WorldWideScience

Sample records for dense gps receiver

  1. High Gain Advanced GPS Receiver

    National Research Council Canada - National Science Library

    Brown, Alison; Zhang, Gengsheng

    2006-01-01

    NAVSYS High Gain Advanced GPS Receiver (HAGR) uses a digital beam-steering antenna array to enable up to eight GPS satellites to be tracked, each with up to 10 dBi of additional antenna gain over a conventional receiver solution...

  2. goGPS: open source software for enhancing the accuracy of low-cost receivers by single-frequency relative kinematic positioning

    International Nuclear Information System (INIS)

    Realini, Eugenio; Reguzzoni, Mirko

    2013-01-01

    goGPS is a free and open source satellite positioning software package aiming to provide a collaborative platform for research and teaching purposes. It was first published in 2009 and since then several related projects are on-going. Its objective is the investigation of strategies for enhancing the accuracy of low-cost single-frequency GPS receivers, mainly by relative positioning with respect to a base station and by a tailored extended Kalman filter working directly on code and phase observations. In this paper, the positioning algorithms implemented in goGPS are presented, emphasizing the modularity of the software design; two specific strategies to support the navigation with low-cost receivers are also proposed and discussed, namely an empirical observation weighting function calibrated on the receiver signal-to-noise ratio and the inclusion of height information from a digital terrain model as an additional observation in the Kalman filter. The former is crucial when working with high-sensitivity receivers, while the latter can significantly improve the positioning in the vertical direction. The overall goGPS positioning accuracy is assessed by comparison with a dual-frequency receiver and with the positioning computed by a standard low-cost receiver. The benefits of the calibrated weighting function and the digital terrain model are investigated by an experiment in a dense urban environment. It comes out that the use of goGPS and low-cost receivers leads to results comparable with those obtained by higher level receivers; goGPS has good performances also in a dense urban environment, where its additional features play an important role. (paper)

  3. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  4. Single-Receiver GPS Phase Bias Resolution

    Science.gov (United States)

    Bertiger, William I.; Haines, Bruce J.; Weiss, Jan P.; Harvey, Nathaniel E.

    2010-01-01

    Existing software has been modified to yield the benefits of integer fixed double-differenced GPS-phased ambiguities when processing data from a single GPS receiver with no access to any other GPS receiver data. When the double-differenced combination of phase biases can be fixed reliably, a significant improvement in solution accuracy is obtained. This innovation uses a large global set of GPS receivers (40 to 80 receivers) to solve for the GPS satellite orbits and clocks (along with any other parameters). In this process, integer ambiguities are fixed and information on the ambiguity constraints is saved. For each GPS transmitter/receiver pair, the process saves the arc start and stop times, the wide-lane average value for the arc, the standard deviation of the wide lane, and the dual-frequency phase bias after bias fixing for the arc. The second step of the process uses the orbit and clock information, the bias information from the global solution, and only data from the single receiver to resolve double-differenced phase combinations. It is called "resolved" instead of "fixed" because constraints are introduced into the problem with a finite data weight to better account for possible errors. A receiver in orbit has much shorter continuous passes of data than a receiver fixed to the Earth. The method has parameters to account for this. In particular, differences in drifting wide-lane values must be handled differently. The first step of the process is automated, using two JPL software sets, Longarc and Gipsy-Oasis. The resulting orbit/clock and bias information files are posted on anonymous ftp for use by any licensed Gipsy-Oasis user. The second step is implemented in the Gipsy-Oasis executable, gd2p.pl, which automates the entire process, including fetching the information from anonymous ftp

  5. Fundamentals of GPS Receivers A Hardware Approach

    CERN Document Server

    Doberstein, Dan

    2012-01-01

    While much of the current literature on GPS receivers is aimed at those intimately familiar with their workings, this volume summarizes the basic principles using as little mathematics as possible, and details the necessary specifications and circuits for constructing a GPS receiver that is accurate to within 300 meters. Dedicated sections deal with the features of the GPS signal and its data stream, the details of the receiver (using a hybrid design as exemplar), and more advanced receivers and topics including time and frequency measurements. Later segments discuss the Zarlink GPS receiver chip set, as well as providing a thorough examination of the TurboRogue receiver, one of the most accurate yet made. Guiding the reader through the concepts and circuitry, from the antenna to the solution of user position, the book’s deployment of a hybrid receiver as a basis for discussion allows for extrapolation of the core ideas to more complex, and more accurate designs. Digital methods are used, but any analogue c...

  6. Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results

    Science.gov (United States)

    Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.

    The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.

  7. A Pedestrian Dead Reckoning System Integrating Low-Cost MEMS Inertial Sensors and GPS Receiver

    Directory of Open Access Journals (Sweden)

    Jin-feng Li

    2014-04-01

    Full Text Available The body-mounted inertial systems for pedestrian navigation do not require any preinstalled facilities and can run autonomously. The advantages over other technologies make it especially attractive for the applications such as first responders, military and consumer markets. The hardware platform integrating the low-cost, low-power and small-size MEMS (micro-electro-mechanical systems inertial sensors and GPS (global positioning system receiver is proposed. When the satellite signals are available, the location of the pedestrian is directly obtained from the GPS receiver. The inertial sensors are the complement of the GPS receiver in places where the GPS signals are not available, such as indoors, urban canyons and places under dense foliages. The height tracking is achieved by the barometer. The proposed PDR (pedestrian dead reckoning algorithm is real-timely implemented in the platform. The simple but effective step detection and step length estimation method are realized to reduce the computation and memory requirements on the microprocessor. A complementary filter is proposed to fuse the data from the accelerometer, gyroscope and digital compass for decreasing the heading error, which is the main error source in positioning. The reliability and accuracy of the proposed system is verified by field pedestrian walking tests in outdoors and indoors. The positioning error is less than 4% of the total traveled distance. The results indicate that the pedestrian dead reckoning system is able to provide satisfactory tracking performance.

  8. Research in Application of Geodetic GPS Receivers in Time Synchronization

    Science.gov (United States)

    Zhang, Q.; Zhang, P.; Sun, Z.; Wang, F.; Wang, X.

    2018-04-01

    In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV) which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV) is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability) cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns). In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km) were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2-4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even there will be at least

  9. RESEARCH IN APPLICATION OF GEODETIC GPS RECEIVERS IN TIME SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2018-04-01

    Full Text Available In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns. In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2–4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even

  10. 47 CFR 87.151 - Special requirements for differential GPS receivers.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Special requirements for differential GPS receivers. 87.151 Section 87.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... differential GPS receivers. (a) The receiver shall achieve a message failure rate less than or equal to one...

  11. Performance evaluation of GPS receiver under equatorial scintillation

    Directory of Open Access Journals (Sweden)

    Alison de Oliveira Moraes

    2009-06-01

    Full Text Available Equatorial scintillation is a phenomenon that occurs daily in the equatorial region after the sunset and affects radio signals that propagate through the ionosphere. Depending on the temporal and spatial situation, equatorial scintillation can represent a problem in the availability and precision of the Global Positioning System (GPS. This work is concerned with evaluating the impact of equatorial scintillation on the performance of GPS receivers. First, the morphology and statistical model of equatorial scintillation is briefly presented. A numerical model that generates synthetic scintillation data to simulate the effects of equatorial scintillation is presented. An overview of the main theoretical principles on GPS receivers is presented. The analytical models that describe the effects of scintillation at receiver level are presented and compared with numerical simulations using a radio software receiver and synthetic data. The results achieved by simulation agreed quite well with those predicted by the analytical models. The only exception is for links with extreme levels of scintillation and when weak signals are received.

  12. High-precision coseismic displacement estimation with a single-frequency GPS receiver

    Science.gov (United States)

    Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing

    2015-07-01

    To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.

  13. Fast-Acquisition/Weak-Signal-Tracking GPS Receiver for HEO

    Science.gov (United States)

    Wintemitz, Luke; Boegner, Greg; Sirotzky, Steve

    2004-01-01

    A report discusses the technical background and design of the Navigator Global Positioning System (GPS) receiver -- . a radiation-hardened receiver intended for use aboard spacecraft. Navigator is capable of weak signal acquisition and tracking as well as much faster acquisition of strong or weak signals with no a priori knowledge or external aiding. Weak-signal acquisition and tracking enables GPS use in high Earth orbits (HEO), and fast acquisition allows for the receiver to remain without power until needed in any orbit. Signal acquisition and signal tracking are, respectively, the processes of finding and demodulating a signal. Acquisition is the more computationally difficult process. Previous GPS receivers employ the method of sequentially searching the two-dimensional signal parameter space (code phase and Doppler). Navigator exploits properties of the Fourier transform in a massively parallel search for the GPS signal. This method results in far faster acquisition times [in the lab, 12 GPS satellites have been acquired with no a priori knowledge in a Low-Earth-Orbit (LEO) scenario in less than one second]. Modeling has shown that Navigator will be capable of acquiring signals down to 25 dB-Hz, appropriate for HEO missions. Navigator is built using the radiation-hardened ColdFire microprocessor and housing the most computationally intense functions in dedicated field-programmable gate arrays. The high performance of the algorithm and of the receiver as a whole are made possible by optimizing computational efficiency and carefully weighing tradeoffs among the sampling rate, data format, and data-path bit width.

  14. GPS Receivers Use-Case Information : GPS Adjacent Band Compatibility Assessment Workshop

    Science.gov (United States)

    2014-09-18

    Topics 1. Background. 2. Use Case Template. 3. Description of Submitted UseCases from DOT Extended Pos/Nav Working Group. 4. Utilization of UseCase Information. 5. Request of Information for Additional UseCases from GPS Receiver Manufacturer...

  15. Implementation Of Code And Carrier Tracking Loops For Software GPS Receivers

    Directory of Open Access Journals (Sweden)

    Win Kay Khaing

    2015-06-01

    Full Text Available Abstract GPS is playing in very important role in our modern mobile societies. Software approach is very flexible rather than the traditional hardware receivers. The soft-GPS receiver includes two portions hardware and software. In hardware portion an antenna filter down-converter from RF Radio Frequency to IF Intermediate Frequency and an ADC Analog to Digital Converter are included. In software portion signal processing such as acquisition tracking and navigation that runs on general purpose processor is included. The GPS signal is taken from N-FUELS Full Educational Library of Signals for Navigation signal simulator. The heart of soft-GPS receiver is the synchronization processes such as acquisition and tracking. In tracking there are two main loops for code and carrier tracking. The objective of this paper is to analyse and find the optimum discriminator function for the code tracking loop in soft-GPS receivers. The delay lock loop DLL is a well-known technique to track the codes for GNSS spread spectrum systems. This paper also presents non-coherent square law DLLs and the impacts of some parameters on DLL discriminators such as number of samples per chip early-late spacing different C No values where C denotes the signal power and No is the noise spectral density and the impact of with or without front-end device. The results of discriminator outputs are illustrated by using S-curves. Testing results with the real GPS signal are also described. This optimized discriminator functions can be implemented in any soft-GPS receivers.

  16. Analysis of signal acquisition in GPS receiver software

    Directory of Open Access Journals (Sweden)

    Vlada S. Sokolović

    2011-01-01

    Full Text Available This paper presents a critical analysis of the flow signal processing carried out in GPS receiver software, which served as a basis for a critical comparison of different signal processing architectures within the GPS receiver. It is possible to achieve Increased flexibility and reduction of GPS device commercial costs, including those of mobile devices, by using radio technology software (SDR, Software Defined Radio. The SDR application can be realized when certain hardware components in a GPS receiver are replaced. Signal processing in the SDR is implemented using a programmable DSP (Digital Signal Processing or FPGA (Field Programmable Gate Array circuit, which allows a simple change of digital signal processing algorithms and a simple change of the receiver parameters. The starting point of the research is the signal generated on the satellite the structure of which is shown in the paper. Based on the GPS signal structure, a receiver is realized with a task to extract an appropriate signal from the spectrum and detect it. Based on collected navigation data, the receiver calculates the position of the end user. The signal coming from the satellite may be at the carrier frequencies of L1 and L2. Since the SPS is used in the civil service, all the tests shown in the work were performed on the L1 signal. The signal coming to the receiver is generated in the spread spectrum technology and is situated below the level of noise. Such signals often interfere with signals from the environment which presents a difficulty for a receiver to perform proper detection and signal processing. Therefore, signal processing technology is continually being improved, aiming at more accurate and faster signal processing. All tests were carried out on a signal acquired from the satellite using the SE4110 input circuit used for filtering, amplification and signal selection. The samples of the received signal were forwarded to a computer for data post processing, i. e

  17. Multiple Interference Cancellation Performance for GPS Receivers with Dual-Polarized Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Moeness G. Amin

    2008-11-01

    Full Text Available This paper examines the interference cancellation performance in global positioning system (GPS receivers equipped with dual-polarized antenna arrays. In dense jamming environment, different types of interferers can be mitigated by the dual-polarized antennas, either acting individually or in conjunction with other receiver antennas. We apply minimum variance distorntionless response (MVDR method to a uniform circular dual-polarized antenna array. The MVDR beamformer is constructed for each satellite. Analysis of the eigenstructures of the covariance matrix and the corresponding weight vector polarization characteristics are provided. Depending on the number of jammers and jammer polarizations, the array chooses to expend its degrees of freedom to counter the jammer polarization or/and use phase coherence to form jammer spatial nulls. Results of interference cancellations demonstrate that applying multiple MVDR beamformers, each for one satellite, has a superior cancellation performance compared to using only one MVDR beamformer for all satellites in the field of view.

  18. The use of civilian-type GPS receivers by the military and their vulnerability to jamming

    Directory of Open Access Journals (Sweden)

    Ludwig Combrinck

    2012-05-01

    Full Text Available We considered the impact of external influences on a GPS receiver and how these influences affect the capabilities of civilian-type GPS receivers. A standard commercial radio frequency signal generator and passive GPS antenna were used to test the sensitivity of GPS to intentional jamming; the possible effects of the terrain on the propagation of the jamming signal were also tested. It was found that the high sensitivity of GPS receivers and the low strength level of GPS satellite signals combine to make GPS receivers very vulnerable to intentional jamming or unintentional radio frequency interference. Terrain undulation was used to shield GPS antennas from the direct line-of-sight of the jamming antenna and this indicated that terrain characteristics can be used to mitigate the effects of jamming. These results illuminate the vulnerability of civilian-type GPS receivers to the possibility and the ease of disablement and establish the foundation for future work.

  19. Determining of the phase centre of the real position of GPS receiver antenna

    Directory of Open Access Journals (Sweden)

    Eva Pisoňová

    2007-06-01

    Full Text Available By continued improvement of measurement methods producers of GPS (Global Positioning System apparatus will be maybe once upon a time effective to minimize a difference of the phase centre from the geometrical one, because it is probably impossible to make the GPS receiver antenna with zero eccentricity of the phase centre. In the last analysis, we do not prevent from a manufacturing error by any way in eliminate of the possible measurement errors.In the paper there is presented the measurement testing practice with aim of the phase centre real position determining of several in a market available GPS receivers in the paper. Investigation up to what standard the GPS receiver antenna phase centre variation achieves to float in an inaccuracy into GPS measurements. Testing was realized on the temporary testing baseline closely village Badín at Banská Bystrica in the Central Slovak Region. GPS receivers Locus Survey System (Ashtech, ProMark2 (Ashtech were tested.

  20. NavCube: A fully realized modernized GPS receiver

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this IRAD project is to complete the technology development of the modernized Navigator-SpaceCube GPS receiver (named the NavCube), enabling a potential...

  1. Software Defined GPS Receiver for International Space Station

    Science.gov (United States)

    Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee

    2011-01-01

    JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.

  2. Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver

    Science.gov (United States)

    Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.

    2012-01-01

    Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.

  3. Azimuth selection for sea level measurements using geodetic GPS receivers

    Science.gov (United States)

    Wang, Xiaolei; Zhang, Qin; Zhang, Shuangcheng

    2018-03-01

    Based on analysis of Global Positioning System (GPS) multipath signals recorded by a geodetic GPS receiver, GPS Reflectometry (GPS-R) has demonstrated unique advantages in relation to sea level monitoring. Founded on multipath reflectometry theory, sea level changes can be measured by GPS-R through spectral analysis of recorded signal-to-noise ratio data. However, prior to estimating multipath parameters, it is necessary to define azimuth and elevation angle mask to ensure the reflecting zones are on water. Here, a method is presented to address azimuth selection, a topic currently under active development in the field of GPS-R. Data from three test sites: the Kachemak Bay GPS site PBAY in Alaska (USA), Friday Harbor GPS site SC02 in the San Juan Islands (USA), and Brest Harbor GPS site BRST in Brest (France) are analyzed. These sites are located in different multipath environments, from a rural coastal area to a busy harbor, and they experience different tidal ranges. Estimates by the GPS tide gauges at azimuths selected by the presented method are compared with measurements from physical tide gauges and acceptable correspondence found for all three sites.

  4. Signal existence verification (SEV) for GPS low received power signal detection using the time-frequency approach.

    Science.gov (United States)

    Jan, Shau-Shiun; Sun, Chih-Cheng

    2010-01-01

    The detection of low received power of global positioning system (GPS) signals in the signal acquisition process is an important issue for GPS applications. Improving the miss-detection problem of low received power signal is crucial, especially for urban or indoor environments. This paper proposes a signal existence verification (SEV) process to detect and subsequently verify low received power GPS signals. The SEV process is based on the time-frequency representation of GPS signal, and it can capture the characteristic of GPS signal in the time-frequency plane to enhance the GPS signal acquisition performance. Several simulations and experiments are conducted to show the effectiveness of the proposed method for low received power signal detection. The contribution of this work is that the SEV process is an additional scheme to assist the GPS signal acquisition process in low received power signal detection, without changing the original signal acquisition or tracking algorithms.

  5. Global Positioning System (GPS) Receiver Design For Multipaths Mitigation

    National Research Council Canada - National Science Library

    Gadallah, El-Sayed

    1998-01-01

    .... This research introduces a new estimator that can detect the presence of multipath, can determine the unknown number of multipath components and can estimate multipath parameters in the GPS receiver...

  6. Performance Enhancement of Land Vehicle Positioning Using Multiple GPS Receivers in an Urban Area

    Directory of Open Access Journals (Sweden)

    Jong-Hwa Song

    2016-10-01

    Full Text Available The Global Positioning System (GPS is the most widely used navigation system in land vehicle applications. In urban areas, the GPS suffers from insufficient signal strength, multipath propagation and non-line-of-sight (NLOS errors, so it thus becomes difficult to obtain accurate and reliable position information. In this paper, an integration algorithm for multiple receivers is proposed to enhance the positioning performance of GPS for land vehicles in urban areas. The pseudoranges of multiple receivers are integrated based on a tightly coupled approach, and erroneous measurements are detected by testing the closeness of the pseudoranges. In order to fairly compare the pseudoranges, GPS errors and terms arising due to the differences between the positions of the receivers need to be compensated. The double-difference technique is used to eliminate GPS errors in the pseudoranges, and the geometrical distance is corrected by projecting the baseline vector between pairs of receivers. In order to test and analyze the proposed algorithm, an experiment involving live data was performed. The positioning performance of the algorithm was compared with that of the receiver autonomous integrity monitoring (RAIM-based integration algorithm for multiple receivers. The test results showed that the proposed algorithm yields more accurate position information in urban areas.

  7. The impact of GPS receiver modifications and ionospheric activity on Swarm baseline determination

    Science.gov (United States)

    Mao, X.; Visser, P. N. A. M.; van den IJssel, J.

    2018-05-01

    The European Space Agency (ESA) Swarm mission is a satellite constellation launched on 22 November 2013 aiming at observing the Earth geomagnetic field and its temporal variations. The three identical satellites are equipped with high-precision dual-frequency Global Positioning System (GPS) receivers, which make the constellation an ideal test bed for baseline determination. From October 2014 to August 2016, a number of GPS receiver modifications and a new GPS Receiver Independent Exchange Format (RINEX) converter were implemented. Moreover, the on-board GPS receiver performance has been influenced by the ionospheric scintillations. The impact of these factors is assessed for baseline determination of the pendulum formation flying Swarm-A and -C satellites. In total 30 months of data - from 15 July 2014 to the end of 2016 - is analyzed. The assessment includes analysis of observation residuals, success rate of GPS carrier phase ambiguity fixing, a consistency check between the so-called kinematic and reduced-dynamic baseline solution, and validations of orbits by comparing with Satellite Laser Ranging (SLR) observations. External baseline solutions from The German Space Operations Center (GSOC) and Astronomisches Institut - Universität Bern (AIUB) are also included in the comparison. Results indicate that the GPS receiver modifications and RINEX converter changes are effective to improve the baseline determination. This research eventually shows a consistency level of 9.3/4.9/3.0 mm between kinematic and reduced-dynamic baselines in the radial/along-track/cross-track directions. On average 98.3% of the epochs have kinematic solutions. Consistency between TU Delft and external reduced-dynamic baseline solutions is at a level of 1 mm level in all directions.

  8. The use of the AOA TTR-4P GPS receiver in operation at the BIPM for real-time restitution of GPS time

    Science.gov (United States)

    Thomas, Claudine

    1994-01-01

    The Global Positioning System is an outstanding tool for the dissemination of time. Using mono-channel C/A-code GPS time receivers, the restitution of GPS time through the satellite constellation presents a peak-to-peak discrepancy of several tens of nanoseconds without SA but may be as high as several hundreds of nanoseconds with SA. As a consequence, civil users are more and more interested in implementing hardware and software methods for efficient restitution of GPS time, especially in the framework of the project of a real-time prediction of UTC (UTCp) which could be available in the form of time differences (UTCp - GPS time). Previous work, for improving the real-time restitution of GPS time with SA, to the level obtained without SA, focused on the implementation of a Kalman filter based on past data and updated at each new observation. An alternative solution relies upon the statistical features of the noise brought about by SA; it has already been shown that the SA noise is efficiently reduced by averaging data from numerous satellites observed simultaneously over a sufficiently long time. This method was successfully applied to data from a GPS time receiver, model AOA TTR-4P, connected to the cesium clock kept at the BIPM. This device, a multi-channel, dual frequency, P-code GPS time receiver, is one of the first TTR-4P units in operation in a civil laboratory. Preliminary comparative studies of this new equipment with conventional GPS time receivers are described in this paper. The results of an experimental restitution of GPS time, obtained in June 1993, are also detailed: 3 to 6 satellites were observed simultaneously with a sample interval of 15 s, an efficient smoothing of SA noise was realized by averaging data on all observed satellites over more than 1 hour. When the GPS system is complete in 1994, 8 satellites will be observable continuously from anywhere in the world and the same level of uncertainty will be obtained using a shorter averaging

  9. Performance Evaluation of Block Acquisition and Tracking Algorithms Using an Open Source GPS Receiver Platform

    Science.gov (United States)

    Ramachandran, Ganesh K.; Akopian, David; Heckler, Gregory W.; Winternitz, Luke B.

    2011-01-01

    Location technologies have many applications in wireless communications, military and space missions, etc. US Global Positioning System (GPS) and other existing and emerging Global Navigation Satellite Systems (GNSS) are expected to provide accurate location information to enable such applications. While GNSS systems perform very well in strong signal conditions, their operation in many urban, indoor, and space applications is not robust or even impossible due to weak signals and strong distortions. The search for less costly, faster and more sensitive receivers is still in progress. As the research community addresses more and more complicated phenomena there exists a demand on flexible multimode reference receivers, associated SDKs, and development platforms which may accelerate and facilitate the research. One of such concepts is the software GPS/GNSS receiver (GPS SDR) which permits a facilitated access to algorithmic libraries and a possibility to integrate more advanced algorithms without hardware and essential software updates. The GNU-SDR and GPS-SDR open source receiver platforms are such popular examples. This paper evaluates the performance of recently proposed block-corelator techniques for acquisition and tracking of GPS signals using open source GPS-SDR platform.

  10. Military/Civilian Mixed-Mode Global Positioning System (GPS) Receiver (MMGR)

    National Research Council Canada - National Science Library

    Peczalski, Andy; Kriz, Jeff; Carlson, Stephen G; Sampson, Steven J

    2004-01-01

    ... AND T) MMGR objective of meeting pervasive defense system requirements and civilian needs for ultra-small GPS receiver technology is dependent in part upon the creation of multi- L-band reconfigurable...

  11. A New Technique to Observe ENSO Activity via Ground-Based GPS Receivers

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh, Mandeep Singh Jit

    In an attempt to study the effects of global climate change in the tropics for improving global climate model, this paper aims to detect the ENSO events, especially El Nino phase by using ground-based GPS receivers. Precipitable water vapor (PWV) obtained from the Global Positioning System (GPS) Meteorology measurements in line with the sea surface temperature anomaly (SSTa) are used to connect their response to El Niño activity. The data gathered from four selected stations over the Southeast Asia, namely PIMO (Philippines), KUAL (Malaysia), NTUS (Singapore) and BAKO (Indonesia) for the year of 2009/2010 were processed. A strong correlation was observed for PIMO station with a correlation coefficient of -0.90, significantly at the 99 % confidence level. In general, the relationship between GPS PWV and SSTa at all stations on a weekly basis showed with a negative correlation. The negative correlation indicates that during the El Niño event, the PWV variation was in decreased trend. Decreased trend of PWV value is caused by a dry season that affected the GPS signals in the ocean-atmospheric coupling. Based on these promising results, we can propose that the ground-based GPS receiver is capable used to monitor ENSO activity and this is a new prospective method that previously unexplored.

  12. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    Science.gov (United States)

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116

  13. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    Directory of Open Access Journals (Sweden)

    Dennis Akos

    2011-09-01

    Full Text Available Due to their weak received signal power, Global Positioning System (GPS signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs. However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU coupled with a new generation Graphics Processing Unit (GPU having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.

  14. Evaluation of regional ionospheric grid model over China from dense GPS observations

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2016-09-01

    Full Text Available The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content (TEC variations in small scales for China. In this paper, a regional ionospheric grid model (RIGM with high spatial-temporal resolution (0.5° × 0.5° and 10-min interval in China and surrounding areas is established based on spherical harmonics expansion from dense GPS measurements provided by Crustal Movement Observation Network of China (CMONOC and the International GNSS Service (IGS. The correlation coefficient between the estimated TEC from GPS and the ionosonde measurements is 0.97, and the root mean square (RMS with respect to Center for Orbit Determination in Europe (CODE Global Ionosphere Maps (GIMs is 4.87 TECU. In addition, the impact of different spherical harmonics orders and degrees on TEC estimations are evaluated and the degree/order 6 is better. Moreover, effective ionospheric shell heights from 300 km to 700 km are further assessed and the result indicates that 550 km is the most suitable for regional ionospheric modeling in China at solar maximum.

  15. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment

    Science.gov (United States)

    Nilsson, T.; Gradinarsky, L.; Elgered, G.

    2007-10-01

    Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly. We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.

  16. GPS Signal Corruption by the Discrete Aurora: Precise Measurements From the Mahali Experiment

    Science.gov (United States)

    Semeter, Joshua; Mrak, Sebastijan; Hirsch, Michael; Swoboda, John; Akbari, Hassan; Starr, Gregory; Hampton, Don; Erickson, Philip; Lind, Frank; Coster, Anthea; Pankratius, Victor

    2017-10-01

    Measurements from a dense network of GPS receivers have been used to clarify the relationship between substorm auroras and GPS signal corruption as manifested by loss of lock on the received signal. A network of nine receivers was deployed along roadways near the Poker Flat Research Range in central Alaska, with receiver spacing between 15 and 30 km. Instances of large-amplitude phase fluctuations and signal loss of lock were registered in space and time with auroral forms associated with a sequence of westward traveling surges associated with a substorm onset over central Canada. The following conclusions were obtained: (1) The signal corruption originated in the ionospheric E region, between 100 and 150 km altitude, and (2) the GPS links suffering loss of lock were confined to a narrow band (<20 km wide) along the trailing edge of the moving auroral forms. The results are discussed in the context of mechanisms typically cited to account for GPS phase scintillation by auroral processes.

  17. GPS data processing of networks with mixed single- and dual-frequency receivers for deformation monitoring

    Science.gov (United States)

    Zou, X.; Deng, Z.; Ge, M.; Dick, G.; Jiang, W.; Liu, J.

    2010-07-01

    In order to obtain crustal deformations of higher spatial resolution, existing GPS networks must be densified. This densification can be carried out using single-frequency receivers at moderate costs. However, ionospheric delay handling is required in the data processing. We adapt the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) for GPS networks with mixed single- and dual-frequency receivers. The SEID model is modified to utilize the observations from the three nearest dual-frequency reference stations in order to avoid contaminations from more remote stations. As data of only three stations are used, an efficient missing data constructing approach with polynomial fitting is implemented to minimize data losses. Data from large scale reference networks extended with single-frequency receivers can now be processed, based on the adapted SEID model. A new data processing scheme is developed in order to make use of existing GPS data processing software packages without any modifications. This processing scheme is evaluated using a sub-network of the German SAPOS network. The results verify that the new scheme provides an efficient way to densify existing GPS networks with single-frequency receivers.

  18. Performance Enhancement of Land Vehicle Positioning Using Multiple GPS Receivers in an Urban Area

    OpenAIRE

    Song, Jong-Hwa; Jee, Gyu-In

    2016-01-01

    The Global Positioning System (GPS) is the most widely used navigation system in land vehicle applications. In urban areas, the GPS suffers from insufficient signal strength, multipath propagation and non-line-of-sight (NLOS) errors, so it thus becomes difficult to obtain accurate and reliable position information. In this paper, an integration algorithm for multiple receivers is proposed to enhance the positioning performance of GPS for land vehicles in urban areas. The pseudoranges of multi...

  19. Precise orbit determination for the shuttle radar topography mission using a new generation of GPS receiver

    Science.gov (United States)

    Bertiger, W.; Bar-Sever, Y.; Desai, S.; Duncan, C.; Haines, B.; Kuang, D.; Lough, M.; Reichert, A.; Romans, L.; Srinivasan, J.; hide

    2000-01-01

    The BlackJack family of GPS receivers has been developed at JPL to satisfy NASA's requirements for high-accuracy, dual-frequency, Y-codeless GPS receivers for NASA's Earth science missions. In this paper we will present the challenges that were overcome to meet this accuracy requirement. We will discuss the various reduced dynamic strategies, Space Shuttle dynamic models, and our tests for accuracy that included a military Y-code dual-frequency receiver (MAGR).

  20. Frequency-Locked Detector Threshold Setting Criteria Based on Mean-Time-To-Lose-Lock (MTLL) for GPS Receivers.

    Science.gov (United States)

    Jin, Tian; Yuan, Heliang; Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa

    2017-12-04

    Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio ( C / N ₀) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C / N ₀ can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis.

  1. Dynamic strain and rotation ground motions of the 2011 Tohoku earthquake from dense high-rate GPS observations in Taiwan

    Science.gov (United States)

    Huang, B. S.; Rau, R. J.; Lin, C. J.; Kuo, L. C.

    2017-12-01

    Seismic waves generated by the 2011 Mw 9.0 Tohoku, Japan earthquake were well recorded by continuous GPS in Taiwan. Those GPS were operated in one hertz sampling rate and densely distributed in Taiwan Island. Those continuous GPS observations and the precise point positioning technique provide an opportunity to estimate spatial derivatives from absolute ground motions of this giant teleseismic event. In this study, we process and investigate more than one and half hundred high-rate GPS displacements and its spatial derivatives, thus strain and rotations, to compare to broadband seismic and rotational sensor observations. It is shown that continuous GPS observations are highly consistent with broadband seismic observations during its surface waves across Taiwan Island. Several standard Geodesy and seismic array analysis techniques for spatial gradients have been applied to those continuous GPS time series to determine its dynamic strain and rotation time histories. Results show that those derivate GPS vertical axis ground rotations are consistent to seismic array determined rotations. However, vertical rotation-rate observations from the R1 rotational sensors have low resolutions and could not compared with GPS observations for this special event. For its dese spatial distribution of GPS stations in Taiwan Island, not only wavefield gradient time histories at individual site was obtained but also 2-D spatial ground motion fields were determined in this study also. In this study, we will report the analyzed results of those spatial gradient wavefields of the 2011 Tohoku earthquake across Taiwan Island and discuss its geological implications.

  2. Current Direction and Velocity Measurements Using GPS Receivers Mounted on Floats at Tom Bevill Lock and Dam

    Science.gov (United States)

    2002-12-01

    radio and batteries. The procedures outlined in this CHETN will concentrate on the Magellan GPS ProMARK X-CP receiver as it was used to collect...The Magellan GPS ProMARK X-CP is a small robust light receiver that can log 9 hr of both pseudorange and carrier phase satellite data for post...post- processing software, pseudorange GPS data recorded by the ProMARK X-CP can be post-processed differential to achieve 1-3 m (3.3-9.8 ft) horizontal

  3. Real-time GPS seismology using a single receiver: method comparison, error analysis and precision validation

    Science.gov (United States)

    Li, Xingxing

    2014-05-01

    Earthquake monitoring and early warning system for hazard assessment and mitigation has traditional been based on seismic instruments. However, for large seismic events, it is difficult for traditional seismic instruments to produce accurate and reliable displacements because of the saturation of broadband seismometers and problematic integration of strong-motion data. Compared with the traditional seismic instruments, GPS can measure arbitrarily large dynamic displacements without saturation, making them particularly valuable in case of large earthquakes and tsunamis. GPS relative positioning approach is usually adopted to estimate seismic displacements since centimeter-level accuracy can be achieved in real-time by processing double-differenced carrier-phase observables. However, relative positioning method requires a local reference station, which might itself be displaced during a large seismic event, resulting in misleading GPS analysis results. Meanwhile, the relative/network approach is time-consuming, particularly difficult for the simultaneous and real-time analysis of GPS data from hundreds or thousands of ground stations. In recent years, several single-receiver approaches for real-time GPS seismology, which can overcome the reference station problem of the relative positioning approach, have been successfully developed and applied to GPS seismology. One available method is real-time precise point positioning (PPP) relied on precise satellite orbit and clock products. However, real-time PPP needs a long (re)convergence period, of about thirty minutes, to resolve integer phase ambiguities and achieve centimeter-level accuracy. In comparison with PPP, Colosimo et al. (2011) proposed a variometric approach to determine the change of position between two adjacent epochs, and then displacements are obtained by a single integration of the delta positions. This approach does not suffer from convergence process, but the single integration from delta positions to

  4. Selection of the signal synchronization method in software GPS receivers

    Directory of Open Access Journals (Sweden)

    Vlada S. Sokolović

    2011-04-01

    Full Text Available Introduction This paper presents a critical analysis of the signal processing flow carried out in a software GPS receiver and a critical comparison of different architectures for signal processing within the GPS receiver. A model of software receivers is shown. Based on the displayed model, a receiver has been realized in the MATLAB software package, in which the simulations of signal processing were carried out. The aim of this paper is to demonstrate the advantages and disadvantages of different methods of the synchronization of signals in the receiver, and to propose a solution acceptable for possible implementation. The signal processing flow was observed from the input circuit to the extraction of the bits of the navigation message. The entire signal processing was performed on the L1 signal and the data collected by the input circuit SE4110. A radio signal from the satellite was accepted with the input circuit, filtered and translated into a digital form. The input circuit ends with the hardware of the receiver. A digital signal from the input circuit is brought into the PC Pentium 4 (AMD 3000 + where the receiver is realized in Matlab. Model of software GPS receiver The first level of processing is signal acquisition. Signal acquisition was realized using the cyclic convolution. The acquisition process was carried out by measuring signals from satellites, and these parameters are passed to the next level of processing. The next level was done by monitoring the synchronization signal and extracting the navigation message bits. On the basis of the detection of the navigation message the receiver calculates the position of a satellite and then, based on the position of the satellite, its own position. Tracking of GPS signal synchronization In order to select the most acceptable method of signal synchronization in the receiver, different methods of signal synchronization are compared. The early-late-DLL (Delay Lock Loop, TDL (Tau Dither Loop

  5. Performance Analysis of Low-Cost Single-Frequency GPS Receivers in Hydrographic Surveying

    Science.gov (United States)

    Elsobeiey, M.

    2017-10-01

    The International Hydrographic Organization (IHO) has issued standards that provide the minimum requirements for different types of hydrographic surveys execution to collect data to be used to compile navigational charts. Such standards are usually updated from time to time to reflect new survey techniques and practices and must be achieved to assure both surface navigation safety and marine environment protection. Hydrographic surveys can be classified to four orders namely, special order, order 1a, order 1b, and order 2. The order of hydrographic surveys to use should be determined in accordance with the importance to the safety of navigation in the surveyed area. Typically, geodetic-grade dual-frequency GPS receivers are utilized for position determination during data collection in hydrographic surveys. However, with the evolution of high-sensitivity low-cost single-frequency receivers, it is very important to evaluate the performance of such receivers. This paper investigates the performance of low-cost single-frequency GPS receivers in hydrographic surveying applications. The main objective is to examine whether low-cost single-frequency receivers fulfil the IHO standards for hydrographic surveys. It is shown that the low-cost single-frequency receivers meet the IHO horizontal accuracy for all hydrographic surveys orders at any depth. However, the single-frequency receivers meet only order 2 requirements for vertical accuracy at depth more than or equal 100 m.

  6. Analysis of the altitudinal structure of Storm-enhanced density using Total Electron Content data of space-borne and ground-based GPS receivers

    Directory of Open Access Journals (Sweden)

    Yukari Goi

    2013-11-01

    Full Text Available The altitudinal structure of Storm-enhanced density (SED was studied using the Total Electron Content (TEC data of the GPS receiver on the Gravity Recovery and Climate Experiment (GRACE satellite and the ground-based GPS receivers. The GRACETEC-data are derived from the GPS receiver on the GRACE satellite. A SED is a high-electron density phenomenon that extends from the Equatorial Ionization Anomaly (EIA toward the north-west in the northern hemisphere during geomagnetic disturbed time. TwoSEDs were observed as TEC variations in the GRACE-TEC data and in the ground-GPS TEC data. The ground-GPS TEC data is the TEC data between the ground GPS receiver and the GPS satellites. The SED observed in the GRACE-TEC data appeared at higher latitudes than that in the ground-GPS TEC data. We concluded detected that the altitudinal structure of the SED would be different between at lower than at higher latitudes due to the effects of the eastward E×B drift.

  7. Determination of global positioning system (GPS) receiver clock errors: impact on positioning accuracy

    International Nuclear Information System (INIS)

    Yeh, Ta-Kang; Hwang, Cheinway; Xu, Guochang; Wang, Chuan-Sheng; Lee, Chien-Chih

    2009-01-01

    Enhancing the positioning precision is the primary pursuit of global positioning system (GPS) users. To achieve this goal, most studies have focused on the relationship between GPS receiver clock errors and GPS positioning precision. This study utilizes undifferentiated phase data to calculate GPS clock errors and to compare with the frequency of cesium clock directly, to verify estimated clock errors by the method used in this paper. The frequency stability calculated from this paper (the indirect method) and measured from the National Standard Time and Frequency Laboratory (NSTFL) of Taiwan (the direct method) match to 1.5 × 10 −12 (the value from this study was smaller than that from NSTFL), suggesting that the proposed technique has reached a certain level of quality. The built-in quartz clocks in the GPS receivers yield relative frequency offsets that are 3–4 orders higher than those of rubidium clocks. The frequency stability of the quartz clocks is on average two orders worse than that of the rubidium clock. Using the rubidium clock instead of the quartz clock, the horizontal and vertical positioning accuracies were improved by 26–78% (0.6–3.6 mm) and 20–34% (1.3–3.0 mm), respectively, for a short baseline. These improvements are 7–25% (0.3–1.7 mm) and 11% (1.7 mm) for a long baseline. Our experiments show that the frequency stability of the clock, rather than relative frequency offset, is the governing factor of positioning accuracy

  8. FAA aircraft certification human factors and operations checklist for standalone GPS receivers (TSO C129 Class A)

    Science.gov (United States)

    1995-04-01

    This document is a checklist designed to assist Federal Aviation Administration(FAA) certification personnel and global : positioning system (GPS) receiver manufacturers in the evaluation of the pilot-system interface characteristlcs of GPS : recieve...

  9. Low-cost digital GPS receiver with software carrier detection

    Science.gov (United States)

    Wolf, M. H.

    1988-08-01

    The satellite navigation system global positioning system (GPS) will play a major role in the field of navigation. It will be able to compete with all previously existing radio navigation systems. Low-cost receivers will be built for a number of civilian users, such as general aviation, sea and land navigation. To permit production at low cost for the civil market, a new technique for a C/A (course and acquisition) code receiver has been developed. All the signal detecting and processing is carried out with the digital signal processing software in a Texas Instruments TMS 320C10. The advantage of this method is that complex functions can be effected in a computer program instead of in analog or digital circuits. This reduces the costs of the parts used in the receiver and also avoids calibration. Taken together, these two features greatly reduce the price of a navigation set. This paper discusses the underlying principles leading to this new receiver.

  10. Application and Optimization of Kalman Filter for Baseband Signal Processing of GPS Receivers

    Directory of Open Access Journals (Sweden)

    He Yanpin

    2016-01-01

    Full Text Available High sensitivity tracking in GPS receiver is required in many weak signal circumstances. The key of improving sensitivity is the optimization of the loop filter in tracking. As Kalman filter is the most optimized linear filter, it is used in many engineering fields. This article introduced the application of Kalman filter as the loop filter of the carrier tracking loop in GPS receiver, to improve tracking sensitivity. The traditional loop filter is replaced. Simulation results show that the new structure improves the tracking sensitivity by 6dB and can make the tracking loop more robust when the navigation signal is languishing. The optimization of theKalman filter is also analysed, which further improves the sensitivity by 4dB.

  11. Determining of the phase centre of the real position of GPS receiver antenna

    OpenAIRE

    Eva Pisoňová; Jozef Ornth; Vladimír Sedlák

    2007-01-01

    By continued improvement of measurement methods producers of GPS (Global Positioning System) apparatus will be maybe once upon a time effective to minimize a difference of the phase centre from the geometrical one, because it is probably impossible to make the GPS receiver antenna with zero eccentricity of the phase centre. In the last analysis, we do not prevent from a manufacturing error by any way in eliminate of the possible measurement errors.In the paper there is presented the measureme...

  12. In-flight performance analysis of MEMS GPS receiver and its application to precise orbit determination of APOD-A satellite

    Science.gov (United States)

    Gu, Defeng; Liu, Ye; Yi, Bin; Cao, Jianfeng; Li, Xie

    2017-12-01

    An experimental satellite mission termed atmospheric density detection and precise orbit determination (APOD) was developed by China and launched on 20 September 2015. The micro-electro-mechanical system (MEMS) GPS receiver provides the basis for precise orbit determination (POD) within the range of a few decimetres. The in-flight performance of the MEMS GPS receiver was assessed. The average number of tracked GPS satellites is 10.7. However, only 5.1 GPS satellites are available for dual-frequency navigation because of the loss of many L2 observations at low elevations. The variations in the multipath error for C1 and P2 were estimated, and the maximum multipath error could reach up to 0.8 m. The average code noises are 0.28 m (C1) and 0.69 m (P2). Using the MEMS GPS receiver, the orbit of the APOD nanosatellite (APOD-A) was precisely determined. Two types of orbit solutions are proposed: a dual-frequency solution and a single-frequency solution. The antenna phase center variations (PCVs) and code residual variations (CRVs) were estimated, and the maximum value of the PCVs is 4.0 cm. After correcting the antenna PCVs and CRVs, the final orbit precision for the dual-frequency and single-frequency solutions were 7.71 cm and 12.91 cm, respectively, validated using the satellite laser ranging (SLR) data, which were significantly improved by 3.35 cm and 25.25 cm. The average RMS of the 6-h overlap differences in the dual-frequency solution between two consecutive days in three dimensions (3D) is 4.59 cm. The MEMS GPS receiver is the Chinese indigenous onboard receiver, which was successfully used in the POD of a nanosatellite. This study has important reference value for improving the MEMS GPS receiver and its application in other low Earth orbit (LEO) nanosatellites.

  13. Gps monitoring of the la valette landslide (french alps) with two mono-frequency receivers

    Science.gov (United States)

    Squarzoni, C.; Delacourt, C.; Allemand, P.

    2003-04-01

    In the last years, the Global Positioning System techniques have been more and more employed in landslide monitoring. Here we present an application of the GPS techniques on the La Valette landslide, located in the Ubaye Valley in the southern French Alps. This complex landslide is composed by an upper part affected essentially by rotational mechanism, a central part with a generally translational movement and a lower part, occasionally transforming in mud flow in coincidence with strong rainfall events. Displacement rates are in average of a few centimetres per month and can reach one centimetre per day during spring. GPS data presented in this study have been acquired with a couple of mono-frequency GPS receivers Magellan ProMARK X-CM associated with multipath-resistant antennas and processed with the Magellan post-processing software MSTAR. Nine points have been set in the whole zone, seven of them in the moving area, one in a stable area near the landslide and one on the facing slope, used as reference point. For each measure, one GPS receiver is placed on the base point and the second one is placed on each monitored point for one-hour sessions. The baseline between base and monitored point ranges from 480 and 1660 m. Nine campaigns of measure have been made between October 2000 and October 2002, to follow the evolution of the surface displacements. The GPS results have been compared with the distance-meter measurements achieved on the same site by RTM Service (Restauration des Terrains de Montagne). The velocities obtained by the two methods are similar. The advantage of the GPS technique is the obtention of the real 3D displacement vector. These measurements have been combined with SAR interferometric data in order to derive a 3D map of the deformation.

  14. Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area

    Directory of Open Access Journals (Sweden)

    Krzysztof Bikonis

    2013-09-01

    Full Text Available The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS is still relatively poor due to the large inertial sensor errors. The complementary features of GPS and INS are the main reasons why integrated GPS/INS systems are becoming increasingly popular. GPS/INS systems offer a high data rate, high accuracy position and orientation that can work in all environments, particularly those where satellite availability is restricted. In the paper integration algorithm of GPS and INS systems data for pedestrians in urban area is presented. For data integration an Extended Kalman Filter (EKF algorithm is proposed. Complementary characteristics of GPS and INS with EKF can overcome the problem of huge INS drifts, GPS outages, dense multipath effect and other individual problems associated with these sensors.

  15. Pre- and post-flight radiation performance evaluation of the space GPS receiver (SGR)

    International Nuclear Information System (INIS)

    Oldfield, M.K.; Underwood, C.I.; Unwin, M.J.; Asenek, V.; Harboe-Sorensen, R.

    1999-01-01

    SSTL (Survey Satellite Technology Ltd), in collaboration with ESA/ESTEC, recently developed a state-of-the-art low cost GPS (Global Positioning System) receiver payload for use on small satellites. The space GPS Receiver (SGR), will be flown on the TiungSAT-1 micro-satellite, UoSAT-12 mini-satellite and ESA's PROBA satellite. The SGR payload is currently flying on the TMSAT micro-satellite in low Earth orbit (LEO) and has carried out autonomous on-board positioning whilst also providing an experimental test-bed for evaluating spacecraft attitude determination algorithms. In order to reduce development time and costs, the SGR consists solely of industry standard COTS (commercial off-the-shelf) devices. This paper describes the ground-based radiation testing of several payload-critical COTS devices used in the SGR payload and describes its on-orbit performance. (authors)

  16. A statistical study of GPS loss of lock caused by ionospheric disturbances

    Science.gov (United States)

    Tsugawa, T.; Nishioka, M.; Otsuka, Y.; Saito, A.; Kato, H.; Kubota, M.; Nagatsuma, T.; Murata, K. T.

    2010-12-01

    Two-dimensional total electron content (TEC) maps have been derived from ground-based GPS receiver networks and applied to studies of various ionospheric disturbances since mid-1990s. For the purpose of monitoring and researching ionospheric disturbances which can degrade GNSS navigations and cause loss-of-lock on GNSS signals, National Institute of Information and Communications Technology (NICT), Japan has developed TEC maps over Japan using the dense GPS network, GEONET, which consists of more than 1,200 GPS receivers and is operated by Geophysical Survey Institute, Japan. Currently, we are providing two-dimensional maps of absolute TEC, detrended TEC with 60, 30, 15-minute window, rate of TEC change index (ROTI), and loss-of-lock (LOL) on GPS signal over Japan. These data and quick-look maps since 1997 are archived and available in the website of NICT (http://wdc.nict.go.jp/IONO/). Recently developed GPS receiver networks in North America and Europe make it possible to obtain regional TEC maps with higher spatial and temporal resolution than the global weighted mean TEC maps in the IONEX format provided by several institutes such as International GNSS Service (IGS) and another global TEC map provided by MIT Haystack observatory. Recently, we have also developed the regional TEC maps over North America and Europe. These data and quick-look maps are also available in the NICT website. In this presentation, we will show some severe ionospheric events such as high latitude storm-time plasma bubbles and storm enhanced density events observed over Japan using the GPS-TEC database. These events cause loss-of-lock of GPS signals and large GPS positioning errors. We also discuss about the statistical characteristics of LOL on the GPS signal caused by ionospheric disturbances.

  17. GPS Water Vapor Tomography Based on Accurate Estimations of the GPS Tropospheric Parameters

    Science.gov (United States)

    Champollion, C.; Masson, F.; Bock, O.; Bouin, M.; Walpersdorf, A.; Doerflinger, E.; van Baelen, J.; Brenot, H.

    2003-12-01

    The Global Positioning System (GPS) is now a common technique for the retrieval of zenithal integrated water vapor (IWV). Further applications in meteorology need also slant integrated water vapor (SIWV) which allow to precisely define the high variability of tropospheric water vapor at different temporal and spatial scales. Only precise estimations of IWV and horizontal gradients allow the estimation of accurate SIWV. We present studies developed to improve the estimation of tropospheric water vapor from GPS data. Results are obtained from several field experiments (MAP, ESCOMPTE, OHM-CV, IHOP, .). First IWV are estimated using different GPS processing strategies and results are compared to radiosondes. The role of the reference frame and the a priori constraints on the coordinates of the fiducial and local stations is generally underestimated. It seems to be of first order in the estimation of the IWV. Second we validate the estimated horizontal gradients comparing zenith delay gradients and single site gradients. IWV, gradients and post-fit residuals are used to construct slant integrated water delays. Validation of the SIWV is under progress comparing GPS SIWV, Lidar measurements and high resolution meteorological models (Meso-NH). A careful analysis of the post-fit residuals is needed to separate tropospheric signal from multipaths. The slant tropospheric delays are used to study the 3D heterogeneity of the troposphere. We develop a tomographic software to model the three-dimensional distribution of the tropospheric water vapor from GPS data. The software is applied to the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers operated in southern France. Three inversions have been successfully compared to three successive radiosonde launches. Good resolution is obtained up to heights of 3000 m.

  18. A comparison between TEC obtained by the TOPEX/Poseidon borne GPS receiver and TEC from the Gallagher model

    International Nuclear Information System (INIS)

    Ciraolo, L.

    2003-01-01

    JPL archived RINEX files relative to the GPS receiver of TOPEX at the site bodhi.jplnasa.gov/pub/topex/rinex for years 1992, 1993, 1994, 1995, 1997. The GPS receiver on board was intended as a tool for precise orbitography, but from such data it is possible to extract Differential Phase and Group Delays providing with a biased estimate of slant Total Electron Content (TEC) from TOPEX to GPS. This means a very useful information about TEC in an area above 1340 up to 20000 km, or high topside and plasmasphere. It was possible to get some estimate of the minimum magnitude of slants that can be observed in such region. A comparison with slants obtained by the Gallagher was carried out, with interesting results

  19. A comparison between TEC obtained by the TOPEX/Poseidon borne GPS receiver and TEC from the Gallagher model

    CERN Document Server

    Ciraolo, L

    2002-01-01

    JPL archived RINEX files relative to the GPS receiver of TOPEX at the site bodhi.jplnasa.gov/pub/topex/rinex for years 1992, 1993, 1994, 1995, 1997. The GPS receiver on board was intended as a tool for precise orbitography, but from such data it is possible to extract Differential Phase and Group Delays providing with a biased estimate of slant Total Electron Content (TEC) from TOPEX to GPS. This means a very useful information about TEC in an area above 1340 up to 20000 km, or high topside and plasmasphere. It was possible to get some estimate of the minimum magnitude of slants that can be observed in such region. A comparison with slants obtained by the Gallagher was carried out, with interesting results.

  20. GPS water vapor project associated to the ESCOMPTE programme: description and first results of the field experiment

    Science.gov (United States)

    Bock, O.; Doerflinger, E.; Masson, F.; Walpersdorf, A.; Van-Baelen, J.; Tarniewicz, J.; Troller, M.; Somieski, A.; Geiger, A.; Bürki, B.

    A dense network of 17 dual frequency GPS receivers has been operated for two weeks during June 2001 within a 20 km × 20 km area around Marseille, France, as part of the ESCOMPTE field campaign ([Cros et al., 2004. The ESCOMPTE program: an overview. Atmos. Res. 69, 241-279]; http://medias.obs-mip.fr/escompte). The goal of this GPS experiment was to provide GPS data allowing for tomographic inversions and their validation within a well-documented observing period (the ESCOMPTE campaign). Simultaneous water vapor radiometer, solar spectrometer, Raman lidar and radiosonde data are used for comparison and validation. In this paper, we highlight the motivation, issues and describe the GPS field experiment. Some first results of integrated water vapor retrievals from GPS and the other sensing techniques are presented. The strategies for GPS data processing and tomographic inversions are discussed.

  1. Error and Performance Analysis of MEMS-based Inertial Sensors with a Low-cost GPS Receiver

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2008-03-01

    Full Text Available Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS, have been widely utilized and their applications are becoming popular, not only in military or commercial applications, but also for everyday life. Although GPS measurements are the essential information for currently developed land vehicle navigation systems (LVNS, GPS signals are often unavailable or unreliable due to signal blockages under certain environments such as urban canyons. This situation must be compensated in order to provide continuous navigation solutions. To overcome the problems of unavailability and unreliability using GPS and to be cost and size effective as well, Micro Electro Mechanical Systems (MEMS based inertial sensor technology has been pushing for the development of low-cost integrated navigation systems for land vehicle navigation and guidance applications. This paper will analyze the characterization of MEMS based inertial sensors and the performance of an integrated system prototype of MEMS based inertial sensors, a low-cost GPS receiver and a digital compass. The influence of the stochastic variation of sensors will be assessed and modeled by two different methods, namely Gauss-Markov (GM and AutoRegressive (AR models, with GPS signal blockage of different lengths. Numerical results from kinematic testing have been used to assess the performance of different modeling schemes.

  2. Stability Analysis of Receiver ISB for BDS/GPS

    Science.gov (United States)

    Zhang, H.; Hao, J. M.; Tian, Y. G.; Yu, H. L.; Zhou, Y. L.

    2017-07-01

    Stability analysis of receiver ISB (Inter-System Bias) is essential for understanding the feature of ISB as well as the ISB modeling and prediction. In order to analyze the long-term stability of ISB, the data from MGEX (Multi-GNSS Experiment) covering 3 weeks, which are from 2014, 2015 and 2016 respectively, are processed with the precise satellite clock and orbit products provided by Wuhan University and GeoForschungsZentrum (GFZ). Using the ISB calculated by BDS (BeiDou Navigation Satellite System)/GPS (Global Positioning System) combined PPP (Precise Point Positioning), the daily stability and weekly stability of ISB are investigated. The experimental results show that the diurnal variation of ISB is stable, and the average of daily standard deviation is about 0.5 ns. The weekly averages and standard deviations of ISB vary greatly in different years. The weekly averages of ISB are relevant to receiver types. There is a system bias between ISB calculated from the precise products provided by Wuhan University and GFZ. In addition, the system bias of the weekly average ISB of different stations is consistent with each other.

  3. Evaluation of the use of low-cost GPS receivers in the autonomous guidance of agricultural tractors

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Garcia, S.; Gomez-Gil, J.; Arribas, J. I.

    2011-07-01

    This paper evaluates the use of low-cost global positioning system (GPS) receivers in the autonomous guidance of agricultural tractors. An autonomous guidance system was installed in a 6400 John Deere agricultural tractor. A low cost GPS receiver was used as positioning sensor. Three different control laws were implemented in order to evaluate the autonomous guidance of the tractor with the low-cost receiver. The guidance was experimentally tested with the tracking of straight trajectories and with the step response. The total guidance error was obtained from the receiver accuracy and from the guidance error. For the evaluation of the receivers accuracy, positioning data from several low cost receivers were recorded and analyzed. For the evaluation of the guidance error, tests were performed with each control law at three different speeds. The conclusions obtained were that relative accuracy of low-cost receivers decreases with the time; that for an interval lower than 15 min, the error usually remains below 1 m; that all the control laws have a similar behavior and it is conditioned by the control law adjustment; that automatic guidance with low cost receivers is possible with speeds that went up to 9 km h{sup -}1; and finally, that the total error in the guidance is mainly determined by the receivers accuracy. (Author) 46 refs.

  4. Statistical characteristics of L1 carrier phase observations from four low-cost GPS receivers

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2010-01-01

    Statistical properties of L1 carrier phase observations from four low-cost GPS receivers are investigated through a case study. The observations are collected on a zero baseline with a frequency of 1 Hz and processed with a double difference model. The carrier phase residuals from an ambiguity...

  5. GPS receivers for georeferencing of spatial variability of soil attributes Receptores GPS para georreferenciamento da variabilidade espacial de atributos do solo

    Directory of Open Access Journals (Sweden)

    David L Rosalen

    2011-12-01

    Full Text Available The characterization of the spatial variability of soil attributes is essential to support agricultural practices in a sustainable manner. The use of geostatistics to characterize spatial variability of these attributes, such as soil resistance to penetration (RP and gravimetric soil moisture (GM is now usual practice in precision agriculture. The result of geostatistical analysis is dependent on the sample density and other factors according to the georeferencing methodology used. Thus, this study aimed to compare two methods of georeferencing to characterize the spatial variability of RP and GM as well as the spatial correlation of these variables. Sampling grid of 60 points spaced 20 m was used. For RP measurements, an electronic penetrometer was used and to determine the GM, a Dutch auger (0.0-0.1 m depth was used. The samples were georeferenced using a GPS navigation receiver, Simple Point Positioning (SPP with navigation GPS receiver, and Semi-Kinematic Relative Positioning (SKRP with an L1 geodetic GPS receiver. The results indicated that the georeferencing conducted by PPS did not affect the characterization of spatial variability of RP or GM, neither the spatial structure relationship of these attributes.A caracterização da variabilidade espacial dos atributos do solo é indispensável para subsidiar práticas agrícolas de maneira sustentável. A utilização da geoestatística para caracterizar a variabilidade espacial desses atributos, como a resistência mecânica do solo à penetração (RP e a umidade gravimétrica do solo (UG, é, hoje, prática usual na agricultura de precisão. O resultado da análise geoestatística é dependente da densidade amostral e de outros fatores, como o método de georreferencimento utilizado. Desta forma, o presente trabalho teve como objetivo comparar dois métodos de georreferenciamento para a caracterização da variabilidade espacial da RP e da UG, bem como a correlação espacial dessas vari

  6. A low-power CMOS frequency synthesizer for GPS receivers

    International Nuclear Information System (INIS)

    Yu Yunfeng; Xiao Shimao; Zhuang Haixiao; Ma Chengyan; Ye Tianchun; Yue Jianlian

    2010-01-01

    A low-power frequency synthesizer for GPS/Galileo L1/E1 band receivers implemented in a 0.18 μm CMOS process is introduced. By adding clock-controlled transistors at latch outputs to reduce the time constant at sensing time, the working frequency of the high-speed source-coupled logic prescaler supplying quadrature local oscillator signals has been increased, compared with traditional prescalers. Measurement results show that this synthesizer achieves an in-band phase noise of -87 dBc/Hz at 15 kHz offset, with spurs less than -65 dBc. The whole synthesizer consumes 6 mA in the case of a 1.8 V supply, and its core area is 0.6 mm 2 . (semiconductor integrated circuits)

  7. Comparação de três receptores GPS para uso em agricultura de precisão Comparison of three GPS receiver for precision agriculture uses

    Directory of Open Access Journals (Sweden)

    Marcelo C. C. Stabile

    2006-04-01

    Full Text Available Diversos equipamentos que se utilizam dos sinais transmitidos pelo Sistema de Posicionamento Global (GPS têm sido empregados na Agricultura de Precisão. Neste estudo, foi feita uma comparação de três receptores comerciais no intuito de verificar suas acurácias. As principais qualidades medidas foram a repetibilidade dos dados e a estabilidade do sistema. O estudo foi conduzido em campo aberto, na área experimental da ESALQ/USP, com três linhas paralelas de 50 m espaçadas 10 m entre si. A coleta de dados foi feita no dia 25-9-2002, totalizando seis repetições da comparação dos três sistemas. Os dados foram coletados simultaneamente, de acordo com a melhor configuração da constelação de satélites, sendo que os três sistemas apresentaram resultados distintos. O GPS "A" (oito canais, sem correção diferencial apresentou a maior variabilidade e a menor repetibilidade, com desvios de quase 10 m numa mesma linha. O sistema "B", com sinal de correção diferencial (DGPS "B", 12 canais, apresentou acurácia superior ao "A", com desvios de, no máximo, 6 m, mas com repetibilidade significativa. O GPS "C" (12 canais, com algoritmo otimizado apresentou a maior acurácia e desvio máximo de 2 m. Assim, os dois últimos sistemas são adequados para a aplicação dos conceitos da Agricultura de Precisão.Several brands of equipment have been used with global positioning systems (GPS in Precision Agriculture. The quality of these different receivers varies according to their capabilities in terms of accuracy and repeatability. In this study, three commercial systems were tested to compare their accuracies. This study focused on measuring the stability of the receiver and the repeatability of data. The study was conducted in the experimental area of ESALQ/USP. It consisted of three parallel 50-meter lines spaced 10 meters apart. Data collection was done on 9-25-2002 with a total of six replications. Data was collected simultaneously and the

  8. GPS/INS Sensor Fusion Using GPS Wind up Model

    Science.gov (United States)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  9. An Analysis of Stand-alone GPS Quality and Simulated GNSS Quality for Road Pricing

    DEFF Research Database (Denmark)

    Zabic, Martina; Nielsen, Otto Anker

    2006-01-01

    Use of GPS for road pricing has often been suggested as the way of creating more efficient charging strategies than existing systems based on cordon lines or time use. In Denmark, Copenhagen participated with the AKTA project in the PRoGRESS programme, sponsored by the EU. The major part...... of the AKTA project was to equip 500 cars with GPS receivers. The paper presents the methods and results from a study of GPS quality in relation to road pricing in a dense urban area. The collected data from 500 cars over a two-year period in the Copenhagen region was analyzed in order to determine whether...... the stand alone GPS quality and reliability is adequate for implementation of an operational road pricing system in Copenhagen. The results from the analysis show that the satellite availability in Copenhagen is not sufficient to form the basis for a reliable operational road pricing system. The narrow...

  10. Selected properties of GPS and Galileo-IOV receiver intersystem biases in multi-GNSS data processing

    Science.gov (United States)

    Paziewski, Jacek; Sieradzki, Rafał; Wielgosz, Paweł

    2015-09-01

    Two overlapping frequencies—L1/E1 and L5/E5a—in GPS and Galileo systems support the creation of mixed double-differences in a tightly combined relative positioning model. On the other hand, a tightly combined model makes it necessary to take into account receiver intersystem bias, which is the difference in receiver hardware delays. This bias is present in both carrier-phase and pseudorange observations. Earlier research showed that using a priori knowledge of earlier-calibrated ISB to correct GNSS observations has significant impact on ambiguity resolution and, therefore, precise positioning results. In previous research concerning ISB estimation conducted by the authors, small oscillations in phase ISB time series were detected. This paper investigates this effect present in the GPS-Galileo-IOV ISB time series. In particular, ISB short-term temporal stability and its dependence on the number of Galileo satellites used in the ISB estimation was examined. In this contribution we investigate the amplitude and frequency of the detected ISB time series oscillations as well as their potential source. The presented results are based on real observational data collected on a zero baseline with the use of different sets of GNSS receivers.

  11. Hacking GPS

    CERN Document Server

    Kingsley-Hughes, Kathie

    2005-01-01

    * This is the "user manual" that didn't come with any of the 30 million GPS receivers currently in use, showing readers how to modify, tweak, and hack their GPS to take it to new levels!* Crazy-cool modifications include exploiting secret keycodes, revealing hidden features, building power cords and cables, hacking the battery and antenna, protecting a GPS from impact and falls, making a screen protector, and solar-powering a GPS* Potential power users will take the function and performance of their GPS to a whole new level by hacking into the firmware and hacking into a PC connection with a GPS* Fear not! Any potentially dangerous mod (to the device) is clearly labeled, with precautions listed that should be taken* Game time! Readers can check out GPS games, check into hacking geocaching, and even use a GPS as a metal detector

  12. Comparison of an inflammation-based prognostic score (GPS) with performance status (ECOG-ps) in patients receiving palliative chemotherapy for gastroesophageal cancer.

    Science.gov (United States)

    Crumley, Andrew B C; Stuart, Robert C; McKernan, Margaret; McDonald, Alexander C; McMillan, Donald C

    2008-08-01

    The aim of the present study was to compare an inflammation-based prognostic score (Glasgow Prognostic Score, GPS) with performance status (ECOG-ps) in patients receiving platinum-based chemotherapy for palliation of gastroesophageal cancer. Sixty-five patients presenting with gastroesophageal carcinoma to the Royal Infirmary, Glasgow between January 1999 and December 2005 and who received palliative chemotherapy or chemo-radiotherapy were studied. ECOG-ps, C-reactive protein, and albumin were recorded at diagnosis. Patients with both an elevated C-reactive protein (>10 mg/L) and hypoalbuminemia (L) were allocated a GPS of 2. Patients in whom only one of these biochemical abnormalities was present were allocated a GPS of 1 and patients with a normal C-reactive protein and albumin were allocated a score of 0. Toxicity was recorded using the Common Toxicity Criteria. The minimum follow up was 14 months. During the follow-up period, 59 (91%) of the patients died. On univariate and multivariate survival analysis, only the GPS (hazard ratios 1.65, 95% CI 1.10-2.47, P GPS of 0, those patients with a GPS of 1 or 2 required more frequent chemotherapy dose reduction (P GPS, appears to be superior to the subjective assessment of performance status (ECOG-ps) in predicting the response to platinum-based chemotherapy in patients with advanced gastroesophageal cancer.

  13. Indoor Positioning Using GPS Revisited

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik; Godsk, Torben

    2010-01-01

    It has been considered a fact that GPS performs too poorly inside buildings to provide usable indoor positioning. We analyze results of a measurement campaign to improve on the understanding of indoor GPS reception characteristics. The results show that using state-of-the-art receivers GPS...... low signal-to-noise ratios, multipath phenomena or bad satellite constellation geometry. We have also measured the indoor performance of embedded GPS receivers in mobile phones which provided lower availability and accuracy than state-of-the-art ones. Finally, we consider how the GPS performance...

  14. A Performance Improvement Method for Low-Cost Land Vehicle GPS/MEMS-INS Attitude Determination

    Directory of Open Access Journals (Sweden)

    Li Cong

    2015-03-01

    Full Text Available Global positioning system (GPS technology is well suited for attitude determination. However, in land vehicle application, low-cost single frequency GPS receivers which have low measurement quality are often used, and external factors such as multipath and low satellite visibility in the densely built-up urban environment further degrade the quality of the GPS measurements. Due to the low-quality receivers used and the challenging urban environment, the success rate of the single epoch ambiguity resolution for dynamic attitude determination is usually quite low. In this paper, a micro-electro-mechanical system (MEMS—inertial navigation system (INS-aided ambiguity resolution method is proposed to improve the GPS attitude determination performance, which is particularly suitable for land vehicle attitude determination. First, the INS calculated baseline vector is augmented with the GPS carrier phase and code measurements. This improves the ambiguity dilution of precision (ADOP, resulting in better quality of the unconstrained float solution. Second, the undesirable float solutions caused by large measurement errors are further filtered and replaced using the INS-aided ambiguity function method (AFM. The fixed solutions are then obtained by the constrained least squares ambiguity decorrelation (CLAMBDA algorithm. Finally, the GPS/MEMS-INS integration is realized by the use of a Kalman filter. Theoretical analysis of the ADOP is given and experimental results demonstrate that our proposed method can significantly improve the quality of the float ambiguity solution, leading to high success rate and better accuracy of attitude determination.

  15. A Performance Improvement Method for Low-Cost Land Vehicle GPS/MEMS-INS Attitude Determination

    Science.gov (United States)

    Cong, Li; Li, Ercui; Qin, Honglei; Ling, Keck Voon; Xue, Rui

    2015-01-01

    Global positioning system (GPS) technology is well suited for attitude determination. However, in land vehicle application, low-cost single frequency GPS receivers which have low measurement quality are often used, and external factors such as multipath and low satellite visibility in the densely built-up urban environment further degrade the quality of the GPS measurements. Due to the low-quality receivers used and the challenging urban environment, the success rate of the single epoch ambiguity resolution for dynamic attitude determination is usually quite low. In this paper, a micro-electro-mechanical system (MEMS)—inertial navigation system (INS)-aided ambiguity resolution method is proposed to improve the GPS attitude determination performance, which is particularly suitable for land vehicle attitude determination. First, the INS calculated baseline vector is augmented with the GPS carrier phase and code measurements. This improves the ambiguity dilution of precision (ADOP), resulting in better quality of the unconstrained float solution. Second, the undesirable float solutions caused by large measurement errors are further filtered and replaced using the INS-aided ambiguity function method (AFM). The fixed solutions are then obtained by the constrained least squares ambiguity decorrelation (CLAMBDA) algorithm. Finally, the GPS/MEMS-INS integration is realized by the use of a Kalman filter. Theoretical analysis of the ADOP is given and experimental results demonstrate that our proposed method can significantly improve the quality of the float ambiguity solution, leading to high success rate and better accuracy of attitude determination. PMID:25760057

  16. An Experimental Study of Advanced Receivers in a Practical Dense Small Cells Network

    DEFF Research Database (Denmark)

    Assefa, Dereje; Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão

    2016-01-01

    leads to significant limitations on the network throughput in such deployments. In addition, network densification introduces difficulty in network deployment. This paper presents a study on the benefits of advanced receiver in a practical uncoordinated dense small cells deployment. Our aim is to show...

  17. Exatidão de posicionamento de um receptor GPS, operando sob diferentes coberturas vegetais Evaluation of the accuracy of positioning a GPS receiver operating under different vegetation covers

    Directory of Open Access Journals (Sweden)

    Rubens Angulo Filho

    2002-01-01

    Full Text Available Para avaliar a exatidão de posicionamento planimétrico do receptor GPS Trimble/Pro-XL, operando sob diferentes condições de cobertura vegetal (pastagem, seringueira, eucalipto e pinus, o equipamento foi posicionado alternadamente sobre 6 pontos, locados ao acaso nas áreas de estudo, variando o tempo de permanência (1 , 5 e 10 min mas com a mesma taxa de aquisição de dados (1 s fazendo-se, posteriormente, a correção diferencial (DGPS pós-processada dos dados. Os pontos também tiveram suas coordenadas levantadas pelo método topográfico, segundo a NBR 13133 - Execução de Levantamento Topográfico, para fins de comparação. De acordo com o método empregado e os resultados obtidos, foi possível separar as exatidões de posicionamento planimétrico, conforme o tipo de cobertura vegetal, em dois grupos: sem e com cobertura arbórea confirmando, assim, a interferência do dossel na recepção dos sinais emitidos pelos satélites GPS. O aumento do tempo de permanência melhorou a exatidão de posicionamento planimétrico, o que ratifica a escolha da metodologia de levantamento como sendo fundamental para a obtenção de bons resultados de posicionamento.To evaluate planimetric positioning accuracy of a GPS receiver (Trimble/Pro-XL, operating under different conditions of vegetation cover (pasture, rubber trees, eucalyptus and pine trees, 6 control points were located randomly in the study area. For comparison, their coordinates were first obtained by a conventional surveying method, according to NBR 13133 of Brazilian Surveying Standards. Afterwards, the GPS receiver was positioned on those control points, maintaining the acquisition rate of 1 s while changing the time for 1, 5 and 10 min, the DGPS method was used to correct the positioning coordinate data. According to the methodology applied and the results obtained, it was possible to distinguish planimetric positioning accuracy, according to the vegetation cover, in two groups

  18. Determining Sea-Level Rise and Coastal Subsidence in the Canadian Arctic Using a Dense GPS Velocity Field for North America

    Science.gov (United States)

    Craymer, M.; Forbes, D.; Henton, J.; Lapelle, E.; Piraszewski, M.; Solomon, S.

    2005-12-01

    With observed climate warming in the western Canadian Arctic and potential increases in regional sea level, we anticipate expansion of the coastal region subject to rising relative sea level and increased flooding risk. This is a concern for coastal communities such as Tuktoyaktuk and Sachs Harbour and for the design and safety of hydrocarbon production facilities on the Mackenzie Delta. To provide a framework in which to monitor these changes, a consistent velocity field has been determined from GPS observations throughout North America, including the Canadian Arctic Archipelago and the Mackenzie Delta region. An expanded network of continuous GPS sites and multi-epoch (episodic) sites has enabled an increased density that enhances the application to geophysical studies including the discrimination of crustal motion, other components of coastal subsidence, and sea-level rise. To obtain a dense velocity field consistent at all scales, we have combined weekly solutions of continuous GPS sites from different agencies in Canada and the USA, together with the global reference frame under the North American Reference Frame initiative. Although there is already a high density of continuous GPS sites in the conterminous United States, there are many fewer such sites in Canada. To make up for this lack of density, we have incorporated high-accuracy episodic GPS observations on stable monuments distributed throughout Canada. By combining up to ten years of repeated, episodic GPS observations at such sites, together with weekly solutions from the continuous sites, we have obtained a highly consistent velocity field with a significantly increased spatial sampling of crustal deformation throughout Canada. This exhibits a spatially coherent pattern of uplift and subsidence in Canada that is consistent with the expected rates of glacial isostatic adjustment. To determine the contribution of vertical motion to sea-level rise under climate warming in the Canadian Arctic, we have

  19. GPS receiver phase biases estimable in PPP-RTK networks: dynamic characterization and impact analysis

    Science.gov (United States)

    Zhang, Baocheng; Liu, Teng; Yuan, Yunbin

    2018-06-01

    The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.

  20. GPS receiver phase biases estimable in PPP-RTK networks: dynamic characterization and impact analysis

    Science.gov (United States)

    Zhang, Baocheng; Liu, Teng; Yuan, Yunbin

    2017-11-01

    The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.

  1. Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) web service to support Area Navigation (RNAV) flight planning

    Science.gov (United States)

    2008-01-28

    The Volpe Center designed, implemented, and deployed a Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) prediction system in the mid 1990s to support both Air Force and Federal Aviation Administration (FAA) use of TSO C...

  2. Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking

    Science.gov (United States)

    Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)

    2002-01-01

    In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide C/A code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly l7g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached an altitude of over 80 km. A detailed analysis of the attained flight data is given together with a evaluation of different receiver designs and antenna concepts.

  3. Robust GPS autonomous signal quality monitoring

    Science.gov (United States)

    Ndili, Awele Nnaemeka

    The Global Positioning System (GPS), introduced by the U.S. Department of Defense in 1973, provides unprecedented world-wide navigation capabilities through a constellation of 24 satellites in global orbit, each emitting a low-power radio-frequency signal for ranging. GPS receivers track these transmitted signals, computing position to within 30 meters from range measurements made to four satellites. GPS has a wide range of applications, including aircraft, marine and land vehicle navigation. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI), which results from natural sources such as TV/FM harmonics, radar or Mobile Satellite Systems (MSS), presents a challenge in the use of GPS, by posing a threat to the accuracy, integrity and availability of the GPS navigation solution. In order to use GPS for integrity-sensitive applications, it is therefore necessary to monitor the quality of the received signal, with the objective of promptly detecting the presence of RFI, and thus provide a timely warning of degradation of system accuracy. This presents a challenge, since the myriad kinds of RFI affect the GPS receiver in different ways. What is required then, is a robust method of detecting GPS accuracy degradation, which is effective regardless of the origin of the threat. This dissertation presents a new method of robust signal quality monitoring for GPS. Algorithms for receiver autonomous interference detection and integrity monitoring are demonstrated. Candidate test statistics are derived from fundamental receiver measurements of in-phase and quadrature correlation outputs, and the gain of the Active Gain Controller (AGC). Performance of selected test statistics are evaluated in the presence of RFI: broadband interference, pulsed and non-pulsed interference, coherent CW at different frequencies; and non-RFI: GPS signal fading due to physical blockage and

  4. Comparison of GLONASS and GPS Time Transfers

    Science.gov (United States)

    Daly, P.; Koshelyaevsky, N. B.; Lewandowski, W.; Petit, G.; Thomas, C.

    1993-01-01

    The Russian global space navigation system GLONASS could provide a technique similar to GPS for international time comparison. The main limitation to its use for time transfer is the lack of commercially available time receivers. The University of Leeds built a GPS/GLONASS receiver five years ago and since then has provided continuous information about GLONASS time and its comparison with GPS time. For the last two years the VNIIFTRI and several other Russian time laboratories have used Russian-built GLONASS navigation receivers for time comparisons. Since June 1991, the VNIIFTRI has operated a GPS time receiver which offers, for the first time, an opportunity for the direct comparison of time transfers using GPS and GLONASS. This seven-month experiment shows that even with relatively imprecise data recording and processing, in terms of time metrology, GLONASS can provide continental time transfer at a level of several tens of nanoseconds.

  5. Precise GPS orbits for geodesy

    Science.gov (United States)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  6. GPS Water Vapor Tomography: First results from the ESCOMPTE Field Experiment

    Science.gov (United States)

    Masson, F.; Champollion, C.; Bouin, M.-N.; Walpersdorf, A.; van Baelen, J.; Doerflinger, E.; Bock, O.

    2003-04-01

    We develop a tomographic software to model the spatial distribution of the tropospheric water vapor from GPS data. First we present simulations based on a real GPS station distribution and simple tropospheric models, which prove the potentiality of the method. Second we apply the software to the ESCOMPTE data. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers has been operated for two weeks within a 20 km x 20 km area around Marseille (Southern France). The network extends from the sea level to the top of the Etoile chain (~700 m high). The input data are the slant delay values obtained by combining the estimated zenith delay values with the horizontal gradients. The effect of the initial tropospheric water vapor model, the number and thickness of the layers of the model, the a priori model and data covariance and some other parameters will be discussed. Simultaneously water vapor radiometer, solar spectrometer, Raman lidar and radiosondes have been deployed to get a data set usable for comparison with the tomographic inversion results and validation of the method. Comparison with meteorological models (MesoNH - Meteo-France) will be shown.

  7. Determining slack tide with a GPS receiver on an anchored buoy

    Science.gov (United States)

    Valk, M.; Savenije, H. H. G.; Tiberius, C. C. J. M.; Luxemburg, W. M. J.

    2014-07-01

    In this paper we present a novel method to determine the time of occurrence of tidal slack with a GPS receiver mounted on an anchored buoy commonly used to delineate shipping lanes in estuaries and tidal channels. Slack tide occurs when the tide changes direction from ebb to flood flow or from flood to ebb. The determination of this point in time is not only useful for shipping and salvaging, it is also important information for calibrating tidal models, for determining the maximum salt intrusion and for the further refinement of the theory on tidal propagation. The accuracy of the timing is well within 10 min and the method - able to operate in real time - is relatively cheap and easy to implement on a permanent basis or in short field campaigns.

  8. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    Directory of Open Access Journals (Sweden)

    Jhen-Kai Liao

    2013-08-01

    Full Text Available The integration of an Inertial Navigation System (INS and the Global Positioning System (GPS is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC and tightly coupled (TC schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system.

  9. GPS-based system for satellite tracking and geodesy

    Science.gov (United States)

    Bertiger, Willy I.; Thornton, Catherine L.

    1989-01-01

    High-performance receivers and data processing systems developed for GPS are reviewed. The GPS Inferred Positioning System (GIPSY) and the Orbiter Analysis and Simulation Software (OASIS) are described. The OASIS software is used to assess GPS system performance using GIPSY for data processing. Consideration is given to parameter estimation for multiday arcs, orbit repeatability, orbit prediction, daily baseline repeatability, agreement with VLBI, and ambiguity resolution. Also, the dual-frequency Rogue receiver, which can track up to eight GPS satellites simultaneously, is discussed.

  10. A Regional GPS Receiver Network For Monitoring Mid-latitude Total Electron Content During Storms

    Science.gov (United States)

    Vernon, A.; Cander, Lj. R.

    A regional GPS receiver network has been used for monitoring mid-latitude total elec- tron content (TEC) during ionospheric storms at the current solar maximum. Differ- ent individual storms were examined to study how the temporal patterns of changes develop and how they are related to solar and geomagnetic activity for parameter de- scriptive of plasmaspheric-ionospheric ionisation. Use is then made of computer con- touring techniques to produce snapshot maps of TEC for different study cases. Com- parisons with the local ionosonde data at different phases of the storms enable the storm developments to be studied in detail.

  11. Penerapan Teknologi GPS Tracker Untuk Identifikasi Kondisi Traffik Jalan Raya

    Directory of Open Access Journals (Sweden)

    IM. O. Widyantara

    2015-06-01

    Full Text Available Real time tracking system technology has been made possible by integrating three technologies, namely global positioning system (GPS, database technologies such as geographic information system (GIS and mobile telecommunications technologies such as general packet radio service (GPRS. This paper has proposed a vehicle tracking mechanism based on GPS tracker to build a real-time traffic information system. A GPS server is built to process data of position and speed of the vehicle for further processed into vehicle traffic information. The Server and GPS tracker is designed to communicate using GPRS services in real time. Furthermore, the server processes the data from the GPS tracker into traffic information such as traffic jam, dense, medium and smoothly. Test results showed that the GPS server is able to visualize the real position of the vehicle and is able to decide the category of traffic information in real time.

  12. GPS satellite and receiver instrumental biases estimation using least ...

    Indian Academy of Sciences (India)

    PA) landings. Therefore, GPS augmentation sys- tem is required to provide users with orbit, clock, and ionosphere corrections. The first space-based augmentation system .... detailed structure of the transversal filter consists of 3 basic weight ...

  13. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  14. A New Indoor Positioning System Architecture Using GPS Signals.

    Science.gov (United States)

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-04-29

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.

  15. Using GPS TEC measurements to probe ionospheric spatial spectra at mid-latitudes

    Science.gov (United States)

    Lay, E. H.; Parker, P. A.; Light, M. E.; Carrano, C. S.; Debchoudhury, S.; Haaser, R. A.

    2017-12-01

    The physics of how random ionospheric structure causes signal degradation is well understood as weak forward scattering through an effective diffraction grating created by plasma irregularities in the ionosphere. However, the spatial scale spectrum of those irregularities required for input into scintillation models and models of traveling ionospheric disturbances is poorly characterized, particularly at the kilometer to tens of kilometer scale lengths important for very-high-frequency (VHF) scintillation prediction. Furthermore, the majority of characterization studies have been performed in low-latitude or high-latitude regions where geomagnetic activity dominates the physical processes. At mid-latitudes, tropospheric and geomagnetic phenomena compete in disturbing the ionosphere, and it is not well understood how these multiple sources affect the drivers that influence the spatial spectrum. In this study, we are interested in mid-latitude electron density irregularities on the order of 10s of kilometers that would affect VHF signals. Data from the GPS networks Japan GEONET and the Plate Boundary Observatory (PBO, UNAVCO) in the western United States were analyzed for this study. Japan GEONET is a dense network of GPS receivers (station spacing of tens of km), with fairly evenly spaced positions over all of Japan. The PBO, on the other hand, has several pockets of extremely dense coverage (station spacing within a few km), but is less dense on average. We analyze a day with a large solar storm (2015/03/17, St. Patrick's Day Storm) to allow high scintillation potential at mid-latitudes, a day with low geomagnetic activity and low thunderstorm activity (2016/01/31), and a day with low geomagnetic activity and high thunderstorm activity (2015/08/02). We then perform two-dimensional spatial analyses on the TEC data from these two networks on scale lengths of 20 to 200 km to infer the spatial scale spectra.

  16. GPS antenna designs

    Science.gov (United States)

    Laube, Samuel J. P.

    1987-05-01

    Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.

  17. Estimating receiver functions on dense arrays: application to the IRIS Community Wavefield Experiment in Oklahoma

    Science.gov (United States)

    Zhong, M.; Zhan, Z.

    2017-12-01

    Receiver functions (RF) estimated on dense arrays have been widely used for studies of Earth structures at different scales. However, there are still challenges in estimating and interpreting RF images due to non-uniqueness of deconvolution, noise in data, and lack of uncertainty. Here, we develop a dense-array-based RF method towards robust and high-resolution RF images. We cast RF images as the models in a sparsity-promoted inverse problem, in which waveforms from multiple events recorded by neighboring stations are jointly inverted. We use the Neighborhood Algorithm to find the optimal model (i.e., RF image) as well as an ensemble of models for further uncertainty quantification. Synthetic tests and application to the IRIS Community Wavefield Experiment in Oklahoma demonstrate that the new method is able to deal with challenging dataset, retrieve reliable high-resolution RF images, and provide realistic uncertainty estimates.

  18. Increase of Carrier-to-Noise Ratio in GPS Receivers Caused by Continuous-Wave Interference

    Directory of Open Access Journals (Sweden)

    J. Li

    2016-09-01

    Full Text Available The increased use of personal private devices (PPDs is drawing greater attention to the effects of continuous-wave interference (CWI on the performance of global positioning system (GPS receivers. The effective carrier-to-noise density ratio (C/N0, an essential index of GNSS receiver performance, is studied in this paper. Receiver tracking performance deteriorates in the presence of interference. Hence, the effective C/N0, which measures tracking performance, decreases. However, simulations and bench tests have shown that the effective C/N0 may increase in the presence of CWI. The reason is that a sinusoidal signal is induced by the CWI in the correlator and may be tracked by the carrier tracking loop. Thus, the effective carrier power depends on the power of the signal induced by the CWI, and the effective C/N0 increases with the power of the CWI. The filtering of the CWI in the carrier tracking loop correlator and its effect on the phase locked loop (PLL tracking performance are analyzed. A mathematical model of the effect of the CWI on the effective C/N0 is derived. Simulation results show that the proposed model is more accurate than existing models, especially when the jam-to-signal ratio (JSR is greater than 30 dBc.

  19. Using cluster analysis to organize and explore regional GPS velocities

    Science.gov (United States)

    Simpson, Robert W.; Thatcher, Wayne; Savage, James C.

    2012-01-01

    Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.

  20. Selected properties of GPS and Galileo-IOV receiver intersystem biases in multi-GNSS data processing

    International Nuclear Information System (INIS)

    Paziewski, Jacek; Sieradzki, Rafał; Wielgosz, Paweł

    2015-01-01

    Two overlapping frequencies—L1/E1 and L5/E5a—in GPS and Galileo systems support the creation of mixed double-differences in a tightly combined relative positioning model. On the other hand, a tightly combined model makes it necessary to take into account receiver intersystem bias, which is the difference in receiver hardware delays. This bias is present in both carrier-phase and pseudorange observations. Earlier research showed that using a priori knowledge of earlier-calibrated ISB to correct GNSS observations has significant impact on ambiguity resolution and, therefore, precise positioning results. In previous research concerning ISB estimation conducted by the authors, small oscillations in phase ISB time series were detected. This paper investigates this effect present in the GPS–Galileo-IOV ISB time series. In particular, ISB short-term temporal stability and its dependence on the number of Galileo satellites used in the ISB estimation was examined. In this contribution we investigate the amplitude and frequency of the detected ISB time series oscillations as well as their potential source. The presented results are based on real observational data collected on a zero baseline with the use of different sets of GNSS receivers. (paper)

  1. An ArcGIS analysis of Stand-alone GPS quality for Road Pricing

    DEFF Research Database (Denmark)

    Zabic, Martina

    2006-01-01

    The paper presents the methods and some of the result maps from a study of GPS quality in relation to road pricing in a dense urban area. Data from 500 cars were colleted over a two-year period in the Copenhagen region (Denmark). The data was analyzed in ArcGIS in order to determine whether the GPS...... quality and reliability is adequate for implementation of a road pricing system. The GPS log files was imported into ArcGIS and analyzed in relation to the digital road network and the density of the high rise areas in order to examine where the high buildings and narrow street canyons causes too many...

  2. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone.

    Science.gov (United States)

    Nguyen, Phong Ha; Arsalan, Muhammad; Koo, Ja Hyung; Naqvi, Rizwan Ali; Truong, Noi Quang; Park, Kang Ryoung

    2018-05-24

    Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem for the robotics research community. Previous researchers have attempted to solve this problem by combining multiple sensors such as global positioning system (GPS) receivers, inertial measurement unit, and multiple camera systems. Although these approaches successfully estimate an unmanned aerial vehicle location during landing, many calibration processes are required to achieve good detection accuracy. In addition, cases where drones operate in heterogeneous areas with no GPS signal should be considered. To overcome these problems, we determined how to safely land a drone in a GPS-denied environment using our remote-marker-based tracking algorithm based on a single visible-light-camera sensor. Instead of using hand-crafted features, our algorithm includes a convolutional neural network named lightDenseYOLO to extract trained features from an input image to predict a marker's location by visible light camera sensor on drone. Experimental results show that our method significantly outperforms state-of-the-art object trackers both using and not using convolutional neural network in terms of both accuracy and processing time.

  3. A study of El Niño-Southern oscillation impacts to the South China Sea region using ground-based GPS receiver

    International Nuclear Information System (INIS)

    Suparta, Wayan; Iskandar, Ahmad; Singh, Mandeep Singh Jit; Ali, Mohd Alauddin Mohd; Yatim, Baharudin; Tangang, Fredolin

    2013-01-01

    We observe an ENSO activity by using ground-based GPS receiver as an effort to study the effects of global warming and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on ENSO activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between −0.30 and −0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting cold causes warm air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.

  4. A study of El Niño-Southern oscillation impacts to the South China Sea region using ground-based GPS receiver

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh Jit Singh, Mandeep; Alauddin Mohd Ali, Mohd; Yatim, Baharudin; Tangang, Fredolin

    2013-04-01

    We observe an ENSO activity by using ground-based GPS receiver as an effort to study the effects of global warming and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on ENSO activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between -0.30 and -0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting cold causes warm air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.

  5. Global Positioning System receiver evaluation results

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, R.H.

    1993-09-01

    A Sandia project currently uses an outdated Magnavox 6400 Global Positioning System (GPS) receiver as the core of its navigation system. The goal of this study was to analyze the performance of the current GPS receiver compared to newer, less expensive models and to make recommendations on how to improve the performance of the overall navigation system. This paper discusses the test methodology used to experimentally analyze the performance of different GPS receivers, the test results, and recommendations on how an upgrade should proceed. Appendices contain detailed information regarding the raw data, test hardware, and test software.

  6. Study of the GPS inter-frequency calibration of timing receivers

    Science.gov (United States)

    Defraigne, P.; Huang, W.; Bertrand, B.; Rovera, D.

    2018-02-01

    When calibrating Global Positioning System (GPS) stations dedicated to timing, the hardware delays of P1 and P2, the P(Y)-codes on frequencies L1 and L2, are determined separately. In the international atomic time (TAI) network the GPS stations of the time laboratories are calibrated relatively against reference stations. This paper aims at determining the consistency between the P1 and P2 hardware delays (called dP1 and dP2) of these reference stations, and to look at the stability of the inter-signal hardware delays dP1-dP2 of all the stations in the network. The method consists of determining the dP1-dP2 directly from the GPS pseudorange measurements corrected for the frequency-dependent antenna phase center and the frequency-dependent ionosphere corrections, and then to compare these computed dP1-dP2 to the calibrated values. Our results show that the differences between the computed and calibrated dP1-dP2 are well inside the expected combined uncertainty of the two quantities. Furthermore, the consistency between the calibrated time transfer solution obtained from either single-frequency P1 or dual-frequency P3 for reference laboratories is shown to be about 1.0 ns, well inside the 2.1 ns uB uncertainty of a time transfer link based on GPS P3 or Precise Point Positioning. This demonstrates the good consistency between the P1 and P2 hardware delays of the reference stations used for calibration in the TAI network. The long-term stability of the inter-signal hardware delays is also analysed from the computed dP1-dP2. It is shown that only variations larger than 2 ns can be detected for a particular station, while variations of 200 ps can be detected when differentiating the results between two stations. Finally, we also show that in the differential calibration process as used in the TAI network, using the same antenna phase center or using different positions for L1 and L2 signals gives maximum differences of 200 ps on the hardware delays of the separate

  7. Software-Defined GPS Receiver Implemented on the Parallella-16 Board

    DEFF Research Database (Denmark)

    Olesen, Daniel Madelung; Jakobsen, Jakob; Knudsen, Per

    2015-01-01

    . The Parallella-16 board is a kickstarter-funded platform consisting of a dual-core ARM A9 CPU, an integrated FPGA and a 16-core coprocessor known as the Epiphany. The main contribution in this paper has been the development of a GPS tracking algorithm, which utilizes the parallelism in the Epiphany processor...

  8. Sensing and Classifying Impairments of GPS Reception on Mobile Devices

    DEFF Research Database (Denmark)

    Blunck, Henrik; Kjærgaard, Mikkel Baun; Toftegaard, Thomas Skjødeberg

    2011-01-01

    Positioning using GPS receivers is a primary sensing modality in many areas of pervasive computing. However, previous work has not considered how people’s body impacts the availability and accuracy of GPS positioning and for means to sense such impacts. We present results that the GPS performance...

  9. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2009-05-01

    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  10. GPS Tomography: Water Vapour Monitoring for Germany

    Science.gov (United States)

    Bender, Michael; Dick, Galina; Wickert, Jens; Raabe, Armin

    2010-05-01

    Ground based GPS atmosphere sounding provides numerous atmospheric quantities with a high temporal resolution for all weather conditions. The spatial resolution of the GPS observations is mainly given by the number of GNSS satellites and GPS ground stations. The latter could considerably be increased in the last few years leading to more reliable and better resolved GPS products. New techniques such as the GPS water vapour tomography gain increased significance as data from large and dense GPS networks become available. The GPS tomography has the potential to provide spatially resolved fields of different quantities operationally, i. e. the humidity or wet refractivity as required for meteorological applications or the refraction index which is important for several space based observations or for precise positioning. The number of German GPS stations operationally processed by the GFZ in Potsdam was recently enlarged to more than 300. About 28000 IWV observations and more than 1.4 millions of slant total delay data are now available per day with a temporal resolution of 15 min and 2.5 min, respectively. The extended network leads not only to a higher spatial resolution of the tomographically reconstructed 3D fields but also to a much higher stability of the inversion process and with that to an increased quality of the results. Under these improved conditions the GPS tomography can operate continuously over several days or weeks without applying too tight constraints. Time series of tomographically reconstructed humidity fields will be shown and different initialisation strategies will be discussed: Initialisation with a simple exponential profile, with a 3D humidity field extrapolated from synoptic observations and with the result of the preceeding reconstruction. The results are compared to tomographic reconstructions initialised with COSMO-DE analyses and to the corresponding model fields. The inversion can be further stabilised by making use of independent

  11. A GPS measurement system for precise satellite tracking and geodesy

    Science.gov (United States)

    Yunck, T. P.; Wu, S.-C.; Lichten, S. M.

    1985-01-01

    NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.

  12. USGS Earthquake Program GPS Use Case : Earthquake Early Warning

    Science.gov (United States)

    2015-03-12

    USGS GPS receiver use case. Item 1 - High Precision User (federal agency with Stafford Act hazard alert responsibilities for earthquakes, volcanoes and landslides nationwide). Item 2 - Description of Associated GPS Application(s): The USGS Eart...

  13. Fault detection and isolation in GPS receiver autonomous integrity monitoring based on chaos particle swarm optimization-particle filter algorithm

    Science.gov (United States)

    Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao

    2018-03-01

    The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.

  14. Receiver Test Selection Criteria

    Science.gov (United States)

    2015-03-12

    The DOT requests that GPS manufacturers submit receivers for test in the following TWG categories: - Aviation (non-certified), cellular, general location/navigation, high precision, timing, networks, and space-based receivers - Each receiver should b...

  15. GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment

    Science.gov (United States)

    Champollion, C.; Masson, F.; Bouin, M.-N.; Walpersdorf, A.; Doerflinger, E.; Bock, O.; Van Baelen, J.

    2005-03-01

    Water vapour plays a major role in atmospheric processes but remains difficult to quantify due to its high variability in time and space and the sparse set of available measurements. The GPS has proved its capacity to measure the integrated water vapour at zenith with the same accuracy as other methods. Recent studies show that it is possible to quantify the integrated water vapour in the line of sight of the GPS satellite. These observations can be used to study the 3D heterogeneity of the troposphere using tomographic techniques. We develop three-dimensional tomographic software to model the three-dimensional distribution of the tropospheric water vapour from GPS data. First, the tomographic software is validated by simulations based on the realistic ESCOMPTE GPS network configuration. Without a priori information, the absolute value of water vapour is less resolved as opposed to relative horizontal variations. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers was operated for 2 weeks within a 20×20-km area around Marseille (southern France). The network extends from sea level to the top of the Etoile chain (˜700 m high). Optimal results have been obtained with time windows of 30-min intervals and input data evaluation every 15 min. The optimal grid for the ESCOMTE geometrical configuration has a horizontal step size of 0.05°×0.05° and 500 m vertical step size. Second, we have compared the results of real data inversions with independent observations. Three inversions have been compared to three successive radiosonde launches and shown to be consistent. A good resolution compared to the a priori information is obtained up to heights of 3000 m. A humidity spike at 4000-m altitude remains unresolved. The reason is probably that the signal is spread homogeneously over the whole network and that such a feature is not resolvable by tomographic techniques. The results of our pure GPS inversion show a correlation with

  16. GPS on Every Roof, GPS Sensor Network for Post-Seismic Building-Wise Damage Identification

    Directory of Open Access Journals (Sweden)

    Kenji Oguni

    2013-12-01

    Full Text Available Development of wireless sensor network equipped with GPS for post-seismic building-wise damage identification is presented in this paper. This system is called GPS on Every Roof. Sensor node equipped with GPS antenna and receiver is installed on the top of the roof of each and every building. The position of this sensor node is measured before and after earthquake. The final goal of this system is to i identify the displacement of the roof of each house and ii collect the information of displacement of the roof of the houses through wireless communication. Superposing this information on GIS, building-wise damage distribution due to earthquake can be obtained. The system overview, hardware and some of the key components of the system such as on-board GPS relative positioning algorithm to achieve the accuracy in the order of several centimeters are described in detail. Also, the results from a field experiment using a wireless sensor network with 39 sensor nodes are presented.

  17. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone

    Directory of Open Access Journals (Sweden)

    Phong Ha Nguyen

    2018-05-01

    Full Text Available Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem for the robotics research community. Previous researchers have attempted to solve this problem by combining multiple sensors such as global positioning system (GPS receivers, inertial measurement unit, and multiple camera systems. Although these approaches successfully estimate an unmanned aerial vehicle location during landing, many calibration processes are required to achieve good detection accuracy. In addition, cases where drones operate in heterogeneous areas with no GPS signal should be considered. To overcome these problems, we determined how to safely land a drone in a GPS-denied environment using our remote-marker-based tracking algorithm based on a single visible-light-camera sensor. Instead of using hand-crafted features, our algorithm includes a convolutional neural network named lightDenseYOLO to extract trained features from an input image to predict a marker’s location by visible light camera sensor on drone. Experimental results show that our method significantly outperforms state-of-the-art object trackers both using and not using convolutional neural network in terms of both accuracy and processing time.

  18. Development of Soil Compaction Analysis Software (SCAN Integrating a Low Cost GPS Receiver and Compactometer

    Directory of Open Access Journals (Sweden)

    Dongha Lee

    2012-02-01

    Full Text Available A software for soil compaction analysis (SCAN has been developed for evaluating the compaction states using the data from the GPS as well as a compactometer attached on the roller. The SCAN is distinguished from other previous software for intelligent compaction (IC in that it can use the results from various types of GPS positioning methods, and it also has an optimal structure for remotely managing the large amounts of data gathered from numerous rollers. For this, several methods were developed: (1 improving the accuracy of low cost GPS receiver’s positioning results; (2 modeling the trajectory of a moving roller using a GPS receiver’s results and linking it with the data from the compactometer; and (3 extracting the information regarding the compaction states of the ground from the modeled trajectory, using spatial analysis methods. The SCAN was verified throughout various field compaction tests, and it has been confirmed that it can be a very effective tool in evaluating field compaction states.

  19. Accommodation of missing shear strain in the Central Walker Lane, western North America: Constraints from dense GPS measurements

    Science.gov (United States)

    Bormann, Jayne M.; Hammond, William C.; Kreemer, Corné; Blewitt, Geoffrey

    2016-04-01

    We present 264 new interseismic GPS velocities from the Mobile Array of GPS for Nevada Transtension (MAGNET) and continuous GPS networks that measure Pacific-North American plate boundary deformation in the Central Walker Lane. Relative to a North America-fixed reference frame, northwestward velocities increase smoothly from ∼4 mm/yr in the Basin and Range province to 12.2 mm/yr in the central Sierra Nevada resulting in a Central Walker Lane deformation budget of ∼8 mm/yr. We use an elastic block model to estimate fault slip and block rotation rates and patterns of deformation from the GPS velocities. Right-lateral shear is distributed throughout the Central Walker Lane with strike-slip rates generally Bodie Hills, Carson Domain, and Mina Deflection are between 1-4°/Myr, lower than published paleomagnetic rotation rates, suggesting that block rotation rates have decreased since the Late to Middle Miocene.

  20. Evidence of the Dampening Effect of Dense E-region Structures on E-F Coupling

    Science.gov (United States)

    Helmboldt, J.

    2012-12-01

    Results from a combination of instruments including ionosondes, GPS receivers, the Very Large Array (VLA), and the Long Wavelength Array (LWA) are used to demonstrate the role structure within the E-region plays in coupling between instabilities within the E and F regions at midlatitudes. VLA observations of cosmic sources at 74 MHz during summer nighttime in 2002 detected northwest-to-southeast aligned wavefronts, consistent with medium-scale traveling ionospheric disturbances (MSTIDs). These waves were only found when contemporaneous observations from nearby ionosondes detected echoes from sporadic-E layers. However, when the peak density of these layers was high (foEs> 3 MHz), there were no MSTIDs detected. Similar results are presented using the first station of the LWA, LWA1, to perform all-sky imaging of dense E-region structures (sporadic-E "clouds") via coherent scattering of distant analog TV broadcasts at 55 MHz. These observations were conducted during summer/autumn 2012 and include simultaneous GPS-based observations of F-region disturbances.Left: LWA1 all-sky image of ionospheric echoes of analog TV transmissions at 55.25 MHz. Right: Doppler speed maps for the brightest echoes.

  1. GPS/MEMS IMU/Microprocessor Board for Navigation

    Science.gov (United States)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.

  2. Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography

    Science.gov (United States)

    Farah, Ashraf

    2018-03-01

    Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.

  3. Climatology of GPS signal loss observed by Swarm satellites

    Directory of Open Access Journals (Sweden)

    C. Xiong

    2018-04-01

    Full Text Available By using 3-year global positioning system (GPS measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between ±5 and ±20° magnetic latitude (MLAT and high latitudes above 60° MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20°, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver.

  4. Climatology of GPS signal loss observed by Swarm satellites

    Science.gov (United States)

    Xiong, Chao; Stolle, Claudia; Park, Jaeheung

    2018-04-01

    By using 3-year global positioning system (GPS) measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between ±5 and ±20° magnetic latitude (MLAT) and high latitudes above 60° MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20°, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL) widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver.

  5. A study of risk in the metropolitan area of Guadalajara through dense GPS geodesy

    Science.gov (United States)

    Marquez-Azua, B.; Saldana-Hernandez, F.; Medina de La Pena, H.

    2007-05-01

    Geodesic measurements from the Global Positioning System (GPS) are used extensively for basic earth science research into natural hazards and seismic risk. In the private sector, GPS technology is additionally used for cadastral and photogrammetric mapping surveys, definition of political-administrative limits, space analysis with thematic cartography, GIS, and land-use planning, with a wide variety of applied social, economic, and political purposes, including conservation of the environment. The city of Guadalajara and its surrounding urban area has expanded greatly in the last three decades as a result of industrial, commercial and housing activity that have substantially changed in their urban morphology. This period of unprecedented growth has occurred primarily in an unplanned and sometimes disarticulated and unbalanced manner, incongruous with the development of the most important city in western Mexico. The Department of Geography of the University of Guadalajara and the Institute of Territorial Information of the State of Jalisco (IITJ) have initiated a study of 89 geodetic sites that are located in the metropolitan zone of Guadalajara to assist in future planning and regulation of urban development, including urban and rural cadastral surveys and the establishment of diverse public services. Our work includes careful examination and evaluation of the quality and distribution of these geodetic sites with regard to anticipated growth of the metropolitan municipalities, and the vulnerability of urban zones to ground subsidence or landslides. Guadalajara is also located in a seismic zone, making precise continuous GPS measurements useful for identifying rates of strain accumulation and aseismic strain events that cannot be measured by seismographs.

  6. Study on index system of GPS interference effect evaluation

    Science.gov (United States)

    Zhang, Kun; Zeng, Fangling; Zhao, Yuan; Zeng, Ruiqi

    2018-05-01

    Satellite navigation interference effect evaluation is the key technology to break through the research of Navigation countermeasure. To evaluate accurately the interference degree and Anti-jamming ability of GPS receiver, this text based on the existing research results of Navigation interference effect evaluation, build the index system of GPS receiver effectiveness evaluation from four levels of signal acquisition, tracking, demodulation and positioning/timing and establish the model for each index. These indexes can accurately and quantitatively describe the interference effect at all levels.

  7. Comparison of the precision of three commonly used GPS models

    Directory of Open Access Journals (Sweden)

    E Chavoshi

    2016-04-01

    Full Text Available Introduction: Development of science in various fields has caused change in the methods to determine geographical location. Precision farming involves new technology that provides the opportunity for farmers to change in factors such as nutrients, soil moisture available to plants, soil physical and chemical characteristics and other factors with the spatial resolution of less than a centimeter to several meters to monitor and evaluate. GPS receivers based on precision farming operations specified accuracies are used in the following areas: 1 monitoring of crop and soil sampling (less than one meter accuracy 2 use of fertilizer, pesticide and seed work (less than half a meter accuracy 3 Transplantation and row cultivation (precision of less than 4 cm (Perez et al., 2011. In one application of GPS in agriculture, route guidance precision farming tractors in the fields was designed to reduce the transmission error that deviate from the path specified in the range of 50 to 300 mm driver informed and improved way to display (Perez et al., 2011. In another study, the system automatically guidance, based on RTK-GPS technology, precision tillage operations was used between and within the rows very close to the drip irrigation pipe and without damage to their crops at a distance of 50 mm (Abidine et al., 2004. In another study, to compare the accuracy and precision of the receivers, 5 different models of Trimble Mark GPS devices from 15 stations were mapped, the results indicated that minimum error was related to Geo XT model with an accuracy of 91 cm and maximum error was related to Pharos model with an accuracy of 5.62 m (Kindra et al., 2006. Due to the increasing use of GPS receivers in agriculture as well as the lack of trust on the real accuracy and precision of receivers, this study aimed to compare the positioning accuracy and precision of three commonly used GPS receivers models used to specify receivers with the lowest error for precision

  8. Development of GPS Receiver Kalman Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications

    Science.gov (United States)

    2016-06-01

    Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications Executive Summary The Global Positioning system ( GPS ) is the primary...software that may need to be developed for performance prediction of current or future systems that incorporate GPS . The ultimate aim is to help inform...Defence Science and Technology Organisation in 1986. His major areas of work were adaptive tracking , sig- nal processing, and radar systems engineering

  9. A Kalman Filter Implementation for Precision Improvement in Low-Cost GPS Positioning of Tractors

    Science.gov (United States)

    Gomez-Gil, Jaime; Ruiz-Gonzalez, Ruben; Alonso-Garcia, Sergio; Gomez-Gil, Francisco Javier

    2013-01-01

    Low-cost GPS receivers provide geodetic positioning information using the NMEA protocol, usually with eight digits for latitude and nine digits for longitude. When these geodetic coordinates are converted into Cartesian coordinates, the positions fit in a quantization grid of some decimeters in size, the dimensions of which vary depending on the point of the terrestrial surface. The aim of this study is to reduce the quantization errors of some low-cost GPS receivers by using a Kalman filter. Kinematic tractor model equations were employed to particularize the filter, which was tuned by applying Monte Carlo techniques to eighteen straight trajectories, to select the covariance matrices that produced the lowest Root Mean Square Error in these trajectories. Filter performance was tested by using straight tractor paths, which were either simulated or real trajectories acquired by a GPS receiver. The results show that the filter can reduce the quantization error in distance by around 43%. Moreover, it reduces the standard deviation of the heading by 75%. Data suggest that the proposed filter can satisfactorily preprocess the low-cost GPS receiver data when used in an assistance guidance GPS system for tractors. It could also be useful to smooth tractor GPS trajectories that are sharpened when the tractor moves over rough terrain. PMID:24217355

  10. Collocated ionosonde and dense GPS/GLONASS network measurements of midlatitude MSTIDs

    Science.gov (United States)

    Sherstyukov, R. O.; Akchurin, A. D.; Sherstyukov, O. N.

    2018-04-01

    To analyze midlatitude medium-scale travelling ionospheric disturbances (MSTIDs) over Kazan (55.5°N, 49°E), Russia, the sufficiently dense network of GNSS receivers (more than 150 ground-based stations) were used. For the first time, daytime MSTIDs in the form of their main signature (band structure) on high-resolution two-dimensional maps of the total electron content perturbation (TEC maps) are compared with ionosonde data with a high temporal resolution. For a pair of events, a relationship between southwestward TEC perturbations and evolution of F2 layer traces was established. So F2 peak frequency varied in antiphase to TEC perturbations. The ionograms show that during the movement of plasma depletion band (overhead ionosonde) the F2 peak frequency is the highest, and vice versa, for the plasma enhancement band, the F2 peak frequency is the lowest. One possible explanation may be a greater inclination of the radio beam from the vertical during the placement of a plasma enhancement band above the ionosonde, as evidenced by the absence of multiple reflections and the increased occurrence rate of additional cusp trace. Another possible explanation may be the redistribution of the electron content in the topside ionosphere with a small decrease in the F peak concentration of the layer with a small increase in TEC along the line-of-sight. Analysis of F2 peak frequency variation shows that observed peak-to-peak values of TEC perturbation equal to 0.4 and 1 TECU correspond to the values of ΔN/N equal to 13% and 28%. The need for further research is evident.

  11. A Geometry-Based Cycle Slip Detection and Repair Method with Time-Differenced Carrier Phase (TDCP for a Single Frequency Global Position System (GPS + BeiDou Navigation Satellite System (BDS Receiver

    Directory of Open Access Journals (Sweden)

    Chuang Qian

    2016-12-01

    Full Text Available As the field of high-precision applications based on carriers continues to expand, the development of low-cost, small, modular receivers and their application in diverse scenarios and situations with complex data quality has increased the requirements of carrier-phase data preprocessing. A new geometry-based cycle slip detection and repair method based on Global Position System (GPS + BeiDou Navigation Satellite System (BDS is proposed. The method uses a Time-differenced Carrier Phase (TDCP model, which eliminates the Inner-System Bias (ISB between GPS and BDS, and it is conducive to the effective combination of GPS and BDS. It avoids the interference of the noise of the pseudo-range with cycle slip detection, while the cycle slips are preserved as integers. This method does not limit the receiver frequency number, and it is applicable to single-frequency data. The process is divided into two steps to detect and repair cycle slip. The first step is cycle slip detection, using the Improved Local Analysis Method (ILAM to find satellites that have cycle slips; The second step is to repair the cycle slips, including estimating the float solution of changes in ambiguities at the satellites that have cycle slips with the least squares method and the integer solution of the cycle slips by rounding. In the process of rounding, in addition to the success probability, a decimal test is carried out to validate the result. Finally, experiments with filed test data are carried out to prove the effectiveness of this method. The results show that the detectable cycle slips number with GPS + BDS is much greater than that with GPS. The method can also detect the non-integer outliers while fixing the cycle slip. The maximum decimal bias in repair is less than that with GPS. It implies that this method takes full advantages of multi-system.

  12. A new local GPS water vapor tomography imaging technique using spectral functions w.r.t space and time: initial tests and results for the Tahiti Island case (French Polynesia)

    Science.gov (United States)

    Sichoix, L.; Barriot, J.; Fadil, A.; Ortega, P.

    2009-12-01

    In this study, we present the initial tests and validation results performed on a newly-developed GPS water vapor tomography inversion code based on a spectral approach tailored to coarse networks of GPS stations. Our work is mainly motivated by the lack of dense GPS coverage in Tahiti Island. Firstly, we use the GAMIT software to estimate the tropospheric slant wet delays (SWD) from a single GPS ground-based receiver to each visible satellite. SWD values are our model input. Secondly, the refractivity along ray paths is written as 3D Zernike radial and spherical harmonic series as well as sinusoidal time series and then inserted into the Radon transform linking slant delays and refractivity. This approach is in contrast with usual previous approaches where the atmosphere is divided into voxels (3D pixels). These approaches may exhibit instabilities as a voxel is crossed by more than one ray. Thirdly, we overcome the ill-posedness of the Radon transform by adding a priori constraints in the form of a full covariance matrix of the atmospheric refractivity taking into account the transport and mixing processes in the atmosphere.

  13. GPS-based satellite tracking system for precise positioning

    Science.gov (United States)

    Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.

    1985-01-01

    NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.

  14. Exploring the Limits of High Altitude GPS for Future Lunar Missions

    Science.gov (United States)

    Ashman, Benjamin W.; Parker, Joel J. K.; Bauer, Frank H.; Esswein, Michael

    2018-01-01

    An increasing number of spacecraft are relying on the Global Positioning System (GPS) for navigation at altitudes near or above the GPS constellation itself - the region known as the Space Service Volume (SSV). While the formal definition of the SSV ends at geostationary altitude, the practical limit of high-altitude space usage is not known, and recent missions have demonstrated that signal availability is sufficient for operational navigation at altitudes halfway to the moon. This paper presents simulation results based on a high-fidelity model of the GPS constellation, calibrated and validated through comparisons of simulated GPS signal availability and strength with flight data from recent high-altitude missions including the Geostationary Operational Environmental Satellite 16 (GOES-16) and the Magnetospheric Multiscale (MMS) mission. This improved model is applied to the transfer to a lunar near-rectilinear halo orbit (NRHO) of the class being considered for the international Deep Space Gateway concept. The number of GPS signals visible and their received signal strengths are presented as a function of receiver altitude in order to explore the practical upper limit of high-altitude space usage of GPS.

  15. First light from a kilometer-baseline Scintillation Auroral GPS Array.

    Science.gov (United States)

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-05-28

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.

  16. Advancing Technology: GPS and GIS Outreach Training for Agricultural Producers

    Science.gov (United States)

    Flynn, Allison; Arnold, Shannon

    2010-01-01

    The use of the Global Positioning System (GPS) and Global Information Systems (GIS) has made significant impacts on agricultural production practices. However, constant changes in the technologies require continuing educational updates. The outreach program described here introduces the operation, use, and applications of GPS receivers and GIS…

  17. How and Why to Do VLBI on GPS

    Science.gov (United States)

    Dickey, J. M.

    2010-01-01

    In order to establish the position of the center of mass of the Earth in the International Celestial Reference Frame, observations of the Global Positioning Satellite (GPS) constellation using the IVS network are important. With a good frame-tie between the coordinates of the IVS telescopes and nearby GPS receivers, plus a common local oscillator reference signal, it should be possible to observe and record simultaneously signals from the astrometric calibration sources and the GPS satellites. The standard IVS solution would give the atmospheric delay and clock offsets to use in analysis of the GPS data. Correlation of the GPS signals would then give accurate orbital parameters of the satellites in the ICRF reference frame, i.e., relative to the positions of the astrometric sources. This is particularly needed to determine motion of the center of mass of the earth along the rotation axis.

  18. GPS Time Synchronization in School-Network Cosmic Ray Detectors

    Science.gov (United States)

    Berns, H.-G.; Burnett, T. H.; Gran, R.; Wilkes, R. J.

    2004-06-01

    The QuarkNet DAQ card for school-network cosmic ray detectors provides a low-cost alternative to using standard particle and nuclear physics fast pulse electronics modules. The board, which can be produced at a cost of less than $500.00 (USD), produces trigger time and pulse edge time data for 2- to 4-fold coincidence levels via a universal RS232 serial port interface, usable with any PC. Individual detector stations, each consisting of four scintillation counter modules, front-end electronics, and a GPS receiver, produce a stream of data in form of ASCII text strings in identifiable set of formats for different functions. The card includes a low-cost GPS receiver module, which permits time-stamping event triggers to about 50 nanosecond accuracy in UTC between widely separated sites. The technique used for obtaining precise GPS time employs the 1PPS signal, which is not normally available to users of the commercial GPS module. We had the stock model slightly custom-modified to access this signal. The method for deriving time values was adapted from methods developed for the K2K long-baseline neutrino experiment. Performance of the low-cost GPS module used is compared to that of a more expensive unit with known quality.

  19. Measuring Snow Liquid Water Content with Low-Cost GPS Receivers

    Science.gov (United States)

    Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram

    2014-01-01

    The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements. PMID:25384007

  20. Measuring Snow Liquid Water Content with Low-Cost GPS Receivers

    Directory of Open Access Journals (Sweden)

    Franziska Koch

    2014-11-01

    Full Text Available The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS. For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0 and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements.

  1. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    Science.gov (United States)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    This paper describes the development as well as the on-ground and the in-flight evaluation of a low cost Global Positioning System (GPS) system for real-time tracking of sounding rockets. The flight unit comprises a modified ORION GPS receiver and a newly designed switchable antenna system composed of a helical antenna in the rocket tip and a dual-blade antenna combination attached to the body of the service module. Aside from the flight hardware a PC based terminal program has been developed to monitor the GPS data and graphically displays the rocket's path during the flight. In addition an Instantaneous Impact Point (IIP) prediction is performed based on the received position and velocity information. In preparation for ESA's Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, Kiruna, on 19 Feb. 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. In addition to the ORION receiver, an Ashtech G12 HDMA receiver and a BAE (Canadian Marconi) Allstar receiver, both connected to a wrap-around antenna, have been flown on the same rocket as part of an independent experiment provided by the Goddard Space Flight Center. This allows an in-depth verification and trade-off of different receiver and antenna concepts.

  2. A Bridge Deflection Monitoring with GPS

    Science.gov (United States)

    Figurski, M.; Gałuszkiewicz, M.; Wrona, M.

    2007-01-01

    This paper introduces results of investigation carried on by The Applied Geomatics Section in Military University of Technology. Research includes possibilities of monitoring dynamic behavior of a bridge using high rate GPS data. Whole event was executed with collaboration of The Road and Bridge Management and The Warsaw Geodesy Company. Interdisciplinary approach with this project allows authors to get reliable information about investigating constructions and their respond for true traffic loading detected by GPS receivers. Way of compute data and used software (TRACK) are also shown in this paper.

  3. A Robust High-Performance GPS L1 Receiver with Single-stage Quadrature Redio-Frequency Circuit

    Science.gov (United States)

    Liu, Jianghua; Xu, Weilin; Wan, Qinq; Liu, Tianci

    2018-03-01

    A low power current reuse single-stage quadrature raido-frequency part (SQRF) is proposed for GPS L1 receiver in 180nm CMOS process. The proposed circuit consists of LNA, Mixer, QVCO, is called the QLMV cell. A two blocks stacked topology is adopted in this design. The parallel QVCO and mixer placed on the top forms the upper stacked block, and the LNA placed on the bottom forms the other stacked block. The two blocks share the current and achieve low power performance. To improve the stability, a float current source is proposed. The float current isolated the local oscillation signal and the input RF signal, which bring the whole circuit robust high-performance. The result shows conversion gain is 34 dB, noise figure is three dB, the phase noise is -110 dBc/Hz at 1MHz and IIP3 is -20 dBm. The proposed circuit dissipated 1.7mW with 1 V supply voltage.

  4. Relationships between GPS-signal propagation errors and EISCAT observations

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    1996-12-01

    Full Text Available When travelling through the ionosphere the signals of space-based radio navigation systems such as the Global Positioning System (GPS are subject to modifications in amplitude, phase and polarization. In particular, phase changes due to refraction lead to propagation errors of up to 50 m for single-frequency GPS users. If both the L1 and the L2 frequencies transmitted by the GPS satellites are measured, first-order range error contributions of the ionosphere can be determined and removed by difference methods. The ionospheric contribution is proportional to the total electron content (TEC along the ray path between satellite and receiver. Using about ten European GPS receiving stations of the International GPS Service for Geodynamics (IGS, the TEC over Europe is estimated within the geographic ranges -20°≤ λ ≤40°E and 32.5°≤ Φ ≤70°N in longitude and latitude, respectively. The derived TEC maps over Europe contribute to the study of horizontal coupling and transport proces- ses during significant ionospheric events. Due to their comprehensive information about the high-latitude ionosphere, EISCAT observations may help to study the influence of ionospheric phenomena upon propagation errors in GPS navigation systems. Since there are still some accuracy limiting problems to be solved in TEC determination using GPS, data comparison of TEC with vertical electron density profiles derived from EISCAT observations is valuable to enhance the accuracy of propagation-error estimations. This is evident both for absolute TEC calibration as well as for the conversion of ray-path-related observations to vertical TEC. The combination of EISCAT data and GPS-derived TEC data enables a better understanding of large-scale ionospheric processes.

  5. GPS tomography tests for DInSAR applications on Mt. Etna

    Directory of Open Access Journals (Sweden)

    Massimo Aranzulla

    2015-07-01

    Full Text Available Tropospheric artifacts of SAR images in a volcanic area like Mt. Etna cause ambiguity in the interpretation of deformations with such technique. It would be useful to measure the delay caused by tropospheric anomalies in synthetic aperture radar (SAR satellite signals (phase of the back-scattered radar wave that could be interpreted as deformation. From the delay estimated through the GPS data processing, the tropospheric tomography of electromagnetic waves refractivity, has been performed using the SIMULps12 software. The aim of this study was to perform software synthetic tests by using SIMULps12 applied to atmospheric tomography and to verify the influence of the different GPS geodetic network configurations on obtaining a reliable tomography. Three different anomalies of increasing complexity have been investigated in order to understand the representative parameters of a correct tomography, the best spatial resolution and the portions of space in which the tomography is reliable. The tests also focused on fixing/establishing the a-priori atmospheric model and the critical values of the main parameters involved in the tomographic inversion. To this end, we made a random choice of two days, necessary to define the tomographic problem. Three different network configurations with 15, 30 and 90 GPS receivers were studied. The results indicate that the well-resolved area of tomographic images increases with the number of GPS receivers not linearly, and that the actual GPS network of 42 receivers is capable of revealing/detecting the atmospheric anomalies.

  6. GPs and end of life decisions : views and experiences

    OpenAIRE

    Abela, Jurgen

    2015-01-01

    The views and experiences of GPs with respect to end of life (EoL) care are seldom addressed. The aim of this article is to better understand this aspect of care. A cross-sectional survey of all doctors in the country was designed and set up. The overall response was 396 (39.7%), 160 of which were GPs. 28.7% of GPs received no formal training in palliative medicine. 89.8% of respondents declared that their religion was important in EoL care. 45.3% agreed with the right of a patient to decide ...

  7. Operational aspects of CASA UNO '88-The first large scale international GPS geodetic network

    Science.gov (United States)

    Neilan, Ruth E.; Dixon, T. H.; Meehan, Thomas K.; Melbourne, William G.; Scheid, John A.; Kellogg, J. N.; Stowell, J. L.

    1989-01-01

    For three weeks, from January 18 to February 5, 1988, scientists and engineers from 13 countries and 30 international agencies and institutions cooperated in the most extensive GPS (Global Positioning System) field campaign, and the largest geodynamics experiment, in the world to date. This collaborative eperiment concentrated GPS receivers in Central and South America. The predicted rates of motions are on the order of 5-10 cm/yr. Global coverage of GPS observations spanned 220 deg of longitude and 125 deg of latitude using a total of 43 GPS receivers. The experiment was the first civilian effort at implementing an extended international GPS satellite tracking network. Covariance analyses incorporating the extended tracking network predicted significant improvement in precise orbit determination, allowing accurate long-baseline geodesy in the science areas.

  8. A New Velocity Field from a Dense GPS Array in the Southernmost Longitudinal Valley, Southeastern Taiwan

    Directory of Open Access Journals (Sweden)

    Horng-Yue Chen

    2013-01-01

    Full Text Available In the southernmost Longitudinal Valley (LV, Taiwan, we analyzed a dense GPS array composed of 10 continuous stations and 86 campaign-mode stations. By removing the effects of the four major earthquakes (one regional and three local occurred during the 1992 - 2010 observation period, we derived a new horizontal velocity field in this area, which then allows better locating the surface traces of the major active faults, including the Longitudinal Valley Fault (LVF system and the Central Range Fault, and characterizing the slip behaviors along the faults. Note that LVF reveals two sub-parallel strands in the study area: the Luyeh Fault to the west and the Lichi Fault to the east. Based on the results of strain analyses, including dilatation and shear strain, and projected vectors of station velocities across the major faults, we came to the following geological interpretations. During the inter-seismic periods, the surface deformation of the southernmost LV is mainly accommodated by the faulting on the two branches of the LVF; there is very little surface deformation on the Central Range Fault. The Luyeh River appears to act as a boundary to divide the LVF to behave differently to its northern and southern sides. The Lichi Fault reveals a change of slip kinematics from an oblique shearing/thrusting in the north to a nearly pure shearing with minor extension to the south. Regarding the slip behavior of the Luyeh Fault, it exhibits a creeping behavior in the north and a partially near-surface-locked faulting behavior in the south. We interpret that the two strands of the LVF merge together in the northern Taitung alluvial plain and turns to E-W trend toward the offshore area.

  9. 75 FR 8928 - Announcement of IS-GPS-200, IS-GPS-705, IS-GPS-800 Interface Control Working Group (ICWG...

    Science.gov (United States)

    2010-02-26

    ... DEPARTMENT OF DEFENSE Department of the Air Force Announcement of IS-GPS-200, IS-GPS-705, IS-GPS... document/s IS-GPS-200E (NAVSTAR GPS Space Segment/Navigation User Interfaces), IS-GPS-705A (NAVSTAR GPS Space Segment/User Segment L5 Interfaces), and IS-GPS-800A (NAVSTAR GPS Space Segment/User Segment L1C...

  10. GPS phase scintillation and auroral electrojet currents during geomagnetic storms of March 17, 2013 and 2015

    DEFF Research Database (Denmark)

    Prikryl, P.; Ghoddousi-Fard, R.; Viljanen, A.

    2017-01-01

    in the context of solar wind coupling to the magnetosphere-ionosphere system. Phase scintillation is observed at high latitudes by arrays of high-rate GNSS Ionospheric Scintillation and TEC Monitors (GISTMs) and geodetic-quality GPS receivers sampling at 1 Hz. The high-rate GPS receivers are distributed...... in the northern and in the southern high latitudes with sparser coverage. In addition to GPS receivers, the high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including HF radars, ionosondes, riometers, magnetometers, optical imagers as well as particle detectors and ultraviolet...

  11. USGS earthquake hazards program (EHP) GPS use case : earthquake early warning (EEW) and shake alert

    Science.gov (United States)

    2017-03-30

    GPS Adjacent Band Workshop VI RTCA Inc., Washington D.C., 30 March 2017. USGS GPS receiver use case - Real-Time GPS for EEW -Continued: CRITICAL EFFECT - The GNSS component of the Shake Alert system augments the inertial sensors and is especial...

  12. Evaluation of Mobile Phone Interference With Aircraft GPS Navigation Systems

    Science.gov (United States)

    Pace, Scott; Oria, A. J.; Guckian, Paul; Nguyen, Truong X.

    2004-01-01

    This report compiles and analyzes tests that were conducted to measure cell phone spurious emissions in the Global Positioning System (GPS) radio frequency band that could affect the navigation system of an aircraft. The cell phone in question had, as reported to the FAA (Federal Aviation Administration), caused interference to several GPS receivers on-board a small single engine aircraft despite being compliant with data filed at the time with the FCC by the manufacturer. NASA (National Aeronautics and Space Administration) and industry tests show that while there is an emission in the 1575 MHz GPS band due to a specific combination of amplifier output impedance and load impedance that induces instability in the power amplifier, these spurious emissions (i.e., not the intentional transmit signal) are similar to those measured on non-intentionally transmitting devices such as, for example, laptop computers. Additional testing on a wide sample of different commercial cell phones did not result in any emission in the 1575 MHz GPS Band above the noise floor of the measurement receiver.

  13. On the feasibility to integrate low-cost MEMS accelerometers and GNSS receivers

    Science.gov (United States)

    Benedetti, Elisa; Dermanis, Athanasios; Crespi, Mattia

    2017-06-01

    The aim of this research was to investigate the feasibility of merging the benefits offered by low-cost GNSS and MEMS accelerometers technology, in order to promote the diffusion of low-cost monitoring solutions. A merging approach was set up at the level of the combination of kinematic results (velocities and displacements) coming from the two kinds of sensors, whose observations were separately processed, following to the so called loose integration, which sounds much more simple and flexible thinking about the possibility of an easy change of the combined sensors. At first, the issues related to the difference in reference systems, time systems and measurement rate and epochs for the two sensors were faced with. An approach was designed and tested to transform into unique reference and time systems the outcomes from GPS and MEMS and to interpolate the usually (much) more dense MEMS observation to common (GPS) epochs. The proposed approach was limited to time-independent (constant) orientation of the MEMS reference system with respect to the GPS one. Then, a data fusion approach based on the use of Discrete Fourier Transform and cubic splines interpolation was proposed both for velocities and displacements: MEMS and GPS derived solutions are firstly separated by a rectangular filter in spectral domain, and secondly back-transformed and combined through a cubic spline interpolation. Accuracies around 5 mm for slow and fast displacements and better than 2 mm/s for velocities were assessed. The obtained solution paves the way to a powerful and appealing use of low-cost single frequency GNSS receivers and MEMS accelerometers for structural and ground monitoring applications. Some additional remarks and prospects for future investigations complete the paper.

  14. Evaluating GPS biologging technology for studying spatial ecology of large constricting snakes

    Science.gov (United States)

    Smith, Brian; Hart, Kristen M.; Mazzotti, Frank J.; Basille, Mathieu; Romagosa, Christina M.

    2018-01-01

    Background: GPS telemetry has revolutionized the study of animal spatial ecology in the last two decades. Until recently, it has mainly been deployed on large mammals and birds, but the technology is rapidly becoming miniaturized, and applications in diverse taxa are becoming possible. Large constricting snakes are top predators in their ecosystems, and accordingly they are often a management priority, whether their populations are threatened or invasive. Fine-scale GPS tracking datasets could greatly improve our ability to understand and manage these snakes, but the ability of this new technology to deliver high-quality data in this system is unproven. In order to evaluate GPS technology in large constrictors, we GPS-tagged 13 Burmese pythons (Python bivittatus) in Everglades National Park and deployed an additional 7 GPS tags on stationary platforms to evaluate habitat-driven biases in GPS locations. Both python and test platform GPS tags were programmed to attempt a GPS fix every 90 min.Results: While overall fix rates for the tagged pythons were low (18.1%), we were still able to obtain an average of 14.5 locations/animal/week, a large improvement over once-weekly VHF tracking. We found overall accuracy and precision to be very good (mean accuracy = 7.3 m, mean precision = 12.9 m), but a very few imprecise locations were still recorded (0.2% of locations with precision > 1.0 km). We found that dense vegetation did decrease fix rate, but we concluded that the low observed fix rate was also due to python microhabitat selection underground or underwater. Half of our recovered pythons were either missing their tag or the tag had malfunctioned, resulting in no data being recovered.Conclusions: GPS biologging technology is a promising tool for obtaining frequent, accurate, and precise locations of large constricting snakes. We recommend future studies couple GPS telemetry with frequent VHF locations in order to reduce bias and limit the impact of catastrophic

  15. Comparison of GLONASS and GPS time transfers between two west European time laboratories and VNIIFTRI

    Science.gov (United States)

    Daly, P.; Koshelyaevsky, N. B.; Lewandowski, Wlodzimierz; Petit, Gerard; Thomas, Claudine

    1992-01-01

    The University of Leeds built a Global Positioning System/Global Orbiting Navigation Satellite System (GPS/GLONASS) receiver about five years ago and since then has provided continuous information about GLONASS time and its comparison with GPS time. For the last two years, VNIIFTRI (All Union Institute for Physical, Technical and Radiotechnical Measurements) and some other Soviet time laboratories have used Soviet built GLONASS navigation receivers for time comparisons. Since June 1991, VNIIFTIR has been operating a GPS time receiver on loan from the BIPM (Bureau International des Poids et Mesures). This offered, for the first time, an opportunity for direct comparison of time transfers using GPS and GLONASS. This experiment shows that even with relatively imprecise data recording and processing, in terms of time metrology, GLONASS can provide continental time transfer at a level of several tens of nanoseconds.

  16. IMPELEMENTASI SISTEM PEMANTAUAN OBJEK BERGERAK DENGAN MEMANFAATKAN FREKUENSI RADIO MENGGUNAKAN GPS (GLOBAL POSITIONING SYSTEM

    Directory of Open Access Journals (Sweden)

    Budi Triandi

    2010-05-01

    Full Text Available GPS was developed by the United States Department of Defense as a reliable means for accurate navigation. The system provides highly accurate position and velocity information and precise time on a continuous global basis to an unlimited number of properly equipped users. By using combined GPS receiver and microcontroller together with radio system, we can design a monitoring system for our vehicles and display the result on the computer. This system consists of a master module that transmits and receives signals from computer and two slave modules to collect GPS data from vehicles. The result of experiment shows that this system is able to track the vehicle on digital map with accuracy as high as 95%.Keywords: GPS, microcontroller, monitoring, RF

  17. Performance Analysis of Constrained Loosely Coupled GPS/INS Integration Solutions

    Directory of Open Access Journals (Sweden)

    Fabio Dovis

    2012-11-01

    Full Text Available The paper investigates approaches for loosely coupled GPS/INS integration. Error performance is calculated using a reference trajectory. A performance improvement can be obtained by exploiting additional map information (for example, a road boundary. A constrained solution has been developed and its performance compared with an unconstrained one. The case of GPS outages is also investigated showing how a Kalman filter that operates on the last received GPS position and velocity measurements provides a performance benefit. Results are obtained by means of simulation studies and real data.

  18. Evolution of offshore wind waves tracked by surface drifters with a point-positioning GPS sensor

    Science.gov (United States)

    Komatsu, K.

    2009-12-01

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, momentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious disasters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal regions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and direction sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the

  19. Rail inspection system based on iGPS

    Science.gov (United States)

    Fu, Xiaoyan; Wang, Mulan; Wen, Xiuping

    2018-05-01

    Track parameters include gauge, super elevation, cross level and so on, which could be calculated through the three-dimensional coordinates of the track. The rail inspection system based on iGPS (indoor/infrared GPS) was composed of base station, receiver, rail inspection frame, wireless communication unit, display and control unit and data processing unit. With the continuous movement of the inspection frame, the system could accurately inspect the coordinates of rail; realize the intelligent detection and precision measurement. According to principle of angle intersection measurement, the inspection model was structured, and detection process was given.

  20. Dynamic Deformation of ETNA Volcano Observed by GPS and SAR Interferometry

    Science.gov (United States)

    Lundgren, P.; Rosen, P.; Webb, F.; Tesauro, M.; Lanari, R.; Sansosi, E.; Puglisi, G.; Bonforte, A.; Coltelli, M.

    1999-01-01

    Synthetic aperture radar (SAR) interferometry and GPS have shown that during the quiescent period from 1993-1995 Mt. Etna volcano, Italy, inflated. Since the initiation of eruptive activity since late 1995 the deformation has been more contentious. We will explore the detailed deformation during the period from 1995-1996 spanning the late stages of inflation and the beginning of eruptive activity. We use SAR interferometry and GPS data to measure the volcano deformation. We invert the observed deformation for both simple point source. le crack elastic sources or if warranted for a spheroidal pressure So In particular, we will examine the evolution of the inflation and the transition to a lesser deflation observed at the end of 1995. We use ERS-1/2 SAR data from both ascending and descending passes to allow for dense temporal 'sampling of the deformation and to allow us to critically assess atmospheric noise. Preliminary results from interferometry suggest that the inflation rate accelerated prior to resumption of activity in 1995, while GPS data suggest a more steady inflation with some fluctuation following the start of activity. This study will compare and contrast the interferometric SAR and GPS results and will address the strengths and weaknesses of each technique towards volcano deformation studies.

  1. A Forward GPS Multipath Simulator Based on the Vegetation Radiative Transfer Equation Model.

    Science.gov (United States)

    Wu, Xuerui; Jin, Shuanggen; Xia, Junming

    2017-06-05

    Global Navigation Satellite Systems (GNSS) have been widely used in navigation, positioning and timing. Nowadays, the multipath errors may be re-utilized for the remote sensing of geophysical parameters (soil moisture, vegetation and snow depth), i.e., GPS-Multipath Reflectometry (GPS-MR). However, bistatic scattering properties and the relation between GPS observables and geophysical parameters are not clear, e.g., vegetation. In this paper, a new element on bistatic scattering properties of vegetation is incorporated into the traditional GPS-MR model. This new element is the first-order radiative transfer equation model. The new forward GPS multipath simulator is able to explicitly link the vegetation parameters with GPS multipath observables (signal-to-noise-ratio (SNR), code pseudorange and carrier phase observables). The trunk layer and its corresponding scattering mechanisms are ignored since GPS-MR is not suitable for high forest monitoring due to the coherence of direct and reflected signals. Based on this new model, the developed simulator can present how the GPS signals (L1 and L2 carrier frequencies, C/A, P(Y) and L2C modulations) are transmitted (scattered and absorbed) through vegetation medium and received by GPS receivers. Simulation results show that the wheat will decrease the amplitudes of GPS multipath observables (SNR, phase and code), if we increase the vegetation moisture contents or the scatters sizes (stem or leaf). Although the Specular-Ground component dominates the total specular scattering, vegetation covered ground soil moisture has almost no effects on the final multipath signatures. Our simulated results are consistent with previous results for environmental parameter detections by GPS-MR.

  2. Equipamento microprocessado para geração de sinal de correção diferencial, em tempo real, para GPS Microprocessor-based equipment for real time generation of differential GPS correction signal

    Directory of Open Access Journals (Sweden)

    Thales C. B. Lima

    2006-08-01

    Full Text Available Este trabalho apresenta o desenvolvimento de um equipamento microprocessado, de baixo custo, para geração de sinal de correção diferencial para GPS, em tempo real, e configuração e supervisão do receptor GPS base. O equipamento desenvolvido possui um microcontrolador dedicado, display alfanumérico, teclado multifunção para configuração e operação do sistema e interfaces de comunicação. O circuito eletrônico do equipamento tem a função de receber as informações do GPS base e interpretá-las, transformando-as numa sentença no protocolo RTCM SC-104. O software do microcontrolador é responsável pela conversão do sinal recebido pelo GPS base, do formato proprietário para o protocolo RTCM SC-104. A placa processadora principal possui duas interfaces seriais padrão RS-232C. Uma delas tem a função de configuração e leitura das informações geradas pelo receptor GPS base. A outra atua somente como saída, enviando o sinal de correção diferencial. O projeto do equipamento microprocessado mostrou que é possível a construção de uma estação privada para a geração do sinal de correção diferencial, de baixo custo.This work presents the development of low cost microprocessor-based equipment for generation of differential GPS correction signal, in real time, and configuration and supervision of the GPS base. The developed equipment contains a dedicated microcontroller connected to the GPS receiver, alphanumeric display and multifunction keyboard for configuration and operation of the system and communication interfaces. The electronic circuit has the function of receiving the information from GPS base; interpret them, converting the sentence in the RTCM SC-104 protocol. The microcontroller software makes the conversion of the signal received by the GPS base from the specific format to RTCM SC-104 protocol. The processing main board has two serials RS-232C standard interfaces. One of them is used for configuration and

  3. Remote landslide mapping using a laser rangefinder binocular and GPS

    Directory of Open Access Journals (Sweden)

    M. Santangelo

    2010-12-01

    Full Text Available We tested a high-quality laser rangefinder binocular coupled with a GPS receiver connected to a Tablet PC running dedicated software to help recognize and map in the field recent rainfall-induced landslides. The system was tested in the period between March and April 2010, in the Monte Castello di Vibio area, Umbria, Central Italy. To test the equipment, we measured thirteen slope failures that were mapped previously during a visual reconnaissance field campaign conducted in February and March 2010. For reference, four slope failures were also mapped by walking the GPS receiver along the landslide perimeter. Comparison of the different mappings revealed that the geographical information obtained remotely for each landslide by the rangefinder binocular and GPS was comparable to the information obtained by walking the GPS around the landslide perimeter, and was superior to the information obtained through the visual reconnaissance mapping. Although our tests were not exhaustive, we maintain that the system is effective to map recent rainfall induced landslides in the field, and we foresee the possibility of using the same (or similar system to map landslides, and other geomorphological features, in other areas.

  4. Design of DGPS Receiver Based on the Net of VRS

    Directory of Open Access Journals (Sweden)

    Yun XU

    2014-02-01

    Full Text Available To improve the positioning accuracy of the GPS system, the differential technology based on real time kinematic is utilized. Comparing with the conventional differential technology, the differential technology based on the virtual reference station can minimize the size of the rover station which is of great significance for the small system such as the mini-type unmanned vehicle, smart ammunitions and so on. Due to the high cost of the GPS receivers in the market which can’t be redeveloped and the limitation of their interface, it is not suitable for the application of the embedded system. In this paper, the receiver based on the aforementioned method is proposed to realize the real time differential positioning. Firstly, the concept of differential positioning based on real time kinematic is explained. Next, the composition of the virtual reference system and its working principle are introduced. And then, the design of differential GPS receiver based on the virtual reference system for rover station is illustrated. Finally, from the repeatability test, the result shows that by means of getting the differential corrections from the virtual reference station, the designed differential GPS receiver can correct the errors caused by ionosphere, troposphere and atmospheric refraction. Moreover, it can improve the positioning accuracy to centimeter-level. With low cost, small size and convertibility of the interface of the designed differential GPS receiver according to the embedded system, it will be popular in the future market.

  5. FPGA-based real-time embedded system for RISS/GPS integrated navigation.

    Science.gov (United States)

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.

  6. Where on Earth am I? Don't Worry,. GPS Satellites will Guide you ...

    Indian Academy of Sciences (India)

    ordinate frame shown is the reference frame used by GPS, it is called earth .... the satellite clock offsets five monitoring stations are spread over the earth ..... (P 2) GPS receiver for armoured vehicles (on the right is auxiliary display). ( P 3) GPS ...

  7. Towards 10(exp 9) GPS geodesy: Vector baselines, Earth rotation and reference frames

    Science.gov (United States)

    Schutz, Bob E.

    1994-01-01

    Effort during the period form January 1, 1993 to December 31, 1993 were in the following areas: GPS orbit accuracy assessments and efforts to improve the accuracy; analysis and effects of GPS receiver antenna phase center variation; analysis of global GPS data being collected for the IGS campaign; and analysis of regional (south west Pacific) campaign data. A brief summary of each of the above activities is presented.

  8. Global Three-Dimensional Ionospheric Data Assimilation Model Using Ground-based GPS and Radio Occultation Total Electron Content

    Science.gov (United States)

    Jann-Yenq Liu, Tiger; Lin, Chi-Yen; Matsuo, Tomoko; Lin, Charles C. H.; Tsai, Ho-Fang; Chen, Chao-Yen

    2017-04-01

    An ionospheric data assimilation approach presented here is based on the Gauss-Markov Kalman filter with International Reference Ionosphere (IRI) as the background model and designed to assimilate the total electron content (TEC) observed from ground-based GPS receivers and space-based radio occultation (RO) of FORMOSAT-3/COSMIC (F3/C) or FORMOSAT-7/COSMIC-2 (F7/C2). The Kalman filter consists of the forecast step according to Gauss-Markov process and measurement update step. Observing System Simulation Experiments (OSSEs) show that the Gauss-Markov Kalman filter procedure can increase the accuracy of the data assimilation analysis over the procedure consisting of the measurement update step alone. Moreover, in comparing to F3/C, the dense F7/C2 RO observation can further increase the model accuracy significantly. Validating the data assimilation results with the vertical TEC in Global Ionosphere Maps and that derived from ground-based GPS measurements, as well as the ionospheric F2-peak height and electron density sounded by ionosondes is also carried out. Both the OSSE results and the observation validations confirm that the developed data assimilation model can be used to reconstruct the three-dimensional electron density in the ionosphere satisfactorily.

  9. Integrated navigation of aerial robot for GPS and GPS-denied environment

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Min, Hongkyu; Nonami, Kenzo; Wada, Tetsuya

    2016-01-01

    In this study, novel robust navigation system for aerial robot in GPS and GPS- denied environments is proposed. Generally, the aerial robot uses position and velocity information from Global Positioning System (GPS) for guidance and control. However, GPS could not be used in several environments, for example, GPS has huge error near buildings and trees, indoor, and so on. In such GPS-denied environment, Laser Detection and Ranging (LIDER) sensor based navigation system have generally been used. However, LIDER sensor also has an weakness, and it could not be used in the open outdoor environment where GPS could be used. Therefore, it is desired to develop the integrated navigation system which is seamlessly applied to GPS and GPS-denied environments. In this paper, the integrated navigation system for aerial robot using GPS and LIDER is developed. The navigation system is designed based on Extended Kalman Filter, and the effectiveness of the developed system is verified by numerical simulation and experiment. (paper)

  10. GPS Navigation Above 76,000 km for the MMS Mission

    Science.gov (United States)

    Winternitz, Luke; Bamford, Bill; Price, Samuel; Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2016-01-01

    NASA's MMS mission, launched in March of 2015,consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12and 25 Earth radii in the first and second phases of the mission. Navigation for MMS is achieved independently onboard each spacecraft by processing GPS observables using NASA GSFC's Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents the culmination of over a decade of high-altitude GPS navigation research and development at NASA GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data. We extrapolate these results to predict performance in the Phase 2b mission orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  11. Uav Onboard Photogrammetry and GPS Positionning for Earthworks

    Science.gov (United States)

    Daakir, M.; Pierrot-Deseilligny, M.; Bosser, P.; Pichard, F.; Thom, C.

    2015-08-01

    Over the last decade, Unmanned Airbone Vehicles (UAVs) have been largely used for civil applications. Airborne photogrammetry has found place in these applications not only for 3D modeling but also as a measurement tool. Vinci-Construction-Terrassement is a private company specialized in public works sector and uses airborn photogrammetry as a mapping solution and metrology investigation tool on its sites. This technology is very efficient for the calculation of stock volumes for instance, or for time tracking of specific areas with risk of landslides. The aim of the present work is to perform a direct georeferencing of images acquired by the camera leaning on an embedded GPS receiver. UAV, GPS receiver and camera used are low-cost models and therefore data processing is adapted to this particular constraint.

  12. GPS Composite Clock Analysis

    OpenAIRE

    Wright, James R.

    2008-01-01

    The GPS composite clock defines GPS time, the timescale used today in GPS operations. GPS time is illuminated by examination of its role in the complete estimation and control problem relative to UTC/TAI. The phase of each GPS clock is unobservable from GPS pseudorange measurements, and the mean phase of the GPS clock ensemble (GPS time) is unobservable. A new and useful observability definition is presented, together with new observability theorems, to demonstrate explicitly that GPS time is...

  13. Characteristics of offshore extreme wind-waves detected by surface drifters with a low-cost GPS wave sensor

    Science.gov (United States)

    Komatsu, Kosei

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by

  14. Design of complete software GPS signal simulator with low complexity and precise multipath channel model

    Directory of Open Access Journals (Sweden)

    G. Arul Elango

    2016-09-01

    Full Text Available The need for GPS data simulators have become important due to the tremendous growth in the design of versatile GPS receivers. Commercial hardware and software based GPS simulators are expensive and time consuming. In this work, a low cost simple novel GPS L1 signal simulator is designed for testing and evaluating the performance of software GPS receiver in a laboratory environment. A typical real time paradigm, similar to actual satellite derived GPS signal is created on a computer generated scenario. In this paper, a GPS software simulator is proposed that may offer a lot of analysis and testing flexibility to the researchers and developers as it is totally software based primarily running on a laptop/personal computer without the requirement of any hardware. The proposed GPS simulator allows provision for re-configurability and test repeatability and is developed in VC++ platform to minimize the simulation time. It also incorporates Rayleigh multipath channel fading model under non-line of sight (NLOS conditions. In this work, to efficiently design the simulator, several Rayleigh fading models viz. Inverse Discrete Fourier Transform (IDFT, Filtering White Gaussian Noise (FWFN and modified Sum of Sinusoidal (SOS simulators are tested and compared in terms of accuracy of its first and second order statistical metrics, execution time and the later one is found to be as the best appropriate Rayleigh multipath model suitable for incorporating with GPS simulator. The fading model written in ‘MATLAB’ engine has been linked with software GPS simulator module enable to test GPS receiver’s functionality in different fading environments.

  15. Jason-1 and Jason-2 POD Using GPS

    Science.gov (United States)

    Melachroinos, Stavros; Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.; Beckley, Brian D.

    2012-01-01

    The Jason-2 satellite, launched in June 2008, is the latest follow-on to the successful Jason-1 altimetry satellite mission launched in December 7, 2001. Both, Jason-2 and Jason-1 are equipped with a GPS dual-frequency receiver, a laser retroreflector array, and a DORIS receiver for precise orbit determination (POD). A series of dynamic and reduced-dynamic Jason-2 orbits computed at NASA GSFC, based on GPS-only data and the std0905 standards, have been completed till cy74through cycle 74 using the IGS05 framework. These orbits, now publicly available, have been shown to agree radially at 1 cm RMS with the GSFC std0905 SLR/DORIS orbits and in comparison with orbits produced by JPL, ESA and CNES. In this paper, we describe the implementation of the IGS08 and repro1 framework for the Jason-2 and Jason-1 GPS POD processing with the NASA GSFC GEODYN software. . In our updated GPS POD, ambiguity fixing and updated time variable and static gravity fields. We also evaluate the implementation of non-tidal and degree-1 loading displacement as forward modeling to the tracking stations. Reduced-dynamic versus dynamic orbit differences are used to characterize the remaining force model errors and TRF instability. In particular, we assess their consistency radially and the stability of the altimeter satellite reference frame in the North/South direction as a proxy to assess the consistency of the reference frame.

  16. Comparison of two-way satellite time transfer and GPS common-view time transfer between OCA and TUG

    Science.gov (United States)

    Kirchner, Dieter; Thyr, U.; Ressler, H.; Robnik, R.; Grudler, P.; Baumont, Francoise S.; Veillet, Christian; Lewandowski, Wlodzimierz W.; Hanson, W.; Clements, A.

    1992-01-01

    For about one year the time scales UTC(OCA) and UTC(TUG) were compared by means of GPS and two-way satellite time transfer. At the end of the experiment both links were independently 'calibrated' by measuring the differential delays of the GPS receivers and of the satellite earth stations by transportation of a GPS receiver and of one of the satellite terminals. The results obtained by both methods differ by about 3 ns, but reveal a seasonal variation of about 8 ns peak-to-peak which is likely the result of a temperature-dependence of the delays of the GPS receivers used. For the comparison of both methods the stabilities of the timescales are of great importance. Unfortunately, during the last three months of the experiment a less stable clock had to be used for the generation of UTC(TUG).

  17. GPS & Galileo. Friendly Foes?

    Science.gov (United States)

    2007-04-01

    some of their data, others employ different techniques. United States defense contractor Lockheed Martin developed an anti-jam GPS receiver in 2000 for...Europe in a New Generation of Satellite Navigation Services,” European Commission (9 Feb 1999): 16. 25. Ibid. 26. Anne Jolis , “Problems Run Rampant...European Outer Space,” Euro Topics (19 March 2007), found at http://www.eurotopics.net/en/presseschau/archiv/archiv_dossier/DOSSIER15435. 40. Jolis

  18. Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area

    OpenAIRE

    Krzysztof Bikonis; Jerzy Demkowicz

    2013-01-01

    The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS) is still relatively poor due to the large inertial sensor errors. The c...

  19. USGS Menlo Park GPS Data Processing Techniques and Derived North America Velocity Field (Invited)

    Science.gov (United States)

    Svarc, J. L.; Murray-Moraleda, J. R.; Langbein, J. O.

    2010-12-01

    The U.S. Geological Survey in Menlo Park routinely conducts repeated GPS surveys of geodetic markers throughout the western United States using dual-frequency geodetic GPS receivers. We combine campaign, continuous, and semi-permanent data to present a North America fixed velocity field for regions in the western United States. Mobile campaign-based surveys require less up-front investment than permanently monumented and telemetered GPS systems, and hence have achieved a broad and dense spatial coverage. The greater flexibility and mobility comes at the cost of greater uncertainties in individual daily position solutions. We also routinely process continuous GPS data collected at PBO stations operated by UNAVCO along with data from other continuous GPS networks such as BARD, PANGA, and CORS operated by other agencies. We have broken the Western US into several subnetworks containing approximately 150-250 stations each. The data are processed using JPL’s GIPSY-OASIS II release 5.0 software using a modified precise positioning strategy (Zumberge and others, 1997). We use the “ambizap” code provided by Geoff Blewitt (Blewitt, 2008) to fix phase ambiguities in continuous networks. To mitigate the effect of common mode noise we use the positions of stations in the network with very long, clean time series (i.e. those with no large outliers or offsets) to transform all position estimates into “regionally filtered” results following the approach of Hammond and Thatcher (2007). Velocity uncertainties from continuously operated GPS stations tend to be about 3 times smaller than those from campaign data. Langbein (2004) presents a maximum likelihood method for fitting a time series employing a variety of temporal noise models. We assume that GPS observations are contaminated by a combination of white, flicker, and random walk noise. For continuous and semi-permanent time series longer than 2 years we estimate these values, otherwise we fix the amplitudes of these

  20. Android App Based Vehicle Tracking Using GPS And GSM

    Directory of Open Access Journals (Sweden)

    Jessica Saini

    2017-09-01

    Full Text Available Global Positioning System GPS is used in numerous applications in todays world. A real time vehicle tracking system using the GPS technology is proposed in this paper. The project Android App based Vehicle Tracking Using GSM AND GPRS mainly focuses in tracking the location of the vehicle on which the device has been installed. It will then send the data in the form of latitude and longitude coordinates through SMS on the users mobile where the coordinates will be plotted in the Android app automatically. Initially the GPS installed in the device takes input from the satellite and stores it in the microcontrollers buffer. In order to track the vehicle the mobile user has to call on the SIM number that is registered in the GSM module of the device. Once the call is received the device authenticates the calling number. If authenticated the location of the vehicle is sent to the registered mobile number in the form of SMS. After sending the message the GSM is deactivated and the GPS is activated again. The coordinates of the location received in the SMS can be viewed on the android app. The hardware part described in the paper comprises of GPRS GSM module LCD to view the coordinates ATMega Microcontroller MAX 232 Arduino RS232 and relay.

  1. Dynamic accuracy of GPS receivers for use in health research: a novel method to assess GPS accuracy in real-world settings

    DEFF Research Database (Denmark)

    Schipperijn, Jasper; Kerr, Jacqueline; Duncan, Scott

    2014-01-01

    . For each trip, we calculated the percentage that actually fell within the lane polygon, and within the 2.5, 5, and 10 m buffers respectively, as well as the mean and median error in meters. Our results showed that 49.6% of all ≈68,000 GPS points fell within 2.5 m of the expected location, 78.7% fell within...

  2. Influence of Ephemeris Error on GPS Single Point Positioning Accuracy

    Science.gov (United States)

    Lihua, Ma; Wang, Meng

    2013-09-01

    The Global Positioning System (GPS) user makes use of the navigation message transmitted from GPS satellites to achieve its location. Because the receiver uses the satellite's location in position calculations, an ephemeris error, a difference between the expected and actual orbital position of a GPS satellite, reduces user accuracy. The influence extent is decided by the precision of broadcast ephemeris from the control station upload. Simulation analysis with the Yuma almanac show that maximum positioning error exists in the case where the ephemeris error is along the line-of-sight (LOS) direction. Meanwhile, the error is dependent on the relationship between the observer and spatial constellation at some time period.

  3. Evaluation of Refractivity Profiles from CHAMP and SAC-C GPS Radio Occultation

    Science.gov (United States)

    Poli, Paul; Ao, Chi On; Joiner, Joanna; delaTorreJuarez, Manuel; Hoff, Raymond

    2002-01-01

    The GeoForschungsZentrum's Challenging Minisatellite Payload for Geophysical Research and Application (CHAMP, Germany-US) and the Comision Nacional de Actividades Especiales' Satelite de Aplicaciones Cientificas-C (SAC-C, Argentina-US) missions are the first missions to carry a second-generation Blackjack Global Positioning System (GPS) receiver. One of the new features of this receiver is its ability to sense the lower troposphere closer to the surface than the proof-of-concept GPS Meteorology experiment (GPS/MET). Since their launch, CHAMP and SAC-C have collected thousands of GPS radio occultations, representing a wealth of measurements available for data assimilation and Numerical Weather Prediction (NWP). In order to evaluate the refractivity data derived by the Jet Propulsion Laboratory (JPL) from raw radio occultation measurements, we use Data Assimilation Office (DAO) 6-hour forecasts as an independent state of the atmosphere. We compare CHAMP and SAC-C refractivity (processed by JPL) with refractivity calculated from the DAO global fields of temperature, water vapor content and humidity. We show statistics of the differences as well as histograms of the differences.

  4. GNSS Software Receiver for UAVs

    DEFF Research Database (Denmark)

    Olesen, Daniel Madelung; Jakobsen, Jakob; von Benzon, Hans-Henrik

    2016-01-01

    This paper describes the current activities of GPS/GNSS Software receiver development at DTU Space. GNSS Software receivers have received a great deal of attention in the last two decades and numerous implementations have already been presented. DTU Space has just recently started development of ...... of our own GNSS software-receiver targeted for mini UAV applications, and we will in in this paper present our current progress and briefly discuss the benefits of Software Receivers in relation to our research interests....

  5. Integrating GPS with Dead Reckoning Sensors

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2000-01-01

    A vehicle positioning system comprising a GPS receiver, a digital compass, and an odometer was tested on a 2.8-km stretch in Aalborg, Denmark. The system, which merges observations from the three instruments using a Kalman filter, has an update rate of 1 Hz and is intended for use in both urban a...

  6. Inversion of GPS meteorology data

    Directory of Open Access Journals (Sweden)

    K. Hocke

    Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically

  7. Combining GPS measurements and IRI model predictions

    International Nuclear Information System (INIS)

    Hernandez-Pajares, M.; Juan, J.M.; Sanz, J.; Bilitza, D.

    2002-01-01

    The free electrons distributed in the ionosphere (between one hundred and thousands of km in height) produce a frequency-dependent effect on Global Positioning System (GPS) signals: a delay in the pseudo-orange and an advance in the carrier phase. These effects are proportional to the columnar electron density between the satellite and receiver, i.e. the integrated electron density along the ray path. Global ionospheric TEC (total electron content) maps can be obtained with GPS data from a network of ground IGS (international GPS service) reference stations with an accuracy of few TEC units. The comparison with the TOPEX TEC, mainly measured over the oceans far from the IGS stations, shows a mean bias and standard deviation of about 2 and 5 TECUs respectively. The discrepancies between the STEC predictions and the observed values show an RMS typically below 5 TECUs (which also includes the alignment code noise). he existence of a growing database 2-hourly global TEC maps and with resolution of 5x2.5 degrees in longitude and latitude can be used to improve the IRI prediction capability of the TEC. When the IRI predictions and the GPS estimations are compared for a three month period around the Solar Maximum, they are in good agreement for middle latitudes. An over-determination of IRI TEC has been found at the extreme latitudes, the IRI predictions being, typically two times higher than the GPS estimations. Finally, local fits of the IRI model can be done by tuning the SSN from STEC GPS observations

  8. Soil Moisture Retrieval Based on GPS Signal Strength Attenuation

    Directory of Open Access Journals (Sweden)

    Franziska Koch

    2016-07-01

    Full Text Available Soil moisture (SM is a highly relevant variable for agriculture, the emergence of floods and a key variable in the global energy and water cycle. In the last years, several satellite missions have been launched especially to derive large-scale products of the SM dynamics on the Earth. However, in situ validation data are often scarce. We developed a new method to retrieve SM of bare soil from measurements of low-cost GPS (Global Positioning System sensors that receive the freely available GPS L1-band signals. The experimental setup of three GPS sensors was installed at a bare soil field at the German Weather Service (DWD in Munich for almost 1.5 years. Two GPS antennas were installed within the soil column at a depth of 10 cm and one above the soil. SM was successfully retrieved based on GPS signal strength losses through the integral soil volume. The results show high agreement with measured and modelled SM validation data. Due to its non-destructive, cheap and low power setup, GPS sensor networks could also be used for potential applications in remote areas, aiming to serve as satellite validation data and to support the fields of agriculture, water supply, flood forecasting and climate change.

  9. Combined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities

    Science.gov (United States)

    Pan, Lin; Cai, Changsheng; Santerre, Rock; Zhu, Jianjun

    2014-01-01

    Precise point positioning (PPP) technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs) are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA) in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM) is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF). All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF. PMID:25237901

  10. Combined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities

    Directory of Open Access Journals (Sweden)

    Lin Pan

    2014-09-01

    Full Text Available Precise point positioning (PPP technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF. All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF.

  11. Ionospheric correction for spaceborne single-frequency GPS based ...

    Indian Academy of Sciences (India)

    The Klobuchar model was used to compute ionospheric delays for the dlft station, and .... dual-frequency GPS receivers; therefore, the iono- ... The mapping function is defined as the ratio of .... eter in the processing of an extended set of single.

  12. A harmonic analysis approach to joint inversion of P-receiver functions and wave dispersion data in high dense seismic profiles

    Science.gov (United States)

    Molina-Aguilera, A.; Mancilla, F. D. L.; Julià, J.; Morales, J.

    2017-12-01

    Joint inversion techniques of P-receiver functions and wave dispersion data implicitly assume an isotropic radial stratified earth. The conventional approach invert stacked radial component receiver functions from different back-azimuths to obtain a laterally homogeneous single-velocity model. However, in the presence of strong lateral heterogeneities as anisotropic layers and/or dipping interfaces, receiver functions are considerably perturbed and both the radial and transverse components exhibit back azimuthal dependences. Harmonic analysis methods exploit these azimuthal periodicities to separate the effects due to the isotropic flat-layered structure from those effects caused by lateral heterogeneities. We implement a harmonic analysis method based on radial and transverse receiver functions components and carry out a synthetic study to illuminate the capabilities of the method in isolating the isotropic flat-layered part of receiver functions and constrain the geometry and strength of lateral heterogeneities. The independent of the baz P receiver function are jointly inverted with phase and group dispersion curves using a linearized inversion procedure. We apply this approach to high dense seismic profiles ( 2 km inter-station distance, see figure) located in the central Betics (western Mediterranean region), a region which has experienced complex geodynamic processes and exhibit strong variations in Moho topography. The technique presented here is robust and can be applied systematically to construct a 3-D model of the crust and uppermost mantle across large networks.

  13. Status of Precise Orbit Determination for Jason-2 Using GPS

    Science.gov (United States)

    Melachroinos, S.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Pavlis, D. E.

    2011-01-01

    The JASON-2 satellite, launched in June 2008, is the latest follow-on to the successful TOPEX/Poseidon (T/P) and JASON-I altimetry missions. JASON-2 is equipped with a TRSR Blackjack GPS dual-frequency receiver, a laser retroreflector array, and a DORIS receiver for precise orbit determination (POD). The most recent time series of orbits computed at NASA GSFC, based on SLR/DORIS data have been completed using both ITRF2005 and ITRF2008. These orbits have been shown to agree radially at 1 cm RMS for dynamic vs SLRlDORIS reduced-dynamic orbits and in comparison with orbits produced by other analysis centers (Lemoine et al., 2010; Zelensky et al., 2010; Cerri et al., 2010). We have recently upgraded the GEODYN software to implement model improvements for GPS processing. We describe the implementation of IGS standards to the Jason2 GEODYN GPS processing, and other dynamical and measurement model improvements. Our GPS-only JASON-2 orbit accuracy is assessed using a number of tests including analysis of independent SLR and altimeter crossover residuals, orbit overlap differences, and direct comparison to orbits generated at GSFC using SLR and DORIS tracking, and to orbits generated externally at other centers. Tests based on SLR and the altimeter crossover residuals provide the best performance indicator for independent validation of the NASAlGSFC GPS-only reduced dynamic orbits. For the ITRF2005 and ITRF2008 implementation of our GPS-only obits we are using the IGS05 and IGS08 standards. Reduced dynamic versus dynamic orbit differences are used to characterize the remaining force model error and TRF instability. We evaluate the GPS vs SLR & DORIS orbits produced using the GEODYN software and assess in particular their consistency radially and the stability of the altimeter satellite reference frame in the Z direction for both ITRF2005 and ITRF2008 as a proxy to assess the consistency of the reference frame for altimeter satellite POD.

  14. VEHICLE TRACKING AND MONITORING SYSTEM USING GPS AND GSM/GPRS.

    OpenAIRE

    *Arsheen Barnagarwala, *Aziz Buriwala

    2017-01-01

    Abstract: This system offers an affordable and compact design implemented for tracking and monitoring vehicle’s Instantaneous speed, peak speed, distance and current location with the help of Global Positioning System (GPS) and Global System for Mobile Communication (GSM). The system consist of two parts, one is ambulatory and incorporated in the target vehicle which comprises of a GPS receiver, a microcontroller and a GSM modem with periphery display and power units. Other is stable at a rem...

  15. A Demonstration of GPS Landslide Monitoring Using Online Positioning User Service (OPUS)

    Science.gov (United States)

    Wang, G.

    2011-12-01

    Global Positioning System (GPS) technologies have been frequently applied to landslide study, both as a complement, and as an alternative to conventional surveying methods. However, most applications of GPS for landslide monitoring have been limited to the academic community for research purposes. High-accuracy GPS has not been widely equipped in geotechnical companies and used by technicians. The main issue that limits the applications of GPS in the practice of high-accuracy landslide monitoring is the complexity of GPS data processing. This study demonstrated an approach using the Online Positioning User Service (OPUS) (http://www.ngs.noaa.gov/OPUS) provided by the National Geodetic Survey (NGS) of National Oceanic and Atmospheric Administration (NOAA) to process GPS data and conduct long-term landslide monitoring in the Puerto Rico and Virgin Islands Region. Continuous GPS data collected at a creeping landslide site during two years were used to evaluate different scenarios for landslide surveying: continuous or campaign, long duration or short duration, morning or afternoon (different weather conditions). OPUS uses Continuously Operating Reference Station (CORS) managed by NGS (http://www.ngs.noaa.giv/CORS/) as references and user data as a rover to solve a position. There are 19 CORS permanent GPS stations in the Puerto Rico and Virgin Islands region. The dense GPS network provides a precise and reliable reference frame for subcentimeter-accuracy landslide monitoring in this region. Our criterion for the accuracy was the root-mean-square (RMS) of OPUS solutions over a 2-year period with respect to true landslide displacement time series overt the same period. The true landslide displacements were derived from a single-baseline (130 m) GPS processing by using 24-hour continuous data. If continuous GPS surveying is performed in the field, then OPUS static processing can provide 0.6 cm horizontal and 1.1 cm vertical precision with few outliers. If repeated

  16. Capturing Postseismic Processes of the 2016 Mw 7.1 Kumamoto Earthquake, Japan, Using Dense, Continuous GPS and Short-repeat Time ALOS-2 InSAR Data: Implications for the Shallow Slip Deficit Problem

    Science.gov (United States)

    Milliner, C. W. D.; Burgmann, R.; Wang, T.; Inbal, A.; Bekaert, D. P.; Liang, C.; Fielding, E. J.

    2017-12-01

    Separating the contribution of shallow coseismic slip from rapidly decaying, postseismic afterslip in surface rupturing events has been difficult to resolve due to the typically sparse configuration of GPS networks and long-repeat time of InSAR acquisitions. Whether shallow fault motion along surface ruptures is a result of coseismic slip, or largely a product of rapid afterslip occurring within the first minutes to days, has significant implications for our understanding of the mechanics and frictional behavior of faulting in the shallow crust. To test this behavior in the case of a major surface rupturing event, we attempt to quantify the co- and postseismic slip of the 2016 Mw 7.1 Kumamoto earthquake sequence using a dense and continuous GPS network ( 10 km spacing), with short-repeat time, ALOS-2 InSAR data. Using the Network Inversion Filter method, we jointly invert the GPS and InSAR data to obtain a time history of afterslip in the first minutes to months following the mainshock. From our initial results, we find no clear evidence of significant shallow afterslip (i.e., no observable slip > 30 cm at depths of changes related to poroelastic processes, the majority of shallow fault slip was largely complete after rupture cessation. We also attempt to improve our coseismic slip model by implementing a method that inverts changes in seismicity rates for coseismic slip, helping constrain parts of the model space at depth where geodetic data loses resolving power. The use of geodetic data with the ability to resolve near-field, coseismic deformation and rapidly decaying postseismic processes will aid in our understanding of the frictional properties of shallow faulting, giving more reliable predictions for ground motion simulations and seismic hazard assessments.

  17. Newly velocity field of Sulawesi Island from GPS observation

    Science.gov (United States)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    Sulawesi microplate Island is located at famous triple junction area of the Eurasian, India-Australian, and Philippine Sea plates. Under the influence of the northward moving Australian plate and the westward motion of the Philippine plate, the island at Eastern part of Indonesia is collide and with the Eurasian plate and Sunda Block. Those recent microplate tectonic motions can be quantitatively determine by GNSS-GPS measurement. We use combine GNSS-GPS observation types (campaign type and continuous type) from 1997 to 2015 to derive newly velocity field of the area. Several strategies are applied and tested to get the optimum result, and finally we choose regional strategy to reduce error propagation contribution from global multi baseline processing using GAMIT/GLOBK 10.5. Velocity field are analyzed in global reference frame ITRF 2008 and local reference frame by fixing with respect alternatively to Eurasian plate - Sunda block, India-Australian plate and Philippine Sea plates. Newly results show dense distribution of velocity field. This information is useful for tectonic deformation studying in geospatial era.

  18. GPS phase scintillation at high latitudes during the geomagnetic storm of 17-18 March 2015

    DEFF Research Database (Denmark)

    Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J. M.

    2016-01-01

    The geomagnetic storm of 17–18 March 2015 was caused by the impacts of a coronal mass ejection and a high-speed plasma stream from a coronal hole. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers......, and magnetometers. The phase scintillation index is computed for signals sampled at a rate of up to 100 Hz by specialized GPS scintillation receivers supplemented by the phase scintillation proxy index obtained from geodetic-quality GPS data sampled at 1 Hz. In the context of solar wind coupling...... to the magnetosphere-ionosphere system, it is shown that GPS phase scintillation is primarily enhanced in the cusp, the tongue of ionization that is broken into patches drawn into the polar cap from the dayside storm-enhanced plasma density, and in the auroral oval. In this paper we examine the relation between...

  19. Kinematic GPS survey as validation of LIDAR strips accuracy

    Directory of Open Access Journals (Sweden)

    C. Gordini

    2006-06-01

    Full Text Available As a result of the catastrophic hydrogeological events which occurred in May 1998 in Campania, in the south of Italy, the distinctive features of airborne laser scanning mounted on a helicopter were used to survey the landslides at Sarno and Quindici. In order to survey the entire zone of interest, approximately 21 km2, it was necessary to scan 12 laser strips. Many problems arose during the survey: difficulties in receiving the GPS signal, complex terrain features and unfavorable atmospheric conditions. These problems were investigated and it emerged that one of the most influential factors is the quality of GPS signals. By analysing the original GPS data, the traces obtained by fixing phase ambiguity with an On The Fly (OTF algorithm were isolated from those with smoothed differential GPS solution (DGPS. Processing and analysis of laser data showed that not all the overlapping laser strips were congruent with each other. Since an external survey to verify the laser data accuracy was necessary, it was decided to utilize the kinematic GPS technique. The laser strips were subsequently adjusted, using the kinematic GPS data as reference points. Bearing in mind that in mountainous areas like the one studied here it is not possible to obtain nominal precision and accuracy, a good result was nevertheless obtained with a Digital Terrain Model (DTM of all the zones of interest.

  20. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    Science.gov (United States)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  1. GPS phase scintillation during the geomagnetic storm of March 17, 2015: The relation to auroral electrojet currents

    DEFF Research Database (Denmark)

    Prikryl, Paul; Ghoddousi-Fard, Reza; Connors, Martin

    and magnetometers. GPS phase scintillation index is computed for L1 signal sampled at the rate of 50 Hz by specialized GPS scintillation receivers of the Expanded Canadian High Arctic Ionospheric Network (ECHAIN). To further extend the geographic coverage, the phasescintillation proxy index is obtained from......Ionospheric irregularities cause rapid fluctuations of radio wave amplitude and phase that candegrade GPS positional accuracy and affect performance of radio communication and navigation systems. The ionosphere becomes particularly disturbed during geomagnetic storms caused by impacts of coronal...... mass ejections compounded by high-speed plasma streams from coronal holes. Geomagnetic storm of March 17, 2015 was the largest in the current solar cycle. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers...

  2. Near real-time GPS applications for tsunami early warning systems

    Directory of Open Access Journals (Sweden)

    C. Falck

    2010-02-01

    Full Text Available GPS (Global Positioning System technology is widely used for positioning applications. Many of them have high requirements with respect to precision, reliability or fast product delivery, but usually not all at the same time as it is the case for early warning applications. The tasks for the GPS-based components within the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009 are to support the determination of sea levels (measured onshore and offshore and to detect co-seismic land mass displacements with the lowest possible latency (design goal: first reliable results after 5 min. The completed system was designed to fulfil these tasks in near real-time, rather than for scientific research requirements. The obtained data products (movements of GPS antennas are supporting the warning process in different ways. The measurements from GPS instruments on buoys allow the earliest possible detection or confirmation of tsunami waves on the ocean. Onshore GPS measurements are made collocated with tide gauges or seismological stations and give information about co-seismic land mass movements as recorded, e.g., during the great Sumatra-Andaman earthquake of 2004 (Subarya et al., 2006. This information is important to separate tsunami-caused sea height movements from apparent sea height changes at tide gauge locations (sensor station movement and also as additional information about earthquakes' mechanisms, as this is an essential information to predict a tsunami (Sobolev et al., 2007.

    This article gives an end-to-end overview of the GITEWS GPS-component system, from the GPS sensors (GPS receiver with GPS antenna and auxiliary systems, either onshore or offshore to the early warning centre displays. We describe how the GPS sensors have been installed, how they are operated and the methods used to collect, transfer and process the GPS data in near real-time. This includes the sensor system design, the communication

  3. A method of estimating GPS instrumental biases with a convolution algorithm

    Science.gov (United States)

    Li, Qi; Ma, Guanyi; Lu, Weijun; Wan, Qingtao; Fan, Jiangtao; Wang, Xiaolan; Li, Jinghua; Li, Changhua

    2018-03-01

    This paper presents a method of deriving the instrumental differential code biases (DCBs) of GPS satellites and dual frequency receivers. Considering that the total electron content (TEC) varies smoothly over a small area, one ionospheric pierce point (IPP) and four more nearby IPPs were selected to build an equation with a convolution algorithm. In addition, unknown DCB parameters were arranged into a set of equations with GPS observations in a day unit by assuming that DCBs do not vary within a day. Then, the DCBs of satellites and receivers were determined by solving the equation set with the least-squares fitting technique. The performance of this method is examined by applying it to 361 days in 2014 using the observation data from 1311 GPS Earth Observation Network (GEONET) receivers. The result was crosswise-compared with the DCB estimated by the mesh method and the IONEX products from the Center for Orbit Determination in Europe (CODE). The DCB values derived by this method agree with those of the mesh method and the CODE products, with biases of 0.091 ns and 0.321 ns, respectively. The convolution method's accuracy and stability were quite good and showed improvements over the mesh method.

  4. Implementasi Sistem Pelacakan Kendaraan Bermotor Menggunakan Gps Dan Gprs Dengan Integrasi Googlemap

    Directory of Open Access Journals (Sweden)

    Yazid Dul Muchlisin

    2011-07-01

    Full Text Available Abstract— Vehicle tracking system using GPS and GPRS integration googlemap provide information that is maximized with the technology of GPS (Global Positioning System receiver which can indicate the position of the vehicle with the map and the ability of the appointment of direction and position coordinates (x, y or latitude, longitude textually and visual at any location. Vehicle tracking system is built using equipment GIS (Geographic Information System and dedicated to smartphones which support Global Positioning System (GPS, as well as portable computers, using General Packet Radio Service (GPRS as a connection to the internet. The hardware used is a smartphone that supports GPS with supporting tools used are GoogleMaps, Notepad + +, NetBeans IDE 6.5.1, Mysql, Java (J2ME, PHP, JavaScript. The results of this system in the form of tracking system capable of monitoring the movement of vehicles on an ongoing position by utilizing GPS and GPRS as the sender of the wireless data and Internet connections.   Keywords— GIS, GPS, GPRS, googlemaps, J2ME,

  5. Enhancing the accuracy of GPS point positioning by converting the single frequency data to dual frequency data

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2011-09-01

    Full Text Available The global positioning system (GPS has been used to support a wide variety of applications, such as high-accuracy positioning and navigation. Differential GPS techniques can largely eliminate common-mode errors between the reference and the rover GPS stations resulting from ionospheric and tropospheric refraction and delays, satellite and receiver clock biases, and orbital errors [1]. The ionospheric delay in the propagation of global positioning system (GPS signals is one of the main sources of error in GPS precise positioning and navigation. A dual-frequency GPS receiver can eliminate (to the first order the ionospheric delay through a linear combination of the L1 and L2 observations [2]. The most significant effect of ionospheric delay appear in case of using single frequency data. In this paper the single frequency data of concerned station are converted to dual frequency data by employing dual frequency data from 11 regional GPS stations distributed around it. Total electron content (TEC was calculated at every GPS station to produce the mathematical model of TEC which is a function of latitude (Φ and longitude (λ. By using this mathematical model the values of TEC and L2 can be predicted at the single frequency GPS station for each satellite, after that the comparison between predicted and observation values of TEC and L2 was performed. The estimation method and test results of the proposed method indicates that the difference between predicted and observation values is very small.

  6. A Usability Survey of GPS Avionics Equipment: Some Preliminary Findings

    National Research Council Canada - National Science Library

    Joseph, Kurt

    1999-01-01

    The rapid introduction of Global Positioning System (GPS) receivers for airborne navigation has outpaced the capacity of international aviation authorities to resolve human factors issues that concern safe and efficient use of such devices...

  7. Physical applications of GPS geodesy: a review.

    Science.gov (United States)

    Bock, Yehuda; Melgar, Diego

    2016-10-01

    Geodesy, the oldest science, has become an important discipline in the geosciences, in large part by enhancing Global Positioning System (GPS) capabilities over the last 35 years well beyond the satellite constellation's original design. The ability of GPS geodesy to estimate 3D positions with millimeter-level precision with respect to a global terrestrial reference frame has contributed to significant advances in geophysics, seismology, atmospheric science, hydrology, and natural hazard science. Monitoring the changes in the positions or trajectories of GPS instruments on the Earth's land and water surfaces, in the atmosphere, or in space, is important for both theory and applications, from an improved understanding of tectonic and magmatic processes to developing systems for mitigating the impact of natural hazards on society and the environment. Besides accurate positioning, all disturbances in the propagation of the transmitted GPS radio signals from satellite to receiver are mined for information, from troposphere and ionosphere delays for weather, climate, and natural hazard applications, to disturbances in the signals due to multipath reflections from the solid ground, water, and ice for environmental applications. We review the relevant concepts of geodetic theory, data analysis, and physical modeling for a myriad of processes at multiple spatial and temporal scales, and discuss the extensive global infrastructure that has been built to support GPS geodesy consisting of thousands of continuously operating stations. We also discuss the integration of heterogeneous and complementary data sets from geodesy, seismology, and geology, focusing on crustal deformation applications and early warning systems for natural hazards.

  8. Review of current GPS methodologies for producing accurate time series and their error sources

    Science.gov (United States)

    He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping

    2017-05-01

    The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e

  9. The use of GPS at IGN : Geodesy, geophysics, engineering

    Science.gov (United States)

    Boucher, Claude; Willis, Pascal

    The Institut Géographique National has purchased since 1985 four GPS receivers (TR5S from SERCEL, 5 channels, single frequency type). For research and production purpose, a specific software, called GDVS, was then developed. This software is now operational and has been used with success to process several GPS campaigns. Two major campaigns were performed in 1986 : one between France and England and the second one between France and Italy. One of the main topic of these campaigns was to connect tide gauges in the Channel area or in the Mediterranean Sea area, to a global reference frame.

  10. GPS Navigation for the Magnetospheric Multi-Scale Mission

    Science.gov (United States)

    Bamford, William; Mitchell, Jason; Southward, Michael; Baldwin, Philip; Winternitz, Luke; Heckler, Gregory; Kurichh, Rishi; Sirotzky, Steve

    2009-01-01

    In 2014. NASA is scheduled to launch the Magnetospheric Multiscale Mission (MMS), a four-satellite formation designed to monitor fluctuations in the Earth's magnetosphere. This mission has two planned phases with different orbits (1? x 12Re and 1.2 x 25Re) to allow for varying science regions of interest. To minimize ground resources and to mitigate the probability of collisions between formation members, an on-board orbit determination system consisting of a Global Positioning System (GPS) receiver and crosslink transceiver was desired. Candidate sensors would be required to acquire GPS signals both below and above the constellation while spinning at three revolutions-per-minute (RPM) and exchanging state and science information among the constellation. The Intersatellite Ranging and Alarm System (IRAS), developed by Goddard Space Flight Center (GSFC) was selected to meet this challenge. IRAS leverages the eight years of development GSFC has invested in the Navigator GPS receiver and its spacecraft communication expertise, culminating in a sensor capable of absolute and relative navigation as well as intersatellite communication. The Navigator is a state-of-the-art receiver designed to acquire and track weak GPS signals down to -147dBm. This innovation allows the receiver to track both the main lobe and the much weaker side lobe signals. The Navigator's four antenna inputs and 24 tracking channels, together with customized hardware and software, allow it to seamlessly maintain visibility while rotating. Additionally, an extended Kalman filter provides autonomous, near real-time, absolute state and time estimates. The Navigator made its maiden voyage on the Space Shuttle during the Hubble Servicing Mission, and is scheduled to fly on MMS as well as the Global Precipitation Measurement Mission (GPM). Additionally, Navigator's acquisition engine will be featured in the receiver being developed for the Orion vehicle. The crosslink transceiver is a 1/4 Watt transmitter

  11. Daily GPS-Derived Estimates Of Axis Of Rotation Of Earth

    Science.gov (United States)

    Lindqwister, Ulf J.; Blewitt, Geoffrey; Freedman, Adam

    1994-01-01

    Report describes study in which data gathered by worldwide network of 21 Global Positioning System (GPS) receivers during 3-week experiment in January and February 1991 used to estimate location of axis of rotation of Earth.

  12. Meteorological applications of a surface network of Global Positioning System receivers

    NARCIS (Netherlands)

    Haan, de S.

    2008-01-01

    This thesis presents meteorological applications of water vapour observations from a surface network of Global Positioning System (GPS) receivers. GPS signals are delayed by the atmo¬sphere due to atmospheric refraction and bending. Mapped to the zenith, this delay is called Zenith Total Delay

  13. Development of Real-Time Precise Positioning Algorithm Using GPS L1 Carrier Phase Data

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Joh

    2002-12-01

    Full Text Available We have developed Real-time Phase DAta Processor(RPDAP for GPS L1 carrier. And also, we tested the RPDAP's positioning accuracy compared with results of real time kinematic(RTK positioning. While quality of the conventional L1 RTK positioning highly depend on receiving condition, the RPDAP can gives more stable positioning result because of different set of common GPS satellites, which searched by elevation mask angle and signal strength. In this paper, we demonstrated characteristics of the RPDAP compared with the L1 RTK technique. And we discussed several improvement ways to apply the RPDAP to precise real-time positioning using low-cost GPS receiver. With correcting the discussed weak points in near future, the RPDAP will be used in the field of precise real-time application, such as precise car navigation and precise personal location services.

  14. Implementasi Sistem Pelacakan Kendaraan Bermotor Menggunakan Gps Dan Gprs Dengan Integrasi Googlemap

    OpenAIRE

    Yazid Dul Muchlisin; Jazi Eko Istiyanto

    2011-01-01

    Abstract— Vehicle tracking system using GPS and GPRS integration googlemap provide information that is maximized with the technology of GPS (Global Positioning System) receiver which can indicate the position of the vehicle with the map and the ability of the appointment of direction and position coordinates (x, y or latitude, longitude) textually and visual at any location. Vehicle tracking system is built using equipment GIS (Geographic Information System) and dedicated to smartphones which...

  15. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    Science.gov (United States)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  16. Design and implementation of the GPS subsystem for the Radio Aurora eXplorer

    Science.gov (United States)

    Spangelo, Sara C.; Bennett, Matthew W.; Meinzer, Daniel C.; Klesh, Andrew T.; Arlas, Jessica A.; Cutler, James W.

    2013-06-01

    This paper presents the design and implementation of the Global Positioning System (GPS) subsystem for the Radio Aurora eXplorer (RAX) CubeSat. The GPS subsystem provides accurate temporal and spatial information necessary to satisfy the science objectives of the RAX mission. There are many challenges in the successful design and implementation of a GPS subsystem for a CubeSat-based mission, including power, size, mass, and financial constraints. This paper presents an approach for selecting and testing the individual and integrated GPS subsystem components, including the receiver, antenna, low noise amplifier, and supporting circuitry. The procedures to numerically evaluate the GPS link budget and test the subsystem components at various stages of system integration are described. Performance results for simulated tests in the terrestrial and orbital environments are provided, including start-up times, carrier-to-noise ratios, and orbital position accuracy. Preliminary on-orbit GPS results from the RAX-1 and RAX-2 spacecraft are presented to validate the design process and pre-flight simulations. Overall, this paper provides a systematic approach to aid future satellite designers in implementing and verifying GPS subsystems for resource-constrained small satellites.

  17. Reduction Vehicle Speed Using GPS Android Smart Phone Programming

    Directory of Open Access Journals (Sweden)

    Sameer Sami Hassan

    2017-07-01

    Full Text Available Today the new generation of smart phone such as Samsung galaxy, Sony, Motorola, HTC is used to build smart applications that made the human life more comfortable and safe. The Android open source operating system with java programming language can be used to develop such applications. In this paper a new software application has been developed using Samsung, galaxy note smart phone to control the speed of vehicle using GPS and Android programming for such smart phone. By collecting the speed and location information from Global Position System (GPS receiver and using the global map application programming interface to determine the location nearby university, school and hospital in Baghdad city. The application will be check the speed of vehicle in zone of school, hospital and university using GPS information. If the speed over the limit the application produce sound alarm to reduce the speed to set up limit.

  18. Analysis of strong scintillation events by using GPS data at low latitudes

    Science.gov (United States)

    Forte, Biagio; Jakowski, Norbert; Wilken, Volker

    2010-05-01

    Drifting structures charaterised by inhomogeneities in the spatial electron density distribution at ionospheric heights originate scintillation of radio waves propagating through. The fractional electron density fluctuations and the corresponding scintillation levels may reach extreme values at low latitudes during high solar activity. Strong scintillation events have disruptive effects on a number of technological applications. In particular, operations and services based on GPS signals and receivers may experience severe disruption due to a significant degradation of the signal-to-noise ratio, eventually leading to signal loss of lock. Experimental scintillation data collected in the Asian sector at low latitudes by means of a GPS dual frequency receiver under moderate solar activity (2006) have been analysed. The GPS receiver is particularly modified in firmware in order to record power estimates on the C/A code as well as on the carriers L1 and L2. Strong scintillation activity is recorded in the post-sunset period (saturating S4 and SI as high as 20 dB). An overview of these events is presented, by taking into account scintillation impact on the signal intensity, phase, and dynamics. In particular, the interpretation of these events based on a refined scattering theory is provided with possible consequences for standard scintillation models.

  19. MULTI-GNSS RECEIVER FOR AEROSPACE NAVIGATION AND POSITIONING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    T. R. Peres

    2014-03-01

    Full Text Available The upcoming Galileo system opens a wide range of new opportunities in the Global Navigation Satellite System (GNSS market. However, the characteristics of the future GNSS signals require the development of new GNSS receivers. In the frame of the REAGE project, DEIMOS and ISEL have developed a GNSS receiver targeted for aerospace applications, supporting current and future GPS L1 and Galileo E1 signals, based on commercial (or, in the furthest extent, industrial grade components. Although the REAGE project aimed at space applications, the REAGE receiver is also applicable to many terrestrial applications (ground or airborne, such as Georeferencing and Unmanned Aerial Vehicle (UAV navigation. This paper presents the architecture and features of the REAGE receiver, as well as some results of the validation campaign with GPS L1 and Galileo E1 signals.

  20. Comparison of GPS and GLONASS Common-View Time Transfers

    Science.gov (United States)

    1992-12-01

    interest as an excellent additional source. For the past three years VNIIFTRI (Mendeleevo, Moscow Region, Russian Federation) and some other Russian time...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 comparisons. Since June 1991, VNIIFTRI has operated a commercial GPS time receiver on...loan from the BIPM. Since February 1992, the BIPM has operated Russian GLONASS receiver on loan from the VNIIFTRI . Thii provides, for the first time

  1. Tracking magma volume recovery at okmok volcano using GPS and an unscented kalman filter

    Science.gov (United States)

    Fournier, T.; Freymueller, Jeffrey T.; Cervelli, Peter

    2009-01-01

    Changes beneath a volcano can be observed through position changes in a GPS network, but distinguishing the source of site motion is not always straightforward. The records of continuous GPS sites provide a favorable data set for tracking magma migration. Dense campaign observations usually provide a better spatial picture of the overall deformation field, at the expense of an episodic temporal record. Combining these observations provides the best of both worlds. A Kalman filter provides a means for integrating discrete and continuous measurements and for interpreting subtle signals. The unscented Kalman filter (UKF) is a nonlinear method for time-dependent observations. We demonstrate the application of this technique to deformation data by applying it to GPS data collected at Okmok volcano. Seven years of GPS observations at Okmok are analyzed using a Mogi source model and the UKF. The deformation source at Okmok is relatively stable at 2.5 km depth below sea level, located beneath the center of the caldera, which means the surface deformation is caused by changes in the strength of the source. During the 7 years of GPS observations more than 0.5 m of uplift has occurred, a majority of that during the time period January 2003 to July 2004. The total volume recovery at Okmok since the last eruption in 1997 is ??60-80%. The UKF allows us to solve simultaneously for the time-dependence of the source strength and for the location without a priori information about the source. ?? 2009 by the American Geophysical Union.

  2. Kalman filter implementation for small satellites using constraint GPS data

    Science.gov (United States)

    Wesam, Elmahy M.; Zhang, Xiang; Lu, Zhengliang; Liao, Wenhe

    2017-06-01

    Due to the increased need for autonomy, an Extended Kalman Filter (EKF) has been designed to autonomously estimate the orbit using GPS data. A propagation step models the satellite dynamics as a two body with J2 (second zonal effect) perturbations being suitable for orbits in altitudes higher than 600 km. An onboard GPS receiver provides continuous measurement inputs. The continuity of measurements decreases the errors of the orbit determination algorithm. Power restrictions are imposed on small satellites in general and nanosatellites in particular. In cubesats, the GPS is forced to be shut down most of the mission’s life time. GPS is turned on when experiments like atmospheric ones are carried out and meter level accuracy for positioning is required. This accuracy can’t be obtained by other autonomous sensors like magnetometer and sun sensor as they provide kilometer level accuracy. Through simulation using Matlab and satellite tool kit (STK) the position accuracy is analyzed after imposing constrained conditions suitable for small satellites and a very tight one suitable for nanosatellite missions.

  3. Communication plan of GPS monitoring system based on the Internet

    Science.gov (United States)

    Xing, Xiangpeng; Liu, Zhenan; Bao, Yuanlu

    2005-11-01

    In GPS monitoring system, wireless communications network is necessary to keep base station in contact with mobile stations. Public communications network and personal communications network can't work well all the time. In this article, an economical communications network that can be competent for communication of GPS monitoring system is introduced. Personal communications network is used in this GPS monitoring system. In order to enlarge the coverage area and to expand the capacity of the personal communications network, the concept of cellular radio system is introduced. Because only the non-adjacent cells can use the same frequency channel, handoff of mobile station is extremely important when it goes in another cell. The mobile station of the system will know its own longitude and latitude by receiving data from GPS satellites all the time, so it can change its working frequency channel according to its position. Internet, instead of personal communication cable, is used to connect the base stations. So the communications network has the advantage of public communications network and personal one.

  4. Mapping the Coastline Limits of the Mexican State Sinaloa Using GPS

    Science.gov (United States)

    Vazquez, G. E.

    2007-12-01

    This research work presents the delimitation of the coastline limits of Sinaloa (one of the richest states of northwestern Mexico). In order to achieve this big task, it was required to use GPS (Global Positioning System) together with leveling spirit measurements. Based on the appropriate selection of the cited measurement techniques, the objective was to map the Sinaloa's state coastline to have the cartography of approximate 1600 km of littoral. The GPS measurements were performed and referred with respect to a GPS network located across the state. This GPS network consists of at least one first-order-site at each of the sixteen counties that constitute the state, and three to four second-order-sites of the ten counties of the state surrounded by sea. The leveling spirit measurements were referred to local benchmarks pre-established by the Mexican agency SEMARNAT (SEcretaría Del Medio Ambiente y Recursos NATurales). Within the main specifications of the GPS measurements and equipment, we used geodetic-dual-frequency GPS receivers in kinematic mode for both base stations (first and second order sites of the GPS state network) and rover stations (points forming the state littoral) with 5-sec log-rate interval and 10 deg cut-off angle. The GPS data processing was performed using the commercial software Trimble Geomatics Office (TGO) with Double Differences (DD) in post-processing mode. To this point, the field measurements had been totally covered including the cartography (scale 1:1000) and this includes the specifications and appropriate labeling according to the Mexican norm NOM-146-SEMARNAT-2005.

  5. On the Realistic Stochastic Model of GPS Observables: Implementation and Performance

    Science.gov (United States)

    Zangeneh-Nejad, F.; Amiri-Simkooei, A. R.; Sharifi, M. A.; Asgari, J.

    2015-12-01

    High-precision GPS positioning requires a realistic stochastic model of observables. A realistic GPS stochastic model of observables should take into account different variances for different observation types, correlations among different observables, the satellite elevation dependence of observables precision, and the temporal correlation of observables. Least-squares variance component estimation (LS-VCE) is applied to GPS observables using the geometry-based observation model (GBOM). To model the satellite elevation dependent of GPS observables precision, an exponential model depending on the elevation angles of the satellites are also employed. Temporal correlation of the GPS observables is modelled by using a first-order autoregressive noise model. An important step in the high-precision GPS positioning is double difference integer ambiguity resolution (IAR). The fraction or percentage of success among a number of integer ambiguity fixing is called the success rate. A realistic estimation of the GNSS observables covariance matrix plays an important role in the IAR. We consider the ambiguity resolution success rate for two cases, namely a nominal and a realistic stochastic model of the GPS observables using two GPS data sets collected by the Trimble R8 receiver. The results confirm that applying a more realistic stochastic model can significantly improve the IAR success rate on individual frequencies, either on L1 or on L2. An improvement of 20% was achieved to the empirical success rate results. The results also indicate that introducing the realistic stochastic model leads to a larger standard deviation for the baseline components by a factor of about 2.6 on the data sets considered.

  6. Evaluating the accuracy of GPS-based taxi trajectory records

    NARCIS (Netherlands)

    Zheng, Zhong; Rasouli, Soora; Timmermans, Harry

    2014-01-01

    Taxi data are an underused source of travel information. A handful of research has been concerned with the processing of raw taxi GPS data to minimize random error. The study of methods that systematically detect erroneous data has, however, received less attention. Generally, an origin and a

  7. Reduction in the ionospheric error for a single-frequency GPS timing solution using tomography

    Directory of Open Access Journals (Sweden)

    Cathryn N. Mitchell

    2009-06-01

    Full Text Available

    Abstract

    Single-frequency Global Positioning System (GPS receivers do not accurately compensate for the ionospheric delay imposed upon a GPS signal. They rely upon models to compensate for the ionosphere. This delay compensation can be improved by measuring it directly with a dual-frequency receiver, or by monitoring the ionosphere using real-time maps. This investigation uses a 4D tomographic algorithm, Multi Instrument Data Analysis System (MIDAS, to correct for the ionospheric delay and compares the results to existing single and dualfrequency techniques. Maps of the ionospheric electron density, across Europe, are produced by using data collected from a fixed network of dual-frequency GPS receivers. Single-frequency pseudorange observations are corrected by using the maps to find the excess propagation delay on the GPS L1 signals. Days during the solar maximum year 2002 and the October 2003 storm have been chosen to display results when the ionospheric delays are large and variable. Results that improve upon the use of existing ionospheric models are achieved by applying MIDAS to fixed and mobile single-frequency GPS timing solutions. The approach offers the potential for corrections to be broadcast over a local region, or provided via the internet and allows timing accuracies to within 10 ns to be achieved.



  8. Perancangan Dan Realisasi Sistem Transmisi Data GPS Menggunakan Teknologi SMS (Short Messaging Service) Sebagai Aplikasi Sistem Personal Tracking

    OpenAIRE

    DECY NATALIANA

    2013-01-01

    Abstrak Berprinsip pada pengembangan teknologi dan aplikasi dari sistem penjejakan posisi (tracking), maka dibuatlah sistem personal tracking dengan mentransmisikan data GPS (Global Positioning System) dengan menggunakan teknologi SMS (Short Messaging Service) pada jaringan GSM (Global System for Mobile Communications) sebagai media transmisinya.  Dengan sistem GPS akan diperoleh data garis lintang, serta garis bujur dari GPS receiver.  Data tersebut akan diteruskan oleh mikrokontroler untuk ...

  9. Indoor/Outdoor Seamless Positioning Using Lighting Tags and GPS Cellular Phones for Personal Navigation

    Science.gov (United States)

    Namie, Hiromune; Morishita, Hisashi

    The authors focused on the development of an indoor positioning system which is easy to use, portable and available for everyone. This system is capable of providing the correct position anywhere indoors, including onboard ships, and was invented in order to evaluate the availability of GPS indoors. Although the performance of GPS is superior outdoors, there has been considerable research regarding indoor GPS involving sensitive GPS, pseudolites (GPS pseudo satellite), RFID (Radio Frequency IDentification) tags, and wireless LAN .However, the positioning rate and the precision are not high enough for general use, which is the reason why these technologies have not yet spread to personal navigation systems. In this regard, the authors attempted to implement an indoor positioning system using cellular phones with built-in GPS and infrared light data communication functionality, which are widely used in Japan. GPS is becoming increasingly popular, where GPGGS sentences of the NMEA outputted from the GPS receiver provide spatiotemporal information including latitude, longitude, altitude, and time or ECEF xyz coordinates. As GPS applications grow rapidly, spatiotemporal data becomes key to the ubiquitous outdoor and indoor seamless positioning services at least for the entire area of Japan, as well as to becoming familiar with satellite positioning systems (e.g. GPS). Furthermore, the authors are also working on the idea of using PDAs (Personal Digital Assistants), as cellular phones with built-in GPS and PDA functionality are also becoming increasingly popular.

  10. Palliative care for patients with cancer: do patients receive the care they consider important? A survey study.

    Science.gov (United States)

    Heins, Marianne; Hofstede, Jolien; Rijken, Mieke; Korevaar, Joke; Donker, Gé; Francke, Anneke

    2018-04-17

    In many countries, GPs and home care nurses are involved in care for patients with advanced cancer. Given the varied and complex needs of these patients, providing satisfactory care is a major challenge for them. We therefore aimed to study which aspects of care patients, GPs and home care nurses consider important and whether patients receive these aspects. Seventy-two Dutch patients with advanced cancer, 87 GPs and 26 home care nurses rated the importance of support when experiencing symptoms, respect for patients' autonomy and information provision. Patients also rated whether they received these aspects. Questionnaires were based on the CQ index palliative care. Almost all patients rated information provision and respect for their autonomy as important. The majority also rated support when suffering from specific symptoms as important, especially support when in pain. In general, patients received the care they considered important. However, 49% of those who considered it important to receive support when suffering from fatigue and 23% of those who wanted to receive information on the expected course of their illness did not receive this or only did so sometimes. For most patients with advanced cancer, the palliative care that they receive matches what they consider important. Support for patients experiencing fatigue may need more attention. When symptoms are difficult to control, GPs and nurses may still provide emotional support and practical advice. Furthermore, we recommend that GPs discuss patients' need for information about the expected course of their illness.

  11. Assessment Study of Using Online (CSRS) GPS-PPP Service for Mapping Applications in Egypt

    Science.gov (United States)

    Abd-Elazeem, Mohamed; Farah, Ashraf; Farrag, Farrag

    2011-09-01

    Many applications in navigation, land surveying, land title definitions and mapping have been made simpler and more precise due to accessibility of Global Positioning System (GPS) data, and thus the demand for using advanced GPS techniques in surveying applications has become essential. The differential technique was the only source of accurate positioning for many years, and remained in use despite of its cost. The precise point positioning (PPP) technique is a viable alternative to the differential positioning method in which a user with a single receiver can attain positioning accuracy at the centimeter or decimeter scale. In recent years, many organizations introduced online (GPS-PPP) processing services capable of determining accurate geocentric positions using GPS observations. These services provide the user with receiver coordinates in free and unlimited access formats via the internet. This paper investigates the accuracy of the Canadian Spatial Reference System (CSRS) Precise Point Positioning (PPP) (CSRS-PPP) service supervised by the Geodetic Survey Division (GSD), Canada. Single frequency static GPS observations have been collected at three points covering time spans of 60, 90 and 120 minutes. These three observed sites form baselines of 1.6, 7, and 10 km, respectively. In order to assess the CSRS-PPP accuracy, the discrepancies between the CSRS-PPP estimates and the regular differential GPS solutions were computed. The obtained results illustrate that the PPP produces a horizontal error at the scale of a few decimeters; this is accurate enough to serve many mapping applications in developing countries with a savings in both cost and experienced labor.

  12. Implementation and Performance of a GPS/INS Tightly Coupled Assisted PLL Architecture Using MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Youssef Tawk

    2014-02-01

    Full Text Available The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS based on low-cost micro-electro-mechanical systems (MEMS inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone.

  13. Implementation and Performance of a GPS/INS Tightly Coupled Assisted PLL Architecture Using MEMS Inertial Sensors

    Science.gov (United States)

    Tawk, Youssef; Tomé, Phillip; Botteron, Cyril; Stebler, Yannick; Farine, Pierre-André

    2014-01-01

    The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS) based on low-cost micro-electro-mechanical systems (MEMS) inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL) architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone. PMID:24569773

  14. Development of GPS data remote retrieval system using wireless LAN

    Directory of Open Access Journals (Sweden)

    Koichiro Doi

    2012-11-01

    Full Text Available A remote retrieval system, using a wireless LAN, was developed to retrieve dual-frequency GPS data. The system consists of a ground observation unit (comprising a dual-frequency GPS logger and a data transmission unit and a data retrieval unit. In this system, we use the ZigBee communication protocol to transmit control commands (2.4 GHz, 250 Kbps and a wireless LAN communication to transmit GPS data (2.4 GHz, 54 Mbps. Data of every 30 seconds to transmit to the data retrieval unit are re-sampled from 1-second data at 00 UT each day. We conducted three data-transmission tests with the system: (1 a ground data retrieval test, (2 a data retrieval test from the atmosphere of a few hundred meters high using a small unmanned aircraft, and (3 actual GPS-data retrieval tests from a GPS buoy deployed on sea ice at Nisi-no-ura Cove, Syowa Station, Antarctica. In test (1, we successfully received all the data from the ground observation unit when situated at distances of less than 400 m from the data retrieval unit. In test (2, we obtained approximately 24.5 MB of data from the aircraft at heights of less than 250 m. In test (3, we obtained approximately 23.5 MB of data from the GPS buoy within 10 minutes. The proposed system has the advantage of enabling continuous measurements without aborting the measurement at the data retrievals.

  15. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    Science.gov (United States)

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  16. Ionospheric earthquake effects detection based on Total Electron Content (TEC) GPS Correlation

    Science.gov (United States)

    Sunardi, Bambang; Muslim, Buldan; Eka Sakya, Andi; Rohadi, Supriyanto; Sulastri; Murjaya, Jaya

    2018-03-01

    Advances in science and technology showed that ground-based GPS receiver was able to detect ionospheric Total Electron Content (TEC) disturbances caused by various natural phenomena such as earthquakes. One study of Tohoku (Japan) earthquake, March 11, 2011, magnitude M 9.0 showed TEC fluctuations observed from GPS observation network spread around the disaster area. This paper discussed the ionospheric earthquake effects detection using TEC GPS data. The case studies taken were Kebumen earthquake, January 25, 2014, magnitude M 6.2, Sumba earthquake, February 12, 2016, M 6.2 and Halmahera earthquake, February 17, 2016, M 6.1. TEC-GIM (Global Ionosphere Map) correlation methods for 31 days were used to monitor TEC anomaly in ionosphere. To ensure the geomagnetic disturbances due to solar activity, we also compare with Dst index in the same time window. The results showed anomalous ratio of correlation coefficient deviation to its standard deviation upon occurrences of Kebumen and Sumba earthquake, but not detected a similar anomaly for the Halmahera earthquake. It was needed a continous monitoring of TEC GPS data to detect the earthquake effects in ionosphere. This study giving hope in strengthening the earthquake effect early warning system using TEC GPS data. The method development of continuous TEC GPS observation derived from GPS observation network that already exists in Indonesia is needed to support earthquake effects early warning systems.

  17. New method of GPS orbit determination from GCPS network for the purpose of DOP calculations

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2012-06-01

    Full Text Available The accuracy of GPS measurement satisfies the requirements of some applications, but many applications require an improvement of GPS measurement accuracy. For precise positioning by GPS, it is necessary to perform GPS mission planning. The GPS mission planning is a pre-survey task in which the values of Dilution Of Precision (DOP should be predicted for the observation points, this task should determine the best observation periods which meet the project requirements. The main purpose of this work is to study a rather simple but still fairly accurate algorithm to determine the artificial satellite orbits for the purpose of DOP calculation. The orbit determination algorithm proposed in this paper is implemented by using several reference stations and calculated the orbits by new algorithm; inverse GPS. Inverse GPS means that reference stations are considered as satellites and satellite as receiver. This new algorithm used to calculate the satellite orbit which is mainly used to calculate the DOP. A comparison is done between the estimated PDOP by using satellite coordinates from new method and from the SP3 (Standard Product # 3 file.

  18. Central and South America GPS geodesy - CASA Uno

    Science.gov (United States)

    Kellogg, James N.; Dixon, Timothy H.

    1990-01-01

    In January 1988, scientists from over 25 organizations in 13 countries and territories cooperated in the largest GPS campaign in the world to date. A total of 43 GPS receivers collected approximately 590 station-days of data in American Samoa, Australia, Canada, Colombia, Costa Rica, Ecuador, New Zealand, Norway, Panama, Sweden, United States, West Germany, and Venezuela. The experiment was entitled CASA Uno. Scientific goals of the project include measurements of strain in the northern Andes, subduction rates for the Cocos and Nazca plates beneath Central and South America, and relative motion between the Caribbean plate and South America. A second set of measurements are planned in 1991 and should provide preliminary estimates of crustal deformation and plate motion rates in the region.

  19. The use of ionospheric tomography and elevation masks to reduce the overall error in single-frequency GPS timing applications

    Science.gov (United States)

    Rose, Julian A. R.; Tong, Jenna R.; Allain, Damien J.; Mitchell, Cathryn N.

    2011-01-01

    Signals from Global Positioning System (GPS) satellites at the horizon or at low elevations are often excluded from a GPS solution because they experience considerable ionospheric delays and multipath effects. Their exclusion can degrade the overall satellite geometry for the calculations, resulting in greater errors; an effect known as the Dilution of Precision (DOP). In contrast, signals from high elevation satellites experience less ionospheric delays and multipath effects. The aim is to find a balance in the choice of elevation mask, to reduce the propagation delays and multipath whilst maintaining good satellite geometry, and to use tomography to correct for the ionosphere and thus improve single-frequency GPS timing accuracy. GPS data, collected from a global network of dual-frequency GPS receivers, have been used to produce four GPS timing solutions, each with a different ionospheric compensation technique. One solution uses a 4D tomographic algorithm, Multi-Instrument Data Analysis System (MIDAS), to compensate for the ionospheric delay. Maps of ionospheric electron density are produced and used to correct the single-frequency pseudorange observations. This method is compared to a dual-frequency solution and two other single-frequency solutions: one does not include any ionospheric compensation and the other uses the broadcast Klobuchar model. Data from the solar maximum year 2002 and October 2003 have been investigated to display results when the ionospheric delays are large and variable. The study focuses on Europe and results are produced for the chosen test site, VILL (Villafranca, Spain). The effects of excluding all of the GPS satellites below various elevation masks, ranging from 5° to 40°, on timing solutions for fixed (static) and mobile (moving) situations are presented. The greatest timing accuracies when using the fixed GPS receiver technique are obtained by using a 40° mask, rather than a 5° mask. The mobile GPS timing solutions are most

  20. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver.

    Science.gov (United States)

    Liu, Wanke; Jin, Xueyuan; Wu, Mingkui; Hu, Jie; Wu, Yun

    2018-02-01

    Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data.

  1. Method of steering the gain of a multiple antenna global positioning system receiver

    Science.gov (United States)

    Evans, Alan G.; Hermann, Bruce R.

    1992-06-01

    A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain. The method searches for the correct number of integer wavelengths to maximize the composite gain. The range differences are also used to determine the attitude of the array.

  2. Utilization of GPS Tropospheric Delays for Climate Research

    International Nuclear Information System (INIS)

    Suparta, Wayan

    2017-01-01

    The tropospheric delay is one of the main error sources in Global Positioning Systems (GPS) and its impact plays a crucial role in near real-time weather forecasting. Accessibility and accurate estimation of this parameter are essential for weather and climate research. Advances in GPS application has allowed the measurements of zenith tropospheric delay (ZTD) in all weather conditions and on a global scale with fine temporal and spatial resolution. In addition to the rapid advancement of GPS technology and informatics and the development of research in the field of Earth and Planetary Sciences, the GPS data has been available free of charge. Now only required sophisticated processing techniques but user friendly. On the other hand, the ZTD parameter obtained from the models or measurements needs to be converted into precipitable water vapor (PWV) to make it more useful as a component of weather forecasting and analysis atmospheric hazards such as tropical storms, flash floods, landslide, pollution, and earthquake as well as for climate change studies. This paper addresses the determination of ZTD as a signal error or delay source during the propagation from the satellite to a receiver on the ground and is a key driving force behind the atmospheric events. Some results in terms of ZTD and PWV will be highlighted in this paper. (paper)

  3. GPS operations at Olkiluoto in 2011

    International Nuclear Information System (INIS)

    Koivula, H.; Kallio, U.; Nyberg, S.; Jokela, J.; Poutanen, M.

    2012-06-01

    The Finnish Geodetic Institute has studied crustal deformations at Olkiluoto, Kivetty and Romuvaara in co-operation with Posiva Oy since 1995. At Olkiluoto a total of 32 GPS campaigns have been carried out at inner network since 1995 and 17 campaigns at outer network since 2003. Kivetty and Romuvaara were not measured in 2011. In the Olkiluoto inner network 80 percent of the estimated change rates are smaller than 0.10 mm/a. One third of the change rates are statistically significant. They are mainly related to the Olkiluoto permanent station (GPS1) and to the pillars GPS6 and GPS13. The change rates related to GPS6 are not realistic due to the site-specific changes affecting the time series. The maximum change rate (-0.20 mm/a ± 0.05 mm/a) is related to GPS13. The time series of GPS13 is half the length of other pillars and therefore, the change rates are more uncertain. In the Olkiluoto outer network the maximum and statistically significant change rate is between GPS1-GPS11 (0.39 mm/a ± 0.06 mm/a). Pillar GPS12 was not observed this year. The change rates of baselines GPS1-GPS14 and GPS1-GPS15 are first time statistically significant. The change rates indicate a small movement of the GPS1 pillar. The baseline GPS1-GPS11 crosses an old fracture zone locating in the direction of the Eurajoensalmi, which might be a reason for the deformation. On the other hand, the Onkalo excavations in the vicinity of the Olkiluoto permanent station (GPS1) may cause some movement. Electronic distance measurements have been performed at Olkiluoto at the baseline GPS7-GPS8 using the Mekometer since 2002. The measurements have been carried out simultaneously with GPS campaigns. Based on 19 measurements in 10 years, the trends of the two time series seems to be similar. Due to unmodelled or dismodelled geometrical offsets and the scale difference between GPS measurements and EDM there is about 0.3 mm difference between distances GPS7-GPS8 derived from GPS measurements and EDM. It is

  4. GPS operations at Olkiluoto in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Koivula, H.; Kallio, U.; Nyberg, S.; Jokela, J.; Poutanen, M. [Finnish Geodetic Institute, Masala (Finland)

    2012-06-15

    The Finnish Geodetic Institute has studied crustal deformations at Olkiluoto, Kivetty and Romuvaara in co-operation with Posiva Oy since 1995. At Olkiluoto a total of 32 GPS campaigns have been carried out at inner network since 1995 and 17 campaigns at outer network since 2003. Kivetty and Romuvaara were not measured in 2011. In the Olkiluoto inner network 80 percent of the estimated change rates are smaller than 0.10 mm/a. One third of the change rates are statistically significant. They are mainly related to the Olkiluoto permanent station (GPS1) and to the pillars GPS6 and GPS13. The change rates related to GPS6 are not realistic due to the site-specific changes affecting the time series. The maximum change rate (-0.20 mm/a {+-} 0.05 mm/a) is related to GPS13. The time series of GPS13 is half the length of other pillars and therefore, the change rates are more uncertain. In the Olkiluoto outer network the maximum and statistically significant change rate is between GPS1-GPS11 (0.39 mm/a {+-} 0.06 mm/a). Pillar GPS12 was not observed this year. The change rates of baselines GPS1-GPS14 and GPS1-GPS15 are first time statistically significant. The change rates indicate a small movement of the GPS1 pillar. The baseline GPS1-GPS11 crosses an old fracture zone locating in the direction of the Eurajoensalmi, which might be a reason for the deformation. On the other hand, the Onkalo excavations in the vicinity of the Olkiluoto permanent station (GPS1) may cause some movement. Electronic distance measurements have been performed at Olkiluoto at the baseline GPS7-GPS8 using the Mekometer since 2002. The measurements have been carried out simultaneously with GPS campaigns. Based on 19 measurements in 10 years, the trends of the two time series seems to be similar. Due to unmodelled or dismodelled geometrical offsets and the scale difference between GPS measurements and EDM there is about 0.3 mm difference between distances GPS7-GPS8 derived from GPS measurements and EDM

  5. Small satellite attitude determination based on GPS/IMU data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Golovan, Andrey [Navigation and Control Laboratory, M.V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow (Russian Federation); Cepe, Ali [Department of Applied Mechanics and Control, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-12-10

    In this paper, we present the mathematical models and algorithms that describe the problem of attitude determination for a small satellite using measurements from three angular rate sensors (ARS) and aiding measurements from multiple GPS receivers/antennas rigidly attached to the platform of the satellite.

  6. Ionospheric error analysis in gps measurements

    Directory of Open Access Journals (Sweden)

    G. Pugliano

    2008-06-01

    Full Text Available The results of an experiment aimed at evaluating the effects of the ionosphere on GPS positioning applications are presented in this paper. Specifically, the study, based upon a differential approach, was conducted utilizing GPS measurements acquired by various receivers located at increasing inter-distances. The experimental research was developed upon the basis of two groups of baselines: the first group is comprised of "short" baselines (less than 10 km; the second group is characterized by greater distances (up to 90 km. The obtained results were compared either upon the basis of the geometric characteristics, for six different baseline lengths, using 24 hours of data, or upon temporal variations, by examining two periods of varying intensity in ionospheric activity respectively coinciding with the maximum of the 23 solar cycle and in conditions of low ionospheric activity. The analysis revealed variations in terms of inter-distance as well as different performances primarily owing to temporal modifications in the state of the ionosphere.

  7. GPS-Based Highway Performance Monitoring Performance Monitoring Using GPS: Characterization of Travel Speeds on any Roadway Segment

    OpenAIRE

    Kornhauser, Alain L.

    2012-01-01

    Presented is a characterization of travel speed on any roadway segment based on probe vehicle position data. Most of the characterization is based position data obtained from GPS receivers because of their high precision and their increasing availability. Comparison is also made to Qualcomm’s Automatic Satellite Position Reporting (QASPR) system because of its long history (10+ years) of extensive use by the long-haul trucking industry. Described is the use of these data in conjunction with d...

  8. Differential GPS effectiveness in measuring area and perimeter in forested settings

    International Nuclear Information System (INIS)

    Frank, Jereme; Wing, Michael G

    2013-01-01

    This study quantifies area and perimeter measurement errors, traverse times, recording intervals, and overall time and cost effectiveness for using a mapping-grade differential Global Positioning System (GPS) receiver in forested settings. We compared two configurations including one that maximized data collection productivity (position dilution of precision (PDOP) 20, signal to noise ratio (SNR 33), and minimum elevation mask 5°) and a second that involved traditional receiver settings that was designed to improve accuracies (PDOP 6, SNR 39, and minimum elevation mask 15°). We determined that averaging 30 positions and using the settings that maximized productivity was the most time effective combination of recording interval and settings. This combination of recording interval and settings proved slightly more cost effective than other traditional surveying methods such as a laser with digital compass and string box. Average absolute per cent area errors when averaging 30 positions and using maximum settings were 2.6% and average absolute per cent perimeter errors were 2.0%. These results should help forest resource professionals more effectively evaluate GPS techniques and receiver configurations. (paper)

  9. Nonlinear Filtering with IMM Algorithm for Ultra-Tight GPS/INS Integration

    Directory of Open Access Journals (Sweden)

    Dah-Jing Jwo

    2013-05-01

    Full Text Available Abstract This paper conducts a performance evaluation for the ultra-tight integration of a Global positioning system (GPS and an inertial navigation system (INS, using nonlinear filtering approaches with an interacting multiple model (IMM algorithm. An ultra-tight GPS/INS architecture involves the integration of in-phase and quadrature components from the correlator of a GPS receiver with INS data. An unscented Kalman filter (UKF, which employs a set of sigma points by deterministic sampling, avoids the error caused by linearization as in an extended Kalman filter (EKF. Based on the filter structural adaptation for describing various dynamic behaviours, the IMM nonlinear filtering provides an alternative for designing the adaptive filter in the ultra-tight GPS/INS integration. The use of IMM enables tuning of an appropriate value for the process of noise covariance so as to maintain good estimation accuracy and tracking capability. Two examples are provided to illustrate the effectiveness of the design and demonstrate the effective improvement in navigation estimation accuracy. A performance comparison among various filtering methods for ultra-tight integration of GPS and INS is also presented. The IMM based nonlinear filtering approach demonstrates the effectiveness of the algorithm for improved positioning performance.

  10. Modeling environmental bias and computing velocity field from data of Terra Nova Bay GPS network in Antarctica by means of a quasi-observation processing approach

    Science.gov (United States)

    Casula, Giuseppe; Dubbini, Marco; Galeandro, Angelo

    2007-01-01

    A semi-permanent GPS network of about 30 vertices has been installed at Terra Nova Bay (TNB) near Ross Sea in Antarctica. A permanent GPS station TNB1 based on an Ashtech Z-XII dual frequency P-code GPS receiver with ASH700936D_M Choke Ring Antenna has been mounted on a reinforced concrete pillar built on bedrock since October 1998 and has recorded continuously up to the present. The semi-permanent network has been routinely surveyed every summer using high quality dual frequency GPS receivers with 24 hour sessions at 15 sec rate; data, metadata and solutions will be available to the scientific community at (http://www.geodant.unimore.it). We present the results of a distributed session approach applied to processing GPS data of the TNB GPS network, and based on Gamit/Globk 10.2-3 GPS analysis software. The results are in good agreement with other authors' computations and with many of the theoretical models.

  11. An evaluation of a UAV guidance system with consumer grade GPS receivers

    Science.gov (United States)

    Rosenberg, Abigail Stella

    Remote sensing has been demonstrated an important tool in agricultural and natural resource management and research applications, however there are limitations that exist with traditional platforms (i.e., hand held sensors, linear moves, vehicle mounted, airplanes, remotely piloted vehicles (RPVs), unmanned aerial vehicles (UAVs) and satellites). Rapid technological advances in electronics, computers, software applications, and the aerospace industry have dramatically reduced the cost and increased the availability of remote sensing technologies. Remote sensing imagery vary in spectral, spatial, and temporal resolutions and are available from numerous providers. Appendix A presented results of a test project that acquired high-resolution aerial photography with a RPV to map the boundary of a 0.42 km2 fire area. The project mapped the boundaries of the fire area from a mosaic of the aerial images collected and compared this with ground-based measurements. The project achieved a 92.4% correlation between the aerial assessment and the ground truth data. Appendix B used multi-objective analysis to quantitatively assess the tradeoffs between different sensor platform attributes to identify the best overall technology. Experts were surveyed to identify the best overall technology at three different pixel sizes. Appendix C evaluated the positional accuracy of a relatively low cost UAV designed for high resolution remote sensing of small areas in order to determine the positional accuracy of sensor readings. The study evaluated the accuracy and uncertainty of a UAV flight route with respect to the programmed waypoints and of the UAV's GPS position, respectively. In addition, the potential displacement of sensor data was evaluated based on (1) GPS measurements on board the aircraft and (2) the autopilot's circuit board with 3-axis gyros and accelerometers (i.e., roll, pitch, and yaw). The accuracies were estimated based on a 95% confidence interval or similar methods. The

  12. PPS GPS: What Is It? And How Do I Get It

    Science.gov (United States)

    1994-06-01

    Positioning Service, Selective Availabilit B.PRICE CODIE 17. SECURITY CLASSIFICATION II. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20...the TEC Water Detection Response Team which operates in remote areas of the world. These activities, require the GPS receiver to be capable of removing

  13. Inferring Large-Scale Terrestrial Water Storage Through GRACE and GPS Data Fusion in Cloud Computing Environments

    Science.gov (United States)

    Rude, C. M.; Li, J. D.; Gowanlock, M.; Herring, T.; Pankratius, V.

    2016-12-01

    Surface subsidence due to depletion of groundwater can lead to permanent compaction of aquifers and damaged infrastructure. However, studies of such effects on a large scale are challenging and compute intensive because they involve fusing a variety of data sets beyond direct measurements from groundwater wells, such as gravity change measurements from the Gravity Recovery and Climate Experiment (GRACE) or surface displacements measured by GPS receivers. Our work therefore leverages Amazon cloud computing to enable these types of analyses spanning the entire continental US. Changes in groundwater storage are inferred from surface displacements measured by GPS receivers stationed throughout the country. Receivers located on bedrock are anti-correlated with changes in water levels from elastic deformation due to loading, while stations on aquifers correlate with groundwater changes due to poroelastic expansion and compaction. Correlating linearly detrended equivalent water thickness measurements from GRACE with linearly detrended and Kalman filtered vertical displacements of GPS stations located throughout the United States helps compensate for the spatial and temporal limitations of GRACE. Our results show that the majority of GPS stations are negatively correlated with GRACE in a statistically relevant way, as most GPS stations are located on bedrock in order to provide stable reference locations and measure geophysical processes such as tectonic deformations. Additionally, stations located on the Central Valley California aquifer show statistically significant positive correlations. Through the identification of positive and negative correlations, deformation phenomena can be classified as loading or poroelastic expansion due to changes in groundwater. This method facilitates further studies of terrestrial water storage on a global scale. This work is supported by NASA AIST-NNX15AG84G (PI: V. Pankratius) and Amazon.

  14. Combining low-cost GPS receivers with upGPR to derive continuously liquid water content, snow height and snow water equivalent in Alpine snow covers

    Science.gov (United States)

    Koch, Franziska; Schmid, Lino; Prasch, Monika; Heilig, Achim; Eisen, Olaf; Schweizer, Jürg; Mauser, Wolfram

    2015-04-01

    The temporal evolution of Alpine snowpacks is important for assessing water supply, hydropower generation, flood predictions and avalanche forecasts. Especially in high mountain regions with an extremely varying topography, it is until now often difficult to derive continuous and non-destructive information on snow parameters. Since autumn 2012, we are running a new low-cost GPS (Global Positioning System) snow measurement experiment at the high alpine study site Weissfluhjoch (2450 m a.s.l.) in Switzerland. The globally and freely broadcasted GPS L1-band (1.57542 GHz) was continuously recorded with GPS antennas, which are installed at the ground surface underneath the snowpack. GPS raw data, containing carrier-to-noise power density ratio (C/N0) as well as elevation and azimuth angle information for each time step of 1 s, was stored and analyzed for all 32 GPS satellites. Since the dielectric permittivity of an overlying wet snowpack influences microwave radiation, the bulk volumetric liquid water content as well as daily melt-freeze cycles can be derived non-destructively from GPS signal strength losses and external snow height information. This liquid water content information is qualitatively in good accordance with meteorological and snow-hydrological data and quantitatively highly agrees with continuous data derived from an upward-looking ground-penetrating radar (upGPR) working in a similar frequency range. As a promising novelty, we combined the GPS signal strength data with upGPR travel-time information of active impulse radar rays to the snow surface and back from underneath the snow cover. This combination allows determining liquid water content, snow height and snow water equivalent from beneath the snow cover without using any other external information. The snow parameters derived by combining upGPR and GPS data are in good agreement with conventional sensors as e.g. laser distance gauges or snow pillows. As the GPS sensors are cheap, they can easily

  15. TLALOCNet continuous GPS-Met Array in Mexico supporting the 2017 NAM GPS Hydrometeorological Network.

    Science.gov (United States)

    Cabral-Cano, E.; Salazar-Tlaczani, L.; Adams, D. K.; Vivoni, E. R.; Grutter, M.; Serra, Y. L.; DeMets, C.; Galetzka, J.; Feaux, K.; Mattioli, G. S.; Miller, M. M.

    2017-12-01

    TLALOCNet is a network of continuous GPS and meteorology stations in Mexico to study atmospheric and solid earth processes. This recently completed network spans most of Mexico with a strong coverage emphasis on southern and western Mexico. This network, funded by NSF, CONACyT and UNAM, recently built 40 cGPS-Met sites to EarthScope Plate Boundary Observatory standards and upgraded 25 additional GPS stations. TLALOCNet provides open and freely available raw GPS data, and high frequency surface meteorology measurements, and time series of daily positions. This is accomplished through the development of the TLALOCNet data center (http://tlalocnet.udg.mx) that serves as a collection and distribution point. This data center is based on UNAVCO's Dataworks-GSAC software and also works as part of UNAVCO's seamless archive for discovery, sharing, and access to GPS data. The TLALOCNet data center also contains contributed data from several regional GPS networks in Mexico for a total of 100+ stations. By using the same protocols and structure as the UNAVCO and other COCONet regional data centers, the scientific community has the capability of accessing data from the largest Mexican GPS network. This archive provides a fully queryable and scriptable GPS and Meteorological data retrieval point. In addition, real-time 1Hz streams from selected TLALOCNet stations are available in BINEX, RTCM 2.3 and RTCM 3.1 formats via the Networked Transport of RTCM via Internet Protocol (NTRIP) for real-time seismic and weather forecasting applications. TLALOCNet served as a GPS-Met backbone for the binational Mexico-US North American Monsoon GPS Hydrometeorological Network 2017 campaign experiment. This innovative experiment attempts to address water vapor source regions and land-surface water vapor flux contributions to precipitation (i.e., moisture recycling) during the 2017 North American Monsoon in Baja California, Sonora, Chihuahua, and Arizona. Models suggest that moisture recycling is

  16. Perancangan Dan Realisasi Sistem Transmisi Data GPS Menggunakan Teknologi SMS (Short Messaging Service Sebagai Aplikasi Sistem Personal Tracking

    Directory of Open Access Journals (Sweden)

    DECY NATALIANA

    2017-06-01

    Full Text Available Abstrak Berprinsip pada pengembangan teknologi dan aplikasi dari sistem penjejakan posisi (tracking, maka dibuatlah sistem personal tracking dengan mentransmisikan data GPS (Global Positioning System dengan menggunakan teknologi SMS (Short Messaging Service pada jaringan GSM (Global System for Mobile Communications sebagai media transmisinya.  Dengan sistem GPS akan diperoleh data garis lintang, serta garis bujur dari GPS receiver.  Data tersebut akan diteruskan oleh mikrokontroler untuk dikirim ke ponsel pengamat melalui komunikasi SMS.  Hasil pengujian menunjukkan bahwa device personal tracking berhasil mengirimkan data berupa IMEI, Tanggal satelit, waktu satelit, koordinat longitude, koordinat latitude, dan jumlah satelit yang berhasil ditangkap oleh device ke ponsel pengamat.  Dari data koordinat tersebut pengamat dapat memantau posisi device personal tracking berada dengan bantuan aplikasi pendukung yaitu Google Maps. Kata kunci: GPS, Personal Tracking, SMS, Google Maps.   Abstract Base on technology and application development of tracking, personal tracking system was made by transmiting GPS (Global Positioning System data using SMS (Short Messaging Service technology with GSM (Global System for Mobile Communications network as transmitter media.  BY GPS system, we can get datas such as latitude and longitude of GPS receiver.  Those datas will be processed by microcontroller to be sent from GSM/GPRS module to user cellular phone through SMS communication.  The test result showed that the device can be sending datas such as IMEI, UTC date, UTC time, longitude coordinate, latitude coordinate, and number sattelite which detected by device to user’s phonecell.  From those coordinate, user can be monitoring the device’s position with the Google Maps application. Keywords: GPS, Personal Tracking, SMS, Google Maps.

  17. GPS: Public Utility or Software Platform

    Science.gov (United States)

    2016-09-01

    train for GPS loss, encourage use of GPS signal integrity monitors , develop in- vehicle GPS backups, and evaluate the range of radio...literature prevent the full quantification of exactly how vulnerable GPS is to service interruption. This thesis used constant comparison analysis to...criticality, resilience, and vulnerability. This methodology overcomes research limitations by using GPS system design, operations, and policies as

  18. IMPELEMENTASI SISTEM PEMANTAUAN OBJEK BERGERAK DENGAN MEMANFAATKAN FREKUENSI RADIO MENGGUNAKAN GPS (GLOBAL POSITIONING SYSTEM)

    OpenAIRE

    Budi Triandi

    2010-01-01

    GPS was developed by the United States Department of Defense as a reliable means for accurate navigation. The system provides highly accurate position and velocity information and precise time on a continuous global basis to an unlimited number of properly equipped users. By using combined GPS receiver and microcontroller together with radio system, we can design a monitoring system for our vehicles and display the result on the computer. This system consists of a master module that transmits...

  19. A small unconditional non-financial incentive suggests an increase in survey response rates amongst older general practitioners (GPs): a randomised controlled trial study.

    Science.gov (United States)

    Pit, Sabrina Winona; Hansen, Vibeke; Ewald, Dan

    2013-07-30

    Few studies have investigated the effect of small unconditional non-monetary incentives on survey response rates amongst GPs or medical practitioners. This study assessed the effectiveness of offering a small unconditional non-financial incentive to increase survey response rates amongst general practitioners within a randomised controlled trial (RCT). An RCT was conducted within a general practice survey that investigated how to prolong working lives amongst ageing GPs in Australia. GPs (n = 125) were randomised to receive an attractive pen or no pen during their first invitation for participation in a survey. GPs could elect to complete the survey online or via mail. Two follow up reminders were sent without a pen to both groups. The main outcome measure was response rates. The response rate for GPs who received a pen was higher in the intervention group (61.9%) compared to the control group (46.8%). This study did not find a statistically significant effect of a small unconditional non-financial incentive (in the form of a pen) on survey response rates amongst GPs (Odds ratio, 95% confidence interval: 1.85 (0.91 to 3.77). No GPs completed the online version. A small unconditional non-financial incentives, in the form of a pen, may improve response rates for GPs.

  20. Ultra-low power high precision magnetotelluric receiver array based customized computer and wireless sensor network

    Science.gov (United States)

    Chen, R.; Xi, X.; Zhao, X.; He, L.; Yao, H.; Shen, R.

    2016-12-01

    Dense 3D magnetotelluric (MT) data acquisition owns the benefit of suppressing the static shift and topography effect, can achieve high precision and high resolution inversion for underground structure. This method may play an important role in mineral exploration, geothermal resources exploration, and hydrocarbon exploration. It's necessary to reduce the power consumption greatly of a MT signal receiver for large-scale 3D MT data acquisition while using sensor network to monitor data quality of deployed MT receivers. We adopted a series of technologies to realized above goal. At first, we designed an low-power embedded computer which can couple with other parts of MT receiver tightly and support wireless sensor network. The power consumption of our embedded computer is less than 1 watt. Then we designed 4-channel data acquisition subsystem which supports 24-bit analog-digital conversion, GPS synchronization, and real-time digital signal processing. Furthermore, we developed the power supply and power management subsystem for MT receiver. At last, a series of software, which support data acquisition, calibration, wireless sensor network, and testing, were developed. The software which runs on personal computer can monitor and control over 100 MT receivers on the field for data acquisition and quality control. The total power consumption of the receiver is about 2 watts at full operation. The standby power consumption is less than 0.1 watt. Our testing showed that the MT receiver can acquire good quality data at ground with electrical dipole length as 3 m. Over 100 MT receivers were made and used for large-scale geothermal exploration in China with great success.

  1. How do GPs in Switzerland perceive their patients' satisfaction and expectations? An observational study.

    Science.gov (United States)

    Sebo, Paul; Herrmann, François R; Haller, Dagmar M

    2015-06-10

    To assess doctors' perceptions of their patients' satisfaction and expectations in primary care. Cross-sectional study using questionnaires completed by general practitioners (GPs) and their patients. Primary care practices in Geneva, Switzerland. 23 GPs from a random list of 75 GPs practising in the canton of Geneva (participation rate 31%), who each recruited between 50 and 100 consecutive patients coming to the practice for a scheduled medical consultation, leading to a total of 1637 patients (participation rate: 97%, women: 63%, mean age: 54 years). Patient exclusion criteria were: new patients, those consulting in an emergency situation or suffering from disorders affecting their ability to consent, and those who did not speak French. Patients satisfaction with and expectations from the care they received in this practice; GPs perceptions of their patient's satisfaction and expectations. GPs underestimated all patient satisfaction items (p<0.001 for all items) whereas they overestimated their expectations, except for equipment (laboratory and X-ray) and some accessibility items. In a multivariate analysis to assess which GP factors were associated with correct assessment of their patients' views, only GPs' certification status was a significant factor. GPs tend to underestimate patients' satisfaction but overestimate their expectations in primary care. These findings may help GPs to understand patients' views in order to adequately meet their expectations and concerns. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Efficient GPS Position Determination Algorithms

    National Research Council Canada - National Science Library

    Nguyen, Thao Q

    2007-01-01

    ... differential GPS algorithm for a network of users. The stand-alone user GPS algorithm is a direct, closed-form, and efficient new position determination algorithm that exploits the closed-form solution of the GPS trilateration equations and works...

  3. Overcoming the Challenges of BeiDou Receiver Implementation

    Directory of Open Access Journals (Sweden)

    Mohammad Zahidul H. Bhuiyan

    2014-11-01

    Full Text Available Global Navigation Satellite System (GNSS-based positioning is experiencing rapid changes. The existing GPS and the GLONASS systems are being modernized to better serve the current challenging applications under harsh signal conditions. These modernizations include increasing the number of transmission frequencies and changes to the signal components. In addition, the Chinese BeiDou Navigation Satellite system (BDS and the European Galileo are currently under development for global operation. Therefore, in view of these new upcoming systems the research and development of GNSS receivers has been experiencing a new upsurge. In this article, the authors discuss the main functionalities of a GNSS receiver in view of BDS. While describing the main functionalities of a software-defined BeiDou receiver, the authors also highlight the similarities and differences between the signal characteristics of the BeiDou B1 open service signal and the legacy GPS L1 C/A signal, as in general they both exhibit similar characteristics. In addition, the authors implement a novel acquisition technique for long coherent integration in the presence of NH code modulation in BeiDou D1 signal. Furthermore, a simple phase-preserved coherent integration based acquisition scheme is implemented for BeiDou GEO satellite acquisition. Apart from the above BeiDou-specific implementations, a novel Carrier-to-Noise-density ratio estimation technique is also implemented in the software receiver, which does not necessarily require bit synchronization prior to estimation. Finally, the authors present a BeiDou-only position fix with the implemented software-defined BeiDou receiver considering all three satellite constellations from BDS. In addition, a true multi-GNSS position fix with GPS and BDS systems is also presented while comparing their performances for a static stand-alone code phase-based positioning.

  4. Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals

    Science.gov (United States)

    Liu, Lin; Larson, Kristine M.

    2018-02-01

    Conventional benchmark-based survey and Global Positioning System (GPS) have been used to measure surface elevation changes over permafrost areas, usually once or a few times a year. Here we use reflected GPS signals to measure temporal changes of ground surface elevation due to dynamics of the active layer and near-surface permafrost. Applying the GPS interferometric reflectometry technique to the multipath signal-to-noise ratio data collected by a continuously operating GPS receiver mounted deep in permafrost in Barrow, Alaska, we can retrieve the vertical distance between the antenna and reflecting surface. Using this unique kind of observables, we obtain daily changes of surface elevation during July and August from 2004 to 2015. Our results show distinct temporal variations at three timescales: regular thaw settlement within each summer, strong interannual variability that is characterized by a sub-decadal subsidence trend followed by a brief uplift trend, and a secular subsidence trend of 0.26 ± 0.02 cm year-1 during 2004 and 2015. This method provides a new way to fully utilize data from continuously operating GPS sites in cold regions for studying dynamics of the frozen ground consistently and sustainably over a long time.

  5. Danish GPs' perception of disease risk and benefit of prevention

    DEFF Research Database (Denmark)

    Nexøe, Jørgen; Gyrd-Hansen, Dorte; Kragstrup, Jakob

    2002-01-01

    risk reduction. RESULTS: The GPs' attitude towards recommending medical treatment was dependent on the phrasing of risk reductions. Seventy-two per cent of doctors who received all information on risk reductions would definitely or probably recommend medication, while 91% would recommend medication...... to take into account all available measures of risk reductions....

  6. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  7. Standardization of GPS data processing

    International Nuclear Information System (INIS)

    Park, Pil Ho

    2001-06-01

    A nationwide GPS network has been constructed with about 60 permanent GPS stations after late 1990s in Korea. For using the GPS in variety of application area like crustal deformation, positioning, or monitoring upper atmosphere, it is necessary to have ability to process the data precisely. Now Korea Astronomy Observatory has the precise GPS data processing technique in Korea because it is difficult to understand characteristics of the parameters we want to estimate, resolve the integer ambiguity, and analyze many errors. There are three reliable GPS data processing software in the world ; Bernese(University of Berne), GIPSY-OASIS(JPL), GAMIT(MIT). These software allow us to achieve millimeter accuracy in the horizontal position and about 1 cm accuracy vertically even for regional networks with a diameter of several thousand kilometers. But we established the standard of GPS data processing using Bernese as main tool and GIPSY O ASIS as side

  8. Large-scale traveling ionospheric disturbances observed using GPS receivers over high-latitude and equatorial regions

    Science.gov (United States)

    Idrus, Intan Izafina; Abdullah, Mardina; Hasbi, Alina Marie; Husin, Asnawi; Yatim, Baharuddin

    2013-09-01

    This paper presents the first results of large-scale traveling ionospheric disturbances (LSTIDs) observation during two moderate magnetic storm events on 28 May 2011 (SYM-H∼ -94 nT and Dst∼-80 nT) and 6 August 2011 (SYM-H∼-126 nT and Dst∼-113 nT) over the high-latitude region in Russia, Sweden, Norway, Iceland and Greenland and equatorial region in the Peninsular Malaysia using vertical total electron content (VTEC) from the Global Positioning System (GPS) observations measurement. The propagation of the LSTID signatures in the GPS TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTIDs were found to propagate both equatorward and poleward directions during these two events. The results showed that the LSTIDs propagated faster at high-latitude region with an average phase velocity of 1074.91 m/s than Peninsular Malaysia with an average phase velocity of 604.84 m/s. The LSTIDs at the high-latitude region have average periods of 150 min whereas the ones observed over Peninsular Malaysia have average periods of 115 min. The occurrences of these LSTIDs were also found to be the subsequent effects of substorm activities in the auroral region. To our knowledge, this is the first result of observation of LSTIDs over Peninsular Malaysia during the 24th solar cycle.

  9. Use of text messaging in general practice: a mixed methods investigation on GPs' and patients' views.

    Science.gov (United States)

    Leahy, Dorothy; Lyons, Aoife; Dahm, Matthias; Quinlan, Diarmuid; Bradley, Colin

    2017-11-01

    Text messaging has become more prevalent in general practice as a tool with which to communicate with patients. The main objectives were to assess the extent, growth, and perceived risks and benefits of text messaging by GPs to communicate with patients, and assess patients' attitudes towards receiving text messages from their GP. A mixed methods study, using surveys, a review, and a focus group, was conducted in both urban and rural practices in the south-west of Ireland. A telephone survey of 389 GPs was conducted to ascertain the prevalence of text messaging. Subsequently, the following were also carried out: additional telephone surveys with 25 GPs who use text messaging and 26 GPs who do not, a written satisfaction survey given to 78 patients, a review of the electronic information systems of five practices, and a focus group with six GPs to ascertain attitudes towards text messaging. In total, 38% ( n = 148) of the surveyed GPs used text messaging to communicate with patients and 62% ( n = 241) did not. Time management was identified as the key advantage of text messaging among GPs who used it (80%; n = 20) and those who did not (50%; n = 13). Confidentiality was reported as the principal concern among both groups, at 32% ( n = 8) and 69% ( n = 18) respectively. Most patients (99%; n = 77) were happy to receive text messages from their GP. The GP focus group identified similar issues and benefits in terms of confidentiality and time management. Data were extracted from the IT systems of five consenting practices and the number of text messages sent during the period from January 2013 to March 2016 was generated. This increased by 40% per annum. Collaborative efforts are required from relevant policymakers to address data protection and text messaging issues so that GPs can be provided with clear guidelines to protect patient confidentiality. © British Journal of General Practice 2017.

  10. GPS-Based Exposure to Greenness and Walkability and Accelerometry-Based Physical Activity.

    Science.gov (United States)

    James, Peter; Hart, Jaime E; Hipp, J Aaron; Mitchell, Jonathan A; Kerr, Jacqueline; Hurvitz, Philip M; Glanz, Karen; Laden, Francine

    2017-04-01

    Background: Physical inactivity is a risk factor for cancer that may be influenced by environmental factors. Indeed, dense and well-connected built environments and environments with natural vegetation may create opportunities for higher routine physical activity. However, studies have focused primarily on residential environments to define exposure and self-reported methods to estimate physical activity. This study explores the momentary association between minute-level global positioning systems (GPS)-based greenness exposure and time-matched objectively measured physical activity. Methods: Adult women were recruited from sites across the United States. Participants wore a GPS device and accelerometer on the hip for 7 days to assess location and physical activity at minute-level epochs. GPS records were linked to 250 m resolution satellite-based vegetation data and Census Block Group-level U.S. Environmental Protection Agency (EPA) Smart Location Database walkability data. Minute-level generalized additive mixed models were conducted to test for associations between GPS measures and accelerometer count data, accounting for repeated measures within participant and allowing for deviations from linearity using splines. Results: Among 360 adult women (mean age of 55.3 ± 10.2 years), we observed positive nonlinear relationships between physical activity and both greenness and walkability. In exploratory analyses, the relationships between environmental factors and physical activity were strongest among those who were white, had higher incomes, and who were middle-aged. Conclusions: Our results indicate that higher levels of physical activity occurred in areas with higher greenness and higher walkability. Impact: Findings suggest that planning and design policies should focus on these environments to optimize opportunities for physical activity. Cancer Epidemiol Biomarkers Prev; 26(4); 525-32. ©2017 AACR See all the articles in this CEBP Focus section, "Geospatial

  11. Geomagnetic Storm Impact On GPS Code Positioning

    Science.gov (United States)

    Uray, Fırat; Varlık, Abdullah; Kalaycı, İbrahim; Öǧütcü, Sermet

    2017-04-01

    This paper deals with the geomagnetic storm impact on GPS code processing with using GIPSY/OASIS research software. 12 IGS stations in mid-latitude were chosen to conduct the experiment. These IGS stations were classified as non-cross correlation receiver reporting P1 and P2 (NONCC-P1P2), non-cross correlation receiver reporting C1 and P2 (NONCC-C1P2) and cross-correlation (CC-C1P2) receiver. In order to keep the code processing consistency between the classified receivers, only P2 code observations from the GPS satellites were processed. Four extreme geomagnetic storms October 2003, day of the year (DOY), 29, 30 Halloween Storm, November 2003, DOY 20, November 2004, DOY 08 and four geomagnetic quiet days in 2005 (DOY 92, 98, 99, 100) were chosen for this study. 24-hour rinex data of the IGS stations were processed epoch-by-epoch basis. In this way, receiver clock and Earth Centered Earth Fixed (ECEF) Cartesian Coordinates were solved for a per-epoch basis for each day. IGS combined broadcast ephemeris file (brdc) were used to partly compensate the ionospheric effect on the P2 code observations. There is no tropospheric model was used for the processing. Jet Propulsion Laboratory Application Technology Satellites (JPL ATS) computed coordinates of the stations were taken as true coordinates. The differences of the computed ECEF coordinates and assumed true coordinates were resolved to topocentric coordinates (north, east, up). Root mean square (RMS) errors for each component were calculated for each day. The results show that two-dimensional and vertical accuracy decreases significantly during the geomagnetic storm days comparing with the geomagnetic quiet days. It is observed that vertical accuracy is much more affected than the horizontal accuracy by geomagnetic storm. Up to 50 meters error in vertical component has been observed in geomagnetic storm day. It is also observed that performance of Klobuchar ionospheric correction parameters during geomagnetic storm

  12. GPS Position Time Series @ JPL

    Science.gov (United States)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  13. Seeing through the glass darkly? A qualitative exploration of GPs' drinking and their alcohol intervention practices.

    Science.gov (United States)

    Kaner, Eileen; Rapley, Tim; May, Carl

    2006-08-01

    Brief alcohol intervention is influenced by patients' personal characteristics as well as their clinical risk. Risk-drinkers from higher social-status groups are less likely to receive brief intervention from GPs than those from lower social-status groups. Thus GPs' perception of social similarity or distance may influence brief intervention. To explore the role that GPs' drinking behaviour plays in their recognition of alcohol-related risk in patients. A qualitative interview study with 29 GPs recruited according to maximum variation sampling. All interviews were audio-recorded and transcribed verbatim. Analysis was inductive with constant comparison within and between themes plus deviant case analysis. Analysis developed until category saturation was reached. GPs described a range of personal drinking practices that broadly mirrored population drinking patterns. Many saw themselves as part of mainstream society, sharing in culturally sanctioned behaviour. For some GPs, shared drinking practices could increase empathy for patients who drank, and facilitate discussion about alcohol. However, several GPs regarded themselves as distinct from 'others', separating their own drinking from that of patients. Several GPs described a form of bench-marking, wherein only patients who drank more, or differently, to themselves were felt to be 'at risk'. Alcohol is clearly a complex and emotive health and social issue and GPs are not immune to its effects. For some GPs' shared drinking behaviour can act as a window of opportunity enabling insight on alcohol issues and facilitating discussion. However, other GPs may see through the glass more darkly and selectively recognize risk only in those patients who are least like them.

  14. Semantic Enrichment of GPS Trajectories

    NARCIS (Netherlands)

    de Graaff, V.; van Keulen, Maurice; de By, R.A.

    2012-01-01

    Semantic annotation of GPS trajectories helps us to recognize the interests of the creator of the GPS trajectories. Automating this trajectory annotation circumvents the requirement of additional user input. To annotate the GPS traces automatically, two types of automated input are required: 1) a

  15. Sensing Human Activity: GPS Tracking

    Science.gov (United States)

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, Peter; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands) for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research. PMID:22574061

  16. Sensing Human Activity: GPS Tracking

    Directory of Open Access Journals (Sweden)

    Remco de Haan

    2009-04-01

    Full Text Available The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for collecting data on pedestrian movement in three European city centres, Norwich, Rouen and Koblenz, and in another experiment for collecting activity data of 13 families in Almere (The Netherlands for one week. The question posed in this paper is: what is the value of GPS as ‘sensor technology’ measuring activities of people? The conclusion is that GPS offers a widely useable instrument to collect invaluable spatial-temporal data on different scales and in different settings adding new layers of knowledge to urban studies, but the use of GPS-technology and deployment of GPS-devices still offers significant challenges for future research.

  17. Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode

    Science.gov (United States)

    Shangguan, M.; Heise, S.; Bender, M.; Dick, G.; Ramatschi, M.; Wickert, J.

    2015-01-01

    Slant-integrated water vapor (SIWV) data derived from GPS STDs (slant total delays), which provide the spatial information on tropospheric water vapor, have a high potential for assimilation to weather models or for nowcasting or reconstruction of the 3-D humidity field with tomographic techniques. Therefore, the accuracy of GPS STD is important, and independent observations are needed to estimate the quality of GPS STD. In 2012 the GFZ (German Research Centre for Geosciences) started to operate a microwave radiometer in the vicinity of the Potsdam GPS station. The water vapor content along the line of sight between a ground station and a GPS satellite can be derived from GPS data and directly measured by a water vapor radiometer (WVR) at the same time. In this study we present the validation results of SIWV observed by a ground-based GPS receiver and a WVR. The validation covers 184 days of data with dry and wet humidity conditions. SIWV data from GPS and WVR generally show good agreement with a mean bias of -0.4 kg m-2 and an rms (root mean square) of 3.15 kg m-2. The differences in SIWV show an elevation dependent on an rms of 7.13 kg m-2 below 15° but of 1.76 kg m-2 above 15°. Nevertheless, this elevation dependence is not observed regarding relative deviations. The relation between the differences and possible influencing factors (elevation angles, pressure, temperature and relative humidity) are analyzed in this study. Besides the elevation, dependencies between the atmospheric humidity conditions, temperature and the differences in SIWV are found.

  18. IAE-adaptive Kalman filter for INS/GPS integrated navigation system

    Institute of Scientific and Technical Information of China (English)

    Bian Hongwei; Jin Zhihua; Tian Weifeng

    2006-01-01

    A marine INS/GPS adaptive navigation system is presented in this paper. GPS with two antenna providing vessel's altitude is selected as the auxiliary system fusing with INS to improve the performance of the hybrid system. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The standard Kalman filter (SKF) assumes that the statistics of the noise on each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce fuzzy logic control method into innovation-based adaptive estimation adaptive Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However how to design the fuzzy logic controller is a very complicated problem still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAE-AKF algorithm theoretically in detail, the approach is tested by the simulation based on the system error model of the developed INS/GPS integrated marine navigation system. Simulation results show that the adaptive Kalman filter outperforms the SKF with higher accuracy, robustness and less computation. It is demonstrated that this proposed approach is a valid solution for the unknown changing measurement noise exited in the Kalman filter.

  19. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  20. Detection test of wireless network signal strength and GPS positioning signal in underground pipeline

    Science.gov (United States)

    Li, Li; Zhang, Yunwei; Chen, Ling

    2018-03-01

    In order to solve the problem of selecting positioning technology for inspection robot in underground pipeline environment, the wireless network signal strength and GPS positioning signal testing are carried out in the actual underground pipeline environment. Firstly, the strength variation of the 3G wireless network signal and Wi-Fi wireless signal provided by China Telecom and China Unicom ground base stations are tested, and the attenuation law of these wireless signals along the pipeline is analyzed quantitatively and described. Then, the receiving data of the GPS satellite signal in the pipeline are tested, and the attenuation of GPS satellite signal under underground pipeline is analyzed. The testing results may be reference for other related research which need to consider positioning in pipeline.

  1. GPS/Loran-C interoperability for time and frequency applications: A survey of the times of arrival of Loran-C transmissions via GPS common mode/common view satellite observations

    Science.gov (United States)

    Penrod, Bruce; Funderburk, Richard; Dana, Peter

    1990-01-01

    The results from this survey clearly indicate that the Global Positioning System (GPS) time transfer capability is superior to that of the Loran-C system for absolute timing accuracy, and that even with the most careful calibration of the Loran-C receiver delay and propagation path, inexplicable time of arrival (TOA) biases remain which are larger than the variations across all of the transmitters. Much more data covering years would be needed to show that these biases were stable enough to be removed with a one time site calibration. The synchronization of the transmissions is excellent, all showing low parts in 10(exp 13) offsets versus the United States Naval Observatory (USNO) master clock. With the exception of the Searchlight transmitter, all of the transmissions exhibit timing stabilities over the entire period of less than 300 ns RMS which is at the observed levels of GPS under selective availability (SA). The Loran-C phase instabilities take place over a much greater time interval than those being forced onto the GPS signals under SA, providing for better medium to short term frequency stability. Data show that all but the most distant transmitters offer better than three parts in 10(exp 11) stability at this averaging time. It is in the frequency control area where GPS/Loran-C interoperation will offer some synergistic advantages over GPS alone under SA.

  2. GPS Space Service Volume: Ensuring Consistent Utility Across GPS Design Builds for Space Users

    Science.gov (United States)

    Bauer, Frank H.; Parker, Joel Jefferson Konkl; Valdez, Jennifer Ellen

    2015-01-01

    GPS availability and signal strength originally specified for users on or near surface of Earth with transmitted power levels specified at edge-of-Earth, 14.3 degrees. Prior to the SSV specification, on-orbit performance of GPS varied from block build to block build (IIA, IIRM, IIF) due to antenna gain and beam width variances. Unstable on-orbit performance results in significant risk to space users. Side-lobe signals, although not specified, were expected to significantly boost GPS signal availability for users above the constellation. During GPS III Phase A, NASA noted significant discrepancies in power levels specified in GPS III specification documents, and measured on-orbit performance. To stabilize the signal for high altitude space users, NASA DoD team in 2003-2005 led the creation of new Space Service Volume (SSV) definition and specifications.

  3. Global Application of TaiWan Ionospheric Model to Single-Frequency GPS Positioning

    Science.gov (United States)

    Macalalad, E.; Tsai, L. C.; Wu, J.

    2012-04-01

    Ionospheric delay is one the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. For single-frequency receivers, this delay is usually removed using ionospheric models. Two of them are the Klobuchar, or broadcast, model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, called the TaiWan Ionosphere Model, is used. It was used to calculate the slant total electron content (STEC) between receiver and GPS satellites to correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to determine a more accurate position of the receiver. Observations were made in July 2, 2011(Kp index = 0-2) in five randomly selected sites across the globe, four of which are IGS stations (station ID: cnmr, coso, irkj and morp) while the other is a low-cost single-frequency receiver located in Chungli City, Taiwan (ID: isls). It was illustrated that TEC maps generated using TWIM exhibited a detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for single-frequency static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models for all stations. The average %error of the corrections made by Klobuchar, GIM and TWIM in DRMS are 3.88%, 0.78% and 17.45%, respectively. While the average %error in VRMS for Klobuchar, GIM and TWIM are 53.55%, 62.09%, 66.02%, respectively. This shows the capability of TWIM to provide a good global 3-dimensional ionospheric model.

  4. Analyzing the Impact of Different Pcv Calibration Models on Height Determination Using Gps/Glonass Observations from Asg-Eupos Network

    Science.gov (United States)

    Dawidowicz, Karol

    2014-12-01

    The integration of GPS with GLONASS is very important in satellite-based positioning because it can clearly improve reliability and availability. However, unlike GPS, GLONASS satellites transmit signals at different frequencies. This results in significant difficulties in modeling and ambiguity resolution for integrated GNSS positioning. There are also some difficulties related to the antenna Phase Center Variations (PCV) problem because, as is well known, the PCV is dependent on the received signal frequency dependent. Thus, processing simultaneous observations from different positioning systems, e.g. GPS and GLONASS, we can expect complications resulting from the different structure of signals and differences in satellite constellations. The ASG-EUPOS multifunctional system for precise satellite positioning is a part of the EUPOS project involving countries of Central and Eastern Europe. The number of its users is increasing rapidly. Currently 31 of 101 reference stations are equipped with GPS/GLONASS receivers and the number is still increasing. The aim of this paper is to study the height solution differences caused by using different PCV calibration models in integrated GPS/GLONASS observation processing. Studies were conducted based on the datasets from the ASG-EUPOS network. Since the study was intended to evaluate the impact on height determination from the users' point of view, a so-called "commercial" software was chosen for post-processing. The analysis was done in a baseline mode: 3 days of GNSS data collected with three different receivers and antennas were used. For the purposes of research the daily observations were divided into different sessions with a session length of one hour. The results show that switching between relative and absolute PCV models may cause an obvious effect on height determination. This issue is particularly important when mixed GPS/GLONASS observations are post-processed.

  5. The SMS-GPS-Trip-Method

    DEFF Research Database (Denmark)

    Reinau, Kristian Hegner; Harder, Henrik; Weber, Michael

    2015-01-01

    This article presents a new method for collecting travel behavior data, based on a combination of GPS tracking and SMS technology, coined the SMS–GPS-Trip method. The state-of-the-art method for collecting data for activity based traffic models is a combination of travel diaries and GPS tracking...

  6. GPS operations at Olkiluoto in 2009

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.; Ahola, J. (Finnish Geodetic Institute, Masala (Finland))

    2010-06-15

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. One pillar in the investigation area belongs to the Finnish permanent GPS network, FinnRef. 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than +-0.20 mm/a. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. Changes in he difference between the GPS and EDM results indicate the systematic change in GPS results. No corrections based on only one baseline were not applied to GPS vectors. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. Four new permanent stations will be established in summer 2010 at Olkiluoto. We have automated the processing of the campaign data by using the Bernese processing engine (BPE) together with our own Perl scripts. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is located in Cities of Pori and Rauma and their neighbouring municipalities. Two new pillars

  7. GPS operations at Olkiluoto in 2009

    International Nuclear Information System (INIS)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.; Ahola, J.

    2010-06-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. One pillar in the investigation area belongs to the Finnish permanent GPS network, FinnRef. 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ±0.20 mm/a. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. Changes in he difference between the GPS and EDM results indicate the systematic change in GPS results. No corrections based on only one baseline were not applied to GPS vectors. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. Four new permanent stations will be established in summer 2010 at Olkiluoto. We have automated the processing of the campaign data by using the Bernese processing engine (BPE) together with our own Perl scripts. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is located in Cities of Pori and Rauma and their neighbouring municipalities. Two new pillars

  8. GPS IPW as a Meteorological Parameter and Climate Global Change Indicator

    Science.gov (United States)

    Kruczyk, M.; Liwosz, T.

    2011-12-01

    Paper focuses on comprehensive investigation of the GPS derived IPW (Integrated Precipitable Water, also IWV) as a geophysical tool. GPS meteorology is now widely acknowledged indirect method of atmosphere sensing. First we demonstrate GPS IPW quality. Most thorough inter-technique comparisons of directly measured IPW are attainable only for some observatories (note modest percentage of GPS stations equipped with meteorological devices). Nonetheless we have managed to compare IPW series derived from GPS tropospheric solutions (ZTD mostly from IGS and EPN solutions) and some independent techniques. IPW values from meteorological sources we used are: radiosoundings, sun photometer and input fields of numerical weather prediction model. We can treat operational NWP models as meteorological database within which we can calculate IWV for all GPS stations independently from network of direct measurements (COSMO-LM model maintained by Polish Institute of Meteorology and Water Management was tried). Sunphotometer (CIMEL-318, Central Geophysical Observatory IGF PAS, Belsk, Poland) data seems the most genuine source - so we decided for direct collocation of GPS measurements and sunphotometer placing permanent GPS receiver on the roof of Belsk Observatory. Next we analyse IPW as geophysical parameter: IPW demonstrates some physical effects evoked by station location (height and series correlation coefficient as a function of distance) and weather patterns like dominant wind directions (in case of neighbouring stations). Deficiency of surface humidity data to model IPW is presented for different climates. This inadequacy and poor humidity data representation in NWP model extremely encourages investigating information exchange potential between Numerical Model and GPS network. The second and most important aspect of this study concerns long series of IPW (daily averaged) which can serve as climatological information indicator (water vapour role in climate system is hard to

  9. GPS deformation measurements at Olkiluoto in 2013

    International Nuclear Information System (INIS)

    Nyberg, S.; Kallio, U.; Koivula, H.

    2014-08-01

    The Finnish Geodetic Institute has monitored crustal deformations since mid-1990s at Olkiluoto, Kivetty and Romuvaara. The research was focused on the Olkiluoto area in 2001, when Olkiluoto was chosen to the site for the final disposal facility of the spent nuclear fuel. The work and the results of the GPS deformation monitoring at Olkiluoto in 2013 are presented. The measurement consisted of two GPS measurement campaigns, observations at local permanent stations and control markers measurements at four stations. In spring six new stations were set up for permanent tracking. In total 12 permanent stations were operating continuously from April to the end of the year. The residual time series of the stations showed periodic trends up to 3 mm in height and 1 mm in horizontal component relative to the GPS1 station. A few stations were still measured as campaign-based and analysed baseline by baseline. The data from permanent stations (GPS1-GPS9, and GPS13) were included. The analysis of the inner network based on campaign sessions showed very small motions as in previous years: 75 % of change rates are smaller than 0.10 mm/y. Roughly one third of the change rates could be considered statistically significant at 1 % significance level. Statistically significant change rates were estimated for baselines from GPS1 and GPS5. The trends and strains differed at some baselines clearly from the earlier analysis because of different troposphere modelling. The results of the outer network showed the largest difference on the baseline GPS1-GPS11 where the trend decreased from -0.42 mm/y to -0.28 mm/y. The strain pattern of the outer network shows an eastwards motion of GPS1. The estimated strains for the baselines east of GPS1 were -0.03/-0.04 ppm/y. The control marker measurements were carried at the stations GPS1, GPS2, GPS4 and GPS6. A comparison of the results with the previous measurements showed that the distance between control markers at GPS6 continues to increase. Also

  10. GPS deformation measurements at Olkiluoto in 2013

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, S.; Kallio, U.; Koivula, H. [Finnish Geodetic Institute, Masala (Finland)

    2014-08-15

    The Finnish Geodetic Institute has monitored crustal deformations since mid-1990s at Olkiluoto, Kivetty and Romuvaara. The research was focused on the Olkiluoto area in 2001, when Olkiluoto was chosen to the site for the final disposal facility of the spent nuclear fuel. The work and the results of the GPS deformation monitoring at Olkiluoto in 2013 are presented. The measurement consisted of two GPS measurement campaigns, observations at local permanent stations and control markers measurements at four stations. In spring six new stations were set up for permanent tracking. In total 12 permanent stations were operating continuously from April to the end of the year. The residual time series of the stations showed periodic trends up to 3 mm in height and 1 mm in horizontal component relative to the GPS1 station. A few stations were still measured as campaign-based and analysed baseline by baseline. The data from permanent stations (GPS1-GPS9, and GPS13) were included. The analysis of the inner network based on campaign sessions showed very small motions as in previous years: 75 % of change rates are smaller than 0.10 mm/y. Roughly one third of the change rates could be considered statistically significant at 1 % significance level. Statistically significant change rates were estimated for baselines from GPS1 and GPS5. The trends and strains differed at some baselines clearly from the earlier analysis because of different troposphere modelling. The results of the outer network showed the largest difference on the baseline GPS1-GPS11 where the trend decreased from -0.42 mm/y to -0.28 mm/y. The strain pattern of the outer network shows an eastwards motion of GPS1. The estimated strains for the baselines east of GPS1 were -0.03/-0.04 ppm/y. The control marker measurements were carried at the stations GPS1, GPS2, GPS4 and GPS6. A comparison of the results with the previous measurements showed that the distance between control markers at GPS6 continues to increase. Also

  11. Evaluation of mobile micro-sensing devices for GPS-based personal exposure monitoring of heat and particulate matter - a matter of context

    Science.gov (United States)

    Ueberham, Maximilian; Schlink, Uwe; Weiland, Ulrike

    2017-04-01

    The application of mobile micro-sensing devices (MSDs) for human health and personal exposure monitoring (PEM) is an emerging topic of interest in urban air quality research. In the context of climate change, urban population growth and related anthropogenic activities, an increase is expected for the intensity of citizens' exposure to heat and particulate matter (PM). Therefore more focus on the small-scale perspective of spatio-temporal distribution of air quality parameters is important to complement fixed-monitoring site data. Mobile sensors for PEM are useful for both, the investigation of the local distribution of air quality and the personal exposure profiles of individuals moving within their activity spaces. An evaluation of MSDs' accuracy is crucial, before their sophisticated application in measurement campaigns. To detect variations of exposure at small scales, it is even more important to consider the accuracy of Global Positioning System (GPS) devices within different urban structure types (USTs). We present an assessment of the performance of GPS-based MSDs under indoor laboratory conditions and outdoor testing within different USTs. The aim was to evaluate the accuracy of several GPS devices and MSDs for heat and PM 2.5 in relation to reliable standard sensing devices as part of a PhD-project. The performance parameters are summary measures (mean value, standard deviation), correlation (Pearson r), difference measures (mean bias error, mean absolute error, index of agreement) and Bland-Altman plots. The MSDs have been tested in a climate chamber under constant temperature and relative humidity. For temperature MSDs reaction time was tested because of its relevance to detect temperature variations during mobile measurements. For interpretation of the results we considered the MSDs design and technology (e.g. passive vs. active ventilation). GPS-devices have been tested within low/high dense urban residential areas and low/high dense urban green areas

  12. Evaluating the Correctness of Airborne Laser Scanning Data Heights Using Vehicle-Based RTK and VRS GPS Observations

    Directory of Open Access Journals (Sweden)

    Martin Vermeer

    2011-08-01

    Full Text Available In this study, we describe a system in which a GPS receiver mounted on the roof of a car is used to provide reference information to evaluate the elevation accuracy and georeferencing of airborne laser scanning (ALS point clouds. The concept was evaluated in the Klaukkala test area where a number of roads were traversed to collect real-time kinematic data. Two test cases were evaluated, including one case using the real-time kinematic (RTK method with a dedicated GPS base station at a known benchmark in the area and another case using the GNSSnet virtual reference station service (VRS. The utility of both GPS methods was confirmed. When all test data were included, the mean difference between ALS data and GPS-based observations was −2.4 cm for both RTK and VRS GPS cases. The corresponding dispersions were ±4.5 cm and ±5.9 cm, respectively. In addition, our examination did not reveal the presence of any significant rotation between ALS and GPS data.

  13. Validation of Atmospheric Water Vapor Derived from Ship-Borne GPS Measurements in the Chinese Bohai Sea

    Directory of Open Access Journals (Sweden)

    Shi-Jie Fan

    2016-04-01

    Full Text Available Atmospheric water vapor (AWV was investigated for the first time in the Chinese Bohai Sea using a Global Positioning System (GPS receiver aboard a lightweight (300-ton ship. An experiment was conducted to retrieve the AWV using the state-of-the-art GPS precise point positioning (PPP technique. The effects of atmospheric weighted mean temperature model and zenith wet delay constraint on GPS AWV estimates were discussed in the PPP estimation system. The GPS-derived precipitable water vapor (PWV and slant-path water vapor (SWV were assessed by comparing with those derived from the Fifth Generation NCAR/Penn State Mesoscale Model (MM5. The results showed the PWV and SWV differences between those derived from both GPS and MM5 are 1.5 mm root mean square (RMS with a bias of 0.2 and 3.9 mm RMS with a bias of -0.7 mm respectively. These good agreements indicate that the GPS-derived AWV in dynamic environments has a comparable accuracy with that of the MM5 model. This suggests that high accuracy and high spatio-temporal resolution humidity fields can be obtained using GPS in the Chinese Bohai Sea, which offers significant potential for meteorological applications and climate studies in this region.

  14. Controlador para un Reloj GPS de Referencia en el Protocolo NTP

    Science.gov (United States)

    Hauscarriaga, F.; Bareilles, F. A.

    The synchronization between computers in a local network plays a very important role on enviroments similar to IAR. Calculations for exact time are needed before, during and after an observation. For this purpose the IAR's GNU/Linux Software Development Team implemented a driver inside NTP protocol (an internet standard for time synchronization of computers) for a GPS receiver acquired a few years ago by IAR, which did not have support in such protocol. Today our Institute has a stable and reliable time base synchronized to atomic clocks on board GPS Satellites according to computers's synchronization standard, offering precise time services to all scientific community and particularly to the University of La Plata. FULL TEXT IN SPANISH

  15. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations

    Science.gov (United States)

    Montenbruck, Oliver; Hackel, Stefan; Jäggi, Adrian

    2017-11-01

    The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d'Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM.

  16. The X-Ray Weakness of GPS Radio Galaxies: A Volume-Limited Complete Sample

    Science.gov (United States)

    Mushotzky, Richard F. (Technical Monitor); Siemiginowska, Aneta (Principal Investigator)

    2004-01-01

    The XMM observations of Mkn 668 have been analyzed. We found soft X-ray signatures of a hot plasma (kT approximately 10^7 approximately K) and a hard X-ray emission from the nucleus. The X-ray spectrum above 2.5 approximately keV is characterized by a very flat (observed photon index, Gamma approximately 0.5) power-law continuum, alongside with a strong Fe-K-alpha neutral iron fluorescent line (EW approximately 600 approximately eV). The best explanation for the origin of this high energy X-ray emission is in terms of the Compton-reflection of the nuclear emission. The primary X-ray emission is obscured by a Compton-thick (N_H approximately 10^24 approximately cm-2) matter which becomes transparent at higher energies. The observed above 2.5-keV X-rays are mostly due to reflection which is indicated by a strong Fe-K-alpha line. This represents the second hard X-ray detection of the GPS galaxy ever (the first one being 1345+125; O Dea et al. 2000). Interestingly, the both such trend is confirmed by our on going XMM-Newton observations of a larger GPS sample, it would lead us to looking into the question on how the dense nuclear environment impacts the nature and evolution of a GPS source, and more generally, on the history of radio power in the universe. The paper summarizing the results has been submitted to Astronomy and Astrophysics in December 2003.

  17. An alternative methodology for the mathematical treatment of GPS positioning

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2011-12-01

    In this paper a simple alternative method is developed to solve the GPS navigation equations directly without linearization and iteration. A practical study was done to evaluate the new model. Performance analysis was conducted using data collected by Trimble 4000SSE dual frequency receiver. The results indicated that the alternative methodology is simple, fast, and accurate as compared to Taylor method.

  18. Forsmark site investigation. A deformation analysis of the Forsmark GPS monitoring network from 2005 to 2009

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Lars; Ljungberg, Annika (Caliterra AB (Sweden))

    2010-10-15

    The objective of the study is to identify possible movements in the bedrock within and outside the candidate area at Forsmark. Seven physically stable stations were built in the Forsmark area in the autumn of 2005. Stations were established within a ten-kilometer radius. The stations were placed in three different areas separated by regional deformation zones: NE of the Singoe zone, within the candidate area, and SW of the Forsmark zone. Data have been collected in eighteen campaigns, each with a duration of about five days, from November 2005 to December 2009. Stations consist of a stainless steel rod fixed in the bedrock on which the GPS antenna mounts. Each station has dedicated GPS equipment only used at the specific site. Sets consist of a GPS receiver collecting raw GPS data and a choke ring antenna linked to the receiver using a coaxial cable. The receivers and antennas are dual frequency high precision geodetic grade. During each campaign the GPS receiver saves a reading every second for the duration of the five days campaign. The antennas remain mounted on the stations during the entire project, whereas all other equipment is in place at the station only during the campaigns. The measurements were related to the SWEPOS network stations Lovoe, Uppsala and Maartsbo that are defined as stations with stable fundaments by the National Land Survey of Sweden (Lantmaeteriet). This report deals with altogether 18 campaigns. The first 13 campaigns were performed during the period November 2005 to August 2008. However, the number of campaigns has been extended by adding a fourth year to the project. Optimization of the data processing depends on the properties of the entire data set comprising a period of four years. We divided the data into periods of 24 hours with each period processed as a separate session in the Bernese post processing software, after which we analyzed the residuals to conclude that data are of the expected quality. The entire data set from four

  19. TerraSAR-X precise orbit determination with real-time GPS ephemerides

    Science.gov (United States)

    Wermuth, Martin; Hauschild, Andre; Montenbruck, Oliver; Kahle, Ralph

    TerraSAR-X is a German Synthetic Aperture Radar (SAR) satellite, which was launched in June 2007 from Baikonour. Its task is to acquire radar images of the Earth's surface. In order to locate the radar data takes precisely, the satellite is equipped with a high-quality dual-frequency GPS receiver -the Integrated Geodetic and Occultation Receiver (IGOR) provided by the GeoForschungsZentrum Potsdam (GFZ). Using GPS observations from the IGOR instrument in a reduced dynamic precise orbit determination (POD), the German Space Operations Center (DLR/GSOC) is computing rapid and science orbit products on a routine basis. The rapid orbit products arrive with a latency of about one hour after data reception with an accuracy of 10-20 cm. Science orbit products are computed with a latency of five days achieving an accuracy of about 5cm (3D-RMS). For active and future Earth observation missions, the availability of near real-time precise orbit information is becoming more and more important. Other applications of near real-time orbit products include the processing of GNSS radio occulation measurements for atmospheric sounding as well as altimeter measurements of ocean surface heights, which are nowadays employed in global weather and ocean circulation models with short latencies. For example after natural disasters it is necessary to evaluate the damage by satellite images as soon as possible. The latency and quality of POD results is mainly driven by the availability of precise GPS ephemerides. In order to have high-quality GPS ephemerides available at real-time, GSOC has developed the real-time clock estimation system RETICLE. The system receives NTRIP-data streams with GNSS observations from the global tracking network of IGS in real-time. Using the known station position, RETICLE estimates precise GPS satellite clock offsets and drifts based on the most recent available IGU predicted orbits. The clock offset estimates have an accuracy of better than 0.3 ns and are

  20. Inverse spiking filter based acquisition enhancement in software based global positioning system receiver

    Directory of Open Access Journals (Sweden)

    G. Arul Elango

    2015-01-01

    Full Text Available The lower visibility of the satellite in the acquisition stage of a GPS receiver under worst noisy situation leads to reacquisition of the data and thereby takes a longer time to obtain the first position fix. If the impulse noise affects the GPS signal, the conventional ways of acquiring the satellites do not guarantee to meet the minimum requirement of four satellites to find the user position. The performance of GPS receiver acquisition can be improved in the low SNR level using inverse spiking filtering technique. In the proposed method, the estimate of the desired GPS L1 signal corrupted by impulse noise (gn is obtained by the prediction error filter (hopt, which is the optimum inverse filter that reshapes the noisy signal (yn into a desired GPS signal (xn. In the proposed method, to detect the visible satellites under weak signal conditions the traditional differential coherent approach is combined with the inverse spiking filter method to increase the number of visible satellites and to avoid the reacquisition process. Montecarlo simulation is carried out to assess the performance of the proposed method for C/N0 of 20 dB-Hz and results indicate that the modified differential coherent method effectively excises the noise with 90% probability of detection. Subsequently tracking operation is also tested to confirm the acquisition performance by demodulating the navigation data successfully.

  1. Auxiliary VHF transmitter to aid recovery of solar Argos/GPS PTTs

    Science.gov (United States)

    Christopher P. Hansen; Mark A. Rumble; R. Scott Gamo; Joshua J. Millspaugh

    2014-01-01

    While conducting greater sage-grouse (Centrocercus urophasianus) research, we found that solar-powered global positioning systems platform transmitter terminals (GPS PTTs) can be lost if the solar panel does not receive adequate sunlight. Thus, we developed 5-g (mortality sensor included; Prototype A) and 9.8-g (no mortality sensor; Prototype B) auxiliary very high...

  2. Vision-GPS Fusion for Guidance of an Autonomous Vehicle in Row Crops

    DEFF Research Database (Denmark)

    Bak, Thomas

    2001-01-01

    This paper presents a real-time localization system for an autonomous vehicle passing through 0.25 m wide crop rows at 6 km/h. Localization is achieved by fusion of mea-surements from a row guidance sensor and a GPS receiver. Conventional agricultural practice applies inputs such as herbicide...

  3. Development of automatic techniques for GPS data management

    International Nuclear Information System (INIS)

    Park, Pil Ho

    2001-06-01

    It is necessary for GPS center to establish automatization as effective management of GPS network including data gathering, data transformation, data backup, data sending to IGS (International GPS Service for geodynamics), and precise ephemerides gathering. The operating program of GPS center has been adopted at KCSC (Korea Cadastral Survey Corporation), NGI (National Geography Institute), MOMAF (Ministry of Maritime Affairs and Fisheries) without self-development of core technique. The automatic management of GPS network is consists of GPS data management and data processing. It is also fundamental technique, which should be accomplished by every GPS centers. Therefore, this study carried out analyzing of Japanese GPS center, which has accomplished automatization by module considering applicability for domestic GPS centers

  4. A long-term assessment of the variability in winter use of dense conifer cover by female white-tailed deer.

    Directory of Open Access Journals (Sweden)

    Glenn D Delgiudice

    Full Text Available Long-term studies allow capture of a wide breadth of environmental variability and a broader context within which to maximize our understanding of relationships to specific aspects of wildlife behavior. The goal of our study was to improve our understanding of the biological value of dense conifer cover to deer on winter range relative to snow depth and ambient temperature.We examined variation among deer in their use of dense conifer cover during a 12-year study period as potentially influenced by winter severity and cover availability. Female deer were fitted with a mixture of very high frequency (VHF, n = 267 and Global Positioning System (GPS, n = 24 collars for monitoring use of specific cover types at the population and individual levels, respectively. We developed habitat composites for four study sites. We fit multinomial response models to VHF (daytime data to describe population-level use patterns as a function of snow depth, ambient temperature, and cover availability. To develop alternative hypotheses regarding expected spatio-temporal patterns in the use of dense conifer cover, we considered two sets of competing sub-hypotheses. The first set addressed whether or not dense conifer cover was limiting on the four study sites. The second set considered four alternative sub-hypotheses regarding the potential influence of snow depth and ambient temperature on space use patterns. Deer use of dense conifer cover increased the most with increasing snow depth and most abruptly on the two sites where it was most available, suggestive of an energy conservation strategy. Deer use of dense cover decreased the most with decreasing temperatures on the sites where it was most available. At all four sites deer made greater daytime use (55 to >80% probability of use of open vegetation types at the lowest daily minimum temperatures indicating the importance of thermal benefits afforded from increased exposure to solar radiation. Date

  5. GPS in Travel and Activity Surveys

    DEFF Research Database (Denmark)

    Nielsen, Thomas Alexander Sick; Hovgesen, Henrik Harder

    2004-01-01

    The use of GPS-positioning as a monitoring tool in travel and activity surveys opens up a range of possibilities. Using a personal GPS device, the locations and movements of respondents can be followed over a longer period of time. It will then be possible to analyse how the use of urban spaces...... are embedded in the wider context of activity patterns (work, school etc.). The general pattern of everyday itineraries, including route choice and time spent at different locations ?on the way? can also be analysed. If the personal GPS device is combined with an electronic questionnaire, for example...... area. The paper presents the possibilities in travel and activity surveys with GPS and electronic questionnaires. Demonstrative mapping of test data from passive GPS registration of Copenhagen respondents is presented. The different survey possibilities given a combination of GPS and PDA based...

  6. GPs' adherence to guidelines for structured assessments of stroke survivors in the community and care homes.

    Science.gov (United States)

    Gonçalves-Bradley, Daniela C; Boylan, Anne-Marie; Koshiaris, Constantinos; Vazquez Montes, Maria; Ford, Gary A; Lasserson, Daniel S

    2015-12-01

    Clinical practice guidelines recommend that stroke survivors' needs be assessed at regular intervals after stroke. The extent to which GPs comply with national guidance particularly for patients in care homes who have greatest clinical complexity is unknown. This study aimed to establish the current clinical practice in the UK of needs assessment by GPs for stroke survivors after hospital discharge for acute stroke. Cross-sectional online survey of current practice of GPs, using the national doctors.net network. The survey was completed by 300 GPs who had on average been working for 14 years. The structured assessment of stroke survivors' needs was not offered by 31% of GPs, with no significant difference for level of provision in community or care home settings. The outputs of reviews were added to patients' notes by 89% of GPs and used to change management by 57%. Only half the GPs reported integrating the information obtained into care plans and only a quarter of GPs had a protocol for follow-up of identified needs. Analysis of free-text comments indicated that patients in some care homes may receive more regular and structured reviews. This survey suggests that at least one-third of GPs provide no formal review of the needs of stroke patients and that in only a minority are identified needs addressed in a structured way. Standardization is required for what is included in reviews and how needs are being identified and met. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. The integration of GPS, vegetation mapping and GIS in ecological and behavioural studies

    Directory of Open Access Journals (Sweden)

    Steven Mark Rutter

    2007-07-01

    Full Text Available Global Positioning System (GPS satellite navigation receivers are increasingly being used in ecological and behavioural studies to track the movements of animals in relation to the environments in which they live and forage. Concurrent recording of the animal's foraging behaviour (e.g. from jaw movement recording allows foraging locations to be determined. By combining the animal GPS movement and foraging data with habitat and vegetation maps using a Geographical Information System (GIS it is possible to relate animal movement and foraging location to landscape and habitat features and vegetation types. This powerful approach is opening up new opportunities to study the spatial aspects of animal behaviour, especially foraging behaviour, with far greater precision and objectivity than before. Advances in GPS technology now mean that sub-metre precision systems can be used to track animals, extending the range of application of this technology from landscape and habitat scale to paddock and patch scale studies. As well as allowing ecological hypotheses to be empirically tested at the patch scale, the improvements in precision are also leading to the approach being increasing extended from large scale ecological studies to smaller (paddock scale agricultural studies. The use of sub-metre systems brings both new scientific opportunities and new technological challenges. For example, fitting all of the animals in a group with sub-metre precision GPS receivers allows their relative inter-individual distances to be precisely calculated, and their relative orientations can be derived from data from a digital compass fitted to each receiver. These data, analyzed using GIS, could give new insights into the social behaviour of animals. However, the improvements in precision with which the animals are being tracked also needs equivalent improvements in the precision with which habitat and vegetation are mapped. This needs some degree of automation, as

  8. How does the workload and work activities of procedural GPs compare to non-procedural GPs?

    Science.gov (United States)

    Russell, Deborah J; McGrail, Matthew R

    2017-08-01

    To investigate patterns of Australian GP procedural activity and associations with: geographical remoteness and population size hours worked in hospitals and in total; and availability for on-call DESIGN AND PARTICIPANTS: National annual panel survey (Medicine in Australia: Balancing Employment and Life) of Australian GPs, 2011-2013. Self-reported geographical work location, hours worked in different settings, and on-call availability per usual week, were analysed against GP procedural activity in anaesthetics, obstetrics, surgery or emergency medicine. Analysis of 9301 survey responses from 4638 individual GPs revealed significantly increased odds of GP procedural activity in anaesthetics, obstetrics or emergency medicine as geographical remoteness increased and community population size decreased, albeit with plateauing of the effect-size from medium-sized (population 5000-15 000) rural communities. After adjusting for confounders, procedural GPs work more hospital and more total hours each week than non-procedural GPs. In 2011 this equated to GPs practising anaesthetics, obstetrics, surgery, and emergency medicine providing 8% (95%CI 0, 16), 13% (95%CI 8, 19), 8% (95%CI 2, 15) and 18% (95%CI 13, 23) more total hours each week, respectively. The extra hours are attributable to longer hours worked in hospital settings, with no reduction in private consultation hours. Procedural GPs also carry a significantly higher burden of on-call. The longer working hours and higher on-call demands experienced by rural and remote procedural GPs demand improved solutions, such as changes to service delivery models, so that long-term procedural GP careers are increasingly attractive to current and aspiring rural GPs. © 2016 National Rural Health Alliance Inc.

  9. Geometrical optics of dense aerosols: forming dense plasma slabs.

    Science.gov (United States)

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  10. Tracking Small Satellites using Translated GPS

    OpenAIRE

    Lefevre, Don; Mulally, Daniel

    1991-01-01

    This paper discusses using translated GPS for tracking small satellites, the technical trade-offs involved, and the position and timing accuracies which are achievable using translated GPS. The Global Positioning System (GPS) uses the relative times-of-arrival of multiple spread-spectrum signals at an antenna to determine the position of the antenna. The system can also determine the time the antenna was at that position. The direct sequence spread spectrum signals are transmitted from GPS sa...

  11. Evidential recovery from GPS devices

    Directory of Open Access Journals (Sweden)

    Brian Cusack

    Full Text Available Global Positioning Systems (GPS have become more affordable, are now widely used in motor vehicles and in other frequently used applications. As a consequence GPS are increasingly becoming an important source of evidential data for digital forensic investigations. This paper acknowledges there are only disparate documents for the guidance of an investigator when extracting evidence form such systems. The focus of this paper is to provide the technical details of recovering artifacts from four GPS currently available to the New Zealand market. Navman brand GPS are used, following a forensically robust process. The steps of the process are described, results analysed and the associated risks are discussed. In addition, the paper discusses techniques related to the visual presentation of evidence suitable for Google Maps. Automation attempts to speed up the analysis to visualization steps are also included. The outcome is a road map that may assist digital forensic investigators develop GPS examination strategies for implementation in their own organizations.

  12. Application of TaiWan Ionosphere Model to Single-Frequency Ionospheric Delay Correction for GPS Static Position Positioning

    Science.gov (United States)

    Macalalad, E. P.; Tsai, L.; Wu, J.

    2011-12-01

    Ionospheric delay is one of the major sources of error in GPS positioning and navigation. This error in both pseudorange and phase ranges can vary depending on the location of observation, local time, season, solar cycle and geomagnetic activity. This effect can be practically removed using dual-frequency receivers. However, these types of receivers are very expensive and thus, impractical for most users. Therefore, for single-frequency receivers, ionosphere is usually modeled to attempt to remove this effect analytically. Numerous ionosphere models have been introduced in the past. Some of which are the Klobuchar (or broadcast) model and the global ionosphere map (GIM) provided by the International GNSS Service (IGS). In this paper, another model, called the TaiWan Ionosphere Model (TWIM) was used to correct this effect. TWIM is a three dimensional ionospheric electron (ne) density model derived from FormoSat3/COSMIC GPS Radio Occultation measurements, was used to calculate ionospheric delay for GPS single-frequency positioning. The ne profiles were used to calculate the slant TEC (STEC) between a receiver and each GPS satellite and correct the pseudorange single-frequency observations. The corrected pseudorange for every epoch was used to calculate the position of the receiver. Observations were made in a low-latitude location near one of the peaks of the equatorial anomaly. It was shown that TEC maps generated using TWIM exhibited detailed structure of the ionosphere, whereas Klobuchar and GIM only provided the basic diurnal and geographic features of the ionosphere. Also, it was shown that for static point positioning TWIM provides more accurate and more precise positioning than the Klobuchar and GIM models. That is, on the average, the horizontal accuracy, represented by the circular error probable (CEP), distance RMS (DRMS) and twice the DRMS (2DRMS), were better by 15-18% as compared with the CEP, DRMS and 2DRMS of uncorrected, Klobuchar and GIM. Moreover

  13. Strain Variation along Cimandiri Fault, West Java Based on Continuous and Campaign GPS Observation From 2006-2016

    Science.gov (United States)

    Safitri, A. A.; Meilano, I.; Gunawan, E.; Abidin, H. Z.; Efendi, J.; Kriswati, E.

    2018-03-01

    The Cimandiri fault which is running in the direction from Pelabuhan Ratu to Padalarang is the longest fault in West Java with several previous shallow earthquakes in the last 20 years. By using continues and campaign GPS observation from 2006-2016, we obtain the deformation pattern along the fault through the variation of strain tensor. We use the velocity vector of GPS station which is fixed in stable International Terrestrial Reference Frame 2008 to calculate horizontal strain tensor. Least Square Collocation is applied to produce widely dense distributed velocity vector and optimum scale factor for the Least Square Weighting matrix. We find that the strain tensor tend to change from dominantly contraction in the west to dominantly extension to the east of fault. Both the maximum shear strain and dilatation show positive value along the fault and increasing from the west to the east. The findings of strain tensor variation along Cimandiri Fault indicate the post seismic effect of the 2006 Java Earthquake.

  14. The Effect of high temperature plasma on GPS satellite signals

    International Nuclear Information System (INIS)

    Aghanajafi, C.; Alizadeh, M.M.

    2002-01-01

    Ionospheric disturbances caused by pulses of electromagnetic radiation are observed in the propagation of radio signals. Specific events affecting particular aspects of radio propagation are sudden phase anomaly; sudden frequency deviation, sudden cosmic noise and short wave fade out. Global positioning System (GPS) is a space-based navigation system, developed by the United States, to satisfy the requirements for the military forces and the civilians to determine their position, velocity and time in a common reference system anywhere on or near the earth. The purpose of this paper is to calculate the effect of ionosphere on GPS satellite signals. In order to find this effects, calculation of the total column electron content is needed. The lack of data necessary to generate real Electron Density Profile versus altitude, latitude, time, season and solar activity; causes the introduction of a new method to reproduce the topside and bottom side component of the peak electron density. Electron density profiles computed in this method are compared with GPS derived profiles, which use observations of dual frequency receivers. Ionospheric range corrections, for signal point positioning, using two methods have also been discussed

  15. Applications of GPS technologies to field sports.

    Science.gov (United States)

    Aughey, Robert J

    2011-09-01

    Global positioning system (GPS) technology was made possible after the invention of the atomic clock. The first suggestion that GPS could be used to assess the physical activity of humans followed some 40 y later. There was a rapid uptake of GPS technology, with the literature concentrating on validation studies and the measurement of steady-state movement. The first attempts were made to validate GPS for field sport applications in 2006. While GPS has been validated for applications for team sports, some doubts continue to exist on the appropriateness of GPS for measuring short high-velocity movements. Thus, GPS has been applied extensively in Australian football, cricket, hockey, rugby union and league, and soccer. There is extensive information on the activity profile of athletes from field sports in the literature stemming from GPS, and this includes total distance covered by players and distance in velocity bands. Global positioning systems have also been applied to detect fatigue in matches, identify periods of most intense play, different activity profiles by position, competition level, and sport. More recent research has integrated GPS data with the physical capacity or fitness test score of athletes, game-specific tasks, or tactical or strategic information. The future of GPS analysis will involve further miniaturization of devices, longer battery life, and integration of other inertial sensor data to more effectively quantify the effort of athletes.

  16. Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts

    Science.gov (United States)

    Page, M.T.; Custodio, S.; Archuleta, R.J.; Carlson, J.M.

    2009-01-01

    We present a resolution analysis of an inversion of GPS data from the 2004 Mw 6.0 Parkfield earthquake. This earthquake was recorded at thirteen 1-Hz GPS receivers, which provides for a truly coseismic data set that can be used to infer the static slip field. We find that the resolution of our inverted slip model is poor at depth and near the edges of the modeled fault plane that are far from GPS receivers. The spatial heterogeneity of the model resolution in the static field inversion leads to artifacts in poorly resolved areas of the fault plane. These artifacts look qualitatively similar to asperities commonly seen in the final slip models of earthquake source inversions, but in this inversion they are caused by a surplus of free parameters. The location of the artifacts depends on the station geometry and the assumed velocity structure. We demonstrate that a nonuniform gridding of model parameters on the fault can remove these artifacts from the inversion. We generate a nonuniform grid with a grid spacing that matches the local resolution length on the fault and show that it outperforms uniform grids, which either generate spurious structure in poorly resolved regions or lose recoverable information in well-resolved areas of the fault. In a synthetic test, the nonuniform grid correctly averages slip in poorly resolved areas of the fault while recovering small-scale structure near the surface. Finally, we present an inversion of the Parkfield GPS data set on the nonuniform grid and analyze the errors in the final model. Copyright 2009 by the American Geophysical Union.

  17. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Directory of Open Access Journals (Sweden)

    Ghangho Kim

    2015-04-01

    Full Text Available A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO satellite using single-epoch measurements from a Global Positioning System (GPS receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS. Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state.

  18. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements

    Science.gov (United States)

    Kim, Ghangho; Kim, Chongwon; Kee, Changdon

    2015-01-01

    A practical algorithm is proposed for determining the orbit of a geostationary orbit (GEO) satellite using single-epoch measurements from a Global Positioning System (GPS) receiver under the sparse visibility of the GPS satellites. The algorithm uses three components of a state vector to determine the satellite’s state, even when it is impossible to apply the classical single-point solutions (SPS). Through consideration of the characteristics of the GEO orbital elements and GPS measurements, the components of the state vector are reduced to three. However, the algorithm remains sufficiently accurate for a GEO satellite. The developed algorithm was tested on simulated measurements from two or three GPS satellites, and the calculated maximum position error was found to be less than approximately 40 km or even several kilometers within the geometric range, even when the classical SPS solution was unattainable. In addition, extended Kalman filter (EKF) tests of a GEO satellite with the estimated initial state were performed to validate the algorithm. In the EKF, a reliable dynamic model was adapted to reduce the probability of divergence that can be caused by large errors in the initial state. PMID:25835299

  19. Characterization of patients receiving palliative chemo- and radiotherapy during end of life at a regional cancer center in Norway.

    Science.gov (United States)

    Anshushaug, Malin; Gynnild, Mari Aas; Kaasa, Stein; Kvikstad, Anne; Grønberg, Bjørn H

    2015-03-01

    Many cancer patients receive chemotherapy and radiotherapy their last 30 days [end of life (EOL)]. The benefit is questionable and side effects are common. The aim of this study was to investigate what characterized the patients who received chemo- and radiotherapy during EOL, knowledge that might be used to improve practice. Patients dead from cancer in 2005 and 2009 were analyzed. Data were collected from hospital medical records. When performance status (PS) was not stated, PS was estimated from other information in the records. A Glasgow Prognostic Score (GPS) of 0, 1 or 2 was assessed from blood values (CRP and albumin). A higher score is associated with a shorter prognosis. In total 616 patients died in 2005; 599 in 2009. Among the 723 analyzed, median age was 71; 42% had metastases at diagnosis (synchronous metastases); 53% had PS 2 and 16% PS 3-4 at the start of last cancer therapy. GPS at the start of last cancer therapy was assessable in 70%; of these, 26% had GPS 1 and 35% GPS 2. Overall, 10% received chemotherapy and 8% radiotherapy during EOL. The proportions varied significantly between the different types of cancer. Multivariate analyses revealed that those at agelife. GPS 2 and synchronous metastases were most significantly associated with cancer therapy the last 30 days of life, indicating that in general, patients with the shortest survival time after diagnosis of cancer received more chemo- and radiotherapy during EOL than other patients.

  20. Beyond the usual mapping functions in GPS, VLBI and Deep Space tracking.

    Science.gov (United States)

    Barriot, Jean-Pierre; Serafini, Jonathan; Sichoix, Lydie

    2014-05-01

    We describe here a new algorithm to model the water contents of the atmosphere (including ZWD) from GPS slant wet delays relative to a single receiver. We first make the assumption that the water vapor contents are mainly governed by a scale height (exponential law), and secondly that the departures from this decaying exponential can be mapped as a set of low degree 3D Zernike functions (w.r.t. space) and Tchebyshev polynomials (w.r.t. time.) We compare this new algorithm with previous algorithms known as mapping functions in GPS, VLBI and Deep Space tracking and give an example with data acquired over a one day time span at the Geodesy Observatory of Tahiti.

  1. Large-Strain Monitoring Above a Longwall Coal Mine With GPS and Seismic Measurements

    Science.gov (United States)

    Swanson, P. L.; Andreatta, V.; Meertens, C. M.; Krahenbuhl, T.; Kenner, B.

    2001-12-01

    As part of an effort to evaluate continuous GPS measurements for use in mine safety studies, a joint GPS-seismic experiment was conducted at an underground longwall coal mine near Paonia, Colorado in June, 2001. Seismic and deformation signals were measured using prototype low-cost monitoring systems as a longwall panel was excavated 150 m beneath the site. Data from both seismic and GPS instruments were logged onto low-power PC-104 Linux computers which were networked using a wireless LAN. The seismic system under development at NIOSH/SRL is based on multiple distributed 8-channel 24-bit A/D converters. The GPS system uses a serial single-frequency (L1) receiver and UNAVCO's "Jstream" Java data logging software. For this experiment, a continuously operating dual-frequency GPS receiver was installed 2.4 km away to serve as a reference site. In addition to the continuously operating sites, 10 benchmarks were surveyed daily with short "rapid-static" occupations in order to provide greater spatial sampling. Two single-frequency sites were located 35 meters apart on a relatively steep north-facing slope. As mining progressed from the east, net displacements of 1.2 meters to the north and 1.65 meters of subsidence were observed over a period of 6 days. The east component exhibited up to 0.45 meters of eastward displacement (toward the excavation) followed by reverse movement to the west. This cycle, observed approximately two days earlier at the eastern L1 site, is consistent with a change in surface strain from tension to compression as the excavation front passed underneath. As this strain "wave" propagated across the field site, surface deformation underwent a cycle of tension crack nucleation, crack opening (up to 15 cm normal displacements), subsequent crack closure, and production of low-angle-thrust compressional deformation features. Analysis of seismic results, surface deformation, and additional survey results are presented.

  2. Fisheye-Based Method for GPS Localization Improvement in Unknown Semi-Obstructed Areas

    Directory of Open Access Journals (Sweden)

    Julien Moreau

    2017-01-01

    Full Text Available A precise GNSS (Global Navigation Satellite System localization is vital for autonomous road vehicles, especially in cluttered or urban environments where satellites are occluded, preventing accurate positioning. We propose to fuse GPS (Global Positioning System data with fisheye stereovision to face this problem independently to additional data, possibly outdated, unavailable, and needing correlation with reality. Our stereoscope is sky-facing with 360° × 180° fisheye cameras to observe surrounding obstacles. We propose a 3D modelling and plane extraction through following steps: stereoscope self-calibration for decalibration robustness, stereo matching considering neighbours epipolar curves to compute 3D, and robust plane fitting based on generated cartography and Hough transform. We use these 3D data with GPS raw data to estimate NLOS (Non Line Of Sight reflected signals pseudorange delay. We exploit extracted planes to build a visibility mask for NLOS detection. A simplified 3D canyon model allows to compute reflections pseudorange delays. In the end, GPS positioning is computed considering corrected pseudoranges. With experimentations on real fixed scenes, we show generated 3D models reaching metric accuracy and improvement of horizontal GPS positioning accuracy by more than 50%. The proposed procedure is effective, and the proposed NLOS detection outperforms CN0-based methods (Carrier-to-receiver Noise density.

  3. Cooperating with a palliative home-care team: expectations and evaluations of GPs and district nurses

    DEFF Research Database (Denmark)

    Goldschmidt, Dorthe; Groenvold, Mogens; Johnsen, Anna Thit

    2005-01-01

    BACKGROUND: Palliative home-care teams often cooperate with general practitioners (GPs) and district nurses. Our aim was to evaluate a palliative home-care team from the viewpoint of GPs and district nurses. METHODS: GPs and district nurses received questionnaires at the start of home-care and one...... month later. Questions focussed on benefits to patients, training issues for professionals and cooperation between the home-care team and the GP/ district nurse. A combination of closed- and open-ended questions was used. RESULTS: Response rate was 84% (467/553). Benefits to patients were experienced...... by 91 %, mainly due to improvement in symptom management, 'security', and accessibility of specialists in palliative care. After one month, 57% of the participants reported to have learnt aspects of palliative care, primarily symptom control, and 89% of them found cooperation satisfactory...

  4. Precise Positioning of Uavs - Dealing with Challenging Rtk-Gps Measurement Conditions during Automated Uav Flights

    Science.gov (United States)

    Zimmermann, F.; Eling, C.; Klingbeil, L.; Kuhlmann, H.

    2017-08-01

    For some years now, UAVs (unmanned aerial vehicles) are commonly used for different mobile mapping applications, such as in the fields of surveying, mining or archeology. To improve the efficiency of these applications an automation of the flight as well as the processing of the collected data is currently aimed at. One precondition for an automated mapping with UAVs is that the georeferencing is performed directly with cm-accuracies or better. Usually, a cm-accurate direct positioning of UAVs is based on an onboard multi-sensor system, which consists of an RTK-capable (real-time kinematic) GPS (global positioning system) receiver and additional sensors (e.g. inertial sensors). In this case, the absolute positioning accuracy essentially depends on the local GPS measurement conditions. Especially during mobile mapping applications in urban areas, these conditions can be very challenging, due to a satellite shadowing, non-line-of sight receptions, signal diffraction or multipath effects. In this paper, two straightforward and easy to implement strategies will be described and analyzed, which improve the direct positioning accuracies for UAV-based mapping and surveying applications under challenging GPS measurement conditions. Based on a 3D model of the surrounding buildings and vegetation in the area of interest, a GPS geometry map is determined, which can be integrated in the flight planning process, to avoid GPS challenging environments as far as possible. If these challenging environments cannot be avoided, the GPS positioning solution is improved by using obstruction adaptive elevation masks, to mitigate systematic GPS errors in the RTK-GPS positioning. Simulations and results of field tests demonstrate the profit of both strategies.

  5. Accuracy of Single Frequency GPS Observations Processing In Near Real-time With Use of Code Predicted Products

    Science.gov (United States)

    Wielgosz, P. A.

    In this year, the system of active geodetic GPS permanent stations is going to be estab- lished in Poland. This system should provide GPS observations for a wide spectrum of users, especially it will be a great opportunity for surveyors. Many of surveyors still use cheaper, single frequency receivers. This paper focuses on processing of single frequency GPS observations only. During processing of such observations the iono- sphere plays an important role, so we concentrated on the influence of the ionosphere on the positional coordinates. Twenty consecutive days of GPS data from 2001 year were processed to analyze the accuracy of a derived three-dimensional relative vec- tor position between GPS stations. Observations from two Polish EPN/IGS stations: BOGO and JOZE were used. In addition to, a new test station - IGIK was created. In this paper, the results of single frequency GPS observations processing in near real- time are presented. Baselines of 15, 27 and 42 kilometers and sessions of 1, 2, 3, 4, and 6 hours long were processed. While processing we used CODE (Centre for Orbit De- termination in Europe, Bern, Switzerland) predicted products: orbits and ionosphere info. These products are available in real-time and enable near real-time processing. Software Bernese v. 4.2 for Linux and BPE (Bernese Processing Engine) mode were used. These results are shown with a reference to dual frequency weekly solution (the best solution). Obtained GPS positional time and GPS baseline length dependency accuracy is presented for single frequency GPS observations.

  6. GPS Ephemeris Message Broadcast Simulation

    National Research Council Canada - National Science Library

    Browne, Nathan J; Light, James J

    2005-01-01

    The warfighter constantly needs increased accuracy from GPS and a means to increasing this accuracy to the decimeter level is a broadcast ephemeris message containing GPS satellite orbit and clock corrections...

  7. Performance analysis of simultaneous dense coding protocol under decoherence

    Science.gov (United States)

    Huang, Zhiming; Zhang, Cai; Situ, Haozhen

    2017-09-01

    The simultaneous dense coding (SDC) protocol is useful in designing quantum protocols. We analyze the performance of the SDC protocol under the influence of noisy quantum channels. Six kinds of paradigmatic Markovian noise along with one kind of non-Markovian noise are considered. The joint success probability of both receivers and the success probabilities of one receiver are calculated for three different locking operators. Some interesting properties have been found, such as invariance and symmetry. Among the three locking operators we consider, the SWAP gate is most resistant to noise and results in the same success probabilities for both receivers.

  8. A qualitative study of GPs' and PCO stakeholders' views on the importance and influence of cost on prescribing.

    Science.gov (United States)

    Prosser, Helen; Walley, Tom

    2005-03-01

    With prescribing expenditure rising and evidence of prescribing costs variation, general practitioners (GPs) in the UK are under increasing pressure to contain spending. The introduction of cash-limited, unified budgets and increased monitoring of prescribing within Primary Care Organizations (PCO) are intended to increase efficiency and enhance GPs financial responsibility. Whilst GPs regularly receive data on the costs of their prescribing and also performance against a set prescribing budget, little is known about the extent to which GPs take cost into account in their prescribing decisions. This study undertook a qualitative exploration of the attitudes of various stakeholders on the relative importance and influence of cost on general practice prescribing. In order to explore a plurality of perspectives, data were obtained from focus groups and a series of individual semi-structured interviews with GPs and key PCO stakeholders. The data suggest that although almost all GPs believed costs should be taken into account when prescribing, there was great variation in the extent to which this was applied and to how sensitive GPs were to costs. Cost was secondary to clinical effectiveness and safety, whilst individual patient need was emphasized above other forms of rationality or notions of opportunity costs. Conflict was apparent between a PCO policy of cost-containment and GPs' resistance to cost-cutting. GPs largely applied simple cost-minimization while cost-consideration was undermined by contextual factors. Implications for research and policy are discussed.

  9. Derivation of GPS TEC and receiver bias for Langkawi station in Malaysia

    International Nuclear Information System (INIS)

    Teh, W L; Abdullah, M; Chen, W S

    2017-01-01

    This paper presents the polynomial-type TEC model to derive total electron content (TEC) and receiver bias for Langkawi (LGKW) station in Malaysia at geographic latitude of 6.32° and longitude of 99.85°. The model uses a polynomial function of coordinates of the ionospheric piercing point to describe the TEC distribution in space. In the model, six polynomial coefficients and a receiver bias are unknown which can be solved by the least squares method. A reasonable agreement is achieved for the derivation of TEC and receiver bias for IENG station in Italy, as compared with that derived by the IGS analysis center, CODE. We process one year of LGKW data in 2010 and show the monthly receiver bias and the seasonal TEC variation. The monthly receiver bias varies between −48 and −24 TECu (10 16 electrons/m 2 ), with the mean value at −37 TECu. Large variations happen in the monthly receiver biases due to the low data coverage of high satellite elevation angle (60° < α ≤ 90°). Post-processing TEC approach is implemented which can resolve the wavy pattern of the monthly TEC baseline resulted from the large variation of the receiver bias. The seasonal TEC variation at LGKW exhibits a semi-annual variation, where the peak occurs during equinoctial months, and the trough during summer and winter months. (paper)

  10. On Fast Post-Processing of Global Positioning System Simulator Truth Data and Receiver Measurements and Solutions Data

    Science.gov (United States)

    Kizhner, Semion; Day, John H. (Technical Monitor)

    2000-01-01

    Post-Processing of data related to a Global Positioning System (GPS) simulation is an important activity in qualification of a GPS receiver for space flight. Because a GPS simulator is a critical resource it is desirable to move off the pertinent simulation data from the simulator as soon as a test is completed. The simulator data files are usually moved to a Personal Computer (PC), where the post-processing of the receiver logged measurements and solutions data and simulated data is performed. Typically post-processing is accomplished using PC-based commercial software languages and tools. Because of commercial software systems generality their general-purpose functions are notoriously slow and more than often are the bottleneck problem even for short duration experiments. For example, it may take 8 hours to post-process data from a 6-hour simulation. There is a need to do post-processing faster, especially in order to use the previous test results as feedback for a next simulation setup. This paper demonstrates that a fast software linear interpolation algorithm is applicable to a large class of engineering problems, like GPS simulation data post-processing, where computational time is a critical resource and is one of the most important considerations. An approach is developed that allows to speed-up post-processing by an order of magnitude. It is based on improving the post-processing bottleneck interpolation algorithm using apriori information that is specific to the GPS simulation application. The presented post-processing scheme was used in support of a few successful space flight missions carrying GPS receivers. A future approach to solving the post-processing performance problem using Field Programmable Gate Array (FPGA) technology is described.

  11. Temporal and Spatial Characterization of GPS Fading From Ionospheric Irregularities Under Low latitude

    Science.gov (United States)

    De Paula, E. R.; Moraes, A. D. O.; Vani, B. C.; Sobral, J. H. A.; Abdu, M. A.; Galera Monico, J. F.

    2017-12-01

    The ionosphere over the peak of the anomaly represents a treat for navigation systems based on GNSS. Brazilian territory is mostly under this harsh layer for satellite communication in general and in particular for navigation, like GPS users, where their receivers tracking performance are damaged under scintillation conditions. Ionospheric scintillation is responsible for significant degradation in the accuracy of navigation and positioning. Phase shifts accompanied by amplitude fades significantly degrades the signal-to-noise ratio of the received signal disrupting the channel and loosing navigation performance. The stronger the scintillations are, more difficulty will be for the GNSS receiver tracking loops to recover the phase and code replicas. These phenomena under specific geophysical conditions may severely affect the system availability and positioning. In this work the temporal characteristics of amplitude scintillation will be analyzed at the three available GPS frequencies, L1, L2C and L5. Aspect like fading duration and depth will be evaluated and compared among the three available frequencies for the current solar cycle. This work will use GPS scintillation data recorded during six months of data during 2014 to 2015 at three stations under Brazilian territory located near the southern crest of the equatorial ionization anomaly. The analysis will be performed focusing on the fading profile of the three frequencies comparing how the fading of those signals behave statistically between them. Aspects like loss of lock, spatial orientation between the signal across the ionospheric irregularity will also be discussed showing how much more susceptible the new frequencies might be in comparison to the widely used and studied L1 frequency.

  12. PMU Placement Methods in Power Systems based on Evolutionary Algorithms and GPS Receiver

    Directory of Open Access Journals (Sweden)

    M. R. Mosavi

    2013-06-01

    Full Text Available In this paper, optimal placement of Phasor Measurement Unit (PMU using Global Positioning System (GPS is discussed. Ant Colony Optimization (ACO, Simulated Annealing (SA, Particle Swarm Optimization (PSO and Genetic Algorithm (GA are used for this problem. Pheromone evaporation coefficient and the probability of moving from state x to state y by ant are introduced into the ACO. The modified algorithm overcomes the ACO in obtaining global optimal solution and convergence speed, when applied to optimizing the PMU placement problem. We also compare this simulink with SA, PSO and GA that to find capability of ACO in the search of optimal solution. The fitness function includes observability, redundancy and number of PMU. Logarithmic Least Square Method (LLSM is used to calculate the weights of fitness function. The suggested optimization method is applied in 30-bus IEEE system and the simulation results show modified ACO find results better than PSO and SA, but same result with GA.

  13. Implementing GPS into Pave-IR.

    Science.gov (United States)

    2009-03-01

    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  14. A GPS-based Real-time Road Traffic Monitoring System

    Science.gov (United States)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  15. GPS measurements in Satakunta area

    International Nuclear Information System (INIS)

    Poutanen, M.; Nyberg, S.; Ahola, J.

    2010-10-01

    The Finnish Geodetic Institute, the Geological Survey of Finland, Posiva Ltd and municipalities in the district of Satakunta launched the GeoSatakunta research program in 2002 to carry out interdisciplinary studies on regional bedrock stress field and to apply the results e.g. in land use planning in the Satakunta area. The area was chosen for many reasons. Its geological diversity, extensive multi-disciplinary data coverage, and various interests of participants made the area suitable for the project. The purpose of the GPS observations is to get detailed information on recent crustal deformations in the area. The Finnish Geodetic Institute maintains e.g. national GPS network, FinnRef, and since 1995 a local research network in the Olkiluoto area. The Satakunta network differs from these, and this is the first time to obtain such detailed information of a regional network in Finland. The Satakunta GPS network consists of 13 concrete pillars for episodic GPS campaigns and the Olkiluoto permanent GPS station in the FinnRef network. The distances between the concrete pillars are 10-15 km, and the sites were chosen in a co-operation with the Geological Survey of Finland taking into account the geological structures in the area. The City of Pori made the final reconnaissance in the field and constructed eight pillars in 2003. The original network was expanded in 2005-2006 in Eurajoki and Rauma, and at the City of Rauma joined the co-operation. The five new pillars join the previous Olkiluoto network into the Satakunta network. There have been three annual GPS campaigns in 2003-2008. Time series of the Satakunta network are shorter than in the Olkiluoto network, and also the distances are longer. Therefore, the same accuracy than in Olkiluoto has not yet achieved. However, mm-sized movements can be excluded. Estimated velocities were small (0.2 mm/a) and mostly statistically insignificant because of relatively short time series. In this publication we describe the

  16. GPS Navigation and Tracking Device

    Directory of Open Access Journals (Sweden)

    Yahya Salameh Khraisat

    2011-10-01

    Full Text Available Since the introduction of GPS Navigation systems in the marketplace, consumers and businesses have been coming up with innovative ways to use the technology in their everyday life. GPS Navigation and Tracking systems keep us from getting lost when we are in strange locations, they monitor children when they are away from home, keep track of business vehicles and can even let us know where a philandering partner is at all times. Because of this we attend to build a GPS tracking device to solve the mentioned problems. Our work consists of the GPS module that collects data from satellites and calculates the position information before transmitting them to the user’s PC (of Navigation system or observers (of Tracking System using wireless technology (GSM.

  17. Derivation of some geometric parameters from GPS measurements

    Directory of Open Access Journals (Sweden)

    Marcel Mojzeš

    2005-11-01

    Full Text Available Combining GPS and terrestrial data requires a common coordinate system. When the original GPS vectors do not form a network, the 3D network adjustment can not be performed. In this case, in order to integrate the GPS measurements with the terrestrial observations and to perform a combined network adjustment, the GPS measurements should be transformed to this common system. The GPS measurements which are the usual output of the GPS post processing softwares are based on the WGS84 ellipsoid and the S-JTSK local datum is based on the Bessel ellipsoid. Thus, the reduction of measurements to the S-JTSK mapping plane can not be started from the measurements resulting from GPS post processing softwares because GPS and S-JTSK don’t have the same ellipsoid. Another view of this reduction will be described in this paper.

  18. A Nonlinear Observer for Integration of GPS and Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    Bjørnar Vik

    2000-10-01

    Full Text Available GPS and INS have complementary properties and they are therefore well suited for integration. The integrated solution offers better long term accuracy than a stand-alone INS, and better integrity, availability and continuity than a stand-alone GPS receiver, making it suitable for demanding applications. The integrated filter is nonlinear both in state and measurements, and the extended Kalman-filter has been used with good results, but it has not been proven globally stable, and it is also computationally intensive, especially within a direct integration architecture. In this work a nonlinear observer suitable for direct integration is presented. Global exponent ial stability of the origin of the combined attitude and velocity error systems is proven along with robust stability in the presence of noise and unmodelled dynamics.

  19. GPS or travel diary: Comparing spatial and temporal characteristics of visits to fast food restaurants and supermarkets

    OpenAIRE

    Scully, Jason Y.; Vernez Moudon, Anne; Hurvitz, Philip M.; Aggarwal, Anju; Drewnowski, Adam

    2017-01-01

    To assess differences between GPS and self-reported measures of location, we examined visits to fast food restaurants and supermarkets using a spatiotemporal framework. Data came from 446 participants who responded to a survey, filled out travel diaries of places visited, and wore a GPS receiver for seven consecutive days. Provided by Public Health Seattle King County, addresses from food permit data were matched to King County tax assessor parcels in a GIS. A three-step process was used to v...

  20. The GPS Laser Retroreflector Array Project

    Science.gov (United States)

    Merkowitz, Stephen M.

    2012-01-01

    Systematic co-location in space through the precision orbit determination of GPS satellites via satellite laser ranging will contribute significantly towards improving the accuracy and stability of the international terrestrial reference frame. NASA recently formed the GPS Laser Retroreflector Array Project to develop and deliver retroreflectors for integration on the next generation of GPS satellites. These retroreflectors will be an important contributor to achieving a global accuracy of 1.0 mm and 0.1 mm/year stability in the international terrestrial reference frame. We report here the current status of the GPS Laser Retroreflector Array Project.

  1. Comparison of a low and a middle latitude GPS-TEC in Africa during ...

    African Journals Online (AJOL)

    In this work, we compared TEC values at Libreville (a low latitude station) with Sutherland (a middle latitude station) over Africa using Global Positioning System (GPS) receivers during high solar activity (HSA), moderate solar activity (MSA) and low solar activity (LSA). Apart from our confirmation that high, moderate and low ...

  2. Ionospheric Remote Sensing using GPS Radio Occultation and Ultraviolet Photometry aboard the ISS

    Science.gov (United States)

    Budzien, S. A.; Powell, S. P.; O'Hanlon, B.; Humphreys, T.; Bishop, R. L.; Stephan, A. W.; Gross, J.; Chakrabarti, S.

    2017-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) experiment launched to the International Space Station (ISS) on February 19, 2017 as part of the Space Test Program Houston #5 payload (STP-H5). After early orbit testing, GROUP-C began routine science operations in late April. GROUP-C includes a high-sensitivity far-ultraviolet photometer measuring horizontal nighttime ionospheric gradients and an advanced software-defined GPS receiver providing ionospheric electron density profiles, scintillation measurements, and lower atmosphere profiles. GROUP-C and a companion experiment, the Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES), offer a unique capability to study spatial and temporal variability of the thermosphere and ionosphere using multi-sensor approaches, including ionospheric tomography. Data are collected continuously across low- and mid-latitudes as the ISS orbit precesses through all local times every 60 days. The GROUP-C GPS sensor routinely collects dual-frequency GPS occultations, makes targeted raw signal captures of GPS and Galileo occultations, and includes multiple antennas to characterize multipath in the ISS environment. The UV photometer measures the 135.6 nm ionospheric recombination airglow emision along the nightside orbital track. We present the first analysis of ionospheric observations, discuss the challenges and opportunities of remote sensing from the ISS platform, and explore how these new data help address questions regarding the complex and dynamic features of the low and middle latitude ionosphere-thermosphere relevant to the upcoming GOLD and ICON missions.

  3. GPS or travel diary: Comparing spatial and temporal characteristics of visits to fast food restaurants and supermarkets.

    Science.gov (United States)

    Scully, Jason Y; Vernez Moudon, Anne; Hurvitz, Philip M; Aggarwal, Anju; Drewnowski, Adam

    2017-01-01

    To assess differences between GPS and self-reported measures of location, we examined visits to fast food restaurants and supermarkets using a spatiotemporal framework. Data came from 446 participants who responded to a survey, filled out travel diaries of places visited, and wore a GPS receiver for seven consecutive days. Provided by Public Health Seattle King County, addresses from food permit data were matched to King County tax assessor parcels in a GIS. A three-step process was used to verify travel-diary reported visits using GPS records: (1) GPS records were temporally matched if their timestamps were within the time window created by the arrival and departure times reported in the travel diary; (2) the temporally matched GPS records were then spatially matched if they were located in a food establishment parcel of the same type reported in the diary; (3) the travel diary visit was then GPS-sensed if the name of food establishment in the parcel matched the one reported in the travel diary. To account for errors in reporting arrival and departure times, GPS records were temporally matched to three time windows: the exact time, +/- 10 minutes, and +/- 30 minutes. One third of the participants reported 273 visits to fast food restaurants; 88% reported 1,102 visits to supermarkets. Of these, 77.3 percent of the fast food and 78.6 percent supermarket visits were GPS-sensed using the +/-10-minute time window. At this time window, the mean travel-diary reported fast food visit duration was 14.5 minutes (SD 20.2), 1.7 minutes longer than the GPS-sensed visit. For supermarkets, the reported visit duration was 23.7 minutes (SD 18.9), 3.4 minutes longer than the GPS-sensed visit. Travel diaries provide reasonably accurate information on the locations and brand names of fast food restaurants and supermarkets participants report visiting.

  4. TRACCIARE UN LABIRINTO DI MAIS CON IL GPS Il caso del Labirinto di HORT

    Directory of Open Access Journals (Sweden)

    Massimiliano Toppi

    2018-01-01

    HORT needed a new solution that would allow it to avoid performing ‘alignment and squares’ operations with old-fashioned optical instruments, and speed up manual path tracking, a solution that was found with Topcon Positioning Italy's contribution through the use of modern, multi-constellation GPS receivers.

  5. GPS Interference Mitigation Using Derivative-free Kalman Filter-based RNN

    Directory of Open Access Journals (Sweden)

    W. L. Mao

    2016-09-01

    Full Text Available The global positioning system (GPS with accurate positioning and timing properties has become integral part of all applications around the world. Radio frequency interference can significantly decrease the performance of GPS receivers or even completely prohibit the acquisition or tracking of satellites. The approaches of system performances that can be further enhanced by preprocessing to reject the jamming signal will be investigated. A recurrent neural network (RNN predictor for the GPS anti-jamming applications will be proposed. The adaptive RNN predictor is utilized to accurately predict the narrowband waveform based on an unscented Kalman filter (UKF-based algorithm. The UKF algorithm as a derivative-free alternative to the extended Kalman filter (EKF in the framework of state-estimation is adopted to achieve better performance in terms of convergence rate and quality of solution. The adaptive RNN filter can be successfully applied for the suppression of interference with a number of different narrowband formats, i.e. continuous wave interference (CWI, multi-tone CWI, swept CWI and pulsed CWI, to emulate realistic circumstances. Simulation results show that the proposed UKF-based scheme can offer the superior performances to suppress the interference over the conventional methods by computing mean squared prediction error (MSPE and signal-to-noise ratio (SNR improvements.

  6. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  7. GPs' confidence in caring for their patients on the autism spectrum: an online self-report study.

    Science.gov (United States)

    Unigwe, Silvana; Buckley, Carole; Crane, Laura; Kenny, Lorcan; Remington, Anna; Pellicano, Elizabeth

    2017-06-01

    In the UK, GPs play a key role in the identification and management of children, young people, and adults on the autism spectrum, but there is a paucity of research on GPs' perceptions of working with these patients. To understand GPs' perceived self-efficacy in identifying and managing their patients on the autism spectrum, and the factors affecting this. An online self-report survey was developed for completion by GPs across the UK. A total of 304 GPs in the UK took part. The survey collected responses on participants' background, training, and experience, both as a GP and with regard to autism, and included a 22-item knowledge of autism questionnaire, a 14-item self-efficacy scale targeting GPs' perceived confidence in identifying and managing their autistic patients, and an open question eliciting participants' experiences of working with autistic people. In total, 39.5% ( n = 120) of GP participants reported never having received formal training in autism. Despite demonstrating good knowledge of its key features, participants reported limited confidence in their abilities to identify and manage autistic patients, with many citing a number of barriers that overwhelmingly focused on perceived failings of the current healthcare system (such as a lack of clarity around referral pathways). There is an urgent need for improved local specialist service provision alongside clearer referral pathways for diagnosis to improve both GPs' confidence in caring for their autistic patients and the healthcare experiences of autistic patients and their families. Local clinical commissioning groups are best served to assist GPs in ensuring that they can reliably detect the condition and make appropriate provisions for support. © British Journal of General Practice 2017.

  8. PRECISE POSITIONING OF UAVS – DEALING WITH CHALLENGING RTK-GPS MEASUREMENT CONDITIONS DURING AUTOMATED UAV FLIGHTS

    Directory of Open Access Journals (Sweden)

    F. Zimmermann

    2017-08-01

    Full Text Available For some years now, UAVs (unmanned aerial vehicles are commonly used for different mobile mapping applications, such as in the fields of surveying, mining or archeology. To improve the efficiency of these applications an automation of the flight as well as the processing of the collected data is currently aimed at. One precondition for an automated mapping with UAVs is that the georeferencing is performed directly with cm-accuracies or better. Usually, a cm-accurate direct positioning of UAVs is based on an onboard multi-sensor system, which consists of an RTK-capable (real-time kinematic GPS (global positioning system receiver and additional sensors (e.g. inertial sensors. In this case, the absolute positioning accuracy essentially depends on the local GPS measurement conditions. Especially during mobile mapping applications in urban areas, these conditions can be very challenging, due to a satellite shadowing, non-line-of sight receptions, signal diffraction or multipath effects. In this paper, two straightforward and easy to implement strategies will be described and analyzed, which improve the direct positioning accuracies for UAV-based mapping and surveying applications under challenging GPS measurement conditions. Based on a 3D model of the surrounding buildings and vegetation in the area of interest, a GPS geometry map is determined, which can be integrated in the flight planning process, to avoid GPS challenging environments as far as possible. If these challenging environments cannot be avoided, the GPS positioning solution is improved by using obstruction adaptive elevation masks, to mitigate systematic GPS errors in the RTK-GPS positioning. Simulations and results of field tests demonstrate the profit of both strategies.

  9. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS.

    Science.gov (United States)

    Ren, Xiaodong; Zhang, Xiaohong; Xie, Weiliang; Zhang, Keke; Yuan, Yongqiang; Li, Xingxing

    2016-09-15

    The emergence of China's Beidou, Europe's Galileo and Russia's GLONASS satellites has multiplied the number of ionospheric piercing points (IPP) offered by GPS alone. This provides great opportunities for deriving precise global ionospheric maps (GIMs) with high resolution to improve positioning accuracy and ionospheric monitoring capabilities. In this paper, the GIM is developed based on multi-GNSS (GPS, GLONASS, BeiDou and Galileo) observations in the current multi-constellation condition. The performance and contribution of multi-GNSS for ionospheric modelling are carefully analysed and evaluated. Multi-GNSS observations of over 300 stations from the Multi-GNSS Experiment (MGEX) and International GNSS Service (IGS) networks for two months are processed. The results show that the multi-GNSS GIM products are better than those of GIM products based on GPS-only. Differential code biases (DCB) are by-products of the multi-GNSS ionosphere modelling, the corresponding standard deviations (STDs) are 0.06 ns, 0.10 ns, 0.18 ns and 0.15 ns for GPS, GLONASS, BeiDou and Galileo, respectively in satellite, and the STDs for the receiver are approximately 0.2~0.4 ns. The single-frequency precise point positioning (SF-PPP) results indicate that the ionospheric modelling accuracy of the proposed method based on multi-GNSS observations is better than that of the current dual-system GIM in specific areas.

  10. The GPS odograph user's guide

    Science.gov (United States)

    The GPS-based Odograph Prototype (GOP or GPS Odograph) was developed in an effort sponsored by The Federal Highway Administration (FHWA). The purpose of this effort was to develop a means of using inexpensive commercial off-the-self laptop (or notebo...

  11. GPS and Galileo: Friendly Foes? (Walker Paper, Number 12)

    Science.gov (United States)

    2008-05-01

    their data, others employ different techniques. US defense contractor Lockheed Martin developed an anti-jam GPS receiver in 2000 for its joint air...26. Jolis , “Problems Run Rampant for Galileo Project.” 27. Ibid. 28. “Galileo, Involving Europe,” 23. 29. Ibid., 16. 30. Ibid., 17. Assuming that by...Told to Put House in Order.” 38. EC, “Galileo, Involving Europe,” 5. 39. “Galileo Adrift in European Outer Space.” 40. Jolis , “Problems Run Rampant

  12. Evaluation of some software measuring displacements using GPS in real-time

    Science.gov (United States)

    Langbein, John

    2006-01-01

    For the past decade, the USGS has been monitoring deformation at various locations in the western United States using continuous GPS. The main focus of these measurements are estimates of displacement averaged over one day. Essentially, these consist of recording at 30 seconds intervals the carrier-frequency phase-data (equivalent to travel-time) between a GPS receiver and the GPS satellite network. In turn, these observations, which are converted to pseudo—ranges, are processed using one of the “research grade” programs (GIPSY, Zumberge et al., or GAMIT, wwwgpsg.mit.edu/~simon/gtgk) to estimate the position of the GPS receiver averaged over 24 hours. However, it is possible and desirable to estimate the position of the receiver (actually the antenna) more frequently and to do this within a few seconds of the time actual measurement (known as real-time). A recent example, the 2004 Magnitude 6, Parkfield, California earthquake, demonstrated that having GPS estimates of position more frequently than simply a daily average is required if one requires discrimination between co-seismic and post-seismic deformation (Langbein et al., 2006). The high-rate estimates of position obtained at Parkfield show that post-seismic deformation started less than one-hour after the mainshock and that this deformation was roughly the same magnitude as the co-seismic deformation. The high-rate solutions for Parkfield were done by others including Yehuda Bock at UCSD and Kristine Larson at U. of Colorado, but not the USGS. The Parkfield experience points out the need for an in-house capability by the USGS to be able to accurately measure co-seismic displacements and other rapid, deformation signals using GPS. This applies to both the Earthquake and Volcano Hazard programs. Although at many locations where we monitor deformation, we have strainmeters and tiltmeters in addition to GPS which, in principle, are far more sensitive to rapid deformation over periods of less than a day

  13. The International GPS Service (IGS) as a Continuous Reference System for Precise GPS Positioning

    Science.gov (United States)

    Neilan, Ruth; Heflin, Michael; Watkins, Michael; Zumberge, James

    1996-01-01

    The International GPS Service for Geodynamics (IGS) is an organization which operates under the auspices of the International Association of Geodesy (IAG) and has been operational since January 1994. The primary objective of the IGS is to provide precise GPS data and data products to support geodetic and geophysical research activities.

  14. Miniaturized GPS/MEMS IMU integrated board

    Science.gov (United States)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  15. Ionospheric threats to the integrity of airborne GPS users

    Science.gov (United States)

    Datta-Barua, Seebany

    The Global Positioning System (GPS) has both revolutionized and entwined the worlds of aviation and atmospheric science. As the largest and most unpredictable source of GPS positioning error, the ionospheric layer of the atmosphere, if left unchecked, can endanger the safety, or "integrity," of the single frequency airborne user. An augmentation system is a differential-GPS-based navigation system that provides integrity through independent ionospheric monitoring by reference stations. However, the monitor stations are not in general colocated with the user's GPS receiver. The augmentation system must protect users from possible ionosphere density variations occurring between its measurements and the user's. This study analyzes observations from ionospherically active periods to identify what types of ionospheric disturbances may cause threats to user safety if left unmitigated. This work identifies when such disturbances may occur using a geomagnetic measure of activity and then considers two disturbances as case studies. The first case study indicates the need for a non-trivial threat model for the Federal Aviation Administration's Local Area Augmentation System (LAAS) that was not known prior to the work. The second case study uses ground- and space-based data to model an ionospheric disturbance of interest to the Federal Aviation Administration's Wide Area Augmentation System (WAAS). This work is a step in the justification for, and possible future refinement of, one of the WAAS integrity algorithms. For both WAAS and LAAS, integrity threats are basically caused by events that may be occurring but are unobservable. Prior to the data available in this solar cycle, events of such magnitude were not known to be possible. This work serves as evidence that the ionospheric threat models developed for WARS and LAAS are warranted and that they are sufficiently conservative to maintain user integrity even under extreme ionospheric behavior.

  16. Hastighedskort for Danmark vha. GPS

    DEFF Research Database (Denmark)

    Andersen, Ove; Lahrmann, Harry; Torp, Kristian

    2011-01-01

    Hastighed på vejnettet er en central metrik indenfor trafikplanlægning og trafikoptimering. I denne artikel beskrives, hvorledes et hastighedskort for hele Danmark er skabt udelukkende vha. GPS data. To tilgangsvinkler til at beregne hastigheder vha. GPS data er præsenteret. Dette er hhv. en....... Opsummeret anses den turbaseret for at beregne det mest akkurate estimat, men metoden er meget datakrævende. Det er derfor nødvendigt at have den punktbaserede at falde tilbage på. Generelt mangler metoder til beregning af hastigheder vha. GPS data at blive valideret. Hvordan en sådan validering kan...

  17. Two Approaches for Successful Mapping GPS Data to Underlying Road Network in Location-based Services

    NARCIS (Netherlands)

    Meratnia, Nirvana; Kyandoghere, Kyamakya

    Latest data acquisition techniques facilitate the provision of real-time location-based services. With the coming about of miniature and cheap GPS receivers and cellular phones, new horizons have been opened for such services. The mobile telephony and Internet technology within the GIS environment

  18. Using GPS, accelerometry and heart rate to predict outdoor graded walking energy expenditure.

    Science.gov (United States)

    de Müllenheim, P-Y; Chaudru, S; Emily, M; Gernigon, M; Mahé, G; Bickert, S; Prioux, J; Noury-Desvaux, B; Le Faucheur, A

    2018-02-01

    To determine the best method and combination of methods among global positioning system (GPS), accelerometry, and heart rate (HR) for estimating energy expenditure (EE) during level and graded outdoor walking. Thirty adults completed 6-min outdoor walks at speeds of 2.0, 3.5, and 5.0kmh -1 during three randomized outdoor walking sessions: one level walking session and two graded (uphill and downhill) walking sessions on a 3.4% and a 10.4% grade. EE was measured using a portable metabolic system (K4b 2 ). Participants wore a GlobalSat ® DG100 GPS receiver, an ActiGraph™ wGT3X+ accelerometer, and a Polar ® HR monitor. Linear mixed models (LMMs) were tested for EE predictions based on GPS speed and grade, accelerometer counts or HR-related parameters (alone and combined). Root-mean-square error (RMSE) was used to determine the accuracy of the models. Published speed/grade-, count-, and HR-based equations were also cross-validated. According to the LMMs, GPS was as accurate as accelerometry (RMSE=0.89-0.90kcalmin -1 ) and more accurate than HR (RMSE=1.20kcalmin -1 ) for estimating EE during level walking; GPS was the most accurate method for estimating EE during both level and uphill (RMSE=1.34kcalmin -1 )/downhill (RMSE=0.84kcalmin -1 ) walking; combining methods did not increase the accuracy reached using GPS (or accelerometry for level walking). The cross-validation results were in accordance with the LMMs, except for downhill walking. Our study provides useful information regarding the best method(s) for estimating EE with appropriate equations during level and graded outdoor walking. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Patients' perceptions of their general practitioner's health and weight influences their perceptions of nutrition and exercise advice received.

    Science.gov (United States)

    Fraser, Sally E; Leveritt, Michael D; Ball, Lauren E

    2013-12-01

    General practitioners (GPs) play an important role in the management of patients who are overweight or obese. Previous research suggests that GPs' physical characteristics may influence patients' perceptions of health care received during consultations, mediating the likelihood of patients following health advice provided by GPs. This study aimed to explore patients' perceptions of their GP's health status and its influence on patients' perceptions of healthy eating and exercise advice. An interpretive approach to phenomenology underpinned the qualitative inquiry and study design. Twenty-one participants (aged 55.9 ± 6.5 years; 14 females, 7 males) who had previously received healthy eating and/or exercise advice from a GP participated in an individual semi-structured interview. A constant comparison approach to thematic analysis was conducted. Participants identified three key indicators of perceived health of their GP. These included the GP's physical appearance, particularly weight status; perceived absence of ill health; and disclosure of a GP's health behaviours. Participants expressed favourable perceptions of the weight status of their GP. Participants expected their GP to be a healthy role model and often, but not always, felt more confident receiving advice from a GP that they perceived as healthy. The findings highlight that a GP's perceived health status influences patients' perceptions of the health advice received during consultations. These findings provide a foundation for future research that may allow GPs to modify patients' perceptions of their health status in order to facilitate behaviour change in overweight or obese patients.

  20. On the impact of receiver imperfections on the MMSE-IRC receiver performance in 5G networks

    DEFF Research Database (Denmark)

    Tavares, Fernando Menezes Leitão; Berardinelli, Gilberto; Mahmood, Nurul Huda

    2014-01-01

    The usage of Minimum Mean Square Error - Interference Rejection Combining (MMSE-IRC) receivers is expected to be a significant performance booster in the ultra-dense deployment of small cells envisioned by an upcoming 5th generation (5G) Radio Access Technology (RAT). However, hardware limitation...... simulation results confirm that a realistic MMSE-IRC receiver can achieve throughput gains close to ideal, provided a reasonably high resolution Analog-to-Digital Converter (ADC) as well as a supportive radio frame format design are used....

  1. Re-investigation of slip rate along the southern part of the Sumatran Fault Zone using SuMo GPS network

    Science.gov (United States)

    Hermawan, I.; Lubis, A. M.; Sahputra, R.; Hill, E.; Sieh, K.; Feng, L.; Salman, R.; Hananto, N.

    2015-12-01

    The Sumatran Fault Zone (SFZ) accommodates a significant component of the strike-slip motion of oblique convergence along the Sumatra subduction zone. Previous studies have suggested that the slip rates of the SFZ increase from south to north. However, recent work shows that the slip rates may not vary along the SFZ [Bradley et al., 2015]. New data are needed to help confirm these results, and to assess slip-rate variability and fault segmentation in more detail. This information is vital for seismic hazard assessment for the region. We have therefore installed and operated the SuMo (Sumatran Fault Monitoring) network, a dense GPS campaign network focused around the SFZ. From 2013-2015 we selected and installed 32 GPS monuments over the southern part of the SFZ. The network comprises of three transects. The first transect is around the location of the great 1900 earthquake, at the Musi segment. Two transects cover the Manna segment, which saw its last great earthquake in 1893, and the Kumering segment, which saw two great earthquakes in 1933 (M 7.5) and 1994 (M 7.0). We have now conducted three GPS campaign surveys for these stations (3-4 days of measurement for each occupation site), and established 5 semi-permanent cGPS stations in the area. The processed data show that the campaigns sites are still too premature to be used for estimating slip rates, but from the preliminary results for the semi-permanent stations we may see our first signal of deformation. More data from future survey campaigns will help us to estimated revised slip rates. In addition to the science goals for our project, we are this year starting a project called "SuMo Goes to School," which will aim to disseminate information on our science to the schools that house the SuMo GPS stations. The SuMo project also achieves capacity building by training students from Bengkulu University in geodesy and campaign GPS survey techniques.

  2. What determines the income gap between French male and female GPs - the role of medical practices

    Directory of Open Access Journals (Sweden)

    Dumontet Magali

    2012-09-01

    Full Text Available Abstract Background In many OECD countries, the gender differences in physicians’ pay favour male doctors. Due to the feminisation of the doctor profession, it is essential to measure this income gap in the French context of Fee-for-service payment (FFS and then to precisely identify its determinants. The objective of this study is to measure and analyse the 2008 income gap between males and females general practitioners (GPs. This paper focuses on the role of gender medical practices differentials among GPs working in private practice in the southwest region of France. Methods Using data from 339 private-practice GPs, we measured an average gender income gap of approximately 26% in favour of men. Using the decomposition method, we examined the factors that could explain gender disparities in income. Results The analysis showed that 73% of the income gap can be explained by the average differences in doctors’ characteristics; for example, 61% of the gender income gap is explained by the gender differences in workload, i.e., number of consultations and visits, which is on average significantly lower for female GPs than for male GPs. Furthermore, the decomposition method allowed us to highlight the differences in the marginal returns of doctors’ characteristics and variables contributing to income, such as GP workload; we found that female GPs have a higher marginal return in terms of earnings when performing an additional medical service. Conclusions The findings of this study help to understand the determinants of the income gap between male and female GPs. Even though workload is clearly an essential determinant of income, FFS does not reduce the gender income gap, and there is an imperfect relationship between the provision of medical services and income. In the context of feminisation, it appears that female GPs receive a lower income but attain higher marginal returns when performing an additional consultation.

  3. What determines the income gap between French male and female GPs - the role of medical practices.

    Science.gov (United States)

    Dumontet, Magali; Le Vaillant, Marc; Franc, Carine

    2012-09-21

    In many OECD countries, the gender differences in physicians' pay favour male doctors. Due to the feminisation of the doctor profession, it is essential to measure this income gap in the French context of Fee-for-service payment (FFS) and then to precisely identify its determinants. The objective of this study is to measure and analyse the 2008 income gap between males and females general practitioners (GPs). This paper focuses on the role of gender medical practices differentials among GPs working in private practice in the southwest region of France. Using data from 339 private-practice GPs, we measured an average gender income gap of approximately 26% in favour of men. Using the decomposition method, we examined the factors that could explain gender disparities in income. The analysis showed that 73% of the income gap can be explained by the average differences in doctors' characteristics; for example, 61% of the gender income gap is explained by the gender differences in workload, i.e., number of consultations and visits, which is on average significantly lower for female GPs than for male GPs. Furthermore, the decomposition method allowed us to highlight the differences in the marginal returns of doctors' characteristics and variables contributing to income, such as GP workload; we found that female GPs have a higher marginal return in terms of earnings when performing an additional medical service. The findings of this study help to understand the determinants of the income gap between male and female GPs. Even though workload is clearly an essential determinant of income, FFS does not reduce the gender income gap, and there is an imperfect relationship between the provision of medical services and income. In the context of feminisation, it appears that female GPs receive a lower income but attain higher marginal returns when performing an additional consultation.

  4. Sensing human activity : GPS tracking

    NARCIS (Netherlands)

    van der Spek, Stefan; van Schaick, Jeroen; de Bois, P.G.; de Haan, Remco

    2009-01-01

    The enhancement of GPS technology enables the use of GPS devices not only as navigation and orientation tools, but also as instruments used to capture travelled routes: as sensors that measure activity on a city scale or the regional scale. TU Delft developed a process and database architecture for

  5. Investigation of the single layer model of GPS ionospheric data processing using IRI-90 and the attached diffusive equilibrium model of plasmaspheric electron density

    Directory of Open Access Journals (Sweden)

    L. Bànyai

    1997-06-01

    Full Text Available The single layer model of GPS ionospheric data processing is compared with the International Reference Ionosphere í 1990 and the attached Diffusive Equilibrium model of Plasmasphere (IRI-90+DEP which proved to be a good supplement to GPS data processing. These models can be used to estimate the single layer height and to improve the mapping function in day-time. The code delays estimated from IRI-90+DEP models are compared with GPS measurements carried out by TurboRogue receiver. These models can be used to estimate the preliminary receiver biases especially in the case of cross-correlation tracking mode. The practical drawback of the IRI-90 model is the sharp discontinuity of the ion components during sunset and sunrise at an elevation of 1000 km, because it also causes a sharp discontinuity in the TEC values computed from the DEP model. The GPS data may be a good source to improve the topside region of the IRI model estimating smooth TEC transition before and after sunrise in the plasmasphere.

  6. GPS atmosphere sounding project - An innovative approach for the recovery of atmospheric parameters. WP 232 - Validation of regional models - BALTEX - and contributions to WP 341 and WP 344

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, K.P.

    2003-07-01

    The atmospheric water vapor content is one of the most important parameters for the hydrological cycle. In order to investigate the energy and water balance over the BALTEX study region this report describes comparisons of specific humidity profiles of the hydrostatic High resolution Regional weather forecast Model HRM of the Deutscher Wetterdienst (DWD) with profiles derived from spaceborne radio occultation data of GPS/MET and CHAMP and comparisons with the vertically integrated water vapor (IWV) of different networks of groundbased GPS receivers within Europe. High correlations (with a correlation coefficient around 0.9) between the HRM IWV and GPS IWV were found. It is shown that the analysis data used to initialize the HRM model can explain a large part of the mean difference between the IWV from the model and the GPS data. Specific humidities and the IWVs were determined from the refractivity profiles of the radio occultations of GPS/MET and CHAMP/GPS using an iterative algorithm of Gorbunov and Sokolovski (1993). The comparisons of the specific humidity profiles have shown that both receivers, GPS/MET and CHAMP/GPS, measure significantly lower mean specific humidities below about 4 km than HRM. This is e.g. supported by comparisons between the HRM model and the ECMWF analysis data, between the HRM model and radiosonde ascents at Lindenberg/Germany (which have shown lower mean absolute differences of about 0.2 g/kg) as well as between HRM and further spaceborne data like AMSU-A/B and TERRA/MODIS. Comparisons between CHAMP/GPS and AMSU-A over oceans and AMSU-B over Antarctica show the high value of GPS radio occultations for applications worldwide. (orig.)

  7. GPS User Devices Parameter Control Methods

    OpenAIRE

    Klūga, A; Kuļikovs, M; Beļinska, V; Zeļenkovs, A

    2007-01-01

    In our day’s wide assortment of GPS user devices is manufacture. How to verify that parameters of the real device corresponds to parameters that manufacture shows. How to verify that parameters have not been changed during the operation time. The last one is very important for aviation GPS systems, which must be verified before the flight, but the values of parameter in time of repair works. This work analyses GPS user devices parameters control methods.

  8. Combining Real-Time Seismic and GPS Data for Earthquake Early Warning (Invited)

    Science.gov (United States)

    Boese, M.; Heaton, T. H.; Hudnut, K. W.

    2013-12-01

    extent of the 2D fault rupture is determined from comparison with pre-calculated generic and fault-specific templates ('FinDer' algorithm, Finite Fault Rupture Detector). In the second step, long-period dynamic displacement amplitudes from the GPS sites are back-projected onto this rupture line/plane to estimate the slip amplitudes ('GPSlip' algorithm). The corresponding back-projection relations were empirically derived from a suite of 3D waveform simulations. We are currently testing our approach in southern California (both real-time and offline), although not yet included in the current distribution of ShakeAlert. RTK/PPP(AR) solutions from the RTNet software at USGS Pasadena currently provide 1 Hz real-time position times series at ~100 GPS sensor locations. Output is in openly available in JSON format. We and UNAVCO have tested onsite (in-receiver) PPP(AR) processing using Trimble NetR9 receivers with RTX & GLONASS options enabled, of which Caltech has recently purchased 41 new units. These special GPS receivers will provide 5 Hz position and velocity streams. We will deliver the GPS RTX output (in GSOF format) into the EEW system (in Earthworm tracebuf2 format). The new receivers are to be installed at 'zipper array' stations of the SCSN in upcoming months. In addition, we have developed a framework for end-to-end offline testing with archived and simulated waveform data.

  9. Multiscale GPS tomography during COPS: validation and applications

    Science.gov (United States)

    Champollion, Cédric; Flamant, Cyrille; Masson, Frédéric; Gégout, Pascal; Boniface, Karen; Richard, Evelyne

    2010-05-01

    Accurate 3D description of the water vapour field is of interest for process studies such as convection initiation. None of the current techniques (LIDAR, satellite, radio soundings, GPS) can provide an all weather continuous 3D field of moisture. The combination of GPS tomography with radio-soundings (and/or LIDAR) has been used for such process studies using both advantages of vertically resolved soundings and high temporal density of GPS measurements. GPS tomography has been used at short scale (10 km horizontal resolution but in a 50 km² area) for process studies such as the ESCOMPTE experiment (Bastin et al., 2005) and at larger scale (50 km horizontal resolution) during IHOP_2002. But no extensive statistical validation has been done so far. The overarching goal of the COPS field experiment is to advance the quality of forecasts of orographically induced convective precipitation by four-dimensional observations and modeling of its life cycle for identifying the physical and chemical processes responsible for deficiencies in QPF over low-mountain regions. During the COPS field experiment, a GPS network of about 100 GPS stations has been continuously operating during three months in an area of 500 km² in the East of France (Vosges Mountains) and West of Germany (Black Forest). If the mean spacing between the GPS is about 50 km, an East-West GPS profile with a density of about 10 km is dedicated to high resolution tomography. One major goal of the GPS COPS experiment is to validate the GPS tomography with different spatial resolutions. Validation is based on additional radio-soundings and airborne / ground-based LIDAR measurement. The number and the high quality of vertically resolved water vapor observations give an unique data set for GPS tomography validation. Numerous tests have been done on real data to show the type water vapor structures that can be imaging by GPS tomography depending of the assimilation of additional data (radio soundings), the

  10. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  11. Real-Time Vehicle Data Logging System Using GPS And GSM

    Directory of Open Access Journals (Sweden)

    Win Minn Thet

    2015-07-01

    Full Text Available Abstract This paper proposes and implements a low cost Vehicle Data Logging System using GPS and GSM. This system allows a user to trace the present and past positions recorded in SD card. This system also reads the current position of the vehicle using GPS the data is sent via GSM service from the GSM network. The vehicles position including the driving speed the UTC time and data are stored in the SD card for live and past tracking. All of that GPS data is sent to PIC 18F4520 by the Universal Asynchronous ReceiverTransmitter UART and also store in SD card. GSM also uses UART to transmit. To know the position of the vehicle the owner sends a request through a SMS. The SMS sends to the authorized person through the GSM network. The travel history of the vehicle are stored in a file on an SD card in FAT format.This system is very useful for car tracking for adolescent driver being checked by parent speed limit exceeding leaving a specific area. V The developed system is easy to use requires no additional hardware and permits the selection of the amount of data and the time intervals between the data recordings. In addition the collected data can easily be transferred to a computer via a connected serial port.

  12. La aplicación del GPS a la arqueología

    Directory of Open Access Journals (Sweden)

    Amado Reino, Xesús

    1997-06-01

    Full Text Available The adoption of GPS technology in Archaeology is relatively recent and its use is increasing more and more. The excellent results obtained from the mapping of archaeological elements has led many archaeologists to acquire GPS systems, professional in some cases and pocket in other. This paper tries to introduce this technology, showing its possibilities and more frequent uses in archaeology. This contribution also tries to give a critical vision in the application of the different kind of receivers and the ways of professional use.

    La incorporación de la tecnología GPS a la arqueología es relativamente reciente y su uso cada vez mayor. Los excelentes resultados obtenidos en la georreferenciación de elementos arqueológicos han movido a muchos profesionales a la adquisición de equipos, unas veces profesionales y otras de bolsillo. Este trabajo pretende servir de presentación de esta tecnología exponiendo sus posibilidades y usos más frecuentes en arqueología, además de hacer una serie de puntualizaciones en cuanto a la fiabilidad, precisión de los diferentes tipos de receptores portátiles y formas de aplicación con carácter profesional de estos equipos.

  13. Conceptual Approach for Precise Relative Positioning with Miniaturized GPS Loggers and Experimental Results

    Science.gov (United States)

    2010-03-01

    readily met by standard single frequency GPS receiver modules as used in car navigation systems or latest generation cell phones. However...different strategies can now be applied as shown in Figure 5. btbξ SPP bξδ iξ itbiβ (a) Over-all solution btbξ SPP bξδ iξ it nn ,1−β 1− nt1 −nξ nξ nt (b... cells . The mass of the complete logging unit did not exceed 100 g. Some receivers additionally featured 3 axis MEMS accelerometers. Mounting on the

  14. GPS Imaging of Time-Variable Earthquake Hazard: The Hilton Creek Fault, Long Valley California

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.

    2016-12-01

    The Hilton Creek Fault, in Long Valley, California is a down-to-the-east normal fault that bounds the eastern edge of the Sierra Nevada/Great Valley microplate, and lies half inside and half outside the magmatically active caldera. Despite the dense coverage with GPS networks, the rapid and time-variable surface deformation attributable to sporadic magmatic inflation beneath the resurgent dome makes it difficult to use traditional geodetic methods to estimate the slip rate of the fault. While geologic studies identify cumulative offset, constrain timing of past earthquakes, and constrain a Quaternary slip rate to within 1-5 mm/yr, it is not currently possible to use geologic data to evaluate how the potential for slip correlates with transient caldera inflation. To estimate time-variable seismic hazard of the fault we estimate its instantaneous slip rate from GPS data using a new set of algorithms for robust estimation of velocity and strain rate fields and fault slip rates. From the GPS time series, we use the robust MIDAS algorithm to obtain time series of velocity that are highly insensitive to the effects of seasonality, outliers and steps in the data. We then use robust imaging of the velocity field to estimate a gridded time variable velocity field. Then we estimate fault slip rate at each time using a new technique that forms ad-hoc block representations that honor fault geometries, network complexity, connectivity, but does not require labor-intensive drawing of block boundaries. The results are compared to other slip rate estimates that have implications for hazard over different time scales. Time invariant long term seismic hazard is proportional to the long term slip rate accessible from geologic data. Contemporary time-invariant hazard, however, may differ from the long term rate, and is estimated from the geodetic velocity field that has been corrected for the effects of magmatic inflation in the caldera using a published model of a dipping ellipsoidal

  15. GPS or travel diary: Comparing spatial and temporal characteristics of visits to fast food restaurants and supermarkets.

    Directory of Open Access Journals (Sweden)

    Jason Y Scully

    Full Text Available To assess differences between GPS and self-reported measures of location, we examined visits to fast food restaurants and supermarkets using a spatiotemporal framework. Data came from 446 participants who responded to a survey, filled out travel diaries of places visited, and wore a GPS receiver for seven consecutive days. Provided by Public Health Seattle King County, addresses from food permit data were matched to King County tax assessor parcels in a GIS. A three-step process was used to verify travel-diary reported visits using GPS records: (1 GPS records were temporally matched if their timestamps were within the time window created by the arrival and departure times reported in the travel diary; (2 the temporally matched GPS records were then spatially matched if they were located in a food establishment parcel of the same type reported in the diary; (3 the travel diary visit was then GPS-sensed if the name of food establishment in the parcel matched the one reported in the travel diary. To account for errors in reporting arrival and departure times, GPS records were temporally matched to three time windows: the exact time, +/- 10 minutes, and +/- 30 minutes. One third of the participants reported 273 visits to fast food restaurants; 88% reported 1,102 visits to supermarkets. Of these, 77.3 percent of the fast food and 78.6 percent supermarket visits were GPS-sensed using the +/-10-minute time window. At this time window, the mean travel-diary reported fast food visit duration was 14.5 minutes (SD 20.2, 1.7 minutes longer than the GPS-sensed visit. For supermarkets, the reported visit duration was 23.7 minutes (SD 18.9, 3.4 minutes longer than the GPS-sensed visit. Travel diaries provide reasonably accurate information on the locations and brand names of fast food restaurants and supermarkets participants report visiting.

  16. Briefing highlights space weather risks to GPS

    Science.gov (United States)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  17. Development of GPS survey data management protocols/policy.

    Science.gov (United States)

    2010-08-01

    This project developed a statewide policy and criteria for collecting, analyzing, and managing global position system (GPS) survey data. The research project determined the needs of the Department in adopting the GPS real time kinetic (GPS RTK) stake...

  18. A system for household enumeration and re-identification in densely populated slums to facilitate community research, education, and advocacy.

    Directory of Open Access Journals (Sweden)

    Dana R Thomson

    Full Text Available We devised and implemented an innovative Location-Based Household Coding System (LBHCS appropriate to a densely populated informal settlement in Mumbai, India.LBHCS codes were designed to double as unique household identifiers and as walking directions; when an entire community is enumerated, LBHCS codes can be used to identify the number of households located per road (or lane segment. LBHCS was used in community-wide biometric, mental health, diarrheal disease, and water poverty studies. It also facilitated targeted health interventions by a research team of youth from Mumbai, including intensive door-to-door education of residents, targeted follow-up meetings, and a full census. In addition, LBHCS permitted rapid and low-cost preparation of GIS mapping of all households in the slum, and spatial summation and spatial analysis of survey data.LBHCS was an effective, easy-to-use, affordable approach to household enumeration and re-identification in a densely populated informal settlement where alternative satellite imagery and GPS technologies could not be used.

  19. Calibration of GLONASS Inter-Frequency Code Bias for PPP Ambiguity Resolution with Heterogeneous Rover Receivers

    Directory of Open Access Journals (Sweden)

    Yanyan Liu

    2018-03-01

    Full Text Available Integer ambiguity resolution (IAR is important for rapid initialization of precise point positioning (PPP. Whereas many studies have been limited to Global Positioning System (GPS alone, there is a strong need to add Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS to the PPP-IAR solution. However, the frequency-division multiplexing of GLONASS signals causes inter-frequency code bias (IFCB in the receiving equipment. The IFCB causes GLONASS wide-lane uncalibrated phase delay (UPD estimation with heterogeneous receiver types to fail, so GLONASS ambiguity is therefore traditionally estimated as float values in PPP. A two-step method of calibrating GLONASS IFCB is proposed in this paper, such that GLONASS PPP-IAR can be performed with heterogeneous receivers. Experimental results demonstrate that with the proposed method, GLONASS PPP ambiguity resolution can be achieved across a variety of receiver types. For kinematic PPP with mixed receiver types, the fixing percentage within 10 min is only 33.5% for GPS-only. Upon adding GLONASS, the percentage improves substantially, to 84.9%.

  20. GPS Usage in a Population of Low-Vision Drivers.

    Science.gov (United States)

    Cucuras, Maria; Chun, Robert; Lee, Patrick; Jay, Walter M; Pusateri, Gregg

    2017-01-01

    We surveyed bioptic and non-bioptic low-vision drivers in Illinois, USA, to determine their usage of global positioning system (GPS) devices. Low-vision patients completed an IRB-approved phone survey regarding driving demographics and usage of GPS while driving. Participants were required to be active drivers with an Illinois driver's license, and met one of the following criteria: best-corrected visual acuity (BCVA) less than or equal to 20/40, central or significant peripheral visual field defects, or a combination of both. Of 27 low-vision drivers, 10 (37%) used GPS while driving. The average age for GPS users was 54.3 and for non-users was 77.6. All 10 drivers who used GPS while driving reported increased comfort or safety level. Since non-GPS users were significantly older than GPS users, it is likely that older participants would benefit from GPS technology training from their low-vision eye care professionals.

  1. Transportation mode recognition using GPS and accelerometer data

    NARCIS (Netherlands)

    Feng, T.; Timmermans, H.J.P.

    2013-01-01

    Potential advantages of global positioning systems (GPS) in collecting travel behavior data have been discussed in several publications and evidenced in many recent studies. Most applications depend on GPS information only. However, transportation mode detection that relies only on GPS information

  2. Gestió mapes i GPS

    OpenAIRE

    Díaz Sañudo, Daniel

    2013-01-01

    El projecte denominat "Gestor de mapes i GPS" és una aplicació per a dispositius mòbils Android que utilitza l'API v.1 de Google Maps. El proyecto denominado "Gestor de mapas y GPS" es una aplicación para dispositivos móviles Android que utiliza la API v.1 de Google Maps.

  3. Patients' perceptions of their general practitioner's health and weight influences their perceptions of nutrition and exercise advice received

    Directory of Open Access Journals (Sweden)

    Fraser SE

    2013-12-01

    Full Text Available INTRODUCTION: General practitioners (GPs play an important role in the management of patients who are overweight or obese. Previous research suggests that GPs' physical characteristics may influence patients' perceptions of health care received during consultations, mediating the likelihood of patients following health advice provided by GPs. This study aimed to explore patients' perceptions of their GP's health status and its influence on patients' perceptions of healthy eating and exercise advice. METHODS: An interpretive approach to phenomenology underpinned the qualitative inquiry and study design. Twenty-one participants (aged 55.9 ± 6.5 years; 14 females, 7 males who had previously received healthy eating and/or exercise advice from a GP participated in an individual semi-structured interview. A constant comparison approach to thematic analysis was conducted. FINDINGS: Participants identified three key indicators of perceived health of their GP. These included the GP's physical appearance, particularly weight status; perceived absence of ill health; and disclosure of a GP's health behaviours. Participants expressed favourable perceptions of the weight status of their GP. Participants expected their GP to be a healthy role model and often, but not always, felt more confident receiving advice from a GP that they perceived as healthy. CONCLUSION: The findings highlight that a GP's perceived health status influences patients' perceptions of the health advice received during consultations. These findings provide a foundation for future research that may allow GPs to modify patients' perceptions of their health status in order to facilitate behaviour change in overweight or obese patients.

  4. Deterministic dense coding and faithful teleportation with multipartite graph states

    International Nuclear Information System (INIS)

    Huang, C.-Y.; Yu, I-C.; Lin, F.-L.; Hsu, L.-Y.

    2009-01-01

    We propose schemes to perform the deterministic dense coding and faithful teleportation with multipartite graph states. We also find the sufficient and necessary condition of a viable graph state for the proposed schemes. That is, for the associated graph, the reduced adjacency matrix of the Tanner-type subgraph between senders and receivers should be invertible.

  5. Location - Global Positioning System (GPS) Photos

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — Digital photos tagged with GPS location information. The St. Paul District maintains a digital library of over 10,000 GPS photos. Photos are often associated with...

  6. GPS Operations at Olkiluoto, Kivetty and Romuvaara in 2005

    International Nuclear Information System (INIS)

    Ahola, J.; Ollikainen, M.; Koivula, H.; Jokela, J.

    2006-07-01

    The GPS based deformation studies has been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. Twenty GPS measurement campaigns have been carried out at Olkiluoto since 1995, and fourteen campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.22 mm/a. There are no statistically signicant movements at Kivetty and Romuvaara expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. The local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliable (maximum velocity is - 0.25 mm/a ± 0.025 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results to show a possible scale error of the GPS. The GPS network at Olkiluoto was enlarged in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari, both north from Olkiluoto. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed five times since 2003, but the time series are still too short for reliable deformation studies. Including the new pillars the local

  7. Hazard Monitoring in a Spectrum-Challenged Future: US Department of Transportation Adjacent Band Compatibility Assessment of Interference on High-Precision GNSS Receivers

    Science.gov (United States)

    Blume, F.; Berglund, H. T.

    2016-12-01

    In 2012 the Federal Communications Commission (FCC) reversed its decision to allow communications company LightSquared to use GPS-adjacent spectrum for a ground based network after testing demonstrated harmful interference to GPS receivers. Now rebranded as Ligado, they have submitted modified application to use a smaller portion of the L-band spectrum at much lower power. Many GPS community stakeholders, including the hazard monitoring and EEW communities remain concerned that Ligado's proposed use could still cause harmful interference, causing signal degradation, real-time positioning errors, and total failure of GNSS hardware in widespread use in hazard monitoring networks. The Department of Transportation (DoT) has conducted hardware tests to determine adjacent-band transmitter power limit criteria that would prevent harmful interference from Ligado's operations. We present preliminary results produced from the data collected by the three UNAVCO receiver types tested: Trimble NetRS, Trimble NetR9, and Septentrio PolaRx5. In the first round of testing, simulated GNSS signals were broadcast in an anechoic chamber (pictured below) while interfering signals are broadcast simultaneously with varying amplitude and frequency. The older GPS-only NetRS receiver showed smaller reductions in SNR at frequencies adjacent to GPS L1 as compared to the other receivers, suggesting narrower L1 filter bandwidth in the RF frontend. The NetR9 showed greater decreases in observed SNR in the 1615 to 1625 MHz range when compared to the other two receivers. This suggests that the NetR9's L1 filter bandwidth has been increased to accommodate GNSS signals. Linearity tests were conducted to better relate SNR measurements between receiver types. The PolaRx5 receiver showed less SNR variation between tracking channels than both Trimble receivers. Our results show the power levels at which adjacent-band interference begins degrading receiver performance and eventually disables tracking. As

  8. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2010

    International Nuclear Information System (INIS)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.

    2011-11-01

    The Finnish Geodetic Institute (FGI) has studied crustal deformations in co-operation with the Posiva Oy since 1994, when a network of ten pillars for GPS observations was established at Olkiluoto. In 2010 the local GPS network at Olkiluoto consisted of 14 concrete pillars. The whole network has been measured twice a year in the static GPS campaigns with 24 h sessions. The four new pillars were established in 2010 and the permanent measurements on them will start in 2011. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 18 campaigns at Kivetty and Romuvaara. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured in connection to the GPS observations using the EDM instrument Kern ME5000 Mekometer. The GPS operations in 2010 included the two GPS campaigns at Olkiluoto, GPS campaigns at Kivetty and Romuvaara, EDM baseline measurements at Olkiluoto, and the control marker measurements with the tachymeter at Olkiluoto. All GPS data history was reprocessed with Bernese GPS software using the new processing strategy tested in 2009. The results were analysed by computing the change rates of the baselines and estimating horizontal velocities for the pillars using the barycenter of the velocities as a reference. In the Olkiluoto inner network 80 percent of the change rates were smaller than 0.10 mm/a. Roughly one fourth of the change rates could be considered as statistically significant (change rate larger than 3 σ. The statistically significant change rates were mainly related to the Olkiluoto permanent station (GPS1) and to the pillar GPS5, which had also the maximum change rate (0.21 ± 0.03 mm/a). In Olkiluoto outer network the maximum and statistically significant change rates are

  9. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M. [Finnish Geodetic Institute, Masala (Finland)

    2011-11-15

    The Finnish Geodetic Institute (FGI) has studied crustal deformations in co-operation with the Posiva Oy since 1994, when a network of ten pillars for GPS observations was established at Olkiluoto. In 2010 the local GPS network at Olkiluoto consisted of 14 concrete pillars. The whole network has been measured twice a year in the static GPS campaigns with 24 h sessions. The four new pillars were established in 2010 and the permanent measurements on them will start in 2011. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 18 campaigns at Kivetty and Romuvaara. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured in connection to the GPS observations using the EDM instrument Kern ME5000 Mekometer. The GPS operations in 2010 included the two GPS campaigns at Olkiluoto, GPS campaigns at Kivetty and Romuvaara, EDM baseline measurements at Olkiluoto, and the control marker measurements with the tachymeter at Olkiluoto. All GPS data history was reprocessed with Bernese GPS software using the new processing strategy tested in 2009. The results were analysed by computing the change rates of the baselines and estimating horizontal velocities for the pillars using the barycenter of the velocities as a reference. In the Olkiluoto inner network 80 percent of the change rates were smaller than 0.10 mm/a. Roughly one fourth of the change rates could be considered as statistically significant (change rate larger than 3 {sigma}. The statistically significant change rates were mainly related to the Olkiluoto permanent station (GPS1) and to the pillar GPS5, which had also the maximum change rate (0.21 {+-} 0.03 mm/a). In Olkiluoto outer network the maximum and statistically significant change rates

  10. Continuing medical education and burnout among Danish GPs

    DEFF Research Database (Denmark)

    Brøndt, Anders; Sokolowski, Ineta; Olesen, Frede

    2008-01-01

    BACKGROUND: There has been minimal research into continuing medical education (CME) and its association with burnout among GPs. AIM: The aim of this study was to investigate the association between participating in CME and experiencing burnout in a sample of Danish GPs. DESIGN OF STUDY: Cross......-sectional questionnaire study. SETTING: All 458 active GPs in 2004, in the County of Aarhus, Denmark were invited to participate. METHOD: Data on CME activities were obtained for all GPs and linked to burnout which was measured using the Maslach Burnout Inventory - Human Services Survey. The relationship between CME...... activity and burnout was calculated as prevalence ratios (PR) in a generalised linear model. RESULTS: In total, 379 (83.5%) GPs returned the questionnaire. The prevalence of burnout was about 25%, and almost 3% suffered from 'high burnout'. A total of 344 (92.0%) GPs were members of a CME group...

  11. Near Real-Time Processing and Archiving of GPS Surveys for Crustal Motion Monitoring

    Science.gov (United States)

    Crowell, B. W.; Bock, Y.

    2008-12-01

    We present an inverse instantaneous RTK method for rapidly processing and archiving GPS data for crustal motion surveys that gives positional accuracy similar to traditional post-processing methods. We first stream 1 Hz data from GPS receivers over Bluetooth to Verizon XV6700 smartphones equipped with Geodetics, Inc. RTD Rover software. The smartphone transmits raw receiver data to a real-time server at the Scripps Orbit and Permanent Array Center (SOPAC) running RTD Pro. At the server, instantaneous positions are computed every second relative to the three closest base stations in the California Real Time Network (CRTN), using ultra-rapid orbits produced by SOPAC, the NOAATrop real-time tropospheric delay model, and ITRF2005 coordinates computed by SOPAC for the CRTN stations. The raw data are converted on-the-fly to RINEX format at the server. Data in both formats are stored on the server along with a file of instantaneous positions, computed independently at each observation epoch. The single-epoch instantaneous positions are continuously transmitted back to the field surveyor's smartphone, where RTD Rover computes a median position and interquartile range for each new epoch of observation. The best-fit solution is the last median position and is available as soon as the survey is completed. We describe how we used this method to process 1 Hz data from the February, 2008 Imperial Valley GPS survey of 38 geodetic monuments established by Imperial College, London in the 1970's, and previously measured by SOPAC using rapid-static GPS methods in 1993, 1999 and 2000, as well as 14 National Geodetic Survey (NGS) monuments. For redundancy, each monument was surveyed for about 15 minutes at least twice and at staggered intervals using two survey teams operating autonomously. Archiving of data and the overall project at SOPAC is performed using the PGM software, developed by the California Spatial Reference Center (CSRC) for the National Geodetic Survey (NGS). The

  12. A Study on Remote On-Line Diagnostic System for Vehicles by Integrating the Technology of OBD, GPS, and 3G

    OpenAIRE

    Jyong Lin; Shih-Chang Chen; Yu-Tsen Shih; Shi-Huang Chen

    2009-01-01

    This paper presents a remote on-line diagnostic system for vehicles via the use of On-Board Diagnostic (OBD), GPS, and 3G techniques. The main parts of the proposed system are on-board computer, vehicle monitor server, and vehicle status browser. First, the on-board computer can obtain the location of deriver and vehicle status from GPS receiver and OBD interface, respectively. Then on-board computer will connect with the vehicle monitor server through 3G network to trans...

  13. Chang?E-5T Orbit Determination Using Onboard GPS Observations

    OpenAIRE

    Su, Xing; Geng, Tao; Li, Wenwen; Zhao, Qile; Xie, Xin

    2017-01-01

    In recent years, Global Navigation Satellite System (GNSS) has played an important role in Space Service Volume, the region enclosing the altitudes above 3000 km up to 36,000 km. As an in-flight test for the feasibility as well as for the performance of GNSS-based satellite orbit determination (OD), the Chinese experimental lunar mission Chang?E-5T had been equipped with an onboard high-sensitivity GNSS receiver with GPS and GLONASS tracking capability. In this contribution, the 2-h onboard G...

  14. Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo

    Science.gov (United States)

    Li, Xingxing; Li, Xin; Yuan, Yongqiang; Zhang, Keke; Zhang, Xiaohong; Wickert, Jens

    2018-06-01

    This paper focuses on the precise point positioning (PPP) ambiguity resolution (AR) using the observations acquired from four systems: GPS, BDS, GLONASS, and Galileo (GCRE). A GCRE four-system uncalibrated phase delay (UPD) estimation model and multi-GNSS undifferenced PPP AR method were developed in order to utilize the observations from all systems. For UPD estimation, the GCRE-combined PPP solutions of the globally distributed MGEX and IGS stations are performed to obtain four-system float ambiguities and then UPDs of GCRE satellites can be precisely estimated from these ambiguities. The quality of UPD products in terms of temporal stability and residual distributions is investigated for GPS, BDS, GLONASS, and Galileo satellites, respectively. The BDS satellite-induced code biases were corrected for GEO, IGSO, and MEO satellites before the UPD estimation. The UPD results of global and regional networks were also evaluated for Galileo and BDS, respectively. As a result of the frequency-division multiple-access strategy of GLONASS, the UPD estimation was performed using a network of homogeneous receivers including three commonly used GNSS receivers (TRIMBLE NETR9, JAVAD TRE_G3TH DELTA, and LEICA). Data recorded from 140 MGEX and IGS stations for a 30-day period in January in 2017 were used to validate the proposed GCRE UPD estimation and multi-GNSS dual-frequency PPP AR. Our results show that GCRE four-system PPP AR enables the fastest time to first fix (TTFF) solutions and the highest accuracy for all three coordinate components compared to the single and dual system. An average TTFF of 9.21 min with 7{°} cutoff elevation angle can be achieved for GCRE PPP AR, which is much shorter than that of GPS (18.07 min), GR (12.10 min), GE (15.36 min) and GC (13.21 min). With observations length of 10 min, the positioning accuracy of the GCRE fixed solution is 1.84, 1.11, and 1.53 cm, while the GPS-only result is 2.25, 1.29, and 9.73 cm for the east, north, and vertical

  15. Contents of GPS Data Files

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carver, Matthew Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norman, Benjamin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-09

    There are no very detailed descriptions of most of these instruments in the literature – we will attempt to fix that problem in the future. The BDD instruments are described in [1]. One of the dosimeter instruments on CXD boxes is described in [2]. These documents (or web links to them) and a few others are in this directory tree. The cross calibration of the CXD electron data with RBSP is described in [3]. Each row in the data file contains the data from one time bin from a CXD or BDD instrument along with a variety of parameters derived from the data. Time steps are commandable but 4 minutes is a typical setting. These instruments are on many (but not all) GPS satellites which are currently in operation. The data come from either BDD instruments on GPS Block IIR satellites (SVN41 and 48), or else CXD-IIR instruments on GPS Block IIR and IIR-M satellites (SVN53-61) or CXD-IIF instruments on GPS block IIF satellites (SVN62-73). The CXD-IIR instruments on block IIR and IIR(M) satellites use the same design.

  16. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    Science.gov (United States)

    Kavak, Adnan; Xu, Guang-Han; Vogel, Wolfhard J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, GPS receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  17. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2008

    International Nuclear Information System (INIS)

    Kallio, U.; Ahola, J.; Koivula, H.; Jokela, J.; Poutanen, M.

    2009-09-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 26 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 17 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than 0.20 mm/a. The networks of Kivetty and Romuvaara are quite stable expect one pillar at Romuvaara. There are seven pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. The comparison between the GPS and EDM results can help to fix a possible scale error of the GPS measurements. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is

  18. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2007

    International Nuclear Information System (INIS)

    Ahola, J.; Koivula, H.; Jokela, J.

    2008-05-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. 24 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 16 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.20 mm/a. The networks of Kivetty and Romuvaara are quite stabile expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined (maximum velocity is -0.22 mm/a ± 0.02 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results can solve a possible scale error of the GPS. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003, but the time series are still too short for reliable deformation studies. The local crustal deformations have been studied in GeoSatakunta project, too. This

  19. Interference-Robust Air Interface for 5G Ultra-dense Small Cells

    DEFF Research Database (Denmark)

    Tavares, Fernando Menezes Leitão; Berardinelli, Gilberto; Mahmood, Nurul Huda

    2016-01-01

    An ultra-dense deployment of small cells is foreseen as the solution to cope with the exponential increase of the data rate demand targeted by the 5th Generation (5G) radio access technology. In this article, we propose an interference-robust air interface built upon the usage of advanced receivers...

  20. Why GPS makes distances bigger than they are.

    Science.gov (United States)

    Ranacher, Peter; Brunauer, Richard; Trutschnig, Wolfgang; Van der Spek, Stefan; Reich, Siegfried

    2016-02-01

    Global navigation satellite systems such as the Global Positioning System (GPS) is one of the most important sensors for movement analysis. GPS is widely used to record the trajectories of vehicles, animals and human beings. However, all GPS movement data are affected by both measurement and interpolation errors. In this article we show that measurement error causes a systematic bias in distances recorded with a GPS; the distance between two points recorded with a GPS is - on average - bigger than the true distance between these points. This systematic 'overestimation of distance' becomes relevant if the influence of interpolation error can be neglected, which in practice is the case for movement sampled at high frequencies. We provide a mathematical explanation of this phenomenon and illustrate that it functionally depends on the autocorrelation of GPS measurement error ( C ). We argue that C can be interpreted as a quality measure for movement data recorded with a GPS. If there is a strong autocorrelation between any two consecutive position estimates, they have very similar error. This error cancels out when average speed, distance or direction is calculated along the trajectory. Based on our theoretical findings we introduce a novel approach to determine C in real-world GPS movement data sampled at high frequencies. We apply our approach to pedestrian trajectories and car trajectories. We found that the measurement error in the data was strongly spatially and temporally autocorrelated and give a quality estimate of the data. Most importantly, our findings are not limited to GPS alone. The systematic bias and its implications are bound to occur in any movement data collected with absolute positioning if interpolation error can be neglected.

  1. Assessing fitness for work: GPs judgment making.

    Science.gov (United States)

    Foley, Michelle; Thorley, Kevan; Van Hout, Marie-Claire

    2013-12-01

    The complexity of a fitness for work consultation is well documented. General practitioners (GPs) find that such consultations often create conflict and they feel ill-prepared for the task. We aimed to examine the consultation process in the fitness for work consultation and to report on the response of GPs to two hypothetical consultations of work related sickness absence, one of a psychological and one of a physical nature. Three areas of the consultation were examined; social/family circumstances, workplace history and information required assessing the severity of the condition. We used a randomized design using an online questionnaire completed by 62 GPs located in the Republic of Ireland. Analysis was conducted in NVivo 8 qualitative software using thematic and content analysis techniques. GPs may be expected to collect and consider information relating to social, domestic, financial, lifestyle and workplace factors, including workload, job satisfaction, job strain, work ethic, inter staff relationships and employee support mechanisms. The mode of presentation may trigger specific information seeking in the consultation. GPs may evaluate fitness for work in a variety of ways depending on medical and non-medical factors. Further research should further examine the factors that may influence the GPs decision to prescribe sickness leave.

  2. WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE

    International Nuclear Information System (INIS)

    Shinnaga, Hiroko; Phillips, Thomas G.; Furuya, Ray S.; Kitamura, Yoshimi

    2009-01-01

    In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (∼30-70 K), extended (radius of ∼2400 AU), dense (a few times 10 5 cm -3 ) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, 'warm-in-cold core stage (WICCS)', i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.

  3. Facilitators and barriers for GP-patient communication in palliative care: a qualitative study among GPs, patients, and end-of-life consultants.

    Science.gov (United States)

    Slort, Willemjan; Blankenstein, Annette H; Deliens, Luc; van der Horst, Henriëtte E

    2011-04-01

    Effective communication is considered to be essential for the delivery of high-quality care. Communication in palliative care may be particularly difficult, and there is still no accepted set of communication skills for GPs in providing palliative care. To obtain detailed information on facilitators and barriers for GP-patient communication in palliative care, with the aim to develop training programmes that enable GPs to improve their palliative care communication skills. Qualitative study with focus groups, interviews, and questionnaires. GPs with patients receiving palliative care at home, and end-of-life consultants in the Netherlands. GP (n = 20) focus groups discussing facilitators and barriers, palliative care patient (n = 6) interviews regarding facilitators, and end-of-life consultant (n = 22) questionnaires concerning barriers. Facilitators reported by both GPs and patients were accessibility, taking time, commitment, and listening carefully. GPs emphasise respect, while patients want GPs to behave in a friendly way, and to take the initiative to discuss end-of-life issues. Barriers reported by both GPs and end-of-life consultants were: difficulty in dealing with former doctors' delay and strong demands from patients' relatives. GPs report difficulty in dealing with strong emotions and troublesome doctor-patient relationships, while consultants report insufficient clarification of patients' problems, promises that could not be kept, helplessness, too close involvement, and insufficient anticipation of various scenarios. The study findings suggest that the quality of GP-patient communication in palliative care in the Netherlands can be improved. It is recommended that specific communication training programmes for GPs should be developed and evaluated.

  4. GPS Modeling and Analysis. Summary of Research: GPS Satellite Axial Ratio Predictions

    Science.gov (United States)

    Axelrad, Penina; Reeh, Lisa

    2002-01-01

    This report outlines the algorithms developed at the Colorado Center for Astrodynamics Research to model yaw and predict the axial ratio as measured from a ground station. The algorithms are implemented in a collection of Matlab functions and scripts that read certain user input, such as ground station coordinates, the UTC time, and the desired GPS (Global Positioning System) satellites, and compute the above-mentioned parameters. The position information for the GPS satellites is obtained from Yuma almanac files corresponding to the prescribed date. The results are displayed graphically through time histories and azimuth-elevation plots.

  5. The Evolution of Global Positioning System (GPS) Technology.

    Science.gov (United States)

    Kumar, Sameer; Moore, Kevin B.

    2002-01-01

    Describes technological advances in the Global Positioning System (GPS), which is also known as the NAVSTAR GPS satellite constellation program developed in 1937, and changes in the nature of our world by GPS in the areas of agriculture, health, military, transportation, environment, wildlife biology, surveying and mapping, space applications, and…

  6. GPS queues with heterogeneous traffic classes

    NARCIS (Netherlands)

    Borst, Sem; Mandjes, M.R.H.; van Uitert, Miranda

    2002-01-01

    We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two traffic classes are served in accordance with the generalized processor sharing (GPS) discipline. GPS-based scheduling algorithms, such as weighted fair queueing (WFQ), have emerged as an important mechanism for

  7. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models.

    Science.gov (United States)

    Afifi, Akram; El-Rabbany, Ahmed

    2015-06-19

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada's GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.

  8. Performance of GPS-devices for environmental exposure assessment.

    Science.gov (United States)

    Beekhuizen, Johan; Kromhout, Hans; Huss, Anke; Vermeulen, Roel

    2013-01-01

    Integration of individual time-location patterns with spatially resolved exposure maps enables a more accurate estimation of personal exposures to environmental pollutants than using estimates at fixed locations. Current global positioning system (GPS) devices can be used to track an individual's location. However, information on GPS-performance in environmental exposure assessment is largely missing. We therefore performed two studies. First, a commute-study, where the commute of 12 individuals was tracked twice, testing GPS-performance for five transport modes and two wearing modes. Second, an urban-tracking study, where one individual was tracked repeatedly through different areas, focused on the effect of building obstruction on GPS-performance. The median error from the true path for walking was 3.7 m, biking 2.9 m, train 4.8 m, bus 4.9 m, and car 3.3 m. Errors were larger in a high-rise commercial area (median error=7.1 m) compared with a low-rise residential area (median error=2.2 m). Thus, GPS-performance largely depends on the transport mode and urban built-up. Although ~85% of all errors were 50 m. Modern GPS-devices are useful tools for environmental exposure assessment, but large GPS-errors might affect estimates of exposures with high spatial variability.

  9. Topo-Iberia GPS network: installation complete

    Science.gov (United States)

    Khazaradze, G.

    2009-04-01

    As part of the project, titled "Geociencias en Iberia: Estudios integrados de topografía y evolución 4D: Topo-Iberia", we have established a network of 26 continuous GPS stations, covering the Spanish part of the Iberian Peninsula (22 stations) and Morocco (4 stations). A major objective behind the establishment of this array is to monitor millimeter level deformation of the crust due to the collision of African and Eurasian (including Iberian) tectonic plates. More specific goals of the project include the identification of the areas and/or specific seismic faults which exhibit higher deformation rates, which could imply an increased seismic hazard in these specific areas. The network has been designed as two X-shaped transects crossing the peninsula from NE to SW and NW to SE, with relatively coarse distribution of the stations, superimposed with denser coverage in the seismically active areas of the Betics, Pyrenees and Cantabrian chains. The majority of the built monuments consist of 1.5-1.8 m tall concrete pillars of 40 cm in diameter anchored to the bedrock using iron rebars. One station in Huesca was built according the UNAVCO's short drilled braced monument (SDBM) specifications. All the monuments were equipped with the SCIGN leveling mounts to ensure the precise antenna alignment and re-alignment in case of the antenna replacement, as well as, tamper resistance of the monument mark. In places were the snow accumulation was possible the antennas were covered with plastic radomes. The instrumentation used is Trimble NetRS dual-frequency receivers with choke-ring antennas. The communication is mainly via cellular telephone system. As of December 2008, the network installation has been competed and all the stations are fully operational. Here we report the milestones of the installation of the network and, as well as, present the first preliminary results of the analysis of the data. Besides the newly established Topo-Iberia CGPS stations, we have included

  10. Constraints on dike propagation from continuous GPS measurements

    Science.gov (United States)

    Segall, P.; Cervelli, Peter; Owen, S.; Lisowski, M.; Miklius, Asta

    2001-01-01

    The January 1997 East Rift Zone eruption on Kilauea volcano, Hawaii, occurred within a network of continuous Global Positioning System (GPS) receivers. The GPS measurements reveal the temporal history of deformation during dike intrusion, beginning ??? 8 hours prior to the onset of the eruption. The dike volume as a function of time, estimated from the GPS data using elastic Green's functions for a homogeneous half-space, shows that only two thirds of the final dike volume accumulated prior to the eruption and the rate of volume change decreased with time. These observations are inconsistent with simple models of dike propagation, which predict accelerating dike volume up to the time of the eruption and little or no change thereafter. Deflationary tilt changes at Kilauea summit mirror the inferred dike volume history, suggesting that the rate of dike propagation is limited by flow of magma into the dike. A simple, lumped parameter model of a coupled dike magma chamber system shows that the tendency for a dike to end in an eruption (rather than intrusion) is favored by high initial dike pressures, compressional stress states, large, compressible magma reservoirs, and highly conductive conduits linking the dike and source reservoirs. Comparison of model predictions to the observed dike volume history, the ratio of erupted to intruded magma, and the deflationary history of the summit magma chamber suggest that most of the magma supplied to the growing dike came from sources near to the eruption through highly conductive conduits. Interpretation is complicated by the presence of multiple source reservoirs, magma vesiculation and cooling, as well as spatial variations in dike-normal stress. Reinflation of the summit magma chamber following the eruption was measured by GPS and accompanied a rise in the level of the Pu'u O'o lava lake. For a spheroidal chamber these data imply a summit magma chamber volume of ??? 20 km3, consistent with recent estimates from seismic

  11. GPS operations at Olkiluoto, Kivetty and Romuvaara in 2006

    International Nuclear Information System (INIS)

    Ahola, J.; Koivula, H.; Poutanen, M.; Jokela, J.

    2007-05-01

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. 22 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 15 campaigns at Kivetty and Romuvaara. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than ± 0.22 mm/a. The networks of Kivetty and Romuvaara are quite stabile expect one pillar at Romuvaara. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined (maximum velocity is -0.23 mm/a ± 0.023 mm/a). The uniform scale for the GPS measurements made in different years is the basic condition for reliable results in the deformation analyses. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments simultaneously with the GPS observations. The comparison between the GPS and EDM results can solve a possible scale error of the GPS. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003, but the time series are still too short for reliable deformation studies. The local crustal deformations have been studied in GeoSatakunta project, too. This

  12. Application of GPS systems on a mobile robot

    Science.gov (United States)

    Cao, Peter; Saxena, Mayank; Tedder, Maurice; Mischalske, Steve; Hall, Ernest L.

    2001-10-01

    The purpose of this paper is to describe the use of Global Positioning Systems (GPS) as geographic information and navigational system for a ground based mobile robot. Several low cost wireless systems are now available for a variety of innovative automobile applications including location, messaging and tracking and security. Experiments were conducted with a test bed mobile robot, Bearcat II, for point-to-point motion using a Motorola GPS in June 2001. The Motorola M12 Oncore GPS system is connected to the Bearcat II main control computer through a RS232 interface. A mapping program is used to define a desired route. Then GPS information may be displayed for verification. However, the GPS information is also used to update the control points of the mobile robot using a reinforcement learning method. Local position updates are also used when found in the environment. The significance of the method is in extending the use of GPS to local vehicle control that requires more resolution that is available from the raw data using the adaptive control method.

  13. Overcoming urban GPS navigation challenges through the use of MEMS inertial sensors and proper verification of navigation system performance

    Science.gov (United States)

    Vinande, Eric T.

    This research proposes several means to overcome challenges in the urban environment to ground vehicle global positioning system (GPS) receiver navigation performance through the integration of external sensor information. The effects of narrowband radio frequency interference and signal attenuation, both common in the urban environment, are examined with respect to receiver signal tracking processes. Low-cost microelectromechanical systems (MEMS) inertial sensors, suitable for the consumer market, are the focus of receiver augmentation as they provide an independent measure of motion and are independent of vehicle systems. A method for estimating the mounting angles of an inertial sensor cluster utilizing typical urban driving maneuvers is developed and is able to provide angular measurements within two degrees of truth. The integration of GPS and MEMS inertial sensors is developed utilizing a full state navigation filter. Appropriate statistical methods are developed to evaluate the urban environment navigation improvement due to the addition of MEMS inertial sensors. A receiver evaluation metric that combines accuracy, availability, and maximum error measurements is presented and evaluated over several drive tests. Following a description of proper drive test techniques, record and playback systems are evaluated as the optimal way of testing multiple receivers and/or integrated navigation systems in the urban environment as they simplify vehicle testing requirements.

  14. GPS-Aided Video Tracking

    Directory of Open Access Journals (Sweden)

    Udo Feuerhake

    2015-08-01

    Full Text Available Tracking moving objects is both challenging and important for a large variety of applications. Different technologies based on the global positioning system (GPS and video or radio data are used to obtain the trajectories of the observed objects. However, in some use cases, they fail to provide sufficiently accurate, complete and correct data at the same time. In this work we present an approach for fusing GPS- and video-based tracking in order to exploit their individual advantages. In this way we aim to combine the reliability of GPS tracking with the high geometric accuracy of camera detection. For the fusion of the movement data provided by the different devices we use a hidden Markov model (HMM formulation and the Viterbi algorithm to extract the most probable trajectories. In three experiments, we show that our approach is able to deal with challenging situations like occlusions or objects which are temporarily outside the monitored area. The results show the desired increase in terms of accuracy, completeness and correctness.

  15. Real Time Monitoring of GPS-IGU orbits and clocks as a tool to disseminate corrections to GPS-Broadcast Ephemerides

    Science.gov (United States)

    Thaler, G.; Opitz, M.; Weber, R.

    2009-04-01

    Nowadays RTIGS and NTRIP have become standards for real time GNSS based positioning applications. The IGS (International GNSS Service) Real-Time Working Group disseminates via Internet (RTIGS) raw observation data of a subset of stations of the IGS network. This observation data can be used to establish a real-time integrity monitoring of the IGS predicted orbits (Ultra Rapid (IGU-) Orbits) and clocks, according to the recommendations of the IGS Workshop 2004 in Bern and in a further step correction terms for improving the accuracy of the GPS broadcast ephemerides can be calculated. The Institute for "Geodesy and Geophysics" of the TU-Vienna develops in cooperation with the IGS Real-Time Working Group the software "RTR- Control", which currently provides a real-time integrity monitoring of predicted IGU Satellite Clock Corrections to GPS Time. The real-time orbit calculation and monitoring of the predicted IGU satellite orbits is currently in a testing phase and will be operable in the near future. A kinematic model and calculated ranges to the satellites are combined in a KALMAN-Filter approach. Currently the most recent GPS- Satellite Clock Corrections are published in Real Time via Internet. A 24 - hour clock RINEX file and the IGU SP3 files modified for the associated clock corrections are stored on the ftp-server of the institute. To perform the task of calculating corrections to the broadcast ephemerides three programs are used, which are BNC (BKG Ntrip Client) and BNS (BKG Ntrip State Space Server) from BKG (Bundesamt für Kartographie und Geoinformation) as well as RTR-Control. BNC receives the GPS-broadcast ephemerides from the Ntrip-Caster and forwards them to BNS. RTR-Control calculates the satellite clocks and in future also the satellite orbits and forwards them in SP3-format to BNS. BNS calculates the correction terms to the broadcast ephemerides and delivers it in RTCM 3.x format (proprietary message 4056) back to the Ntrip-caster. Subsequently

  16. High-sensitivity modified Glasgow prognostic score (HS-mGPS) Is superior to the mGPS in esophageal cancer patients treated with chemoradiotherapy

    OpenAIRE

    Chen, Peng; Fang, Min; Wan, Qiuyan; Zhang, Xuebang; Song, Tao; Wu, Shixiu

    2017-01-01

    The present study compared the prognostic value of the modified Glasgow prognostic score (mGPS) and high-sensitivity mGPS (HS-mGPS) in unresectable locally advanced esophageal squamous cell carcimona (LAESCC) patients treated with concurrent chemoradiotherapy (CCRT). The baseline data of 163 eligible patients were retrospectively collected. Patients with a C-reactive protein (CRP) ≤ 10 mg/l and albumin ≥ 35 g/l were allocated to mGPS-0 group. Patients with only elevated CRP (> 10 mg/l) were a...

  17. Estimering af brændstofforbrug vha. GPS Data

    DEFF Research Database (Denmark)

    Andersen, Ove; Lahrmann, Harry; Torp, Kristian

    2010-01-01

    Det er simpelt og billigt at opsamle GPS målinger fra køretøjer. Når større mængder GPS data indsamles fra et passende antal køretøjer kan dataen bruges til at beregne f.eks. køretider. Det er ligeledes muligt ud fra GPS data at estimere miljøindikatorer så som, hvor aggressivt kører bilister og er...... der nogle vejstrækninger, der har en højere (negativ) miljø påvirkning end andre? I denne artikel præsenterer et forsøg, hvor GPS data anvendes til at estimere brændstofforbruget ved en enkelt tur og for vejnettet generelt. Dette gøres ved at opbygge en database med GPS data. Ud fra disse data gives...

  18. Facilitators and barriers for GP–patient communication in palliative care: a qualitative study among GPs, patients, and end-of-life consultants

    Science.gov (United States)

    Slort, Willemjan; Blankenstein, Annette H; Deliens, Luc; van der Horst, Henriëtte E

    2011-01-01

    Background Effective communication is considered to be essential for the delivery of high-quality care. Communication in palliative care may be particularly difficult, and there is still no accepted set of communication skills for GPs in providing palliative care. Aim To obtain detailed information on facilitators and barriers for GP–patient communication in palliative care, with the aim to develop training programmes that enable GPs to improve their palliative care communication skills. Design of study Qualitative study with focus groups, interviews, and questionnaires. Setting GPs with patients receiving palliative care at home, and end-of-life consultants in the Netherlands. Method GP (n = 20) focus groups discussing facilitators and barriers, palliative care patient (n = 6) interviews regarding facilitators, and end-of-life consultant (n = 22) questionnaires concerning barriers. Results Facilitators reported by both GPs and patients were accessibility, taking time, commitment, and listening carefully. GPs emphasise respect, while patients want GPs to behave in a friendly way, and to take the initiative to discuss end-of-life issues. Barriers reported by both GPs and end-of-life consultants were: difficulty in dealing with former doctors' delay and strong demands from patients' relatives. GPs report difficulty in dealing with strong emotions and troublesome doctor–patient relationships, while consultants report insufficient clarification of patients' problems, promises that could not be kept, helplessness, too close involvement, and insufficient anticipation of various scenarios. Conclusion The study findings suggest that the quality of GP–patient communication in palliative care in the Netherlands can be improved. It is recommended that specific communication training programmes for GPs should be developed and evaluated. PMID:21439174

  19. Continued Trenchward Procession of Upper Plate GPS Sites Following the 2012 Mw 7.6 Nicoya Earthquake

    Science.gov (United States)

    Hobbs, T. E.; Newman, A. V.; Protti, M.

    2015-12-01

    When studying subduction zone deformation one is often forced to consider a region significantly landward of the trench. The Nicoya Peninsula in Costa Rica presents a unique opportunity to obtain rich datasets from land in relatively close proximity to an active megathrust. A recent moment magnitude (Mw) 7.6 earthquake in September 2012 on this portion of the Middle America Trench affords an opportunity to constrain the ongoing postseismic deformation on the subduction interface between the Cocos and Caribbean plates. GPS campaigns occupying 22 sites were undertaken immediately following the earthquake in September-December 2012 and most recently in March 2015. Combined with data from a network of 17 continuous GPS in the region, we analyze the spatial and temporal changes in the postseismic velocity field. Another campaign is planned for 2017, in conjunction with our ongoing analysis of the continuous GPS network. After 2.5 years, campaign GPS results indicate significant trenchward motion of at least 7 cm, relative to a fixed Caribbean plate, for all sites up to the volcanic chain. Maximum values of 22 cm are observed above and updip of the coseismic rupture zone. The trench-parallel component of the displacement field is small, with few deviations between sites. Together these observations are substantially more self-similar over a larger region than what was observed for the coseismic offset. This implies that there may be a low stress differential across the upper plate, suggesting that the subduction interface environment, including the mainshock and surrounding area, has remained relatively weak following the earthquake. By utilizing a dense and long-term geodetic network we will report on initial modeling that aims to characterize the evolution of afterslip. The effect of regional aftershocks, including an Mw 6.5 in October 2012, and viscoelastic mantle relaxation will be considered to establish the necessity of such effects in robustly accounting for

  20. Localization system for use in GPS denied environments

    Energy Technology Data Exchange (ETDEWEB)

    Trueblood, J. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-01

    The military uses to autonomous platforms to complete missions to provide standoff for the warfighters. However autonomous platforms rely on GPS to provide their global position. In many missions spaces the autonomous platforms may encounter GPS denied environments which limits where the platform operates and requires the warfighters to takes its place. GPS denied environments can occur due to tall building, trees, canyon wall blocking the GPS satellite signals or a lack of coverage. An Inertial Navigation System (INS) uses sensors to detect the vehicle movement and direction its traveling to calculate the vehicle. One of biggest challenges with an INS system is the accuracy and accumulation of errors over time of the sensors. If these challenges can be overcome the INS would provide accurate positioning information to the autonomous vehicle in GPS denied environments and allow them to provide the desired standoff for the warfighters.

  1. Attracting and retaining GPs: a stakeholder survey of priorities.

    Science.gov (United States)

    Lorant, Vincent; Geerts, Charlotte; Duchesnes, Christiane; Goedhuys, Jo; Ryssaert, Lynn; Remmen, Roy; D'hoore, William

    2011-07-01

    Despite being a key player in the healthcare system, training and practising general practice has become less attractive in many countries and is in need of reform. To identify political priorities for improving GPs' attraction to the profession and their retention within it. Stakeholder face-to-face survey in Belgium, 2008. A total of 102 key stakeholders were recruited from policymakers, professional groups, academia, GP leaders, and the media. All interviewees were asked to score 23 policies on four criteria: effectiveness in attracting and retaining GPs, cost to society, acceptance by other health professionals, and accessibility of care. An overall performance score was computed (from -3 to +3) for each type of policy - training, financing, work-life balance, practice organisation, and governance - and for innovative versus conservative policies. Practice organisation policies and training policies received the highest scores (mean score ≥ 1.11). Financing policies, governance, and work-life balance policies scored poorly (mean score ≤ 0.65) because they had negative effects, particularly in relation to cost, acceptance, and accessibility of care. Stakeholders were keen on moving GPs towards team work, improving their role as care coordinator, and helping them to offload administrative tasks (score ≥ 1.4). They also favoured moves to increase the early and integrated exposure of all medical students to general practice. Overall, conservative policies were better scored than innovative ones (beta = -0.16, 95% confidence interval = -0.28 to -0.03). The reforming of general practice is made difficult by the small-step approach, as well as the importance of decision criteria related to cost, acceptance, and access.

  2. Very High-rate (50 Hz) GPS for Detection of Earthquake Ground Motions : How High Do We Need to Go?

    Science.gov (United States)

    Fang, R.

    2017-12-01

    The GPS variometric approach can measure displacements using broadcast ephemeris and a single receiver, with comparable precision to relative positioning and PPP within a short period of time. We evaluate the performance of the variometric approach to measure displacements using very high-rate (50 Hz) GPS data, which recorded from the 2013 Mw 6.6 Lushan earthquake and the 2011 Mw 9.0 Tohoku-Oki earthquake. To remove the nonlinear drift due to integration process, we present to apply a high-pass filter to reconstruct displacements using the variometric approach. Comparison between 50 Hz and 1 Hz coseismic displacements demonstrates that 1 Hz solutions often fail to faithfully manifest the seismic waves containing high-frequency (> 0.5 Hz) seismic signals, which is common for near-field stations during a moderate-magnitude earthquake. Therefore, in order to reconstruct near-field seismic waves caused by moderate or large earthquakes, it is helpful to equip monitoring stations with very high-rate GPS receivers. Results derived using the variometric approach are compared with PPP results. They display very good consistence within only a few millimeters both in static and seismic periods. High-frequency (above 10 Hz) noises of displacements derived using the variometric approach are smaller than PPP displacements in three components.

  3. Vision-GPS Fusion for Guidance of an Autonomous Vehicle in Row Crops

    DEFF Research Database (Denmark)

    Bak, Thomas

    2001-01-01

    This paper presents a real-time localization system for an autonomous vehicle passing through 0.25 m wide crop rows at 6 km/h. Localization is achieved by fusion of mea-surements from a row guidance sensor and a GPS receiver. Conventional agricultural practice applies inputs such as herbicide...... at a constant rate ignoring the spatial variability in weed, soil, and crop. Sensing with a guided vehicle allow cost effective mapping of field variability and inputs may be adjusted accordingly. Essential to such a vehicle is real-time localization. GPS allow precise absolute sensing but it is not practical...... to guide the vehicle relative to the crop rows on an absolute coordinate. A row guidance sensor is therefore included to sense the position relative to the rows. The vehicle path in the field is re-planned online in order to allow for crop row irregularities sensed by the row sensor. The path generation...

  4. Monitoring of oil palm plantations and growth variations with a dense vegetation model

    DEFF Research Database (Denmark)

    Teng, Khar Chun; Koay, Jun Yi; Tey, Seng Heng

    2014-01-01

    The development of microwave remote sensing models for the monitoring of vegetation has received wide attention in recent years. For vegetation in the tropics, it is necessary to consider a dense medium model for the theoretical modelling of the microwave interaction with the vegetation medium....... In this paper, a multilayer model based on the radiative transfer theory for a dense vegetation medium is developed where the coherence effects and near field interaction effects of closely spaced leaves and branches are considered by incorporating the Dense Medium Phase and Amplitude Correction Theory (DM......-PACT) and Fresnel Phase Corrections. The iterative solutions of the radiative transfer model are computed with input based on ground truth measurements of physical parameters of oil palm plantations in the state of Perak, Malaysia, and compared with the SAR images obtained from RADARSAT2. Preliminary results...

  5. Uporaba satelitskih sistemov GPS in GLONASS v geodetski izmeri

    OpenAIRE

    Oset, Klemen

    2015-01-01

    V geodetski izmeri GNSS se že nekaj časa za določanje položaja uporabljata hkrati sistema GLONASS in GPS. V diplomski nalogi sta predstavljena GNSS sistema GPS in GLONASS, podobnosti in razlike obeh sistemov ter njune značilnosti pri določitvi položaja. V praktičnem delu naloge so predstavljeni potek meritev, obdelava opazovanj in analiza kakovosti koordinat določenih na osnovi opazovanj GPS, opazovanj GLONASS in skupne uporabe opazovanj GPS in GLONASS.

  6. Mining Significant Semantic Locations from GPS Data

    DEFF Research Database (Denmark)

    Cao, Xin; Cong, Gao; Jensen, Christian Søndergaard

    2010-01-01

    With the increasing deployment and use of GPS-enabled devices, massive amounts of GPS data are becoming available. We propose a general framework for the mining of semantically meaningful, significant locations, e.g., shopping malls and restaurants, from such data. We present techniques capable...... of extracting semantic locations from GPS data. We capture the relationships between locations and between locations and users with a graph. Significance is then assigned to locations using random walks over the graph that propagates significance among the locations. In doing so, mutual reinforcement between...

  7. Arctic Tides from GPS on sea-ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2013-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea-ice dampens the ocean tide amplitude with the result that global tidal models perform less accurately in the polar regions. This paper presents, a kinematic processing of global positioning system (GPS....... The results show coherence between the GPS buoy measurements, and the tide model. Furthermore, we have proved that the reference ellipsoid of WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  8. Mining significant semantic locations from GPS data

    DEFF Research Database (Denmark)

    Cao, Xin; Cong, Gao; Jensen, Christian S.

    2010-01-01

    With the increasing deployment and use of GPS-enabled devices, massive amounts of GPS data are becoming available. We propose a general framework for the mining of semantically meaningful, significant locations, e.g., shopping malls and restaurants, from such data. We present techniques capable...... of extracting semantic locations from GPS data. We capture the relationships between locations and between locations and users with a graph. Significance is then assigned to locations using random walks over the graph that propagates significance among the locations. In doing so, mutual reinforcement between...

  9. Precise Orbit Determination of GPS Satellites Using Phase Observables

    Directory of Open Access Journals (Sweden)

    Myung-Kook Jee

    1997-12-01

    Full Text Available The accuracy of user position by GPS is heavily dependent upon the accuracy of satellite position which is usually transmitted to GPS users in radio signals. The real-time satellite position information directly obtained from broadcast ephimerides has the accuracy of 3 x 10 meters which is very unsatisfactory to measure 100km baseline to the accuracy of less than a few mili-meters. There are globally at present seven orbit analysis centers capable of generating precise GPS ephimerides and their orbit quality is of the order of about 10cm. Therefore, precise orbit model and phase processing technique were reviewed and consequently precise GPS ephimerides were produced after processing the phase observables of 28 global GPS stations for 1 day. Initial 6 orbit parameters and 2 solar radiation coefficients were estimated using batch least square algorithm and the final results were compared with the orbit of IGS, the International GPS Service for Geodynamics.

  10. Evaluating methods for estimating home ranges using GPS collars: A comparison using proboscis monkeys (Nasalis larvatus).

    Science.gov (United States)

    Stark, Danica J; Vaughan, Ian P; Ramirez Saldivar, Diana A; Nathan, Senthilvel K S S; Goossens, Benoit

    2017-01-01

    The development of GPS tags for tracking wildlife has revolutionised the study of home ranges, habitat use and behaviour. Concomitantly, there have been rapid developments in methods for estimating habitat use from GPS data. In combination, these changes can cause challenges in choosing the best methods for estimating home ranges. In primatology, this issue has received little attention, as there have been few GPS collar-based studies to date. However, as advancing technology is making collaring studies more feasible, there is a need for the analysis to advance alongside the technology. Here, using a high quality GPS collaring data set from 10 proboscis monkeys (Nasalis larvatus), we aimed to: 1) compare home range estimates from the most commonly used method in primatology, the grid-cell method, with three recent methods designed for large and/or temporally correlated GPS data sets; 2) evaluate how well these methods identify known physical barriers (e.g. rivers); and 3) test the robustness of the different methods to data containing either less frequent or random losses of GPS fixes. Biased random bridges had the best overall performance, combining a high level of agreement between the raw data and estimated utilisation distribution with a relatively low sensitivity to reduced fixed frequency or loss of data. It estimated the home range of proboscis monkeys to be 24-165 ha (mean 80.89 ha). The grid-cell method and approaches based on local convex hulls had some advantages including simplicity and excellent barrier identification, respectively, but lower overall performance. With the most suitable model, or combination of models, it is possible to understand more fully the patterns, causes, and potential consequences that disturbances could have on an animal, and accordingly be used to assist in the management and restoration of degraded landscapes.

  11. Evaluating methods for estimating home ranges using GPS collars: A comparison using proboscis monkeys (Nasalis larvatus.

    Directory of Open Access Journals (Sweden)

    Danica J Stark

    Full Text Available The development of GPS tags for tracking wildlife has revolutionised the study of home ranges, habitat use and behaviour. Concomitantly, there have been rapid developments in methods for estimating habitat use from GPS data. In combination, these changes can cause challenges in choosing the best methods for estimating home ranges. In primatology, this issue has received little attention, as there have been few GPS collar-based studies to date. However, as advancing technology is making collaring studies more feasible, there is a need for the analysis to advance alongside the technology. Here, using a high quality GPS collaring data set from 10 proboscis monkeys (Nasalis larvatus, we aimed to: 1 compare home range estimates from the most commonly used method in primatology, the grid-cell method, with three recent methods designed for large and/or temporally correlated GPS data sets; 2 evaluate how well these methods identify known physical barriers (e.g. rivers; and 3 test the robustness of the different methods to data containing either less frequent or random losses of GPS fixes. Biased random bridges had the best overall performance, combining a high level of agreement between the raw data and estimated utilisation distribution with a relatively low sensitivity to reduced fixed frequency or loss of data. It estimated the home range of proboscis monkeys to be 24-165 ha (mean 80.89 ha. The grid-cell method and approaches based on local convex hulls had some advantages including simplicity and excellent barrier identification, respectively, but lower overall performance. With the most suitable model, or combination of models, it is possible to understand more fully the patterns, causes, and potential consequences that disturbances could have on an animal, and accordingly be used to assist in the management and restoration of degraded landscapes.

  12. The Mobile Surface Contamination Monitor II environmental radiological characterization utilizing GPS/GIS technologies

    International Nuclear Information System (INIS)

    Wendling, M.A.

    1993-05-01

    Time, cost, and most importantly quality of data are the three factors to measure the success of field radiological characterizations. The application of coupling radiation detection instrumentation to a GPS receiver has dramatically increased the data quality achievable compared to traditional environmental radiological survey methods. Improvements in verifying adequate spatial coverage of an area while collecting data and at,the same time reducing field time requirements can be realized. Data acquired during the recent implementation of the Mobile Surface Contamination Monitor 11 (MSCM-11) will be presented to demonstrate the advantages of this system over traditional radiological survey methods. The comparison will include time and manpower requirements. Linking the complimentary GPS, GIS and radiation detection technologies on a mobile tractor based platform has provided a tool to provide radiological characterization data faster, cheaper, and better to assist in the Environmental Restoration Mission of the Hanford Site

  13. Characterization of the Ionospheric Scintillations at High Latitude using GPS Signal

    Science.gov (United States)

    Mezaoui, H.; Hamza, A. M.; Jayachandran, P. T.

    2013-12-01

    Transionospheric radio signals experience both amplitude and phase variations as a result of propagation through a turbulent ionosphere; this phenomenon is known as ionospheric scintillations. As a result of these fluctuations, Global Positioning System (GPS) receivers lose track of signals and consequently induce position and navigational errors. Therefore, there is a need to study these scintillations and their causes in order to not only resolve the navigational problem but in addition develop analytical and numerical radio propagation models. In order to quantify and qualify these scintillations, we analyze the probability distribution functions (PDFs) of L1 GPS signals at 50 Hz sampling rate using the Canadian High arctic Ionospheric Network (CHAIN) measurements. The raw GPS signal is detrended using a wavelet-based technique and the detrended amplitude and phase of the signal are used to construct probability distribution functions (PDFs) of the scintillating signal. The resulting PDFs are non-Gaussian. From the PDF functional fits, the moments are estimated. The results reveal a general non-trivial parabolic relationship between the normalized fourth and third moments for both the phase and amplitude of the signal. The calculated higher-order moments of the amplitude and phase distribution functions will help quantify some of the scintillation characteristics and in the process provide a base for forecasting, i.e. develop a scintillation climatology model. This statistical analysis, including power spectra, along with a numerical simulation will constitute the backbone of a high latitude scintillation model.

  14. GPS detection of ionospheric perturbation before the 13 February 2001, El Salvador earthquake

    OpenAIRE

    V. V. Plotkin

    2003-01-01

    A large earthquake of M6.6 occurred on 13 February 2001 at 14:22:05 UT in El Salvador. We detected ionospheric perturbation before this earthquake using GPS data received from CORS network. Systematic decreases of ionospheric total electron content during two days before the earthquake onset were observed at set of stations near the earthquake location and probably in region of about 1000 km from epicenter. This result is consistent with t...

  15. PDOP values for simulated GPS/Galileo positioning

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2005-01-01

    The paper illustrates satellite coverage and PDOP values for a simulated combined GPS/Galileo system. The designed GPS satellite constellation and the planned Galileo satellite constellation are presented. The combined system is simulated and the number of visible satellites and PDOP values...

  16. Two laboratory methods for the calibration of GPS speed meters

    International Nuclear Information System (INIS)

    Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie

    2015-01-01

    The set-ups of two calibration systems are presented to investigate calibration methods of GPS speed meters. The GPS speed meter calibrated is a special type of high accuracy speed meter for vehicles which uses Doppler demodulation of GPS signals to calculate the measured speed of a moving target. Three experiments are performed: including simulated calibration, field-test signal replay calibration, and in-field test comparison with an optical speed meter. The experiments are conducted at specific speeds in the range of 40–180 km h −1 with the same GPS speed meter as the device under calibration. The evaluation of measurement results validates both methods for calibrating GPS speed meters. The relative deviations between the measurement results of the GPS-based high accuracy speed meter and those of the optical speed meter are analyzed, and the equivalent uncertainty of the comparison is evaluated. The comparison results justify the utilization of GPS speed meters as reference equipment if no fewer than seven satellites are available. This study contributes to the widespread use of GPS-based high accuracy speed meters as legal reference equipment in traffic speed metrology. (paper)

  17. TESTING ACCURACY THE GPS DEVICES еTrex LEGEND HCx AND еTrex 30 OF THE GARMIN MANUFACTURER

    Directory of Open Access Journals (Sweden)

    MIHAYLOV Radko

    2014-09-01

    Full Text Available The object of investigation in this paper is the accuracy of positioning for the two models handheld GPS receivers of the Garmin manufacturer. The world coordinate system WGS84 is used as the base where is obtained the point of positioning. The well known computational method is applied for transforming the obtained latitude, longitude, altitude (LLA coordinates of points to transform toward the coordinates to the Earth-Centred Earth-Fixed (ECEF coordinate system. By the help and the opportunity of mathematical statistics with regression analysis is investigated the accuracy of positioning in vertical and horizontal direction. The comparison and conclusions is made for the accuracy of positioning of the both GPS apparatus.

  18. Self reported involvement in emergency medicine among GPs in Norway.

    Science.gov (United States)

    Hjortdahl, Magnus; Zakariassen, Erik; Halvorsen, Peder A

    2018-04-10

    To examine general practitioners' (GPs') perception of their role in emergency medicine and participation in emergency services including ambulance call outs, and the characteristics of the GPs and casualty clinics associated with the GPs' involvement in emergency medicine. Cross-sectional online survey. General practice. General practitioners in Norway (n = 1002). Proportion of GPs perceiving that they have a large role in emergency medicine, regularly being on call, and the proportion of ambulance callouts with GP participation. Forty six percent of the GPs indicated that they play a large role in emergency medicine, 63 percent of the GPs were regularly on call, and 28 percent responded that they usually took part in ambulance call outs. Multivariable logistic regression analyses indicated that these outcomes were strongly associated with participation in multidisciplinary training. Furthermore, the main outcomes were associated with traits commonly seen at smaller casualty clinics such as those with an absence of nursing personnel and extra physicians, and based on the distance to the hospital. Our findings suggest that GPs play an important role in emergency medicine. Multidisciplinary team training may be important for their continued involvement in prehospital emergencies. Key Points   Health authorities and other stakeholders have raised concerns about general practitioner's (GPs) participation in emergency medicine, but few have studied opinions and perceptions among the GPs themselves.   • Norwegian GPs report playing a large role in emergency medicine, regularly being on call, and taking part in selected ambulance call outs.   • A higher proportion of GPs who took part in team training perceived themselves as playing a large role in emergency medicine, regularly being on call, and taking part in ambulance call outs.   • These outcomes were also associated with attributes commonly seen at smaller casualty clinics.

  19. Convective towers detection using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, S.

    the GPS signals penetrate through clouds and allow measurements of atmospheric profiles related to temperature, pressure, and water vapour with high vertical resolution. Using tropical cyclone best track database and data from different GPS RO missions (COSMIC, GRACE, CHAMP, SACC and GPSMET), we selected...

  20. Integrating GIS and GPS in environmental remediation oversight

    International Nuclear Information System (INIS)

    Kaletsky, K.; Earle, J.R.; Schneider, T.A.

    1996-01-01

    This paper presents findings on Ohio EPA Office of Federal Facilities Oversight's (OFFO) use of GIS and GPS for environmental remediation oversight at the U.S. Department of Energy's (DOE) Fernald Site. The Fernald site is a former uranium metal production facility within DOE's nuclear weapons complex. Significant uranium contamination of soil and groundwater is being remediated under state and federal regulations. OFFO uses GIS/GPS to enhance environmental monitoring and remediation oversight. These technologies are utilized within OFFO's environmental monitoring program for sample location and parameter selection, data interpretation and presentation. GPS is used to integrate sample data into OFFO's GIS and for permanently linking precise and accurate geographic data to samples and waste units. It is important to identify contamination geographically as all visual references (e.g., buildings, infrastructure) will be removed during remediation. Availability of the GIS allows OFFO to perform independent analysis and review of DOE contractor generated data, models, maps, and designs. This ability helps alleviate concerns associated with open-quotes black boxclose quotes models and data interpretation. OFFO's independent analysis has increased regulatory confidence and the efficiency of design reviews. GIS/GPS technology allows OFFO to record and present complex data in a visual format aiding in stakeholder education and awareness. Presented are OFFO's achievements within the aforementioned activities and some reasons learned in implementing the GIS/GPS program. OFFO's two years of GIS/GPS development have resulted in numerous lessons learned and ideas for increasing effectiveness through the use of GIS/GPS

  1. 77 FR 23668 - GPS Satellite Simulator Working Group Notice of Meeting

    Science.gov (United States)

    2012-04-20

    ... DEPARTMENT OF DEFENSE Department of the Air Force GPS Satellite Simulator Working Group Notice of... inform the public that the Global Positioning Systems (GPS) Directorate will be hosting an open GPS Satellite Simulator Working Group (SSWG) meeting for manufacturers of GPS constellation simulators utilized...

  2. An ultra-wide bandwidth-based range/GPS tight integration approach for relative positioning in vehicular ad hoc networks

    International Nuclear Information System (INIS)

    Shen, Feng; Cheong, Joon Wayn; Dempster, Andrew G

    2015-01-01

    Relative position awareness is a vital premise for the implementation of emerging intelligent transportation systems, such as collision warning. However, commercial global navigation satellite systems (GNSS) receivers do not satisfy the requirements of these applications. Fortunately, cooperative positioning (CP) techniques, through sharing the GNSS measurements between vehicles, can improve the performance of relative positioning in a vehicular ad hoc network (VANET). In this paper, while assuming there are no obstacles between vehicles, a new enhanced tightly coupled CP technique is presented by adding ultra-wide bandwidth (UWB)-based inter-vehicular range measurements. In the proposed CP method, each vehicle fuses the GPS measurements and the inter-vehicular range measurements. Based on analytical and experimental results, in the full GPS coverage environment, the new tight integration CP method outperforms the INS-aided tight CP method, tight CP method, and DGPS by 11%, 15%, and 24%, respectively; in the GPS outage scenario, the performance improvement achieves 60%, 65%, and 73%, respectively. (paper)

  3. Measuring Magnetic Declination With Compass, GPS and Virtual Globes

    Science.gov (United States)

    O'Brien, W. P.

    2006-12-01

    Using virtual globe (VG) imagery to determine geographic bearing and a compass to determine magnetic bearing yielded acceptable experimental magnetic declination values for large linear physical features at 13 sites in the western continental United States. The geographic bearing of each feature was determined from measurements involving the latitude/longitude coordinate system associated with the VG image (from World Wind or Google Earth). The corresponding magnetic bearing was measured on the ground at the feature with a hand-bearing compass calibrated in 1-degree subdivisions. A sequence of GPS trackpoints, recorded while traveling along the feature either in an automobile or on foot, unambiguously identified the pertinent portion of the feature (a straight segment of a road, for example) when plotted on the VG image. For each physical feature located on a VG image, its geographic bearing was determined directly using on-screen measurement tools available with the VG program or by hand using ruler/protractor methods with printed copies of the VG image. An independent (no use of VG) geographic bearing was also extracted from the slope of a straight-line fit to a latitude/longitude plot of each feature's GPS coordinates, a value that was the same (to within the inherent uncertainty of the data) as the VG-determined bearing, thus validating this procedure for finding geographic bearings. Differences between the VG bearings and the magnetic bearings yielded experimental magnetic declination values within one degree (8 within 0.5 degree) of expected values. From the point of view of physics and geophysics pedagogy, this project affords students a simple magnetism/geodesy field experiment requiring only a good compass and a GPS receiver with memory and a data port. The novel and straightforward data analysis with VG software yields reliable experimental values for an important abstract geophysical quantity, magnetic declination. Just as the compass has long provided

  4. Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Klang Valley Flash Flood

    Science.gov (United States)

    Suparta, Wayan; Rahman, Rosnani

    2016-02-01

    Global Positioning System (GPS) receivers are widely installed throughout the Peninsular Malaysia, but the implementation for monitoring weather hazard system such as flash flood is still not optimal. To increase the benefit for meteorological applications, the GPS system should be installed in collocation with meteorological sensors so the precipitable water vapor (PWV) can be measured. The distribution of PWV is a key element to the Earth's climate for quantitative precipitation improvement as well as flash flood forecasts. The accuracy of this parameter depends on a large extent on the number of GPS receiver installations and meteorological sensors in the targeted area. Due to cost constraints, a spatial interpolation method is proposed to address these issues. In this paper, we investigated spatial distribution of GPS PWV and meteorological variables (surface temperature, relative humidity, and rainfall) by using thin plate spline (tps) and ordinary kriging (Krig) interpolation techniques over the Klang Valley in Peninsular Malaysia (longitude: 99.5°-102.5°E and latitude: 2.0°-6.5°N). Three flash flood cases in September, October, and December 2013 were studied. The analysis was performed using mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) to determine the accuracy and reliability of the interpolation techniques. Results at different phases (pre, onset, and post) that were evaluated showed that tps interpolation technique is more accurate, reliable, and highly correlated in estimating GPS PWV and relative humidity, whereas Krig is more reliable for predicting temperature and rainfall during pre-flash flood events. During the onset of flash flood events, both methods showed good interpolation in estimating all meteorological parameters with high accuracy and reliability. The finding suggests that the proposed method of spatial interpolation techniques are capable of handling limited data sources with high

  5. Accuracy assessment of high-rate GPS measurements for seismology

    Science.gov (United States)

    Elosegui, P.; Davis, J. L.; Ekström, G.

    2007-12-01

    Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.

  6. Why do GPs leave direct patient care and what might help to retain them? A qualitative study of GPs in South West England.

    Science.gov (United States)

    Sansom, Anna; Terry, Rohini; Fletcher, Emily; Salisbury, Chris; Long, Linda; Richards, Suzanne H; Aylward, Alex; Welsman, Jo; Sims, Laura; Campbell, John L; Dean, Sarah G

    2018-01-10

    To identify factors influencing general practitioners' (GPs') decisions about whether or not to remain in direct patient care in general practice and what might help to retain them in that role. Qualitative, in-depth, individual interviews exploring factors related to GPs leaving, remaining in and returning to direct patient care. South West England, UK. 41 GPs: 7 retired; 8 intending to take early retirement; 11 who were on or intending to take a career break; 9 aged under 50 years who had left or were intending to leave direct patient care and 6 who were not intending to leave or to take a career break. Plus 19 stakeholders from a range of primary care-related professional organisations and roles. Reasons for leaving direct patient care were complex and based on a range of job-related and individual factors. Three key themes underpinned the interviewed GPs' thinking and rationale: issues relating to their personal and professional identity and the perceived value of general practice-based care within the healthcare system; concerns regarding fear and risk, for example, in respect of medical litigation and managing administrative challenges within the context of increasingly complex care pathways and environments; and issues around choice and volition in respect of personal social, financial, domestic and professional considerations. These themes provide increased understanding of the lived experiences of working in today's National Health Service for this group of GPs. Future policies and strategies aimed at retaining GPs in direct patient care should clarify the role and expectations of general practice and align with GPs' perception of their own roles and identity; demonstrate to GPs that they are valued and listened to in planning delivery of the UK healthcare; target GPs' concerns regarding fear and risk, seeking to reduce these to manageable levels and give GPs viable options to support them to remain in direct patient care. © Article author(s) (or their

  7. Exploring female GPs' perceptions about medical leadership.

    Science.gov (United States)

    Price, Karen; Clearihan, Lynette

    2015-06-01

    Women are increasingly entering the Australian general practice workforce. This study aims to explore female general practitioners' (GPs') perceptions of possible barriers to leadership and professional roles in the workforce. A purposive, convenience sample of 30 female GPs in active practice was approached in February, 2012. An anonymous, pa-per-based, semi-quantitative survey sought to identify participation and leadership confidence within general practice in a number of professional roles. The top two barriers participants identified for after-hours medical meetings were energy to attend and geographical location. For after-hours care, the top two barriers identified were energy and self-motivation. Few participants aspired to 'leadership' activities. 'Medical mentoring' was most likely to attract them into leadership. It is important female GPs' perspectives are explored in general practice. This small survey suggests further studies are needed in the importance of energy limitations and lack of self-confidence in restricting female GPs' capacity to fully engage in professional roles.

  8. Earth tide effects on kinematic/static GPS positioning in Denmark and Greenland

    DEFF Research Database (Denmark)

    Xu, G.C.; Knudsen, Per

    2000-01-01

    A detailed Study of the Earth tide effects on the GPS kinematic/static positioning is presented in this paper by using theoretical Earth tide computation and practical GPS data processing. Tidal effects could reach up to 30 cm in Denmark and Greenland depending on the measuring time...... and the position of reference station. With a baseline less than 80 km, the difference of the Earth tide effects could reach more than 5 mm. So, in precise applications of GPS positioning, the Earth tide effect has to be taken into account even for a relative small local GPS network. Several examples are given...... for demonstrating that the Earth tide effects can be viewed by GPS surveying. They are given through static GPS data static processing, static GPS data kinematic processing, and airborne kinematic GPS data processing. In these cases, the Earth tide effects can be subtracted from the GPS results. The determination...

  9. Active transportation and public transportation use to achieve physical activity recommendations? A combined GPS, accelerometer, and mobility survey study.

    Science.gov (United States)

    Chaix, Basile; Kestens, Yan; Duncan, Scott; Merrien, Claire; Thierry, Benoît; Pannier, Bruno; Brondeel, Ruben; Lewin, Antoine; Karusisi, Noëlla; Perchoux, Camille; Thomas, Frédérique; Méline, Julie

    2014-09-27

    Accurate information is lacking on the extent of transportation as a source of physical activity, on the physical activity gains from public transportation use, and on the extent to which population shifts in the use of transportation modes could increase the percentage of people reaching official physical activity recommendations. In 2012-2013, 234 participants of the RECORD GPS Study (French Paris region, median age = 58) wore a portable GPS receiver and an accelerometer for 7 consecutive days and completed a 7-day GPS-based mobility survey (participation rate = 57.1%). Information on transportation modes and accelerometry data aggregated at the trip level [number of steps taken, energy expended, moderate to vigorous physical activity (MVPA), and sedentary time] were available for 7,644 trips. Associations between transportation modes and accelerometer-derived physical activity were estimated at the trip level with multilevel linear models. Participants spent a median of 1 h 58 min per day in transportation (8.2% of total time). Thirty-eight per-cent of steps taken, 31% of energy expended, and 33% of MVPA over 7 days were attributable to transportation. Walking and biking trips but also public transportation trips with all four transit modes examined were associated with greater steps, MVPA, and energy expenditure when compared to trips by personal motorized vehicle. Two simulated scenarios, implying a shift of approximately 14% and 33% of all motorized trips to public transportation or walking, were associated with a predicted 6 point and 13 point increase in the percentage of participants achieving the current physical activity recommendation. Collecting data with GPS receivers, accelerometers, and a GPS-based electronic mobility survey of activities and transportation modes allowed us to investigate relationships between transportation modes and physical activity at the trip level. Our findings suggest that an increase in active transportation

  10. GPS test range mission planning

    Science.gov (United States)

    Roberts, Iris P.; Hancock, Thomas P.

    The principal features of the Test Range User Mission Planner (TRUMP), a PC-resident tool designed to aid in deploying and utilizing GPS-based test range assets, are reviewed. TRUMP features time history plots of time-space-position information (TSPI); performance based on a dynamic GPS/inertial system simulation; time history plots of TSPI data link connectivity; digital terrain elevation data maps with user-defined cultural features; and two-dimensional coverage plots of ground-based test range assets. Some functions to be added during the next development phase are discussed.

  11. Practical Constraint K-Segment Principal Curve Algorithms for Generating Railway GPS Digital Map

    Directory of Open Access Journals (Sweden)

    Dewang Chen

    2013-01-01

    Full Text Available In order to obtain a decent trade-off between the low-cost, low-accuracy Global Positioning System (GPS receivers and the requirements of high-precision digital maps for modern railways, using the concept of constraint K-segment principal curves (CKPCS and the expert knowledge on railways, we propose three practical CKPCS generation algorithms with reduced computational complexity, and thereafter more suitable for engineering applications. The three algorithms are named ALLopt, MPMopt, and DCopt, in which ALLopt exploits global optimization and MPMopt and DCopt apply local optimization with different initial solutions. We compare the three practical algorithms according to their performance on average projection error, stability, and the fitness for simple and complex simulated trajectories with noise data. It is found that ALLopt only works well for simple curves and small data sets. The other two algorithms can work better for complex curves and large data sets. Moreover, MPMopt runs faster than DCopt, but DCopt can work better for some curves with cross points. The three algorithms are also applied in generating GPS digital maps for two railway GPS data sets measured in Qinghai-Tibet Railway (QTR. Similar results like the ones in synthetic data are obtained. Because the trajectory of a railway is relatively simple and straight, we conclude that MPMopt works best according to the comprehensive considerations on the speed of computation and the quality of generated CKPCS. MPMopt can be used to obtain some key points to represent a large amount of GPS data. Hence, it can greatly reduce the data storage requirements and increase the positioning speed for real-time digital map applications.

  12. GPS Attitude Determination for Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Toyon Research Corporation proposes to develop a family of compact, low-cost GPS-based attitude (GPS/A) sensors for launch vehicles. In order to obtain 3-D attitude...

  13. Application and Limitations of GPS Radio Occultation (GPS-RO) Data for Atmospheric Boundary Layer Height Detection over the Arctic.

    Science.gov (United States)

    Ganeshan, M.; Wu, D. L.

    2014-12-01

    Due to recent changes in the Arctic environment, it is important to monitor the atmospheric boundary layer (ABL) properties over the Arctic Ocean, especially to explore the variability in ABL clouds (such as sensitivity and feedback to sea ice loss). For example, radiosonde and satellite observations of the Arctic ABL height (and low-cloud cover) have recently suggested a positive response to sea ice loss during October that may not occur during the melt season (June-September). Owing to its high vertical and spatiotemporal resolution, an independent ABL height detection algorithm using GPS Radio Occultation (GPS-RO) refractivity in the Arctic is explored. Similar GPS-RO algorithms developed previously typically define the level of the most negative moisture gradient as the ABL height. This definition is favorable for subtropical oceans where a stratocumulus-topped ABL is often capped by a layer of sharp moisture lapse rate (coincident with the temperature inversion). The Arctic Ocean is also characterized by stratocumulus cloud cover, however, the specific humidity does not frequently decrease in the ABL capping inversion. The use of GPS-RO refractivity for ABL height retrieval therefore becomes more complex. During winter months (December-February), when the total precipitable water in the troposphere is a minimum, a fairly straightforward algorithm for ABL height retrieval is developed. The applicability and limitations of this method for other seasons (Spring, Summer, Fall) is determined. The seasonal, interannual and spatial variability in the GPS-derived ABL height over the Arctic Ocean, as well as its relation to the underlying surface (ice vs. water), is investigated. The GPS-RO profiles are also explored for the evidence of low-level moisture transport in the cold Arctic environment.

  14. GPs' mental wellbeing and psychological resources: a cross-sectional survey.

    Science.gov (United States)

    Murray, Marylou Anna; Cardwell, Chris; Donnelly, Michael

    2017-08-01

    The negative impact of work has been the traditional focus of GP surveys. We know little about GP positive mental health and psychological resources. To profile and contextualise GP positive mental health and personal psychological resources. Cross-sectional survey of GPs working in Northern Ireland (NI). A questionnaire comprising the Warwick Edinburgh Mental Wellbeing Scale (WEMWBS) and measures of resilience, optimism, self-efficacy, and hope, and sociodemographic information was posted to 400 GPs randomly selected from a publicly available GP register. The response rate was 55% (n = 221 out of 400). Mean value for GP wellbeing (WEMWBS) was 50.2 (standard deviation [SD] 8) compared to UK vets 48.8 (SD 9), UK teachers 47.2 (SD 9), and the population of NI 50.8 (SD 9). After adjustment for confounding, mean WEMWBS was 2.4 units (95% CI = 0.02 to 4.7) higher in female GPs than males ( P = 0.05), and 4.0 units (95% CI = 0.8 to 7.3) higher in GPs ≥55 years than GPs ≤44 years ( P = 0.02). Optimism was 1.1 units higher in female GPs than male GPs (95% CI = 0.1 to 2.0), and 1.56 units higher in GPs ≥55 years (95% CI = 0.2 to 2.9) than in those ≤44 years. Hope was 3 units higher in GPs ≥55 years (95% CI = 0.4 to 5.7) than in those aged 45-54 years. Correlation between WEMWBS and psychological resources was highest with hope ( r = 0.65, P mental health that are comparable to the local population and better than other occupational groups, such as vets and teachers. Male and younger GPs may have most to gain from wellbeing interventions. © British Journal of General Practice 2017.

  15. Accuracy of WAAS-Enabled GPS-RF Warning Signals When Crossing a Terrestrial Geofence

    Directory of Open Access Journals (Sweden)

    Lindsay M. Grayson

    2016-06-01

    Full Text Available Geofences are virtual boundaries based on geographic coordinates. When combined with global position system (GPS, or more generally global navigation satellite system (GNSS transmitters, geofences provide a powerful tool for monitoring the location and movements of objects of interest through proximity alarms. However, the accuracy of geofence alarms in GNSS-radio frequency (GNSS-RF transmitter receiver systems has not been tested. To achieve these goals, a cart with a GNSS-RF locator was run on a straight path in a balanced factorial experiment with three levels of cart speed, three angles of geofence intersection, three receiver distances from the track, and three replicates. Locator speed, receiver distance and geofence intersection angle all affected geofence alarm accuracy in an analysis of variance (p = 0.013, p = 2.58 × 10−8, and p = 0.0006, respectively, as did all treatment interactions (p < 0.0001. Slower locator speed, acute geofence intersection angle, and closest receiver distance were associated with reduced accuracy of geofence alerts.

  16. 77 FR 70421 - GPS Satellite Simulator Control Working Group Meeting

    Science.gov (United States)

    2012-11-26

    ... DEPARTMENT OF DEFENSE Department of the Air Force GPS Satellite Simulator Control Working Group Meeting AGENCY: Space and Missile Systems Center, Global Positioning Systems (GPS) Directorate, Department of the Air Force, DoD. ACTION: Meeting Notice. SUMMARY: This meeting notice is to inform GPS...

  17. Outcome prediction in gastroschisis - The gastroschisis prognostic score (GPS) revisited.

    Science.gov (United States)

    Puligandla, Pramod S; Baird, Robert; Skarsgard, Eric D; Emil, Sherif; Laberge, Jean-Martin

    2017-05-01

    The GPS enables risk stratification for gastroschisis and helps discriminate low from high morbidity groups. The purpose of this study was to revalidate GPS's characterization of a high morbidity group and to quantify relationships between the GPS and outcomes. With REB approval, complete survivor data from a national gastroschisis registry was collected. GPS bowel injury scoring was revalidated excluding the initial inception/validation cohorts (>2011). Length of stay (LOS), 1st enteral feed days (dFPO), TPN days (dTPN), and aggregate complications (COMP) were compared between low and high morbidity risk groups. Mathematical relationships between outcomes and integer increases in GPS were explored using the entire cohort (2005-present). Median (range) LOS, dPO, and dTPN for the entire cohort (n=849) was 36 (26,62), 13 (9,18), and 27 (20,46) days, respectively. High-risk patients (GPS≥2; n=80) experienced significantly worse outcomes than low risk patients (n=263). Each integer increase in GPS was associated with increases in LOS and dTPN by 16.9 and 12.7days, respectively (pGPS effectively discriminates low from high morbidity risk groups. Within the high risk group, integer increases in GPS produce quantitatively differentiated outcomes which may guide initial counseling and resource allocation. IIb. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Ionospheric Scintillation Effects on GPS

    Science.gov (United States)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  19. Understanding quit decisions in primary care: a qualitative study of older GPs.

    Science.gov (United States)

    Sansom, Anna; Calitri, Raff; Carter, Mary; Campbell, John

    2016-02-19

    To investigate the reasons behind intentions to quit direct patient care among experienced general practitioners (GPs) aged 50-60 years. Qualitative study based on semistructured interviews with GPs in the South West region of England. Transcribed interviews were analysed thematically. 23 GPs aged 50-60 years: 3 who had retired from direct patient care before age 60, and 20 who intended to quit direct patient care within the next 5 years. The analysis identified four key themes: early retirement is a viable option for many GPs; GPs have employment options other than undertaking direct patient care; GPs report feeling they are doing an (almost) undoable job; and GPs may have other aspirations that pull them away from practice. Findings from this study confirmed those from earlier research, with high workload, ageing and health, family and domestic life, and organisational change all influencing GPs' decisions about when to retire/quit direct patient care. However, in addition, GPs expressed feelings of insecurity and uncertainty regarding the future of general practice, low morale, and issues regarding accountability (appraisal and revalidation) and governance. Suggestions about how to help retain GPs within the active clinical workforce were offered, covering individual, practice and organisational levels. This research highlights aspects of the current professional climate for GPs that are having an impact on retirement decisions. Any future changes to policy or practice to help retain experienced GPs will benefit from this informed understanding of GPs' views. Key factors to take into account include: making the GP workload more manageable; managing change sympathetically; paying attention to GPs' own health; improving confidence in the future of general practice; and improving GP morale. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. Global distribution of GPS losses of phase lock and total electron content slips during the 2005 May 15 and the 2003 November 20 magnetic storms

    Science.gov (United States)

    Yasyukevich, Yuriy; Astafeva, Elvira; Givetev, Ilya; Maksikov, Aleksey

    2015-12-01

    Using data of worldwide network of GPS receivers we investigated losses of GPS phase lock (LoL) during two strong magnetic storms. At fundamental L1 frequency, LoL density is found to increase up to 0.25 % and at L2 frequency the increase is up to 3 %. This is several times as much compared with the background level. During the 2003 November 20 magnetic storm, the number of total electron content (TEC) slips exceeded the background level ~50 times. During superstorms, the most number of GPS LoL is observed at low and high latitudes. At the same time, the area of numerous TEC slips correspond to auroral oval boundaries.

  1. A design proposal of a certain missile tactical command system based on Beidou satellite communication and GPS positioning techniques

    Science.gov (United States)

    Ma, Jian; Hao, Yongsheng; Miao, Jian; Zhang, Jianmao

    2007-11-01

    This paper introduced a design proposal of tactical command system that applied to a kind of anti-tank missile carriers. The tactical command system was made up of embedded computer system based on PC104 bus, Linux operating system, digital military map, Beidou satellite communication equipments and GPS positioning equipments. The geographic coordinates was measured by the GPS receiver, the positioning data, commands and information were transmitted real-time between tactical command systems, tactical command systems and command center, by the Beidou satellite communication systems. The Beidou satellite communication equipments and GPS positioning equipments were integrated to an independent module, exchanging data with embedded computer through RS232 serial ports and USB ports. The decision support system software based on information fusion, calculates positioning data, geography information and battle field information synthetically, shows the position of allies and the position of enemy on the military map, and assesses the various threats of different enemy objects, educes a situation assessment and threat assessment.

  2. En Billig GPS Data Analyse Platform

    DEFF Research Database (Denmark)

    Andersen, Ove; Christiansen, Nick; Larsen, Niels T.

    2011-01-01

    Denne artikel præsenterer en komplet software platform til analyse af GPS data. Platformen er bygget udelukkende vha. open-source komponenter. De enkelte komponenter i platformen beskrives i detaljer. Fordele og ulemper ved at bruge open-source diskuteres herunder hvilke IT politiske tiltage, der...... organisationer med et digitalt vejkort og GPS data begynde at lave trafikanalyser på disse data. Det er et krav, at der er passende IT kompetencer tilstede i organisationen....

  3. 78 FR 63459 - GPS Satellite Simulator Control Working Group Meeting

    Science.gov (United States)

    2013-10-24

    ... DEPARTMENT OF DEFENSE Air Force GPS Satellite Simulator Control Working Group Meeting AGENCY: Department of the Air Force. ACTION: Meeting Notice. SUMMARY: This meeting notice is to inform GPS simulator manufacturers, who supply products to the Department of Defense (DoD), and GPS simulator users, both government...

  4. GPs' perceptions of resilience training: a qualitative study.

    Science.gov (United States)

    Cheshire, Anna; Hughes, John; Lewith, George; Panagioti, Maria; Peters, David; Simon, Chantal; Ridge, Damien

    2017-10-01

    GPs are reporting increasing levels of burnout, stress, and job dissatisfaction, and there is a looming GP shortage. Promoting resilience is a key strategy for enhancing the sustainability of the healthcare workforce and improving patient care. To explore GPs' perspectives on the content, context, and acceptability of resilience training programmes in general practice, in order to build more effective GP resilience programmes. This was a qualitative study of the perspectives of GPs currently practising in England. GPs were recruited through convenience sampling, and data were collected from two focus groups ( n = 15) and one-to-one telephone interviews ( n = 7). A semi-structured interview approach was used and data were analysed using thematic analysis. Participants perceived resilience training to be potentially of value in ameliorating workplace stresses. Nevertheless, uncertainty was expressed regarding how best to provide training for stressed GPs who have limited time. Participants suspected that GPs most likely to benefit from resilience training were the least likely to engage, as stress and being busy worked against engagement. Conflicting views were expressed about the most suitable training delivery method for promoting better engagement. Participants also emphasised that training should not only place the focus on the individual, but also focus on organisation issues. A multimodal, flexible approach based on individual needs and learning aims, including resilience workshops within undergraduate training and in individual practices, is likely to be the optimal way to promote resilience. © British Journal of General Practice 2017.

  5. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs

  6. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  7. Assessing the role of GPs in Nordic health care systems.

    Science.gov (United States)

    Quaye, Randolph K

    2016-05-03

    Purpose This paper examines the changing role of general practitioners (GPs) in Nordic countries of Sweden, Norway and Denmark. It aims to explore the "gate keeping" role of GPs in the face of current changes in the health care delivery systems in these countries. Design/methodology/approach Data were collected from existing literature, interviews with GPs, hospital specialists and representatives of Danish regions and Norwegian Medical Association. Findings The paper contends that in all these changes, the position of the GPs in the medical division of labor has been strengthened, and patients now have increased and broadened access to choice. Research limitations/implications Health care cost and high cancer mortality rates have forced Nordic countries of Sweden, Norway and Denmark to rethink their health care systems. Several attempts have been made to reduce health care cost through market reform and by strenghtening the position of GPs. The evidence suggests that in Norway and Denmark, right incentives are in place to achieve this goal. Sweden is not far behind. The paper has limitations of a small sample size and an exclusive focus on GPs. Practical implications Anecdotal evidence suggests that physicians are becoming extremely unhappy. Understanding the changing status of primary care physicians will yield valuable information for assessing the effectiveness of Nordic health care delivery systems. Social implications This study has wider implications of how GPs see their role as potential gatekeepers in the Nordic health care systems. The role of GPs is changing as a result of recent health care reforms. Originality/value This paper contends that in Norway and Denmark, right incentives are in place to strengthen the position of GPs.

  8. Differences between Practice Patterns of Conventional and Naturopathic GPs in Germany.

    Science.gov (United States)

    Laux, Gunter; Musselmann, Berthold; Kiel, Marion; Szecsenyi, Joachim; Joos, Stefanie

    2016-01-01

    Limited evidence exists whether practice patterns of general practitioners (GPs) who have additionally completed training in naturopathy are different from those of conventional GPs. We aimed to assess and compare practice patterns of GPs in conventional and naturopathic GPs. Routine data from 41 GPs (31 with and 11 without additional qualification in NP, respectively) and 180,789 patients, drawn from the CONTinuous morbidity registration Epidemiologic NeTwork (CONTENT)-registry and collected between 2009 and 2014, were used. To assess practice patterns determinants of (non-)phytopharmaceutical prescriptions, referrals and hospitalizations were analyzed using mixed-effects Poisson regression models. As explanatory variables, the qualification of the GP in NM, the age group and sex of the patient, as well as bivariate interactions between these variables were considered. GPs additionally qualified in naturopathy exhibited higher rates of phytopharmaceutical prescriptions (pGPs. This association was not observed with respect to non-phytopharmaceutical prescriptions. However, interaction effects between qualification and age group as well as sex were present with respect to both phytopharmaceutical and non-phytopharmaceutical prescriptions (all pGPs could be subject to certain age groups and sex. However, the magnitude of these differences seem to be rather small.

  9. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    Science.gov (United States)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with

  10. The Statistics of GPS

    National Research Council Canada - National Science Library

    Matsakis, Demetrios

    2007-01-01

    The Global Positioning System (GPS) is an extremely effective satellite-based system that broadcasts sufficient information for a user to determine time and position from any location on or near the Earth...

  11. Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments

    DEFF Research Database (Denmark)

    Ahlstrøm, A. P.; Andersen, S. B.; Andersen, M. L.

    2013-01-01

    We present 17 velocity records derived from in situ stand-alone single-frequency Global Positioning System (GPS) receivers placed on eight marine-terminating ice sheet outlet glaciers in South, West and North Greenland, covering varying parts of the period summer 2009 to summer 2012. Common to all...

  12. Dense-gas dispersion advection-diffusion model

    International Nuclear Information System (INIS)

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments

  13. GPS sledovací systém

    OpenAIRE

    Hofman, Jan

    2010-01-01

    V práci je popsán základní princip a vlastnosti globálního pozičního systému GPS. Je zde přiblížena problematika určování polohy, rychlosti a nadmořské výšky. Tyto poznatky jsou dále použity pro návrh zařízení, které komunikuje s běžně vyráběným GPS přijímačem a z něj získané informace zpracovává a ukládá do paměti pro pozdější vyhodnocení The keystone and properties of Global Position System (GPS) are described in this thesis. The thesis explains questions of position, speed and elevation...

  14. Effects of Reentry Plasma Sheath on GPS Patch Antenna Polarization Property

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2013-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would affect performances of on-board antenna greatly, especially the navigation antennas. This paper studies the effects of reentry plasma sheath on a GPS right-hand circularly polarized (RHCP patch antenna polarization property during a typical reentry process. Utilizing the algorithm of finite integration technique, the polarization characteristic of a GPS antenna coated by a plasma sheath is obtained. Results show that the GPS RHCP patch antenna radiation pattern distortions as well as polarization deteriorations exist during the entire reentry process, and the worst polarization mismatch loss between a GPS antenna and RHCP GPS signal is nearly 3 dB. This paper also indicates that measures should be taken to alleviate the plasma sheath for maintaining the GPS communication during the reentry process.

  15. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

    Science.gov (United States)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory

    2013-01-01

    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  16. Analysis of strong ionospheric scintillation events measured by means of GPS signals at low latitudes during disturbed conditions

    Science.gov (United States)

    Forte, B.

    2012-08-01

    Drifting structures characterized by inhomogeneities in the spatial electron density distribution at ionospheric heights cause the scintillation of radio waves propagating through. The fractional electron density fluctuations and the corresponding scintillation levels may reach extreme values at low latitudes during high solar activity. Different levels of scintillation were observed on experimental data collected in the Asian sector at low latitudes by means of a GPS dual frequency receiver under moderate solar activity (2005). The GPS receiver used in these campaigns was particularly modified in firmware in order to record power estimates on the C/A code as well as on the carriers L1 and L2. Strong scintillation activity was recorded in the post-sunset period (saturatingS4 and SI as high as 20 dB). Spectral modifications and broadening was observed during high levels of scintillation possibly indicating refractive scattering taking place instead of diffractive scattering. A possible interpretation of those events was attempted on the basis of the refractive scattering theory developed by Uscinski (1968) and Booker and MajidiAhi (1981).

  17. Ionospheric correction for spaceborne single-frequency GPS based ...

    Indian Academy of Sciences (India)

    A modified ionospheric correction method and the corresponding approximate algorithm for spaceborne single-frequency Global Positioning System (GPS) users are proposed in this study. Single Layer Model (SLM) mapping function for spaceborne GPS was analyzed. SLM mapping functions at different altitudes were ...

  18. Barriers to home care for terminally ill Turkish and Moroccan migrants, perceived by GPs and nurses: a survey

    Directory of Open Access Journals (Sweden)

    de Graaff Fuusje M

    2009-01-01

    Full Text Available Abstract Background Previous qualitative research proved that relatives of elderly terminally ill Turkish and Moroccan immigrants experience several barriers to the use of Dutch professional home care. The aim of this study was to explore how general practitioners and home care nurses perceive the home care for terminally ill Turkish and Moroccan migrants and their families in the Netherlands. Methods Questionnaires were sent to home care organizations and GPs working in areas where most of these migrants are living. 93 nurses and 78 GPs provided information about their experiences and opinions regarding home care for this group of patients. The data were analyzed by descriptive statistics. Results GPs refer relatively few patients from these migrant groups to home care. They often find it difficult to assess the needs of these patients and their families. In 40% of the GPs' cases in which terminally ill Turkish and Moroccan migrants were not referred to home care, the GP regretted this afterwards: the patients had not received sufficient qualified care, and their informal carers had often become overburdened. In addition, home care nurses often express dissatisfaction with the home care given to terminally ill Turkish or Moroccan patients, because of communication problems, the patients' lack of knowledge of the disease, or difficulties in making suitable appointments with the patient or with the family. Conclusion Nurses and GPs cite chiefly similar factors influencing access to and use of home care as family members did in a previous study. However, according to GPs and nurses, the main barrier to the use of home care concerns communication problems, while relatives cited the preference for family care as the main reason for abstaining from the use of home care.

  19. Estimation of Sea Level variations with GPS/GLONASS-Reflectometry Technique: Case Study at Stationary Oceanographic Platform in the Black Sea

    Science.gov (United States)

    Kurbatov, G. A.; Padokhin, A. M.

    2017-12-01

    In the present work we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSS-receiver, which are based on the multipath propagation effects (interference pattern in SNR of GNSS signals at small elevation angles) caused by the reflection of navigational signals from the sea surface. The measurements were carried out in the coastal zone of Black Sea at the Stationary Oceanographic Platform during one-week campaign in the summer 2017. GPS/GLONASS signals at two working frequencies of both systems were used to study sea level variations which almost doubled the amount of observations compared to GPS-only tide gauge. Moreover all the measurements were conducted with 4-antenna GNSS receiver providing the opportunity for different orientations of antennas including zenith and nadir looking ones as well as two horizontally oriented ones at different azimuths. As the reference we used data from co-located wire wave gauge which showed good correspondence of both datasets. Though tidal effects are not so pronounced for the Black Sea, the described experimental setup allowed to study the effects of sea surface roughness, driven by meteorological conditions (e.g. wind waves), as well as antenna directivity pattern effects on the observed interference patterns of GPS/GLONASS L1/L2 signals (relation of the main spectral peak to the noise power) and the quality of sea level estimations.

  20. Integrated INS/GPS Navigation from a Popular Perspective

    Science.gov (United States)

    Omerbashich, Mensur

    2002-01-01

    Inertial navigation, blended with other navigation aids, Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relatively new concepts based upon using Differential GPS (DGPS) blended with Inertial (and visual) Navigation Sensors (INS) offer the possibility of low cost, autonomous aircraft landing. The FAA has decided to implement the system in a sophisticated form as a new standard navigation tool during this decade. There have been a number of new inertial sensor concepts in the recent past that emphasize increased accuracy of INS/GPS versus INS and reliability of navigation, as well as lower size and weight, and higher power, fault tolerance, and long life. The principles of GPS are not discussed; rather the attention is directed towards general concepts and comparative advantages. A short introduction to the problems faced in kinematics is presented. The intention is to relate the basic principles of kinematics to probably the most used navigation method in the future-INS/GPS. An example of the airborne INS is presented, with emphasis on how it works. The discussion of the error types and sources in navigation, and of the role of filters in optimal estimation of the errors then follows. The main question this paper is trying to answer is 'What are the benefits of the integration of INS and GPS and how is this, navigation concept of the future achieved in reality?' The main goal is to communicate the idea about what stands behind a modern navigation method.

  1. Profile of English salaried GPs: labour mobility and practice performance.

    Science.gov (United States)

    Ding, Alexander; Hann, Mark; Sibbald, Bonnie

    2008-01-01

    Recent national policy changes have provided greater flexibility in GPs' contracts. One such policy is salaried employment, which offers reduced hours and freedom from out-of-hours and administrative responsibilities, aimed at improving recruitment and retention in a labour market facing regional shortages. To profile salaried GPs and assess their mobility within the labour market. Serial cross-sectional study. All GPs practising in England during the years 1996/1997, 2000/2001, and 2004/2005. Descriptive analyses, logistic regression. Salaried GPs tended to be either younger ( or =65 years), female, or overseas-qualified; they favoured part-time working and personal medical services contracts. Salaried GPs were more mobile than GP principals, and have become increasingly so, despite a trend towards reduced overall mobility in the GP workforce. Practices with salaried GPs scored more Quality and Outcomes Framework points and were located in slightly more affluent areas. Salaried status appears to have reduced limitations in the labour market, leading to better workforce deployment from a GP's perspective. However, there is no evidence to suggest it has relieved inequalities in GP distribution.

  2. receive signal strength prediction in the gsm band using wavelet

    African Journals Online (AJOL)

    user

    strength was measured on a Mobile Equipment (ME). One-dimensional ... used to predict the fading phenomenon of the GSM receive signal strength measured. Wavelet ... radio wavelength. The prediction is ... realized by reusing frequency in a dense or complex .... NETWORK SIGNAL PRO software, down loaded from.

  3. Accuracy of velocities from repeated GPS surveys: relative positioning is concerned

    Science.gov (United States)

    Duman, Huseyin; Ugur Sanli, D.

    2016-04-01

    Over more than a decade, researchers have been interested in studying the accuracy of GPS positioning solutions. Recently, reporting the accuracy of GPS velocities has been added to this. Researchers studying landslide motion, tectonic motion, uplift, sea level rise, and subsidence still report results from GPS experiments in which repeated GPS measurements from short sessions are used. This motivated some other researchers to study the accuracy of GPS deformation rates/velocities from various repeated GPS surveys. In one of the efforts, the velocity accuracy was derived from repeated GPS static surveys using short observation sessions and Precise Point Positioning mode of GPS software. Velocities from short GPS sessions were compared with the velocities from 24 h sessions. The accuracy of velocities was obtained using statistical hypothesis testing and quantifying the accuracy of least squares estimation models. The results reveal that 45-60 % of the horizontal and none of the vertical solutions comply with the results from 24 h solutions. We argue that this case in which the data was evaluated using PPP should also apply to the case in which the data belonging to long GPS base lengths is processed using fundamental relative point positioning. To test this idea we chose the two IGS stations ANKR and NICO and derive their velocities from the reference stations held fixed in the stable EURASIAN plate. The University of Bern's GNSS software BERNESE was used to produce relative positioning solutions, and the results are compared with those of GIPSY/OASIS II PPP results. First impressions indicate that it is worth designing a global experiment and test these ideas in detail.

  4. GPS system simulation methodology

    Science.gov (United States)

    Ewing, Thomas F.

    1993-01-01

    The following topics are presented: background; Global Positioning System (GPS) methodology overview; the graphical user interface (GUI); current models; application to space nuclear power/propulsion; and interfacing requirements. The discussion is presented in vugraph form.

  5. Briefing Highlights Vulnerability of GPS to Adverse Space Weather

    Science.gov (United States)

    Balcerak, Ernie

    2011-08-01

    Through its effects on GPS and other technologies, space weather can affect a variety of industries, including agriculture, commercial air travel, and emergency response. Speakers focused on these topics at a 22 June briefing on Capitol Hill in Washington, D. C. Solar flares can produce radio bursts that directly interfere with GPS signals. Solar activity can also cause ionospheric disturbances that produce distortions and delays in GPS signals, degrading the accuracy of positioning and navigation systems.

  6. GeoTravel: Harvesting Ambient Geographic Footprints from GPS Trajectories

    OpenAIRE

    Liew, Li Ching; Goh, Ong Sing

    2014-01-01

    This study is about harvesting point of interest from GPS trajectories. Trajectories are the paths that moving objects move by follow through space in a function of time while GPS trajectories generally are point-sequences with geographic coordinates, time stamp, speed and heading. User can get information from GPS enable device. For example, user can acquire present location, search the information around them and design driving routes to a destination and thus design travel itineraries. By ...

  7. Greenland ice mass balance from GPS, GRACE and ICESat

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjær, Kurt H.; Korsgaard, Niels Jákup

    Greenland, using stereoscopic coverage by aerial photographs recorded in 1985, and subsequent comparative surface elevation data from ICESat (Ice, Cloud and land Elevation Satellite) and ATM (Airborne Topographic Mapper) supplemented with measurements from GPS and the Gravity Recovery and Climate Experiment...... (GRACE) satellite gravity mission, launched in March, 2002. The GRACE results provide a direct measure of mass loss, while the GPS data are used to monitor crustal uplift caused by ice mass loss close to the GPS sites....

  8. Crustal deformations at permanent GPS sites in Denmark

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Knudsen, Per; Tscherning, Carl Christian

    2005-01-01

    The National Survey and Cadastre (KMS) is responsible for the geodetic definition of the reference network in Denmark. Permanent GPS stations play an important role in the monitoring and maintenance of the geodetic network. During 1998 and 1999 KMS established three permanent GPS station in Denma...

  9. GPS Technology and Human Psychological Research: A Methodological Proposal

    Directory of Open Access Journals (Sweden)

    Pedro S. A. Wolf

    2010-10-01

    Full Text Available Animal behaviorists have made extensive use of GPS technology since 1991. In contrast, psychological research has made little use of the technology, even though the technology is relatively inexpensive, familiar, and widespread. Hence, its potential for pure and applied psychological research remains untapped. We describe three methods psychologists could apply to individual differences research, clinical research, or spatial use research. In the context of individual differences research, GPS technology permits us to test hypotheses predicting specific relations among patterns of spatial use and individual differences variables. In a clinical context, GPS technology provides outcome measures that may relate to the outcome of interventions designed to treat psychological disorders that, for example, may leave a person homebound (e.g. Agoraphobia, PTSD, TBI. Finally, GPS technology provides natural measures of spatial use. We, for example, used GPS technology to quantify traffic flow and exhibit use at the Arizona Sonora Desert Museum. Interested parties could easily extend this methodology some aspects of urban planning or business usage.DOI: 10.2458/azu_jmmss.v1i1.74

  10. IceBridge GPS L0 Raw Satellite Navigation Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA IceBridge GPS L0 Raw Satellite Navigation Data (IPUTG0) data set contains GPS readings, including latitude, longitude, track, ground speed, off distance,...

  11. FttC-Based Fronthaul for 5G Dense/Ultra-Dense Access Network: Performance and Costs in Realistic Scenarios

    Directory of Open Access Journals (Sweden)

    Franco Mazzenga

    2017-10-01

    Full Text Available One distinctive feature of the next 5G systems is the presence of a dense/ultra-dense wireless access network with a large number of access points (or nodes at short distances from each other. Dense/ultra-dense access networks allow for providing very high transmission capacity to terminals. However, the deployment of dense/ultra-dense networks is slowed down by the cost of the fiber-based infrastructure required to connect radio nodes to the central processing units and then to the core network. In this paper, we investigate the possibility for existing FttC access networks to provide fronthaul capabilities for dense/ultra-dense 5G wireless networks. The analysis is realistic in that it is carried out considering an actual access network scenario, i.e., the Italian FttC deployment. It is assumed that access nodes are connected to the Cabinets and to the corresponding distributors by a number of copper pairs. Different types of cities grouped in terms of population have been considered. Results focus on fronthaul transport capacity provided by the FttC network and have been expressed in terms of the available fronthaul bit rate per node and of the achievable coverage.

  12. Seasonal and circadian biases in bird tracking with solar GPS-tags

    OpenAIRE

    Silva, Rafa; Afán, Isabel; Gil, Juan A.; Bustamante, Javier

    2017-01-01

    Global Positioning System (GPS) tags are nowadays widely used in wildlife tracking. This geolocation technique can suffer from fix loss biases due to poor satellite GPS geometry, that result in tracking data gaps leading to wrong research conclusions. In addition, new solar-powered GPS tags deployed on birds can suffer from a new "battery drain bias" currently ignored in movement ecology analyses. We use a GPS tracking dataset of bearded vultures (Gypaetus barbatus), tracked for several years...

  13. The application of GPS time information in the telemetry ground station

    International Nuclear Information System (INIS)

    Zhang Songtao; Zhang Yusong; Sun Xiurui

    2001-01-01

    GPS time information is a kind of practicable information resource that can be shared all over the world. Now it is the most accurate wireless time information. The major of this paper is the application information of GPS time information in telemetry. The main point introduces how to make use of the GPS time information to produce GPS-IRIG-B time code for proving ground and how to send time information to related equipment in telemetry ground station

  14. Crustal block structure by GPS data using neural network in the Northern Tien Shan

    Science.gov (United States)

    Kostuk, A.; Carmenate, D.

    2010-05-01

    For over ten years regular GPS measurements have been carried out by Research Station RAS in the Central Asia. The results of these measurements have not only proved the conclusion that the Earth's crust meridional compression equals in total about 17 mm/year from the Tarim massif to the Kazakh shield, but have also allowed estimating deformation behavior in the region. As is known, deformation behavior of continental crust is an actively discussed issue. On the one hand, the Earth's crust is presented as a set of microplates (blocks) and deformation here is a result of shifting along the blocks boundaries, on the other hand, lithospheric deformation is distributed by volume and meets the rheological model of nonlinear viscous fluid. This work represents an attempt to detect the block structure of the surface of the Northern Tien Shan using GPS velocity fields. As a significant difference from analogous works, appears the vector field clustering with the help of neural network used as a classifier by many criteria that allows dividing input space into areas and using of all three components of GPS velocity. In this case, we use such a feature of neural networks as self-organization. Among the mechanisms of self-organization there are two main classes: self-organization based on the Hebb associative rule and the mechanism of neuronal competition based on the generalized Kohonen rule. In this case, we use an approach of self-organizing networks in which we take neuronal competition as an algorithm for their training. As a rule, these are single-layer networks where each neuron is connected to all components of m-dimensional input vector. GPS vectors of the Central Asian velocity field located within the territory of the Northern Tien Shan were used as input patterns. Measurements at GPS sites were fulfilled in 36 hour-long sessions by double-frequency receivers Trimble and Topcon. In so doing, measurement discreteness equaled 30 seconds; the data were processed by

  15. GPS measurements along the North Anatolian fault zone ont he Mid-Anatolia segment

    Science.gov (United States)

    Yavasoglu, H.; Team

    2003-04-01

    features of the NAF is seen in the central part. Here NAF consists of southward spliting concave branches. These splines have generally right-lateral slip compared these splays with the Riedel fractures. One of the biggest splays is known as Sungurlu fault. The other important splays are Merzifon and Lacin faults. Recent palaeomagnetic data indicated that the main Anatolian Block to the south of the Sungurlu fault rotated anticlockwise and the other blocks rotated clockwise and anticlockwise according to the orientation and the geometry of the faults bounding the blocks. In contrast to the other parts of the NAF, central part has not been studied in detail yet. The data, which will be produced in this project, are expected to add an important contribution to the present knowledge on the NAF. 3. THE GPS MEASUREMENTS 3.1 The Design of The Mid-NAF GPS Network The estimated lateral movement on the LVKI segment of NAF is approximately 2-3cm per year. In order to determine approximately 2-3 centimeters of movements, point marks in the network should be built with forced centering instruments (pillars or steel rods etc.). At first a study in advance is carried out in the study area to find out convenient old pillars. At the end of the study, useful already established 25 pillar points are determined on the region. However, it is decided that the network can consist of 16 station points, because of the reasons such as financial limitations and the number of GPS receivers. The network consists of 16 point. The points are given name with the four letter abbreviations of the nearest settlement. The GPS sites mainly were chosen as representative of the fault-bounded continental blocks. Although there are lots of faults in the area, active and recently earthquake produced faults and continental blocks that are bounded by these faults were taken into consideration. 3.2 GPS Measurements The number and features of receivers are Measurements were performed in six days at two stages. For

  16. Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.

    1996-01-01

    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,

  17. Comparison of GPS and Quaternary slip rates: Insights from a new Quaternary fault database for Central Asia

    Science.gov (United States)

    Mohadjer, Solmaz; Ehlers, Todd; Bendick, Rebecca; Mutz, Sebastian

    2016-04-01

    Previous studies related to the kinematics of deformation within the India-Asia collision zone have relied on slip rate data for major active faults to test kinematic models that explain the deformation of the region. The slip rate data, however, are generally disputed for many of the first-order faults in the region (e.g., Altyn Tagh and Karakorum faults). Several studies have also challenged the common assumption that geodetic slip rates are representative of Quaternary slip rates. What has received little attention is the degree to which geodetic slip rates relate to Quaternary slip rates for active faults in the India-Asia collision zone. In this study, we utilize slip rate data from a new Quaternary fault database for Central Asia to determine the overall relationship between Quaternary and GPS-derived slip rates for 18 faults. The preliminary analysis investigating this relationship uses weighted least squares and a re-sampling analysis to test the sensitivity of this relationship to different data point attributes (e.g., faults associated with data points and dating methods used for estimating Quaternary slip rates). The resulting sample subsets of data points yield a maximum possible Pearson correlation coefficient of ~0.6, suggesting moderate correlation between Quaternary and GPS-derived slip rates for some faults (e.g., Kunlun and Longmen Shan faults). Faults with poorly correlated Quaternary and GPS-derived slip rates were identified and dating methods used for the Quaternary slip rates were examined. Results indicate that a poor correlation between Quaternary and GPS-derived slip rates exist for the Karakorum and Chaman faults. Large differences between Quaternary and GPS slip rates for these faults appear to be connected to qualitative dating of landforms used in the estimation of the Quaternary slip rates and errors in the geomorphic and structural reconstruction of offset landforms (e.g., offset terrace riser reconstructions for Altyn Tagh fault

  18. GPs' perceptions of workload in England: a qualitative interview study.

    Science.gov (United States)

    Croxson, Caroline Hd; Ashdown, Helen F; Hobbs, Fd Richard

    2017-02-01

    GPs report the lowest levels of morale among doctors, job satisfaction is low, and the GP workforce is diminishing. Workload is frequently cited as negatively impacting on commitment to a career in general practice, and many GPs report that their workload is unmanageable. To gather an in-depth understanding of GPs' perceptions and attitudes towards workload. All GPs working within NHS England were eligible. Advertisements were circulated via regional GP e-mail lists and national social media networks in June 2015. Of those GPs who responded, a maximum-variation sample was selected until data saturation was reached. Semi-structured, qualitative interviews were conducted. Data were analysed thematically. In total, 171 GPs responded, and 34 were included in this study. GPs described an increase in workload over recent years, with current working days being long and intense, raising concerns over the wellbeing of GPs and patients. Full-time partnership was generally not considered to be possible, and many participants felt workload was unsustainable, particularly given the diminishing workforce. Four major themes emerged to explain increased workload: increased patient needs and expectations; a changing relationship between primary and secondary care; bureaucracy and resources; and the balance of workload within a practice. Continuity of care was perceived as being eroded by changes in contracts and working patterns to deal with workload. This study highlights the urgent need to address perceived lack of investment and clinical capacity in general practice, and suggests that managing patient expectations around what primary care can deliver, and reducing bureaucracy, have become key issues, at least until capacity issues are resolved. © British Journal of General Practice 2017.

  19. Reinforced Ultra-Tightly Coupled GPS/INS System for Challenging Environment

    Directory of Open Access Journals (Sweden)

    Xueyun Wang

    2014-01-01

    Full Text Available Among all integration levels currently available for Global Positioning System (GPS and Inertial Navigation System (INS Integrated System, ultra-tightly coupled (UTC GPS/INS system is the best choice for accurate and reliable navigation. Nevertheless the performance of UTC GPS/INS system degrades in challenging environments, such as jamming, changing noise of GPS signals, and high dynamic maneuvers. When low-end Inertial Measurement Units (IMUs based on MEMS sensors are employed, the performance degradation will be more severe. To solve this problem, a reinforced UTC GPS/INS system is proposed. Two techniques are adopted to deal with jamming and high dynamics. Firstly, adaptive integration Kalman filter (IKF based on fuzzy logics is developed to reinforce the antijamming ability. The parameters of membership functions (MFs are adjusted and optimized through self-developed neutral network. Secondly, a Doppler frequency error estimator based on Kalman filter is designed to improve the navigation performance under high dynamics. A complete simulation platform is established to evaluate the reinforced system. Results demonstrate that the proposed system architecture significantly improves navigation performance in challenging environments and it is a more advanced solution to accurate and reliable navigation than traditional UTC GPS/INS system.

  20. Radiotracking large wilderness mammals: Integration of GPS and Argos technology

    Science.gov (United States)

    Schwartz, Charles C.; Arthur, Steve M.

    1999-01-01

    We tested 30 prototype global positioning system (GPS) radiocollars on brown bears (Ursus arctos) over a 3-year period on the Kenai Peninsula, Alaska. Collars were of 2 design types: GPS with an Argos (Argos Data collection and Location System) satellite uplink (n=19) and GPS unites where the data were stored on board (n=10) for retrieval at a later date. All units also contained a conventional VHF (very high frequency) transmitter and weighed 1.7 kg. GPS-Argos united obtained 10-82% of expected GPS fixes, and fix rate declined significantly (Pbears varied more and were lower than fix rates for stationary collars placed in various vegetation types, suggesting that the bear, terrain, and movement all influence both fix and uplink success rate. Application of this new technology to grizzly and brown bear research and comparisons to studies with moose (Alces alces) are discussed.