and 25oC temperature. Morphology and thermal properties of membranes were characterized by field emission scanning electron microscope (FESEM) and thermo gravimetric analysis (TGA) respectively. Blend membranes were dense and homogeneous as deduced from FESEM analysis. Thermal stability of synthesized blend membranes was maintained by blending with PEI as characterized by TGA results. Decrease in permeability of both gases was observed by the addition of PEI due to rigidity of PEI chains. Additionally, selectivity of synthesized blend membranes was enhanced by blending PEI and blend membranes show improved selectivity over pure PSF membrane. This new material has the capability to be used as gas separation membrane material.

  2. Colloquium: Nonlinear Collective Interactions in Dense Plasmas

    CERN Document Server

    Shukla, P K

    2010-01-01

    The current understanding of some important collective processes in dense quantum plasmas is presented. After reviewing the basic properties of dense quantum plasmas with degenerate electrons, we present model equations (e.g. the quantum hydrodynamic and effective nonlinear Schr\\"odinger-Poisson equations) that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wave functions that result in a nonlinear quantum electron pressure and tunneling/diffusion of electrons through a nonlinear quantum Bohm potential. Since degenerate electrons have $1/2-$spin due to their Fermionic nature, there also appear a spin electron current and a spin force acting on the electrons due to the Bohr magnetization. The present nonlinear equations do not include strong electron correlations and electron-exchange interactions. The quantum effects caused by the electron degeneracy produce n...

  3. Active fluidization in dense glassy systems.

    Science.gov (United States)

    Mandal, Rituparno; Bhuyan, Pranab Jyoti; Rao, Madan; Dasgupta, Chandan

    2016-07-20

    Dense soft glasses show strong collective caging behavior at sufficiently low temperatures. Using molecular dynamics simulations of a model glass former, we show that the incorporation of activity or self-propulsion, f0, can induce cage breaking and fluidization, resulting in the disappearance of the glassy phase beyond a critical f0. The diffusion coefficient crosses over from being strongly to weakly temperature dependent as f0 is increased. In addition, we demonstrate that activity induces a crossover from a fragile to a strong glass and a tendency of active particles to cluster. Our results are of direct relevance to the collective dynamics of dense active colloidal glasses and to recent experiments on tagged particle diffusion in living cells.

  4. Strategies for Dense Optical CDMA Communication Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-bao; LIN Jin-tong

    2005-01-01

    In this paper,we have formulated a strategy that the limited available code sequences in pure Direct-Sequence(DS)or Frequency-Hopping(FH)system can be reused to realize dense optical CDMA:the strategy of novel hybrid DS/FH system.In which,the case that there are n users employing the same FH pattern but different DS code patterns is considered.On the condition that the impact of channel noises is neglected,the upper bound probability of error is evaluated based on the stationary random process theory.The results show that the hybrid system is suitable for Dense Optical CDMA(DOCDMA)communication.Moreover,the problems such as the link-impairment,dispersion of group velocity,etc.in the pure(DS or FH)system can be solved effectively.

  5. The kinetic chemistry of dense interstellar clouds

    Science.gov (United States)

    Graedel, T. E.; Langer, W. D.; Frerking, M. A.

    1982-01-01

    A model of the time-dependent chemistry of dense interstellar clouds is formulated to study the dominant chemical processes in carbon and oxygen isotope fractionation, the formation of nitrogen-containing molecules, and the evolution of product molecules as a function of cloud density and temperature. The abundances of the dominant isotopes of the carbon- and oxygen-bearing molecules are calculated. The chemical abundances are found to be quite sensitive to electron concentration since the electron concentration determines the ratio of H3(+) to He(+), and the electron density is strongly influenced by the metals abundance. For typical metal abundances and for H2 cloud density not less than 10,000 molecules/cu cm, nearly all carbon exists as CO at late cloud ages. At high cloud density, many aspects of the chemistry are strongly time dependent. Finally, model calculations agree well with abundances deduced from observations of molecular line emission in cold dense clouds.

  6. Topological Surface States in Dense Solid Hydrogen.

    Science.gov (United States)

    Naumov, Ivan I; Hemley, Russell J

    2016-11-11

    Metallization of dense hydrogen and associated possible high-temperature superconductivity represents one of the key problems of physics. Recent theoretical studies indicate that before becoming a good metal, compressed solid hydrogen passes through a semimetallic stage. We show that such semimetallic phases predicted to be the most stable at multimegabar (∼300  GPa) pressures are not conventional semimetals: they exhibit topological metallic surface states inside the bulk "direct" gap in the two-dimensional surface Brillouin zone; that is, metallic surfaces may appear even when the bulk of the material remains insulating. Examples include hydrogen in the Cmca-12 and Cmca-4 structures; Pbcn hydrogen also has metallic surface states but they are of a nontopological nature. The results provide predictions for future measurements, including probes of possible surface superconductivity in dense hydrogen.

  7. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X......-ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation...

  8. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing

    Science.gov (United States)

    Van Calcar, Pamela; Mackay, Richard; Sammells, Anthony F.

    2002-01-01

    The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.

  9. MIL-53 frameworks in mixed-matrix membranes and cross-linked ZIF-8/matrimidRTM mixed-matrix membranes for gas separation

    Science.gov (United States)

    Hsieh, Josephine Ordonez

    Mixed matrix membranes (MMMs) are hybrid materials consisting of two phases: an inorganic nanoscale particle as the discrete phase, and a polymeric material as the continuous phase. The incorporation of inorganic particles into a polymer can improve a membrane's overall separation performance. MMMs incorporating metal-organic frameworks (MOFs) have exhibited promising gas separation performance. MOFs are inorganic-organic crystals constructed from metal ions that are linked by polydentate ligands. Zeolitic imidazolate frameworks (ZIFs) are a sub-class of MOFs that uses imidazole analogues as ligands. In these studies, the MOF MIL-53 and ZIF-8 were successfully synthesized and characterized by a battery of analytical techniques including XRD, FTIR, TGA, N2 adsorption, and SEM, and were incorporated into MMMs with Matrimid® polymer. In chapter 1, MIL-53/Matrimid® MMMs containing MIL-53-ht (open-pore form) were fabricated, characterized and obtained permeability values higher than Matrimid®. Selectivities decreased for the gas pairs of O2/N2, H2/O2, H2/CO2, and H2/N2. However, slight enhancement of the CO2/CH4 selectivity was observed for the MIL-53-ht/Matrimid® compared to that of Matrimid ®. The MIL-53-as/Matrimid® MMM also showed an increase in permeability as well as an increase in selectivity for the gas pairs H2/O2, CO2/CH4, H 2/CH4, and H2/N2. The MIL-53-lt/Matrimid ® MMM showed that it does not retain its closed-pore form in the MMM due to chloroform solvent opening the pores and eventually polymer confinement of the MIL 53 framework in the MMM. In chapter 2, easy synthesis and fabrication of the MIL-53 MOF membrane was realized using a seeded growth method with a commercially available alumina TLC plate. The MOF membrane had a well-intergrown and dense layer of MIL-53 crystals on the surface of the alumina substrate. The MIL-53 crystals were also converted to the MIL-53-lt (closed-pore form) after heating at 330 °C and cooling to room temperature

  10. Accelerating Dense Linear Algebra on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi...... architecture). Most of the techniques I discuss for accelerating dense linear algebra are applicable to memory-bound GPU algorithms in general....

  11. Observations of Plasmons in Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S H; Landen, O L; Neumayer, P; Lee, R W; Widmann, K; Pollaine, S W; Wallace, R J; Gregori, G; Holl, A; Bornath, T; Thiele, R; Schwarz, V; Kraeft, W; Redmer, R

    2006-09-05

    We present the first collective x-ray scattering measurements of plasmons in solid-density plasmas. The forward scattering spectra of a laser-produced narrow-band x-ray line from isochorically heated beryllium show that the plasmon frequency is a sensitive measure of the electron density. Dynamic structure calculations that include collisions and detailed balance match the measured plasmon spectrum indicating that this technique will enable new applications to determine the equation of state and compressibility of dense matter.

  12. Splashing onset in dense suspension droplets

    OpenAIRE

    Peters, Ivo; Xu, Qin; Jaeger, Heinrich M.

    2013-01-01

    We investigate the impact of droplets of dense suspensions onto a solid substrate. We show that a global hydrodynamic balance is unable to predict the splash onset and propose to replace it by an energy balance at the level of the particles in the suspension. We experimentally verify that the resulting, particle-based Weber number gives a reliable, particle size and density dependent splash onset criterion. We further show that the same argument also explains why, in bimodal systems, smaller ...

  13. A method for dense packing discovery

    CERN Document Server

    Kallus, Yoav; Gravel, Simon

    2010-01-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and ...

  14. Hybrid-Based Dense Stereo Matching

    Science.gov (United States)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  15. Dense Visual SLAM with Probabilistic Surfel Map.

    Science.gov (United States)

    Yan, Zhixin; Ye, Mao; Ren, Liu

    2017-11-01

    Visual SLAM is one of the key technologies to align the virtual and real world together in Augmented Reality applications. RGBD dense Visual SLAM approaches have shown their advantages in robustness and accuracy in recent years. However, there are still several challenges such as the inconsistencies in RGBD measurements across multiple frames that could jeopardize the accuracy of both camera trajectory and scene reconstruction. In this paper, we propose a novel map representation called Probabilistic Surfel Map (PSM) for dense visual SLAM. The main idea is to maintain a globally consistent map with both photometric and geometric uncertainties encoded in order to address the inconsistency issue. The key of our PSM is proper modeling and updating of sensor measurement uncertainties, as well as the strategies to apply them for improving both the front-end pose estimation and the back-end optimization. Experimental results on publicly available datasets demonstrate major improvements with our approach over the state-of-the-art methods. Specifically, comparing with σ-DVO, we achieve a 40% reduction in absolute trajectory error and an 18% reduction in relative pose error in visual odometry, as well as an 8.5% reduction in absolute trajectory error in complete SLAM. Moreover, our PSM enables generation of a high quality dense point cloud with comparable accuracy as the state-of-the-art approach.

  16. Dense Correspondences across Scenes and Scales.

    Science.gov (United States)

    Tau, Moria; Hassner, Tal

    2016-05-01

    We seek a practical method for establishing dense correspondences between two images with similar content, but possibly different 3D scenes. One of the challenges in designing such a system is the local scale differences of objects appearing in the two images. Previous methods often considered only few image pixels; matching only pixels for which stable scales may be reliably estimated. Recently, others have considered dense correspondences, but with substantial costs associated with generating, storing and matching scale invariant descriptors. Our work is motivated by the observation that pixels in the image have contexts-the pixels around them-which may be exploited in order to reliably estimate local scales. We make the following contributions. (i) We show that scales estimated in sparse interest points may be propagated to neighboring pixels where this information cannot be reliably determined. Doing so allows scale invariant descriptors to be extracted anywhere in the image. (ii) We explore three means for propagating this information: using the scales at detected interest points, using the underlying image information to guide scale propagation in each image separately, and using both images together. Finally, (iii), we provide extensive qualitative and quantitative results, demonstrating that scale propagation allows for accurate dense correspondences to be obtained even between very different images, with little computational costs beyond those required by existing methods.

  17. Numerical modeling for dilute and dense sprays

    Science.gov (United States)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.

  18. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  19. Nanocomposites Derived from Polymers and Inorganic Nanoparticles

    Directory of Open Access Journals (Sweden)

    In-Yup Jeon

    2010-06-01

    Full Text Available Polymers are considered to be good hosting matrices for composite materials because they can easily be tailored to yield a variety of bulk physical properties. Moreover, organic polymers generally have long-term stability and good processability. Inorganic nanoparticles possess outstanding optical, catalytic, electronic and magnetic properties, which are significantly different their bulk states. By combining the attractive functionalities of both components, nanocomposites derived from organic polymers and inorganic nanoparticles are expected to display synergistically improved properties. The potential applications of the resultant nanocomposites are various, e.g. automotive, aerospace, opto-electronics, etc. Here, we review recent progress in polymer-based inorganic nanoparticle composites.

  20. Inorganic Nanoparticles Conjugated with Biofunctional Molecules

    Institute of Scientific and Technical Information of China (English)

    J.H.Choy

    2007-01-01

    1 Results We have attempted to conjugate inorganic nanoparticles with biofunctional molecules.Recently we were quite successful in demonstrating that a two-dimensional inorganic compound like layered double hydroxide (LDH),and natural and synthetic clays can be used as gene or drug delivery carriers1-4.To the best of our knowledge,such inorganic vectors are completely new and different from conventionally developed ones such as viruses and cationic liposomes,those which are limited in certain cases of ap...

  1. Newly Developed Ceramic Membranes for Dehydration and Separation of Organic Mixtures by Pervaporation

    NARCIS (Netherlands)

    Gemert, van R.W.; Cuperus, F.P.

    1995-01-01

    Polymeric pervaporation membranes sometimes show great variety in performance when they are alternately used for different solvent mixtures. In addition, membrane stability in time is a problem in case of some solvents. Therefore, newly developed ceramic silica membranes with a 'dense' top layer wer

  2. Inorganic chemically active adsorbents (ICAAs)

    Energy Technology Data Exchange (ETDEWEB)

    Ally, M.R. [Oak Ridge National Lab., TN (United States); Tavlarides, L.

    1997-10-01

    Oak Ridge National Laboratory (ORNL) researchers are developing a technology that combines metal chelation extraction technology and synthesis chemistry. They begin with a ceramic substrate such as alumina, titanium oxide or silica gel because they provide high surface area, high mechanical strength, and radiolytic stability. One preparation method involves silylation to hydrophobize the surface, followed by chemisorption of a suitable chelation agent using vapor deposition. Another route attaches newly designed chelating agents through covalent bonding by the use of coupling agents. These approaches provide stable and selective, inorganic chemically active adsorbents (ICAAs) tailored for removal of metals. The technology has the following advantages over ion exchange: (1) higher mechanical strength, (2) higher resistance to radiation fields, (3) higher selectivity for the desired metal ion, (4) no cation exchange, (5) reduced or no interference from accompanying anions, (6) faster kinetics, and (7) easy and selective regeneration. Target waste streams include metal-containing groundwater/process wastewater at ORNL`s Y-12 Plant (multiple metals), Savannah River Site (SRS), Rocky Flats (multiple metals), and Hanford; aqueous mixed wastes at Idaho National Engineering Laboratory (INEL); and scrubber water generated at SRS and INEL. Focus Areas that will benefit from this research include Mixed Waste, and Subsurface Contaminants.

  3. The quest for inorganic fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Park, Eun Ji; Kim, Young Dok, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Seo, Hyun Ook [Center for Free-Electron Laser Science/DESY, D-22607 Hamburg (Germany); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  4. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi,, E-mail: haryadi@polban.ac.id; Sugianto, D.; Ristopan, E. [Department of Chemical Engineering, Politeknik Negeri Bandung Jl. Gegerkalong Hilir, Ds. Ciwaruga, Bandung West Java (Indonesia)

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  5. CO2-dependent carbon isotope fractionation in dinoflagellates relates to their inorganic carbon fluxes.

    Science.gov (United States)

    Hoins, Mirja; Eberlein, Tim; Van de Waal, Dedmer B; Sluijs, Appy; Reichart, Gert-Jan; Rost, Björn

    2016-08-01

    Carbon isotope fractionation (εp) between the inorganic carbon source and organic matter has been proposed to be a function of pCO2. To understand the CO2-dependency of εp and species-specific differences therein, inorganic carbon fluxes in the four dinoflagellate species Alexandrium fundyense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum have been measured by means of membrane-inlet mass spectrometry. In-vivo assays were carried out at different CO2 concentrations, representing a range of pCO2 from 180 to 1200 μatm. The relative bicarbonate contribution (i.e. the ratio of bicarbonate uptake to total inorganic carbon uptake) and leakage (i.e. the ratio of CO2 efflux to total inorganic carbon uptake) varied from 0.2 to 0.5 and 0.4 to 0.7, respectively, and differed significantly between species. These ratios were fed into a single-compartment model, and εp values were calculated and compared to carbon isotope fractionation measured under the same conditions. For all investigated species, modeled and measured εp values were comparable (A. fundyense, S. trochoidea, P. reticulatum) and/or showed similar trends with pCO2 (A. fundyense, G. spinifera, P. reticulatum). Offsets are attributed to biases in inorganic flux measurements, an overestimated fractionation factor for the CO2-fixing enzyme RubisCO, or the fact that intracellular inorganic carbon fluxes were not taken into account in the model. This study demonstrates that CO2-dependency in εp can largely be explained by the inorganic carbon fluxes of the individual dinoflagellates.

  6. Mechanism study of organic antioxidant and inorganic salt on suppressing coal oxidation

    Institute of Scientific and Technical Information of China (English)

    YU Shui-jun; YU Ming-gao; JIA Hai-lin; ZUO Qiu-ling

    2007-01-01

    The advantages and disadvantages of Organic antioxidant and inorganic salt on suppressing coal oxidation were analyzed on the basis of the theory that coal oxidation mechanisms can be attributed to the free radical chain-type reaction mechanism.The inhibition curves on suppressing coal oxidation of the different type and different concentration of Organic antioxidant and inorganic salt were given through experimental study and data processing.Then some conclusions can be gained from the experimental study combining with theoretical analysis.First the inhibition mechanism of the organic antioxidant and inorganic salt is different.The former is that the chemical action is the dominant position.It can be called as the chain termination theory because the free radical is captured during coal oxidation.And the later is that the physical effect is the dominant position.It can be called as the decreasing-temperature theory because the liquid membrane which was formed by the inorganic salt can make coal body be the state of wetness and prevent oxygen from coal surface.Second the inhibition effect of the organic antioxidant is higher than the inorganic salt in the later period.But it is lower in the early period.

  7. PREPARATION OF SA-Fe CATION EXCHANGE MEMBRANE AND IT'S APPLICATION IN ELECTRODIALYSIS FOR TREATING WASTEWATER

    Institute of Scientific and Technical Information of China (English)

    GENG Yamin; CHEN Zhen; ZHENG Xi; HUANG Xuehong; CHEN Riyao

    2006-01-01

    An insoluble SA-Fe membrane was prepared by being linked soluble sodium alginate with FeCl3. SEM was used to observe its surface structure. IR spectrum indicated that Fe3+ was linked with -COOH and -OH in SA membrane. As a cationic exchanging membrane in electrodialysis the membrane was applied in treating inorganic wastewater with high concentration of inorganic ammonia and azote. The results of experiment showed that it was well-selective to ammonia and azote. The percentage of the removal of ammonia and azote in wastewater was up to 80%.

  8. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases.

    Science.gov (United States)

    Stoll, Joshua D; Kolmakov, Andrei

    2012-12-21

    Due to its ultrahigh electron transmissivity in a wide electron energy range, molecular impermeability, high electrical conductivity and excellent mechanical stiffness, suspended graphene membranes appear to be a nearly ideal window material for in situ (in vivo) environmental electron microscopy of nano- and mesoscopic objects (including bio-medical samples) immersed in liquids and/or in dense gaseous media. In this paper, taking advantage of a small modification of the graphene transfer protocol onto metallic and SiN supporting orifices, reusable environmental cells with exchangeable graphene windows have been designed. Using colloidal gold nanoparticles (50 nm) dispersed in water as model objects for scanning electron microscopy in liquids as proof of concept, different conditions for imaging through the graphene membrane were tested. Limiting factors for electron microscopy in liquids, such as electron beam induced water radiolysis and damage of the graphene membrane at high electron doses, are discussed.

  9. Alternative membranes for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, A.K.; Pitchumani, S.; Sridhar, P.; Shukla, A.K. [Central Electrochemical Research Inst., Karaikudi (India)

    2009-07-01

    Nafion, a perfluoro-sulfonated membrane, is utilized as a membrane electrolyte in polymer electrolyte fuel cells (PEFCs). However, to realize optimum PEFC performance, the Nafion membrane needs to be fully humidified, making the system quite costly. Therefore, in order to solve this problem, alternative membrane electrolytes that could operate under low humidity conditions are needed. This paper reported on composite Nafion membranes with ceramic/inorganic fillers such as silica and mesoporous zirconium phosphate (MZP). Silica was impregnated to the Nafion matrix by a unique water hydrolysis sol-gel route and casted as a composite membrane while MZP, a solid-super-acid-proton-conducting medium as well as water absorbing material was synthesized by a co-assembly technique and impregnated to the Nafion matrix to form a composite membrane. The performance of the PEFCs with Nafion membrane and composite membranes was tested with hydrogen/oxygen gas and hydrogen/air feeds at varying relative humidity (RH) values under ambient conditions. It was concluded that under RH value as low as 18 per cent, the PEFC with Nafion membrane delivers a peak-power density of only 130 mW/square centimeter.

  10. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  11. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic protontic conductors

    DEFF Research Database (Denmark)

    Li, Qingfeng

    2003-01-01

    contain inorganic protonic conductors including zirconium phosphate (ZrP), (Zr(HPO4)2. nH2O); phosphotungstic acid (PWA), (H3PW12O40. nH2O); and silicotungstic acid (SiWA), (H4SiW12O40 . nH2O). The conductivity of phosphoric acid doped PBI and PBI composite membranes was found to be dependent on the acid...

  12. Inorganic nanoparticles for cancer imaging and therapy.

    Science.gov (United States)

    Huang, Huang-Chiao; Barua, Sutapa; Sharma, Gaurav; Dey, Sandwip K; Rege, Kaushal

    2011-11-07

    Inorganic nanoparticles have received increased attention in the recent past as potential diagnostic and therapeutic systems in the field of oncology. Inorganic nanoparticles have demonstrated successes in imaging and treatment of tumors both ex vivo and in vivo, with some promise towards clinical trials. This review primarily discusses progress in applications of inorganic nanoparticles for cancer imaging and treatment, with an emphasis on in vivo studies. Advances in the use of semiconductor fluorescent quantum dots, carbon nanotubes, gold nanoparticles (spheres, shells, rods, cages), iron oxide magnetic nanoparticles and ceramic nanoparticles in tumor targeting, imaging, photothermal therapy and drug delivery applications are discussed. Limitations and toxicity issues associated with inorganic nanoparticles in living organisms are also discussed.

  13. Investigation of La1-xSrxCrO3-∂ (x ~ 0.1) as Membrane for Hydrogen Production.

    Science.gov (United States)

    Larring, Yngve; Vigen, Camilla; Ahouanto, Florian; Fontaine, Marie-Laure; Peters, Thijs; Smith, Jens B; Norby, Truls; Bredesen, Rune

    2012-09-11

    Various inorganic membranes have demonstrated good capability to separate hydrogen from other gases at elevated temperatures. Hydrogen-permeable, dense, mixed proton-electron conducting ceramic oxides offer superior selectivity and thermal stability, but chemically robust candidates with higher ambipolar protonic and electronic conductivity are needed. In this work, we present for the first time the results of various investigations of La1-xSrxCrO3-∂ membranes for hydrogen production. We aim in particular to elucidate the material's complex transport properties, involving co-ionic transport of oxide ions and protons, in addition to electron holes. This opens some new possibilities for efficient heat and mass transfer management in the production of hydrogen. Conductivity measurements as a function of pH2 at constant pO2 exhibit changes that reveal a significant hydration and presence of protons. The flux and production of hydrogen have been measured under different chemical gradients. In particular, the effect of water vapor in the feed and permeate gas stream sides was investigated with the aim of quantifying the ratio of hydrogen production by hydrogen flux from feed to permeate and oxygen flux the opposite way ("water splitting"). Deuterium labeling was used to unambiguously prove flux of hydrogen species.

  14. Highly charged proton-exchange membrane. Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, Vinod K. [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar-364002, Gujarat (India)

    2007-01-15

    Sulfonation of poly(ether sulfone) was carried out with chlorosulphonic acid in chloroform and its composite proton-exchange membrane was prepared using aminopropyltriethoxysilane as inorganic precursor by sol-gel in acidic medium. These membranes were further subjected to phosphorylation with phosphorous acid for introducing phosphonic acid functionality at inorganic segment. Extent of sulphonation was estimated by {sup 1}H-NMR spectroscopy while introduction of phosphonic acid groups was confirmed by FTIR spectroscopy and ion-exchange capacity studies. Different membranes, with varied silica content without and with phosphorylation, were characterized for their thermal and mechanical stabilities, physicochemical and electrochemical properties using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), aq. methanol uptake studies, proton conductivity and methanol permeability measurements. The silica content in the membrane matrix and effect of phosphorylation was optimized as a function of membrane properties. Activation energy required for the proton transport across the membrane was also estimated and found to be comparable with Nafion 117 membrane. From the frictional interpretation and estimation of selectivity parameter it was observed that SPS-Si composite phosphorylated membrane with 20% silica content (SPS-Si(P)/20) resulted in the best proton-exchange membrane, which exhibited quite higher selectivity parameter in comparison to Nafion 117 for direct methanol fuel cell applications. Also, current-voltage polarization characteristics of SPS-Si(P)/20 membrane measured in direct methanol fuel cell, were found to be comparable to the Nafion 117 membrane. (author)

  15. Endobrevin/VAMP-8-dependent dense granule release mediates thrombus formation in vivo.

    Science.gov (United States)

    Graham, Gwenda J; Ren, Qiansheng; Dilks, James R; Blair, Price; Whiteheart, Sidney W; Flaumenhaft, Robert

    2009-07-30

    Individuals whose platelets lack dense or alpha-granules suffer various degrees of abnormal bleeding, implying that granule cargo contributes to hemostasis. Despite these clinical observations, little is known regarding the effects of impaired platelet granule secretion on thrombus formation in vivo. In platelets, SNARE proteins mediate the membrane fusion events required for granule cargo release. Endobrevin/VAMP-8 is the primary vesicle-SNARE (v-SNARE) responsible for efficient release of dense and alpha-granule contents; thus, VAMP-8(-/-) mice are a useful model to evaluate the importance of platelet granule secretion in thrombus formation. Thrombus formation, after laser-induced vascular injury, in these mice is delayed and decreased, but not absent. In contrast, thrombus formation is almost completely abolished in the mouse model of Hermansky-Pudlak syndrome, ruby-eye, which lacks dense granules. Evaluation of aggregation of VAMP-8(-/-) and ruby-eye platelets indicates that defective ADP release is the primary abnormality leading to impaired aggregation. These results demonstrate the importance of dense granule release even in the earliest phases of thrombus formation and validate the distal platelet secretory machinery as a potential target for antiplatelet therapies.

  16. Endobrevin/VAMP-8–dependent dense granule release mediates thrombus formation in vivo

    Science.gov (United States)

    Graham, Gwenda J.; Ren, Qiansheng; Dilks, James R.; Blair, Price; Flaumenhaft, Robert

    2009-01-01

    Individuals whose platelets lack dense or α-granules suffer various degrees of abnormal bleeding, implying that granule cargo contributes to hemostasis. Despite these clinical observations, little is known regarding the effects of impaired platelet granule secretion on thrombus formation in vivo. In platelets, SNARE proteins mediate the membrane fusion events required for granule cargo release. Endobrevin/VAMP-8 is the primary vesicle-SNARE (v-SNARE) responsible for efficient release of dense and α-granule contents; thus, VAMP-8−/− mice are a useful model to evaluate the importance of platelet granule secretion in thrombus formation. Thrombus formation, after laser-induced vascular injury, in these mice is delayed and decreased, but not absent. In contrast, thrombus formation is almost completely abolished in the mouse model of Hermansky-Pudlak syndrome, ruby-eye, which lacks dense granules. Evaluation of aggregation of VAMP-8−/− and ruby-eye platelets indicates that defective ADP release is the primary abnormality leading to impaired aggregation. These results demonstrate the importance of dense granule release even in the earliest phases of thrombus formation and validate the distal platelet secretory machinery as a potential target for antiplatelet therapies. PMID:19395672

  17. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients

  18. Cationic Organic/Inorganic Hybrids and Their Swelling Properties

    Institute of Scientific and Technical Information of China (English)

    E. S. Dragan; L. Ghimici; M. Cazacu

    2005-01-01

    @@ 1Introduction Specific properties of poly(dimethylsiloxanes), such as low glass transition temperature, low surface energy, good insulating properties, biological and chemical inertness, high diffusion coefficient of gases, make them very attractive for practical applications in the daily life. However, there is a great interest last time in the preparation of ionic organic/inorganic materials with new properties for new applications. Quaternary ammonium salt(QAS) groups included in siloxane copolymers could induce new interesting properties such as:permanent fungicidal and bactericidal properties, which make them very attractive as materials for sanitary applications, improved selectivity coefficients of the gas-separation membranes, ion-exchange properties and so forth. So far, QAS groups have been located in the side chain[1,2]. Our interest was focused on the preparation of some novel cationic polysiloxane copolymers containing QAS groups of both integral type and pendent type[3,4]. Our objectives for the present study concern the synthesis of some cationic organic/siloxane hybrid materials with swelling properties controlled by both the nature of cationic organic component and the ratio between the organic and inorganic counterparts. Such cationic hybrid materials could be of interest for the preparation of new stimuli-responsive hydrogels[5,6].

  19. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report

  20. Inorganic particle analysis of dental impression elastomers

    OpenAIRE

    Carlo,Hugo Lemes; FONSECA, Rodrigo Borges; Soares, Carlos José; Correr,Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti,Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously de...

  1. Structure and properties of layered inorganic materials

    Institute of Scientific and Technical Information of China (English)

    Xue Duan

    2010-01-01

    @@ Inorganic layered materials are a class of advanced functional materials that have attracted considerable attention by virtue of their practical applications in a wide variety of fields. Sys-tematic studies of structure, design, synthesis, and fabrication processing may extend the range of practical utility of inor-ganic layered functional materials, in areas such as food industry,chemical industry, energy engineering, environmental engineer-ing, drug and gene delivery, electronics technology, and materials protection.

  2. Inorganic nanolayers: structure, preparation, and biomedical applications

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  3. Organic-Inorganic Composites Toward Biomaterial Application.

    Science.gov (United States)

    Miyazaki, Toshiki; Sugawara-Narutaki, Ayae; Ohtsuki, Chikara

    2015-01-01

    Bioactive ceramics are known to exhibit specific biological affinities and are able to show direct integration with surrounding bone when implanted in bony defects. However, their inadequate mechanical properties, such as low fracture toughness and high Young's modulus in comparison to natural bone, limit their clinical application. Bone is a kind of organic-inorganic composite where apatite nanocrystals are precipitated onto collagen fibre networks. Thus, one way to address these problems is to mimic the natural composition of bone by using bioactive ceramics via material designs based on organic-inorganic composites. In this chapter, the current research on the development of the various organic-inorganic composites designed for biomaterial applications has been reviewed. Various compounds such as calcium phosphate, calcium sulphate and calcium carbonate can be used for the inorganic phases to design composites with the desired mechanical and biological properties of bone. Not only classical mechanical mixing but also coating of the inorganic phase in aqueous conditions is available for the fabrication of such composites. Organic modifications using various polymers enable the control of the crystalline structure of the calcium carbonate in the composites. These approaches on the fabrication of organic-inorganic composites provide important options for biomedical materials with novel functions. © 2015 S. Karger AG, Basel.

  4. Inorganic nanolayers: structure, preparation, and biomedical applications.

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  5. Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation.

    Science.gov (United States)

    Dzyazko, Yuliya S; Rozhdestvenskaya, Ludmila M; Zmievskii, Yu G; Vilenskii, Alexander I; Myronchuk, Valerii G; Kornienko, Ludmila V; Vasilyuk, Sergey V; Tsyba, Nikolay N

    2015-01-01

    Organic-inorganic membranes were obtained by stepwise modification of poly(ethyleneterephthalate) track membrane with nanoparticles of zirconium hydrophosphate. The modifier was inserted inside pores of the polymer, a size of which is 0.33 μm. Inner active layer was formed by this manner. Evolution of morphology and functional properties of the membranes were investigated using methods of porosimetry, potentiometry and electron microscopy. The nanoparticles (4 to 10 nm) were found to form aggregates, which block pores of the polymer. Pores between the aggregates (4 to 8 nm) as well as considerable surface charge density provide significant transport numbers of counter ions (up to 0.86 for Na(+)). The materials were applied to baromembrane separation of corn distillery. It was found that precipitate is formed mainly inside the pores of the pristine membrane. In the case of the organic-inorganic material, the deposition occurs onto the outer surface and can be removed by mechanical way. Location of the active layer inside membranes protects it against damage.

  6. Temperature relaxation in dense plasma mixtures

    Science.gov (United States)

    Faussurier, Gérald; Blancard, Christophe

    2016-09-01

    We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.

  7. Leeuwpan fine coal dense medium plant

    CSIR Research Space (South Africa)

    Lundt, M

    2010-11-01

    Full Text Available availability to treat the higher grade coal (the bottom layer of coal) from the no. 2 Seam for a local and export metallurgical market. Following the path of evolution, in 2007, Leeuwpan commissioned the first double stage ultra-fines dense medium cyclone... plant in the coal industry, to form part of its overall DMS plant. It replaced the spirals to treat the -1 mm material. Spirals are still the most commonly and accepted method used by the industry, but it seems as if the pioneering cyclone process...

  8. Resolving Ultrafast Heating of Dense Cryogenic Hydrogen

    Science.gov (United States)

    Zastrau, U.; Sperling, P.; Harmand, M.; Becker, A.; Bornath, T.; Bredow, R.; Dziarzhytski, S.; Fennel, T.; Fletcher, L. B.; Förster, E.; Göde, S.; Gregori, G.; Hilbert, V.; Hochhaus, D.; Holst, B.; Laarmann, T.; Lee, H. J.; Ma, T.; Mithen, J. P.; Mitzner, R.; Murphy, C. D.; Nakatsutsumi, M.; Neumayer, P.; Przystawik, A.; Roling, S.; Schulz, M.; Siemer, B.; Skruszewicz, S.; Tiggesbäumker, J.; Toleikis, S.; Tschentscher, T.; White, T.; Wöstmann, M.; Zacharias, H.; Döppner, T.; Glenzer, S. H.; Redmer, R.

    2014-03-01

    We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300 fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ˜0.9 ps. The rise time agrees with radiation hydrodynamics simulations based on a conductivity model for partially ionized plasma that is validated by two-temperature density-functional theory.

  9. Oscillating propagators in heavy-dense QCD

    CERN Document Server

    Akerlund, Oscar; Rindlisbacher, Tobias

    2016-10-11

    Using Monte Carlo simulations and extended mean field theory calculations we show that the $3$-dimensional $\\mathbb{Z}_3$ spin model with complex external fields has non-monotonic correlators in some regions of its parameter space. This model serves as a proxy for heavy-dense QCD in $(3+1)$ dimensions. Non-monotonic correlators are intrinsically related to a complex mass spectrum and a liquid-like (or crystalline) behavior. A liquid phase could have implications for heavy-ion experiments, where it could leave detectable signals in the spatial correlations of baryons.

  10. Interference Alignment in Dense Wireless Networks

    CERN Document Server

    Niesen, Urs

    2009-01-01

    We consider arbitrary dense wireless networks, in which $n$ nodes are placed in an arbitrary (deterministic) manner on a square region of unit area and communicate with each other over Gaussian fading channels. We provide inner and outer bounds for the $n\\times n$-dimensional unicast and the $n\\times 2^n$-dimensional multicast capacity regions of such a wireless network. These inner and outer bounds differ only by a factor $O(\\log(n))$, yielding a fairly tight scaling characterization of the entire regions. The communication schemes achieving the inner bounds use interference alignment as a central technique and are surprisingly simple.

  11. Phase transitions in dense 2-colour QCD

    CERN Document Server

    Boz, Tamer; Fister, Leonard; Skullerud, Jon-Ivar

    2013-01-01

    We investigate 2-colour QCD with 2 flavours of Wilson fermion at nonzero temperature T and quark chemical potential mu, with a pion mass of 700 MeV (m_pi/m_rho=0.8). From temperature scans at fixed mu we find that the critical temperature for the superfluid to normal transition depends only very weakly on mu above the onset chemical potential, while the deconfinement crossover temperature is clearly decreasing with mu. We also present results for the Landau-gauge gluon propagator in the hot and dense medium.

  12. Flavour Oscillations in Dense Baryonic Matter

    Science.gov (United States)

    Filip, Peter

    2017-01-01

    We suggest that fast neutral meson oscillations may occur in a dense baryonic matter, which can influence the balance of s/¯s quarks in the nucleus-nucleus and proton-nucleus interactions, if primordial multiplicities of neutral K 0, mesons are sufficiently asymmetrical. The phenomenon can occur even if CP symmetry is fully conserved, and it may be responsible for the enhanced sub-threshold production of multi-strange hyperons observed in the low-energy A+A and p+A interactions.

  13. Gravity-driven dense granular flows

    Energy Technology Data Exchange (ETDEWEB)

    ERTAS,DENIZ; GREST,GARY S.; HALSEY,THOMAS C.; DEVINE,DOV; SILBERT,LEONARDO E.

    2000-03-29

    The authors report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type for force law has little impact on the behavior of the system. Failure is not initiated at the surface, consistent with the absence of surface flows and different principal stress directions at vs. below the surface.

  14. High temperature catalytic membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  15. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  16. The symmetry energy in cold dense matter

    CERN Document Server

    Jeong, Kie Sang

    2015-01-01

    We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction to the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case ...

  17. Symmetry energy in cold dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kie Sang, E-mail: k.s.jeong@yonsei.ac.kr; Lee, Su Houng, E-mail: suhoung@yonsei.ac.kr

    2016-01-15

    We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.

  18. Ion Beam Driven Warm Dense Matter Experiments

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Leitner, M. A.; Lidia, S. M.; Logan, B. G.; More, R. M.; Ni, P. A.; Seidl, P. A.; Waldron, W. L.; Barnard, J. J.

    2008-11-01

    We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments use a 0.3 MeV K+ beam from the NDCX-I accelerator. The WDM conditions are to be achieved by longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a 1-mm beam spot size, and 2-ns pulse length. As a technique for heating matter to high energy density, intense ion beams can deliver precise and uniform beam energy deposition, in a relatively large sample size, and can heat any solid-phase target material. The range of the beams in solid targets is less than 1 micron, which can be lengthened by using reduced density porous targets. We have developed a WDM target chamber and target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial experiments will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  19. Redesigning Triangular Dense Matrix Computations on GPUs

    KAUST Repository

    Charara, Ali

    2016-08-09

    A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels fail to achieve the percentage of the theoretical peak performance on GPUs that one would expect when running kernels with similar surface-to-volume ratio on hardware accelerators, i.e., the standard matrix-matrix multiplication (GEMM). The authors propose adopting a recursive formulation, which enriches the TRMM and TRSM inner structures with GEMM calls and, therefore, reduces memory traffic while increasing the level of concurrency. The new implementation enables efficient use of the GPU memory hierarchy and mitigates the latency overhead, to run at the speed of the higher cache levels. Performance comparisons show up to eightfold and twofold speedups for large dense matrix sizes, against the existing state-of-the-art TRMM and TRSM implementations from NVIDIA cuBLAS, respectively, across various GPU generations. Once integrated into high-level Cholesky-based dense linear algebra algorithms, the performance impact on the overall applications demonstrates up to fourfold and twofold speedups, against the equivalent native implementations, linked with cuBLAS TRMM and TRSM kernels, respectively. The new TRMM/TRSM kernel implementations are part of the open-source KBLAS software library (http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx) and are lined up for integration into the NVIDIA cuBLAS library in the upcoming v8.0 release.

  20. Nucleosynthesis in Hot and Dense Media

    CERN Document Server

    Masood, Samina S

    2014-01-01

    We study the finite temperature and density effects on beta decay rates to compute their contributions to nucleosynthesis. QED type corrections to beta decay from the hot and dense background are estimated in terms of the statistical corrections to the self-mass of an electron. For this purpose, we re-examine the hot and dense background contributions to the electron mass and compute its effect to the beta decay rate, helium yield, energy density of the universe as well as the change in neutrino temperature from the first order contribution to the self-mass of electrons during these processes. We explicitly show that the thermal contribution to the helium abundance at T = m of a cooling universe 0.045 % is higher than the corresponding contribution to helium abundance of a heating universe 0.031% due to the existence of hot fermions before the beginning of nucleosynthesis and their absence after the nucleosynthesis, in the early universe. Thermal contribution to helium abundance was a simple quadratic functio...

  1. Compton scattering measurements from dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S H; Neumayer, P; Doeppner, T; Landen, L; Lee, R W; Wallace, R; Weber, S; Lee, H J; Kritcher, A L; Falcone, R; Regan, S P; Sawada, H; Meyerhofer, D D; Gregori, G; Fortmann, C; Schwarz, V; Redmer, R

    2007-10-02

    Compton scattering has been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, while in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.

  2. Compton scattering measurements from dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S H; Neumayer, P; Doeppner, T; Landen, O L; Lee, R W; Wallace, R J; Weber, S [Lawrence Livermore National Laboratory, Livermore, CA (United States); Lee, H J; Kritcher, A L; Falcone, R [University of California Berkeley, Berkeley, CA 94709 (United States); Regan, S P; Sawada, H; Meyerhofer, D D [Laboratory for Laser Energetics, Rochester, NY (United States); Gregori, G [Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Fortmann, C; Schwarz, V; Redmer, R [Institut fuer Physik, Universitaet Rostock, D-18051 Rostock (Germany)], E-mail: glenzer1@llnl.gov

    2008-05-15

    Compton scattering techniques have been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, while in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.

  3. Probing the Physical Structures of Dense Filaments

    Science.gov (United States)

    Li, Di

    2015-08-01

    Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.

  4. Wireless Fractal Ultra-Dense Cellular Networks.

    Science.gov (United States)

    Hao, Yixue; Chen, Min; Hu, Long; Song, Jeungeun; Volk, Mojca; Humar, Iztok

    2017-04-12

    With the ever-growing number of mobile devices, there is an explosive expansion in mobile data services. This represents a challenge for the traditional cellular network architecture to cope with the massive wireless traffic generated by mobile media applications. To meet this challenge, research is currently focused on the introduction of a small cell base station (BS) due to its low transmit power consumption and flexibility of deployment. However, due to a complex deployment environment and low transmit power of small cell BSs, the coverage boundary of small cell BSs will not have a traditional regular shape. Therefore, in this paper, we discuss the coverage boundary of an ultra-dense small cell network and give its main features: aeolotropy of path loss fading and fractal coverage boundary. Simple performance analysis is given, including coverage probability and transmission rate, etc., based on stochastic geometry theory and fractal theory. Finally, we present an application scene and discuss challenges in the ultra-dense small cell network.

  5. Quantum molecular dynamics simulations of dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I. [Los Alamos National Lab., Albuquerque, NM (United States)

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.

  6. Solids flow rate measurement in dense slurries

    Energy Technology Data Exchange (ETDEWEB)

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  7. Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review

    Institute of Scientific and Technical Information of China (English)

    Zee Ying Yeo; Thiam Leng Chew; Peng Wei Zhu; Abdul Rahman Mohamed; Siang-Piao Chai

    2012-01-01

    Membrane technology is becoming more important for CO2 separation from natural gas in the new era due to its process simplicity,relative ease of operation and control,compact,and easy to scale up as compared with conventional processes.Conventional processes such as absorption and adsorption for CO2 separation from natural gas are generally more energy demanding and costly for both operation and maintenance.Polymeric membranes are the current commercial membranes used for CO2 separation from natural gas.However,polymeric membranes possess drawbacks such as low permeability and selectivity,plasticization at high temperatures,as well as insufficient thermal and chemical stability.The shortcomings of commercial polymeric membranes have motivated researchers to opt for other alternatives,especially inorganic membranes due to their higher thermal stability,good chemical resistance to solvents,high mechanical strength and long lifetime.Surface modifications can be utilized in inorganic membranes to further enhance the selectivity,permeability or catalytic activities of the membrane.This paper is to provide a comprehensive review on gas separation,comparing membrane technology with other conventional methods of recovering CO2 from natural gas,challenges of current commercial polymeric membranes and inorganic membranes for CO2 removal and membrane surface modification for improved selectivity.

  8. Tuning aluminum spatial distribution in ZSM-5 membranes: a new strategy to fabricate high performance and stable zeolite membranes for dehydration of acetic acid.

    Science.gov (United States)

    Yang, Jianhua; Li, Liangqing; Li, Wanze; Wang, Jinqu; Chen, Zan; Yin, Dehong; Lu, Jinming; Zhang, Yan; Guo, Hongchen

    2014-12-01

    A novel ZSM-5 membrane with a low Si/Al ratio and homogeneous aluminum spatial distribution was achieved from an organic template-free inorganic gel in the presence of both OH(-) and F(-) ions and the obtained ZSM-5 membrane exhibited excellent selectivity and high flux and stability for dehydration of acetic acid in a wide AcOH content range.

  9. Heterogeneous histologic and clinical evolution in 3 cases of dense deposit disease with long-term follow-up.

    Science.gov (United States)

    Figuères, Marie-Lucile; Frémeaux-Bacchi, Véronique; Rabant, Marion; Galmiche, Louise; Marinozzi, Maria Chiara; Grünfeld, Jean-Pierre; Noël, Laure-Hélène; Servais, Aude

    2014-11-01

    Dense deposit disease is characterized by dense deposits in the glomerular and tubular basement membranes. We report 3 cases with long-term follow-up differing in histologic pattern and clinical evolution. Clinical and histologic data were collected between 1976 and 2012. Age at the first manifestations was 6, 11, and 23 years, respectively. They included proteinuria (patient 1) and nephrotic syndrome (patients 2 and 3); renal function was normal in all cases. Two patients (1 and 3) had low complement component 3 (C3) levels. All patients had C3 nephritic factor. Genetic analysis revealed a rare variant of the factor I gene (patient 1) and a heterozygous mutation in complement factor H-related 5 gene (patient 2). Patient 1 underwent 3 biopsies during her 38 years of follow-up. Thickening of the capillary walls of the glomerular and tubular basement membranes was observed, with mild mesangial proliferation and progressive C3 and complement membrane attack complex mesangial deposits. However, renal function remained normal. Patient 2 also underwent 3 biopsies (22 years of follow-up), revealing a gradual decrease in C3 deposition and mesangial cell proliferation. He presented mild renal insufficiency. Patient 3 underwent 2 biopsies, which displayed unusual bulky membranous deposits, confirmed by electron microscopy, with no mesangial cell proliferation and little C3 and complement membrane attack complex deposits. Kidney function remained normal. These 3 cases of dense deposit disease differed in histologic pattern evolution: accumulation of C3 deposits, decrease in C3 deposits and proliferation, and isolated dense deposits. The histologic factors involved in clinical progression remain to be identified.

  10. Decay of Langmuir wave in dense plasmas and warm dense matter

    CERN Document Server

    Son, S; Moon, Sung Joon

    2010-01-01

    The decays of the Langmuir waves in dense plasmas are computed using the dielectric function theory widely used in the solid state physics. Four cases are considered: a classical plasma, a Maxwellian plasma, a degenerate quantum plasma, and a partially degenerate plasma. The result is considerably different from the conventional Landau damping theory.

  11. Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    Science.gov (United States)

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.

    2015-01-01

    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society's Committee on Professional Training defines a foundation course as one at the conclusion of which, "a student should have mastered the vocabulary,…

  12. Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    Science.gov (United States)

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.

    2015-01-01

    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society's Committee on Professional Training defines a foundation course as one at the conclusion of which, "a student should have mastered the vocabulary,…

  13. Composite Membrane Formation by Combination of Reaction-Induced and Nonsolvent-Induced Phase Separation

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-25

    A novel method of preparing skinned asymmetric membranes with two distinctive layers is described: a top layer composed of chemically cross-linked polymer chains (dense layer) and a bottom layer of non-cross-linked polymer chains (porous substructure). The method consists of two simple steps that are compatible with industrial membrane fabrication facilities. Unlike conventional processes to prepare asymmetric membranes, with this approach it is possible to finely control the structure and functionalities of the final membrane. The thickness of the dense layer can be easily controlled over several orders of magnitude and targeted functional groups can be readily incorporated in it.

  14. RIVERINE INORGANIC CARBON DYNAMICS: OVERVIEW AND PERSPECTIVE

    Institute of Scientific and Technical Information of China (English)

    YAO Guan-rong; GAO Quan-zhou

    2006-01-01

    Inorganic carbon, the great part of the riverine carbon exported to the ocean, plays an important role in the global carbon cycle and ultimately impacts the coupled carbon-climate system. An overview was made on both methods and results of the riverine inorganic carbon researches. In addition to routine in situ survey, measurement and calculation,the direct precipitation method and the gas evolution technique were commonly used to analyze dissolved inorganic carbon in natural water samples. Soil CO2, carbonate minerals and atmospheric CO2 incorporated into riverine inorganic carbon pool via different means, with bicarbonate ion being the dominant component. The concentration of inorganic carbon, the composition of carbon isotopes (δ13C and △14C), and their temporal or spatial variations in the streams were controlled by carbon input, output and changes of carbon biogeochemistry within the riverine system. More accurate flux estimation, better understanding of different influential processes, and quantitative determination of various inputs or outputs need to be well researched in future.

  15. Sound scattering in dense granular media

    Institute of Scientific and Technical Information of China (English)

    JIA XiaoPing; LAURENT J; KHIDAS Y; LANGLOIS V

    2009-01-01

    The sound propagation in a dense granular medium is basically characterized by the ratio of wave-length to the grain size. Two types of wave transport are distinguished: one corresponds to coherent waves in the long wavelength limit, the other to short-wavelength scattered waves by the inhomoge-neous contact force networks. These multiply scattered elastic waves are shown to exhibit a diffusive characteristics of transport over long distances of propagation. Determination of the transport mean free path l* and the inelastic absorption (Q~(-1)) allows the inference of the structural properties of the material such as the heterogeneity and internal dissipation. The relevance of our experiments for seismological applications is discussed. Moreover, we apply the correlation technique of the configu-ration-specific sound scattering to monitoring the dynamic behaviour of the granular medium (irre-versible rearrangements) under strong vibration, shearing and thermal cycling, respectively.

  16. Charmonium propagation through a dense medium

    Directory of Open Access Journals (Sweden)

    Kopeliovich B.Z.

    2015-01-01

    Full Text Available Attenuation of a colourless c̄c dipole propagating with a large momentum through a hot medium originates from two sources, Debye screening (melting, and inelastic collisions with surrounding scattering centres (absorption. The former never terminates completely production of a bound charmonium in heavy ion collisions, even at very high temperatures. The latter, is controlled my the magnitude of the dipole cross section, related to the transport coefficient, which is the rate of transverse momentum broadening in the medium. A novel procedure of Lorentz boosting of the Schrödinger equation is developed, which allows to calculate the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. A novel mechanism of charmonium regeneration in a dense medium is proposed.

  17. Intense, ultrashort light and dense, hot matter

    Indian Academy of Sciences (India)

    G Ravindra Kumar

    2009-07-01

    This article presents an overview of the physics and applications of the interaction of high intensity laser light with matter. It traces the crucial advances that have occurred over the past few decades in laser technology and nonlinear optics and then discusses physical phenomena that occur in intense laser fields and their modeling. After a description of the basic phenomena like multiphoton and tunneling ionization, the physics of plasma formed in dense matter is presented. Specific phenomena are chosen for illustration of the scientific and technological possibilities – simulation of astrophysical phenomena, relativistic nonlinear optics, laser wakefield acceleration, laser fusion, ultrafast real time X-ray diffraction, application of the particle beams produced from the plasma for medical therapies etc. A survey of the Indian activities in this research area appears at the end.

  18. Frontiers and challenges in warm dense matter

    CERN Document Server

    Desjarlais, Michael; Redmer, Ronald; Trickey, Samuel

    2014-01-01

    Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent...

  19. Evolution of Binaries in Dense Stellar Systems

    CERN Document Server

    Ivanova, Natalia

    2011-01-01

    In contrast to the field, the binaries in dense stellar systems are frequently not primordial, and could be either dynamically formed or significantly altered from their primordial states. Destruction and formation of binaries occur in parallel all the time. The destruction, which constantly removes soft binaries from a binary pool, works as an energy sink and could be a reason for cluster entering the binary-burning phase. The true binary fraction is greater than observed, as a result, the observable binary fraction evolves differently from the predictions. Combined measurements of binary fractions in globular clusters suggest that most of the clusters are still core-contracting. The formation, on other hand, affects most the more evolutionary advanced stars, which significantly enhances the population of X-ray sources in globular clusters. The formation of binaries with a compact objects proceeds mainly through physical collisions, binary-binary and single-binary encounters; however, it is the dynamical for...

  20. Carbon nitride frameworks and dense crystalline polymorphs

    Science.gov (United States)

    Pickard, Chris J.; Salamat, Ashkan; Bojdys, Michael J.; Needs, Richard J.; McMillan, Paul F.

    2016-09-01

    We used ab initio random structure searching (AIRSS) to investigate polymorphism in C3N4 carbon nitride as a function of pressure. Our calculations reveal new framework structures, including a particularly stable chiral polymorph of space group P 43212 containing mixed s p2 and s p3 bonding, that we have produced experimentally and recovered to ambient conditions. As pressure is increased a sequence of structures with fully s p3 -bonded C atoms and three-fold-coordinated N atoms is predicted, culminating in a dense P n m a phase above 250 GPa. Beyond 650 GPa we find that C3N4 becomes unstable to decomposition into diamond and pyrite-structured CN2.

  1. Plasmon resonance in warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, R; Bornath, T; Fortmann, C; Holl, A; Redmer, R; Reinholz, H; Ropke, G; Wierling, A; Glenzer, S H; Gregori, G

    2008-02-21

    Collective Thomson scattering with extreme ultraviolet light or x-rays is shown to allow for a robust measurement of the free electron density in dense plasmas. Collective excitations like plasmons appear as maxima in the scattering signal. Their frequency position can directly be related to the free electron density. The range of applicability of the standard Gross-Bohm dispersion relation and of an improved dispersion relation in comparison to calculations based on the dielectric function in random phase approximation is investigated. More important, this well-established treatment of Thomson scattering on free electrons is generalized in the Born-Mermin approximation by including collisions. We show that, in the transition region from collective to non-collective scattering, the consideration of collisions is important.

  2. Properties of industrial dense gas plumes

    Science.gov (United States)

    Shaver, E. M.; Forney, L. J.

    Hazardous gases and vapors are often discharged into the atmosphere from industrial plants during catastrophic events (e.g. Union Carbide incident in Bhopal, India). In many cases the discharged components are more dense than air and settle to the ground surface downstream from the stack exit. In the present paper, the buoyant plume model of Hoult, Fay and Forney (1969, J. Air Pollut. Control Ass. 19, 585-590.) has been altered to predict the properties of hazardous discharges. In particular, the plume impingement point, radius and concentration are predicted for typical stack exit conditions, wind speeds and temperature profiles. Asymptotic expressions for plume properties at the impingement point are also derived for a constant crosswind and neutral temperature profile. These formulae are shown to be useful for all conditions.

  3. Constitutive relations for steady, dense granular flows

    Science.gov (United States)

    Vescovi, D.; Berzi, D.; di Prisco, C. G.

    2011-12-01

    In the recent past, the flow of dense granular materials has been the subject of many scientific works; this is due to the large number of natural phenomena involving solid particles flowing at high concentration (e.g., debris flows and landslides). In contrast with the flow of dilute granular media, where the energy is essentially dissipated in binary collisions, the flow of dense granular materials is characterized by multiple, long-lasting and frictional contacts among the particles. The work focuses on the mechanical response of dry granular materials under steady, simple shear conditions. In particular, the goal is to obtain a complete rheology able to describe the material behavior within the entire range of concentrations for which the flow can be considered dense. The total stress is assumed to be the linear sum of a frictional and a kinetic component. The frictional and the kinetic contribution are modeled in the context of the critical state theory [8, 10] and the kinetic theory of dense granular gases [1, 3, 7], respectively. In the critical state theory, the granular material approaches a certain attractor state, independent on the initial arrangement, characterized by the capability of developing unlimited shear strains without any change in the concentration. Given that a disordered granular packing exists only for a range of concentration between the random loose and close packing [11], a form for the concentration dependence of the frictional normal stress that makes the latter vanish at the random loose packing is defined. In the kinetic theory, the particles are assumed to interact through instantaneous, binary and uncorrelated collisions. A new state variable of the problem is introduced, the granular temperature, which accounts for the velocity fluctuations. The model has been extended to account for the decrease in the energy dissipation due to the existence of correlated motion among the particles [5, 6] and to deal with non

  4. Dense QCD: a Holographic Dyonic Salt

    CERN Document Server

    Rho, Mannque; Zahed, Ismail

    2009-01-01

    Dense QCD at zero temperature with a large number of colors is a crystal. We show that in the holographic dual description, the crystal is made out of pairs of dyons with $e=g=\\pm 1$ charges in a salt-like arrangement. We argue that with increasing density the dyon masses and topological charges equalize, turning the salt-like configuration to a bcc of half-instantons. The latter is dual to a cubic crystal of half-skyrmions. We estimate the transition from an fcc crystal of instantons to a bcc crystal of dyons to about 3 times nuclear matter density with a dyon binding energy of about 180 MeV.

  5. Dynamic structure of dense krypton gas

    Science.gov (United States)

    Egelstaff, P. A.; Salacuse, J. J.; Schommers, W.; Ram, J.

    1984-07-01

    We have made molecular-dynamics computer simulations of dense krypton gas (10.6×1027 atoms/m3 and 296 K) using reasonably realistic pair potentials. Comparisons are made with the recent experimental data[P. A. Egelstaff et al., Phys. Rev. A 27, 1106 (1983)] for the dynamic structure factor S(q,ω) over the range 0.4

  6. X-ray scattering from dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    McSherry, D.J

    2000-09-01

    Dense plasmas were studied by probing them with kilovolt x-rays and measuring those scattered at various angles. The Laser-Produced x-ray source emitted Ti He alpha 4.75 keV x-rays. Two different plasma types were explored. The first was created by laser driven shocks on either side of a sample foil consisting of 2 micron Al layer, sandwiched between two 1 micron CH layers. We have observed a peak in the x-ray scattering cross section, indicating diffraction from the plasma. However, the experimentally inferred plasma density, broadly speaking, did not always agree with the hydrodynamic simulation MEDX (A modified version of MEDUSA). The second plasma type that we studied was created by soft x-ray heating on either side of a sample foil, this time consisting of 1 micron layer of Al, sandwiched between two 0.2 micron CH layers. Two foil targets, each consisting of a 0.1 micron thick Au foil mounted on 1 micron of CH, where placed 4 mm from the sample foil. The soft x-rays where produced by laser irradiating these two foil targets. We found that, 0.5 ns after the peak of the laser heating pulses, the measured cross sections more closely matched those simulated using the Thomas Fermi model than the Inferno model. Later in time, at 2 ns, the plasma is approaching a weakly coupled state. This is the first time x-ray scattering cross sections have been measured from dense plasmas generated by radiatively heating both sides of the sample. Moreover, these are absolute values typically within a factor of two of expectation for early x-ray probe times. (author)

  7. X-ray scattering from dense plasmas

    Science.gov (United States)

    McSherry, Declan Joseph

    Dense plasmas were studied by probing them with kilovolt x-rays and measuring those scattered at various angles. The laser produced x-ray source emitted Ti He alpha 4.75 keV x-rays. Two different plasma types were explored. The first was created by laser driven shocks on either side of a sample foil consisting of 2 micron thickness of Al, sandwiched between two 1 micron CH layers. We have observed a peak in the x-ray scattering cross section, indicating diffraction from the plasma. However, the experimentally inferred plasma density, did not always agree broadly with the hydrodynamic simulation MEDX (A modified version of MEDUSA). The second plasma type that we studied was created by soft x-ray heating on either side of a sample foil, this time consisting of 1 micron thickness of Al, sandwiched between two 0.2 micron CH layers. Two foil targets, each consisting of a 0.1 micron thick Au foil mounted on 1 micron of CH, were placed 4 mm from the sample foil. The soft x-rays were produced by laser irradiating these two foil targets. We found that, 0.5 ns after the peak of the laser heating pulses, that the measured cross sections more closely matched those simulated using the Thomas Fermi model than the Inferno model. Later in time, at 2 ns, the plasma is approaching a weakly coupled state. This is the first time x-ray scattering cross sections have been measured from dense plasmas generated by radiatively heating both sides of the sample. Moreover, these are absolute values typically within a factor of two of expectation for early x-ray probe times.

  8. Dense gas dispersion in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Morten

    1998-09-01

    Dense gas dispersion is characterized by buoyancy induced gravity currents and reduction of the vertical mixing. Liquefied gas releases from industrial accidents are cold because of the heat of evaporation which determines the density for a given concentration and physical properties. The temperature deficit is moderated by the heat flux from the ground, and this convection is an additional source of turbulence which affects the mixing. A simple model as the soil heat flux is used to estimate the ability of the ground to sustain the heat flux during release. The initial enthalpy, release rate, initial entrainment and momentum are discussed for generic source types and the interaction with obstacles is considered. In the MTH project BA experiments source with and without momentum were applied. The continuously released propane gas passed a two-dimensional removable obstacle perpendicular to the wind direction. Ground-level gas concentrations and vertical profiles of concentration, temperature, wind speed and turbulence were measured in front of and behind the obstacle. Ultrasonic anemometers providing fast velocity and concentration signals were mounted at three levels on the masts. The observed turbulence was influenced by the stability and the initial momentum of the jet releases. Additional information were taken from the `Dessert tortoise` ammonia jet releases, from the `Fladis` experiment with transition from dense to passive dispersion, and from the `Thorney Island` continuous releases of isothermal freon mixtures. The heat flux was found to moderate the negative buoyancy in both the propane and ammonia experiments. The heat flux measurements are compared to an estimate by analogy with surface layer theory. (au) 41 tabs., 146 ills., 189 refs.

  9. Effect of membrane bioreactor solids retention time on reverse osmosis membrane fouling for wastewater reuse.

    Science.gov (United States)

    Farias, Elizabeth L; Howe, Kerry J; Thomson, Bruce M

    2014-02-01

    The effect of the solids retention time (SRT) in a membrane bioreactor (MBR) on the fouling of the membranes in a subsequent reverse osmosis (RO) process used for wastewater reuse was studied experimentally using a pilot-scale treatment system. The MBR-RO pilot system was fed effluent from the primary clarifiers at a large municipal wastewater treatment plant. The SRT in the MBRs was adjusted to approximately 2, 10, and 20 days in three experiments. The normalized specific flux through the MBR and RO membranes was evaluated along with inorganic and organic constituents in the influent and effluent of each process. Increasing the SRT in the MBR led to an increase in the removal of bulk DOC, protein, and carbohydrates, as has been observed in previous studies. Increasing the SRT led to a decrease in the fouling of the MBR membranes, which is consistent with previous studies. However, the opposite trend was observed for fouling of the RO membranes; increasing the SRT of the MBR resulted in increased fouling of the RO membranes. These results indicate that the constituents that foul MBR membranes are not the same as those that foul RO membranes; to be an RO membrane foulant in a MBR-RO system, the constituents must first pass through the MBR membranes without being retained. Thus, an intermediate value of SRT may be best choice of operating conditions in an MBR when the MBR is followed by RO for wastewater reuse.

  10. Gas Transport Properties of Polybenzimidazole and Poly(Phenylene Oxide) Mixed Matrix Membranes Incorporated with PDA-Functionalised Titanate Nanotubes

    National Research Council Canada - National Science Library

    Giel, V; Perchacz, M; Kredatusová, J; Pientka, Z

    2017-01-01

    ...) (PBI) or poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for improving the interfacial compatibility between the polymer matrix and inorganic material and for altering the gas separation performance of the neat polymer membranes...

  11. The small GTPase Cdc42 modulates the number of exocytosis-competent dense-core vesicles in PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Mai [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Kitaguchi, Tetsuya [Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABOIS), Waseda University, 11 Biopolis Way, 05-01/02 Helios, Singapore 138667 (Singapore); Numano, Rika [The Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tennpaku-cho, Toyohashi, Aichi 441-8580 (Japan); Ikematsu, Kazuya [Forensic Pathology and Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523 (Japan); Kakeyama, Masaki [Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Murata, Masayuki; Sato, Ken [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Tsuboi, Takashi, E-mail: takatsuboi@bio.c.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Regulation of exocytosis by Rho GTPase Cdc42. Black-Right-Pointing-Pointer Cdc42 increases the number of fusion events from newly recruited vesicles. Black-Right-Pointing-Pointer Cdc42 increases the number of exocytosis-competent dense-core vesicles. -- Abstract: Although the small GTPase Rho family Cdc42 has been shown to facilitate exocytosis through increasing the amount of hormones released, the precise mechanisms regulating the quantity of hormones released on exocytosis are not well understood. Here we show by live cell imaging analysis under TIRF microscope and immunocytochemical analysis under confocal microscope that Cdc42 modulated the number of fusion events and the number of dense-core vesicles produced in the cells. Overexpression of a wild-type or constitutively-active form of Cdc42 strongly facilitated high-KCl-induced exocytosis from the newly recruited plasma membrane vesicles in PC12 cells. By contrast, a dominant-negative form of Cdc42 inhibited exocytosis from both the newly recruited and previously docked plasma membrane vesicles. The number of intracellular dense-core vesicles was increased by the overexpression of both a wild-type and constitutively-active form of Cdc42. Consistently, activation of Cdc42 by overexpression of Tuba, a Golgi-associated guanine nucleotide exchange factor for Cdc42 increased the number of intracellular dense-core vesicles, whereas inhibition of Cdc42 by overexpression of the Cdc42/Rac interactive binding domain of neuronal Wiskott-Aldrich syndrome protein decreased the number of them. These findings suggest that Cdc42 facilitates exocytosis by modulating both the number of exocytosis-competent dense-core vesicles and the production of dense-core vesicles in PC12 cells.

  12. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater.

    Science.gov (United States)

    Liu, Xuewu; Byrne, Robert H; Adornato, Lori; Yates, Kimberly K; Kaltenbacher, Eric; Ding, Xiaoling; Yang, Bo

    2013-10-01

    Autonomous in situ sensors are needed to document the effects of today's rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific conditions (e.g., wide diel variations) present significant challenges to acquiring long-term measurements of dissolved inorganic carbon (DIC) with satisfactory accuracy and resolution. SEAS-DIC is a new in situ instrument designed to provide calibrated, high-frequency, long-term measurements of DIC in marine and fresh waters. Sample water is first acidified to convert all DIC to carbon dioxide (CO2). The sample and a known reagent solution are then equilibrated across a gas-permeable membrane. Spectrophotometric measurement of reagent pH can thereby determine the sample DIC over a wide dynamic range, with inherent calibration provided by the pH indicator's molecular characteristics. Field trials indicate that SEAS-DIC performs well in biofouling and turbid waters, with a DIC accuracy and precision of ∼2 μmol kg(-1) and a measurement rate of approximately once per minute. The acidic reagent protects the sensor cell from biofouling, and the gas-permeable membrane excludes particulates from the optical path. This instrument, the first spectrophotometric system capable of automated in situ DIC measurements, positions DIC to become a key parameter for in situ CO2-system characterizations.

  13. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater

    Science.gov (United States)

    Liua, Xuewu; Byrne, Robert H.; Adornato, Lori; Yates, Kimberly K.; Kaltenbacher, Eric; Ding, Xiaoling; Yang, Bo

    2013-01-01

    Autonomous in situ sensors are needed to document the effects of today’s rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific conditions (e.g., wide diel variations) present significant challenges to acquiring long-term measurements of dissolved inorganic carbon (DIC) with satisfactory accuracy and resolution. SEAS-DIC is a new in situ instrument designed to provide calibrated, high-frequency, long-term measurements of DIC in marine and fresh waters. Sample water is first acidified to convert all DIC to carbon dioxide (CO2). The sample and a known reagent solution are then equilibrated across a gas-permeable membrane. Spectrophotometric measurement of reagent pH can thereby determine the sample DIC over a wide dynamic range, with inherent calibration provided by the pH indicator’s molecular characteristics. Field trials indicate that SEAS-DIC performs well in biofouling and turbid waters, with a DIC accuracy and precision of ∼2 μmol kg–1 and a measurement rate of approximately once per minute. The acidic reagent protects the sensor cell from biofouling, and the gas-permeable membrane excludes particulates from the optical path. This instrument, the first spectrophotometric system capable of automated in situ DIC measurements, positions DIC to become a key parameter for in situ CO2-system characterizations.

  14. Intercalation compounds involving inorganic layered structures

    Directory of Open Access Journals (Sweden)

    CONSTANTINO VERA R. L.

    2000-01-01

    Full Text Available Two-dimensional inorganic networks can shown intracrystalline reactivity, i.e., simple ions, large species as Keggin ions, organic species, coordination compounds or organometallics can be incorporated in the interlayer region. The host-guest interaction usually causes changes in their chemical, catalytic, electronic and optical properties. The isolation of materials with interesting properties and making use of soft chemistry routes have given rise the possibility of industrial and technological applications of these compounds. We have been using several synthetic approaches to intercalate porphyrins and phthalocyanines into inorganic materials: smectite clays, layered double hydroxides and layered niobates. The isolated materials have been characterized by elemental and thermal analysis, X-ray diffraction, surface area measurements, scanning electronic microscopy, electronic and resonance Raman spectroscopies and EPR. The degree of layer stacking and the charge density of the matrices as well their acid-base nature were considered in our studies on the interaction between the macrocycles and inorganic hosts.

  15. Inorganic nanocarriers for platinum drug delivery

    Directory of Open Access Journals (Sweden)

    Ping’an Ma

    2015-12-01

    Full Text Available Nowadays platinum drugs take up almost 50% of all the clinically used anticancer drugs. Besides cisplatin, novel platinum agents including sterically hindered platinum (II drugs, chemically reductive platinum (IV drugs, photosensitive platinum (IV drugs, and multinuclear platinum drugs have been developed recently, with a few entering clinic trials. Rapid development of nanobiotechnology makes targeted delivery of anticancer platinum agents to the tumor site possible, while simultaneously minimizing toxicity and maximizing the drug efficacy. Being versatile drug carriers to deliver platinum drugs, inorganic nanovehicles such as gold nanoparticles, iron oxide nanomaterials, carbon nanotubes, mesoporous nanosilica, metal-organic frameworks (MOFs, have been extensively studied over the past decades. In contrast to conventional polymeric and lipid nanoparticles, inorganic nanoparticles based drug carriers are peculiar as they have shown excellent theranostic effects, revealing themselves an indispensable part of future nanomedicine. Here, we will elaborate recent research advances on fabrication of inorganic nanoparticles for platinum drug delivery.

  16. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  17. Latest Development on Membrane Fabrication for Natural Gas Purification: A Review

    Directory of Open Access Journals (Sweden)

    Dzeti Farhah Mohshim

    2013-01-01

    Full Text Available In the last few decades, membrane technology has been a great attention for gas separation technology especially for natural gas sweetening. The intrinsic character of membranes makes them fit for process escalation, and this versatility could be the significant factor to induce membrane technology in most gas separation areas. Membranes were synthesized with various materials which depended on the applications. The fabrication of polymeric membrane was one of the fastest growing fields of membrane technology. However, polymeric membranes could not meet the separation performances required especially in high operating pressure due to deficiencies problem. The chemistry and structure of support materials like inorganic membranes were also one of the focus areas when inorganic membranes showed some positive results towards gas separation. However, the materials are somewhat lacking to meet the separation performance requirement. Mixed matrix membrane (MMM which is comprising polymeric and inorganic membranes presents an interesting approach for enhancing the separation performance. Nevertheless, MMM is yet to be commercialized as the material combinations are still in the research stage. This paper highlights the potential promising areas of research in gas separation by taking into account the material selections and the addition of a third component for conventional MMM.

  18. Ablation properties of inorganic filler modified benzoxazine composite coating irradiated by high-intensity continuous laser

    Science.gov (United States)

    Xu, Feng; Ma, Zhuang; Li, Hezhang; Gao, Lihong; Wang, Fuchi

    2017-05-01

    Benzoxazine resin with good heat resistance, low combustion heat release and high char yield is a promising thermosetting resin. Meanwhile, research shows that the inorganic filler can effectively improve the thermodynamic property of the resin. It makes that the inorganic filler modified benzoxazine may have a potential application in laser ablation. The benzoxazine coating with and without inorganic filler ammonium polyphosphate, melamine and pentaerythritol (P-BOZ and BOZ) were prepared by brush and thermal curing method. The ablation properties of these coatings irradiated by high-intensity laser were investigated. The scanning electron microscope, Raman spectroscopy and thermal gravimetric analysis were used to characterize the micrographs, carbon layer structure and thermodynamic property of the sample. Results show that the composite coating has excellent thermal protective properties. The back temperature of 20 wt% P-BOZ coating under different parameter laser power (1000W/cm2, 5s; 1000W/cm2, 10s) are 40% lower than these of the BOZ coating and the 20 wt% P-BOZ has higher mass ablation rate. In the surface layer of the irradiated area, dense carbon layer is produced which reduces the absorb of the laser energy of the interior. In the interior of the sample, a large number of closed bell shaped holes are generated which are beneficial to obstruct the heat conduction.

  19. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  20. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  1. Upgrading of Gasification Gases by means of a Catalytic Membrane Reactor: WGS Catalysts and Inorganic Palladium Membranes HENRECA Project (ENE2004-07758-CO2-01). Final Report; Estudios de Enriquecimiento en H{sub 2} de Gases de Gasificacion mediante el Uso Reactor Catalitico de Membranas: Catalizadores WGS y Membranas Inorganicas de Paladio. Informe Final Proyecto HENRECA (ENE2004-07758-C02-01)

    Energy Technology Data Exchange (ETDEWEB)

    Maranon Bujan, M.; Sanchez Hervas, J. M.; Barreiro Carou, M. del

    2008-07-01

    The combination of a CO catalytic converter with a highly hydrogen selective membrane out stands as a very promising technology for the upgrading of biomass gasification gases. The advantages of this combined system over the traditional two stages WGS technology has been investigated within the HENRECA project, financed under the Spanish PN 2004-2007 of the Ministry of Science and Technology. This project started in September 2004 and had a duration of three years. The Division of Combustion and Gasification of CIEMAT participates in this project in three main activities: the study of the catalytic activity of WGS catalysts synthesised by the other partner of the project (University Rey Juan Carlos), the design of the reaction-separation system and the design and construction of a bench-scale pilot plant where the performance of the membranes prepared by URJC and the catalytic membrane system were investigated. This report describes the activities carried out within the project and the main results obtained. (Author) 14 ref.

  2. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  3. Inorganic-organic hybrid white light phosphors.

    Science.gov (United States)

    Wang, Ming-Sheng; Guo, Guo-Cong

    2016-11-03

    Light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) have brought about a revolution in lighting and display. A very hot field in recent years has been to develop white-light phosphors, aiming to achieve better colour stability, better reproducibility, and a simpler fabrication process for LEDs and OLEDs. This feature article reviews the development of inorganic-organic hybrid white-light phosphors, including coordination compounds of small organic molecules, organically templated inorganic compounds (phosphates, borates, sulfides, halides), metal-functionalized organic polymers, and organically coated nanoparticles.

  4. Preparation of Gas Separation Membranes and their Evaluation

    Directory of Open Access Journals (Sweden)

    R. S. Chauhan

    2004-07-01

    Full Text Available Asymmetric membranes have been prepared form the polysulfone using dry-wet phase-inversion technique. These membranes show a thin dense skin at one surface and porous as well as the selectivity of membranes. In addition an online permeate composition analysis system has also been setup to quantify the concentration fo the two major components of atmospheric ari, namely oxygen and nitrogen using a gas chromatograph. Memvranes have been tested at various feed pressures. Teh developed membranes are capable of enriching atmospheric air to a level of 30 per cent and more.

  5. Microporous silica and doped silica membrane for alcohol dehydration by pervaporation

    NARCIS (Netherlands)

    Sekulic, J.; Luiten, M.W.J.; Elshof, ten J.E.; Benes, N.E.; Keizer, K.

    2002-01-01

    The aim of this work is the development of inorganic membranes that will enable broad application of pervaporation/vapour permeation technology in the chemical industry. This can be achieved by improvement of the existing microporous membranes and the development of new types with enhanced thermoche

  6. Micro filtration membrane sieve with silicon micro machining for industrial and biomedical applications

    NARCIS (Netherlands)

    van Rijn, C.J.M.; Elwenspoek, Michael Curt

    1995-01-01

    With the use of silicon micromachining an inorganic membrane sieve for microfiltration is constructed, having a siliconnitride membrane layer with thickness typically 1 pm and perforations typically between 0.5 pm and 10 pm in diameter. As a support a -silicon wafer with openings of loo0 pm in

  7. Deflection and maximum load of microfiltration membrane sieve made with silicon micromachining

    NARCIS (Netherlands)

    Rijn, van Cees; Wekken, van der Michiel; Nijdam, Wietze; Elwenspoek, Miko

    1997-01-01

    With the use of silicon micromachining, an inorganic membrane sieve for microfiltration has been constructed having a silicon nitride membrane layer with thickness typically 1 ¿m and perforations typically between 0.5 ¿m and 10 ¿m in diameter. As a support a ¿100¿-silicon wafer with openings of 1000

  8. High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous FE(BTC)

    NARCIS (Netherlands)

    Shahid, S.; Nijmeijer, Dorothea C.

    2014-01-01

    Mixed-matrix membranes (MMMs), filled with inorganic particles, provide a means to improve the gas separation performance of polymeric membranes. In this work, MMMs containing the mesoporous metal organic framework (MOF) Fe(BTC) in a Matrimid®-PI matrix were characterized in terms of their carbon di

  9. Stable Hybrid Silica Nanosieve Membranes for the Dehydration of Lower Alcohols

    NARCIS (Netherlands)

    Kreiter, Robert; Rietkerk, Mariëlle D.A.; Castricum, Hessel L; Veen, van Henk M.; Elshof, ten Johan E.; Vente, Jaap F.

    2009-01-01

    A thirst for water: Organic–inorganic hybrid silica nanosieve membranes with narrow pore size distributions were developed for the separation of binary (bio)alcohol/water mixtures, for example, to remove water from wet biofuels during production. These membranes dehydrate lower alcohols and show a s

  10. Determination of Interfacial Parameters of Copolyamide Membrane Material by HPLC

    Institute of Scientific and Technical Information of China (English)

    张秀真; 高素莲; 陈均

    2003-01-01

    The High Performance Liquid Chromatography (HPLC) method is employed with copolyamide-170 (PA-170) membrane material as packing to determine the retention volume (V'R) and equilibrium distribution coefficient (K'A) of both inorganic solutes and organic solutes. Based on the experimental data, the interfacial parameters of the packing material are obtained.

  11. Current hurdles to the success of high temperature membrane reactors

    NARCIS (Netherlands)

    Saracco, G.; Versteeg, G.F.; Swaaij, van W.P.M.

    1994-01-01

    High-temperature catalytic processs performed using inorganic membranes have been in recent years a fast growing area of research, which seems to have not yet reached its peak. Chemical engineers, catalysts and materials scientists have addressed this topic from different viewpoint in a common effor

  12. Hyper-cross-linked, hybrid membranes via interfacial polymerization

    NARCIS (Netherlands)

    Raaijmakers, M.J.T.

    2015-01-01

    Hyper-cross-linked, hybrid membranes consist of covalent networks of alternating organic and inorganic, or biological groups. This thesis reports on the preparation of such hybrid networks via interfacial polymerization. The structure-property relationships of the hybrid networks depend strongly on

  13. Mechanical Mastication of Utah Juniper Encroaching Sagebrush Steppe Increases Inorganic Soil N

    Directory of Open Access Journals (Sweden)

    Kert R. Young

    2014-01-01

    Full Text Available Juniper (Juniperus spp. has encroached on millions of hectares of sagebrush (Artemisia spp. steppe. Juniper mechanical mastication increases cover of understory species but could increase resource availability and subsequently invasive plant species. We quantified the effects of juniper mastication on soil resource availability by comparing total C, total N, C : N ratio, Olsen extractable P, sulfate S, and pH using soil samples and inorganic N (NO3-+NH4+ using ion exchange membranes. We compared resource availability in paired masticated and untreated areas in three juniper-dominated sagebrush and bunchgrass ecosystems in the Utah portion of the Great Basin. Inorganic N was 4.7 times higher in masticated than in untreated areas across seasons (P<0.001. Within masticated areas, tree mounds of juniper leaf scales and twigs served as resource islands with 1.9 times higher inorganic N and total C, and 2.8 times higher total N than bare interspaces across seasons (P<0.01. Bare interspaces had 3.0–3.4 times higher inorganic N than interspaces covered with masticated trees during late-summer through winter (P<0.01. Soil fertility changes associated with mastication were not considered sufficient to favor establishment of annual over perennial grasses, and we expect both to increase in cover following juniper mastication.

  14. Breast cancer screening in Korean woman with dense breast tissue

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Jung [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ko, Eun Sook [Dept. of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Yi, Ann [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-11-15

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results.

  15. meta-DENSE complex acquisition for reduced intravoxel dephasing

    Science.gov (United States)

    Aletras, Anthony H.; Arai, Andrew E.

    2004-08-01

    Displacement encoding with stimulated echoes (DENSE) with a meta-DENSE readout and RF phase cycling to suppress the STEAM anti-echo is described for reducing intravoxel dephasing signal loss. This RF phase cycling scheme, when combined with existing meta-DENSE suppression of the T1 recovering signal, yields higher quality DENSE myocardial strain maps. Phantom and human images are provided to demonstrate the technique, which is capable of acquiring phase contrast displacement encoded images at low encoding gradient strengths providing better spatial resolution and less signal loss due to intravoxel dephasing than prior methods.

  16. Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Dieter Stender

    2015-01-01

    Full Text Available The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.

  17. 不锈钢表面有机-无机复合膜的制备及其抗海水腐蚀性能%Fabrication of organic-inorganic hybrid membrane on 304 stainless steel surface and its anti-corrosion properties

    Institute of Scientific and Technical Information of China (English)

    薛瑞婷; 宋现旺; 尹衍升; 陈守刚

    2011-01-01

    以多巴胺修饰304不锈钢为基体,采用溶胶凝胶法和自组装成膜法制备了SiO2基、TiO2基和SiO2-TiO2混合基有机-无机杂化涂层.探讨了钛酸四丁酯、正硅酸乙酯和11-巯基十一烷酸(MUA)在不锈钢基体上的成膜性和成膜后的抗腐蚀性能.借助金相显微镜观察了不锈钢基体上的杂化膜的显微形貌,塔菲尔曲线和电化学阻抗谱对比分析了杂化膜的抗腐蚀性能.结果表明,MUA和TiO2、SiO2能复合成膜,膜的致密性好,具有可重复性,且引入TiO2和SiO2后,其抗腐蚀性能有较大幅度提高.%In this paper, dopamine is used to modify the surface of 304 stainless steels. TiO2 , SiO2 and TiO2/SiO2 based hybrid membranes are prepared by sol-gel process and self-assambly method. The film forming properties of tetrabutyl titanate,tetraethoxysilane and 11-mercaptoundecanoic acid ( MUA) and anti-corrosion property of the hybrid membranes are investigated. The formation and surface structure of hybrid membranes are characterized by metallurgical microscopy. The results show that hybrid membranes can be successfully fabricated on 304 stainless steel substrates and the compactneas of hybrid membranes is better than the simple organic film. The corrosion behavior of hybrid films are evaluated by potentiodynamic polarization and the electrochemical impedance spectroscopy ( EIS) . The results indicate that hybrid membranes based on the adhesive of poly( dopamine) indeed reduce the corrosion of 304 stainless steels.

  18. An innovative membrane bioreactor for methane biohydroxylation.

    Science.gov (United States)

    Pen, N; Soussan, L; Belleville, M-P; Sanchez, J; Charmette, C; Paolucci-Jeanjean, D

    2014-12-01

    In this study, a membrane bioreactor (MBR) was developed for efficient, safe microbial methane hydroxylation with Methylosinus trichosporium OB3b. This innovative MBR, which couples a bioreactor with two gas/liquid macroporous membrane contactors supplying the two gaseous substrates (methane and oxygen) was operated in fed-batch mode. The feasibility and the reproducibility of this new biohydroxylation process were first demonstrated. The mass transfer within this MBR was twice that observed in a batch reactor in similar conditions. The productivity reached with this MBR was 75±25mgmethanol(gdrycell)(-1)h(-1). Compared to the literature, this value is 35times higher than that obtained with the only other fed-batch membrane bioreactor reported, which was run with dense membranes, and is comparable to those obtained with bioreactors fed by bubble-spargers. However, in the latter case, an explosive gas mixture can be formed, a problem that is avoided with the MBR.

  19. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  20. Synthesis of Silicalite-1 Zeolite Membranes Under Microwave Heating

    Institute of Scientific and Technical Information of China (English)

    XIAO; Wei; ZHAO; Lina; LIU; Jianguo; YAN; Chuanwei; YANG; Jianhua; WANG; Jinqu

    2015-01-01

    Silicalite-1 membranes supported on macroporous Al2O3 tubes were prepared by in-situ crystallization and secondary growth method under microwave-assisted closed system. The influences of crystallization time and temperature on properties of the as-prepared membranes were investigated. Results show that by in-situ crystallization at different temperatures it’s hardly to obtain uniform membranes on the poor supports, while by secondary growth method dense and well-intergrown silicalite-1 membranes with thickness of 2 μm on seeded supports can be obtained even at 393 K for 60 min. At 423 K, 30 min was enough to synthesize well-intergrown and uniform zeolite membrane under microwave heating. These silicalite-1 membranes also exhibit well hydrogen permeation performance. The effect of temperature was more remarkable than that of time evaluated from the morphology difference of these membranes.

  1. Synthesis of Silicalite-1 Zeolite Membranes Under Microwave Heating

    Institute of Scientific and Technical Information of China (English)

    XIAO Wei; ZHAO Lina; LIU Jianguo; YAN Chuanwei; YANG Jianhua; WANG Jinqu

    2015-01-01

    Silicalite-1 membranes supported on macroporous Al2O3 tubes were prepared byin-situcrystallization and secondary growth method under microwave-assisted closed system. The influences of crystallization time and tempera-ture on properties of the as-prepared membranes were investigated. Results show that by in-situcrystallization at differ-ent temperatures it’s hardly to obtain uniform membranes on the poor supports, while by secondary growth method dense and well-intergrown silicalite-1 membranes with thickness of 2μm on seeded supports can be obtained even at 393 K for 60 min. At 423 K, 30 min was enough to synthesize well-intergrown and uniform zeolite membrane under mi-crowave heating. These silicalite-1 membranes also exhibit well hydrogen permeation performance. The effect of tem-perature was more remarkable than that of time evaluated from the morphology difference of these membranes.

  2. 29 CFR 1910.1018 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ...) Engineering plans and studies used to determine methods selected for controlling exposure to inorganic arsenic... such exposures. The following three sections quoted from “Occupational Diseases: A Guide to Their.... Arsenic; chronic human intoxication. J. Occup. Med. 2:137. Elkins, H. B. 1959. The Chemistry of...

  3. Modelling inorganic material in activated sludge systems

    African Journals Online (AJOL)

    driniev

    2004-04-02

    Apr 2, 2004 ... organic models above, predictive models for the reactor inorganic ... included TSS as a non-conservative compound (Gujer and Lawson,. 1995) .... The OHO and PAO fractions of the VSS (favOHO, favPAO) are defined by, and ...

  4. Storage pool diseases illuminate platelet dense granule biogenesis.

    Science.gov (United States)

    Ambrosio, Andrea L; Di Pietro, Santiago M

    2016-11-16

    Platelet dense granules (DGs) are membrane bound compartments that store polyphosphate and small molecules such as ADP, ATP, Ca(2+), and serotonin. The release of DG contents plays a central role in platelet aggregation to form a hemostatic plug. Accordingly, congenital deficiencies in the biogenesis of platelet DGs underlie human genetic disorders that cause storage pool disease and manifest with prolonged bleeding. DGs belong to a family of lysosome-related organelles, which also includes melanosomes, the compartments where the melanin pigments are synthesized. These organelles share several characteristics including an acidic lumen and, at least in part, the molecular machinery involved in their biogenesis. As a result, many genes affect both DG and melanosome biogenesis and the corresponding patients present not only with bleeding but also with oculocutaneous albinism. The identification and characterization of such genes has been instrumental in dissecting the pathways responsible for organelle biogenesis. Because the study of melanosome biogenesis has advanced more rapidly, this knowledge has been extrapolated to explain how DGs are produced. However, some progress has recently been made in studying platelet DG biogenesis directly in megakaryocytes and megakaryocytoid cells. DGs originate from an endosomal intermediate compartment, the multivesicular body. Maturation and differentiation into a DG begins when newly synthesized DG-specific proteins are delivered from early/recycling endosomal compartments. The machinery that orchestrates this vesicular trafficking is composed of a combination of both ubiquitous and cell type-specific proteins. Here, we review the current knowledge on DG biogenesis. In particular, we focus on the individual human and murine genes encoding the molecular machinery involved in this process and how their deficiencies result in disease.

  5. Investigation of La1−xSrxCrO3−∂ (x ~ 0.1 as Membrane for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Yngve Larring

    2012-09-01

    Full Text Available Various inorganic membranes have demonstrated good capability to separate hydrogen from other gases at elevated temperatures. Hydrogen-permeable, dense, mixed proton-electron conducting ceramic oxides offer superior selectivity and thermal stability, but chemically robust candidates with higher ambipolar protonic and electronic conductivity are needed. In this work, we present for the first time the results of various investigations of La1−xSrxCrO3−∂ membranes for hydrogen production. We aim in particular to elucidate the material’s complex transport properties, involving co-ionic transport of oxide ions and protons, in addition to electron holes. This opens some new possibilities for efficient heat and mass transfer management in the production of hydrogen. Conductivity measurements as a function of pH2 at constant pO2 exhibit changes that reveal a significant hydration and presence of protons. The flux and production of hydrogen have been measured under different chemical gradients. In particular, the effect of water vapor in the feed and permeate gas stream sides was investigated with the aim of quantifying the ratio of hydrogen production by hydrogen flux from feed to permeate and oxygen flux the opposite way (“water splitting”. Deuterium labeling was used to unambiguously prove flux of hydrogen species.

  6. Dense Molecular Cores Being Externally Heated

    CERN Document Server

    Kim, Gwanjeong; Gopinathan, Maheswar; Jeong, Woong-Seob; Kim, Mi-Ryang

    2016-01-01

    We present results of our study on eight dense cores, previously classified as starless, using infrared (3-160 {\\micron}) imaging observations with \\textit{AKARI} telescope and molecular line (HCN and N$_2$H$^+$) mapping observations with \\textit{KVN} telescope. Combining our results with the archival IR to mm continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosity of $\\sim0.3-4.4$ L$_{\\odot}$. The other six cores are found to remain as starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3-6 K towards the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an over-dominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory mot...

  7. The ionization fraction in dense clouds

    CERN Document Server

    De Boisanger, C B; Van Dishoeck, E F

    1995-01-01

    We present submillimeter observations of various molecular ions toward two dense clouds, NGC 2264 IRS1 and W 3 IRS5, in order to investigate their ionization fraction. Analysis of the line intensity ratios by the way of statistical equilibrium calculations allows determination of the physical parameters: n(H2)~(1-2)e6 cm-3 and T(kin)~50-100 K. Column densities and abundances are also derived. Together, the abundances of the observed ions provide a lower limit to the ionization fraction, which is (2-3)e-9 in both clouds. In order to better constrain the electron abundance, a simple chemical model is built which calculates the steady state abundances of the major positive ions, using the observed abundances wherever available. With reasonable assumptions, good agreement within a factor of two with the observations can be achieved. The calculated electron fraction is x(e)= (1.0-3.3)e-8 in the case of NGC 2264 and x(e)=(0.5-1.1)e-8 for W 3 IRS5. In the first case, the high abundance of N2H+ requires a rather high...

  8. Elemental nitrogen partitioning in dense interstellar clouds

    CERN Document Server

    Daranlot, Julien; Bergeat, Astrid; Costes, Michel; Loison, Jean-Christophe; Wakelam, Valentine; Hickson, Kevin M

    2012-01-01

    Many chemical models of dense interstellar clouds predict that the majority of gas-phase elemental nitrogen should be present as N2, with an abundance approximately five orders of magnitude less than that of hydrogen. As a homonuclear diatomic molecule, N2 is difficult to detect spectroscopically through infrared or millimetre-wavelength transitions so its abundance is often inferred indirectly through its reaction product N2H+. Two main formation mechanisms each involving two radical-radical reactions are the source of N2 in such environments. Here we report measurements of the low temperature rate constants for one of these processes, the N + CN reaction down to 56 K. The effect of the measured rate constants for this reaction and those recently determined for two other reactions implicated in N2 formation are tested using a gas-grain model employing a critically evaluated chemical network. We show that the amount of interstellar nitrogen present as N2 depends on the competition between its gas-phase format...

  9. Kinetic Simulations of Dense Plasma Focus Breakdown

    Science.gov (United States)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  10. Order and instabilities in dense bacterial colonies

    Science.gov (United States)

    Tsimring, Lev

    2012-02-01

    The structure of cell colonies is governed by the interplay of many physical and biological factors, ranging from properties of surrounding media to cell-cell communication and gene expression in individual cells. The biomechanical interactions arising from the growth and division of individual cells in confined environments are ubiquitous, yet little work has focused on this fundamental aspect of colony formation. By combining experimental observations of growing monolayers of non-motile strain of bacteria Escherichia coli in a shallow microfluidic chemostat with discrete-element simulations and continuous theory, we demonstrate that expansion of a dense colony leads to rapid orientational alignment of rod-like cells. However, in larger colonies, anisotropic compression may lead to buckling instability which breaks perfect nematic order. Furthermore, we found that in shallow cavities feedback between cell growth and mobility in a confined environment leads to a novel cell streaming instability. Joint work with W. Mather, D. Volfson, O. Mondrag'on-Palomino, T. Danino, S. Cookson, and J. Hasty (UCSD) and D. Boyer, S. Orozco-Fuentes (UNAM, Mexico).

  11. Thermoplastic Polymer Nanocomposites Based on Inorganic Fullerene-like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Mohammed Naffakh

    2014-06-01

    Full Text Available Using inorganic fullerene-like (IF nanoparticles and inorganic nanotubes (INT in organic-inorganic hybrid composite, materials provide the potential for improving thermal, mechanical, and tribological properties of conventional composites. The processing of such high-performance hybrid thermoplastic polymer nanocomposites is achieved via melt-blending without the aid of any modifier or compatibilizing agent. The incorporation of small quantities (0.1–4 wt.% of IF/INTs (tungsten disulfide, IF-WS2 or molybdenum disulfide, MoS2 generates notable performance enhancements through reinforcement effects and excellent lubricating ability in comparison with promising carbon nanotubes or other inorganic nanoscale fillers. It was shown that these IF/INT nanocomposites can provide an effective balance between performance, cost effectiveness, and processability, which is of significant importance for extending the practical applications of diverse hierarchical thermoplastic-based composites.

  12. Striking a Balance: Experiment and Concept in Undergraduate Inorganic Chemistry.

    Science.gov (United States)

    Frey, John E.

    1990-01-01

    Described is an inorganic chemistry course based on the premise that a balanced understanding of inorganic chemistry requires knowledge of the experimental, theoretical, and technological aspects of the subject. A detailed description of lectures and laboratories is included. (KR)

  13. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1962

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1962. The estimates were derived from inorganic nitrogen...

  14. Striking a Balance: Experiment and Concept in Undergraduate Inorganic Chemistry.

    Science.gov (United States)

    Frey, John E.

    1990-01-01

    Described is an inorganic chemistry course based on the premise that a balanced understanding of inorganic chemistry requires knowledge of the experimental, theoretical, and technological aspects of the subject. A detailed description of lectures and laboratories is included. (KR)

  15. Preparation, Properties and Application of Polymeric Organic-Inorganic Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    任杰; 刘艳; 唐小真

    2003-01-01

    Six preparation methods for polymeric organic-inorganic nanocomposites and their respective mechanisms and features are reviewed. The extraordinary properties of polymeric organic-inorganic nanocomposites are discussed,and their potential applications are evaluated.

  16. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1984

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1984. The estimates were derived from inorganic nitrogen...

  17. Influence of Organic and Inorganic Sources of Fertilizer on Growth ...

    African Journals Online (AJOL)

    Influence of Organic and Inorganic Sources of Fertilizer on Growth and Leaf Yield of ... the effect of Tithonia diversifolia, farmyard manure and inorganic sources of ... Leaf yield was assessed by both cumulative leaf weight per given plant and ...

  18. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1963

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1963. The estimates were derived from inorganic nitrogen...

  19. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1983

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1983. The estimates were derived from inorganic nitrogen...

  20. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1961

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1961. The estimates were derived from inorganic nitrogen...

  1. Inorganic Nitrogen Wet Deposition for the Conterminous United States, 1964

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Annual inorganic nitrogen wet deposition were estimated for the conterminous United States for 1964. The estimates were derived from inorganic nitrogen...

  2. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  3. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during the...

  4. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  5. Electrochemical Catalysis of Inorganic Complex K4[Fe(CN)6] by Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Zheng, Zhiyong; Wu, Ranran; Xiao, Yong

    to the redox proteins localized to the outer-membrane, for example, the MtrC, MtrB,MtrA and CymA2. Here we investigate its electrochemical properties towards redox inorganic redox compounds. It shows strong electrocatalysis toward electrochemical oxidation of K4[Fe(CN)6]. As a redox molecule, K4[Fe(CN)6] gives...... on the selectivity and electrocatalysis mechanisms of Shewanella oneidensis MR-1 are under investigation. The ability of Shewanella oneidensis MR-1 to catalyze redox action of inorganic metal complex compounds will provide an insight on metal cycles in nature....... disappearance of the cathodic peak and strengthen of the anodic peak, which is a typical catalysis feature of electrochemical oxidation. Further experiments show that Shewanella oneidensis MR-1 does not give such electrocatalysis to redox compounds such as Ru[(NH3)6]Cl3 and Resorufin. Systematic study...

  6. Organic-inorganic hybrid protonic polymeric electrolytes grafted by sulfonic acid/sulfonamide moieties

    Energy Technology Data Exchange (ETDEWEB)

    Depre, L.; Poinsignon, C.; Popall, M.

    2000-07-01

    Thin proton conducting membranes of an organic-inorganic polymer electrolyte bearing sulphonamide and sulfonic groups are prepared by sol-gel process. Polycondensation of alkoxysilanes provides the inorganic silicate backbone whereas the organic network is formed from reactive functional groups R{prime}(({minus}DH{sub 2}){sub 3}-SO{sub 3}H) and [({minus}CH{sub 2}){sub 3}-SO{sub 2}NH{sub 2}] of alkoxysilanes of R{prime}Si[OR{sub 3}] type. Proton conductivity measured in the dry and wet state under controlled Temperature and Relative Humidity increases from 10{sup {minus}4} S/cm under vacuum to 6 10{sup {minus}2} S/cm at 70 C and 96% RH. Conductivity dependence on temperature and associated conduction mechanisms are discussed in both states.

  7. Permutation Matrix Method for Dense Coding Using GHZ States

    Institute of Scientific and Technical Information of China (English)

    JIN Rui-Bo; CHEN Li-Bing; WANG Fa-Qiang; SU Zhi-Kun

    2008-01-01

    We present a new method called the permutation matrix method to perform dense coding using Greenberger-Horne-Zeilinger (GHZ) states. We show that this method makes the study of dense coding systematically and regularly. It also has high potential to be realized physically.

  8. Mining connected global and local dense subgraphs for bigdata

    Science.gov (United States)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  9. Phase Structure and Transport Properties of Dense Quark Matter

    CERN Document Server

    Schaefer, Thomas

    2010-01-01

    We provide a summary of our current knowledge of the phase structure of very dense quark matter. We concentrate on the question how the ground state at asymptotically high density -- color-flavor-locked (CFL) matter -- is modified as the density is lowered. We discuss the nature of the quasi-particle excitations, and present work on the transport properties of dense QCD matter.

  10. Finding dense locations in symbolic indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2017-01-01

    Finding the dense locations in large indoor spaces is very useful for many applications such as overloaded area detection, security control, crowd management, indoor navigation, and so on. Indoor tracking data can be enormous and are not immediately ready for finding dense locations. This paper...

  11. Role of membranes and membrane reactors in the hydrogen supply of fuel cells for transports

    Energy Technology Data Exchange (ETDEWEB)

    Julbe, A.; Guizard, Ch. [Institut Europeen des Membranes, UMII, Lab. des Materiaux et des Procedes Membranaires, CNRS UMR 5635, 34 - Montpellier (France)

    2000-07-01

    Production, storage and supply of high-purity hydrogen as a clean and efficient fuel is central to fuel cells technology, in particular in vehicle traction. Actually, technologies for handling liquefied or gaseous hydrogen in transports are not available so that a number of alternative fuels are considered with the aim of in-situ generation of hydrogen through catalytic processes. The integrated concept of membrane reactors (MRs) can greatly benefit to these technologies. Particular emphasis is put on inorganic membranes and their role in MRs performance for H{sub 2} production.

  12. Microporous Silica Based Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    João C. Diniz da Costa

    2012-09-01

    Full Text Available This review provides a global overview of microporous silica based membranes for desalination via pervaporation with a focus on membrane synthesis and processing, transport mechanisms and current state of the art membrane performance. Most importantly, the recent development and novel concepts for improving the hydro-stability and separating performance of silica membranes for desalination are critically examined. Research into silica based membranes for desalination has focussed on three primary methods for improving the hydro-stability. These include incorporating carbon templates into the microporous silica both as surfactants and hybrid organic-inorganic structures and incorporation of metal oxide nanoparticles into the silica matrix. The literature examined identified that only metal oxide silica membranes have demonstrated high salt rejections under a variety of feed concentrations, reasonable fluxes and unaltered performance over long-term operation. As this is an embryonic field of research several target areas for researchers were discussed including further improvement of the membrane materials, but also regarding the necessity of integrating waste or solar heat sources into the final process design to ensure cost competitiveness with conventional reverse osmosis processes.

  13. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  14. Hybrid proton-conducting membranes for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Romero, Pedro [Institut de Ciencia de Materials de Barcelona (CSIC), Campus UAB, E-08193 Bellaterra (Barcelona) (Spain)]. E-mail: pedro.gomez@icmab.es; Asensio, Juan Antonio [Institut de Ciencia de Materials de Barcelona (CSIC), Campus UAB, E-08193 Bellaterra (Barcelona) (Spain); Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona (Spain); Borros, Salvador [Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona (Spain)

    2005-08-30

    The synthesis and characterization of a novel hybrid organic-inorganic material formed by phosphomolybdic acid H{sub 3}PMo{sub 12}O{sub 40} (PMo{sub 12}) and poly(2,5-benzimidazole) (ABPBI) is reported. This material, composed of two proton-conducting components, can be cast in the form of membranes from methanesulfonic acid (MSA) solutions. Upon impregnation with phosphoric acid, the hybrid membranes present higher conductivity than the best ABPBI polymer membranes impregnated in the same conditions. These electrolyte membranes are stable up to 200 deg. C, and have a proton conductivity of 3 x 10{sup -2} S cm{sup -1} at 185 deg. C without humidification. These properties make them very good candidates as membranes for polymer electrolyte membrane fuel cells (PEMFC) at temperatures of 100-200 deg. C.

  15. Modulation of cargo release from dense core granules by size and actin network.

    Science.gov (United States)

    Felmy, Felix

    2007-08-01

    During regulated fusion of secretory granules with the plasma membrane, a fusion pore first opens and then dilates. The dilating pore allows cargo proteins from the dense core to be released into the extracellular space. Using real-time evanescent field fluorescence microscopy of live PC12 cells, it was determined how rapidly proteins of different sizes escape from single granules after fusion. Tissue plasminogen activator (tPA)-Venus is released 40-fold slower than the three times smaller neuropeptide Y [NPY-monomeric GFP (mGFP)]. An NPY bearing two mGFPs in tandem [NPY-(mGFP)(2)] as an intermediate-sized fusion probe is released most slowly. Although, the time-course of release varies substantially for a given probe. Coexpression of beta-actin, actin-related protein 3 or mAbp1 slowed the release of the two larger cargo molecules but did not affect release of NPY-mGFP or of the granule-membrane-bound probe Vamp-pHluorin. Additionally, high concentrations of cytochalasin D slowed release of the tPA-Venus. Together these results suggest that fusion pore dilation is not the only determinate of release time-course and that actin rearrangements similar to those mediating actin-mediated motility influences the time-course of release without directly interfering with the granule membrane to cell membrane connection.

  16. Development of hollow fiber catalytic membrane reactors for high temperature gas cleanup. Final report, September 1989--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yi Hua; Moser, W.R.; Pien, S.; Shelekhin, A.B.

    1994-07-01

    The objective of this project was to develop economically and technically viable catalytic membrane reactors for high temperature, high pressure gaseous contaminant control in Integrated Gasification Combined Cycle (IGCC) systems. These catalytic membrane reactors decompose H{sub 2}S and separate the reaction products. The reactors were designed to operate in the hostile process environment of the IGCC systems, and at temperatures ranging from 500 to 1000{degrees}C. Severe conditions encountered in the IGCC process (e.g., 900{degrees}C, containing of H{sub 2}S, CO{sub 2} and H{sub 2}O) make it impossible to use polymeric membranes in the process. A list of inorganic membranes that can be employed in the membrane reactor includes Pd metallic membranes, molecular-sieve glass membranes (PPG Industries), porous Vycor glass membranes and porous sol-gel derived membranes such as alumina, zirconia. Alumina and zirconia membranes, however, cannot withstand for a long time at high temperatures in the presence of water vapors. Palladium membranes are a very promising class of inorganic membranes for gas separations that is currently under development. In this project two different types of membranes were used in the design of the membrane reactor -- molecular-sieve glass membrane and Vycor glass porous membrane.

  17. Graphle: Interactive exploration of large, dense graphs

    Directory of Open Access Journals (Sweden)

    Huttenhower Curtis

    2009-12-01

    Full Text Available Abstract Background A wide variety of biological data can be modeled as network structures, including experimental results (e.g. protein-protein interactions, computational predictions (e.g. functional interaction networks, or curated structures (e.g. the Gene Ontology. While several tools exist for visualizing large graphs at a global level or small graphs in detail, previous systems have generally not allowed interactive analysis of dense networks containing thousands of vertices at a level of detail useful for biologists. Investigators often wish to explore specific portions of such networks from a detailed, gene-specific perspective, and balancing this requirement with the networks' large size, complex structure, and rich metadata is a substantial computational challenge. Results Graphle is an online interface to large collections of arbitrary undirected, weighted graphs, each possibly containing tens of thousands of vertices (e.g. genes and hundreds of millions of edges (e.g. interactions. These are stored on a centralized server and accessed efficiently through an interactive Java applet. The Graphle applet allows a user to examine specific portions of a graph, retrieving the relevant neighborhood around a set of query vertices (genes. This neighborhood can then be refined and modified interactively, and the results can be saved either as publication-quality images or as raw data for further analysis. The Graphle web site currently includes several hundred biological networks representing predicted functional relationships from three heterogeneous data integration systems: S. cerevisiae data from bioPIXIE, E. coli data using MEFIT, and H. sapiens data from HEFalMp. Conclusions Graphle serves as a search and visualization engine for biological networks, which can be managed locally (simplifying collaborative data sharing and investigated remotely. The Graphle framework is freely downloadable and easily installed on new servers, allowing any

  18. Dense surface reconstruction with shadows in MIS.

    Science.gov (United States)

    Lin, Bingxiong; Sun, Yu; Qian, Xiaoning

    2013-09-01

    Three-dimensional reconstruction of internal organ surfaces provides useful information for better control and guidance of the operations of surgical tools for minimally invasive surgery (MIS). The current reconstruction techniques using stereo cameras are still challenging due to the difficulties in correspondence matching in MIS, since there is very limited texture but significant specular reflection on organ surfaces. This paper proposes a new approach to overcome the problem by introducing weakly structured light actively casting surgical tool shadows on organ surfaces. The contribution of this paper is twofold: first, we propose a robust approach to extract shadow edges from a sequence of shadowed images; second, we develop a novel field surface interpolation (FSI) approach to obtain an accurate and dense disparity map. Our approach does not rely on texture information and is able to reconstruct accurate 3-D information by exploiting shadows from surgical tools. One advantage is that the point correspondences are directly calculated and no explicit stereo matching is required, which ensures the efficiency of the method. Another advantage is the minimum hardware requirement because only stereo cameras and a separated single-point light source are required. We evaluated the proposed approach using both phantom models and ex vivo images. Based on the experimental results, we achieved the precision of the recovered 3-D surfaces within 0.7 mm for phantom models and 1.2 mm for ex vivo images. The comparison of disparity maps indicates that with the addition of shadows, the proposed method significantly outperforms the state-of-the-art stereo algorithms for MIS.

  19. Foulant analysis of hollow fine fiber (HFF) membranes in Red Sea SWRO plants using membrane punch autopsy (MPA)

    KAUST Repository

    Green, Troy N.

    2017-06-12

    Membrane punch autopsy (MPA) is a procedure for quantitative foulant analysis of hollow fine fiber (HFF) permeators. In the past, quantitative autopsies of membranes were restricted to spiral wound. This procedure was developed at SWCC laboratories and tested on permeators of two commercial Red Sea reverse osmosis plants. For membrane autopsies, stainless steel hollow bore picks were penetrated to membrane cores and fibers extracted for foulant analysis. Quantitative analysis of extracted materials contained inorganic and organic foulants including bacteria. Fourier transform infrared spectroscopy analysis confirmed the presence of organic fouling functional groups and scanning electron microscopy with energy dispersive X-ray spectroscopy in the presence of diatoms and silica most likely not from particulate sand. API analysis revealed the presence of Shewanella and two Vibrio microbial species confirmed by 16S rDNA sequence library. It was observed that fouling content of HFF cellulose triacetate (CTA) membranes were more than 800 times than polyamide spiral wound membranes.

  20. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity. This journal is

  1. Organic and inorganic inputs and losses in an irrigated corn field after inorganic fertilizer or manure application

    Science.gov (United States)

    Little is known about inorganic fertilizer or manure effects on organic carbon (OC) and inorganic C (IC) losses from a furrow irrigated field, particularly in the context of other system C gains or losses. In 2003 and 2004, we measured dissolved organic and inorganic C (DOC, DIC), particulate OC an...

  2. Carbon molecular sieve membranes prepared from porous fiber precursor

    NARCIS (Netherlands)

    Barsema, J.N.; van der Vegt, N.F.A.; Koops, G.H.; Wessling, Matthias

    2002-01-01

    Carbon molecular sieve (CMS) membranes are usually prepared from dense polymeric precursors that already show intrinsic gas separation properties. The rationale behind this approach is that the occurrence of any kind of initial porosity will deteriorate the final CMS performance. We will show that

  3. Carbon molecular sieve membranes prepared from porous fiber precursor

    NARCIS (Netherlands)

    Barsema, Jonathan N.; Vegt, van der N.F.A.; Koops, G.H.; Wessling, M.

    2002-01-01

    Carbon molecular sieve (CMS) membranes are usually prepared from dense polymeric precursors that already show intrinsic gas separation properties. The rationale behind this approach is that the occurrence of any kind of initial porosity will deteriorate the final CMS performance. We will show that i

  4. The silica-doped sulfonated poly(fluorenyl ether ketone)s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F.; Wang, S.J.; Xiao, M.; Bian, S.G.; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-sen University, Xingangxi Road, Guangzhou 510275 (China)

    2009-05-15

    The sulfonated poly(fluorenyl ether ketone)s (SPFEK) membranes doped with SiO{sub 2} and dispersed by hydroxypropyl methyl cellulose (HPMC) were prepared and investigated for polymer electrolyte membrane fuel cells (PEMFCs) used at high temperature and low relative humidity (RH). The above membrane was prepared by solution dispersion of SPFEK and SiO{sub 2} using HPMC as dispersant. The physio-chemical properties of the hybrid membrane were studied by means of scanning electron microscope (SEM), ion-exchange capacity (IEC), proton conductivity, and single cell performance tests. The hybrid membranes dispersed by HPMC were well dispersed when compared with common organic/inorganic hybrid membranes. The hybrid membranes showed superior characteristics as a proton exchange membrane (PEM) for PEMFC application, such as high ionic exchange content (IEC) of 1.51 equiv/g, high temperature operation properties, and the satisfactory ability of anti-H{sub 2} crossover. The single cell performances of the hybrid membranes were examined in a 5 cm{sup 2} commercial single cell at both 80 C and 120 C under different relative humidity (RH) conditions. The hybrid membrane dispersed by HPMC gave the best performance of 260 mW/cm{sup 2} under conditions of 0.4 V, 120 C, 50% RH and ambient pressure. The results demonstrated HPMC being an efficient dispersant for the organic/inorganic hybrid membrane used for PEM fuel cell. (author)

  5. Photochromic organic-inorganic hybrid materials.

    Science.gov (United States)

    Pardo, Rosario; Zayat, Marcos; Levy, David

    2011-02-01

    Photochromic organic-inorganic hybrid materials have attracted considerable attention owing to their potential application in photoactive devices, such as optical memories, windows, photochromic decorations, optical switches, filters or non-linear optics materials. The growing interest in this field has largely expanded the use of photochromic materials for the purpose of improving existing materials and exploring new photochromic hybrid systems. This tutorial review summarizes the design and preparation of photochromic hybrid materials, and particularly those based on the incorporation of organic molecules in organic-inorganic matrices by the sol-gel method. This is the most commonly used method for the preparation of these materials as it allows vitreous hybrid materials to be obtained at low temperatures, and controls the interaction between the organic molecule and its embedding matrix, and hence allows tailoring of the performance of the resulting devices.

  6. Applications of inorganic nanoparticles in diabetes

    Science.gov (United States)

    Elhabush, Nada Atiya Omar

    Diabetes Mellitus (DM) is an endocrine and metabolic disease that has become a global emergency because of the rapid rise in morbidity and mortality rates worldwide. Since the direct delivery of biomolecules, such as insulin, to treat DM is inefficient and subjected to enzymatic degradation, nanotechnology and nanomedicine research have been devoted to the development of more effective methods to treat DM. Nanoparticles (NP), organic, inorganic, or hybrid, have served as potential carrier for safe and efficient transport for insulin. Additionally, several NP have biological activities that help treat and/or prevent DM and diabetes complications, such as antioxidant, anti-apoptotic, or insulin-mimetic activities. Moreover, physicochemical properties of some NP allow them to be used in diagnostic tools for potential diagnosis or monitoring purposes. This work highlights the applications of inorganic NP such as, gold, selenium, silver, calcium phosphate, zinc oxide, cerium oxide, and iron oxide and in the treatment or diagnosis of DM.

  7. QM/MM methods in inorganic chemistry.

    Science.gov (United States)

    Bo, Carles; Maseras, Feliu

    2008-06-14

    Quantum mechanics/molecular mechanics (QM/MM) methods are a useful tool for the computational study of inorganic systems. They allow a quantitative description of systems larger than those treatable with pure QM methods, in principle with a comparable quality. QM/MM calculations are being currently applied to the research in a variety of topics, including structural effects of ligand bulk, selectivity in homogeneous catalysis and mechanical embedding in heterogeneous catalysis. The QM/MM approach is also useful for the separation of steric and electronic contributions, and as an auxiliary tool for geometry optimization when full QM methods are mandatory. The power of QM/MM methods in inorganic chemistry is illustrated in this Perspective with a summary of recent representative applications.

  8. Direct optical lithography of functional inorganic nanomaterials

    Science.gov (United States)

    Wang, Yuanyuan; Fedin, Igor; Zhang, Hao; Talapin, Dmitri V.

    2017-07-01

    Photolithography is an important manufacturing process that relies on using photoresists, typically polymer formulations, that change solubility when illuminated with ultraviolet light. Here, we introduce a general chemical approach for photoresist-free, direct optical lithography of functional inorganic nanomaterials. The patterned materials can be metals, semiconductors, oxides, magnetic, or rare earth compositions. No organic impurities are present in the patterned layers, which helps achieve good electronic and optical properties. The conductivity, carrier mobility, dielectric, and luminescence properties of optically patterned layers are on par with the properties of state-of-the-art solution-processed materials. The ability to directly pattern all-inorganic layers by using a light exposure dose comparable with that of organic photoresists provides an alternate route for thin-film device manufacturing.

  9. Microwave chemistry for inorganic nanomaterials synthesis.

    Science.gov (United States)

    Bilecka, Idalia; Niederberger, Markus

    2010-08-01

    This Feature Article gives an overview of microwave-assisted liquid phase routes to inorganic nanomaterials. Whereas microwave chemistry is a well-established technique in organic synthesis, its use in inorganic nanomaterials' synthesis is still at the beginning and far away from having reached its full potential. However, the rapidly growing number of publications in this field suggests that microwave chemistry will play an outstanding role in the broad field of Nanoscience and Nanotechnology. This article is not meant to give an exhaustive overview of all nanomaterials synthesized by the microwave technique, but to discuss the new opportunities that arise as a result of the unique features of microwave chemistry. Principles, advantages and limitations of microwave chemistry are introduced, its application in the synthesis of different classes of functional nanomaterials is discussed, and finally expected benefits for nanomaterials' synthesis are elaborated.

  10. Sealed Primary Lithium-Inorganic Electrolyte Cell

    Science.gov (United States)

    1977-02-01

    Battery , Thionyl Chloride , Lithium , Lithium Aluminum Chloride , Hermetic Lithium Battery , D Cell, Voltage-Delay, Shelf Life, High Energy Density Battery ... lithium - thionyl chloride , inorganic electrclyte system is one of the highest energy density systems known to date (1-4). The cells contain an Li anoae, a...However, this is not tne case with te thionyl chloride system. A completely discharged battery , while sitting on

  11. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Seshadhri, Comandur [The Ohio State Univ., Columbus, OH (United States); Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sariyuce, Ahmet Erdem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Catalyurek, Umit [The Ohio State Univ., Columbus, OH (United States)

    2014-11-01

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account for overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.

  12. HNCO in massive galactic dense cores

    Science.gov (United States)

    Zinchenko, I.; Henkel, C.; Mao, R. Q.

    2000-09-01

    We surveyed 81 dense molecular cores associated with regions of massive star formation and Sgr A in the JK-1K-1 = 505-404 and 10010-909 lines of HNCO. Line emission was detected towards 57 objects. Selected subsamples were also observed in the 101-000, 404-303, 707-606, 15015-14014, 16016-15015 and 21021-20020 lines, covering a frequency range from 22 to 461 GHz. HNCO lines from the K-1 = 2,3 ladders were detected in several sources. Towards Orion-KL, K-1 = 5 transitions with upper state energies Eu/k ~ 1100 and 1300 K could be observed. Five HNCO cores were mapped. The sources remain spatially unresolved at 220 and 461 GHz (10010-909 and 21010-20020 transitions) with beam sizes of 24'' and 18\\arcsec, respectively. The detection of hyperfine structure in the 101-000 transition is consistent with optically thin emission under conditions of Local Thermodynamic Equilibrium (LTE). This is corroborated by a rotational diagram analysis of Orion-KL that indicates optically thin line emission also for transitions between higher excited states. At the same time a tentative detection of interstellar HN13CO (the 100,10-90,9 line at 220 GHz toward G 310.12-0.20) suggests optically thick emission from some rotational transitions. Typical HNCO abundances relative to H2 as derived from a population diagram analysis are ~ 10-9. The rotational temperatures reach ~ 500 K. The gas densities in regions of HNCO K-1=0 emission should be n>~ 106 cm-3 and in regions of K-1>0 emission about an order of magnitude higher even for radiative excitation. HNCO abundances are found to be enhanced in high-velocity gas. HNCO integrated line intensities correlate well with those of thermal SiO emission. This indicates a spatial coexistence of the two species and may hint at a common production mechanism, presumably based on shock chemistry. Based on the observations collected at the European Southern Observatory, La Silla, Chile and on observations with the Heinrich-Hertz-Telescope (HHT). The HHT

  13. Neutrino reactions in hot and dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lohs, Andreas

    2015-04-13

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  14. Planar ceramic membrane assembly and oxidation reactor system

    Science.gov (United States)

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  15. Flexible Hybrid Organic-Inorganic Perovskite Memory.

    Science.gov (United States)

    Gu, Chungwan; Lee, Jang-Sik

    2016-05-24

    Active research has been done on hybrid organic-inorganic perovskite materials for application to solar cells with high power conversion efficiency. However, this material often shows hysteresis, which is undesirable, shift in the current-voltage curve. The hysteresis may come from formation of defects and their movement in perovskite materials. Here, we utilize the defects in perovskite materials to be used in memory operations. We demonstrate flexible nonvolatile memory devices based on hybrid organic-inorganic perovskite as the resistive switching layer on a plastic substrate. A uniform perovskite layer is formed on a transparent electrode-coated plastic substrate by solvent engineering. Flexible nonvolatile memory based on the perovskite layer shows reproducible and reliable memory characteristics in terms of program/erase operations, data retention, and endurance properties. The memory devices also show good mechanical flexibility. It is suggested that resistive switching is done by migration of vacancy defects and formation of conducting filaments under the electric field in the perovskite layer. It is believed that organic-inorganic perovskite materials have great potential to be used in high-performance, flexible memory devices.

  16. Stable colloids in molten inorganic salts.

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  17. Stable colloids in molten inorganic salts

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-01

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  18. Aqueous SARA ATRP using Inorganic Sulfites.

    Science.gov (United States)

    Abreu, Carlos M R; Fu, Liye; Carmali, Sheiliza; Serra, Arménio C; Matyjaszewski, Krzysztof; Coelho, Jorge F J

    2017-01-14

    Aqueous supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) using inorganic sulfites was successfully carried out for the first time. Under optimized conditions, a well-controlled poly[oligo(ethylene oxide) methyl ether acrylate] (POEOA) was obtained with sulfites (e.g. Na2S2O4) were continuously fed into the reaction mixture. The mechanistic studies proved that these salts can activate alkyl halides directly and regenerate the activator complex. The effects of the feeding rate of the SARA agent (inorganic sulfites), ligand and its concentration, halide salt and its concentration, sulfite used, and copper concentration, were systematically studied to afford fast polymerizations rates while maintaining the control over polymerization. The kinetic data showed linear first-order kinetics, linear evolution of molecular weights with conversion, and polymers with narrow molecular weight distributions (Đ ~1.2) during polymerization even at relatively high monomer conversions (~80%). "One-pot" chain extension and "one-pot" block copolymerization experiments proved the high chain-end functionality. The polymerization could be directly regulated by starting or stopping the continuous feeding of the SARA agent. Under biologically relevant conditions, the aqueous SARA ATRP using inorganic sulfites was used to synthesize a well-defined protein-polymer hybrid by grafting of P(OEOA480) from BSA-O-[iBBr]30.

  19. Inorganic particle analysis of dental impression elastomers.

    Science.gov (United States)

    Carlo, Hugo Lemes; Fonseca, Rodrigo Borges; Soares, Carlos José; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2010-01-01

    The aim of this study was to determine quantitatively and qualitatively the inorganic particle fraction of commercially available dental elastomers. The inorganic volumetric fraction of two addition silicones (Reprosil Putty/Fluid and Flexitime Easy Putty/Fluid), three condensation silicones (Clonage Putty/Fluid, Optosil Confort/Xantopren VL and Silon APS Putty/Fluid), one polyether (Impregum Soft Light Body) and one polysulfide (Permlastic Light Body) was accessed by weighing a previously determined mass of each material in water before and after burning samples at 600 ºC, during 3 h. Unsettled material samples were soaked in acetone and chloroform for removal of the organic portion. The remaining filler particles were sputter-coated with gold evaluation of their morphology and size, under scanning electron microscopy (SEM). Flexitime Easy Putty was the material with the highest results for volumetric particle fraction, while Impregum Soft had the lowest values. Silon 2 APS Fluid presented the lowest mean filler size values, while Clonage Putty had the highest values. SEM micrographs of the inorganic particles showed several morphologies - lathe-cut, spherical, spherical-like, sticks, and sticks mixed to lathe-cut powder. The results of this study revealed differences in particle characteristics among the elastometic materials that could lead to different results when testing mechanical properties.

  20. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    Science.gov (United States)

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.