WorldWideScience

Sample records for dense gps receiver

  1. Tomography of the lower troposhere using a small, dense network of GPS receivers

    NARCIS (Netherlands)

    Flores, A.; Vilà-Guerau de Arellano, J.; Gradinarsky, L.P.; Rius, A.

    2001-01-01

    The application of tomographic techniques to the troposphere with GPS signals was demonstrated in previous work using data from the Kilauea permanent network, Hawaii. Local orography of the network considered there, however, played a key role in the resolution capabilities of the technique. The auth

  2. Tomography of the lower troposhere using a small, dense network of GPS receivers

    NARCIS (Netherlands)

    Flores, A.; Vilà-Guerau de Arellano, J.; Gradinarsky, L.P.; Rius, A.

    2001-01-01

    The application of tomographic techniques to the troposphere with GPS signals was demonstrated in previous work using data from the Kilauea permanent network, Hawaii. Local orography of the network considered there, however, played a key role in the resolution capabilities of the technique. The auth

  3. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  4. Chip Advancer For GPS Receiver

    Science.gov (United States)

    Meehan, Thomas K.; Srinivasan, Jeffrey M.; Thomas, J. Brooks

    1989-01-01

    Instrument errors made negligible. For each integration interval, both delay and rate of change of delay initialized to small fraction of chip - for example, to order of 10 to the negative 7th power - thereby making feedback control and extraction of delay highly accurate and flexible. With appropriate selection of sampling rate relative to chip rate, commensurability errors reduced to extremely small levels. In Global Positioning System (GPS) receiver, pseudorandom code sequence generated by simple digital logic incorporating effects of time, delay, and rate of change of delay. Flexibility in starting time and sum interval very useful in aligning correlation interval with beginnings and endings of data bits.

  5. Fundamentals of GPS Receivers A Hardware Approach

    CERN Document Server

    Doberstein, Dan

    2012-01-01

    While much of the current literature on GPS receivers is aimed at those intimately familiar with their workings, this volume summarizes the basic principles using as little mathematics as possible, and details the necessary specifications and circuits for constructing a GPS receiver that is accurate to within 300 meters. Dedicated sections deal with the features of the GPS signal and its data stream, the details of the receiver (using a hybrid design as exemplar), and more advanced receivers and topics including time and frequency measurements. Later segments discuss the Zarlink GPS receiver chip set, as well as providing a thorough examination of the TurboRogue receiver, one of the most accurate yet made. Guiding the reader through the concepts and circuitry, from the antenna to the solution of user position, the book’s deployment of a hybrid receiver as a basis for discussion allows for extrapolation of the core ideas to more complex, and more accurate designs. Digital methods are used, but any analogue c...

  6. A GPS Receiver for Lunar Missions

    Science.gov (United States)

    Bamford, William A.; Heckler, Gregory W.; Holt, Greg N.; Moreau, Michael C.

    2008-01-01

    Beginning with the launch of the Lunar Reconnaissance Orbiter (LRO) in October of 2008, NASA will once again begin its quest to land humans on the Moon. This effort will require the development of new spacecraft which will safely transport people from the Earth to the Moon and back again, as well as robotic probes tagged with science, re-supply, and communication duties. In addition to the next-generation spacecraft currently under construction, including the Orion capsule, NASA is also investigating and developing cutting edge navigation sensors which will allow for autonomous state estimation in low Earth orbit (LEO) and cislunar space. Such instruments could provide an extra layer of redundancy in avionics systems and reduce the reliance on support and on the Deep Space Network (DSN). One such sensor is the weak-signal Global Positioning System (GPS) receiver "Navigator" being developed at NASA's Goddard Space Flight Center (GSFC). At the heart of the Navigator is a Field Programmable Gate Array (FPGA) based acquisition engine. This engine allows for the rapid acquisition/reacquisition of strong GPS signals, enabling the receiver to quickly recover from outages due to blocked satellites or atmospheric entry. Additionally, the acquisition algorithm provides significantly lower sensitivities than a conventional space-based GPS receiver, permitting it to acquire satellites well above the GPS constellation. This paper assesses the performance of the Navigator receiver based upon three of the major flight regimes of a manned lunar mission: Earth ascent, cislunar navigation, and entry. Representative trajectories for each of these segments were provided by NASA. The Navigator receiver was connected to a Spirent GPS signal generator, to allow for the collection of real-time, hardware-in-the-loop results for each phase of the flight. For each of the flight segments, the Navigator was tested on its ability to acquire and track GPS satellites under the dynamical

  7. High dynamic GPS receiver validation demonstration

    Science.gov (United States)

    Hurd, W. J.; Statman, J. I.; Vilnrotter, V. A.

    1985-01-01

    The Validation Demonstration establishes that the high dynamic Global Positioning System (GPS) receiver concept developed at JPL meets the dynamic tracking requirements for range instrumentation of missiles and drones. It was demonstrated that the receiver can track the pseudorange and pseudorange rate of vehicles with acceleration in excess of 100 g and jerk in excess of 100 g/s, dynamics ten times more severe than specified for conventional High Dynamic GPS receivers. These results and analytic extensions to a complete system configuration establish that all range instrumentation requirements can be met. The receiver can be implemented in the 100 cu in volume required by all missiles and drones, and is ideally suited for transdigitizer or translator applications.

  8. Digital Signal Processor For GPS Receivers

    Science.gov (United States)

    Thomas, J. B.; Meehan, T. K.; Srinivasan, J. M.

    1989-01-01

    Three innovative components combined to produce all-digital signal processor with superior characteristics: outstanding accuracy, high-dynamics tracking, versatile integration times, lower loss-of-lock signal strengths, and infrequent cycle slips. Three components are digital chip advancer, digital carrier downconverter and code correlator, and digital tracking processor. All-digital signal processor intended for use in receivers of Global Positioning System (GPS) for geodesy, geodynamics, high-dynamics tracking, and ionospheric calibration.

  9. Counterrotator And Correlator For GPS Receivers

    Science.gov (United States)

    Thomas, J. Brooks; Srinivasan, Jeffrey M.; Meehan, Thomas K.

    1989-01-01

    Accurate, all-digital, high-speed processor comprising correlator and down-converter developed for receivers in Global Positioning System (GPS). Processor reduces roundoff and commensurability errors to extremely small values. Use of digital chip and phase advancers provides outstanding control and accuracy in phase and feedback. Great flexibility imparted by provision for arbitrary starting time and integration length. Minimum-bit design requires minimum number of logical elements, thereby reducing size, power, and cost.

  10. GPS Receiver Performance Inspection by Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    Xia Lin-yuan; Liu Jing-nan; Lu Liang-xi

    2003-01-01

    As a powerful analysis tool and the result of contemporary mathematics development, wavelet transform has shown its promising application potentials through the research in the paper. Three aspects regarding GPS receiver performance is tackled: cycle slip detection, receiver noise analysis and receiver channel bias inspection. Wavelet decomposition for double differential observation has demonstrated that this multi-level transform can reveal cycle slips as small as 0.5 cycles without any pre-adjustment processes or satellite orbit information, it can therefore be regarded as a 'geometry free' method. Based on property assumption of receiver noise, signal of noise serial is obtained at the high frequency scale in wavelet decomposition layers. This kind of noise influence on GPSb aseline result can be effectively eliminated by reconstruction process during wavelet reconstruction. Through observed data analysis, the transform has detected a kind of receiver channel bias that has not been completely removed by processing unit of GPS receiver during clock offset resetting operation. Thus the wavelet approach can be employed as a kind of system diagnosis in a generalized point of view.

  11. High dynamic, low volume GPS receiver

    Science.gov (United States)

    Hurd, W. J.

    1983-01-01

    A new GPS receiver concept and design are presented to meet the high dynamic and low volume requirements for range applications in missiles and drones. The receiver has the potential to satisfy all range requirements with one basic receiver, which has significant potential economic benefit over the alternate approach of using a family of receivers, each tailored for specific applications. The main new concept is to use approximate maximum likelihood estimates of pseudo range and range-rate, rather than tracking with carrier phase locked loops and code delay locked loops. Preliminary analysis indicates that receivers accelerating at 50 g or more can track with position errors due to acceleration of approximately 0.2 m/g, or 10 m at 50 g. Implementation is almost entirely digital to meet the low volume requirements.

  12. Processing In A GPS Receiver To Reduce Multipath Errors

    Science.gov (United States)

    Meehan, Thomas K.

    1994-01-01

    Four techniques of ancillary real-time digital processing of signals in Global Positioning System, GPS, receiver introduced reducing effects of multipath propagation of signals on position estimates produced by receiver. Multipath range errors halved. Applied in addition to other signal-processing techniques and to other techniques designing as receiving antenna to make it insensitive to reflections of GPS signals from nearby objects.

  13. GPS/CAPS dual-mode software receiver

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The positioning of the GPS or Chinese Area Positioning System (CAPS) software receiver was developed on a software receiver platform. The structure of the GPS/CAPS dual-mode software receiver was put forward after analyzing the differences in the satellite identification, ranging code, spread spectrum, coordinate system, time system, carrier band, and navigation data between GPS and CAPS. Based on Matlab software on a personal computer, baseband signal processing and positioning procedures were completed using real GPS and CAPS radio frequency signals received by two antennas. Three kinds of experiments including GPS positioning, CAPS positioning, and GPS/CAPS positioning were carried out. Stability and precision of the results were analyzed and compared. The experimental results show that the precision of CAPS is similar to that of GPS, while the positioning precision of the GPS/CAPS dual-mode software receiver is 1-2 m higher than that of CAPS or GPS. The smallest average variance of the positioning can be obtained by using the GPS/CAPS dual-mode software receiver.

  14. GPS/CAPS dual-mode software receiver

    Institute of Scientific and Technical Information of China (English)

    NING ChunLin; SHI HuLi; HU Chao

    2009-01-01

    The positioning of the GPS or Chinese Area Positioning System (CAPS) software receiver was developed on a software receiver platform.The structure of the GPSlCAPS dual-mode software receiver was put forward after analyzing the differences in the satellite identification,ranging code,spread spectrum,coordinate system,time system,carrier band,and navigation data between GPS and CAPS.Based on Matlab software on a personal computer,baseband signal processing and positioning procedures were completed using real GPS and CAPS radio frequency signals received by two antennas.Three kinds of experiments including GPS positioning,CAPS positioning,and GPS/CAPS positioning were carried out.Stability and precision of the results were analyzed and compared.The experimental results show that the precision of CAPS is similar to that of GPS,while the positioning precision of the GPS/CAPS dual-mode software receiver is 1-2 m higher than that of CAPS or GPS.The smallest average variance of the positioning can be obtained by using the GPS/CAPS dual-mode software receiver.

  15. Extracting Regional Ionospheric TEC Measurements from Dense GPS (GNSS) Networks in Areas of High Seismic Risk

    Science.gov (United States)

    Reuveni, Y.; Bock, Y.; Geng, J.; Tong, X.; Moore, A. W.

    2013-12-01

    The ionosphere structure and peak electron density vary strongly with time, geographic location, and certain solar and geomagnetic disturbances, causing it to be dynamically variable, and hence, one of the main sources of GPS errors. Since ionospheric delays are a key limitation to successful GPS integer-cycle phase ambiguity resolution and point positioning accuracy, it is useful to estimate these delays on regional scales when using dense GPS networks. When estimating the Total Electron Content (TEC), one has to take into account the inner delay differences between the two frequencies, which are also known as the Differential Code Biases (DCBs), and can cause errors of several meters if they are ignored. Although DCB estimates for GNSS satellites and IGS ground receivers are provided on a regular basis by the International GNSS Service (IGS) analysis centers (such as CODE, JPL, and ESA), the DCBs for regional and local network receivers are not provided, and some of the IGS ground receiver estimates are not available from all analysis centers. Additionally, the DCB estimates vary between different GNSS satellites and ground receivers, where the majority of the DCBs values are based on the assumption that they are constant over 1 day or 1 month for any given GPS satellite or receiver. However, this assumption is far from being valid, since in fact the DCB values often vary diurnally or semi-diurnally. Developing and implementing regional ionospheric TEC models can be used in real-time to reduce errors in precise point positioning for dense real-time GPS networks. In addition, regional TEC maps extracted from GPS ionospheric path delays can be used, along with tropospheric delays, for mitigating errors in Interferometric Synthetic Aperture Radar (InSAR) images, especially for the L-band signals. The regional ionospheric TEC maps can also be used for the detection and characterization of ionospheric perturbations, which is valuable for both telluric natural hazards

  16. GPS Receiver Performance Test at ROA

    Science.gov (United States)

    2008-12-01

    Javier Galindo, and Jorge Garate Real Instituto y Observatorio de la Armada 11100 San Fernando, Spain E-mail: hesteban@roa.es Abstract Real...Instituto y Observatorio de la Armada (ROA) carries out daily intercomparisons of time and frequency using the GPS satellite system. For this type...AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Real Instituto y Observatorio

  17. Impact of Swarm GPS receiver updates on POD performance

    Science.gov (United States)

    van den IJssel, Jose; Forte, Biagio; Montenbruck, Oliver

    2016-05-01

    The Swarm satellites are equipped with state-of-the-art Global Positioning System (GPS) receivers, which are used for the precise geolocation of the magnetic and electric field instruments, as well as for the determination of the Earth's gravity field, the total electron content and low-frequency thermospheric neutral densities. The onboard GPS receivers deliver high-quality data with an almost continuous data rate. However, the receivers show a slightly degraded performance when flying over the geomagnetic poles and the geomagnetic equator, due to ionospheric scintillation. Furthermore, with only eight channels available for dual-frequency tracking, the amount of collected GPS tracking data is relatively low compared with various other missions. Therefore, several modifications have been implemented to the Swarm GPS receivers. To optimise the amount of collected GPS data, the GPS antenna elevation mask has slowly been reduced from 10° to 2°. To improve the robustness against ionospheric scintillation, the bandwidths of the GPS receiver tracking loops have been widened. Because these modifications were first implemented on Swarm-C, their impact can be assessed by a comparison with the close flying Swarm-A satellite. This shows that both modifications have a positive impact on the GPS receiver performance. The reduced elevation mask increases the amount of GPS tracking data by more than 3 %, while the updated tracking loops lead to around 1.3 % more observations and a significant reduction in tracking losses due to severe equatorial scintillation. The additional observations at low elevation angles increase the average noise of the carrier phase observations, but nonetheless slightly improve the resulting reduced-dynamic and kinematic orbit accuracy as shown by independent satellite laser ranging (SLR) validation. The more robust tracking loops significantly reduce the large carrier phase observation errors at the geomagnetic poles and along the geomagnetic

  18. Precise Clock Solutions Using Carrier Phase from GPS Receivers in the International GPS Service

    Science.gov (United States)

    Zumberge, J. F.; Jefferson, D. C.; Stowers, D. A.; Tjoelker, R. L.; Young, L. E.

    1999-01-01

    As one of its activities as an Analysis Center in the International GPS Service (IGS), the Jet Propulsion Laboratory (JPL) uses data from a globally distributed network of geodetic-quality GPS receivers to estimate precise clock solutions, relative to a chosen reference, for both the GPS satellites and GPS receiver internal clocks, every day. The GPS constellation and ground network provide geometrical strength resulting in formal errors of about 100 p sec for these estimates. Some of the receivers in the global IGS network contain high quality frequency references, such as hydrogen masers. The clock solutions for such receivers are smooth at the 20-p sec level on time scales of a few minutes. There are occasional (daily to weekly) shifts at the microsec level, symptomatic of receiver resets, and 200-p sec-level discontinuities at midnight due to 1-day processing boundaries. Relative clock solutions among 22 IGS sites proposed as "fiducial" in the IGS/BIPM pilot project have been examined over a recent 4-week period. This allows a quantitative measure of receiver reset frequency as a function of site. For days and-sites without resets, the Allan deviation of the relative clock solutions is also computed for subdaily values of tau..

  19. The Stability of GPS Carrier-Phase Receivers

    Science.gov (United States)

    2010-11-01

    receiver, do not track the P1 code, but only the C/A (also known as C1) code. Hence, processing should apply measured C1-P1 biases. In Bernese ...USA (U.S. Naval Observatory, Washington, D.C.), pp. 485-498. [4] R. Dach, U. Hugentobler, P. Frodez, and M. Meindl, 2007, Bernese GPS Software

  20. Calibration of the BEV GPS Receiver by Using TWSTFT

    Science.gov (United States)

    2008-12-01

    B. Blanzano, and O. Koudelka, 2008, “Time transfer with nanosecond accuracy for the realization of International Atomic Time,” Metrologia , 45, 185...TAI computation,” Metrologia , 45, 35-45 [4] A. Niessner, 14 January 2008, “BEV Report to BIPM of the calibration result for the GPS receivers

  1. Code and codeless ionospheric measurements with NASA's Rogue GPS Receiver

    Science.gov (United States)

    Srinivasan, Jeff M.; Meehan, Tom K.; Young, Lawrence E.

    1989-01-01

    The NASA/JPL Rogue Receiver is an 8-satellite, non-multiplexed, highly digital global positioning system (GPS) receiver that can obtain dual frequency data either with or without knowledge of the P-code. In addition to its applications for high accuracy geodesy and orbit determination, the Rogue uses GPS satellite signals to measure the total electron content (TEC) of the ionosphere along the lines of sight from the receiver to the satellites. These measurements are used by JPL's Deep Space Network (DSN) for calibrating radiometric data. This paper will discuss Rogue TEC measurements, emphasizing the advantages of a receiver that can use the P-code, when available, but can also obtain reliable dual frequency data when the code is encrypted.

  2. FFT and PLL Based GPS Signal Processing for Software GPS Receiver

    Institute of Scientific and Technical Information of China (English)

    Ko Sun-jun; Won Jong-hoon; Lee Ja-sung

    2003-01-01

    This paper presents FFT and PLL based GPS signal acquisition and tracking algorithms for a software GPS receiver. Conventional hardware based acquisition and tracking have some restrictions in processing signal with poor signal to noise ratio. The FFT of digitized local signals of multiple carrier frequencies for a specified Doppler band are pre-computed and are circular correlated with the digitized incoming signal from RF-front-end in an organized computational order. The global maximum of the correlation is associated with the closest estimates of the Doppler shift and the code shift. PLL refines the estimates to track the signal. Doppler information from an external source can readily be integrated to narrow down the frequency band for correlation and is especially useful for tracking in a high dynamic navigation situation. The performance of the proposed algorithms is evaluated through post processing of the IF signals acquired from a commercial hardware GPS receiver.

  3. Faster Acquisition Technique for Software-defined GPS Receivers

    Directory of Open Access Journals (Sweden)

    M. Venu Gopala Rao

    2015-03-01

    Full Text Available Acquisition is a most important process and a challenge task for identifying visible satellites, coarse values of carrier frequency, and code phase of the satellite signals in designing software defined Global positioning system (GPS receiver. This paper presents a new, simple, efficient and faster GPS acquisition via sub-sampled fast Fourier transform (ssFFT. The proposed algorithm exploits the recently developed sparse FFT (or sparse IFFT that computes in sub-linear time. Further it uses the property of fourier transforms (FT: Aliasing a signal in the time domain corresponds to sub-sampling it in the frequency domain, and vice versa. The ssFFT is an FFT algorithm that computes sub-sampled version of the data by an integer factor ‘d’, and hence, the computational complexity is proportionately reduced by a factor of ‘d log d’ compared to conventional FFT-based algorithms for any length of the input GPS signal. The simulation results show that the proposed ssFFT based GPS acquisition computation is 8.5571 times faster than the conventional FFT-based acquisition computation time. The implementation of this method in an FPGA provides very fast processing of incoming GPS samples that satisfies real-time positioning requirements.Defence Science Journal, Vol. 65, No. 1, January 2015, pp.5-11, DOI:http://dx.doi.org/10.14429/dsj.65.5579

  4. Group delay variations of GPS transmitting and receiving antennas

    Science.gov (United States)

    Wanninger, Lambert; Sumaya, Hael; Beer, Susanne

    2017-09-01

    GPS code pseudorange measurements exhibit group delay variations at the transmitting and the receiving antenna. We calibrated C1 and P2 delay variations with respect to dual-frequency carrier phase observations and obtained nadir-dependent corrections for 32 satellites of the GPS constellation in early 2015 as well as elevation-dependent corrections for 13 receiving antenna models. The combined delay variations reach up to 1.0 m (3.3 ns) in the ionosphere-free linear combination for specific pairs of satellite and receiving antennas. Applying these corrections to the code measurements improves code/carrier single-frequency precise point positioning, ambiguity fixing based on the Melbourne-Wübbena linear combination, and determination of ionospheric total electron content. It also affects fractional cycle biases and differential code biases.

  5. Distributed quantum dense coding with two receivers in noisy environments

    Science.gov (United States)

    Das, Tamoghna; Prabhu, R.; SenDe, Aditi; Sen, Ujjwal

    2015-11-01

    We investigate the effect of noisy channels in a classical information transfer through a multipartite state which acts as a substrate for the distributed quantum dense coding protocol between several senders and two receivers. The situation is qualitatively different from the case with one or more senders and a single receiver. We obtain an upper bound on the multipartite capacity which is tightened in the case of the covariant noisy channel. We also establish a relation between the genuine multipartite entanglement of the shared state and the capacity of distributed dense coding using that state, both in the noiseless and the noisy scenarios. Specifically, we find that, in the case of multiple senders and two receivers, the corresponding generalized Greenberger-Horne-Zeilinger states possess higher dense coding capacities as compared to a significant fraction of pure states having the same multipartite entanglement.

  6. Analysis of signal acquisition in GPS receiver software

    Directory of Open Access Journals (Sweden)

    Vlada S. Sokolović

    2011-01-01

    Full Text Available This paper presents a critical analysis of the flow signal processing carried out in GPS receiver software, which served as a basis for a critical comparison of different signal processing architectures within the GPS receiver. It is possible to achieve Increased flexibility and reduction of GPS device commercial costs, including those of mobile devices, by using radio technology software (SDR, Software Defined Radio. The SDR application can be realized when certain hardware components in a GPS receiver are replaced. Signal processing in the SDR is implemented using a programmable DSP (Digital Signal Processing or FPGA (Field Programmable Gate Array circuit, which allows a simple change of digital signal processing algorithms and a simple change of the receiver parameters. The starting point of the research is the signal generated on the satellite the structure of which is shown in the paper. Based on the GPS signal structure, a receiver is realized with a task to extract an appropriate signal from the spectrum and detect it. Based on collected navigation data, the receiver calculates the position of the end user. The signal coming from the satellite may be at the carrier frequencies of L1 and L2. Since the SPS is used in the civil service, all the tests shown in the work were performed on the L1 signal. The signal coming to the receiver is generated in the spread spectrum technology and is situated below the level of noise. Such signals often interfere with signals from the environment which presents a difficulty for a receiver to perform proper detection and signal processing. Therefore, signal processing technology is continually being improved, aiming at more accurate and faster signal processing. All tests were carried out on a signal acquired from the satellite using the SE4110 input circuit used for filtering, amplification and signal selection. The samples of the received signal were forwarded to a computer for data post processing, i. e

  7. A Pedestrian Dead Reckoning System Integrating Low-Cost MEMS Inertial Sensors and GPS Receiver

    Directory of Open Access Journals (Sweden)

    Jin-feng Li

    2014-04-01

    Full Text Available The body-mounted inertial systems for pedestrian navigation do not require any preinstalled facilities and can run autonomously. The advantages over other technologies make it especially attractive for the applications such as first responders, military and consumer markets. The hardware platform integrating the low-cost, low-power and small-size MEMS (micro-electro-mechanical systems inertial sensors and GPS (global positioning system receiver is proposed. When the satellite signals are available, the location of the pedestrian is directly obtained from the GPS receiver. The inertial sensors are the complement of the GPS receiver in places where the GPS signals are not available, such as indoors, urban canyons and places under dense foliages. The height tracking is achieved by the barometer. The proposed PDR (pedestrian dead reckoning algorithm is real-timely implemented in the platform. The simple but effective step detection and step length estimation method are realized to reduce the computation and memory requirements on the microprocessor. A complementary filter is proposed to fuse the data from the accelerometer, gyroscope and digital compass for decreasing the heading error, which is the main error source in positioning. The reliability and accuracy of the proposed system is verified by field pedestrian walking tests in outdoors and indoors. The positioning error is less than 4% of the total traveled distance. The results indicate that the pedestrian dead reckoning system is able to provide satisfactory tracking performance.

  8. The use of civilian-type GPS receivers by the military and their vulnerability to jamming

    Directory of Open Access Journals (Sweden)

    Ludwig Combrinck

    2012-05-01

    Full Text Available We considered the impact of external influences on a GPS receiver and how these influences affect the capabilities of civilian-type GPS receivers. A standard commercial radio frequency signal generator and passive GPS antenna were used to test the sensitivity of GPS to intentional jamming; the possible effects of the terrain on the propagation of the jamming signal were also tested. It was found that the high sensitivity of GPS receivers and the low strength level of GPS satellite signals combine to make GPS receivers very vulnerable to intentional jamming or unintentional radio frequency interference. Terrain undulation was used to shield GPS antennas from the direct line-of-sight of the jamming antenna and this indicated that terrain characteristics can be used to mitigate the effects of jamming. These results illuminate the vulnerability of civilian-type GPS receivers to the possibility and the ease of disablement and establish the foundation for future work.

  9. Cold Start Strategy of the CubeSat GPS Receiver

    Directory of Open Access Journals (Sweden)

    KOVAR, P.

    2014-05-01

    Full Text Available The cold start of the LEO satellite GPS receiver is complicated due to a large Doppler frequency shift, Doppler frequency rate of the navigation signals and a rapid change of the satellite visibility. The cold start time can be shortened by a proper strategy of a selection of the satellites to be searched for. The cold start simulator was developed and used for optimization of the sequence of the satellites search, for development and testing of an advanced satellite selection algorithm that utilizes information on the satellites already detected and for optimization of a frequency search range. The best performance was achieved by using an advanced selection strategy. The strategy is based on the selection of the satellites nearest to the detected satellite, using the average angle between the Earth center (apex and the satellites. Furthermore, the simulation shows that it is not practical to investigate all frequencies within the range of the maximum possible Doppler frequency shift of the carrier wave of the navigation signal, but investigate approximately +/- 35 kHz range and, if not successful, switch to the next satellite. The simulations proved that a simple GPS receiver with the sequential search algorithms can operate in the LEO orbit.

  10. Multiple Interference Cancellation Performance for GPS Receivers with Dual-Polarized Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Moeness G. Amin

    2008-11-01

    Full Text Available This paper examines the interference cancellation performance in global positioning system (GPS receivers equipped with dual-polarized antenna arrays. In dense jamming environment, different types of interferers can be mitigated by the dual-polarized antennas, either acting individually or in conjunction with other receiver antennas. We apply minimum variance distorntionless response (MVDR method to a uniform circular dual-polarized antenna array. The MVDR beamformer is constructed for each satellite. Analysis of the eigenstructures of the covariance matrix and the corresponding weight vector polarization characteristics are provided. Depending on the number of jammers and jammer polarizations, the array chooses to expend its degrees of freedom to counter the jammer polarization or/and use phase coherence to form jammer spatial nulls. Results of interference cancellations demonstrate that applying multiple MVDR beamformers, each for one satellite, has a superior cancellation performance compared to using only one MVDR beamformer for all satellites in the field of view.

  11. Selection of the signal synchronization method in software GPS receivers

    Directory of Open Access Journals (Sweden)

    Vlada S. Sokolović

    2011-04-01

    Full Text Available Introduction This paper presents a critical analysis of the signal processing flow carried out in a software GPS receiver and a critical comparison of different architectures for signal processing within the GPS receiver. A model of software receivers is shown. Based on the displayed model, a receiver has been realized in the MATLAB software package, in which the simulations of signal processing were carried out. The aim of this paper is to demonstrate the advantages and disadvantages of different methods of the synchronization of signals in the receiver, and to propose a solution acceptable for possible implementation. The signal processing flow was observed from the input circuit to the extraction of the bits of the navigation message. The entire signal processing was performed on the L1 signal and the data collected by the input circuit SE4110. A radio signal from the satellite was accepted with the input circuit, filtered and translated into a digital form. The input circuit ends with the hardware of the receiver. A digital signal from the input circuit is brought into the PC Pentium 4 (AMD 3000 + where the receiver is realized in Matlab. Model of software GPS receiver The first level of processing is signal acquisition. Signal acquisition was realized using the cyclic convolution. The acquisition process was carried out by measuring signals from satellites, and these parameters are passed to the next level of processing. The next level was done by monitoring the synchronization signal and extracting the navigation message bits. On the basis of the detection of the navigation message the receiver calculates the position of a satellite and then, based on the position of the satellite, its own position. Tracking of GPS signal synchronization In order to select the most acceptable method of signal synchronization in the receiver, different methods of signal synchronization are compared. The early-late-DLL (Delay Lock Loop, TDL (Tau Dither Loop

  12. GPS & GLONASS mass-market receivers: positioning performances and peculiarities.

    Science.gov (United States)

    Dabove, Paolo; Manzino, Ambrogio M

    2014-11-25

    Over the last twenty years, positioning with low cost Global Navigation Satellite System (GNSS) sensors have rapidly developed around the world at both a commercial and academic research level. For many years these instruments have only acquired the GPS constellation but are now able to track the Global'naja Navigacionnaja Sputnikovaja Sistema (GLONASS) constellation. This characteristic is very interesting, especially if used in hard-urban environments or in hard conditions where satellite visibility is low. The goal of this research is to investigate the contribution of the GLONASS constellation for mass-market receivers in order to analyse the performance in real time (Network Real Time Kinematic-NRTK positioning) with post-processing approaches. Under these conditions, it is possible to confirm that mass-market sensors could be a valid alternative to a more expensive receiver for a large number of surveying applications, but with low cost hardware the contribution of the GLONASS constellation for fixing ambiguities is useless, if not dangerous.

  13. 47 CFR 87.151 - Special requirements for differential GPS receivers.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Special requirements for differential GPS receivers. 87.151 Section 87.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... differential GPS receivers. (a) The receiver shall achieve a message failure rate less than or equal to...

  14. Global positioning system (GPS) receiver design for multipath mitigation

    Science.gov (United States)

    Gadallah, El-Sayed Abdel-Salam

    Multipath effects are a source of error degrading the accuracy of DGPS signal processing. The statistical models of multipath are determined by user location and, in addition are time varying. There is no unified statistical model for the multipath signal. Therefore the solution of the multipath problem using statistical models is difficult. This research introduces a new estimator that can detect the presence of multipath, can determine the unknown number of multipath components and can estimate multipath parameters in the GPS receiver (time delay and attenuation coefficients). Furthermore the multipath signal parameters are estimated at any instant of observation. The new estimator is based on maximum likelihood estimation applied to multiple observations of a linear model (regression form) of the received signal. In addition, the estimator is based on a recursive deployment of the multipath time delay. An improvement is achieved to the accuracy of multipath estimates at a low signal-to-noise level by applying Kalman filtering as a cascaded estimator. Kalman filtering application can be considered as an important tool for separating the direct path signal from multipath in noise. This dissertation also includes the design of new modified tracking loops endowed with the mentioned estimator: a modified Phase Lock Loop (PLL) for carrier tracking and a modified Delay Locked-Loop (DLL) in the code tracking. The modified loops can properly track the received direct signal in the presence of multipaths where the standard tracking loops are disabled. Simulations of the standard and the modified loops are presented. Tracking and performance in noise are investigated and a future work is suggested.

  15. Digital signal processor and processing method for GPS receivers

    Science.gov (United States)

    Thomas, Jr., Jess B. (Inventor)

    1989-01-01

    A digital signal processor and processing method therefor for use in receivers of the NAVSTAR/GLOBAL POSITIONING SYSTEM (GPS) employs a digital carrier down-converter, digital code correlator and digital tracking processor. The digital carrier down-converter and code correlator consists of an all-digital, minimum bit implementation that utilizes digital chip and phase advancers, providing exceptional control and accuracy in feedback phase and in feedback delay. Roundoff and commensurability errors can be reduced to extremely small values (e.g., less than 100 nanochips and 100 nanocycles roundoff errors and 0.1 millichip and 1 millicycle commensurability errors). The digital tracking processor bases the fast feedback for phase and for group delay in the C/A, P.sub.1, and P.sub.2 channels on the L.sub.1 C/A carrier phase thereby maintaining lock at lower signal-to-noise ratios, reducing errors in feedback delays, reducing the frequency of cycle slips and in some cases obviating the need for quadrature processing in the P channels. Simple and reliable methods are employed for data bit synchronization, data bit removal and cycle counting. Improved precision in averaged output delay values is provided by carrier-aided data-compression techniques. The signal processor employs purely digital operations in the sense that exactly the same carrier phase and group delay measurements are obtained, to the last decimal place, every time the same sampled data (i.e., exactly the same bits) are processed.

  16. Expected Position Error for an Onboard Satellite GPS Receiver

    Science.gov (United States)

    2015-03-01

    that supports GPS, Galileo, Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS), and Quasi-Zenith Satellite System GNSSs. It is designed as a...compared to the main beam half cone angle listed in the GPS Interface Control Document (ICD) [19]. 29 Sidelobes Considered. Power in the sidelobes is...Centered Inertial ENU East-North-Up GDOP Geometric Dilution of Precision GEO Geostationary Orbit GLONASS Global’naya Navigatsionnaya Sputnikovaya Sistema

  17. Evaluation of micro-GPS receivers for tracking small-bodied mammals

    Science.gov (United States)

    Shipley, Lisa A.; Forbey, Jennifer S.; Olsoy, Peter J.

    2017-01-01

    GPS telemetry markedly enhances the temporal and spatial resolution of animal location data, and recent advances in micro-GPS receivers permit their deployment on small mammals. One such technological advance, snapshot technology, allows for improved battery life by reducing the time to first fix via postponing recovery of satellite ephemeris (satellite location) data and processing of locations. However, no previous work has employed snapshot technology for small, terrestrial mammals. We evaluated performance of two types of micro-GPS (sensors) and FSR generated during stationary, above-ground trials, suggesting that animal behavior other than burrowing did not markedly influence micro-GPS errors. In our study, traditional micro-GPS receivers demonstrated similar FSR and LE to snapshot receivers, however, snapshot receivers operated inconsistently due to battery and software failures. In contrast, the initial traditional receivers deployed on animals experienced some breakages, but a modified collar design consistently functioned as expected. If such problems were resolved, snapshot technology could reduce the tradeoff between fix interval and battery life that occurs with traditional micro-GPS receivers. Our results suggest that micro-GPS receivers are capable of addressing questions about space use and resource selection by small mammals, but that additional techniques might be needed to identify use of habitat structures (e.g., burrows, tree cavities, rock crevices) that could affect micro-GPS performance and bias study results. PMID:28301495

  18. Evaluation of micro-GPS receivers for tracking small-bodied mammals.

    Science.gov (United States)

    McMahon, Laura A; Rachlow, Janet L; Shipley, Lisa A; Forbey, Jennifer S; Johnson, Timothy R; Olsoy, Peter J

    2017-01-01

    GPS telemetry markedly enhances the temporal and spatial resolution of animal location data, and recent advances in micro-GPS receivers permit their deployment on small mammals. One such technological advance, snapshot technology, allows for improved battery life by reducing the time to first fix via postponing recovery of satellite ephemeris (satellite location) data and processing of locations. However, no previous work has employed snapshot technology for small, terrestrial mammals. We evaluated performance of two types of micro-GPS (GPS errors might influence fine-scale assessments of space use and habitat selection. During stationary tests, microtopography (i.e., burrows) and satellite geometry had the largest influence on GPS fix success rate (FSR) and location error (LE). There was no difference between FSR while animals wore the GPS collars above ground (determined via light sensors) and FSR generated during stationary, above-ground trials, suggesting that animal behavior other than burrowing did not markedly influence micro-GPS errors. In our study, traditional micro-GPS receivers demonstrated similar FSR and LE to snapshot receivers, however, snapshot receivers operated inconsistently due to battery and software failures. In contrast, the initial traditional receivers deployed on animals experienced some breakages, but a modified collar design consistently functioned as expected. If such problems were resolved, snapshot technology could reduce the tradeoff between fix interval and battery life that occurs with traditional micro-GPS receivers. Our results suggest that micro-GPS receivers are capable of addressing questions about space use and resource selection by small mammals, but that additional techniques might be needed to identify use of habitat structures (e.g., burrows, tree cavities, rock crevices) that could affect micro-GPS performance and bias study results.

  19. Nominal and Real Accuracy of the GPS Position Indicated by Different Maritime Receivers in Different Modes

    Directory of Open Access Journals (Sweden)

    Jacek Januszewski

    2014-03-01

    Full Text Available Nowadays on the ship's bridge two or even more GPS receivers are installed. As in the major cases the coordinates of the position obtained from these receivers differ the following questions can be posed - what is the cause of this divergence, which receiver in the first must be taken into account etc. Based on information published in annual GPS and GNSS receiver survey it was estimated the percentage of GPS receivers designed for marine and/or navigation users. The measurements of GPS position based on the four different stationary GPS receivers were realized in the laboratory of Gdynia Maritime University in Poland in the summer 2012. The coordinates of the position of all these receivers were registered at the same time. The measurements in mode 3D were made for different input data, the same for all receivers. The distances between the individual unit's antenna were considered also. Next measurements in mode 3D also were realized on two ships in different European ports. Additional measurements were made in mode 2D with three receivers for different their's antenna heights. The results showed that the GPS position accuracy depends on the type of the receiver and its technical parameters particularly.

  20. GPS & GLONASS Mass-Market Receivers: Positioning Performances and Peculiarities

    OpenAIRE

    Paolo Dabove; Manzino, Ambrogio M.

    2014-01-01

    Over the last twenty years, positioning with low cost Global Navigation Satellite System (GNSS) sensors have rapidly developed around the world at both a commercial and academic research level. For many years these instruments have only acquired the GPS constellation but are now able to track the Global’naja Navigacionnaja Sputnikovaja Sistema (GLONASS) constellation. This characteristic is very interesting, especially if used in hard-urban environments or in hard conditions where satellite v...

  1. Predicting metabolic rate during level and uphill outdoor walking using a low-cost GPS receiver.

    Science.gov (United States)

    de Müllenheim, Pierre-Yves; Dumond, Rémy; Gernigon, Marie; Mahé, Guillaume; Lavenu, Audrey; Bickert, Sandrine; Prioux, Jacques; Noury-Desvaux, Bénédicte; Le Faucheur, Alexis

    2016-08-01

    The objective of this study was to assess the accuracy of using speed and grade data obtained from a low-cost global positioning system (GPS) receiver to estimate metabolic rate (MR) during level and uphill outdoor walking. Thirty young, healthy adults performed randomized outdoor walking for 6-min periods at 2.0, 3.5, and 5.0 km/h and on three different grades: 1) level walking, 2) uphill walking on a 3.7% mean grade, and 3) uphill walking on a 10.8% mean grade. The reference MR [metabolic equivalents (METs) and oxygen uptake (V̇o2)] values were obtained using a portable metabolic system. The speed and grade were obtained using a low-cost GPS receiver (1-Hz recording). The GPS grade (Δ altitude/distance walked) was calculated using both uncorrected GPS altitude data and GPS altitude data corrected with map projection software. The accuracy of predictions using reference speed and grade (actual[SPEED/GRADE]) data was high [R(2) = 0.85, root-mean-square error (RMSE) = 0.68 MET]. The accuracy decreased when GPS speed and uncorrected grade (GPS[UNCORRECTED]) data were used, although it remained substantial (R(2) = 0.66, RMSE = 1.00 MET). The accuracy was greatly improved when the GPS speed and corrected grade (GPS[CORRECTED]) data were used (R(2) = 0.82, RMSE = 0.79 MET). Published predictive equations for walking MR were also cross-validated using actual or GPS speed and grade data when appropriate. The prediction accuracy was very close when either actual[SPEED/GRADE] values or GPS[CORRECTED] values (for level and uphill combined) or GPS speed values (for level walking only) were used. These results offer promising research and clinical applications related to the assessment of energy expenditure during free-living walking.

  2. Crustal deformation of Miyakejima volcano, Japan since the eruption of 2000 using dense GPS campaign observation

    Science.gov (United States)

    Fukui, M.; Matsushima, T.; Oikawa, J.; Watanabe, A.; Okuda, T.; Ozawa, T.; Kohno, Y.; Miyagi, Y.

    2013-12-01

    Miyakejima is an active volcanic Island located about 175 km south of Tokyo, Japan. Miyakejima volcano erupted approximately every 20 years in the past 100 years. The latest eruptive activities since 2000 was different from those of the last 100 years, in that the activities included a caldera formation for the first time in 2500 years and gigantic volcanic gas emission that forced islander to evacuate over four and half years. In 2000, a dense GPS observation campaign had detected the magma intrusion in detail (e.g., Irwan et al., 2003; Murase et al., 2006). However, this campaign observation ceased from 2002 to 2010 because a large amount of volcanic gas prevented from entering to the island. Since 2011, we restarted the campaign observation by the dense GPS network, and examined the ongoing magma accumulation process beneath Miyakejima volcano to get insights about the future activity. In this analysis, we combined the data of our campaign observations, the data of the University Union in 2000, and the GEONET data. The observation data were analyzed by RTK-LIB (Takasu et al., 2007) using GPS precise ephemeris from IGS. We estimated the locations and volumes of the pressure sources beneth Miyakejima using an elevation-modified Mogi model (Fukui et al., 2003) and open crack model (Okada, 1992) during the two periods (2000 ~ 2012 and 2011 ~ 2012). We used the software of Magnetic and Geodetic data Computer Analysis Program for Volcano (MaGCAP-V) (Fukui et al., 2010), and estimated the source parameters by trial and error. During 2000 and 2012, a contracting spherical source and contracting dyke were estimated beneath the caldera and at the southwestern part of the island, respectively. In contrast, during 2011 and 2012, an spherical inflation source was estimated a few km beneath the caldera. This result suggest that Miyakejima is now storing new magma for the next eruption. Geospatial Information Authority of Japan (GSI) (2011) suggested that the inflation started

  3. Reduced-Rank Space-Time Processing for Anti-Jamming GPS Receivers

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Xuebin; CUI Xiaowei; LU Mingquan; FENG Zhenming

    2009-01-01

    In a jamming environment with multiple wideband and narrowband jammers, global positioning system (GPS) receivers can use space-time processing to efficiently suppress the jamming. However, the computational complexity of space-time algorithms restricts their application in practical GPS receivers. This paper describes a reduced-rank multi-stage nested Wiener filter (MSNWF) based on subspace decomposi-tion and Wiener filter (WF) to eliminate the effect of jamming in anti-jamming GPS receivers. A general sidelobe canceller (GSC) structure that is equivalent to the MSNWF is used to facilitate calculation of the optimal weights for the space-time processing. Simulation results demonstrate the satisfactory performance of the MSNWF to cancel jamming and the significant reduction in computational complexity by the re-duced-rank processing. The technique offers a feasible space-time processing solution for anti-jamming GPS receivers.

  4. Evaluation of regional ionospheric grid model over China from dense GPS observations

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2016-09-01

    Full Text Available The current global or regional ionospheric models have been established for monitoring the ionospheric variations. However, the spatial and temporal resolutions are not enough to describe total electron content (TEC variations in small scales for China. In this paper, a regional ionospheric grid model (RIGM with high spatial-temporal resolution (0.5° × 0.5° and 10-min interval in China and surrounding areas is established based on spherical harmonics expansion from dense GPS measurements provided by Crustal Movement Observation Network of China (CMONOC and the International GNSS Service (IGS. The correlation coefficient between the estimated TEC from GPS and the ionosonde measurements is 0.97, and the root mean square (RMS with respect to Center for Orbit Determination in Europe (CODE Global Ionosphere Maps (GIMs is 4.87 TECU. In addition, the impact of different spherical harmonics orders and degrees on TEC estimations are evaluated and the degree/order 6 is better. Moreover, effective ionospheric shell heights from 300 km to 700 km are further assessed and the result indicates that 550 km is the most suitable for regional ionospheric modeling in China at solar maximum.

  5. The interseismic velocity field of the central Apennines from a dense GPS network

    Directory of Open Access Journals (Sweden)

    Alessandro Galvani

    2013-02-01

    Full Text Available Since 1999, we have repeatedly surveyed the central Apennines through a dense survey-style geodetic network, the Central Apennines Geodetic Network (CAGeoNet. CAGeoNet consists of 123 benchmarks distributed over an area of ca. 180 km × 130 km, from the Tyrrhenian coast to the Adriatic coast, with an average inter-site distance of 3 km to 5 km. The network is positioned across the main seismogenic structures of the region that are capable of generating destructive earthquakes. Here, we show the horizontal GPS velocity field of both CAGeoNet and continuous GPS stations in this region, as estimated from the position–time series in the time span from 1999 to 2007. We analyzed the data using both the Bernese and GAMIT software, rigorously combining the two solutions to obtain a validated result. Then, we analyzed the strain-rate field, which shows a region of extension along the axis of the Apennine chain, with values from 2 × 10–9 yr–1 to 66·× 10–9 yr–1, and a relative minimum of ca. 20 × 10–9 yr–1 located in the L'Aquila basin area. Our velocity field represents an improved estimation of the ongoing elastic interseismic deformation of the central Apennines, and in particular relating to the area of the L'Aquila earthquake of April 6, 2009.

  6. Performance Evaluation of Block Acquisition and Tracking Algorithms Using an Open Source GPS Receiver Platform

    Science.gov (United States)

    Ramachandran, Ganesh K.; Akopian, David; Heckler, Gregory W.; Winternitz, Luke B.

    2011-01-01

    Location technologies have many applications in wireless communications, military and space missions, etc. US Global Positioning System (GPS) and other existing and emerging Global Navigation Satellite Systems (GNSS) are expected to provide accurate location information to enable such applications. While GNSS systems perform very well in strong signal conditions, their operation in many urban, indoor, and space applications is not robust or even impossible due to weak signals and strong distortions. The search for less costly, faster and more sensitive receivers is still in progress. As the research community addresses more and more complicated phenomena there exists a demand on flexible multimode reference receivers, associated SDKs, and development platforms which may accelerate and facilitate the research. One of such concepts is the software GPS/GNSS receiver (GPS SDR) which permits a facilitated access to algorithmic libraries and a possibility to integrate more advanced algorithms without hardware and essential software updates. The GNU-SDR and GPS-SDR open source receiver platforms are such popular examples. This paper evaluates the performance of recently proposed block-corelator techniques for acquisition and tracking of GPS signals using open source GPS-SDR platform.

  7. Performance Enhancement of Land Vehicle Positioning Using Multiple GPS Receivers in an Urban Area

    Directory of Open Access Journals (Sweden)

    Jong-Hwa Song

    2016-10-01

    Full Text Available The Global Positioning System (GPS is the most widely used navigation system in land vehicle applications. In urban areas, the GPS suffers from insufficient signal strength, multipath propagation and non-line-of-sight (NLOS errors, so it thus becomes difficult to obtain accurate and reliable position information. In this paper, an integration algorithm for multiple receivers is proposed to enhance the positioning performance of GPS for land vehicles in urban areas. The pseudoranges of multiple receivers are integrated based on a tightly coupled approach, and erroneous measurements are detected by testing the closeness of the pseudoranges. In order to fairly compare the pseudoranges, GPS errors and terms arising due to the differences between the positions of the receivers need to be compensated. The double-difference technique is used to eliminate GPS errors in the pseudoranges, and the geometrical distance is corrected by projecting the baseline vector between pairs of receivers. In order to test and analyze the proposed algorithm, an experiment involving live data was performed. The positioning performance of the algorithm was compared with that of the receiver autonomous integrity monitoring (RAIM-based integration algorithm for multiple receivers. The test results showed that the proposed algorithm yields more accurate position information in urban areas.

  8. Performance Enhancement of Land Vehicle Positioning Using Multiple GPS Receivers in an Urban Area.

    Science.gov (United States)

    Song, Jong-Hwa; Jee, Gyu-In

    2016-10-14

    The Global Positioning System (GPS) is the most widely used navigation system in land vehicle applications. In urban areas, the GPS suffers from insufficient signal strength, multipath propagation and non-line-of-sight (NLOS) errors, so it thus becomes difficult to obtain accurate and reliable position information. In this paper, an integration algorithm for multiple receivers is proposed to enhance the positioning performance of GPS for land vehicles in urban areas. The pseudoranges of multiple receivers are integrated based on a tightly coupled approach, and erroneous measurements are detected by testing the closeness of the pseudoranges. In order to fairly compare the pseudoranges, GPS errors and terms arising due to the differences between the positions of the receivers need to be compensated. The double-difference technique is used to eliminate GPS errors in the pseudoranges, and the geometrical distance is corrected by projecting the baseline vector between pairs of receivers. In order to test and analyze the proposed algorithm, an experiment involving live data was performed. The positioning performance of the algorithm was compared with that of the receiver autonomous integrity monitoring (RAIM)-based integration algorithm for multiple receivers. The test results showed that the proposed algorithm yields more accurate position information in urban areas.

  9. Development of An Ionospheric Scintillation Monitor Using Single Frequency GPS Receiver

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Besides their intended use in radio navigation, global positioning system (GPS) satellite signals provide convenient radio beacons for ionospheric studies. Among other propagation phenomena, the ionosphere affects GPS signal propagation through amplitude scintillations that develop after radio waves propagation through ionospheric electron density irregularities. This paper outlines the design, testing, and results of a specialized GPS receiver to monitor L-band scintillations. The scintillation monitor system consists of a commercial GPS receiver development kit with its software designed to log signal strength and carrier phase from up to 12 channels at one sample per second rate. Other prime features of the monitor include the data compression, transmission and processing. Here is the fact that they are inexpensive and compact and therefore can be readily proliferated.

  10. Software-Defined GPS Receiver Implemented on the Parallella-16 Board

    DEFF Research Database (Denmark)

    Olesen, Daniel Madelung; Jakobsen, Jakob; Knudsen, Per

    2015-01-01

    This paper describes a GPS software receiver design made of inexpensive and physically small hardware components. The small embedded platform, known as the Parallella-16 computer has been utilized in conjunction with a commercial RF front-end to construct a 4-channel real time software GPS receiv....... The total cost of the hardware is below 150$ and the size is comparable to a credit-card. The receiver has been developed for research in GNSS/INS integration on small Unmanned Aerial Vehicles (UAVs)....

  11. A Collective Detection Based GPS Receiver for Small Satellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To solve the problem of autonomous navigation on small satellite platforms less than 20 kg, we propose to develop an onboard orbit determination receiver for small...

  12. GPS/GLONASS Combined Precise Point Positioning with Receiver Clock Modeling.

    Science.gov (United States)

    Wang, Fuhong; Chen, Xinghan; Guo, Fei

    2015-06-30

    Research has demonstrated that receiver clock modeling can reduce the correlation coefficients among the parameters of receiver clock bias, station height and zenith tropospheric delay. This paper introduces the receiver clock modeling to GPS/GLONASS combined precise point positioning (PPP), aiming to better separate the receiver clock bias and station coordinates and therefore improve positioning accuracy. Firstly, the basic mathematic models including the GPS/GLONASS observation equations, stochastic model, and receiver clock model are briefly introduced. Then datasets from several IGS stations equipped with high-stability atomic clocks are used for kinematic PPP tests. To investigate the performance of PPP, including the positioning accuracy and convergence time, a week of (1-7 January 2014) GPS/GLONASS data retrieved from these IGS stations are processed with different schemes. The results indicate that the positioning accuracy as well as convergence time can benefit from the receiver clock modeling. This is particularly pronounced for the vertical component. Statistic RMSs show that the average improvement of three-dimensional positioning accuracy reaches up to 30%-40%. Sometimes, it even reaches over 60% for specific stations. Compared to the GPS-only PPP, solutions of the GPS/GLONASS combined PPP are much better no matter if the receiver clock offsets are modeled or not, indicating that the positioning accuracy and reliability are significantly improved with the additional GLONASS satellites in the case of insufficient number of GPS satellites or poor geometry conditions. In addition to the receiver clock modeling, the impacts of different inter-system timing bias (ISB) models are investigated. For the case of a sufficient number of satellites with fairly good geometry, the PPP performances are not seriously affected by the ISB model due to the low correlation between the ISB and the other parameters. However, the refinement of ISB model weakens the

  13. Implementation Of Code And Carrier Tracking Loops For Software GPS Receivers

    Directory of Open Access Journals (Sweden)

    Win Kay Khaing

    2015-06-01

    Full Text Available Abstract GPS is playing in very important role in our modern mobile societies. Software approach is very flexible rather than the traditional hardware receivers. The soft-GPS receiver includes two portions hardware and software. In hardware portion an antenna filter down-converter from RF Radio Frequency to IF Intermediate Frequency and an ADC Analog to Digital Converter are included. In software portion signal processing such as acquisition tracking and navigation that runs on general purpose processor is included. The GPS signal is taken from N-FUELS Full Educational Library of Signals for Navigation signal simulator. The heart of soft-GPS receiver is the synchronization processes such as acquisition and tracking. In tracking there are two main loops for code and carrier tracking. The objective of this paper is to analyse and find the optimum discriminator function for the code tracking loop in soft-GPS receivers. The delay lock loop DLL is a well-known technique to track the codes for GNSS spread spectrum systems. This paper also presents non-coherent square law DLLs and the impacts of some parameters on DLL discriminators such as number of samples per chip early-late spacing different C No values where C denotes the signal power and No is the noise spectral density and the impact of with or without front-end device. The results of discriminator outputs are illustrated by using S-curves. Testing results with the real GPS signal are also described. This optimized discriminator functions can be implemented in any soft-GPS receivers.

  14. Swarm GPS Receiver Performance under the Influence of Ionospheric Scintillation

    Science.gov (United States)

    Ren, Le; Schön, Steffen

    2016-04-01

    The Swarm mission launched on 22 November 2013 is ESA's first constellation of satellites to study the dynamics of the Earth's magnetic field and its interaction with the Earth system. This mission consists of three identical satellites in near-polar orbits , two flying almost side-by-side at an initial altitude of 460 km, the third flying in a higher orbit of about 530 km. Each satellite is equipped with a high precision 8-channels dual-frequency receiver for the precise orbit determination, which is also the essential fundament in order to take full advantage of the data information provided by this constellation, e.g. for the recovery of gravity field. The quality of the final orbit determination depends on the observation data from the receivers. In this contribution, we will analyze the performance of the Swarm on-board receivers, especially under the influence of ionospheric scintillation caused by ionospheric irregularities. This is a prerequisite for high quality satellite positioning as well as a sound study of the ionosphere. Ionospheric scintillation can lead to the phase disturbances, cycle slips or even loss of signal tracking. The RINEX observation data from Swarm Level 1b products are used to analyze the Swarm receiver performance. We will demonstrate the signal strength, code and phase noise, different linear combinations (geometry free, ionosphere free), as well as GDOP values for the 3 Swarm satellites. The first results show that the observation data are severely disturbed and the signals could be lost around the geomagnetic equator and geomagnetic poles where the ionosphere is active. The results also show that the receivers are more stable in those areas after the update in October 2015.

  15. RT-3 15 m diameter radiotelescope receiving and recording system for GPS white noise observations (some preliminary results).

    Science.gov (United States)

    Pazderski, E.; Vorbrich, K. K.

    A short introduction explaining the idea of using the large VLBI radio telescope for GPS observations is enclosed. A description of the GPS - RT-3 Receiving and Recording Systems is given. Some GPS - RT-3 observational and computational results are presented.

  16. Present-day kinematics in the Eastern Mediterranean and Caucasus from dense GPS observations

    Science.gov (United States)

    Ahadov, Bahruz; Jin, Shuanggen

    2017-07-01

    The Eastern Mediterranean and Caucasus are located among the Eurasian, African and Arabian plates, and tectonic activities are very complex. In this paper, the kinematics and strain distribution in these regions are determined and investigated from dense GPS observations with over 1000 stations and longer observations. The elastic block model is used to constrain present-day plate motions and crustal deformation. The relative Euler vectors between the Nubian, Arabian, Caucasus, Anatolian and Central Iranian plates are estimated. The Arabian-Eurasia, Anatolian-Eurasia, Nubian-Eurasia, Caucasus-Eurasia and Central Iranian Euler vectors are 0.584 ± 0.1 Myr-1, 0.825 ± 0.064 Myr-1, 0.35 ± 0.175 Myr-1, 0.85 ± 0.086 Myr-1 and 0.126 ± 0.016 Myr-1. The strain rate in the East Mediterranean and Caucasus has been estimated from the GPS velocity field. The results show that the thrust dominated areas, the eastern Mediterranean-Middle East-Caucasus and Zagros have negative dilatation and the western Anatolia region has positive 2D dilatation rate with significant rotation. The west Anatolian shows the extension in NW-SE with about 150-199 nstrain/yr in the W-E direction. The Central Anatolia shows compression rate below 50 nstrain/yr and extensional strain rate adjacent to East Anatolian Fault and Dead Sea Fault is about 0-100 nstrain/yr. The contraction strain rate is higher in Zagros and Caucasus between 100-150 nstrain/yr and contraction orientation is along the NE-SW direction in Caucasus. The north part of Iran shows less contraction rate below 50 nstrain/yr but North-East Zagros Mountains, Tabriz fault and Chalderan fault show extensional rate between 50-110 nstrain/yr and principal axes rotation in the N-S direction. The maximum contraction observed in the Kopek Dag is about 100-194 nstrain/yr and orientated in the NE-SW direction. East Zagros Mountain and Makran subduction zone have a large clockwise rotation with 70-85 nradian and principal axes remains mostly

  17. GPS receivers timing data processing using neural networks: optimal estimation and errors modeling.

    Science.gov (United States)

    Mosavi, M R

    2007-10-01

    The Global Positioning System (GPS) is a network of satellites, whose original purpose was to provide accurate navigation, guidance, and time transfer to military users. The past decade has also seen rapid concurrent growth in civilian GPS applications, including farming, mining, surveying, marine, and outdoor recreation. One of the most significant of these civilian applications is commercial aviation. A stand-alone civilian user enjoys an accuracy of 100 meters and 300 nanoseconds, 25 meters and 200 nanoseconds, before and after Selective Availability (SA) was turned off. In some applications, high accuracy is required. In this paper, five Neural Networks (NNs) are proposed for acceptable noise reduction of GPS receivers timing data. The paper uses from an actual data collection for evaluating the performance of the methods. An experimental test setup is designed and implemented for this purpose. The obtained experimental results from a Coarse Acquisition (C/A)-code single-frequency GPS receiver strongly support the potential of methods to give high accurate timing. Quality of the obtained results is very good, so that GPS timing RMS error reduce to less than 120 and 40 nanoseconds, with and without SA.

  18. Receiver-channel based adaptive blind equalization approach for GPS dynamic multipath mitigation

    Institute of Scientific and Technical Information of China (English)

    Zhao Yun; Xue Xiaonan; Zhang Tingfei

    2013-01-01

    Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications,an approach based on channel blind equalization and real-time recursive least square (RLS) algorithm is proposed,which is an application of the wireless communication channel equalization theory to GPS receiver tracking loops.The blind equalization mechanism builds upon the detection of the correlation distortion due to multipath channels; there-fore an increase in the number of correlator channels is required compared with conventional GPS receivers.An adaptive estimator based on the real-time RLS algorithm is designed for dynamic estimation of multipath channel response.Then,the code and carrier phase receiver tracking errors are compensated by removing the estimated multipath components from the correlators' outputs.To demonstrate the capabilities of the proposed approach,this technique is integrated into a GPS software receiver connected to a navigation satellite signal simulator,thus simulations under controlled dynamic multipath scenarios can be carried out.Simulation results show that in a dynamic and fairly severe multipath environment,the proposed approach achieves simultaneously instantaneous accurate multipath channel estimation and significant multipath tracking errors reduction in both code delay and carrier phase.

  19. Comparison of baseline results for the TI-4100 and Trimble 4000SDT geodetic GPS receivers

    Science.gov (United States)

    Freymueller, Jeffrey T.

    1992-10-01

    Many GPS networks which were initially surveyed with Texas Instruments TI-4100 receivers have now been resurveyed with mixtures of TI-4100 and Trimble 4000 receivers or exclusively with Trimble receivers. In order to make confident tectonic interpretation of displacements observed between such surveys, it is necessary to understand any biases which may be introduced by using different receiver types or by mixing receivers within a network. Therefore, one of the primary objectives of the Ecuador 1990 GPS campaign (February 1990) was to provide a direct long baseline comparison between the TI-4100 and Trimble 4000SDT GPS receivers. p ]During this campaign, TI and Trimble receivers were co-located at each end of a 1323 kilometer baseline (Jerusalen to Baltra). Solutions for this baseline show no variation with receiver type. Zero-length baseline solutions showed no evidence for any intrinsic bias caused by mixing the two receiver types. Short baseline solutions indicate a bias of -34±10 mm in the baseline vertical component; the sign of the bias indicates that either the assumed phase center location for the TI is too low or the assumed location for the Trimble is too high. The bias is explainable if the phase centers of the Trimble SDT and SST antennas are similarly located. p ]Solutions for baselines measured with codeless receivers (such as the Trimble) should be as precise as those for baselines measured with P-code receivers (such as the TI) as long as it is possible to resolve ambiguities. Resolution of the widelane ambiguity is the limiting factor in ambiguity resolution with any codeless receiver, and in the February 1990 campaigns it was not successful fore baselines longer than 100 km. Without explicit modeling of the ionospheric effect on the widelane, ambiguity resolution with codeless receivers will not be successful for baselines longer than about 100 km, depending on the local ionospheric conditions.

  20. A New Velocity Field from a Dense GPS Array in the Southernmost Longitudinal Valley, Southeastern Taiwan

    Directory of Open Access Journals (Sweden)

    Horng-Yue Chen

    2013-01-01

    Full Text Available In the southernmost Longitudinal Valley (LV, Taiwan, we analyzed a dense GPS array composed of 10 continuous stations and 86 campaign-mode stations. By removing the effects of the four major earthquakes (one regional and three local occurred during the 1992 - 2010 observation period, we derived a new horizontal velocity field in this area, which then allows better locating the surface traces of the major active faults, including the Longitudinal Valley Fault (LVF system and the Central Range Fault, and characterizing the slip behaviors along the faults. Note that LVF reveals two sub-parallel strands in the study area: the Luyeh Fault to the west and the Lichi Fault to the east. Based on the results of strain analyses, including dilatation and shear strain, and projected vectors of station velocities across the major faults, we came to the following geological interpretations. During the inter-seismic periods, the surface deformation of the southernmost LV is mainly accommodated by the faulting on the two branches of the LVF; there is very little surface deformation on the Central Range Fault. The Luyeh River appears to act as a boundary to divide the LVF to behave differently to its northern and southern sides. The Lichi Fault reveals a change of slip kinematics from an oblique shearing/thrusting in the north to a nearly pure shearing with minor extension to the south. Regarding the slip behavior of the Luyeh Fault, it exhibits a creeping behavior in the north and a partially near-surface-locked faulting behavior in the south. We interpret that the two strands of the LVF merge together in the northern Taitung alluvial plain and turns to E-W trend toward the offshore area.

  1. A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors

    Directory of Open Access Journals (Sweden)

    Dennis Akos

    2011-09-01

    Full Text Available Due to their weak received signal power, Global Positioning System (GPS signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs. However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU coupled with a new generation Graphics Processing Unit (GPU having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.

  2. A real-time capable software-defined receiver using GPU for adaptive anti-jam GPS sensors.

    Science.gov (United States)

    Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun

    2011-01-01

    Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.

  3. Research on GPS Receiver Autonomous Integrity Monitoring Algorithm In the Occurrence of Two-satellite Faults

    Directory of Open Access Journals (Sweden)

    Wang Er Shen

    2016-01-01

    Full Text Available Reliability is an essential factor for GPS navigation system. Therefore, an integrity monitoring is considered as one of the most important parts for a navigation system. GPS receiver autonomous integrity monitoring (RAIM technique can detect and isolate fault satellite. Based on particle filter, a novel RAIM method was proposed to detect two-satellite faults of the GPS signal by using hierarchical particle filter. It can deal with any system nonlinear and any noise distributions. Because GNSS measurement noise does not follow the Gaussian distribution perfectly, the particle filter can estimate the posterior distribution more accurately. In order to detect fault, the consistency test statistics is established through cumulative log-likelihood ratio (LLR between the main and auxiliary particle filters (PFs.Specifically, an approach combining PF with the hierarchical filter is used in the process of two-satellite faults. Through GPS real measurement, the performance of the proposed GPS two-satellite faults detection algorithm was illustrated. Some simulation results are given to evaluate integrity monitoring performance of the algorithm. Validated by the real measurement data, the results show that the proposed algorithm can successfully detect and isolate the faulty satellite in the case of non-Gaussian measurement noise.

  4. Ispitivanje GPS RTK prijemnika Geotronics Geotracer 2200 : Testing the GPS RTK receiver Geotronics Geotracer 2200

    Directory of Open Access Journals (Sweden)

    Nedim Tuno

    2011-03-01

    Full Text Available U ovom radu izvršen je prikaz značaja periodičnog ispitivanja i kalibriranja geodetskih mjernih instrumenata standardnim postupcima u cilju postizanja željenih rezultata. Poseban akcenat je stavljen na standarne postupke ispitivanja i kalibriranja kompleksnih geodetskih instrumenata za GNSS mjerenja, koja se u geodetskoj praksi masovno primjenjuju već nekih 20-tak godina. U radu je izvršen prikaz standardnog ISO postupka ispitivanja RTK instrumenta kao i metoda ispitivanja tačnosti prijemnika u testnoj geodetskoj mreži. : This paper presents an overview of the importance of periodic testing and calibration of geodetic measuring instruments by standard procedures in order to achieve the desired results. Special attention is placed on the standard procedures of testing and calibration of complex geodetic instruments for the GNSS measurements, which are in geodetic mass practice for some 20 years. Standard ISO test procedure for RTK instruments was presented in the paper, as well as method for testing the accuracy of receiver using the geodetic test network.

  5. Statistical characteristics of L1 carrier phase observations from four low-cost GPS receivers

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2010-01-01

    Statistical properties of L1 carrier phase observations from four low-cost GPS receivers are investigated through a case study. The observations are collected on a zero baseline with a frequency of 1 Hz and processed with a double difference model. The carrier phase residuals from an ambiguity...... mean value close to zero and the sample variance is time invariant. The residuals from one type of receiver deviate from being normally distributed, whereas the residuals from the remaining receivers are close to being normally distributed. Two of the receivers deliver uncorrelated carrier phase...... observations. Some of the carrier phase observations from the other two receivers are serially correlated. The correlation is receiver specific and is related to the individual channels of the receivers....

  6. CASES: A Novel Low-Cost Ground-based Dual-Frequency GPS Software Receiver

    Science.gov (United States)

    Haacke, B.; Crowley, G.; Reynolds, A.; Bust, G. S.; Kintner, P. M.; Psaiki, M.; Humphreys, T. E.; Powell, S.; O'Hanlon, B.

    2010-12-01

    GPS receivers can be used for monitoring space weather events such as TEC variations and scintillation. The new CASES GPS sensor developed by ASTRA, Cornell and UTAustin represents a revolutionary advance in dual frequency GPS space-weather monitoring. CASES is a paperback-novel-sized dual-frequency GPS software receiver with robust dual-frequency tracking performance, stand-alone capability, and complete software upgradability. This sensor measures and calculates TEC with a relative accuracy of a few 0.01 TECU at a cadence of up to 100 Hz. It measures amplitude and phase at up to 100 Hz on both L1 and L2, for up to 12 satellites in view. It calculates the scintillation severity indicators S4, τ0, and σφ at a cadence that is user defined. It is able to track through scintillation with {S4, τ0, amplitude} combinations as severe as {0.8, 0.8 seconds, 43 dB-Hz (nominal)} (i.e., commensurate with vigorous post-sunset equatorial scintillation) with a mean time between cycle slips greater than 240 seconds and with a mean time between frequency-unlock greater than 1 hour. Other capabilities and options include: Various data interface solutions; In-receiver and network-wide calibration of biases, and detection and mitigation of multipath; Network-wide automated remote configuration of receivers, quality control, re-processing, archiving and redistribution of data in real-time; Software products for data-processing and visualization. The low price of the sensor means that many more instruments can be purchased on a fixed budget, which will lead to new kinds of opportunities for monitoring and scientific study, including networked applications. Other uses for CASES receivers include geodetic and seismic monitoring, measurement of precipitable water vapor in the troposphere at meso-scale resolution, and educational outreach.

  7. Assessment of stochastic models for GPS measurements with different types of receivers

    Institute of Scientific and Technical Information of China (English)

    LI BoFeng; SHEN YunZhong; XU PeiLiang

    2008-01-01

    The stochastic model plays an important role in parameter estimation. The optimal estimator in the sense of least squares can only be obtained by using the correct stochastic model and consequently guarantees the precise positioning in GPS applications. In this contribution, the GPS measurements, collected by different types of geodetic dual-frequency receiver pairs on ultra-short baselines with a sampling interval of 1 s, are used to address their stochastic models, which include the variances of all observation types, the relationship between the observation accuracy and its elevation angle, the time correlation, as well as the correlation between observation types. The results show that the commonly used stochastic model with the assumption that all the raw GPS measurements are independent with the same variance does not meet the need for precise positioning and the elevation-dependent weight model cannot work well for different receiver and observation types. The time correlation and cross correlation are significant as well. It is therefore concluded that the stochastic model is much associ-ated with the receiver and observation types and should be specified for the receiver and observation types.

  8. Evaluation of a High-Sensitivity GPS Receiver for Kinematics Application in Regions with High Shading

    Science.gov (United States)

    Suhandri, H. F.; Becker, D.; Kleusberg, A.

    2009-04-01

    GPS positioning has been very much improved with high-sensitivity GPS (HSGPS) receivers. This kind of receiver can track the signal until 20-25dB below the level of conventional receivers. Obviously, no problem occurs when GPS technology is used for air and ocean vehicles navigation; sufficient and/or redundant signals can be easily acquired due to good hemispherical signal reception. A problem arises whenever signals cannot be traced anymore, if not enough satellites are available or if there is very weak signal reception in forest areas or between buildings. Those situations cannot be avoided or eliminated in land vehicle navigation. The HSGPS technology tries to solve those problems by tracking signals below the normal signal threshold of non-HSGPS receivers. This paper discusses the two factors of availability and accuracy in the context of navigation with HSGPS receivers. In order to investigate these issues some scenarios of receivers-placing will be examined which represent various receiver environments: good hemispherical signal reception, strong signal shading environment and indoor environment. The signal availability and accuracy are investigated during observation sessions of several hours by comparing the measurements of the HSGPS receiver with the measurements of a conventional, non-HSGPS receiver. As expected, the non-HSGPS receiver yields the same level of availability as the HSGPS receiver in an environment with good hemispherical signal reception. When both receivers are located in an environment with significant signal shading, the percentage of availability will significantly decay for the non-HSGPS receiver whereas the availability of the HSGPS receiver is much less reduced. However the results from the HSGPS receiver in this case are at a significantly reduced accuracy level. The accuracy level is assessed by using three parameters: i) the difference between the C/A code and the carrier phase in order to investigate how big the multipath and

  9. Gravity field error analysis: Applications of GPS receivers and gradiometers on low orbiting platforms

    Science.gov (United States)

    Schrama, E.

    1990-01-01

    The concept of a Global Positioning System (GPS) receiver as a tracking facility and a gradiometer as a separate instrument on a low orbiting platform offers a unique tool to map the Earth's gravitational field with unprecedented accuracies. The former technique allows determination of the spacecraft's ephemeris at any epoch to within 3 to 10 cm, the latter permits the measurement of the tensor of second order derivatives of the gravity field to within 0.01 to 0.0001 Eotvos units depending on the type of gradiometer. First, a variety of error sources in gradiometry where emphasis is placed on the rotational problem pursuing as well a static as a dynamic approach is described. Next, an analytical technique is described and applied for an error analysis of gravity field parameters from gradiometer and GPS observation types. Results are discussed for various configurations proposed on Topex/Poseidon, Gravity Probe-B, and Aristoteles, indicating that GPS only solutions may be computed up to degree and order 35, 55, and 85 respectively, whereas a combined GPS/gradiometer experiment on Aristoteles may result in an acceptable solution up to degree and order 240.

  10. Performance assessment of GPS receivers during the September 24, 2011 solar radio burst even

    DEFF Research Database (Denmark)

    Bilal, Muhammad; Alberti, Valentina; Cianca, Ernestina

    2015-01-01

    The sudden outburst of in-band solar radio noise from the Sun is recognized as one of the potential Radio Frequency Interference (RFI) sources that directly impact the performance of Global Navigation Satellite System (GNSS) receivers. On September 24, 2011, the solar active region 1302 unleashed...... the impact of September 24, 2011 SRB event on the performance of a significant subset of NAVSTAR Global Positioning System (GPS) receivers located in the sunlit hemisphere. The performance assessment is carried out in terms of Carrier-to-Noise power spectral density ratio (C/N0) degradation, dual...

  11. GJS系列多功能GPS接收机的研制%Development on GPS Receiver of GJS Series

    Institute of Scientific and Technical Information of China (English)

    过静珺; 李冰皓; 谢宝童

    2000-01-01

    简单介绍了GPS接收机和OEM板的基本原理,讨论了基于OEM板的GPS接收机的研制方法,重点介绍了GJS系列多功能GPS接收机的软硬件结构及研制过程。%This paper introduces the principle of GPS receiver and OEM board, discusses the method of research and development of GPS receiver based on OEM board, gives the hardware and software structure of GJS series GPS receivers.

  12. GPS satellite and receiver instrumental biases estimation using least squares method for accurate ionosphere modelling

    Indian Academy of Sciences (India)

    G Sasibhushana Rao

    2007-10-01

    The positional accuracy of the Global Positioning System (GPS)is limited due to several error sources.The major error is ionosphere.By augmenting the GPS,the Category I (CAT I)Precision Approach (PA)requirements can be achieved.The Space-Based Augmentation System (SBAS)in India is known as GPS Aided Geo Augmented Navigation (GAGAN).One of the prominent errors in GAGAN that limits the positional accuracy is instrumental biases.Calibration of these biases is particularly important in achieving the CAT I PA landings.In this paper,a new algorithm is proposed to estimate the instrumental biases by modelling the TEC using 4th order polynomial.The algorithm uses values corresponding to a single station for one month period and the results confirm the validity of the algorithm.The experimental results indicate that the estimation precision of the satellite-plus-receiver instrumental bias is of the order of ± 0.17 nsec.The observed mean bias error is of the order − 3.638 nsec and − 4.71 nsec for satellite 1 and 31 respectively.It is found that results are consistent over the period.

  13. wavelet de-noising technique applied to the PLL of a GPS receiver embedded in an observation satellite

    Directory of Open Access Journals (Sweden)

    Dib Djamel Eddine

    2012-02-01

    Full Text Available In this paper, we study the Doppler effect on a GPS(Global Positioning System on board of an observation satellite that receives information on a carrier wave L1 frequency 1575.42 MHz .We simulated GPS signal acquisition. This allowed us to see the behavior of this type of receiver in AWGN channel (AWGN and we define a method to reduce the Doppler Effect in the tracking loop which is wavelet de-noising technique.

  14. Real-time kinematic positioning of LEO satellites using a single-frequency GPS receiver

    CERN Document Server

    Chen, Pei; Sun, Xiucong

    2016-01-01

    Due to their low cost and low power consumption, single-frequency GPS receivers are considered suitable for low-cost space applications such as small satellite missions. Recently, requirements have emerged for real-time accurate orbit determination at sub-meter level in order to carry out onboard geocoding of high-resolution imagery, open-loop operation of altimeters and radio occultation. This study proposes an improved real-time kinematic positioning method for LEO satellites using single-frequency receivers. The C/A code and L1 phase are combined to eliminate ionospheric effects. The epoch-differenced carrier phase measurements are utilized to acquire receiver position changes which are further used to smooth the absolute positions. A kinematic Kalman filter is developed to implement kinematic orbit determination. Actual flight data from China small satellite SJ-9A are used to test the navigation performance. Results show that the proposed method outperforms traditional kinematic positioning method in term...

  15. Direction finding of GPS receiver interference based on the nulling weights

    Science.gov (United States)

    Wang, Jing; Amin, Moeness

    2007-04-01

    Most military applications of GPS require performing both jammer nulling and localization. While nulling can be achieved using adaptive gradient techniques applied to the input sampled data, high resolution direction of arrival estimation can precede using subspace and eigenstructure methods applied to the estimate of the covariance matrix. In this paper, we extract the jammer direction of arrival (DOA) information directly from the adaptive weights, in which case we assume interference nulling precedes interference localization. This high resolution DOA estimation approach based on available beamforming weight values leads to simplified receiver structure and allows a choice of IF or baseband processing as well as flexibility for analog, digital or mixed mode implementations.

  16. GPS Receiver On-Orbit Performance for the GOES-R Spacecraft

    Science.gov (United States)

    Winkler, Stephen; Ramsey, Graeme; Frey, Charles; Chapel, Jim; Chu, Donald; Freesland, Douglas; Krimchansky, Alexander; Concha, Marco

    2017-01-01

    This paper evaluates the on-orbit performance of the first civilian operational use of a Global Positioning System Receiver (GPSR) at a geostationary orbit (GEO). The GPSR is on-board the newly launched Geostationary Operational Environmental Satellite (GOES-R). GOES-R is the first of four next generation GEO weather satellites for NOAA, now in orbit GOES-R is formally identified as GOES-16. Among the pioneering technologies required to support its improved spatial, spectral and temporal resolution is a GPSR. The GOES-16 GPSR system is a new design that was mission critical and therefore received appropriate scrutiny. As ground testing of a GPSR for GEO can only be done by simulations with numerous assumptions and approximations regarding the current GPS constellation, this paper reveals what performance can be achieved in using on orbit data. Extremely accurate orbital position is achieved using GPS navigation at GEO. Performance results are shown demonstrating compliance with the1007575 meter and 6 cms radial/in-track/cross-track orbital position and velocity accuracy requirements of GOES-16. The aforementioned compliance includes station-keeping and momentum management maneuvers, contributing to no observational outages. This performance is achieved by a completely new system design consisting of a unique L1 GEOantenna, low-noise amplifier (LNA) assembly and a 12 channel GPSR capable of tracking the edge of the main beam and the side lobes of the GPS L1 signals. This paper presents the definitive answer that the GOES-16 GPSR solution exceeds all performance requirements tracking up to 12 satellites and achieving excellent carrier-to-noise density (C/N0). Additionally, these performance results show the practicality of this approach. This paper makes it clear that all future GEO Satellites should consider the addition of a GPSR in their spacecraft design, otherwise they may be sacrificing spacecraft capabilities and accuracy along with incurring increased and

  17. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University

    Directory of Open Access Journals (Sweden)

    Zhigang Hu

    2015-11-01

    Full Text Available GNSS receiver antenna phase center variations (PCVs, which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project “Crustal Movement Observation Network of China” (CMONOC, which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level.

  18. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University.

    Science.gov (United States)

    Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao

    2015-11-13

    GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project "Crustal Movement Observation Network of China" (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level.

  19. Contemporary kinematics of the Ordos block, North China and its adjacent rift systems constrained by dense GPS observations

    Science.gov (United States)

    Zhao, Bin; Zhang, Caihong; Wang, Dongzhen; Huang, Yong; Tan, Kai; Du, Ruilin; Liu, Jingnan

    2017-03-01

    The detailed kinematic pattern of the Ordos block, North China and its surrounding rift systems remains uncertain, mainly due to the low signal-to-noise ratio of the Global Positioning System (GPS) velocity data and the lack of GPS stations in this region. In this study, we have obtained a new and dense velocity field by processing GPS data primarily collected from the Crustal Motion Observation Network of China and from other GPS networks between 1998 and 2014. The GPS velocities within the Ordos block can be interpreted as counterclockwise rotation of the block about the Euler pole with respect to the Eurasia plate. Velocity profiles across the graben-bounding faults show relatively rapid right-lateral strike-slip motion along the Yinchuan graben, with a rate of 0.8-2.6 mm/a from north to south. In addition, a right-lateral slip rate of 1.1-1.6 mm/a is estimated along the central segment of the Shanxi rift. However, strike-slip motion is not detected along the northern and southern margins of the Ordos block. Conversely, significant extension motion is detected across the northwestern corner of the block, with a value of 1.6 mm/a, and along the northern segment of the Shanxi rift, where an extensional rate of 1.3-1.7 mm/a is measured. Both the Daihai and Datong basins are experiencing crustal extension. On the southwestern margin of the block, deformation across the compressional zone of the Liupanshan range is subtle; however, the far-field shorting rate is as high as 3.0 mm/a, implying that this region is experiencing ongoing compression. The results reveal that present-day fault slip occurs mainly along the block bounding faults, with the exception of faults along the northern and southern margins of the block. These results provide new insights into the nature of tectonic deformation around the Ordos block, and are useful for assessing the seismic activity in this region.

  20. Determination of the ionospheric foF2 using a stand-alone GPS receiver

    Science.gov (United States)

    Wijaya, Dudy D.; Haralambous, Haris; Oikonomou, Christina; Kuntjoro, Wedyanto

    2017-09-01

    The critical frequency of ionospheric F2 layer (foF2) is a measure of the highest frequency of radio signal that may be reflected back by the F2 layer, and it is associated with ionospheric peak electron density in the F2 layer. Accurate long-term foF2 variations are usually derived from ionosonde observations. In this paper, we propose a new method to observe foF2 using a stand-alone global positioning system (GPS) receiver. The proposed method relies on the mathematical equation that relates foF2 to GPS observations. The equation is then implemented in the Kalman filter algorithm to estimate foF2 at every epoch of the observation (30-s rate). Unlike existing methods, the proposed method does not require any additional information from ionosonde observations and does not require any network of GPS receivers. It only requires as inputs the ionospheric scale height and the modeled plasmaspheric electron content, which practically can be derived from any existing ionospheric/plasmaspheric model. We applied the proposed method to estimate long-term variations of foF2 at three GPS stations located at the northern hemisphere (NICO, Cyprus), the southern hemisphere (STR1, Australia) and the south pole (SYOG, Antarctic). To assess the performance of the proposed method, we then compared the results against those derived by ionosonde observations and the International Reference Ionosphere (IRI) 2012 model. We found that, during the period of high solar activity (2011-2012), the values of absolute mean bias between foF2 derived by the proposed method and ionosonde observations are in the range of 0.2-0.5 MHz, while those during the period of low solar activity (2009-2010) are in the range of 0.05-0.15 MHz. Furthermore, the root-mean-square-error (RMSE) values during high and low solar activities are in the range of 0.8-0.9 MHz and of 0.6-0.7 MHz, respectively. We also noticed that the values of absolute mean bias and RMSE between foF2 derived by the proposed method and the

  1. A study of risk in the metropolitan area of Guadalajara through dense GPS geodesy

    Science.gov (United States)

    Marquez-Azua, B.; Saldana-Hernandez, F.; Medina de La Pena, H.

    2007-05-01

    Geodesic measurements from the Global Positioning System (GPS) are used extensively for basic earth science research into natural hazards and seismic risk. In the private sector, GPS technology is additionally used for cadastral and photogrammetric mapping surveys, definition of political-administrative limits, space analysis with thematic cartography, GIS, and land-use planning, with a wide variety of applied social, economic, and political purposes, including conservation of the environment. The city of Guadalajara and its surrounding urban area has expanded greatly in the last three decades as a result of industrial, commercial and housing activity that have substantially changed in their urban morphology. This period of unprecedented growth has occurred primarily in an unplanned and sometimes disarticulated and unbalanced manner, incongruous with the development of the most important city in western Mexico. The Department of Geography of the University of Guadalajara and the Institute of Territorial Information of the State of Jalisco (IITJ) have initiated a study of 89 geodetic sites that are located in the metropolitan zone of Guadalajara to assist in future planning and regulation of urban development, including urban and rural cadastral surveys and the establishment of diverse public services. Our work includes careful examination and evaluation of the quality and distribution of these geodetic sites with regard to anticipated growth of the metropolitan municipalities, and the vulnerability of urban zones to ground subsidence or landslides. Guadalajara is also located in a seismic zone, making precise continuous GPS measurements useful for identifying rates of strain accumulation and aseismic strain events that cannot be measured by seismographs.

  2. NS shear kinematics across the Lut block from a dense GPS velocity field in eastern Iran

    Science.gov (United States)

    Walpersdorf, A.; Tavakoli, F.; Hatzfeld, D.; Jadidi, A. M.; Vergnolle, M. M.; Aghamohammadi, A.; Djamour, Y.; Nankali, H. R.; Sedighi, M.

    2009-12-01

    Since 2004, extensive GPS campaigns and the upcoming Iranian permanent GPS network are monitoring the present-day deformation in eastern Iran. We present a new GPS velocity field extending from Central Iran to the Hellmand block on the Eurasian plate. It permits to monitor the right lateral NS shear across the aseismic Lut block between Central Iran and the Hellmand block. While existing tectonic models propose an increase of slip rate from west to east, we find balanced slip rates on both Lut block boundaries. The total shear between Central Iran and the Lut block (the western limit) is evaluated to 7.0 ± 0.5 mm/yr that are accommodated by the Gowk-Nayband fault system and the Anar fault. It even slightly exceeds the 5.5 ± 0.5 mm/yr of shear between the Lut block and stable Eurasia (the eastern limit), localized on different faults of the Sistan Suture zone. Tectonic models propose that at the northern Lut block limit the regional NS shear leads to left lateral activity of large EW trending strike-slip faults (Doruneh and Dasht-e-Bayaz faults). On none of them a significant left lateral displacement is observed, in spite of the recent seismic activity of the Dasht-e-Bayaz and Abiz faults. The instantaneous active deformation is localized rather on oblique NW-SE oriented thrust faults (Janggal and Ferdows thrusts). Individual instantaneous fault slip rates are compared to short term and long term geological estimates. We find that GPS slip rates are in most cases coherent with short term geologic determinations (from dating of geomorphologic offsets over some 10-100 ka). Some differences with respect to long term estimates (from total geologic fault offsets and onset ages of several Ma) indicate non-constant slip rates over different time scales or that the onset of the present-day deformation presumed to 3-7 Ma in eastern Iran has to be revised.

  3. Dynamic accuracy of GPS receivers for use in health research: a novel method to assess GPS accuracy in real-world settings

    DEFF Research Database (Denmark)

    Schipperijn, Jasper; Kerr, Jacqueline; Duncan, Scott

    2014-01-01

    The emergence of portable global positioning system (GPS) receivers over the last 10 years has provided researchers with a means to objectively assess spatial position in free-living conditions. However, the use of GPS in free-living conditions is not without challenges and the aim of this study....... The dynamic spatial accuracy of the tested device is not perfect, but we feel that it is within acceptable limits for larger population studies. Longer recording periods, for a larger population are likely to reduce the potentially negative effects of measurement inaccuracy. Furthermore, special care should...

  4. Spaceborne GPS receiver antenna phase center offset and variation estimation for the Shiyan 3 satellite

    Directory of Open Access Journals (Sweden)

    Gu Defeng

    2016-10-01

    Full Text Available In determining the orbits of low Earth orbit (LEO satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO and phase center variations (PCVs are gradually becoming a major limiting factor for continued improvements to accuracy. Shiyan 3, a small satellite mission for space technology experimentation and climate exploration, was developed by China and launched on November 5, 2008. The dual-frequency GPS receiver payload delivers 1 Hz data and provides the basis for precise orbit determination within the range of a few centimeters. The antenna PCO and PCV error characteristics and the principles influencing orbit determination are analyzed. The feasibility of PCO and PCV estimation and compensation in different directions is demonstrated through simulation and in-flight tests. The values of receiver antenna PCO and PCVs for Gravity Recovery and Climate Experiment (GRACE and Shiyan 3 satellites are estimated from one month of data. A large and stable antenna PCO error, reaching up to 10.34 cm in the z-direction, is found with the Shiyan 3 satellite. The PCVs on the Shiyan 3 satellite are estimated and reach up to 3.0 cm, which is slightly larger than that of GRACE satellites. Orbit validation clearly improved with independent k-band ranging (KBR and satellite laser ranging (SLR measurements. For GRACE satellites, the average root mean square (RMS of KBR residuals improved from 1.01 cm to 0.88 cm. For the Shiyan 3 satellite, the average RMS of SLR residuals improved from 4.95 cm to 4.06 cm.

  5. Spaceborne GPS receiver antenna phase center offset and variation estimation for the Shiyan 3 satellite

    Institute of Scientific and Technical Information of China (English)

    Gu Defeng; Lai Yuwang; Liu Junhong; Ju Bing; Tu Jia

    2016-01-01

    In determining the orbits of low Earth orbit (LEO) satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO) and phase center variations (PCVs) are gradually becoming a major limiting factor for continued improvements to accuracy. Shiyan 3, a small satellite mission for space technology experimentation and climate exploration, was developed by China and launched on November 5, 2008. The dual-frequency GPS receiver payload delivers 1 Hz data and provides the basis for precise orbit determination within the range of a few centime-ters. The antenna PCO and PCV error characteristics and the principles influencing orbit determi-nation are analyzed. The feasibility of PCO and PCV estimation and compensation in different directions is demonstrated through simulation and in-flight tests. The values of receiver antenna PCO and PCVs for Gravity Recovery and Climate Experiment (GRACE) and Shiyan 3 satellites are estimated from one month of data. A large and stable antenna PCO error, reaching up to 10.34 cm in the z-direction, is found with the Shiyan 3 satellite. The PCVs on the Shiyan 3 satellite are estimated and reach up to 3.0 cm, which is slightly larger than that of GRACE satellites. Orbit validation clearly improved with independent k-band ranging (KBR) and satellite laser ranging (SLR) measurements. For GRACE satellites, the average root mean square (RMS) of KBR resid-uals improved from 1.01 cm to 0.88 cm. For the Shiyan 3 satellite, the average RMS of SLR resid-uals improved from 4.95 cm to 4.06 cm.

  6. Standalone GPS L1 C/A Receiver for Lunar Missions.

    Science.gov (United States)

    Capuano, Vincenzo; Blunt, Paul; Botteron, Cyril; Tian, Jia; Leclère, Jérôme; Wang, Yanguang; Basile, Francesco; Farine, Pierre-André

    2016-03-09

    Global Navigation Satellite Systems (GNSSs) were originally introduced to provide positioning and timing services for terrestrial Earth users. However, space users increasingly rely on GNSS for spacecraft navigation and other science applications at several different altitudes from the Earth surface, in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), Geostationary Earth Orbit (GEO), and feasibility studies have proved that GNSS signals can even be tracked at Moon altitude. Despite this, space remains a challenging operational environment, particularly on the way from the Earth to the Moon, characterized by weaker signals with wider gain variability, larger dynamic ranges resulting in higher Doppler and Doppler rates and critically low satellite signal availability. Following our previous studies, this paper describes the proof of concept "WeakHEO" receiver; a GPS L1 C/A receiver we developed in our laboratory specifically for lunar missions. The paper also assesses the performance of the receiver in two representative portions of an Earth Moon Transfer Orbit (MTO). The receiver was connected to our GNSS Spirent simulator in order to collect real-time hardware-in-the-loop observations, and then processed by the navigation module. This demonstrates the feasibility, using current technology, of effectively exploiting GNSS signals for navigation in a MTO.

  7. Constraints on snow accumulation and firn density in Greenland using GPS receivers

    NARCIS (Netherlands)

    Larson, Kristine; Wahr, John; Kuipers Munneke, Peter

    2015-01-01

    Data from three continuously operating GPS sites located in the interior of the Greenland ice sheet are analyzed. Traditionally these kinds of GPS installations (where the GPS antenna is placed on a pole deployed into the firn) are used to estimate the local horizontal speed and direction of the ice

  8. Constraints on snow accumulation and firn density in Greenland using GPS receivers

    NARCIS (Netherlands)

    Larson, Kristine; Wahr, John; Kuipers Munneke, Peter|info:eu-repo/dai/nl/304831891

    2015-01-01

    Data from three continuously operating GPS sites located in the interior of the Greenland ice sheet are analyzed. Traditionally these kinds of GPS installations (where the GPS antenna is placed on a pole deployed into the firn) are used to estimate the local horizontal speed and direction of the ice

  9. Phase Residual Estimations for PCVs of Spaceborne GPS Receiver Antenna and Their Impacts on Precise Orbit Determination of GRACE Satellites

    Institute of Scientific and Technical Information of China (English)

    TU Jia; GU Defeng; WU Yi; YI Dongyun

    2012-01-01

    In-flight phase center systematic errors of global positioning system (GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual approach is one of the valid methods for in-flight calibration of GPS receiver antenna phase center variations (PCVs) from ground calibration.In this paper,followed by the correction model of spaceborne GPS receiver antenna phase center,ionosphere-free PCVs can be directly estimated by ionosphere-free carrier phase post-fit residuals of reduced dynamic orbit determination.By the data processing of gravity recovery and climate experiment (GRACE) satellites,the following conclusions are drawn.Firstly,the distributions of ionosphere-free carrier phase post-fit residuals from different periods have the similar systematic characteristics.Secondly,simulations show that the influence of phase residual estimations for ionosphere-free PCVs on orbit determination can reach the centimeter level.Finally,it is shown by in-flight data processing that phase residual estimations of current period could not only be used for the calibration for GPS receiver antenna phase center of foretime and current period,but also be used for the forecast of ionosphere-free PCVs in future period,and the accuracy of orbit determination can be well improved.

  10. Increase of Carrier-to-Noise Ratio in GPS Receivers Caused by Continuous-Wave Interference

    Directory of Open Access Journals (Sweden)

    J. Li

    2016-09-01

    Full Text Available The increased use of personal private devices (PPDs is drawing greater attention to the effects of continuous-wave interference (CWI on the performance of global positioning system (GPS receivers. The effective carrier-to-noise density ratio (C/N0, an essential index of GNSS receiver performance, is studied in this paper. Receiver tracking performance deteriorates in the presence of interference. Hence, the effective C/N0, which measures tracking performance, decreases. However, simulations and bench tests have shown that the effective C/N0 may increase in the presence of CWI. The reason is that a sinusoidal signal is induced by the CWI in the correlator and may be tracked by the carrier tracking loop. Thus, the effective carrier power depends on the power of the signal induced by the CWI, and the effective C/N0 increases with the power of the CWI. The filtering of the CWI in the carrier tracking loop correlator and its effect on the phase locked loop (PLL tracking performance are analyzed. A mathematical model of the effect of the CWI on the effective C/N0 is derived. Simulation results show that the proposed model is more accurate than existing models, especially when the jam-to-signal ratio (JSR is greater than 30 dBc.

  11. Seismo-traveling ionospheric disturbances of earthquake and tsunami waves observed by space- and ground-based GPS receivers

    Science.gov (United States)

    Liu, J. Y. G.; Chen, C. Y.; Lin, C. H.

    2015-12-01

    FORMOSAT-3/COSMIC (F3/C) is a constellation of six microsatellites launched on April 15, 2006 and has been orbiting with 72° inclination at 700 to 800 km above the earth since December 2007. The main payload of the F3/C is the GPS Occultation eXperiment (GOX) which carries out probing the radio occultation (RO) total electron content between GPS satellite and F3/C. Therefore, F3/C provides us an excellent opportunity to vertically scan ionospheric electron density from 100 up to 800 km altitude. On the other hand, worldwide ground-based GPS receivers can be employed to observe traveling ionospheric disturbances of the TEC. Here, we present the ionosphere response to seismic and tsunami waves by means of F3/C RO TEC and worldwide ground-based GPS TEC as well as existing data of infrasondes, magnetometers, and Doppler sounding systems during the 11 March 2011 M9.0 Tohoku earthquake.

  12. Standard Positioning Performance Evaluation of a Single-Frequency GPS Receiver Implementing Ionospheric and Tropospheric Error Corrections

    Directory of Open Access Journals (Sweden)

    Alban Rakipi

    2015-03-01

    Full Text Available This paper evaluates the positioning performance of a single-frequency software GPS receiver using Ionospheric and Tropospheric corrections. While a dual-frequency user has the ability to eliminate the ionosphere error by taking a linear combination of observables, a single-frequency user must remove or calibrate this error by other means. To remove the ionosphere error we take advantage of the Klobuchar correction model, while for troposphere error mitigation the Hopfield correction model is used. Real GPS measurements were gathered using a single frequency receiver and post–processed by our proposed adaptive positioning algorithm. The integrated Klobuchar and Hopfield error correction models yeild a considerable reduction of the vertical error. The positioning algorithm automatically combines all available GPS pseudorange measurements when more than four satellites are in use. Experimental results show that improved standard positioning is achieved after error mitigation.

  13. Error and Performance Analysis of MEMS-based Inertial Sensors with a Low-cost GPS Receiver

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2008-03-01

    Full Text Available Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS, have been widely utilized and their applications are becoming popular, not only in military or commercial applications, but also for everyday life. Although GPS measurements are the essential information for currently developed land vehicle navigation systems (LVNS, GPS signals are often unavailable or unreliable due to signal blockages under certain environments such as urban canyons. This situation must be compensated in order to provide continuous navigation solutions. To overcome the problems of unavailability and unreliability using GPS and to be cost and size effective as well, Micro Electro Mechanical Systems (MEMS based inertial sensor technology has been pushing for the development of low-cost integrated navigation systems for land vehicle navigation and guidance applications. This paper will analyze the characterization of MEMS based inertial sensors and the performance of an integrated system prototype of MEMS based inertial sensors, a low-cost GPS receiver and a digital compass. The influence of the stochastic variation of sensors will be assessed and modeled by two different methods, namely Gauss-Markov (GM and AutoRegressive (AR models, with GPS signal blockage of different lengths. Numerical results from kinematic testing have been used to assess the performance of different modeling schemes.

  14. A 10-Year Comparison of Water Levels Measured with a Geodetic GPS Receiver Versus a Conventional Tide Gauge

    Science.gov (United States)

    Larson, Kristine M.; Ray, Richard D.; Williams, Simon D. P.

    2017-01-01

    A standard geodetic GPS receiver and a conventional Aquatrak tide gauge, collocated at Friday Harbor, Washington, are used to assess the quality of 10 years of water levels estimated from GPS sea surface reflections.The GPS results are improved by accounting for (tidal) motion of the reflecting sea surface and for signal propagation delay by the troposphere. The RMS error of individual GPS water level estimates is about 12 cm. Lower water levels are measured slightly more accurately than higher water levels. Forming daily mean sea levels reduces the RMS difference with the tide gauge data to approximately 2 cm. For monthly means, the RMS difference is 1.3 cm. The GPS elevations, of course, can be automatically placed into a well-defined terrestrial reference frame. Ocean tide coefficients, determined from both the GPS and tide gauge data, are in good agreement, with absolute differences below 1 cm for all constituents save K1 and S1. The latter constituent is especially anomalous, probably owing to daily temperature-induced errors in the Aquatrak tide gauge

  15. An Autonomous Waist-Mounted Pedestrian Dead Reckoning System by Coupling Low-Cost MEMS Inertial Sensors and GPS Receiver for 3D Urban Navigation

    Directory of Open Access Journals (Sweden)

    Jin-feng Li

    2014-03-01

    Full Text Available Global positioning system (GPS offers a perfect solution to the 3-dimension(3D navigation. However, the GPS-only solution can’t provide continuous and accurate position information in the unfavourable environments, such as urban canyons, indoor buildings, dense foliages due to signal blockage, interference, or jamming etc. A pedestrian dead reckoning (PDR system integrating the self-contained inertial sensors with GPS receiver is proposed to provide a seamless outdoor/indoor 3D pedestrian navigation. The MEM sensor module attached to the user’s waist is composed of a 3-axis accelerometer, a 3-axis gyroscope, a 3-axis digital compass and a barometric pressure sensor, which doesn’t rely on any infrastructure. The positioning algorithm implements a loosely coupled GPS/PDR integration. The sensor data are fused via a complementary filter to reduce the integral drift and magnetic disturbance for accurate heading. The four key components of the PDR algorithm: step detection, stride length estimation, heading and position determination are described in detail and implemented by the microcontroller. The step is detected using the accelerometer signals by the combination of three approaches: sliding window, peak detection and zero-crossing. The step length is estimated using a simple linear relationship with the step frequency. By coupling the step length, azimuth and height, 3D navigation is achieved. The performance of the proposed system is carefully verified through several field outdoor and indoor walking tests. The positioning errors are below 3% of the total traveled distance. The main error source comes from the orientation estimation. The results indicate that the proposed system is effective in accurate tracking.

  16. Constraints on Snow Accumulation and Firn Density in Greenland Using GPS Receivers

    Science.gov (United States)

    Larson, K. M.; Wahr, J. M.; Kuipers Munneke, P.

    2014-12-01

    Data from three continuously-operating GPS sites and located on the interior of the Greenland ice sheet are analyzed. In each case, the GPS antenna has been placed on a pole that is set in the firn layer above the ice. Traditionally these kinds of GPS installations are used as base stations or to estimate the local horizontal speed and direction of the ice sheet. However, these data are also sensitive to the vertical displacement of the pole as it moves through the firn layer. A new method developed to measure snow depth variations with reflected GPS signals is applied to these GPS data from Greenland. This method provides a constraint on the vertical distance between the GPS antenna and the surface snow layer. The vertical positions and snow surface heights are then used to assess output from surface accumulation and firn densification models, showing agreement better than 10% at the sites with the longest records. Comparisons between the GPS reflection method and in situ snow sensors at the Dye 2 site show excellent agreement, capturing the dramatic changes observed in Greenland during the 2012 summer melt season. The GPS vertical measurements and snow surface layer estimates can help validate surface elevation results obtained using satellite altimetry.

  17. Ensaios estáticos e cinemáticos de receptores de GPS Static and cinematic tests of GPS receivers

    Directory of Open Access Journals (Sweden)

    Thiago M. Machado

    2011-09-01

    Full Text Available Os sistemas de navegação global por satélites, em especial o GPS, mais completo e conhecido, tem multiplicado suas aplicações no meio agrícola. O desempenho de receptores, no entanto, não é devidamente conhecido entre os usuários; assim, este trabalho visou avaliar receptores com distintas configurações e o uso de correções diferenciais por meio de ensaios estáticos e cinemáticos; no primeiro caso foram avaliados, concomitantemente, oito receptores ativando ou não as correções diferenciais WAAS e EGNOS, além de sinais privados específicos para alguns desses receptores; também se testaram intensidades de filtragem disponíveis em alguns dos receptores. No ensaio cinemático utilizaram-se dois receptores de navegação fixados sobre a cabine de um trator, tendo como referência um receptor GPS RTK. Na primeira avaliação os resultados mostraram que as correções WAAS e EGNOS não adicionam qualidade ao posicionamento na região de Piracicaba, SP. As correções diferencias privadas via satélite demonstraram ser mais acuradas que os demais sistemas avaliados. O ensaio sob condição cinemática, com GPS RTK de referência, permitiu o cálculo de erros no sentido perpendicular ao percurso, indicando ser de fácil execução.The global navigation satellite systems, especially the GPS, well known and totally implemented, have been intensively used in agriculture. The performance of receivers, however, is not properly disseminated among the users, so the aim of this work is to evaluate receivers with distinct configurations and the use of differential corrections through static and cinematic tests. In the first case eight receivers were tested activating or not the differential corrections WAAS and EGNOS, besides specific augmentation signals for some of the receivers and filtering intensities available for some of the receivers. In the cinematic condition two navigation receivers were mounted on the top of a tractor cab and

  18. Tikhonov-based ARCE algorithm and its applications in rapid positioning using single frequency GPS receivers

    Science.gov (United States)

    Fan, Shijie; Wang, Zhenjie; Peng, Xiuying

    2008-10-01

    ARCE (Ambiguity Resolution Using Constraint Equation) is a new fast method to resolve the integer ambiguities based on LSE (Least-Squares Estimate) and null space, which is suitable for single frequency GPS receivers and whose necessary observation time span of fixing the integer ambiguities correctly is relatively long (say, at least one minute). In this paper, ARCE is improved for deformation monitoring when there is only one epoch phase observation. In this instance, the normal matrix is rank-deficient and it is impossible to fix the integer ambiguities correctly using ARCE if LSE is employed. In allusion to the above case, based on Tikhonov regularization theorem, a new regularizer is designed to transform the rank-deficient normal matrix to a full rank one. The accurate float ambiguity solutions are obtained and the corresponding search range of the integer ambiguities diminishes. So, the integer ambiguities can be fixed using ARCE. The effect of the single epoch algorithm is tested utilizing a baseline whose length over 3KM and the results show that the success rate of fixing the integer ambiguities using the new algorithm can achieve to over 90 percent.

  19. A fully integrated frequency synthesizer for a dual-mode GPS and Compass receiver

    Institute of Scientific and Technical Information of China (English)

    Chu Xiaojie; Lin Min; Shi Yin; Dai F F

    2012-01-01

    This paper presents a fully integrated frequency synthesizer for a dual-mode GPS and Compass receiver fabricated in a 0.13 μm CMOS technology.The frequency synthesizer is implemented with an on-chip symmetric inductor and an on-chip loop filter.A capacitance multiplying approach is proposed in the on-chip loop filter design for area-saving consideration.Pulse-swallow topology with a multistage noise shaping △ Σ modulator is adopted in the frequency divider design.The synthesizer generates local oscillating signals at 1571.328 MHz and 1568.259 MHz with a 16.368 MHz reference clock by working in integer and fractional modes.Measurement results show that the phase noise of the synthesizer achieves -91.3 dBc/Hz and -117 dBc/Hz out of band at 100 kHz and 1 MHz frequency offset,separately.The proposed frequency synthesizer consumes 8.6 mA from a 1.2 V power supply and occupies an area of 0.92 mm2.

  20. Dynamic Accuracy of GPS Receivers for Use in Health Research: A Novel Method to Assess GPS Accuracy in Real-World Settings

    Science.gov (United States)

    Schipperijn, Jasper; Kerr, Jacqueline; Duncan, Scott; Madsen, Thomas; Klinker, Charlotte Demant; Troelsen, Jens

    2014-01-01

    The emergence of portable global positioning system (GPS) receivers over the last 10 years has provided researchers with a means to objectively assess spatial position in free-living conditions. However, the use of GPS in free-living conditions is not without challenges and the aim of this study was to test the dynamic accuracy of a portable GPS device under real-world environmental conditions, for four modes of transport, and using three data collection intervals. We selected four routes on different bearings, passing through a variation of environmental conditions in the City of Copenhagen, Denmark, to test the dynamic accuracy of the Qstarz BT-Q1000XT GPS device. Each route consisted of a walk, bicycle, and vehicle lane in each direction. The actual width of each walking, cycling, and vehicle lane was digitized as accurately as possible using ultra-high-resolution aerial photographs as background. For each trip, we calculated the percentage that actually fell within the lane polygon, and within the 2.5, 5, and 10 m buffers respectively, as well as the mean and median error in meters. Our results showed that 49.6% of all ≈68,000 GPS points fell within 2.5 m of the expected location, 78.7% fell within 10 m and the median error was 2.9 m. The median error during walking trips was 3.9, 2.0 m for bicycle trips, 1.5 m for bus, and 0.5 m for car. The different area types showed considerable variation in the median error: 0.7 m in open areas, 2.6 m in half-open areas, and 5.2 m in urban canyons. The dynamic spatial accuracy of the tested device is not perfect, but we feel that it is within acceptable limits for larger population studies. Longer recording periods, for a larger population are likely to reduce the potentially negative effects of measurement inaccuracy. Furthermore, special care should be taken when the environment in which the study takes place could compromise the GPS signal. PMID:24653984

  1. Miniaturized Radiation Hardened Beam-Steerable GPS Receiver Front End Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Position, Navigation and Timing (PNT) capability via GPS services are used by NASA for (1) real-time on-board autonomous navigation, (2) attitude determination and...

  2. Comparison of the historic seismicity and strain-rate pattern from a dense GPS-GNSS network solution in the Italian Peninsula

    Directory of Open Access Journals (Sweden)

    Giuseppe Casula

    2016-09-01

    Full Text Available We present a dense crustal velocity field and corresponding strain-rate pattern computed using Global Positioning System (GPS- Global Navigation Satellite System (GNSS data from several hundred permanent stations in the Italian Peninsula. GPS data analysis is based on the GAMIT/GLOBK 10.6 software, which was developed and maintained mainly by Massachusetts Institute of Technology (MIT, using tools based on the distributed-sessions approach implemented in this package. The GPS data span the period from January 2008 to December 2012 and come from several different permanent GPS networks in Italy. The GLOBK package implemented in the last version of the GAMIT package is used to compute the position time-series and velocities registered in the International Terrestrial Reference Frame (ITRF 2008. The resulting high-density intra-plate velocity field provides indications of the tectonics of the Mediterranean region. A computation of the strain-rate pattern from GPS data is performed and compared with the map of the epicentral locations of historical earthquakes that occurred in the last 1000 years in the Italian territory, showing that, in general, higher crustal deformation rates are active in regions affected by seismicity of greater magnitude.

  3. Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment

    Science.gov (United States)

    Zhang, Baocheng

    2016-07-01

    The high sampling rate along with the global coverage of ground-based receivers makes Global Positioning System (GPS) data particularly ideal for sensing the Earth's ionosphere. Retrieval of slant total electron content measurements (TECMs) constitutes a key first step toward extracting various ionospheric parameters from GPS data. Within the ionospheric community, the interpretation of TECM is widely recognized as the slant total electron content along the satellite receiver line of sight, biased by satellite and receiver differential code biases (DCBs). The Carrier-to-Code Leveling (CCL) has long been used as a geometry-free method for retrieving TECM, mainly because of its simplicity and effectiveness. In fact, however, the CCL has proven inaccurate as it may give rise to TECM very susceptible to so-called leveling errors. With the goal of attaining more accurate TECM retrieval, we report in this contribution two other methods than the CCL, namely, the Precise Point Positioning (PPP) and the Array-aided PPP (A-PPP). The PPP further exploits the International GPS Service (IGS) orbit and clock products and turns out to be a geometry-based method. The A-PPP is designed to retrieve TECM from an array of colocated receivers, taking advantage of the broadcast orbit and clock products. Moreover, A-PPP also takes into account the fact that the ionospheric effects measured from one satellite to all colocated receivers ought to be the same, thus leading to the estimability of interreceiver DCB. We perform a comparative study of the formal precision and the empirical accuracy of the TECM that are retrieved, respectively, by three methods from the same set of GPS data. Results of such a study can be used to assess the actual performance of the three methods. In addition, we check the temporal stability in A-PPP-derived interreceiver DCB estimates over time periods ranging from 1 to 3 days.

  4. Analysis on working principle and error of GPS receiver%GPS接收机工作原理与误差分析

    Institute of Scientific and Technical Information of China (English)

    王庆光

    2011-01-01

    随着GPS应用的深入,对GPS接收机性能也提出了更高的要求.研究了GPS接收机的工作原理、和GPS接收机有关的定位误差与应对措施,并指出GPS接收机的发展动向,对GPS今后的发展具有一定的现实意义.%With the deepening of the GPS application,it is put forward higher requirements for GPS receiver performance. The paper describes the working principle and positioning errors of GPS receiver and relevant measurements. Finally, the development' trend of the GPS receiver is expounded, which has the vital Practical significance for GPS future development.

  5. GPS receivers for georeferencing of spatial variability of soil attributes Receptores GPS para georreferenciamento da variabilidade espacial de atributos do solo

    Directory of Open Access Journals (Sweden)

    David L Rosalen

    2011-12-01

    Full Text Available The characterization of the spatial variability of soil attributes is essential to support agricultural practices in a sustainable manner. The use of geostatistics to characterize spatial variability of these attributes, such as soil resistance to penetration (RP and gravimetric soil moisture (GM is now usual practice in precision agriculture. The result of geostatistical analysis is dependent on the sample density and other factors according to the georeferencing methodology used. Thus, this study aimed to compare two methods of georeferencing to characterize the spatial variability of RP and GM as well as the spatial correlation of these variables. Sampling grid of 60 points spaced 20 m was used. For RP measurements, an electronic penetrometer was used and to determine the GM, a Dutch auger (0.0-0.1 m depth was used. The samples were georeferenced using a GPS navigation receiver, Simple Point Positioning (SPP with navigation GPS receiver, and Semi-Kinematic Relative Positioning (SKRP with an L1 geodetic GPS receiver. The results indicated that the georeferencing conducted by PPS did not affect the characterization of spatial variability of RP or GM, neither the spatial structure relationship of these attributes.A caracterização da variabilidade espacial dos atributos do solo é indispensável para subsidiar práticas agrícolas de maneira sustentável. A utilização da geoestatística para caracterizar a variabilidade espacial desses atributos, como a resistência mecânica do solo à penetração (RP e a umidade gravimétrica do solo (UG, é, hoje, prática usual na agricultura de precisão. O resultado da análise geoestatística é dependente da densidade amostral e de outros fatores, como o método de georreferencimento utilizado. Desta forma, o presente trabalho teve como objetivo comparar dois métodos de georreferenciamento para a caracterização da variabilidade espacial da RP e da UG, bem como a correlação espacial dessas vari

  6. Studying Convective Events Over Southern Arizona by Using Ground GPS Receivers and Cloud to Ground Lightning

    Science.gov (United States)

    Orduño, A. M.; Sosa, C. M.; Jacobo, R. A.

    2013-05-01

    Over the last decades, Global Position System (GPS) satellites have been used for in various fields of the Earth Sciences. In particular, "GPS Meteorology" was born in the attempt to retrieve water vapor, specifically column-integrated water vapor or, precipitable water vapor (PWV), that results from the noise induced by the atmosphere in the GPS signal. Monitoring PWV with GPS is relatively inexpensive, works under all weather conditions, and has a high time resolution which complements traditional techniques such as radiosondes and satellite-based retrievals. The North American Monsoon (NAM) is a seasonal system that affects the southwestern of United States and northwestern Mexico. Atmospheric Water Vapor is transported from the Gulf of California, Pacific Ocean and the Gulf of Mexico to the continental areas and this contribute to the genesis of convective systems that develop over this region. In many cases, these systems are characterized by relatively short lifetimes, a great amount of precipitation accompanied with lightning making it difficult to study with radiosondes, given their limited time resolution (operationally twice a day). On the other hand, GOES satellite has better time resolution (one hour), but does not provide water vapor in cloudy conditions, precisely when the data are needed. This makes GPS a great tool to study deep atmospheric convection over during the NAM. During the monsoon season 2002 and 2003, we noted that local GPS and the radiosondes launched in Tucson, Arizona showed, for some cases, a significant discrepancy in their PWV estimation. In determining the causes of these discrepancies we discovered that the GPS was detecting convective events in its vicinity that the radiosondes could not detect, a strength that had not considered before. Convective activity in Southern Arizona often produces gust fronts that result in dramatic changes of temperature and humidity. These gust fronts also generate a shift in wind direction and

  7. Real-time differential GPS/GLONASS trials in Europe using all-in-view 20-channel receivers

    Science.gov (United States)

    Capaccio, S.; Lowe, D.; Walsh, D. M. A.; Daly, P.

    Following the initial development of 20-channel, all-in-view Global Navigation Satellite System (GNSS), GPS/GLONASS/Inmarsat-3, receivers at the Institute of Satellite Navigation (ISN), University of Leeds, a modification programme has been undertaken to allow real-time differential corrections to be sent from one 20-channel receiver to another identical receiver using a serial link between them. The differential correction software incorporates the RTCM SC-104 and RTCA DO-217 format developed specifically for GPS and adjusted by the ISN to allow simultaneous GLONASS operation.After successful laboratory testing, real-time differential GNSS tests were successfully completed in static mode between Aberdeen and Leeds via the SkyFix differential data-link, and in dynamic mode at DTEO Boscombe Down using a C-band data-link between the ground and a receiver on board the DRA BAC 1-11 aircraft. The aims of the tests were, (i) to demonstrate real-time differential GNSS position-fixing, (ii) to establish the accuracy improvements brought about, and (iii) to examine the effects of data-link latency and satellite PDOP on the solution accuracy.

  8. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone GPS Receiver.

    Science.gov (United States)

    Wang, Fuhong; Gong, Xuewen; Sang, Jizhang; Zhang, Xiaohong

    2015-12-04

    Satellite remote sensing systems require accurate, autonomous and real-time orbit determinations (RTOD) for geo-referencing. Onboard Global Positioning System (GPS) has widely been used to undertake such tasks. In this paper, a novel RTOD method achieving decimeter precision using GPS carrier phases, required by China's HY2A and ZY3 missions, is presented. A key to the algorithm success is the introduction of a new parameter, termed pseudo-ambiguity. This parameter combines the phase ambiguity, the orbit, and clock offset errors of the GPS broadcast ephemeris together to absorb a large part of the combined error. Based on the analysis of the characteristics of the orbit and clock offset errors, the pseudo-ambiguity can be modeled as a random walk, and estimated in an extended Kalman filter. Experiments of processing real data from HY2A and ZY3, simulating onboard operational scenarios of these two missions, are performed using the developed software SATODS. Results have demonstrated that the position and velocity accuracy (3D RMS) of 0.2-0.4 m and 0.2-0.4 mm/s, respectively, are achieved using dual-frequency carrier phases for HY2A, and slightly worse results for ZY3. These results show it is feasible to obtain orbit accuracy at decimeter level of 3-5 dm for position and 0.3-0.5 mm/s for velocity with this RTOD method.

  9. An improved regularization method to resolve integer ambiguity in rapid positioning using single frequency GPS receivers

    Institute of Scientific and Technical Information of China (English)

    OU Jikun; WANG Zhenjie

    2004-01-01

    A new approach is employed in GPS rapid positioning using several-epoch single frequency phase data. Firstly, the structure characteristic of the normal matrix in GPS rapid positioning is analyzed. Then, in the light of the characteristic, based on TIKHONOV regularization theorem, a new regularizer is designed to mitigate the ill-condition of the normal matrix. The accurate float ambiguity solutions and their MSEM (Mean Squared Error Matrix) are obtained using several-epoch single frequency phase data. Combined with LAMBDA method, the new approach was used to fix the integer ambiguities correctly and quickly using MSEM instead of the cofactor matrix of the ambiguities. Finally, a baseline over 3 km is taken as an example. The fixed integer ambiguities by the new approach using five epoch single frequency phase data are the same as those fixed by Bernese software using long time data. The success rate of fixing the integer ambiguities is 100 percent using 197 group data. Compared with the traditional methods, the new approach provides better accuracy and efficiency in GPS rapid positioning. So, the new approach has an extensive application outlook in deformation monitoring, pseudokinematic relative positioning, and attitude determination, etc.

  10. Receiver DCB estimation and GPS vTEC study at a low latitude station in the South Pacific

    Science.gov (United States)

    Prasad, Ramendra; Kumar, Sushil; Jayachandran, P. T.

    2016-11-01

    The statistical estimation of receiver differential code bias (DCB) of the GSV4004B receiver at a low latitude station, Suva (lat. 18.15°S, long. 178.45°E, Geomag. Lat. 21.07°S), Fiji, and the subsequent behaviour of vTEC, are presented. By means of least squares linear regression fitting technique, the receiver DCB was determined using the GPS vTEC data recorded during the year 2010, CODE TEC and IRI-2012 model for 2010. To substantiate the results, minimization of the standard deviation (SD) method was also used for GPS vTEC data. The overall monthly DCB was estimated to be in the range of 62.6 TECU. The vTEC after removing the resultant monthly DCB was consistent with other low latitude observations. The GPS vTEC 2010 data after eliminating the resultant DCB were lower in comparison to Faraday rotation vTEC measurements at Suva during 1984 primarily due to higher solar activity during 1984 as compared to 2010. Seasonally, vTEC was maximum during summer and minimum during winter. The winter showed least vTEC variability whereas equinox showed the largest daytime variability. The geomagnetic disturbances effect showed that both vTEC and its variability were higher on magnetically disturbed days as compared to quiet days with maximum variability in the daytime. Two geomagnetic storms of moderate strengths with main phases in the local daytime showed long duration (∼52 h) increase in vTEC by 33-67% which can be accounted by changes in E×B drifts due to prompt penetration of storm-time auroral electric field in the daytime and disturbance dynamo electric field in the nighttime to low latitudes.

  11. GPS for land surveyors

    CERN Document Server

    Van Sickle, Jan

    2008-01-01

    The GPS SignalGlobal Positioning System (GPS) Signal StructureTwo ObservablesPseudorangingCarrier Phase RangingBiases and SolutionsThe Error BudgetDifferencingThe FrameworkTechnological ForerunnersVery Long Baseline InterferometryTransitNavstar GPSGPS Segment OrganizationGPS ConstellationThe Control SegmentReceivers and MethodsCommon Features of GPS ReceiversChoosing a GPS ReceiverSome GPS Surveying MethodsCoordinatesA Few Pertinent Ideas About Geodetic Datums for GPSState Plane CoordinatesHeightsGPS Surveying TechniquesStatic GPS SurveyingReal-Time Kinematic (RTK) and Differential GPS (DGPS)T

  12. Weak signal acquisition enhancement in software GPS receivers – Pre-filtering combined post-correlation detection approach

    Directory of Open Access Journals (Sweden)

    G. Arul Elango

    2017-01-01

    Full Text Available The Civilian Global Positioning System (GPS receivers often encounter problems of interference and noise which degrade the receiver performance. The conventional methods of parallel code phase search acquisition with coherent, non-coherent and differential coherent detection for weak signal acquisition fail to enhance the signal for all conditions especially, when the Carrier to Noise ratio (C/N0 falls below 15 dB-Hz. Hence, the GPS receiver has to employ sophisticated techniques to excise the noise and to improve the Signal-to-Noise Ratio (SNR of the signal for further processing. In this paper, a pre-filtering technique of reduced rank Singular Spectral Analysis (SSA is proposed for noise excision and is processed through coherent, non-coherent and differential detection postcorrelation methods to retrieve the signal embedded in noise. Monte Carlo simulations carried out to examine the acquisition sensitivity at various power levels with the different postcorrelation approaches indicate that the SSA combined with differential detection approach provides a significant performance improvement with lesser mean acquisition time. It has 96% probability of detection at a worst signal power level of −159 dBm (i.e. C/N0 15 dB-Hz, compared to other conventional methods.

  13. Hacking GPS

    CERN Document Server

    Kingsley-Hughes, Kathie

    2005-01-01

    * This is the "user manual" that didn't come with any of the 30 million GPS receivers currently in use, showing readers how to modify, tweak, and hack their GPS to take it to new levels!* Crazy-cool modifications include exploiting secret keycodes, revealing hidden features, building power cords and cables, hacking the battery and antenna, protecting a GPS from impact and falls, making a screen protector, and solar-powering a GPS* Potential power users will take the function and performance of their GPS to a whole new level by hacking into the firmware and hacking into a PC connection with a GPS* Fear not! Any potentially dangerous mod (to the device) is clearly labeled, with precautions listed that should be taken* Game time! Readers can check out GPS games, check into hacking geocaching, and even use a GPS as a metal detector

  14. Precision, accuracy, and application of diver-towed underwater GPS receivers.

    Science.gov (United States)

    Schories, Dirk; Niedzwiedz, Gerd

    2012-04-01

    Diver-towed global positioning systems (GPS) handhelds have been used for a few years in underwater monitoring studies. We modeled the accuracy of this method using the software KABKURR originally developed by the University of Rostock for fishing and marine engineering. Additionally, three field experiments were conducted to estimate the precision of the method and apply it in the field: (1) an experiment of underwater transects from 5 to 35 m in the Southern Chile fjord region, (2) a transect from 5 to 30 m under extreme climatic conditions in the Antarctic, and (3) an underwater tracking experiment at Lake Ranco, Southern Chile. The coiled cable length in relation to water depth is the main error source besides the signal quality of the GPS under calm weather conditions. The forces used in the model resulted in a displacement of 2.3 m in a depth of 5 m, 3.2 m at a 10-m depth, 4.6 m in a 20-m depth, 5.5 m at a 30-m depth, and 6.8 m in a 40-m depth, when only an additional 0.5 m cable extension was used compared to the water depth. The GPS buoy requires good buoyancy in order to keep its position at the water surface when the diver is trying to minimize any additional cable extension error. The diver has to apply a tensile force for shortening the cable length at the lower cable end. Repeated diving along transect lines from 5 to 35 m resulted only in small deviations independent of water depth indicating the precision of the method for monitoring studies. Routing of given reference points with a Garmin 76CSx handheld placed in an underwater housing resulted in mean deviances less than 6 m at a water depth of 10 m. Thus, we can confirm that diver-towed GPS handhelds give promising results when used for underwater research in shallow water and open a wide field of applicability, but no submeter accuracy is possible due to the different error sources.

  15. Ionospheric modelling using GPS to calibrate the MWA. 1: Comparison of first order ionospheric effects between GPS models and MWA observations

    CERN Document Server

    Arora, B S; Ord, S M; Tingay, S J; Hurley-Walker, N; Bell, M; Bernardi, G; Bhat, R; Briggs, F; Callingham, J R; Deshpande, A A; Dwarakanath, K S; Ewall-Wice, A; Feng, L; For, B -Q; Hancock, P; Hazelton, B J; Hindson, L; Jacobs, D; Johnston-Hollitt, M; Kapińska, A D; Kudryavtseva, N; Lenc, E; McKinley, B; Mitchell, D; Oberoi, D; Offringa, A R; Pindor, B; Procopio, P; Riding, J; Staveley-Smith, L; Wayth, R B; Wu, C; Zheng, Q; Bowman, J D; Cappallo, R J; Corey, B E; Emrich, D; Goeke, R; Greenhill, L J; Kaplan, D L; Kasper, J C; Kratzenberg, E; Lonsdale, C J; Lynch, M J; McWhirter, S R; Morales, M F; Morgan, E; Prabu, T; Rogers, A E E; Roshi, A; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C L

    2015-01-01

    We compare first order (refractive) ionospheric effects seen by the Murchison Widefield Array (MWA) with the ionosphere as inferred from Global Positioning System (GPS) data. The first order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the Center for Orbit Determination in Europe (CODE), using data from globally distributed GPS receivers. However, for the more accurate local ionosphere estimates required for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver Differential Code Biases (DCBs). The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling, a requirement for establishing dense GPS networks in arbitr...

  16. Measuring snow liquid water content with low-cost GPS receivers.

    Science.gov (United States)

    Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram

    2014-11-06

    The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements.

  17. Measuring Snow Liquid Water Content with Low-Cost GPS Receivers

    Directory of Open Access Journals (Sweden)

    Franziska Koch

    2014-11-01

    Full Text Available The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS. For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0 and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements.

  18. Accurate Solution of Navigation Equations in GPS Receivers for Very High Velocities Using Pseudorange Measurements

    Directory of Open Access Journals (Sweden)

    N. Rahemi

    2014-01-01

    Full Text Available GPS is a satellite-based navigation system that is able to determine the exact position of objects on the Earth, sky, or space. By increasing the velocity of a moving object, the accuracy of positioning decreases; meanwhile, the calculation of the exact position in the movement by high velocities like airplane movement or very high velocities like satellite movement is so important. In this paper, seven methods for solving navigation equations in very high velocities using least squares method and its combination with the variance estimation methods for weighting observations based on their qualities are studied. Simulations on different data with different velocities from 100 m/s to 7000 m/s show that proposed method can improve the accuracy of positioning more than 50%.

  19. Heat exchanger modelling in central receiver solar power plant using dense particle suspension

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Gómez-García, Fabrisio; González-Aguilar, José; Romero, Manuel; Benoit, Hadrien; Flamant, Gilles

    2017-06-01

    In this paper, a detailed thermodynamic model for a heat exchanger (HX) working with a dense particle suspension (DPS) as heat transfer fluid (HTF) in the solar loop and water-steam as working fluid is presented. HX modelling is based on fluidized bed (FB) technology and its design has been conceived to couple solar plant using DPS as HTF and storage media with Rankine cycle for power generation. Using DPS as heat transfer fluid allows extending operating temperature range what will help to reduce thermal energy storage costs favoring higher energy densities but will also allow running power cycle at higher temperature what will increase its efficiency. Besides HX modelling description, this model will be used to reproduce solar plant performance under steady state and transient conditions.

  20. An Experimental Study of Advanced Receivers in a Practical Dense Small Cells Network

    DEFF Research Database (Denmark)

    Assefa, Dereje; Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão

    2016-01-01

    that advanced receivers can alleviate the need for detailed cell planning. To this end we adopt a hybrid simulation evaluation approach where propagation data are obtained from experimental analysis, and by which we analyse how MIMO constellation and network size impacts to the aim. The experimental data have...

  1. An Experimental GPS (Global Positioning System) Navigation Receiver for General Aviation: Design and Measured Performance.

    Science.gov (United States)

    1983-09-27

    Characteristics 33 3-6 Receiver AVC Lock Detector and C/No Estimator Characteristics 33 3-7 Software Functional Areas 46 3-8 Performance Monitor Parameters 54...must provide a pilot interface which is compatible with existing air navigation systems. This requirement stems from the way that pilots are accustomed...freq. Operates with cell search early/late code Supplies power reference to lock detectors Upon detection does false alarm check ""_____ TABLE 3-6

  2. Uniform temperature profile for a dense array CPV receiver under non uniform illumination profile

    Science.gov (United States)

    Riera, Sara; Barrau, Jérôme; Perona, Arnaud; Dollet, Alain; Rosell, Joan I.; Fréchette, Luc

    2014-09-01

    Previous experimental and numerical studies of hybrid cooling devices for CPV receivers were developed under uniform illumination profile conditions; but literature review shows that this uniformity assumption is difficult to satisfy in real conditions. This investigation presents the design and the validation of a hybrid cooling device able to tailor its local heat extraction capacity to 2D illumination profiles in order to provide a uniform temperature profile of the PV receiver as well as a low global thermal resistance coefficient. The inputs of the design procedure are the solar concentration, the coolant flow rate and its inlet temperature. As the illumination profile is 2D dependent, a matrix of pin fins is implemented and a hybrid Jet Impingement /Matrix of Pin Fins cooling device is experimentally tested and compared to a hybrid Jet Impingement / Microchannels cooling device developed previously. The results demonstrate similar performances for both designs. Furthermore, in contrast to the cooling scheme using longitudinal fins, the distribution of the pin fins can be tailored, in two dimensions, to the local need of heat extraction capacity.

  3. 基于ARM+FPGA的GPS接收机设计%Design of a GPS receiver based on ARM and FPGA

    Institute of Scientific and Technical Information of China (English)

    邢增强; 李金海; 梁华庆; 汪峰; 阎跃鹏

    2011-01-01

    The GPS receiver based on ARM and FPGA is designed for civilian and military application. The GP2015 chip is used as the receiver' s RF front-end. The AT91SAM9261 chip based on ARM9 core and The Cyclone Ⅱ seriers EP2C70F672I8 chip are used as the base-band processing part. Also the receiver' s software design is explained,including the capture engine,tracking engine,demodulation messages,and position resolution. Through the field test, the receiver's positioning precision is 6m ( longitude)/8m ( latitude ), and the dynamic performance is 2000m/s. The receiver can achieve high dynamic navigation and positioning. It has small size, low power consumption.%针对GPS接收机在民用和军事领域的重要应用,设计了一种基于ARM+ FPGA的GPS接收机.接收机的射频前端采用GP2015芯片,基带处理部分采用ARM9内核的A191 SAM9261芯片和CycloneⅡ系列的EP2C70F67218芯片.同时阐述来接收机的软件设计,包括捕获引擎、跟踪引擎、解调电文,定位解算等.该接收机通过现场实验定位精度为6m(经度)/8m(纬度),动态性能达2000m/s,可以实现高动态导航定位,同时体积小,功耗低.

  4. Efficacy of reduced dose of pegfilgrastim in Japanese breast cancer patients receiving dose-dense doxorubicin and cyclophosphamide therapy.

    Science.gov (United States)

    Mizuno, Yoshio; Fuchikami, Hiromi; Takeda, Naoko; Iwai, Masaru; Sato, Kazuhiko

    2017-01-01

    This retrospective study aimed to evaluate the efficacy of a 3.6-mg dose of pegfilgrastim for primary prophylaxis in Japanese breast cancer patients receiving dose-dense chemotherapy. Patients treated with adjuvant or neoadjuvant chemotherapy for early-stage breast cancer at the Tokyo-West Tokushukai Hospital were included in this analysis. Because 6 mg pegfilgrastim has not yet been approved for use in Japan, we compared the outcomes of a dose-dense doxorubicin and cyclophosphamide regimen plus 3.6 mg pegfilgrastim support with a conventional dose epirubicin and cyclophosphamide regimen. The incidence of febrile neutropenia, relative dose intensity, dose delay, dose reduction, regimen change and hospitalization because of neutropenia were assessed. From November 2013 to March 2016, 97 patients with stage I-III invasive breast cancer were analyzed (dose-dense doxorubicin and cyclophosphamide plus 3.6-mg pegfilgrastim group, n  =  41; epirubicin and cyclophosphamide group, n  =  56; median ages, 49.0 and 48.5 years, respectively). Febrile neutropenia occurred during the first chemotherapy cycle in 7 of 56 patients (12.5%) in the epirubicin and cyclophosphamide group and 0 of 41 patients in the dose-dense doxorubicin and cyclophosphamide group (P  =  0.02). The average relative dose intensities were 97.9% and 96.8%, respectively (P  =  0.28), with corresponding dose delay rates of 4.9% (2/41) and 16.1% (9/56), respectively (P  =  0.11) and dose reduction rates of 0% (0/41) and 7.1% (4/56), respectively (P  =  0.16). Our results indicate the efficacy of a 3.6-mg pegfilgrastim dose for the primary prevention of febrile neutropenia in dose-dense doxorubicin- and cyclophosphamide-treated Japanese breast cancer patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Dynamic modeling of a solar receiver/thermal energy storage system based on a compartmented dense gas fluidized bed

    Science.gov (United States)

    Solimene, Roberto; Chirone, Roberto; Chirone, Riccardo; Salatino, Piero

    2017-06-01

    Fluidized beds may be considered a promising option to collection and storage of thermal energy of solar radiation in Concentrated Solar Power (CSP) systems thanks to their excellent thermal properties in terms of bed-to-wall heat transfer coefficient and thermal diffusivity and to the possibility to operate at much higher temperature. A novel concept of solar receiver for combined heat and power (CHP) generation consisting of a compartmented dense gas fluidized bed has been proposed to effectively accomplish three complementary tasks: collection of incident solar radiation, heat transfer to the working fluid of the thermodynamic cycle and thermal energy storage. A dynamical model of the system laid the basis for optimizing collection of incident radiative power, heat transfer to the steam cycle, storage of energy as sensible heat of bed solids providing the ground for the basic design of a 700kWth demonstration CSP plant.

  6. Seamless Location Measuring System with Wifi Beacon Utilized and GPS Receiver based Systems in Both of Indoor and Outdoor Location Measurements

    OpenAIRE

    Kohei Arai

    2015-01-01

    A seamless location measuring system with WiFi beacon utilized and GPS receiver based systems in both of indoor and outdoor location measurements is proposed. Through the experiments in both of indoor and outdoor, it is found that location measurement accuracy is around 2-3 meters for the locations which are designated in both of indoor and outdoor.

  7. 高动态 BDS/GPS 联合接收机基带芯片设计与实现%Design and Implementation of Baseband ASIC for High Dynamic BDS/GPS Combined Receiver

    Institute of Scientific and Technical Information of China (English)

    侯冰; 张晓林; 郭九源; 赵雷

    2016-01-01

    A novel architecture of baseband ASIC for high dynamic BDS /GPS combined receiver is proposed.The design of general C /A code generator,carrier NCO,code NCO and architecture of acquisition and tracking channel,which is compatible with dual systems of BDS and GPS,is discussed in detail.The proposed architecture can decrease the acquisition time and improve the receiver’s dynamic range at low hardware cost.Based on the software simulation and FPGA prototype,a baseband ASIC is devel-oped.The above -mentioned design is fully verified by actual test results.%提出一种适用于高动态 BDS /GPS 联合接收机的基带芯片结构设计,主要包括兼容 BDS /GPS 的通用 C /A 码发生器模块、载波 NCO 模块、码 NCO 模块和捕获跟踪通道支路结构的设计。该设计可以节约硬件资源,提高卫星信号捕获速度和接收机动态范围。在软件仿真和 FPGA 原型验证的基础上,设计实现了一款 BDS /GPS 联合接收机基带芯片,实际样片测试结果验证了设计的有效性。

  8. Exatidão de posicionamento de um receptor GPS, operando sob diferentes coberturas vegetais Evaluation of the accuracy of positioning a GPS receiver operating under different vegetation covers

    Directory of Open Access Journals (Sweden)

    Rubens Angulo Filho

    2002-01-01

    Full Text Available Para avaliar a exatidão de posicionamento planimétrico do receptor GPS Trimble/Pro-XL, operando sob diferentes condições de cobertura vegetal (pastagem, seringueira, eucalipto e pinus, o equipamento foi posicionado alternadamente sobre 6 pontos, locados ao acaso nas áreas de estudo, variando o tempo de permanência (1 , 5 e 10 min mas com a mesma taxa de aquisição de dados (1 s fazendo-se, posteriormente, a correção diferencial (DGPS pós-processada dos dados. Os pontos também tiveram suas coordenadas levantadas pelo método topográfico, segundo a NBR 13133 - Execução de Levantamento Topográfico, para fins de comparação. De acordo com o método empregado e os resultados obtidos, foi possível separar as exatidões de posicionamento planimétrico, conforme o tipo de cobertura vegetal, em dois grupos: sem e com cobertura arbórea confirmando, assim, a interferência do dossel na recepção dos sinais emitidos pelos satélites GPS. O aumento do tempo de permanência melhorou a exatidão de posicionamento planimétrico, o que ratifica a escolha da metodologia de levantamento como sendo fundamental para a obtenção de bons resultados de posicionamento.To evaluate planimetric positioning accuracy of a GPS receiver (Trimble/Pro-XL, operating under different conditions of vegetation cover (pasture, rubber trees, eucalyptus and pine trees, 6 control points were located randomly in the study area. For comparison, their coordinates were first obtained by a conventional surveying method, according to NBR 13133 of Brazilian Surveying Standards. Afterwards, the GPS receiver was positioned on those control points, maintaining the acquisition rate of 1 s while changing the time for 1, 5 and 10 min, the DGPS method was used to correct the positioning coordinate data. According to the methodology applied and the results obtained, it was possible to distinguish planimetric positioning accuracy, according to the vegetation cover, in two groups

  9. Research on GPS receiver positioning algorithm under bad conditions%恶劣环境下GPS接收机定位算法研究

    Institute of Scientific and Technical Information of China (English)

    滕云龙; 师奕兵; 郑植

    2011-01-01

    When the signals of GPS satellites are blocked, GPS receiver cannot calculate its position. In order to ob-tain positioning results of GPS receiver under bad conditions, the series of receiver clock bias is regarded as a visible satellite and utilized to augment GPS receiver for positioning calculation. A combined model for predicting receiver clock bias based on the theory of time series analysis is presented in this paper. And then the predicted value ob-tained from the model is introduced into GPS receiver to implement the function of positioning calculation. Actual test data were used to verify the method under both static and dynamic conditions. Experimental results demonstrate that the prediction model in this paper is suitable for predicting receiver clock bias, and the proposed positioning method can implement a good estimation of three-dimensional position under the condition where only three satellites are available.%为了解决在恶劣环境下卫星信号被遮挡时GPS接收机无法定位的问题,将接收机钟差等效为可见卫星,并根据钟差预测值辅助GPS接收机进行定位解算.提出了基于时间序列分析理论的接收机钟差组合预测模型,然后将钟差预测值引入到GPS接收机中,通过扩充观测方程以实现接收机三维定位解算功能.分别在静态以及动态情况下应用实测数据进行验证,结果表明:该模型适合于钟差序列预测;在仅有3颗卫星的恶劣环境下,该方法可以提供满足导航定位精度要求的GPS接收机三维定位信息.

  10. Real-time precise orbit determination of LEO satellites using a single-frequency GPS receiver: Preliminary results of Chinese SJ-9A satellite

    Science.gov (United States)

    Sun, Xiucong; Han, Chao; Chen, Pei

    2017-10-01

    Spaceborne Global Positioning System (GPS) receivers are widely used for orbit determination of low-Earth-orbiting (LEO) satellites. With the improvement of measurement accuracy, single-frequency receivers are recently considered for low-cost small satellite missions. In this paper, a Schmidt-Kalman filter which processes single-frequency GPS measurements and broadcast ephemerides is proposed for real-time precise orbit determination of LEO satellites. The C/A code and L1 phase are linearly combined to eliminate the first-order ionospheric effects. Systematic errors due to ionospheric delay residual, group delay variation, phase center variation, and broadcast ephemeris errors, are lumped together into a noise term, which is modeled as a first-order Gauss-Markov process. In order to reduce computational complexity, the colored noise is considered rather than estimated in the orbit determination process. This ensures that the covariance matrix accurately represents the distribution of estimation errors without increasing the dimension of the state vector. The orbit determination algorithm is tested with actual flight data from the single-frequency GPS receiver onboard China's small satellite Shi Jian-9A (SJ-9A). Preliminary results using a 7-h data arc on October 25, 2012 show that the Schmidt-Kalman filter performs better than the standard Kalman filter in terms of accuracy.

  11. GPS P码接收机本地信号发生器的FPGA实现%Implementation of Local GPS P Code Generation in GPS Receiver Based on FPGA

    Institute of Scientific and Technical Information of China (English)

    曹进; 李荣冰; 徐昭; 谢非

    2013-01-01

    As the military use of GPS,P code is famous for its characteristic of high precise,long period and complex structure. The software receiver based on P code is not only of high position precision, but also of high level of anti-jamming and anti-spoofing. It is of great importance for direct P code acquisition and the tracking if we can generate any bits of P Code in its period. After doing research on the mechanism and structure of P Code generation, we designed some algorithm of P code and realize it through MATLAB. Then we propose the algorithm for FPGA by modules including register module, delay module,period module and register phase module. The result shows that P Code of any time or any satellite can be generated by it without time delay.%P码作为GPS军用伪码,具有结构复杂、周期长且码速率快的特点,这使得使用P码的软件接收机不仅定位精度高,且具有很强的抗干扰和反欺骗能力.能够实现任意卫星的任意时刻P码的产生,对于实现P码直接捕获和跟踪有很重要的意义.对于P码的产生原理和结构进行了分析,基于MATLAB设计了相应的P码发生算法并进行简单的算法仿真.之后针对FPGA硬件平台对P码发生器进行了相应的模块设计,包含寄存器模块、延时模块、周期控制模块和寄存器相位模块等.测试实验结果表明P码发生器可以基本无延迟地生成任意卫星、任意时刻的P码.

  12. Using the IRI, the MAGIC model, and the co-located ground-based GPS receivers to study ionospheric solar eclipse and storm signatures on July 22, 2009

    Science.gov (United States)

    Lin, Chi-Yen; Liu, Jann-Yenq; Lin, Chien-Hung; Sun, Yang-Yi; Araujo-Pradere, Eduardo A.; Kakinami, Yoshihiro

    2012-06-01

    The longest total solar eclipse in the 21st century occurred in Southeast Asia on 22 July 2009 from 00:55 to 04:15 UT, and was accompanied by a moderate magnetic storm starting at 03:00 UT with a D st reduction of -78 nT at 07:00 UT. In this study, we use the ionospheric reference model IRI, the data assimilation model MAGIC, and ground-based GPS receivers to simulate and examine the ionospheric solar eclipse and geomagnetic storm signatures in Taiwan and Japan. Cross-comparisons between the two model results and observations show that IRI fails to simulate the two signatures while MAGIC partially reproduces the storm features. It is essential to include ground-based GPS measurements to improve the IRI performance.

  13. Extracting Data From Jupiter GPS Receiver%Jupiter GPS接收机数据的提取

    Institute of Scientific and Technical Information of China (English)

    王兆瑞; 戴陇咸; 林强

    2002-01-01

    在各种利用GPS OEM板进行二次开发应用的工作中,对GSP数据的提取是必不可少的过程.文章给出了基于SBS-PC-104 486嵌入式计算机提取Jupiter GPS接收机数据的过程和方法,并且给出了相应的程序流程图.

  14. Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: a low-cost and high-grade receivers GPS-BDS RTK analysis

    Science.gov (United States)

    Odolinski, Robert; Teunissen, Peter J. G.

    2016-11-01

    The concept of single-frequency, dual-system (SF-DS) real-time kinematic (RTK) positioning has become feasible since, for instance, the Chinese BeiDou Navigation Satellite System (BDS) has become operational in the Asia-Pacific region. The goal of the present contribution is to investigate the single-epoch RTK performance of such a dual-system and compare it to a dual-frequency, single-system (DF-SS). As the SF-DS we investigate the L1 GPS + B1 BDS model, and for DF-SS we take L1, L2 GPS and B1, B2 BDS, respectively. Two different locations in the Asia-Pacific region are analysed with varying visibility of the BDS constellation, namely Perth in Australia and Dunedin in New Zealand. To emphasize the benefits of such a model we also look into using low-cost ublox single-frequency receivers and compare such SF-DS RTK performance to that of a DF-SS, based on much more expensive survey-grade receivers. In this contribution a formal and empirical analysis is given. It will be shown that with the SF-DS higher elevation cut-off angles than the conventional 10° or 15° can be used. The experiment with low-cost receivers for the SF-DS reveals (for the first time) that it has the potential to achieve comparable ambiguity resolution performance to that of a DF-SS (L1, L2 GPS), based on the survey-grade receivers.

  15. A study of El Niño-Southern oscillation impacts to the South China Sea region using ground-based GPS receiver

    Science.gov (United States)

    Suparta, Wayan; Iskandar, Ahmad; Singh Jit Singh, Mandeep; Alauddin Mohd Ali, Mohd; Yatim, Baharudin; Tangang, Fredolin

    2013-04-01

    We observe an ENSO activity by using ground-based GPS receiver as an effort to study the effects of global warming and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on ENSO activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between -0.30 and -0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting cold causes warm air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.

  16. Observations of small- to large-scale ionospheric irregularities associated with plasma bubbles with a transequatorial HF propagation experiment and spaced GPS receivers

    Science.gov (United States)

    Saito, Susumu; Maruyama, Takashi; Ishii, Mamoru; Kubota, Minoru; Ma, Guanyi; Chen, Yanhong; Li, Jinghua; Ha Duyen, Chau; Le Truong, Thanh

    2008-12-01

    The results from simultaneous observations of the nighttime transequatorial propagation (TEP) of HF radio waves between Australia and Japan and the GPS scintillation measurements in south China and Vietnam are presented in this paper. The results showed that there was good correspondence between the nighttime eastward traveling off-great circle propagation (OGCP) of broadcasting waves of Radio Australia from Shepparton, Australia, measured at Oarai, Japan, and the scintillations in GPS radio waves at Hainan, China. This shows that the nighttime eastward traveling OGCP in HF TEP is caused by a large-scale ionospheric structure associated with a plasma bubble. The zonal drift velocities of the large-scale ionospheric structure estimated by the change in the direction of arrival of the OGCP were similar to those of the small-scale irregularities associated with plasma bubbles measured by the GPS scintillation spaced-receiver technique. Our results show that the HF TEP measurement is quite useful for monitoring the plasma bubble occurrence over a wide area and for forecasting the arrival of the plasma bubble at places located to the east of it.

  17. 基于STK的空间站星载GPS接收机仿真分析%Simulation and Analysis of GPS Receiver Onboard Space Station on STK

    Institute of Scientific and Technical Information of China (English)

    陈志国; 钟红恩

    2011-01-01

    将GPS系统用于航天器的导航、定位和授时是目前的趋势.但是星载接收机的高速轨道运动特点有区别于地面用户.通过建立GPS星座与国际空间站的链路进行仿真分析.仿真结果表明GPS星座可以满足空间站的大于4颗卫星的信号可用性需求.%The GPS system for spacecraft navigation , positioning and timing is the current trend, but the orbital motion feature of high-speed satellite receivers is different from that of the ground user. Link established between the GPS constellation and the international space station is simulated and analyzed, and simulation results show that the GPS constellation can meet the requirements of the space station more than four satellite signals available.

  18. Enhancing Positioning Accuracy in Urban Terrain by Fusing Data from a GPS Receiver, Inertial Sensors, Stereo-Camera and Digital Maps for Pedestrian Navigation

    Directory of Open Access Journals (Sweden)

    Pawel Strumillo

    2012-05-01

    Full Text Available The paper presents an algorithm for estimating a pedestrian location in an urban environment. The algorithm is based on the particle filter and uses different data sources: a GPS receiver, inertial sensors, probability maps and a stereo camera. Inertial sensors are used to estimate a relative displacement of a pedestrian. A gyroscope estimates a change in the heading direction. An accelerometer is used to count a pedestrian’s steps and their lengths. The so-called probability maps help to limit GPS inaccuracy by imposing constraints on pedestrian kinematics, e.g., it is assumed that a pedestrian cannot cross buildings, fences etc. This limits position inaccuracy to ca. 10 m. Incorporation of depth estimates derived from a stereo camera that are compared to the 3D model of an environment has enabled further reduction of positioning errors. As a result, for 90% of the time, the algorithm is able to estimate a pedestrian location with an error smaller than 2 m, compared to an error of 6.5 m for a navigation based solely on GPS.

  19. Millimeter-accuracy GPS landslide monitoring using Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution: a case study in Puerto Rico

    Science.gov (United States)

    Wang, G. Q.

    2013-03-01

    Continuous Global Positioning System (GPS) monitoring is essential for establishing the rate and pattern of superficial movements of landslides. This study demonstrates a technique which uses a stand-alone GPS station to conduct millimeter-accuracy landslide monitoring. The Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution employed by the GIPSY/OASIS software package (V6.1.2) was applied in this study. Two-years of continuous GPS data collected at a creeping landslide were used to evaluate the accuracy of the PPP-SRPA solutions. The criterion for accuracy was the root-mean-square (RMS) of residuals of the PPP-SRPA solutions with respect to "true" landslide displacements over the two-year period. RMS is often regarded as repeatability or precision in GPS literature. However, when contrasted with a known "true" position or displacement it could be termed RMS accuracy or simply accuracy. This study indicated that the PPP-SRPA resolution can provide an accuracy of 2 to 3 mm horizontally and 8 mm vertically for 24-hour sessions with few outliers (extreme weather conditions. Vertical accuracy below 10 mm can be achieved with 8-hour or longer sessions. This study indicates that the PPP-SRPA resolution is competitive with the conventional carrier-phase double-difference network resolution for static (longer than 4 hours) landslide monitoring while maintaining many advantages. It is evident that the PPP-SRPA method would become an attractive alternative to the conventional carrier-phase double-difference method for landslide monitoring, notably in remote areas or developing countries.

  20. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  1. Large-scale traveling ionospheric disturbances observed using GPS receivers over high-latitude and equatorial regions

    Science.gov (United States)

    Idrus, Intan Izafina; Abdullah, Mardina; Hasbi, Alina Marie; Husin, Asnawi; Yatim, Baharuddin

    2013-09-01

    This paper presents the first results of large-scale traveling ionospheric disturbances (LSTIDs) observation during two moderate magnetic storm events on 28 May 2011 (SYM-H∼ -94 nT and Dst∼-80 nT) and 6 August 2011 (SYM-H∼-126 nT and Dst∼-113 nT) over the high-latitude region in Russia, Sweden, Norway, Iceland and Greenland and equatorial region in the Peninsular Malaysia using vertical total electron content (VTEC) from the Global Positioning System (GPS) observations measurement. The propagation of the LSTID signatures in the GPS TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTIDs were found to propagate both equatorward and poleward directions during these two events. The results showed that the LSTIDs propagated faster at high-latitude region with an average phase velocity of 1074.91 m/s than Peninsular Malaysia with an average phase velocity of 604.84 m/s. The LSTIDs at the high-latitude region have average periods of 150 min whereas the ones observed over Peninsular Malaysia have average periods of 115 min. The occurrences of these LSTIDs were also found to be the subsequent effects of substorm activities in the auroral region. To our knowledge, this is the first result of observation of LSTIDs over Peninsular Malaysia during the 24th solar cycle.

  2. Design and Simulation of High-Dynamic GPS Receiver%高动态GPS接收机的设计与仿真

    Institute of Scientific and Technical Information of China (English)

    肖洪兵; 何飞云

    2013-01-01

    与一般环境下卫星定位信号的接收相比,高动态环境下GPS信号产生较大的多普勒频移,产生较大的定位误差,因而对卫星定位信号接收机提出了较高要求:一是要更可靠地捕获卫星定位信号;二是接收机要具有低功耗、小型化、通用性的特点.针对上述要求,提出了采用FPGA的GPS接收机方案,给出了系统的总体设计以及各个主要模块的设计与仿真过程;并根据设计平台,进行了相关实验.实验结果表明,所设计的高动态GPS接收机能够很好地捕捉到卫星信号.系统具有体积小、灵活性强、易升级扩展等特点,在高端民用领域和相关军事领域都具有广阔的应用前景.%Compared with the satellite positioning signal receiver in the general environment, the high dynamic environments result in a large position error due to the larger Doppler frequency shift in the GPS receiver. Thus the higher requirements of the satellite positioning receiver are needed. On one hand, it is necessary to capture the satellite positioning signal more reliably; on the other hand, the receiver is of the characteristics of low power consumption , miniaturization, and versatility. In response to these requests, this paper presented a FPGA - based GPS receiver solution. First, the system design was introduced, and then the design and simulation processes were discussed, at last the related results were given based upon the designed platform. The experimental results show that the design of high dynamic GPS receiver is able to capture the satellite signal accurately. In addition, the system is small, flexible, and easy to upgrade, which has broad applications in the high - end civilian areas and military areas.

  3. A New Narrow Correlator for GPS Receiver%一种新窄相关技术在GPS接收机中的应用

    Institute of Scientific and Technical Information of China (English)

    吴兴存; 刘巍; 王勇; 陈薇

    2011-01-01

    通过分析GPS接收机的多径信号模型,从GPS接收机内部鉴别器入手,详细介绍了一种以窄相关为基础的strobe相关器技术,通过仿真分析表明,strobe相关器可以显著抑制多径误差,优于普通窄相关技术.该技术应用于各种卫星导航定位接收机,有效解决了因多径干扰影响而导致高程数据异常问题.对窄相关技术的进一步研究具有重要的理论和实践价值.%Through analyzing the model of the multipath interference, this paper detailedly introduces strobe correlator technology which is based on narrow correlation from the internal discriminator of GPS receiver. Simulation results and analysis show that strobe correlator could enhance multipath mitigation performance than usual narrow correlator. The technology used in satellite navigation and position receiver solves unconventionality of GPS height induced by multipath interference in effect. The study of narrow correlator technology has theoretical value and practical value for further research.

  4. On the Impact of Channel Cross-Correlations in High-Sensitivity Receivers for Galileo E1 OS and GPS L1C Signals

    Directory of Open Access Journals (Sweden)

    Davide Margaria

    2012-01-01

    Full Text Available One of the most promising features of the modernized global navigation satellite systems signals is the presence of pilot channels that, being data-transition free, allow for increasing the coherent integration time of the receivers. Generally speaking, the increased integration time allows to better average the thermal noise component, thus improving the postcorrelation SNR of the receiver in the acquisition phase. On the other hand, for a standalone receiver which is not aided or assisted, the acquisition architecture requires that only the pilot channel is processed, at least during the first steps of the procedure. The aim of this paper is to present a detailed investigation on the impact of the code cross-correlation properties in the reception of Galileo E1 Open Service and GPS L1C civil signals. Analytical and simulation results demonstrate that the S-curve of the code synchronization loop can be affected by a bias around the lock point. This effect depends on the code cross-correlation properties and on the receiver setup. Furthermore, in these cases, the sensitivity of the receiver to other error sources might increase, and the paper shows how in presence of an interfering signal the pseudorange bias can be magnified and lead to relevant performance degradation.

  5. GPS code phase variations (CPV) for GNSS receiver antennas and their effect on geodetic parameters and ambiguity resolution

    Science.gov (United States)

    Kersten, Tobias; Schön, Steffen

    2016-12-01

    Precise navigation and geodetic coordinate determination rely on accurate GNSS signal reception. Thus, the receiver antenna properties play a crucial role in the GNSS error budget. For carrier phase observations, a spherical radiation pattern represents an ideal receiver antenna behaviour. Deviations are known as phase centre corrections. Due to synergy of carrier and code phase, similar effects on the code exist named code phase variations (CPV). They are mainly attributed to electromagnetic interactions of several active and passive elements of the receiver antenna. Consequently, a calibration and estimation strategy is necessary to determine the shape and magnitudes of the CPV. Such a concept was proposed, implemented and tested at the Institut für Erdmessung. The applied methodology and the obtained results are reported and discussed in this paper. We show that the azimuthal and elevation-dependent CPV can reach maximum magnitudes of 0.2-0.3 m for geodetic antennas and up to maximum values of 1.8 m for small navigation antennas. The obtained values are validated by dedicated tests in the observation and coordinate domain. As a result, CPV are identified to be antenna- related properties that are independent from location and time of calibration. Even for geodetic antennas when forming linear combinations the CPV effect can be amplified to values of 0.4-0.6 m. Thus, a significant fractional of the Melbourne-Wübbena linear combination. A case study highlights that incorrect ambiguity resolution can occur due to neglecting CPV corrections. The impact on the coordinates which may reach up to the dm level is illustrated.

  6. GPS code phase variations (CPV) for GNSS receiver antennas and their effect on geodetic parameters and ambiguity resolution

    Science.gov (United States)

    Kersten, Tobias; Schön, Steffen

    2017-06-01

    Precise navigation and geodetic coordinate determination rely on accurate GNSS signal reception. Thus, the receiver antenna properties play a crucial role in the GNSS error budget. For carrier phase observations, a spherical radiation pattern represents an ideal receiver antenna behaviour. Deviations are known as phase centre corrections. Due to synergy of carrier and code phase, similar effects on the code exist named code phase variations (CPV). They are mainly attributed to electromagnetic interactions of several active and passive elements of the receiver antenna. Consequently, a calibration and estimation strategy is necessary to determine the shape and magnitudes of the CPV. Such a concept was proposed, implemented and tested at the Institut für Erdmessung. The applied methodology and the obtained results are reported and discussed in this paper. We show that the azimuthal and elevation-dependent CPV can reach maximum magnitudes of 0.2-0.3 m for geodetic antennas and up to maximum values of 1.8 m for small navigation antennas. The obtained values are validated by dedicated tests in the observation and coordinate domain. As a result, CPV are identified to be antenna- related properties that are independent from location and time of calibration. Even for geodetic antennas when forming linear combinations the CPV effect can be amplified to values of 0.4-0.6 m. Thus, a significant fractional of the Melbourne-Wübbena linear combination. A case study highlights that incorrect ambiguity resolution can occur due to neglecting CPV corrections. The impact on the coordinates which may reach up to the dm level is illustrated.

  7. Receptores GPS de três precisões e estação total na caracterização de cotas básicas para projetos rurais Receiving GPS of three precision and total station in the characterization of basic cota for rural projects

    Directory of Open Access Journals (Sweden)

    Vilmar A. Rodrigues

    2006-04-01

    Full Text Available O objetivo deste estudo foi comparar cotas de vértices de uma poligonal, considerando dados coletados por três diferentes receptores GPS, usando como testemunha uma estação total. Os dados foram obtidos em uma poligonal fechada, sendo posteriormente tratados pelo software Topograph. As cotas obtidas pelos três receptores foram confrontadas com aquelas calculadas a partir do levantamento com a estação total, mediante a aplicação do teste "t", constatando-se que as mesmas foram satisfatórias para o equipamento GPS Trimble® 4600 LS. Para o equipamento GPS Trimble® modelo PRO XR, as cotas não foram totalmente satisfatórias, mas possíveis de serem consideradas em anteprojetos. Para o equipamento GPS Garmin® de navegação 12 XS, as cotas mostraram-se inaceitáveis para a finalidade estudada.The objective of this work was to compare cotas of polygonal vertices, through three different receiving GPS, using as reference a total station. The data were obtained in a closed polygonal, being treated later by the software Topograph. The cotas obtained by the three receivers were confronted with those calculated by means of the application of the test, being verified that the cotas were satisfactory for the equipment GPS Geodesic Trimble® 4600 LS. For the equipment GPS Trimble® topographical model PRO XR, the cotas weren't totally satisfactory, but possible of being considered in preliminary projects. For the navigation equipment GPS Garmin® 12 XS the cotas were shown unacceptable for the studied purpose.

  8. Fast convergence ambiguity resolution on-the-fly for dual frequency GPS receivers and the flight evaluation; Nishuha GPS jushinki ni taisuru kosokuka OTF ( On-the-Fly ) arugorizumu to hiko jikken ni yoru hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Tsujii, T.; Murata, M.; Harigae, M. [National Aerospace Laboratory, Tokyo (Japan)

    1997-08-31

    Recently, GPS has been used widely in airlines and space vehicles along with the land and sea as a simple, precise and cheap navigation method and positioning system. Normally, they use observed data of GPS called pseudorange. On the other hand, highly precise positioning by phase interference method using carrier phase data has been used for observing crustal deformation in the field of geodetic survey. This phase interference method can also be applied to the precise positioning (kinematic GPS) of movable body. Ambiguity (integer bias) in the carrier phase has to be solved in order to realize the kinematic GPS. Recently, analysis algorithm called Ambiguity Resolution On-The-Fly (OTF) has been studied rapidly and high speed solution of ambiguity while moving is going to be possible. In this report, firstly, this algorithm is described and secondly, evaluation results using real flight test data are reported. 9 refs., 15 figs., 2 tabs.

  9. Status and Development Trend of the Military GPS Receiver%军用卫星导航接收机现状及发展趋势

    Institute of Scientific and Technical Information of China (English)

    任小伟

    2014-01-01

    本文总结了GPS接收机在军事应用上的优点及不足,并探讨了军用卫星导航接收机技术的发展趋势。详细介绍了多模卫星导航接收机系统的兼容与互用技术、抗干扰滤波技术、环路滤波技术、组合导航技术、以及相对定位技术,并对相关卫星导航接收机新技术进行了总结和展望。%The advantages and disadvantages of GPS receivers on the military application are summarized and the development trend of military satellite navigation technology is discussed in this paper. Compatibility and interoperability technology, anti-jamming filter technology, loop filter technology, integrated navigation technology, and relative positioning technology of multimode satellite system are introduced. Finally, the new technology of the correlative satellite navigation is summarized and prospected.

  10. Indoor Positioning Using GPS Revisited

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik; Godsk, Torben

    2010-01-01

    It has been considered a fact that GPS performs too poorly inside buildings to provide usable indoor positioning. We analyze results of a measurement campaign to improve on the understanding of indoor GPS reception characteristics. The results show that using state-of-the-art receivers GPS...... low signal-to-noise ratios, multipath phenomena or bad satellite constellation geometry. We have also measured the indoor performance of embedded GPS receivers in mobile phones which provided lower availability and accuracy than state-of-the-art ones. Finally, we consider how the GPS performance...

  11. Weak signal acquisition method for GPS software receiver%适用于GPS软件接收机的弱信号捕获方法

    Institute of Scientific and Technical Information of China (English)

    黎山; 易清明; 陈庆; 石敏

    2012-01-01

    For high sensitivity and operation efficiency in weak signal acquisition of Global Positioning System (CPS) software receiver, a differential coherent accumulated acquisition algorithm based on Fast Fourier Transform ( FFT) was proposed. The limitation of coherent integration time was overcome by block accumulation of demodulated GPS intermediate frequency data. Based on FFT frequency shift characteristics, a Doppler circular frequency search was used to achieve low computation instead of frequency compensation search. The loss in frequency was resolved by different down conversions. Compared to the original incoherent accumulation, Signal-to-Noise Ratio ( SNR) was improved by differential coherent accumulation of coherent results. The weak signal in a - 39 dB poor SNR environment was successfully acquired in experiments. High sensitivity and operation efficiency of the proposed algorithm were confirmed by the experimental results.%为了解决全球定位系统(GPS)软件接收机中弱信号捕获存在灵敏度和运算效率低的问题,提出了一种基于快速傅里叶变换(FFT)改进的差分相干累积算法.通过对去载波后的中频信号进行块累加处理,解决了相干积分时间的限制;根据FFT频移特性,采用多普勒圆周移位搜索替代频率补偿搜索,减少了FFT运算量;同时采用了不同的下变频,降低了频域分量间的损耗;对相干积分结果进行了差分相干累积,相对于传统的非相干累积,提高了信噪比.实验结果表明,该算法在- 39 dB的低信噪比环境下仍能捕获到所有微弱信号,具有较高的灵敏度和运算效率.

  12. A Geometry-Based Cycle Slip Detection and Repair Method with Time-Differenced Carrier Phase (TDCP for a Single Frequency Global Position System (GPS + BeiDou Navigation Satellite System (BDS Receiver

    Directory of Open Access Journals (Sweden)

    Chuang Qian

    2016-12-01

    Full Text Available As the field of high-precision applications based on carriers continues to expand, the development of low-cost, small, modular receivers and their application in diverse scenarios and situations with complex data quality has increased the requirements of carrier-phase data preprocessing. A new geometry-based cycle slip detection and repair method based on Global Position System (GPS + BeiDou Navigation Satellite System (BDS is proposed. The method uses a Time-differenced Carrier Phase (TDCP model, which eliminates the Inner-System Bias (ISB between GPS and BDS, and it is conducive to the effective combination of GPS and BDS. It avoids the interference of the noise of the pseudo-range with cycle slip detection, while the cycle slips are preserved as integers. This method does not limit the receiver frequency number, and it is applicable to single-frequency data. The process is divided into two steps to detect and repair cycle slip. The first step is cycle slip detection, using the Improved Local Analysis Method (ILAM to find satellites that have cycle slips; The second step is to repair the cycle slips, including estimating the float solution of changes in ambiguities at the satellites that have cycle slips with the least squares method and the integer solution of the cycle slips by rounding. In the process of rounding, in addition to the success probability, a decimal test is carried out to validate the result. Finally, experiments with filed test data are carried out to prove the effectiveness of this method. The results show that the detectable cycle slips number with GPS + BDS is much greater than that with GPS. The method can also detect the non-integer outliers while fixing the cycle slip. The maximum decimal bias in repair is less than that with GPS. It implies that this method takes full advantages of multi-system.

  13. A Geometry-Based Cycle Slip Detection and Repair Method with Time-Differenced Carrier Phase (TDCP) for a Single Frequency Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) Receiver.

    Science.gov (United States)

    Qian, Chuang; Liu, Hui; Zhang, Ming; Shu, Bao; Xu, Longwei; Zhang, Rufei

    2016-12-05

    As the field of high-precision applications based on carriers continues to expand, the development of low-cost, small, modular receivers and their application in diverse scenarios and situations with complex data quality has increased the requirements of carrier-phase data preprocessing. A new geometry-based cycle slip detection and repair method based on Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) is proposed. The method uses a Time-differenced Carrier Phase (TDCP) model, which eliminates the Inner-System Bias (ISB) between GPS and BDS, and it is conducive to the effective combination of GPS and BDS. It avoids the interference of the noise of the pseudo-range with cycle slip detection, while the cycle slips are preserved as integers. This method does not limit the receiver frequency number, and it is applicable to single-frequency data. The process is divided into two steps to detect and repair cycle slip. The first step is cycle slip detection, using the Improved Local Analysis Method (ILAM) to find satellites that have cycle slips; The second step is to repair the cycle slips, including estimating the float solution of changes in ambiguities at the satellites that have cycle slips with the least squares method and the integer solution of the cycle slips by rounding. In the process of rounding, in addition to the success probability, a decimal test is carried out to validate the result. Finally, experiments with filed test data are carried out to prove the effectiveness of this method. The results show that the detectable cycle slips number with GPS + BDS is much greater than that with GPS. The method can also detect the non-integer outliers while fixing the cycle slip. The maximum decimal bias in repair is less than that with GPS. It implies that this method takes full advantages of multi-system.

  14. Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area

    Directory of Open Access Journals (Sweden)

    Krzysztof Bikonis

    2013-09-01

    Full Text Available The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS is still relatively poor due to the large inertial sensor errors. The complementary features of GPS and INS are the main reasons why integrated GPS/INS systems are becoming increasingly popular. GPS/INS systems offer a high data rate, high accuracy position and orientation that can work in all environments, particularly those where satellite availability is restricted. In the paper integration algorithm of GPS and INS systems data for pedestrians in urban area is presented. For data integration an Extended Kalman Filter (EKF algorithm is proposed. Complementary characteristics of GPS and INS with EKF can overcome the problem of huge INS drifts, GPS outages, dense multipath effect and other individual problems associated with these sensors.

  15. 应用于GPS接收机的宽带低噪声放大器%Broadband CMOS LNAs for GPS Receiver

    Institute of Scientific and Technical Information of China (English)

    郭锐; 孙金中; 谢凤英

    2012-01-01

    本文介绍了一种适用于GPS接收机的CMOS宽带低噪声放大器,带宽设计在1.16Hz-1.7GHz。采用源极电感负反馈结构,并在输入端加入了宽带匹配网络来扩展带宽,放大器提供30dB的增益,使用了两级放大,第二级采用了电流复用技术来节省功耗,最后一级使用了源极跟随器,用来阻抗匹配。采用TSMC55nmCMOS工艺,仿真结果表明,噪声系数小于1.3dB,S21大于29dB,S11小于-10dB,1.2V电源供电下功耗为20mW。%This paper presents a broadband CMOS LNAs for GPS Receiver, the amplifier bandwidth ranges GHz to 1.7 GHz. The amplifier adopts the source degeneration structure with a bandpass filter at the wideband impedance match. The amplifier has two stages to provide 30 dB gain. The second stage reuse method in order to reduce the current consumption, and the last stage is a source follower impedance match. Implemented in TSMC 55 nm CMOS process; the simulation results shows that no dB. S21 is 29 dB, S11 is -10 dB. The power consumption is 20 mW with 1.2 V supply voltage from 1.1 to make utilizes current to make output ise figure is 1.3

  16. GPS Separator

    CERN Multimedia

    2016-01-01

    Footage of the 70 degree ISOLDE GPS separator magnet MAG70 as well as the switchyard for the Central Mass and GLM (GPS Low Mass) and GHM (GPS High Mass) beamlines in the GPS separator zone. In the GPS20 vacuum sector equipment such as the long GPS scanner 482 / 483 unit, faraday cup FC 490, vacuum valves and wiregrid piston WG210 and WG475 and radiation monitors can also be seen. Also the RILIS laser guidance and trajectory can be seen, the GPS main beamgate switch box and the actual GLM, GHM and Central Beamline beamgates in the beamlines as well as the first electrostatic quadrupoles for the GPS lines. Close up of the GHM deflector plates motor and connections and the inspection glass at the GHM side of the switchyard.

  17. Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005

    Directory of Open Access Journals (Sweden)

    D. S. V. V. D. Prasad

    2006-12-01

    Full Text Available With the recent increase in the satellite-based navigation applications, the ionospheric total electron content (TEC and the L-band scintillation measurements have gained significant importance. In this paper we present the temporal and spatial variations in TEC derived from the simultaneous and continuous measurements made, for the first time, using the Indian GPS network of 18 receivers located from the equator to the northern crest of the equatorial ionization anomaly (EIA region and beyond, covering a geomagnetic latitude range of 1° S to 24° N, using a 16-month period of data for the low sunspot activity (LSSA years of March 2004 to June 2005. The diurnal variation in TEC at the EIA region shows its steep increase and reaches its maximum value between 13:00 and 16:00 LT, while at the equator the peak is broad and occurs around 16:00 LT. A short-lived day minimum occurs between 05:00 to 06:00 LT at all the stations from the equator to the EIA crest region. Beyond the crest region the day maximum values decrease with the increase in latitude, while the day minimum in TEC is flat during most of the nighttime hours, i.e. from 22:00 to 06:00 LT, a feature similar to that observed in the mid-latitudes. Further, the diurnal variation in TEC show a minimum to maximum variation of about 5 to 50 TEC units, respectively, at the equator and about 5 to 90 TEC units at the EIA crest region, which correspond to range delay variations of about 1 to 8 m at the equator to about 1 to 15 m at the crest region, at the GPS L1 frequency of 1.575 GHz. The day-to-day variability is also significant at all the stations, particularly during the daytime hours, with maximum variations at the EIA crest regions. Further, similar variations are also noticed in the corresponding equatorial electrojet (EEJ strength, which is known to be one of the major contributors for the observed day-to-day variability in TEC. The seasonal variation in TEC maximizes during the equinox

  18. Combining low-cost GPS receivers with upGPR to derive continuously liquid water content, snow height and snow water equivalent in Alpine snow covers

    Science.gov (United States)

    Koch, Franziska; Schmid, Lino; Prasch, Monika; Heilig, Achim; Eisen, Olaf; Schweizer, Jürg; Mauser, Wolfram

    2015-04-01

    The temporal evolution of Alpine snowpacks is important for assessing water supply, hydropower generation, flood predictions and avalanche forecasts. Especially in high mountain regions with an extremely varying topography, it is until now often difficult to derive continuous and non-destructive information on snow parameters. Since autumn 2012, we are running a new low-cost GPS (Global Positioning System) snow measurement experiment at the high alpine study site Weissfluhjoch (2450 m a.s.l.) in Switzerland. The globally and freely broadcasted GPS L1-band (1.57542 GHz) was continuously recorded with GPS antennas, which are installed at the ground surface underneath the snowpack. GPS raw data, containing carrier-to-noise power density ratio (C/N0) as well as elevation and azimuth angle information for each time step of 1 s, was stored and analyzed for all 32 GPS satellites. Since the dielectric permittivity of an overlying wet snowpack influences microwave radiation, the bulk volumetric liquid water content as well as daily melt-freeze cycles can be derived non-destructively from GPS signal strength losses and external snow height information. This liquid water content information is qualitatively in good accordance with meteorological and snow-hydrological data and quantitatively highly agrees with continuous data derived from an upward-looking ground-penetrating radar (upGPR) working in a similar frequency range. As a promising novelty, we combined the GPS signal strength data with upGPR travel-time information of active impulse radar rays to the snow surface and back from underneath the snow cover. This combination allows determining liquid water content, snow height and snow water equivalent from beneath the snow cover without using any other external information. The snow parameters derived by combining upGPR and GPS data are in good agreement with conventional sensors as e.g. laser distance gauges or snow pillows. As the GPS sensors are cheap, they can easily

  19. Adaptive Missile Guidance Using GPS

    Directory of Open Access Journals (Sweden)

    Pallavi Sharad Rupnar

    2013-05-01

    Full Text Available The name adaptive means we can guide any missile using GPS in any critical conditions. GPS guided missiles, using the exceptional navigational and surveying abilities of GPS, after being launched, could deliver a warhead to any part of the globe via the interface of the onboard computer in the missile with the GPS satellite system.GPS allows accurate targeting of various military weapons including ICBMs, cruise missiles and precision-guided munitions. Artillery projectiles with embedded GPS receivers able to withstand accelerations of 12,000 G have been developed for use in 155mm.GPS guided weapons, with their technological advances over previous, are the superior weapon of choice in modern days

  20. GPS Array as a Sensor of Lithosphere, Troposphere and Ionosphere

    Science.gov (United States)

    Heki, K.

    2011-12-01

    The Japanese dense array of GPS receivers (GEONET) started operation in 1993, and is currently composed of ~1200 stations. GPS (or GNSS in general) receivers can be compared to a Swiss army knife: it could be used not only for positioning (a knife) but also for various purposes, e.g. remote sensing of tropospheric water vapor or ionospheric electrons (screw driver, tin opener etc). Dense GPS arrays have been found extremely useful for variety of geophysical studies. In this lecture, I briefly review their historical achievements, recent highlights, and future perspectives. In Japan, first generation GPS stations were implemented in 1993 (the Kanto-Tokai region) and 1994 (nationwide) by GSI, Japan. Shortly after the launch, they successfully caught coseismic crustal movement of several major earthquakes, the 1994 October Shikotan (Mw8.3), the 1994 December Sanriku (Mw7.6), and the 1995 January Kobe (Mw7.0) earthquakes. These earthquakes accelerated the densification of the GPS network, achieving 1000 in the number of stations within the following 2-3 years. In addition to coseismic jumps, important discoveries continued in 1990s, e.g. large-scale afterslip of interplate thrust earthquakes and slow slip events (SSE). Later it was shown that tilt- and strainmeter can better observe short-term SSEs, and InSAR can draw more detailed maps of coseismic crustal movements. Now GPS array is recognized as a good tool to measure crustal movement with high temporal resolution and stability and with moderate sensitivity and spatial resolution. GPS data are also useful to study hydrosphere. Seasonal crustal movements in Japan mainly reflect changes in hydrological loads. Multipath signatures in GPS data also provide useful information on the environment around the antenna, e.g. soil moisture, snow depth and vegetation. I will compare the snow depth record over a winter inferred by analyzing GPS multipath signatures, and observed by a conventional apparatus. GPS can also measure

  1. GPS & Roadpricing

    DEFF Research Database (Denmark)

    Zabic, Martina

    2005-01-01

    I denne artikel præsenteres analysemetoderne og resultaterne fra et eksamensprojekt omhandlende en analyse af GPS kvaliteten i forhold til roadpricing i København. Denne undersøgelse af GPS kvaliteten i forbindelse med roadpricing, er foretaget i tilknytning til det danske AKTA forsøg (www.......akta-kbh.dk), hvor GPS data er indsamlet for 500 biler over en 2-årig periode (2001-2003). Artiklen præsenterer således en analyse af GPS nøjagtigheden med henblik på at undersøge om kvalitet og pålidelighed er tilstrækkelig, til et GPS-baseret roadpricingssystem i København. Ved GPS-baseret roadpricing, udstyres...... med henblik på enhedsomkostningerne skulle være økonomisk realisable til brug i et så omfattende roadpricingssystem. Endvidere vanskeliggøres positionerings forholdene, idet bilen der ønskes positionsbestemt er i bevægelse. Når både satellitterne og GPS modtageren er i bevægelse, reduceres...

  2. GPS & Roadpricing

    DEFF Research Database (Denmark)

    Zabic, Martina

    2005-01-01

    I denne artikel præsenteres analysemetoderne og resultaterne fra et eksamensprojekt omhandlende en analyse af GPS kvaliteten i forhold til roadpricing i København. Denne undersøgelse af GPS kvaliteten i forbindelse med roadpricing, er foretaget i tilknytning til det danske AKTA forsøg (www.......akta-kbh.dk), hvor GPS data er indsamlet for 500 biler over en 2-årig periode (2001-2003). Artiklen præsenterer således en analyse af GPS nøjagtigheden med henblik på at undersøge om kvalitet og pålidelighed er tilstrækkelig, til et GPS-baseret roadpricingssystem i København. Ved GPS-baseret roadpricing, udstyres...... med henblik på enhedsomkostningerne skulle være økonomisk realisable til brug i et så omfattende roadpricingssystem. Endvidere vanskeliggøres positionerings forholdene, idet bilen der ønskes positionsbestemt er i bevægelse. Når både satellitterne og GPS modtageren er i bevægelse, reduceres...

  3. The estimation method of GPS instrumental biases

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A model of estimating the global positioning system (GPS) instrumental biases and the methods to calculate the relative instrumental biases of satellite and receiver are presented. The calculated results of GPS instrumental biases, the relative instrumental biases of satellite and receiver, and total electron content (TEC) are also shown. Finally, the stability of GPS instrumental biases as well as that of satellite and receiver instrumental biases are evaluated, indicating that they are very stable during a period of two months and a half.

  4. A Performance Improvement Method for Low-Cost Land Vehicle GPS/MEMS-INS Attitude Determination

    Directory of Open Access Journals (Sweden)

    Li Cong

    2015-03-01

    Full Text Available Global positioning system (GPS technology is well suited for attitude determination. However, in land vehicle application, low-cost single frequency GPS receivers which have low measurement quality are often used, and external factors such as multipath and low satellite visibility in the densely built-up urban environment further degrade the quality of the GPS measurements. Due to the low-quality receivers used and the challenging urban environment, the success rate of the single epoch ambiguity resolution for dynamic attitude determination is usually quite low. In this paper, a micro-electro-mechanical system (MEMS—inertial navigation system (INS-aided ambiguity resolution method is proposed to improve the GPS attitude determination performance, which is particularly suitable for land vehicle attitude determination. First, the INS calculated baseline vector is augmented with the GPS carrier phase and code measurements. This improves the ambiguity dilution of precision (ADOP, resulting in better quality of the unconstrained float solution. Second, the undesirable float solutions caused by large measurement errors are further filtered and replaced using the INS-aided ambiguity function method (AFM. The fixed solutions are then obtained by the constrained least squares ambiguity decorrelation (CLAMBDA algorithm. Finally, the GPS/MEMS-INS integration is realized by the use of a Kalman filter. Theoretical analysis of the ADOP is given and experimental results demonstrate that our proposed method can significantly improve the quality of the float ambiguity solution, leading to high success rate and better accuracy of attitude determination.

  5. A performance improvement method for low-cost land vehicle GPS/MEMS-INS attitude determination.

    Science.gov (United States)

    Cong, Li; Li, Ercui; Qin, Honglei; Ling, Keck Voon; Xue, Rui

    2015-03-09

    Global positioning system (GPS) technology is well suited for attitude determination. However, in land vehicle application, low-cost single frequency GPS receivers which have low measurement quality are often used, and external factors such as multipath and low satellite visibility in the densely built-up urban environment further degrade the quality of the GPS measurements. Due to the low-quality receivers used and the challenging urban environment, the success rate of the single epoch ambiguity resolution for dynamic attitude determination is usually quite low. In this paper, a micro-electro-mechanical system (MEMS)-inertial navigation system (INS)-aided ambiguity resolution method is proposed to improve the GPS attitude determination performance, which is particularly suitable for land vehicle attitude determination. First, the INS calculated baseline vector is augmented with the GPS carrier phase and code measurements. This improves the ambiguity dilution of precision (ADOP), resulting in better quality of the unconstrained float solution. Second, the undesirable float solutions caused by large measurement errors are further filtered and replaced using the INS-aided ambiguity function method (AFM). The fixed solutions are then obtained by the constrained least squares ambiguity decorrelation (CLAMBDA) algorithm. Finally, the GPS/MEMS-INS integration is realized by the use of a Kalman filter. Theoretical analysis of the ADOP is given and experimental results demonstrate that our proposed method can significantly improve the quality of the float ambiguity solution, leading to high success rate and better accuracy of attitude determination.

  6. Real-time tracking the instantaneous movement of crust during earthquake with a stand-alone GPS receiver%单站GPS测速在实时地震监测中的应用

    Institute of Scientific and Technical Information of China (English)

    张小红; 郭博峰

    2013-01-01

    Abstract We proposed a new method to record the instantaneous movement of crust during earthquake with a stand-alone Global Positioning System (GPS) receiver for real-time seismic monitoring.In the method,the velocity of GPS station is precisely estimated based on the Doppler shift method by only using standard GPS broadcast products and high-rate carrier phase measurements,which are available in real time.We analyzed the 5 Hz GPS data collected by UNAVCO-Plate Boundary Observatory (PBO) network from five stations in near-field areas within 50~100 km from the epicenter during the Mw7.2 EI-Mayor-Cucapah earthquake occurred on 4 April 2010 in Baja California (32.259°N,115.287°W),and compared the results with strongmotion seismograph records.The GPS results find a good agreement with the integrated strong motion seismograph record,and the earthquake waveforms can be fully recovered.Exciting performance demonstrates the potential application of this method.%本文提出一种利用单站GPS载波相位或多普勒观测数据,基于单站GPS测速法实时确定地震监测台站运动状态(速度)的新方法.针对2010年4月4日发生于墨西哥Baja California(32.259°N,115.287°W)北部的Mw7.2级El-Mayor-Cucapah地震事件,选取震中邻近区域(200 km内)若干采样率为5 Hz的高频GPS观测站数据进行实验.结果表明:基于新方法所得测站速度结果能够很好地反映出地震期间监测台站的瞬时运动状态,测站P496和P744计算的速度结果与其并置强震仪观测结果具有很好的一致性.

  7. 三星 GPS 接收机全地形 RTK 测量精度测试与应用的探索%Exploratory Testing and Application of all Terrain Measurement Accuracy of Tri-Satellite RTK Receiver

    Institute of Scientific and Technical Information of China (English)

    杨春全; 齐中华; 徐丽丽

    2015-01-01

    The GPS, GLONASS, Beidou ( COMPASS) GPS receiver functions of three global positioning system in one receiver (hereinafter referred to as:Tri GPS receiver), the receiver can receive the satellite positioning information increased to more than 18, the observation conditions relatively poor, in navigation and positioning, RTK measurements showed great advantage.This test Zhong-haida company production of H32, RTK precision test in observation in different conditions, and the accuracy of the results and the observation of terrain analysis, concluded:Ring view, by the building block within 50%, but completely normal operation, block 50-70%, can get the fixed solution, but the PDOP value will increase obviously, reliability reduce.In the city, the field control survey operation will reduce the position requirements, control survey to reduce the aerial survey as the workload of great significance.%将GPS,GLONASS、北斗( COMPASS)3种全球定位系统的接收功能集于一身的GPS接收机(以下简称:三星GPS接收机),能接收18颗以上卫星的定位信息,观测条件相对差时,在导航定位、RTK测量方面表现出巨大优势。本次测试中海达公司生产的H32,在各种观测条件下进行RTK精度测试,并对成果精度和观测地形进行对比分析。可以看出,环视图上,被建筑物遮挡50%以内,可完全正常作业;遮挡50~70%,能够得出固定解,但PDOP值会明显增大,可靠性降低。在城市、野外控制作业将降低对点位的要求,对减轻航测外业像控测量的工作量意义重大。

  8. GPS接收机多径抑制技术的研究与实现%The Study and Implementation of Multipath Reduction for GPS Receiver

    Institute of Scientific and Technical Information of China (English)

    司亚君; 张秀娟; 刘新宁

    2011-01-01

    现阶段有许多因素影响着GPS的定位精度,多径效应就是其中之一,特别在城市环境中,它显得尤为严重。论文中给出了改进型Strobe鉴相器方案,在传统型Strobe算法的基础上,结合对不同多径延迟特性的分析,推导出修正项,使其能够在短多径的条件下更好地进行误差估计,完成精确定位。%Multipath is one of the sources that impact the GPS resolution.It is particularly sever in urban environment.An improved strobe correlator is presented in the paper.Based on the traditional strobe algorithm,the different delays of various kinds of multipa

  9. GALILEO/GPS中频接收的同步性能研究%Study on performance of IF GALILEO/GPS receivers synchronization

    Institute of Scientific and Technical Information of China (English)

    朱亚峰; 田增山; 周永胜

    2008-01-01

    本文针对GALILEO/GPS中频接收机同步跟踪性能问题进行研究.主要进行GPS扩频信号和GALILEO BOC(m,n)信号的自相关函数峰值的比较,GPS/GALILEO接收机码跟踪、载波跟踪的速率精度的比较,其中码跟踪采取了延迟锁相环(DLL),载波跟踪采用costas锁相环.从仿真的结果可以看出,扩频码自相关函数具有单峰值,而BOS(m,n)信号自相关函数具有多峰值的特点,GALILEO接收机具有锁相速度快、精度高的特点.

  10. GPS Composite Clock Analysis

    OpenAIRE

    Wright, James R.

    2008-01-01

    The GPS composite clock defines GPS time, the timescale used today in GPS operations. GPS time is illuminated by examination of its role in the complete estimation and control problem relative to UTC/TAI. The phase of each GPS clock is unobservable from GPS pseudorange measurements, and the mean phase of the GPS clock ensemble (GPS time) is unobservable. A new and useful observability definition is presented, together with new observability theorems, to demonstrate explicitly that GPS time is...

  11. GPS Metric Tracking Unit

    Science.gov (United States)

    2008-01-01

    As Global Positioning Satellite (GPS) applications become more prevalent for land- and air-based vehicles, GPS applications for space vehicles will also increase. The Applied Technology Directorate of Kennedy Space Center (KSC) has developed a lightweight, low-cost GPS Metric Tracking Unit (GMTU), the first of two steps in developing a lightweight, low-cost Space-Based Tracking and Command Subsystem (STACS) designed to meet Range Safety's link margin and latency requirements for vehicle command and telemetry data. The goals of STACS are to improve Range Safety operations and expand tracking capabilities for space vehicles. STACS will track the vehicle, receive commands, and send telemetry data through the space-based asset, which will dramatically reduce dependence on ground-based assets. The other step was the Low-Cost Tracking and Data Relay Satellite System (TDRSS) Transceiver (LCT2), developed by the Wallops Flight Facility (WFF), which allows the vehicle to communicate with a geosynchronous relay satellite. Although the GMTU and LCT2 were independently implemented and tested, the design collaboration of KSC and WFF engineers allowed GMTU and LCT2 to be integrated into one enclosure, leading to the final STACS. In operation, GMTU needs only a radio frequency (RF) input from a GPS antenna and outputs position and velocity data to the vehicle through a serial or pulse code modulation (PCM) interface. GMTU includes one commercial GPS receiver board and a custom board, the Command and Telemetry Processor (CTP) developed by KSC. The CTP design is based on a field-programmable gate array (FPGA) with embedded processors to support GPS functions.

  12. The Application on SINS Information in Software-Defined GPS Receiver Signal Acquisition with High Dynamic Condition%高动态条件下SINS信息在GPS软件接收机信号捕获中的应用

    Institute of Scientific and Technical Information of China (English)

    黄国荣; 许刚; 高圆; 彭兴钊; 薛冬

    2013-01-01

    目前卫星信号捕获主要采用自主搜索算法,在高动态环境下,由于信号存在较大的多普勒频移,且变化较为剧烈,导致自主搜索算法搜索范围变大、时间延长,通常不能满足高动态条件下的应用要求.本文在SINS/GPS松组合框架下,基于软件接收机的灵活性,利用SINS信息,使用FFT方法(并行码相位搜索算法)实现GPS信号的捕获,得到一种外部信息辅助搜索算法.仿真实验证明该搜索算法可快速有效地实现高动态GPS信号的捕获.该算法同样适用于GLONASS及我国的北斗卫星导航系统.%At present, self-determination search acquisition is the central method in acquiring satellite signal. With the high dynamic condition, a biggish and acute Doppler frequency is generated, and it can result in the bigger search extension and longer time, and it can not satisfy the need of appliance as a rule. The SINS signal to acquisition process based on the SINS/GPS integrated navigation and software-defined GPS receiver is presented in this paper, and a new signal acquisition method assisted by exterior signal is implemented. The simulation shows that the new method can acquire the GPS signal exactly and quickly. This arithmetic can be also used in GLONASS and COMPASS.

  13. Study of Lever-Arm Effect Using Embedded Photogrammetry and On-Board GPS Receiver on Uav for Metrological Mapping Purpose and Proposal of a Free Ground Measurements Calibration Procedure

    Science.gov (United States)

    Daakir, M.; Pierrot-Deseilligny, M.; Bosser, P.; Pichard, F.; Thom, C.; Rabot, Y.

    2016-03-01

    Nowadays, Unmanned Aerial Vehicle (UAV) on-board photogrammetry knows a significant growth due to the democratization of using drones in the civilian sector. Also, due to changes in regulations laws governing the rules of inclusion of a UAV in the airspace which become suitable for the development of professional activities. Fields of application of photogrammetry are diverse, for instance: architecture, geology, archaeology, mapping, industrial metrology, etc. Our research concerns the latter area. Vinci-Construction- Terrassement is a private company specialized in public earthworks that uses UAVs for metrology applications. This article deals with maximum accuracy one can achieve with a coupled camera and GPS receiver system for direct-georeferencing of Digital Surface Models (DSMs) without relying on Ground Control Points (GCPs) measurements. This article focuses specially on the lever-arm calibration part. This proposed calibration method is based on two steps: a first step involves the proper calibration for each sensor, i.e. to determine the position of the optical center of the camera and the GPS antenna phase center in a local coordinate system relative to the sensor. A second step concerns a 3d modeling of the UAV with embedded sensors through a photogrammetric acquisition. Processing this acquisition allows to determine the value of the lever-arm offset without using GCPs.

  14. Metodologia para avaliação do desempenho de receptor de GPS de uso agrícola em condição cinemática Methodology for assessing the GPS receiver performance of agricultural use under kinematic condition

    Directory of Open Access Journals (Sweden)

    Thiago M. Machado

    2010-02-01

    Full Text Available São inúmeras as aplicações das tecnologias de Global Navigation Satellite System (GNSS, e o sistema mais utilizado é o Global Positioning System (GPS, desenvolvido pelos Estados Unidos. Em aplicações agrícolas, há a necessidade de posicionamento estático e cinemático, com demandas de distintos níveis de acurácia. No entanto, os usuários carecem de informação quanto ao desempenho cinemático de receptores GNSS, sendo disponibilizados apenas dados de desempenho estático, e por essa razão desenvolveu-se um veículo instrumentado para testar metodologia de avaliação do desempenho de receptores GNSS sob condição cinemática, visando a representar operações agrícolas. Foi utilizada instrumentação para coletar os dados sob variação de velocidade e sentido de percurso circular. A partir de ensaio experimental, verificou-se que a metodologia possibilita o cálculo da acurácia e da precisão, necessitando apenas de melhorias nos equipamentos de aquisição de dados em ensaios de longa duração.Activities that use Global Navigation Satellite System (GNSS are countless and the most used one is the Global Positioning System (GPS developed by the United States. In precision agriculture there are demands for static and cinematic positioning with distinct levels of accuracy for different applications; nevertheless cinematic performance data are not available as manufacturers of GPS receivers present only static performance information. For this reason it was developed an instrumented vehicle to test a methodology of performance evaluation of GPS receivers in kinematic conditions, which is representative to agricultural operations. A set of instrumentation was composed and used for collecting data under variable speed and rotation direction. Tests were conducted showing that the methodology allows to measure accuracy and precision, but improvements have to be implemented on the instrumentation equipment for long term tests.

  15. Dense Breasts

    Science.gov (United States)

    ... also appear white on mammography, they can be hidden by or within dense breast tissue. Other imaging ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  16. INDOOR LOCALIZATION SOLUTION FOR GPS

    OpenAIRE

    Shreyanka B. Chougule; Dr.Sayed Abdulhayan

    2017-01-01

    GPS technology is used for positioning application and it is highly reliable and accurate when used outdoor. Due to multipath propagation, signal attenuation and blockage its performance is limited in indoor and dense urban environment. As a solution, technologies like Apple’s iBeacon, Radio-frequency identification (RFID), Ultrasonic and Wireless Fidelity (Wi-Fi) access points are used to improve performance in Indoor environment. We are having a look at all these technologies which are mean...

  17. Optimal Preprocessing Of GPS Data

    Science.gov (United States)

    Wu, Sien-Chong; Melbourne, William G.

    1994-01-01

    Improved technique for preprocessing data from Global Positioning System receiver reduces processing time and number of data to be stored. Optimal in sense that it maintains strength of data. Also increases ability to resolve ambiguities in numbers of cycles of received GPS carrier signals.

  18. GPS双频 M码接收机射频前端设计与实现%Design and Realization of RF Front-end of M Code GPS Dual-frequency Receiver

    Institute of Scientific and Technical Information of China (English)

    景晗; 郑建生; 吴越

    2016-01-01

    介绍了GPS信号体制、新型军用M码的产生方式及其特点,并将新型M码信号与传统GPS信号做了对比。采用超外差式结构分离元器件方案完成了系统的设计并给出了组成原理框图。然后对原理框图中每一个功能单元的电路实现进行了设计,合理选择了低噪声放大器、功分器、射频滤波器、射频放大器、混频器、本振发生器、中频滤波器、中频放大器、数控衰减器、末级放大器等,根据选择的器件完成了原理图以及PCB设计,并为系统设计了屏蔽盒。最后对系统相应的指标进行了测试,测试结果表明该射频前端达到了要求的技术指标。%RF front-end of M Code GPS Dual-frequency Receiver is designed and realized in this paper.First-ly, the traditional GPS signal system, the generation method of new military M code and its characteristic, and differences between the new M code signal and the traditional GPS signals are introduced.The scheme of separation components with superheterodyne structure is selected to complete the system design and the functional block dia-gram is given.Then the circuit implementation of each functional units in the functional block diagram are analyzed and designed by reasonable selections of low noise amplifier, power splitters, RF filter, RF amplifier, mixer, the vibration generator, intermediate frequency filter, intermediate frequency amplifier, digital control attenuator, final stage amplifier and so on.The schematic and PCB design are completed based on the selected devices, and the shielding box is designed for the system.The corresponding indexes of system are tested at the end; results show that the RF front-end meets the requirements.

  19. 对GPS接收机带限高斯噪声压制干扰的干扰带宽选择分析∗%Analysis of Band-limited Gaussian Noise Blanket Jamming Bandwidth Choosing to GPS Receiver

    Institute of Scientific and Technical Information of China (English)

    毛虎; 吴德伟; 卢虎

    2015-01-01

    Aim at the problem of low efficiency of band-limited Gaussian noise jamming, using code tracking error and ephemeris bit error rate of GPS receiver as the jamming effect evaluation index, on the basis of analysis characteristics of GPS C/A code, P( Y) code and M code signal power spectral density, to carry on the theoretical derivation about jamming bandwidth influence code tracking and ephemeris demodulation process, the existence of optimal jamming bandwidth is judged qualitative. The quantitative simulation results show that when the JSR is small, the bit error rate influence should be fully considered, the jamming bandwidth which causes the biggest code tracking er-ror should reduce a little as the best jamming bandwidth for C/A code signal, the best jamming bandwidth should choose the jamming band-width which causes the biggest code tracking error for the P( Y) code and M code signal.%针对带限高斯噪声干扰效率低下的问题,以GPS接收机码跟踪误差和星历误码率作为干扰效果评估准则,在分析GPS C/A码、P( Y)码和M码信号功率谱特点的基础上,通过对干扰带宽影响码跟踪和星历解调过程进行理论推导,定性的判断出最佳干扰带宽的存在。定量的仿真分析结果表明:对于C/A码信号,当干信比较小时,要充分考虑到误码率的影响,将造成码跟踪误差最大的干扰带宽减小一些,作为其最佳干扰带宽;而对于P( Y)码和M码信号,应选择造成码跟踪误差最大的干扰带宽,作为其最佳干扰带宽。

  20. 压制干扰对GPS接收机码跟踪环的性能影响分析%Analysis of the performance of the code tracking loop of GPS receiver under blanket jamming

    Institute of Scientific and Technical Information of China (English)

    汤俊杰; 薛磊; 林航; 李得申

    2011-01-01

    压制干扰是GPS接收机面临的重要的人为威胁之一,对伪码跟踪的跟踪测距精度产生影响,甚至导致伪码跟踪环失锁.干扰对伪码跟踪环的影响模型涉及许多因素,建模比较困难.以常用的非相干超前减滞后功率延迟锁定环为例,建立了码跟踪环在宽带噪声干扰、窄带干扰和点频干扰下的跟踪误差模型,比较了压制干扰对C/A码和P(Y)码跟踪环性能的不同影响.通过对不同干扰方式下C/A码和P(Y)码跟踪误差的仿真,得出了对C/A码和P(Y)码跟踪环性能影响较大的干扰方式和干扰频率,为GPS接收机干扰方法和抗干扰措施的选择提供了理论依据.%As a vital kind of man-made threat faced with GPS receiver , blanket jamming influences measurement error of code tracking , even leads to lose lock of code tracking loop. The foundation of the mode of the impact of jamming is very difficult because of complication. Taking example for the familiar DLL of noncoherent early-late processing, the mode of tracking error based on broadband noise jamming,narrowband jamming and CW jamming is founded and the performance of the code tracking loop of C/A code and P(Y) code under blanket jamming are compared. The simulation results indicated a given jamming mode and jamming frequency exert more influence on the performance of the code tracking loop of C/A code and P( Y) code receiver. It is propitious to the choice of jamming means and anti-jamming measure of GPS receiver.

  1. GPS/INS Sensor Fusion Using GPS Wind up Model

    Science.gov (United States)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  2. An assisted GPS support for GPS simulators for embedded mobile positioning

    Science.gov (United States)

    Kashyap, Pradeep; Samant, Abhay; Sagiraju, Phani K.; Akopian, David

    2009-02-01

    During recent years, location technologies have emerged as a research area with many possible applications in wireless communications, surveillance, military equipment, etc. Location Based Services (LBS) such as safety applications have become very popular. For example, US Federal Communication Commission Enhanced 911 (E911) Mandate seeks to provide emergency services personnel with location information that will enable them to dispatch assistance to wireless 911 callers much more quickly. Assisted GPS (A-GPS) is an extension of the conventional Global Positioning System (GPS) which increases start-up sensitivity by as much as 25dB relative to conventional GPS and reduces start times to less than six seconds. In A-GPS assistance data is delivered to the receiver through communication links. This paper addresses the generation of the assistance for GPS simulators for testing A-GPS receivers. The proposed approach is to use IP-based links and location support standards for assistance delivery avoiding network-specific signaling mechanisms so that GPS receiver developers can use this information for testing A-GPS capabilities using basic GPS simulators. The approach is implemented for the GPS simulator developed by the National InstrumentsTM.

  3. Determination of Vessel Attitudes Using GPS

    Institute of Scientific and Technical Information of China (English)

    王书寅; 周丰年; 金建霞; 吴敬文

    2002-01-01

    With the development of GPS carrier wave phase technology, it becomes possible that the height accuracy of centimeter level is got by GPS RTK technology. Vessel attitudes are very important parameters in marine survey. In this paper, they were determined by 4 GPS receivers. At the same time, the arithmetic and procedure of vessel attitude determining were given. Based on an experiment, some useful conclusions were obtained and the corresponding methods were put forward to improve the accuracy.

  4. NASA's GPS tracking system for Aristoteles

    Science.gov (United States)

    Davis, E. S.; Hajj, G.; Kursinski, E. R.; Kyriacou, C.; Meehan, T. K.; Melbourne, William G.; Neilan, R. E.; Young, L. E.; Yunck, Thomas P.

    1991-12-01

    NASA 's Global Positioning System (GPS) tracking system for Artistoteles receivers and a GPS flight receiver aboard Aristoteles is described. It will include a global network of GPS ground receivers and a GPS flight receiver aboard Aristoteles. The flight receiver will operate autonomously; it will provide real time navigation solutions for Aristoteles and tracking data needed by ESOC for operational control of the satellite. The GPS flight and ground receivers will currently and continuously track all visible GPS satellites. These observations will yield high accuracy differential positions and velocities of Aristoteles in a terrestrial frame defined by the locations of the globally distributed ground work. The precise orbits and tracking data will be made available to science investigators as part of the geophysical data record. The characteristics of the GPS receivers, both flight and ground based, that NASA will be using to support Aristoteles are described. The operational aspects of the overall tracking system, including the data functions and the resulting data products are summarized. The expected performance of the tracking system is compared to Aristoteles requirements and the need to control key error sources such as multipath is identified.

  5. A New GPS System for Continuous Deformation Monitoring

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a multi-antenna GPS based system developed for localcontinuous deformation monitoring. Due to a large number of points that needs to be monitored,the standard approaches of using permanent GPS receiver arrays will cause high cost. Iteventually becomes the limiting factor for large-scale use of GPS in these application areas.Multi-antenna GPS system allows a number of GPS antennas to be linked to one GPS receiverby a specially designed electronic component, i.e. the so-called GPS multi-antenna switch(GMS), The receiver takes data sequentially from each of the antennas attached to thereceiver. A distinctive advantage of the approach is that one GPS receiver can be used tomonitor more than one point. The cost per monitored point (i. e. the expenses of hardware)istherefore significantly reduced.

  6. A Low Power Dissipation Wide-Band CMOS Frequency Synthesizer for a Dual-Band GPS Receiver%一种用于双波段GPS接收机的低功耗宽带CMOS频率合成器

    Institute of Scientific and Technical Information of China (English)

    贾海珑; 任彤; 林敏; 陈方雄; 石寅; 代伐

    2008-01-01

    This paper presents a wide tuning range CMOS frequency synthesizer for a dual-band GPS receiver,which has been fabricated in a standard 0.18μm RF CMOS process. With a high Q on-chip inductor, the wide-band VCO shows a tuning range from 2 to 3.6GHz to cover 2.45 and 3.14GHz in case of process corner or temperature variation,with a current consumption varying accordingly from 0.8 to 0.4mA,from a 1.8V supply voltage. Measurement results show that the whole frequency synthesizer consumes very low power of 5.6mW working at L1 band with in-band phase noise less than -82dBc/Hz and out-of-band phase noise about-ll2dBc/Hz at 1MHz offset from a 3.142GHz carrier.The performance of the frequency synthesizer meets the requirements of GPS applications very well.%提出了一种用于双波段GPS接收机的宽带CMOS频率合成器.该GPS接收机芯片已经在标准O.18μm射频CMOS工艺线上流片成功,并通过整体功能测试.其中压控振荡器可调振荡频率的覆盖范围设计为2~3.6GHz,覆盖了L1,L2波段的两倍频的频率点.并留有足够的裕量以确保在工艺角和温度变化较大时能覆盖所需频率.芯片测试结果显示,该频率综合器在L1波段正常工作时的功耗仅为5.6mW,此时的带内相位噪声小于-82dBc/Hz,带外相位噪声在距离3.142G载波1M频偏处约为-112dBc/Hz,这些指标很好地满足了GPS接收芯片的性能要求.

  7. Processing for Interference Suppression in GPS Receivers

    Science.gov (United States)

    2005-09-09

    A. F. Molisch , "The ultra-wide bandwidth indoor channel: from statistical model to simulations", IEEE Journal on Selected Areas in Communications...vol. 20, Issue 6, pp. 1247-1257, Aug. 2002. [17] S. Cezici, H. Kobayashi, H. V. Poor, and A. F. Molisch , "Performance evaluation of impulse radio UWB...Kyoto, Japan, pp. 91, March 26-28, 2003. [28] D. Cassioli, M. Z. Win, and A. F. Molisch , "The ultra-wide bandwidth indoor channel: from statistical model

  8. Sensing and Classifying Impairments of GPS Reception on Mobile Devices

    DEFF Research Database (Denmark)

    Blunck, Henrik; Kjærgaard, Mikkel Baun; Toftegaard, Thomas Skjødeberg

    2011-01-01

    Positioning using GPS receivers is a primary sensing modality in many areas of pervasive computing. However, previous work has not considered how people’s body impacts the availability and accuracy of GPS positioning and for means to sense such impacts. We present results that the GPS performance...

  9. Evaluation of the Effect of Radio Frequency Interference on Global Positioning System (GPS Accuracy via GPS Simulation

    Directory of Open Access Journals (Sweden)

    Dinesh Sathyamoorthy

    2012-09-01

    Full Text Available In this study, Global positioning system (GPS simulation is employed to study the effect of radio frequency interference (RFI on the accuracy of two handheld GPS receivers; Garmin GPSmap 60CSx (evaluated GPS receiver and Garmin GPSmap 60CS (reference GPS receiver. Both GPS receivers employ the GPS L1 coarse acquisition (C/A signal. It was found that with increasing interference signal power level, probable error values of the GPS receivers increase due to decreasing carrier-to-noise density (C/N0 levels for GPS satellites tracked by the receivers. Varying probable error patterns are observed for readings taken at different locations and times. This was due to the GPS satellite constellation being dynamic, causing varying GPS satellite geometry over location and time, resulting in GPS accuracy being location/time dependent. In general, the highest probable error values were observed for readings with the highest position dilution of precision (PDOP values, and vice versa.Defence Science Journal, 2012, 62(5, pp.338-347, DOI:http://dx.doi.org/10.14429/dsj.62.1606

  10. A pseudolite-based positioning system for legacy GNSS receivers.

    Science.gov (United States)

    Kim, Chongwon; So, Hyoungmin; Lee, Taikjin; Kee, Changdon

    2014-03-27

    The ephemeris data format of legacy GPS receivers is improper for positioning stationary pseudolites on the ground. Therefore, to utilize pseudolites for navigation, GPS receivers must be modified so that they can handle the modified data formats of the pseudolites. Because of this problem, the practical use of pseudolites has so far been limited. This paper proposes a pseudolite-based positioning system that can be used with unmodified legacy GPS receivers. In the proposed system, pseudolites transmit simulated GPS signals. The signals use standard GPS ephemeris data format and contain ephemeris data of simulated GPS satellites, not those of pseudolites. The use of the standard format enables the GPS receiver to process pseudolite signals without any modification. However, the position output of the GPS receiver is not the correct position in this system, because there are additional signal delays from each pseudolite to the receiver. A post-calculation process was added to obtain the correct receiver position using GPS receiver output. This re-estimation is possible because it is based on known information about the simulated signals, pseudolites, and positioning process of the GPS receiver. Simulations using generated data and live GPS data are conducted for various geometries to verify the proposed system. The test results show that the proposed system provides the desired user position using pseudolite signals without requiring any modifications to the legacy GPS receiver. In this initial study, a pseudolite-only indoor system was assumed. However, it can be expanded to a GPS-pseudolite system outdoors.

  11. GPSIM: A Personal Computer-Based GPS Simulator System

    Science.gov (United States)

    Ibrahim, D.

    Global Positioning Systems (GPS) are now in use in many applications, ranging from GIS to route guidance, automatic vehicle location (AVL), air, land, and marine navigation, and many other transportation and geographical based applications. In many applications, the GPS receiver is connected to some form of intelligent electronic system which receives the positional data from the GPS unit and then performs the required operation. When developing and testing GPS-based systems, one of the problems is that it is usually necessary to create GPS-compatible geographical data to simulate a GPS operation in real time. This paper provides the details of a Personal Computer (PC)-based GPS simulator system called GPSIM. The system receives user way-points and routes from Windows-based screen forms and then simulates a GPS operation in real time by generating most of the commonly used GPS sentences. The user-specified waypoints are divided into a number of small segments, each segment specifying a small distance in the direction of the original waypoint. The GPS sentence corresponding to the geographical coordinates of each segment is then sent out of the PC serial port. The system described is an invaluable testing tool for GPS-based system developers and also for people training to learn to use GPS-based products.

  12. Evaluating GPS Data in Indoor Environments

    Directory of Open Access Journals (Sweden)

    MOTTE, H.

    2011-08-01

    Full Text Available With the latest generation of ultra-sensitive GPS-receivers, satellite signals can often be picked up even indoors, resulting in (inaccurate indoor GPS-localization. A covered position will therefore no longer be characterized by the absence of satellite signals, creating the need for another way of categorizing this data as potentially inaccurate. This paper describes the use of GPS-based localization in an indoor environment. Only high level, generally available, GPS-data (NMEA-0183 GNSS-subset are taken into account. Applications of ubiquitous location awareness, where the use of several RTLS (Real Time Location System combinations is feasible, may benefit from this information to discriminate between GPS and other available localization data. A quality indicating parameter is readily available in GPS-data; the DOP (Dilution Of Precision data field, which indicates the accuracy of the GPS localization based on the current satellite geometry. However since in indoor environments the roof and possible overlying floors often cause more signal attenuation compared to (outer walls or windows, the probability of a better reception of 'low' orbiting satellite signals increases, giving rise to an unjustified good horizontal DOP value. Standard NMEA-0183 GPS strings are therefore analyzed in search of other indicators for malicious GPS-data.

  13. Penerapan Teknologi GPS Tracker Untuk Identifikasi Kondisi Traffik Jalan Raya

    Directory of Open Access Journals (Sweden)

    IM. O. Widyantara

    2015-06-01

    Full Text Available Real time tracking system technology has been made possible by integrating three technologies, namely global positioning system (GPS, database technologies such as geographic information system (GIS and mobile telecommunications technologies such as general packet radio service (GPRS. This paper has proposed a vehicle tracking mechanism based on GPS tracker to build a real-time traffic information system. A GPS server is built to process data of position and speed of the vehicle for further processed into vehicle traffic information. The Server and GPS tracker is designed to communicate using GPRS services in real time. Furthermore, the server processes the data from the GPS tracker into traffic information such as traffic jam, dense, medium and smoothly. Test results showed that the GPS server is able to visualize the real position of the vehicle and is able to decide the category of traffic information in real time.

  14. Evaluating the Effect of Global Positioning System (GPS) Satellite Clock Error via GPS Simulation

    Science.gov (United States)

    Sathyamoorthy, Dinesh; Shafii, Shalini; Amin, Zainal Fitry M.; Jusoh, Asmariah; Zainun Ali, Siti

    2016-06-01

    This study is aimed at evaluating the effect of Global Positioning System (GPS) satellite clock error using GPS simulation. Two conditions of tests are used; Case 1: All the GPS satellites have clock errors within the normal range of 0 to 7 ns, corresponding to pseudorange error range of 0 to 2.1 m; Case 2: One GPS satellite suffers from critical failure, resulting in clock error in the pseudorange of up to 1 km. It is found that increase of GPS satellite clock error causes increase of average positional error due to increase of pseudorange error in the GPS satellite signals, which results in increasing error in the coordinates computed by the GPS receiver. Varying average positional error patterns are observed for the each of the readings. This is due to the GPS satellite constellation being dynamic, causing varying GPS satellite geometry over location and time, resulting in GPS accuracy being location / time dependent. For Case 1, in general, the highest average positional error values are observed for readings with the highest PDOP values, while the lowest average positional error values are observed for readings with the lowest PDOP values. For Case 2, no correlation is observed between the average positional error values and PDOP, indicating that the error generated is random.

  15. Poboljšanje sinhronizacije signala u softverskom GPS prijemniku / Improvement of signal synchronization in GPS software receiver / Улучшение синхронизации сигнала в программируемом GPS приемнике

    Directory of Open Access Journals (Sweden)

    Vlada S. Sokolović

    2015-10-01

    Full Text Available In GPS receivers, navigation bit allocation is performed throughout the process of signal tracking and detection. In the process of signal tracking, the locally generated signal must be synchronized with the received signal. The Costas phase-locked loop (PLL behavior, which is often used for signal synchronization, is characterized by dominant tracking error sources. The resulting phase tracking errors are significant in the presence of weak signals, i.e. signals with the low signal-to-noise ratio (SNR. In order to improve the signal synchronization and enable signal tracking by the receiver, we here proposed the usage of a non-data-aided (NDA phase estimator. Based on the practical processing of the GPS signals, it is shown that the applied NDA algorithm is more resistant to sudden changes in frequency (phase of the input signal than the previously considered phase discriminator in the Costas PLL. Also, we have shown that the solution analyzed here exhibits more stable operation in signal tracking for a low SNR. / В GPS приемнике, распознавание навигационных битов реа- лизовано путем отслеживания и определения и обнаружения сиг- нала. В процессе отслеживания сигнала, локально генерируемый сигнал должен быть синхронизирован с входящим сигналом. Ха- рактеристикой фазового контура Costas, который традиционно используется для синхронизации сигналов, является подвержен- ность влиянию источников погрешностей. Ошибки в результа- тах по отслеживанию фазы существенны при слабом входном сигнале, например, для сигналов с малым

  16. Recent GPS Results at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Behrend, Dirk; Imfeld, Hans L.; /SLAC

    2005-08-17

    The Alignment Engineering Group (AEG) makes use of GPS technology for fulfilling part of its above ground surveying tasks at SLAC since early 2002. A base station (SLAC M40) has been set up at a central location of the SLAC campus serving both as master station for real-time kinematic (RTK) operations and as datum point for local GPS campaigns. The Leica RS500 system is running continuously and the GPS data are collected both externally (logging PC) and internally (receiver flashcard). The external logging is facilitated by a serial to Ethernet converter and an Ethernet connection at the station. Internal logging (ring buffer) is done for data security purposes. The weatherproof boxes for the instrumentation are excellent shelters against rain and wind, but do heat up considerably in sun light. Whereas the GPS receiver showed no problems, the Pacific Crest PDL 35 radio shut down several times due to overheating disrupting the RTK operations. In order to prevent heat-induced shutdowns, a protection against direct sun exposure (shading) and a constant air circulation system (ventilation) were installed. As no further shutdowns have occurred so far, it appears that the two measures successfully mended the heat problem.

  17. GPS Separator HD

    CERN Multimedia

    2016-01-01

    Footage of the 70 degree ISOLDE GPS separator magnet MAG70 as well as the switchyard for the Central Mass and GLM (GPS Low Mass) and GHM (GPS High Mass) beamlines in the GPS separator zone. In the GPS20 vacuum sector equipment such as the long GPS scanner 482 / 483 unit, faraday cup FC 490, vacuum valves and wiregrid piston WG210 and WG475 and radiation monitors can also be seen. Also the RILIS laser guidance and trajectory can be seen, the GPS main beamgate switch box and the actual GLM, GHM and Central Beamline beamgates in the beamlines as well as the first electrostatic quadrupoles for the GPS lines. Close up of the GHM deflector plates motor and connections and the inspection glass at the GHM side of the switchyard.

  18. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  19. Inversion of GPS meteorology data

    Directory of Open Access Journals (Sweden)

    K. Hocke

    Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically

  20. GPS Control Segment

    Science.gov (United States)

    2015-04-29

    Luke J. Schaub Chief, GPS Control Segment Division 29 Apr 15 GPS Control Segment Report Documentation Page Form ApprovedOMB No. 0704-0188...00-2015 4. TITLE AND SUBTITLE GPS Control Segment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...Center, GPS Control Segment Division,Los Angeles AFB, El Segundo,CA,90245 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S

  1. GLOBAL POSITIONING SYSTEM (GPS

    Directory of Open Access Journals (Sweden)

    Celalettin Karaali

    1996-02-01

    Full Text Available Use of GPS is becoming more widespread on surveying engineering. Especially, preference to GPS is increased by getting accuracy of order of milimeter, making observation on every weather forecast, without requiring intervisibility between station. Besides, developing new observation techniques and technologies in GPS increased its use in deformation easurements, monitoring crustal movements, mapping precise geoid maps, detail surveying, etc.

  2. BD2/GPS四频高精度接收机在远望号船姿测量中的应用%Attitude Measurement with High-Precision Dual-System Quad-Frequency BD2/GPS Receiver in Yuanwang Surveying Ship

    Institute of Scientific and Technical Information of China (English)

    周健; 毛刚; 赵李健; 王珏

    2012-01-01

    With the gradual improvement of the construction of Beidou satellite navigation system and the rapid spread of the Beidou application, BD2/GPS positioning terminal equipment has been widely used in various fields. The attitude measurement with high-precision dual-system quad-frequency BD2/GPS receiver in the o-cean-going surveying ship was described, and the attitude determination accuracy with the traditional single GPS receiver was compared, the analysis of the Beidou satellite system's role in attitude measurement and the advantages was made.%随着我国北斗卫星导航系统建设的逐步完善以及北斗应用的迅速推广,BD2/GPS定位终端设备已经开始广泛地应用于各个领域中.介绍了BD2/GPS双系统四频高精度接收机在远望号测量船船姿测量中的应用;并与传统的单一GPS接收机的测姿精度进行比对,分析北斗卫星导航系统在姿态测量中的作用与优势.

  3. 基于软件接收机技术的低载噪比信号自适应鲁棒锁相环研究%Adaptively Robust Phase Lock Loop for Low C/N Carrier Tracking in a GPS Software Receiver

    Institute of Scientific and Technical Information of China (English)

    苗剑峰; 陈武; 孙永荣; 刘建业

    2011-01-01

    An important issue in GPS applications is how to track GPS (global positioning system) signal precisely and continuously under low carrier-to-noise ratio (C/N). In this paper, an adaptively robust filter based low C/N carrier phase lock loop (PLL) is developed under a GPS software receiver platform. Considering the effect of low C/N carrier signal on the traditional tracking loop, a parallel correlation tracking loop is established. A linear optimal estimator is designed to deal with the dependent noises in kinematics model and measurements. Furthermore, an adaptively robust filter is designed based on a three segment function adjust factor. When received signals are under favorable conditions, the performance of the new filter is very similar to a standard Kalman filter. For a practical weak carrier tracking, this new enhanced PLL intelligently tunes the loop parameters according to the total phase jitter analysis. It successfully resists the outliers and dynamic model errors by adaptively balancing the influence of updated dynamic model state and the measurements. The robustness and efficiency of the new filter is demonstrated by some real data testing experiments. The results verify that the standard deviation of the phase errors with this adaptively robust phase tracking loop can reach 0.01 cycles with satellite C/N ratios around 24 dB-Hz, which improves the performance significantly.

  4. Integrating GPS with Dead Reckoning Sensors

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2000-01-01

    A vehicle positioning system comprising a GPS receiver, a digital compass, and an odometer was tested on a 2.8-km stretch in Aalborg, Denmark. The system, which merges observations from the three instruments using a Kalman filter, has an update rate of 1 Hz and is intended for use in both urban...... and rural areas. The filtered positions follow the travelled route closely. A simulation suggests that the system will work even when the GPS coverage is insufficient....

  5. 4D tropospheric tomography using GPS slant wet delays

    Directory of Open Access Journals (Sweden)

    A. Flores

    Full Text Available Tomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network of global positioning system (GPS receivers. We show here how GPS data are processed to obtain the tropospheric slant wet delays and discuss the validity of the processing. These slant wet delays are the observables in the tomographic processing. We then discuss the inverse problem in 4D tropospheric tomography making extensive use of simulations to test the system and define the resolution and the impact of noise. Finally, we use data from the Kilauea network in Hawaii for February 1, 1997, and a local 4×4×40 voxel grid on a region of 400 km2 and 15 km in height to produce the corresponding 4D wet refractivity fields, which are then validated using forecast analysis from the European Center for Medium Range Weather Forecast (ECMWF. We conclude that tomographic techniques can be used to monitor the troposphere in time and space.

    Key words: Radio science (remote sensing; instruments and techniques

  6. GPS Scintillation Analysis.

    Science.gov (United States)

    2007-11-02

    Rev. 2-89) Prescribed by ANSI Std. Z39-1 298-102 TABLE OF CONTENTS 1. INTRODUCTION 1 2. GPS COMPARISON WITH ALL-SKY IMAGES OVER AGUA VERDE...Depletions from 1 October 1994 2 3. GPS data from Agua Verde, Chile on the night of 1 October 1994 3 4. PL-SCINDA display of GPS ionospheric...comparison of GPS measurements with GOES8 L-band scintillation data, are discussed. 2. GPS COMPARISON WITH ALL-SKY IMAGES OVER AGUA VERDE, CHILE As

  7. GPS Control Segment Improvements

    Science.gov (United States)

    2015-04-29

    Systems Center GPS Control Segment Improvements Mr. Tim McIntyre GPS Product Support Manager GPS Ops Support and Sustainment Division Peterson...DATE 29 APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE GPS Control Segment Improvements 5a. CONTRACT...ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Space Command,Space and Missile Systems Center, GPS Ops Support and Sustainment Division,Peterson AFB,CO,80916 8

  8. GPS Modernization Update

    Science.gov (United States)

    2014-06-01

    space vehicles currently set healthy • 6 GPS IIA, 12 GPS IIR , 7 GPS IIR -M, 5 GPS IIF – 5 additional satellites in residual status, 1 in test status...Advisory Board Final.pptx S P A C E A N D M I S S I L E S Y S T E M S C E N T E R Legacy GPS IIA/ IIR • Single Frequency (L1) • Coarse...acquisition (C/A) code • Y-Code (L1Y & L2Y) GPS IIR -M • 2nd Civil Signal (L2C) • M-Code (L1M & L2M) GPS IIF • 3rd civil signal (L5) • 2 Rb + 1 Cs

  9. GPS deflection monitoring of the West Gate Bridge

    Science.gov (United States)

    Raziq, Noor; Collier, Philip

    2007-05-01

    The achievable precision and relatively high sampling rates of currently available GPS receivers are well suited for monitoring the movements of long-span engineering structures where the amplitude of movements is often more than a few centimetres and the frequency of vibrations is low (below 10 Hz). However, engineering structures often offer non-ideal environments for GPS data collection due to high multipath interference and obstructions causing cycle slips in the GPS observations. Also, for many engineering structures such as bridge decks, vertical movements are more pronounced and more structurally critical than horizontal movements. Accuracy of GPS determined positions in the vertical direction is typically two to three times poorer than in the horizontal component. This paper describes the results of a GPS deflection monitoring trial on the West Gate Bridge in Melbourne, Australia. The results are compared to the estimated frequencies and movements from the design of the bridge and previous accelerometer campaigns. The frequency information derived from the GPS results is also compared to frequency data extracted from an accelerometer installed close to a GPS receiver. GPS results agree closely to the historical results and recent accelerometer trials for key modal frequencies. This indicates the suitability of GPS receivers to monitor engineering structures that exhibit smaller movements due to their stiffness and in environments not ideally suited to using GPS.

  10. GENESIS: GPS Environmental and Earth Science Information System

    Science.gov (United States)

    Hajj, George

    1999-01-01

    This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.

  11. Analysis of traveling ionospheric disturbances (TIDs) in GPS TEC launched by the 2011 Tohoku earthquake

    Science.gov (United States)

    Crowley, Geoff; Azeem, Irfan; Reynolds, Adam; Duly, Timothy M.; McBride, Patrick; Winkler, Clive; Hunton, Don

    2016-05-01

    Traveling ionospheric disturbances (TIDs) have been detected using various measurement techniques, including HF sounders, incoherent scatter radars, in situ measurements, and optical techniques. However, observations of TIDs have tended to be sparse and there is a need for additional observations to provide new scientific insight into the geophysical source phenomenology and wave propagation physics. The dense network of GPS receivers around the globe offers a relatively new data source to observe and monitor TIDs. In this paper, we use total electron content (TEC) measurements from ~4000 GPS receivers throughout the continental United States to observe TIDs associated with the 11 March 2011 Tohoku tsunami. The tsunami propagated across the Pacific to the U.S. west coast over several hours, and we show that corresponding TIDs were observed in the US. Using this network of GPS receivers we present a 2D imaging of TEC perturbations and calculate various TID parameters, including horizontal wavelength, speed, and period. Well-formed, planar TIDs were detected over the west coast of the U.S. ~10 h after the earthquake. Fast Fourier transform analysis of the observed waveforms revealed that the period of the wave was 15.1 min with a horizontal wavelength of 194.8 km, phase velocity of 233.0 m/s, and an azimuth of 105.2° (propagating nearly due east in the direction of the tsunami wave). These results are consistent with the TID observations in airglow measurements from Hawaii earlier in the day and with other GPS TEC observations.

  12. The performance analysis of a real-time integrated INS/GPS vehicle navigation system with abnormal GPS measurement elimination.

    Science.gov (United States)

    Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai

    2013-08-15

    The integration of an Inertial Navigation System (INS) and the Global Positioning System (GPS) is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC) and tightly coupled (TC) schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals) affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system.

  13. GPS radio interferometry of travelling ionospheric disturbances

    Science.gov (United States)

    Afraimovich, E. L.; Palamartchouk, K. S.; Perevalova, N. P.

    1998-01-01

    This paper presents some results investigating the new possibilities of radio interferometry of Travelling Ionospheric Disturbances (TIDs) that are based on exploiting standard measurements of transionospheric radio signal characteristics and coordinate-time measurements using dual-frequency multichannel receivers of the Global Positioning System (GPS). A Statistical Angle-of-arrival and Doppler Method for GPS radio interferometry (SADM-GPS) is proposed for determining the characteristics of the TIDs dynamics by measuring variations of GPS phase derivatives with respect to time and spatial coordinates. These data are used to calculate corresponding values of the velocity vector, in view of a correction for satellite motions based on the current information available regarding the angular coordinates of the satellites. Subsequently, velocity and direction distributions are constructed and analyzed to verify the hypothesis of whether there is a predominant displacement. If it exists, then the pattern can be considered to be travelling, and the mean travel velocity can be determined from the velocity distribution. Through a computer simulation it was shown that multi-satellite GPS radio interferometry in conjunction with the SADM-GPS algorithm allows the detection and measurement of the velocity vector of TIDs in virtually the entire azimuthal range of possible TID propagation directions. The use of the proposed method is exemplified by an investigation of TIDs during the solar eclipse of 9 March 1997, using the GPS-radio interferometer GPSINT at Irkutsk.

  14. GNSS Software Receiver for UAVs

    DEFF Research Database (Denmark)

    Olesen, Daniel Madelung; Jakobsen, Jakob; von Benzon, Hans-Henrik

    2016-01-01

    This paper describes the current activities of GPS/GNSS Software receiver development at DTU Space. GNSS Software receivers have received a great deal of attention in the last two decades and numerous implementations have already been presented. DTU Space has just recently started development of ...... of our own GNSS software-receiver targeted for mini UAV applications, and we will in in this paper present our current progress and briefly discuss the benefits of Software Receivers in relation to our research interests....

  15. Geomagnetic storm effects on GPS based navigation

    Directory of Open Access Journals (Sweden)

    P. V. S. Rama Rao

    2009-05-01

    Full Text Available The energetic events on the sun, solar wind and subsequent effects on the Earth's geomagnetic field and upper atmosphere (ionosphere comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the navigational systems. In particular, the Global Positioning System (GPS that uses a constellation of earth orbiting satellites are affected due to the space weather phenomena.

    Studies made during two successive geomagnetic storms that occurred during the period from 8 to 12 November 2004, have clearly revealed the adverse affects on the GPS range delay as inferred from the Total Electron Content (TEC measurements made from a chain of seven dual frequency GPS receivers installed in the Indian sector. Significant increases in TEC at the Equatorial Ionization anomaly crest region are observed, resulting in increased range delay during the periods of the storm activity. Further, the storm time rapid changes occurring in TEC resulted in a number of phase slips in the GPS signal compared to those on quiet days. These phase slips often result in the loss of lock of the GPS receivers, similar to those that occur during strong(>10 dB L-band scintillation events, adversely affecting the GPS based navigation.

  16. REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Spatial and temporal resolution of water vapor content is useful in improving the accuracy of short-term weather prediction.Dense and continuously tracking regional GPS arrays will play an important role in remote sensing atmospheric water vapor content.In this study,a piecewise linear solution method was proposed to estimate the precipitable water vapor (PWV) content from ground-based GPS observations in Hong Kong.To evaluate the solution accuracy of the water vapor content sensed by GPS,the upper air sounding data (radiosonde) that are collected locally was used to calculate the precipitable water vapor during the same period.One-month results of PWV from both ground-based GPS sensing technique and radiosonde method are in agreement within 1~2 mm.This encouraging result will motivate the GPS meteorology application based on the establishment of a dense GPS array in Hong Kong.

  17. Advanced GPS Technologies (AGT)

    Science.gov (United States)

    2015-05-01

    V Air Force Research Laboratory ••• Advanced GPS Technologies (AGT) Integrity *Service *Excellence 1 May 2015 Kevin Slimak Program Manager...2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Advanced GPS Technologies (AGT) 5a. CONTRACT NUMBER 5b...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the GPS Partnership

  18. Combining Meteosat-10 satellite image data with GPS tropospheric path delays to estimate regional integrated water vapor (IWV) distribution

    Science.gov (United States)

    Leontiev, Anton; Reuveni, Yuval

    2017-02-01

    Using GPS satellites signals, we can study different processes and coupling mechanisms that can help us understand the physical conditions in the lower atmosphere, which might lead or act as proxies for severe weather events such as extreme storms and flooding. GPS signals received by ground stations are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into accurate integrated water vapor (IWV) observations using collocated pressure and temperature measurements on the ground. Here, we present for the first time the use of Israel's dense regional GPS network for extracting tropospheric zenith path delays combined with near-real-time Meteosat-10 water vapor (WV) and surface temperature pixel intensity values (7.3 and 10.8 µm channels, respectively) in order to assess whether it is possible to obtain absolute IWV (kg m-2) distribution. The results show good agreement between the absolute values obtained from our triangulation strategy based solely on GPS zenith total delays (ZTD) and Meteosat-10 surface temperature data compared with available radiosonde IWV absolute values. The presented strategy can provide high temporal and special IWV resolution, which is needed as part of the accurate and comprehensive observation data integrated in modern data assimilation systems and is required for increasing the accuracy of regional numerical weather prediction systems forecast.

  19. GPS, GNSS, and Ionospheric Density Gradients

    Science.gov (United States)

    Kintner, P. M.; O'Hanlon, B.; Humphreys, T. E.

    2009-12-01

    Ionospheric density and density gradients affect GNSS signals in two ways. They can introduce ranging errors or irregularities that form on the density gradients producing scintillation. Here we focus on the issue of ranging errors. There are two approaches to mitigating ranging errors produced by ionospheric density gradients which can be 20-30 m during major magnetic storms. The first approach is to use a reference receiver(s) to determine the ionospheric contribution to ranging errors. The ranging error is then transmitted to the user for correction within the mobile receiver. This approach is frequently referred to as differential GPS and, when multiple reference receivers are used, the system is referred to as an augmentation system. This approach is vulnerable to ionospheric gradients depending on the reference receiver spacing(s) and latency in applying the correction within the mobile receiver. The second approach is to transmit navigation signals at two frequencies and then use the relative delay between the two signals to both estimate the ranging error and calculate the correct range. Currently the dual frequency technique is used by US military receivers with an encryption key and some civilian receivers which must be stationary and average over times long compared to those required for navigation. However, the technology of space based radio navigation is changing. GPS will soon be a system with three frequencies and multiple codes. Furthermore Europe, Russia, and China are developing independent systems to complement and compete with GPS while India and Japan are developing local systems to enhance GPS performance in their regions. In this talk we address two questions. How do density gradients affect augmentation systems including the social consequences and will the new GPS/GNSS systems with multiple civilian frequencies be able to remove ionospheric errors. The answers are not at all clear.

  20. Autonomous Spacecraft Navigation Using Above-the-Constellation GPS Signals

    Science.gov (United States)

    Winternitz, Luke

    2017-01-01

    GPS-based spacecraft navigation offers many performance and cost benefits, and GPS receivers are now standard GNC components for LEO missions. Recently, more and more high-altitude missions are taking advantage of the benefits of GPS navigation as well. High-altitude applications pose challenges, however, because receivers operating above the GPS constellations are subject to reduced signal strength and availability, and uncertain signal quality. This presentation will present the history and state-of-the-art in high-altitude GPS spacecraft navigation, including early experiments, current missions and receivers, and efforts to characterize and protect signals available to high-altitude users. Recent results from the very-high altitude MMS mission are also provided.

  1. Model of GPS IF Signal and Its Simulation%GPS IF信号的计算机模拟和实现

    Institute of Scientific and Technical Information of China (English)

    郭际明; 汪伟; 巢佰崇

    2009-01-01

    A GPS IF signal computer simulation method is proposed in this article. The carrier Doppler frequency and the total propagation and delay time can be modeled or calculated with the input GPS satellite ephemeris file. The simulated GPS IF signal outputs to a text file for post-processing and analysis. The simulation signal spectrum is compared with the received real GPS IF signal spectrum, and the correctness of the simulation result is verified.

  2. ATTITUDE RATE ESTIMATION BY GPS DOPPLER SIGNAL PROCESSING

    Institute of Scientific and Technical Information of China (English)

    He Side; Milos Doroslovacki; Guo Zhenyu; Zhang Yufeng

    2003-01-01

    A method is presented for near-Earth spacecraft or aviation vehicle's attitude rate estimation by using relative Doppler frequency shift of the Global Positioning System (GPS)carrier. It comprises two GPS receiving antennas, a signal processing circuit and an algorithm.The whole system is relatively simple, the cost and wcight, as well as power consumption, are very low.

  3. Advancing Technology: GPS and GIS Outreach Training for Agricultural Producers

    Science.gov (United States)

    Flynn, Allison; Arnold, Shannon

    2010-01-01

    The use of the Global Positioning System (GPS) and Global Information Systems (GIS) has made significant impacts on agricultural production practices. However, constant changes in the technologies require continuing educational updates. The outreach program described here introduces the operation, use, and applications of GPS receivers and GIS…

  4. Dense topological spaces and dense continuity

    Science.gov (United States)

    Aldwoah, Khaled A.

    2013-09-01

    There are several attempts to generalize (or "widen") the concept of topological space. This paper uses equivalence relations to generalize the concept of topological space via the concept of equivalence relations. By the generalization, we can introduce from particular topology on a nonempty set X many new topologies, we call anyone of these new topologies a dense topology. In addition, we formulate some simple properties of dense topologies and study suitable generalizations of the concepts of limit points, closeness and continuity, as well as Jackson, Nörlund and Hahn dense topologies.

  5. A New Indoor Positioning System Architecture Using GPS Signals

    Science.gov (United States)

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-01-01

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations. PMID:25938199

  6. A New Indoor Positioning System Architecture Using GPS Signals.

    Science.gov (United States)

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-04-29

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.

  7. Testing Rtk GPS System In Urban Areas

    Science.gov (United States)

    Pirti, A.; Ata, E.

    RTK GPS is provided with cm accuracy and real time surveying system. For providing this conditions, the reference is necessary for high accuracy position. Because this sta- tion is transmitted the corrections to the other receivers. At the some time this system is required common satellites on the receiver to compute integer ambiguity solution. In addition to the conditions, the data transmission device's range is very important. Although RTK GPS technique has a lot of advantages, many problems meet in prac- tice. One of the most important problem in RTK system, which is very useful and reliable in the rural areas, uses in the urban areas. We search this article, how influence RTK GPS applications on satellite numbers, multipath, data transmission device's range capability and etc. in the urban areas.

  8. Airborne gravimetry, altimetry, and GPS navigation errors

    Science.gov (United States)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  9. A Pseudolite-Based Positioning System for Legacy GNSS Receivers

    Directory of Open Access Journals (Sweden)

    Chongwon Kim

    2014-03-01

    Full Text Available The ephemeris data format of legacy GPS receivers is improper for positioning stationary pseudolites on the ground. Therefore, to utilize pseudolites for navigation, GPS receivers must be modified so that they can handle the modified data formats of the pseudolites. Because of this problem, the practical use of pseudolites has so far been limited. This paper proposes a pseudolite-based positioning system that can be used with unmodified legacy GPS receivers. In the proposed system, pseudolites transmit simulated GPS signals. The signals use standard GPS ephemeris data format and contain ephemeris data of simulated GPS satellites, not those of pseudolites. The use of the standard format enables the GPS receiver to process pseudolite signals without any modification. However, the position output of the GPS receiver is not the correct position in this system, because there are additional signal delays from each pseudolite to the receiver. A post-calculation process was added to obtain the correct receiver position using GPS receiver output. This re-estimation is possible because it is based on known information about the simulated signals, pseudolites, and positioning process of the GPS receiver. Simulations using generated data and live GPS data are conducted for various geometries to verify the proposed system. The test results show that the proposed system provides the desired user position using pseudolite signals without requiring any modifications to the legacy GPS receiver. In this initial study, a pseudolite-only indoor system was assumed. However, it can be expanded to a GPS-pseudolite system outdoors.

  10. Ionospheric irregularities at Antarctic using GPS measurements

    Indian Academy of Sciences (India)

    Sunita Tiwari; Amit Jain; Shivalika Sarkar; Sudhir Jain; A K Gwal

    2012-04-01

    The purpose of this work is to study the behaviour of the ionospheric scintillation at high latitude during geomagnetically quiet and disturbed conditions which is one of the most relevant themes in the space weather studies. Scintillation is a major problem in navigation application using GPS and in satellite communication at high latitudes. Severe amplitude fading and strong scintillation affect the reliability of GPS navigational system and satellite communication. To study the effects of the ionospheric scintillations, GPS receiver installed at Antarctic station Maitri (Geog. 70.76°S; 11.74°E) was used. The data is collected by using GISTM 4004A, NOVATEL’S GPS receiver during March 2008. Studies show that percentage occurrence of phase scintillation is well correlated with geomagnetic activity during the observation period. The result also shows that very intense scintillations can degrade GPS based location determination due to loss of lock of satellites. These findings indicate that the dependence of scintillations and irregularity occurrence on geomagnetic activity is associated with the magnetic local time (MLT). Large number of patches are reported and their activity depends on the magnetic activity index.

  11. Aircraft landing using GPS

    Science.gov (United States)

    Lawrence, David Gary

    The advent of the Global Positioning System (GPS) is revolutionizing the field of navigation. Commercial aviation has been particularly influenced by this worldwide navigation system. From ground vehicle guidance to aircraft landing applications, GPS has the potential to impact many areas of aviation. GPS is already being used for non-precision approach guidance; current research focuses on its application to more critical regimes of flight. To this end, the following contributions were made: (1) Development of algorithms and a flexible software architecture capable of providing real-time position solutions accurate to the centimeter level with high integrity. This architecture was used to demonstrate 110 automatic landings of a Boeing 737. (2) Assessment of the navigation performance provided by two GPS-based landing systems developed at Stanford, the Integrity Beacon Landing System, and the Wide Area Augmentation System. (3) Preliminary evaluation of proposed enhancements to traditional techniques for GPS positioning, specifically, dual antenna positioning and pseudolite augmentation. (4) Introduction of a new concept for positioning using airport pseudolites. The results of this research are promising, showing that GPS-based systems can potentially meet even the stringent requirements of a Category III (zero visibility) landing system. Although technical and logistical hurdles still exist, it is likely that GPS will soon provide aircraft guidance in all phases of flight, including automatic landing, roll-out, and taxi.

  12. Integrating GPS with Dead Reckoning Sensors

    DEFF Research Database (Denmark)

    Cederholm, Jens Peter

    2000-01-01

    A vehicle positioning system comprising a GPS receiver, a digital compass, and an odometer was tested on a 2.8-km stretch in Aalborg, Denmark. The system, which merges observations from the three instruments using a Kalman filter, has an update rate of 1 Hz and is intended for use in both urban a...

  13. Global Positioning System receiver evaluation results

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, R.H.

    1993-09-01

    A Sandia project currently uses an outdated Magnavox 6400 Global Positioning System (GPS) receiver as the core of its navigation system. The goal of this study was to analyze the performance of the current GPS receiver compared to newer, less expensive models and to make recommendations on how to improve the performance of the overall navigation system. This paper discusses the test methodology used to experimentally analyze the performance of different GPS receivers, the test results, and recommendations on how an upgrade should proceed. Appendices contain detailed information regarding the raw data, test hardware, and test software.

  14. A simple method to improve autonomous GPS positioning for tractors.

    Science.gov (United States)

    Gomez-Gil, Jaime; Alonso-Garcia, Sergio; Gómez-Gil, Francisco Javier; Stombaugh, Tim

    2011-01-01

    Error is always present in the GPS guidance of a tractor along a desired trajectory. One way to reduce GPS guidance error is by improving the tractor positioning. The most commonly used ways to do this are either by employing more precise GPS receivers and differential corrections or by employing GPS together with some other local positioning systems such as electronic compasses or Inertial Navigation Systems (INS). However, both are complex and expensive solutions. In contrast, this article presents a simple and low cost method to improve tractor positioning when only a GPS receiver is used as the positioning sensor. The method is based on placing the GPS receiver ahead of the tractor, and on applying kinematic laws of tractor movement, or a geometric approximation, to obtain the midpoint position and orientation of the tractor rear axle more precisely. This precision improvement is produced by the fusion of the GPS data with tractor kinematic control laws. Our results reveal that the proposed method effectively reduces the guidance GPS error along a straight trajectory.

  15. GPS Activities at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Behrend, Dirk

    2002-11-19

    The Alignment Engineering Group of the Stanford Linear Accelerator Center (SLAC) started to use RTK (real-time kinematic) GPS equipment in order to perform structure mapping and GIS-related tasks on the SLAC campus. In a first step a continuously observing GPS station (SLAC M40) was set up. This station serves as master control station for all differential GPS activities on site and its coordinates have been determined in the well-defined global geodetic datum ITRF2000 at a given reference epoch. Some trials have been performed to test the RTK method. The tests have proven RTK to be very fast and efficient.

  16. Using cluster analysis to organize and explore regional GPS velocities

    Science.gov (United States)

    Simpson, Robert W.; Thatcher, Wayne; Savage, James C.

    2012-01-01

    Cluster analysis offers a simple visual exploratory tool for the initial investigation of regional Global Positioning System (GPS) velocity observations, which are providing increasingly precise mappings of actively deforming continental lithosphere. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, can be subjective and is often guided by the distribution of known faults. To illustrate our method, we apply cluster analysis to GPS velocities from the San Francisco Bay Region, California, to search for spatially coherent patterns of deformation, including evidence of block-like behavior. The clustering process identifies four robust groupings of velocities that we identify with four crustal blocks. Although the analysis uses no prior geologic information other than the GPS velocities, the cluster/block boundaries track three major faults, both locked and creeping.

  17. A Bridge Deflection Monitoring with GPS

    Science.gov (United States)

    Figurski, M.; Gałuszkiewicz, M.; Wrona, M.

    2007-01-01

    This paper introduces results of investigation carried on by The Applied Geomatics Section in Military University of Technology. Research includes possibilities of monitoring dynamic behavior of a bridge using high rate GPS data. Whole event was executed with collaboration of The Road and Bridge Management and The Warsaw Geodesy Company. Interdisciplinary approach with this project allows authors to get reliable information about investigating constructions and their respond for true traffic loading detected by GPS receivers. Way of compute data and used software (TRACK) are also shown in this paper.

  18. Dual RF Astrodynamic GPS Orbital Navigator Satellite

    Science.gov (United States)

    Kanipe, David B.; Provence, Robert Steve; Straube, Timothy M.; Reed, Helen; Bishop, Robert; Lightsey, Glenn

    2009-01-01

    Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) will demonstrate autonomous rendezvous and docking (ARD) in low Earth orbit (LEO) and gather flight data with a global positioning system (GPS) receiver strictly designed for space applications. ARD is the capability of two independent spacecraft to rendezvous in orbit and dock without crew intervention. DRAGONSat consists of two picosatellites (one built by the University of Texas and one built by Texas A and M University) and the Space Shuttle Payload Launcher (SSPL); this project will ultimately demonstrate ARD in LEO.

  19. Dense with Sense

    Science.gov (United States)

    Aletras, Anthony H.; Ingkanisorn, W. Patricia; Mancini, Christine; Arai, Andrew E.

    2005-09-01

    Displacement encoding with stimulated echoes (DENSE) with a low encoding strength phase-cycled meta-DENSE readout and a two fold SENSE acceleration ( R = 2) is described. This combination reduces total breath-hold times for increased patient comfort during cardiac regional myocardial contractility studies. Images from phantoms, normal volunteers, and a patient are provided to demonstrate the SENSE-DENSE combination of methods. The overall breath-hold time is halved while preserving strain map quality.

  20. Applying GPS to check horizontal control quality

    Directory of Open Access Journals (Sweden)

    Jakub Vincent

    2004-03-01

    Full Text Available GPS technologies can also be used for check quality in available horizontal point set with coordinates CJ of the frame S-JTSK. When survey and setting-out tasks should be performed in certain area, one can found in it allways some points of the fundamental and detail state controls. To use these points for some actual aims, it is necessary to investigate their compatibility (among the point mark positions and the point coordinate of control points. This can be done using GPS surveying that may be at the same time employed to determine the new point in the relevant area.Principle of quality investigatingf an existing control is founded on determination of point coordinates CJt from GPS measurements. Then, based on discrepancies among the "official" netpoint coordinates CJ and coordinates CJt "given by GPS", it can be estimated the degree and the real compatibility dislocations in the network structure of the existing points.Realisation procedure for the introduced investigation is demonstrated on GPS checking (by SOKKIA STRATUS receivers horizontal control for reconstruction of a railway bridge on river Bodrog in East Slovakia.It can be shown from the results in Table 3, that points P3 and P7 are useless due to their incompatibility (inconsistency in the inspected point set. For other 7 points (Table 7 the average measure of incompatibility reads 9.8 mm that make possible applying these points for precise setting-out

  1. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  2. Quantum dense key distribution

    CERN Document Server

    Degiovanni, I P; Castelletto, S; Rastello, M L; Bovino, F A; Colla, A M; Castagnoli, G C

    2004-01-01

    This paper proposes a new protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than BB84 one. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  3. The Performance Analysis of a Real-Time Integrated INS/GPS Vehicle Navigation System with Abnormal GPS Measurement Elimination

    Directory of Open Access Journals (Sweden)

    Jhen-Kai Liao

    2013-08-01

    Full Text Available The integration of an Inertial Navigation System (INS and the Global Positioning System (GPS is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC and tightly coupled (TC schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system.

  4. How and Why to Do VLBI on GPS

    Science.gov (United States)

    Dickey, J. M.

    2010-01-01

    In order to establish the position of the center of mass of the Earth in the International Celestial Reference Frame, observations of the Global Positioning Satellite (GPS) constellation using the IVS network are important. With a good frame-tie between the coordinates of the IVS telescopes and nearby GPS receivers, plus a common local oscillator reference signal, it should be possible to observe and record simultaneously signals from the astrometric calibration sources and the GPS satellites. The standard IVS solution would give the atmospheric delay and clock offsets to use in analysis of the GPS data. Correlation of the GPS signals would then give accurate orbital parameters of the satellites in the ICRF reference frame, i.e., relative to the positions of the astrometric sources. This is particularly needed to determine motion of the center of mass of the earth along the rotation axis.

  5. The MARCOR GPS mobile data system

    Science.gov (United States)

    Rothblatt, Martin

    1991-09-01

    Market research revealed several key demands for an Automatic Vehicle Location (AVL) Global Positioning System (GPS) radio. The demands were for minimization of urban building blockage, easy programmability to minimize mobile data transmission costs, high accuracy for street map level coordination, interface capability with non-digital Specialized Mobile Radios (SMR), and a selling price close to that of alternatives such as Signposts and Loran-C. A team of experts was assembled to surmount these challenges and deliver a GPS radio for $500 to $1000, which operates at high accuracy in an urban environment and is plug-compatible with nearly all vehicle radios. Among the engineering and production breakthroughs described here are a unique Simultrac (Trademark) approach to satellite tracking, enabling up to eight GPS satellites to be used for position determination with a 2-channel receiver, and a receiver-in-a-microphone design. A powerful Application Specific Integrated Circuit (ASIC) allowed GPS to be brought within easy reach of millions of AVL users such as bus, taxi, and delivery vehicle fleets.

  6. Iranian Permanent GPS Network for Geodynamics (IPGN)

    Science.gov (United States)

    Tavakoli, F.; Nankali, H. R.; Sedighi, M.; Djamour, Y.; Mosavi, Z.

    2009-04-01

    Iran is one of the most tectonically active zone in Alpine-Himalayan seismic belt where has been shaken by largely destroying historical and instrumental earthquakes. Iran is located in the convergence zone between Arabia and Eurasia with a velocity of 22 mm/yr nearly to the North. The shortening between Arabian and Eurasian plates in Iran is mainly distributed on Zagros and Alborz belts. Despite the historical and scientific awareness of seismic hazard in Iran, unfortunately this country lacked a Continuous GPS network to study geodynamic and tectonic movements. Such geodetic measurement can play an important role to understand the tectonic deformation then to evaluate the seismic hazard on Iran. Since early 2005 National Cartographic Center of Iran (NCC) is establishing a continuous GPS network named Iranian Permanent GPS Network for Geodynamics (IPGN). Taking into account the number of provided GPS receivers, (108) we made a priority based on two factors of seismicity and population. At the first, in order to study general tectonic behavior in Iran 41 stations, globally distributed in whole of Iran, were been considered. Three other areas in the priority list were: Centeral Alborz, North-West of Iran and North-East of Iran. The rest of receivers, i.e. ~60, were considered for these areas as local networks. These four networks are daily processed and give us a continuous monitoring of any surface deformation. In this paper we try to present the results obtained from the network

  7. Use of Southern California Integrated GPS Network (SCIGN) to image post-seismic perturbations of the ionosphere.

    Science.gov (United States)

    Artru, J.; Ducic, V.; Lognonné, P.

    2002-12-01

    Post-seismic perturbations in the atmosphere and ionosphere are induced by solid earth-atmosphere coupling, and can be monitored systematically after large earthquakes, e.g. using Doppler sounding. We will focus here on the capacity of short-scale imagery of the ionosphere offered by dense GPS networks. SCIGN is composed of 250 receivers in Southern California that provide continuous measurements of Total Electron Content along each receiver-satellite. A reconstruction of 2-D vertical electron content maps is performed, with a special attention paid on the accuracy and resolution achieved. We applied our technique to the detection of post-seismic ionospheric perturbations by the Hector Mine Earthquake in Southern California on October 16th, 1999. Two regimes of seismic perturbations are found, the first one related to seismic waves traveling in the ionosphere at about 3 km/s whereas the second regime would be induced by the onset of a gravity wave.

  8. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  9. GPS, su datum vertical.

    Directory of Open Access Journals (Sweden)

    Esteban Dörries

    2016-03-01

    Full Text Available La introducción de la metodología GPS en aplicaciones topográficas y geodésicas pone en notoria evidencia la clásica separación de sistemas de referencia en horizontal y vertical. Con GPS el posicionamiento es tridimensional, pero el concepto de altura difiere del clásico. Si se desea utilizar la información altimétrica debe contemplarse la ondulación del geoide.

  10. Continental water storage inferred from 3-D GPS coordinates in Danube Basin

    Science.gov (United States)

    van Dam, T. M.; Wang, L.; Weigelt, M. L. B.; Tourian, M. J.; Chen, Q.; Sneeuw, N. J.

    2014-12-01

    GPS coordinates time series contain viable information about continental water storage (CWS) at global and regional scale. The permanent GPS network of GPS stations around the Earth recorded more than 15 years of data, which comprise the elastic response of the bed rock movements induced by mass loading. The inversion of the observed displacements, yields mass variations which can be interpreted as CWS under the condition that no other mass loading is interfering. GPS-derived CWS offers complimentary information to the widely used CWS determination by GRACE but is also able to mitigate a possible loss of data in case the GRACE mission ends before the launch of the GRACE Follow-On mission. GPS also allows increasing the temporal resolution (weekly from GPS versus monthly from GRACE) and the spatial resolution (especially in the regions with dense GPS networks). Here, we determine the weekly mass variations from GPS 3-D coordinates by using mass-loading Green's function in six Danube sub-basins. The results are validated against GRACE and hydro-meteorological models. We also demonstrate the contribution of GPS horizontals for regional water storage and provide insights into the benefits and limitations of 3-D GPS inversions for regional water storage.

  11. Semantic enrichment of GPS trajectories

    NARCIS (Netherlands)

    Graaff, de Victor; Keulen, van Maurice; By, de Rolf

    2012-01-01

    Semantic annotation of GPS trajectories helps us to recognize the interests of the creator of the GPS trajectories. Automating this trajectory annotation circumvents the requirement of additional user input. To annotate the GPS traces automatically, two types of automated input are required: 1) a co

  12. Linking the global positioning system (GPS to a personal digital assistant (PDA to support tuberculosis control in South Africa: a pilot study

    Directory of Open Access Journals (Sweden)

    McIntyre James A

    2006-08-01

    Full Text Available Abstract Background Tuberculosis (TB is the leading clinical manifestation of HIV infection and caseloads continue to increase in high HIV prevalence settings. TB treatment is prolonged and treatment interruption has serious individual and public health consequences. We assessed the feasibility of using a handheld computing device programmed with customised software and linked to a GPS receiver, to assist TB control programmes to trace patients who interrupt treatment in areas without useful street maps. In this proof of concept study, we compared the time taken to re-find a home comparing given residential addresses with a customised personalised digital assistant linked to a global positioning system (PDA/GPS device. Additionally, we assessed the feasibility of using aerial photographs to locate homes. Results The study took place in two communities in Greater Johannesburg, South Africa: Wheillers Farm, a relatively sparsely populated informal settlement, and a portion of Alexandra, an urban township with densely populated informal settlements. Ten participants in each community were asked to locate their homes on aerial photographs. Nine from Wheillers Farm and six from Alexandra were able to identify their homes. The total time taken by a research assistant, unfamiliar with the area, to locate 10 homes in each community using the given addresses was compared with the total time taken by a community volunteer with half an hour of training to locate the same homes using the device. Time taken to locate the ten households was reduced by 20% and 50% in each community respectively using the PDA/GPS device. Conclusion In this pilot study we show that it is feasible to use a simple PDA/GPS device to locate the homes of patients. We found that in densely populated informal settlements, GPS technology is more accurate than aerial photos in identifying homes and more efficient than addresses provided by participants. Research assessing issues of

  13. Variability in GPS sources

    NARCIS (Netherlands)

    Jauncey, DL; King, EA; Bignall, HE; Lovell, JEJ; Kedziora-Chudczer, L; Tzioumis, AK; Tingay, SJ; Macquart, JP; McCulloch, PM

    2003-01-01

    Flux density monitoring data at 2.3 and 8.4 GHz is presented for a sample of 33 southern hemisphere GPS sources, drawn from the 2.7 GHz Parkes survey. This monitoring data, together with VLBI monitoring data, shows that a small fraction of these sources, similar to10%, vary. Their variability falls

  14. Variability in GPS sources

    NARCIS (Netherlands)

    Jauncey, DL; King, EA; Bignall, HE; Lovell, JEJ; Kedziora-Chudczer, L; Tzioumis, AK; Tingay, SJ; Macquart, JP; McCulloch, PM

    2003-01-01

    Flux density monitoring data at 2.3 and 8.4 GHz is presented for a sample of 33 southern hemisphere GPS sources, drawn from the 2.7 GHz Parkes survey. This monitoring data, together with VLBI monitoring data, shows that a small fraction of these sources, similar to10%, vary. Their variability falls

  15. GPS SATELLITE SIMULATOR SIGNAL ESTIMATION BASED ON ANN

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Multi-channel Global Positioning System (GPS) satellite signal simulator is used to provide realistic test signals for GPS receivers and navigation systems. In this paper, signals arriving the antenna of GPS receiver are analyzed from the viewpoint of simulator design. The estimation methods are focused of which several signal parameters are difficult to determine directly according to existing experiential models due to various error factors. Based on the theory of Artificial Neural Network (ANN), an approach is proposed to simulate signal propagation delay,carrier phase, power, and other parameters using ANN. The architecture of the hardware-in-the-loop test system is given. The ANN training and validation process is described. Experimental results demonstrate that the ANN designed can statistically simulate sample data in high fidelity.Therefore the computation of signal state based on this ANN can meet the design requirement,and can be directly applied to the development of multi-channel GPS satellite signal simulator.

  16. Engineering vibration monitoring by GPS: long duration records

    Institute of Scientific and Technical Information of China (English)

    F. Casciati; C. Fuggini

    2009-01-01

    Monitoring the performance of any structure requires real-time measurements of the change of position of critical points. Different techniques can be used for this purpose, each one offering advantages and disadvantages. The technique based on satellite positioning systems (GPS, GLONASS and the future GALILEO) seems to be very promising at least for long period structures. The GPS in particular provides sampling rates that are able to track dynamic displacements with high accuracy. Its service ability is independent of atmospheric conditions, temperature variations and visibility of the monitored object. This paper investigates the reliability and accuracy of the measurements of dual frequency GPS receivers. A linear electromagnetic motor moves an object along a given direction. The changes of position are compared with their estimates as recorded by a GPS receiver, whose antenna is located on the reference object. The comparison is based on sufficiently long records.

  17. Hybrid GPS-GSM Localization of Automobile Tracking System

    Directory of Open Access Journals (Sweden)

    Mohammad A. Al-Khedher

    2012-01-01

    Full Text Available An integrated GPS-GSM system is proposed to track vehicles using Google Earth application. Theremote module has a GPS mounted on the moving vehicle to identify its current position, and to betransferred by GSM with other parameters acquired by the automobile’s data port as an SMS to arecipient station. The received GPS coordinates are filtered using a Kalman filter to enhance theaccuracy of measured position. After data processing, Google Earth application is used to view thecurrent location and status of each vehicle. This goal of this system is to manage fleet, policeautomobiles distribution and car theft cautions.

  18. Influence of Ephemeris Error on GPS Single Point Positioning Accuracy

    Science.gov (United States)

    Lihua, Ma; Wang, Meng

    2013-09-01

    The Global Positioning System (GPS) user makes use of the navigation message transmitted from GPS satellites to achieve its location. Because the receiver uses the satellite's location in position calculations, an ephemeris error, a difference between the expected and actual orbital position of a GPS satellite, reduces user accuracy. The influence extent is decided by the precision of broadcast ephemeris from the control station upload. Simulation analysis with the Yuma almanac show that maximum positioning error exists in the case where the ephemeris error is along the line-of-sight (LOS) direction. Meanwhile, the error is dependent on the relationship between the observer and spatial constellation at some time period.

  19. Volcano deformation and subdaily GPS products

    Science.gov (United States)

    Grapenthin, Ronni

    Volcanic unrest is often accompanied by hours to months of deformation of the ground that is measurable with high-precision GPS. Although GPS receivers are capable of near continuous operation, positions are generally estimated for daily intervals, which I use to infer characteristics of a volcano’s plumbing system. However, GPS based volcano geodesy will not be useful in early warning scenarios unless positions are estimated at high rates and in real time. Visualization and analysis of dynamic and static deformation during the 2011 Tohokuoki earthquake in Japan motivates the application of high-rate GPS from a GPS seismology perspective. I give examples of dynamic seismic signals and their evolution to the final static offset in 30 s and 1 s intervals, which demonstrates the enhancement of subtle rupture dynamics through increased temporal resolution. This stresses the importance of processing data at recording intervals to minimize signal loss. Deformation during the 2009 eruption of Redoubt Volcano, Alaska, suggested net deflation by 0.05 km³ in three distinct phases. Mid-crustal aseismic precursory inflation began in May 2008 and was detected by a single continuous GPS station about 28 km NE of Redoubt. Deflation during the explosive and effusive phases was sourced from a vertical ellipsoidal reservoir at about 7-11.5 km. From this I infer a model for the temporal evolution of a complex plumbing system of at least 2 sources during the eruption. Using subdaily GPS positioning solutions I demonstrate that plumes can be detected and localized by utilizing information on phase residuals. The GPS network at Bezymianny Volcano, Kamchatka, records network wide subsidence at rapid rates between 8 and 12 mm/yr from 2005-2010. I hypothesize this to be caused by continuous deflation of a ˜30 km deep sill under Kluchevskoy Volcano. Interestingly, 1-2 explosive events per year cause little to no deformation at any site other than the summit site closest to the vent. I

  20. Impact of GPS tracking data of LEO satellites on global GPS solutions

    Science.gov (United States)

    Rothacher, M.; Svehla, D.

    Already at present quite a few Low Earth Orbiting (LEO) satellites (SAC-C, CHAMP, JASON-1, GRACE-1 and GRACE-2) are equipped with one or more GPS receivers for precise orbit determination or other applications (atmospheric sounding, gravity field recovery, . . . ). This trend will continue in the near future (e.g., with the GOCE and COSMIC missions) and we will soon have an entire "constellation" of LEO satellites tracked by GPS at our disposal. In this contribution we want to study the impact of LEO GPS measurements (from a single LEO satellite or from a LEO constellation) on global GPS solutions, where GPS satellite orbits and clocks, Earth rotation parameters (ERPs), station coordinates and troposphere zenith delays are determined simultaneously using the data of the global network of the International GPS Service (IGS). In order to assess the impact of the LEO GPS data on global IGS results, we have to perform a combined analysis of the space-borne and the ground-based GPS data. Such a combination may benefit on one hand from the differences between a ground station and a LEO, e.g., (1) the different tracking geometry (coverage of isolated geographical areas by LEOs, rapidly changing geometry, . . . ), (2) that LEOs connect all ground stations within 1-2 hours, (3) that baselines between LEO and ground stations may be longer than station-station baselines, (4) that no tropospheric delays have to be estimated for LEOs, and (5) that LEOs orbit the Earth within the ionosphere and may therefore contribute to global ionosphere models. On the other hand we have to deal with difficult aspects of precise orbit determination for the LEOs: only if we succeed to obtain very accurate dynamic or reduced-dynamic orbits for the LEOs, we will have a chance at all to improve the global GPS results. We present first results concerning the influence of LEO data on GPS orbits, ERPs, site coordinates, and troposphere zenith delays using both, variance-covariance analyses based on

  1. Voice and GPS Based Navigation System For Visually Impaired

    Directory of Open Access Journals (Sweden)

    Harsha Gawari

    2014-04-01

    Full Text Available The paper represents the architecture and implementation of a system that will help to navigate the visually impaired people. The system designed uses GPS and voice recognition along with obstacle avoidance for the purpose of guiding visually impaired. The visually impaired person issues the command and receives the direction response using audio signals. The latitude and longitude values are received continuously from the GPS receiver. The directions are given to the user with the help of audio signals. An obstacle detector is used to help the user to avoid obstacles by sending an audio message.GPS receivers use NMEA standard. With the advancement in voice recognition it becomes easier to issue commands regarding directions to the visually impaired.

  2. Application of GPS for transportation related engineering surveys

    Science.gov (United States)

    Merrell, Roger L.

    1986-09-01

    The Texas State Department of Highways and Public Transportation (SDHPT) has been using GPS for over two years to establish primary geodetic reference points for engineering projects and mapping control. In accordance with a Five Year GPS Implementation Plant developed in 1982, four GPS, unmanned, automatic Regional Reference Point (RRP) stations will be installed by September 1, 1986. Five additional stations are planned as justified. Each RRP will consist of a dual frequency GPS receiver that will ultimately track the satellites continuously. Operation of the receiver, telecommunications and other station keeping chores will be handled by a microcomputer. The RRP station network will be controlled through another centrally located microcomputer which is also interfaced with a larger mainframe system. Each RRP is designed to service an area bounded by a 200 KM radius and will act as the “other” receiver for roving field units operating in a GPS differential measurement mode. In order to meet the installation schedule, early decisions are being made concerning satellite tracking rates, operational scenarios, and telecommunications to facilitate development of the basic hardware and software systems. A period of continual enhancement to hardware, software and RRP operational procedures is expected as GPS technology expands.

  3. Rapid PPP ambiguity resolution using GPS+GLONASS observations

    Science.gov (United States)

    Liu, Yanyan; Ye, Shirong; Song, Weiwei; Lou, Yidong; Gu, Shengfeng

    2017-04-01

    Integer ambiguity resolution (IAR) in precise point positioning (PPP) using GPS observations has been well studied. The main challenge remaining is that the first ambiguity fixing takes about 30 min. This paper presents improvements made using GPS+GLONASS observations, especially improvements in the initial fixing time and correct fixing rate compared with GPS-only solutions. As a result of the frequency division multiple access strategy of GLONASS, there are two obstacles to GLONASS PPP-IAR: first and most importantly, there is distinct code inter-frequency bias (IFB) between satellites, and second, simultaneously observed satellites have different wavelengths. To overcome the problem resulting from GLONASS code IFB, we used a network of homogeneous receivers for GLONASS wide-lane fractional cycle bias (FCB) estimation and wide-lane ambiguity resolution. The integer satellite clock of the GPS and GLONASS was then estimated with the wide-lane FCB products. The effect of the different wavelengths on FCB estimation and PPP-IAR is discussed in detail. We used a 21-day data set of 67 stations, where data from 26 stations were processed to generate satellite wide-lane FCBs and integer clocks and the other 41 stations were selected as users to perform PPP-IAR. We found that GLONASS FCB estimates are qualitatively similar to GPS FCB estimates. Generally, 98.8% of a posteriori residuals of wide-lane ambiguities are within ± 0.25 cycles for GPS, and 96.6% for GLONASS. Meanwhile, 94.5 and 94.4% of narrow-lane residuals are within 0.1 cycles for GPS and GLONASS, respectively. For a critical value of 2.0, the correct fixing rate for kinematic PPP is only 75.2% for GPS alone and as large as 98.8% for GPS+GLONASS. The fixing percentage for GPS alone is only 11.70 and 46.80% within 5 and 10 min, respectively, and improves to 73.71 and 95.83% when adding GLONASS. Adding GLONASS thus improves the fixing percentage significantly for a short time span. We also used global ionosphere

  4. Time and Frequency Transfer Combining GLONASS and GPS Data

    Science.gov (United States)

    2010-11-01

    USA (IEEE), pp. 334-356. [2] D. W. Allan and C. Thomas, 1994, “Technical directives for standardization of GPS time receiver software,” Metrologia ...Defraigne and G. Petit, 2003, “Time Transfer to TAI Using Geodetic Receivers,” Metrologia , 40, 184-188. [5] P. Defraigne and G. Petit, 2001, “Proposal

  5. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;

    2012-01-01

    Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  6. Towards a real time leveling using the VRS GPS network in Jeddah

    Science.gov (United States)

    El-hattab, Ahmed; Mousa, Ashraf

    2013-12-01

    Jeddah Municipality (JM) established a Virtual Reference Stations (VRS) GPS network for different survey applications. JM provides the users with VRS service to enable them to reach a real time cm-accuracy of horizontal position with single GPS receiver. To achieve high accuracy for GPS leveling applications a precise geoid model must be defined and applied with the GPS measurements. One of the methods that are used for developing a local geoid model is enhancing a Global Geopotential Model (GGM) with a comprehensive set of gravity, GPS, and leveling measurements. This paper evaluates six of the recent GGMs with measured GPS and leveling data in Jeddah to select the best model to be used with VRS GPS. That model will be the first candidate to develop a local geoid model for Jeddah. The results indicate that the GO-CONS-GCF-2-TIM-R1 model is the best available model which gives the minimum standard deviation of geoidal height difference.

  7. Land Vehicle Positioning Using GPS and Dead Reckoning

    Institute of Scientific and Technical Information of China (English)

    Yang Dong-kai; C. L. Law; N. Nagarajan; Xu Ai-gong

    2003-01-01

    To ensure reliable land vehicle positioning, the Global Positioning System (GPS) is one of the best techniques commonly used in present-day positioning systems. However, GPS signals are not available if line of sight with the satellites is lost. In this respect, the addition of the Dead Reckoning (DR) method to complement the GPS unit would enhance the reliability of land vehicle positioning system. For implementing the DR method, the magnetic sensor and accelerometer are used for obtaining heading and velocity or distance information. Calibration of two sensors' dynamic model and DR algorithm are also introduced in this paper. The test result utilizing the GPS and DR methods is analyzed in this paper. It utilize spositioning information from GPS receiver when GPSsignal is available, otherwise DR is started to compensate GPS outage with the GPS output as the original point. The results showed that the error in east and north produced by the DR algorithm for a short time interval can be limitedwithin an acceptable range.

  8. MONITORING THE DYNAMIC CHARACTERISTICS OF TALL BUILDINGS BY GPS TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Dynamic characteristics of large structures,such as tall buildings,long-span suspension,cable-stayed bridges and tall chimneys,are key to assess their drift and stress conditions.The dynamic characteristics of large structures are difficult to measure directly under the condition of earthquakes or strong winds using traditional techniques such as laser collimator,total station and accelerometers.Therefore there is a great need for developing new method or technique for this purpose.Recent advances in Global Positioning System (GPS) technology provide a great opportunity to monitor long-period changes of structures reliably.GPS receivers capable to gauge the motion at the centimeter or sub-centimeter level with sampling frequency 10Hz or even 20 Hz are now available from several manufacturers.To the authors' knowledge,the capability of identifying dynamic characteristics from GPS observations has not been widely verified.For the feasibility study on using kinematic GPS technology to identify the dynamic characteristics of tall buildings,some experiments were conducted in a simulative environment.This paper discusses in detail the experiment device,and the ways through them GPS data are recorded,processed and analyzed.With post-processing version of NovAtel's Softsurv software and auto-regressive (AR) spectral analysis method,relative displacements and corresponding vibrating frequencies have been derived from GPS observations.The results indicate that the dynamic characteristics can be identified accurately by kinematic GPS technology.

  9. Physical applications of GPS geodesy: a review

    Science.gov (United States)

    Bock, Yehuda; Melgar, Diego

    2016-10-01

    Geodesy, the oldest science, has become an important discipline in the geosciences, in large part by enhancing Global Positioning System (GPS) capabilities over the last 35 years well beyond the satellite constellation’s original design. The ability of GPS geodesy to estimate 3D positions with millimeter-level precision with respect to a global terrestrial reference frame has contributed to significant advances in geophysics, seismology, atmospheric science, hydrology, and natural hazard science. Monitoring the changes in the positions or trajectories of GPS instruments on the Earth’s land and water surfaces, in the atmosphere, or in space, is important for both theory and applications, from an improved understanding of tectonic and magmatic processes to developing systems for mitigating the impact of natural hazards on society and the environment. Besides accurate positioning, all disturbances in the propagation of the transmitted GPS radio signals from satellite to receiver are mined for information, from troposphere and ionosphere delays for weather, climate, and natural hazard applications, to disturbances in the signals due to multipath reflections from the solid ground, water, and ice for environmental applications. We review the relevant concepts of geodetic theory, data analysis, and physical modeling for a myriad of processes at multiple spatial and temporal scales, and discuss the extensive global infrastructure that has been built to support GPS geodesy consisting of thousands of continuously operating stations. We also discuss the integration of heterogeneous and complementary data sets from geodesy, seismology, and geology, focusing on crustal deformation applications and early warning systems for natural hazards.

  10. Standardization of GPS data processing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Pil Ho

    2001-06-15

    A nationwide GPS network has been constructed with about 60 permanent GPS stations after late 1990s in Korea. For using the GPS in variety of application area like crustal deformation, positioning, or monitoring upper atmosphere, it is necessary to have ability to process the data precisely. Now Korea Astronomy Observatory has the precise GPS data processing technique in Korea because it is difficult to understand characteristics of the parameters we want to estimate, resolve the integer ambiguity, and analyze many errors. There are three reliable GPS data processing software in the world ; Bernese(University of Berne), GIPSY-OASIS(JPL), GAMIT(MIT). These software allow us to achieve millimeter accuracy in the horizontal position and about 1 cm accuracy vertically even for regional networks with a diameter of several thousand kilometers. But we established the standard of GPS data processing using Bernese as main tool and GIPSY{sub O}ASIS as side.

  11. Evaluation of GPS/BDS indoor positioning performance and enhancement

    DEFF Research Database (Denmark)

    He, Zhe; Petovello, Mark; Pei, Ling;

    2017-01-01

    This paper assesses the potential of using BDS and GPS signals to position in challenged environments such as indoors. Traditional assisted GNSS approaches that use code phase as measurements (i.e., coarse-time solutions) are shown to be prone to multipath and noise. An enhanced approach that has...... superior sensitivity and positioning performance—the so-called direct positioning receiver architecture—has been implemented and evaluated using live indoor BDS and/or GPS signals. Real indoor experiments have been conducted in Shanghai and significant improvement has been observed with enhanced approaches......: results with BDS constellation show better horizontal positioning performance (biases are less than 10m) than using GPS alone, but are slightly worse in the vertical axis; when using the enhanced approach with BDS and GPS, both horizontal and vertical axes show promising results for the environments...

  12. GPS source solution of the 2004 Parkfield earthquake

    CERN Document Server

    Houlie, N; Kim, A

    2014-01-01

    We compute a series of finite-source parameter inversions of the fault rupture of the 2004 Parkfield earthquake based on 1 Hz GPS records only. We confirm that some of the co-seismic slip at shallow depth (<5 km) constrained by InSAR data processing results from early post-seismic deformation. We also show 1) that if located very close to the rupture, a GPS receiver can saturate while it remains possible to estimate the ground velocity (~1.2 m/s) near the fault, 2) that GPS waveforms inversions constrain that the slip distribution at depth even when GPS monuments are not located directly above the ruptured areas and 3) the slip distribution at depth from our best models agree with that recovered from strong motion data. The 95th percentile of the slip amplitudes for rupture velocities ranging from 2 to 5 km/s is, 55 +/- 6 cm.

  13. Location tracking system using wearable on-body GPS antenna

    Directory of Open Access Journals (Sweden)

    Sabapathy Thennarasan

    2017-01-01

    Full Text Available An on-body location tracking system is developed and integrated with a wearable GPS antenna. Such system is beneficial in human location tracking of patients and elderly within a radius of 1 km. The system consists of a wearable antenna, a GPS module, a low cost microcontroller, two RF modules and a local monitoring system. A user equipped with the GPS antenna, GPS module and a RF transmitter is able send his/her location to the local monitoring system via a RF receiver. The proposed wearable antenna is validated to be safe for human use in terms of specific absorption rate (SAR. This antenna was then incorporated into the complete prototype and tested. Several suggestions for future improvements are also proposed and discussed.

  14. Evaluation of GPS/BDS indoor positioning performance and enhancement

    Science.gov (United States)

    He, Zhe; Petovello, Mark; Pei, Ling; Olesen, Daniel M.

    2017-02-01

    This paper assesses the potential of using BDS and GPS signals to position in challenged environments such as indoors. Traditional assisted GNSS approaches that use code phase as measurements (i.e., coarse-time solutions) are shown to be prone to multipath and noise. An enhanced approach that has superior sensitivity and positioning performance-the so-called direct positioning receiver architecture-has been implemented and evaluated using live indoor BDS and/or GPS signals. Real indoor experiments have been conducted in Shanghai and significant improvement has been observed with enhanced approaches: results with BDS constellation show better horizontal positioning performance (biases are less than 10 m) than using GPS alone, but are slightly worse in the vertical axis; when using the enhanced approach with BDS and GPS, both horizontal and vertical axes show promising results for the environments considered herein; the coarse-time state converges faster and is more reliable compared to other solutions.

  15. The establishment of GPS network in Grove Mountains, East Antarctica

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Grove Mountains are located in Princess Elizabeth Land, East Antarctica, extending from 72° to 73°S latitude and 73° to 76°E longitude, covering approximately 8000 km2 areas. During the 2002/2003 austral summer season, the 19th CHINARE (Chinese National Antarctic Research Expedition) carried out the third expedition in Grove Mountains, East Antarctica. The Geodetic network was established, which can provide ground control for the satellite image map for the multi-discipline expedition in the Grove Mountains where seven permanent GPS benchmarks were set up supported by the helicopter and snow vehicles. All GPS sites besides Z001 were observed at least for one hour using the dual frequencies Trimble 4000ssi GPS receivers. The data were processed by the comprehensive GPS analysis package-GAMIT/GLOBK and the precision is good enough to satisfy with the acquirement of satellite mapping in this area.

  16. Convective towers detection using GPS radio occultations

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, S.

    The tropical deep convection affects the radiation balance of the atmosphere changing the water vapour mixing ratio and the temperature of the upper troposphere and lower stratosphere. To gain a better understanding of deep convective processes, the study of tropical cyclones could play an import...... (ACES) payload on the International Space Station....... 1194 profiles in a time window of 3 hours and a space window of 300 km from the eye of the cyclone. We show that the bending angle anomaly of a GPS RO signal is typically larger than the climatology above the tropopause. Comparisons with co-located radiosondes, climatology of tropopause altitudes...... and GOES analyses will also be shown to support our hypothesis and to corroborate the idea that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space...

  17. Terrain Imaging Using a SAR System Based on Reflected GPS Signals

    Institute of Scientific and Technical Information of China (English)

    Li Yong-hong; C. Rizos; E. Donskoi; J. Homer; B. Mojarrabi

    2003-01-01

    This paper describes a 3D multi-static synthetic aperture radar (SAR) imaging system which utilises reflected GPS signals from moving objects on the Earth's surface. The principle of bi-static radar is used to model the reflected GPS signals. The movement of a visible GPS satellite serves as a base for a synthetic aperture over an observation time period. As an example, a MATLAB simulation has been carried out in order to detect the movement of imaged object sunder the assumption of one static GPS receiver with two targets which move with different speeds. The influence of the visible satellite'sposition and velocity on the spatial resolution of such a SAR system isdiscussed. Simulation results show that by measuring the cross-correlation of the reflected GPS signal from the terrain and objects on it,the detection of the objects can enjoy a good spatial resolution for thecase of moving objects and a moving GPS receiver. Furthermore, thespatial resolution is also related to the selection of visible GPS satelliteswith respect to their azimuths, elevations and velocities. This systemhas the following useful features: (a) no dedicated signal transmitter is required; (b) the GPS signal frequency is reused; (c) GPS operates round-the-clock and its signals cover the entire Earth's surface; (d) low power consumption; and (e) known GPS signal structure.

  18. Data Integration from GPS and Inertial Navigation Systems for Pedestrians in Urban Area

    OpenAIRE

    Krzysztof Bikonis; Jerzy Demkowicz

    2013-01-01

    The GPS system is widely used in navigation and the GPS receiver can offer long-term stable absolute positioning information. The overall system performance depends largely on the signal environments. The position obtained from GPS is often degraded due to obstruction and multipath effect caused by buildings, city infrastructure and vegetation, whereas, the current performance achieved by inertial navigation systems (INS) is still relatively poor due to the large inertial sensor errors. The c...

  19. GPS World, Innovation: Autonomous Navigation at High Earth Orbits

    Science.gov (United States)

    Bamford, William; Winternitz, Luke; Hay, Curtis

    2005-01-01

    Calculating a spacecraft's precise location at high orbital altitudes-22,000 miles (35,800 km) and beyond-is an important and challenging problem. New and exciting opportunities become possible if satellites are able to autonomously determine their own orbits. First, the repetitive task of periodically collecting range measurements from terrestrial antennas to high altitude spacecraft becomes less important-this lessens competition for control facilities and saves money by reducing operational costs. Also, autonomous navigation at high orbital altitudes introduces the possibility of autonomous station keeping. For example, if a geostationary satellite begins to drift outside of its designated slot it can make orbit adjustments without requiring commands from the ground. Finally, precise onboard orbit determination opens the door to satellites flying in formation-an emerging concept for many scientific space applications. The realization of these benefits is not a trivial task. While the navigation signals broadcast by GPS satellites are well suited for orbit and attitude determination at lower altitudes, acquiring and using these signals at geostationary (GEO) and highly elliptical orbits is much more difficult. The light blue trace describes the GPS orbit at approximately 12,550 miles (20,200 km) altitude. GPS satellites were designed to provide navigation signals to terrestrial users-consequently the antenna array points directly toward the earth. GEO and HE0 orbits, however, are well above the operational GPS constellation, making signal reception at these altitudes more challenging. The nominal beamwidth of a Block II/IIA GPS satellite antenna array is approximately 42.6 degrees. At GEO and HE0 altitudes, most of these primary beam transmissions are blocked by the Earth, leaving only a narrow region of nominal signal visibility near opposing limbs of the earth. This region is highlighted in gray. If GPS receivers at GEO and HE0 orbits were designed to use these

  20. Update on GPS Modernization Efforts

    Science.gov (United States)

    2015-06-02

    SPACE AND MISSILE SYSTEMS CENTER , GPS constellation consists of 24+ satellites orbiting the earth at - 10,900 nautical miles (Medium Earth Orbit , MEO...estimates instantaneous state of GPS constellation PUBLICALL Y RELEASABLE 4 Civil Cooperation • 1 + Bill ion civil & commercial users worldwide...Observatory • PNT EXCOMS • GPS Partnership Council Maintenance/Security Spectrum 38 Satellites I 31 Set Healthy Baseline Constellation : 24 Satellites

  1. Military GPS User Equipment (MGUE)

    Science.gov (United States)

    2015-04-29

    Space and Missile Systems Center Military GPS User Equipment (MGUE) Lt Col James “Mutt” Wilson Program Manager 29 Apr 15 Information contained in...SUBTITLE Military GPS User Equipment (MGUE) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...SUPPLEMENTARY NOTES Presented at the GPS Partnership Council 2015 (GPSPC15), held April 29 to May 1, 2015, at the Los Angeles AFB, CA. 14. ABSTRACT

  2. Indoor/Outdoor Seamless Positioning Using Lighting Tags and GPS Cellular Phones for Personal Navigation

    Science.gov (United States)

    Namie, Hiromune; Morishita, Hisashi

    The authors focused on the development of an indoor positioning system which is easy to use, portable and available for everyone. This system is capable of providing the correct position anywhere indoors, including onboard ships, and was invented in order to evaluate the availability of GPS indoors. Although the performance of GPS is superior outdoors, there has been considerable research regarding indoor GPS involving sensitive GPS, pseudolites (GPS pseudo satellite), RFID (Radio Frequency IDentification) tags, and wireless LAN .However, the positioning rate and the precision are not high enough for general use, which is the reason why these technologies have not yet spread to personal navigation systems. In this regard, the authors attempted to implement an indoor positioning system using cellular phones with built-in GPS and infrared light data communication functionality, which are widely used in Japan. GPS is becoming increasingly popular, where GPGGS sentences of the NMEA outputted from the GPS receiver provide spatiotemporal information including latitude, longitude, altitude, and time or ECEF xyz coordinates. As GPS applications grow rapidly, spatiotemporal data becomes key to the ubiquitous outdoor and indoor seamless positioning services at least for the entire area of Japan, as well as to becoming familiar with satellite positioning systems (e.g. GPS). Furthermore, the authors are also working on the idea of using PDAs (Personal Digital Assistants), as cellular phones with built-in GPS and PDA functionality are also becoming increasingly popular.

  3. Processing GPS Receiver Data for Improved Fermi GLAST Navigation

    Science.gov (United States)

    Woodard, Mark A.

    2008-01-01

    Fermi GLAST s 5-year mission objectives: a) Explore the most extreme environments in the Universe. b) Search for signs of new laws of physics and what composes the mysterious Dark Matter. c) Explain how black holes accelerate immense jets of material to nearly light speed. d) Help crack the mysteries of gamma-ray bursts. e) Answer long-standing questions across a broad range of topics, including solar flares, pulsars and the origin of cosmic rays.

  4. GPS Software una nuova frontiera per Receiver le applicazioni embedded

    Directory of Open Access Journals (Sweden)

    Roberto Capua

    2007-03-01

    Full Text Available Nei primi anni ‘90 gli USA avevano necessità di affrontare nuove sfide nel campo delle telecomunicazioni in ambito militare. Le classiche tecnologie hardware, con un livello intrinseco di rigidità nelle specifiche di utilizzo ed i lunghi costi e tempi di ricerca e sviluppo non sembravano più adeguate a garantire tali obiettivi.

  5. Relationships between GPS-signal propagation errors and EISCAT observations

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    Full Text Available When travelling through the ionosphere the signals of space-based radio navigation systems such as the Global Positioning System (GPS are subject to modifications in amplitude, phase and polarization. In particular, phase changes due to refraction lead to propagation errors of up to 50 m for single-frequency GPS users. If both the L1 and the L2 frequencies transmitted by the GPS satellites are measured, first-order range error contributions of the ionosphere can be determined and removed by difference methods. The ionospheric contribution is proportional to the total electron content (TEC along the ray path between satellite and receiver. Using about ten European GPS receiving stations of the International GPS Service for Geodynamics (IGS, the TEC over Europe is estimated within the geographic ranges -20°≤ λ ≤40°E and 32.5°≤ Φ ≤70°N in longitude and latitude, respectively. The derived TEC maps over Europe contribute to the study of horizontal coupling and transport proces- ses during significant ionospheric events. Due to their comprehensive information about the high-latitude ionosphere, EISCAT observations may help to study the influence of ionospheric phenomena upon propagation errors in GPS navigation systems. Since there are still some accuracy limiting problems to be solved in TEC determination using GPS, data comparison of TEC with vertical electron density profiles derived from EISCAT observations is valuable to enhance the accuracy of propagation-error estimations. This is evident both for absolute TEC calibration as well as for the conversion of ray-path-related observations to vertical TEC. The combination of EISCAT data and GPS-derived TEC data enables a better understanding of large-scale ionospheric processes.

  6. Complete multiple round quantum dense coding with quantum logical network

    Institute of Scientific and Technical Information of China (English)

    LI ChunYan; LI XiHan; DENG FuGuo; ZHOU Ping; ZHOU HongYu

    2007-01-01

    We present a complete multiple round quantum dense coding scheme for improving the source capacity of that introduced recently by Zhang et al. The receiver resorts to two qubits for storing the four local unitary operations in each round.

  7. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  8. Robust GPS Satellite Signal Acquisition Using Lifting Wavelet Transform

    Directory of Open Access Journals (Sweden)

    M. Djebbouri

    2006-04-01

    Full Text Available A novel GPS satellite signal acquisition scheme that utilizes lifting wavelet to improve acquisition performance is proposed. Acquisition in GPS system is used to calculate the code phase (or shift and find the pseudo-range, which is used to calculate the position. The performance of a GPS receiver is assessed by its ability to precisely measure the pseudo-range, which depends on noise linked to the signals in the receiver’s tracking loops. The level of GPS receiving equipment system noise determines in part how precisely pseudo-range can be measured. Our objective, in this paper, is to achieve robust real-time positioning with maximum of accuracy in the presence of noise. Robust positioning describes a positioning system's ability to maintain position data continuity and accuracy through most or all anticipated operational conditions. In order to carry out a robust less complex GPS signals acquisition system and to facilitate its implementation, a substitute algorithm for calculating the convolution by using lifting wavelet decomposition is proposed. Simulation is used for verifying the performance which shows that the proposed scheme based lifting wavelet transform outperforms both FFT search and signal decimation schemes in the presence of a hostile environment.

  9. Investigating Atmospheric Rivers using GPS PW from Ocean Transits

    Science.gov (United States)

    Almanza, V.; Foster, J. H.; Businger, S.

    2014-12-01

    Atmospheric Rivers (AR) can be described as a long narrow feature within a warm conveyor belt where anomalous precipitable water (PW) is transported from low to high latitudes. Close monitoring of ARs is heavily reliant on satellites, which are limited both in space and time, to capture the fluctuations PW particularly over the ocean. Ship-based Global Positioning System (GPS) receivers have been successful in obtaining millimeter PW accuracy within 100 km from the nearest ground-based reference receiver at a 30 second sampling rate. We extended this capability with a field experiment using ship-based GPS PW on board a cargo ship to traverse over the Eastern Pacific Ocean. In one 14-day cruise cycle, between the periods of February 3-16, 2014, the ship-based GPS captured PW spikes >50 mm during the early development of two ARs, which lead to moderate to heavy rainfall events for Hawaii and flood conditions along the West Coast of the United States. Comparisons between PW solutions processed using different GPS reference sites at distances 100-2000 km provided an internal validation for the ship-based GPS PW with errors typically less than 5 mm. Land-based observations provided an external validation and are in good agreement with ship-based GPS PW at distances GPS receivers offer an extremely cost-effective approach for acquiring continuous meteorological observations over the oceans, which can provide important calibration/validation data for satellite retrieval algorithms. Ship-based systems could be particularly useful for augmenting our meteorological observing networks to improve weather prediction and nowcasting, which in turn provide critical support for hazard response and mitigation efforts in coastal regions.

  10. 82 FR 18736 - Impact of Long Term Evolution Signals on Global Positioning System Receivers

    Science.gov (United States)

    2017-04-21

    ... Long Term Evolution Signals on Global Positioning System Receivers AGENCY: National Institute of... project ``Impact of Long Term Evolution (LTE) signals on Global Positioning System (GPS) Devices''. At...

  11. Hastighedskort for Danmark vha. GPS

    DEFF Research Database (Denmark)

    Andersen, Ove; Lahrmann, Harry; Torp, Kristian

    2011-01-01

    Hastighed på vejnettet er en central metrik indenfor trafikplanlægning og trafikoptimering. I denne artikel beskrives, hvorledes et hastighedskort for hele Danmark er skabt udelukkende vha. GPS data. To tilgangsvinkler til at beregne hastigheder vha. GPS data er præsenteret. Dette er hhv. en punk...... foretages med et beskedent budget er uvist....

  12. Rapid, Precise, and Economical Analysis of Data from the Southern California Integrated GPS Network

    Science.gov (United States)

    Zumberge, J. F.; Muellerschoen, R. J.; Watkins, M. M.

    1995-01-01

    The number of permanently operating precision Global Positioning System (GPS) receivers in the Southern California Integrated GPS Network has increased dramatically in the past year to several dozen. This number is expected to increase to hundreds within a few years. A prototype system to process all of these data, accurately, rapidly, and economically, has been in operation since May 1995.

  13. On the feasibility to integrate low-cost MEMS accelerometers and GNSS receivers

    Science.gov (United States)

    Benedetti, Elisa; Dermanis, Athanasios; Crespi, Mattia

    2017-06-01

    The aim of this research was to investigate the feasibility of merging the benefits offered by low-cost GNSS and MEMS accelerometers technology, in order to promote the diffusion of low-cost monitoring solutions. A merging approach was set up at the level of the combination of kinematic results (velocities and displacements) coming from the two kinds of sensors, whose observations were separately processed, following to the so called loose integration, which sounds much more simple and flexible thinking about the possibility of an easy change of the combined sensors. At first, the issues related to the difference in reference systems, time systems and measurement rate and epochs for the two sensors were faced with. An approach was designed and tested to transform into unique reference and time systems the outcomes from GPS and MEMS and to interpolate the usually (much) more dense MEMS observation to common (GPS) epochs. The proposed approach was limited to time-independent (constant) orientation of the MEMS reference system with respect to the GPS one. Then, a data fusion approach based on the use of Discrete Fourier Transform and cubic splines interpolation was proposed both for velocities and displacements: MEMS and GPS derived solutions are firstly separated by a rectangular filter in spectral domain, and secondly back-transformed and combined through a cubic spline interpolation. Accuracies around 5 mm for slow and fast displacements and better than 2 mm/s for velocities were assessed. The obtained solution paves the way to a powerful and appealing use of low-cost single frequency GNSS receivers and MEMS accelerometers for structural and ground monitoring applications. Some additional remarks and prospects for future investigations complete the paper.

  14. Modeling and performance analysis of GPS vector tracking algorithms

    Science.gov (United States)

    Lashley, Matthew

    This dissertation provides a detailed analysis of GPS vector tracking algorithms and the advantages they have over traditional receiver architectures. Standard GPS receivers use a decentralized architecture that separates the tasks of signal tracking and position/velocity estimation. Vector tracking algorithms combine the two tasks into a single algorithm. The signals from the various satellites are processed collectively through a Kalman filter. The advantages of vector tracking over traditional, scalar tracking methods are thoroughly investigated. A method for making a valid comparison between vector and scalar tracking loops is developed. This technique avoids the ambiguities encountered when attempting to make a valid comparison between tracking loops (which are characterized by noise bandwidths and loop order) and the Kalman filters (which are characterized by process and measurement noise covariance matrices) that are used by vector tracking algorithms. The improvement in performance offered by vector tracking is calculated in multiple different scenarios. Rule of thumb analysis techniques for scalar Frequency Lock Loops (FLL) are extended to the vector tracking case. The analysis tools provide a simple method for analyzing the performance of vector tracking loops. The analysis tools are verified using Monte Carlo simulations. Monte Carlo simulations are also used to study the effects of carrier to noise power density (C/N0) ratio estimation and the advantage offered by vector tracking over scalar tracking. The improvement from vector tracking ranges from 2.4 to 6.2 dB in various scenarios. The difference in the performance of the three vector tracking architectures is analyzed. The effects of using a federated architecture with and without information sharing between the receiver's channels are studied. A combination of covariance analysis and Monte Carlo simulation is used to analyze the performance of the three algorithms. The federated algorithm without

  15. The IONORING Project: Exploiting The Italian Geodetic GPS Network For Ionospheric Purposes

    Science.gov (United States)

    Spogli, L.; Cesaroni, C.; Pezzopane, M.; Alfonsi, L.; Romano, V.; Avallone, A.; Settimi, A.

    2015-12-01

    The increasing use of GNSS for navigation and precise positioning leads to the need of more and more accurate knowledge of the morphology and dynamics of the ionosphere. In fact, it is well known that the ionospheric induced delay is the main error on the GNSS precise positioning applications. On the other hand, GNSS signals propagating through the ionosphere are useful to probe the ionization of the upper atmosphere. RING (Rete Integrata GPS Nazionale) is a dense geodetic network of GPS stations managed by INGV (Istituto Nazionale di Geofisica e Vulcanologia) including about 180 receivers deployed on the whole Italian peninsula. Data acquired by the receivers were initially collected and stored to perform mainly studies focused on crustal deformations, caused both by plates movement and by earthquakes effects. The main goal of the IONORING (IONOspheric RING) project is to exploit data from the RING network to obtain ionospheric Total Electron Content (TEC) maps with very fine spatial resolution (0.1°x0.1°, lat x long) in near real-time. Ad hoc calibration and interpolation algorithms are applied to RINEX data to produce rapid and final products. The former are generated with a time lag of about 1 hour, the latter, characterized by a higher accuracy, are produced with a time lag of maximum 48 hours. These maps will be useful to support ionospheric error mitigation in precise positioning (rapid product) and to study the ionosphere morphology and dynamics during strong solar and geomagnetic storms affecting the mid-latitude ionosphere (final product). Maps and data resulting from the data-processing will be available on a dedicated web page through the electronic Space Weather upper atmosphere portal managed by INGV (www.eswua.it). In this paper, some preliminary results of the IONORING project are presented as well as the ICT interface of the project.

  16. GPS on Every Roof, GPS Sensor Network for Post-Seismic Building-Wise Damage Identification

    Directory of Open Access Journals (Sweden)

    Kenji Oguni

    2013-12-01

    Full Text Available Development of wireless sensor network equipped with GPS for post-seismic building-wise damage identification is presented in this paper. This system is called GPS on Every Roof. Sensor node equipped with GPS antenna and receiver is installed on the top of the roof of each and every building. The position of this sensor node is measured before and after earthquake. The final goal of this system is to i identify the displacement of the roof of each house and ii collect the information of displacement of the roof of the houses through wireless communication. Superposing this information on GIS, building-wise damage distribution due to earthquake can be obtained. The system overview, hardware and some of the key components of the system such as on-board GPS relative positioning algorithm to achieve the accuracy in the order of several centimeters are described in detail. Also, the results from a field experiment using a wireless sensor network with 39 sensor nodes are presented.

  17. A New Indoor Positioning System Architecture Using GPS Signals

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2015-04-01

    Full Text Available The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.

  18. Monitoring of D-layer using GPS

    Science.gov (United States)

    Golubkov, Maxim; Bessarab, Fedor; Karpov, Ivan; Golubkov, Gennady; Manzheliy, Mikhail; Borchevkina, Olga; Kuverova, Veronika; Malyshev, Nikolay; Ozerov, Georgy

    2016-07-01

    entire emission layer on the propagation path affects the positioning errors during the passage of the satellite signal and forming the microwave and infrared radiation. Therefore, specific details of internal irregularities in layer structure caused by atmospheric processes do not play a significant role. Naturally, they are of interest to specific issues of radio physics and dynamics of the ionosphere, but do not have a noticeable effect on the received at the Earth GPS signals. This work was supported by Russian Foundation for Basic Researches (Grant No. 16-05-00052).

  19. GPS Position Time Series @ JPL

    Science.gov (United States)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  20. GPS Position Time Series @ JPL

    Science.gov (United States)

    Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen

    2013-01-01

    Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis

  1. Evidential recovery from GPS devices

    Directory of Open Access Journals (Sweden)

    Brian Cusack

    Full Text Available Global Positioning Systems (GPS have become more affordable, are now widely used in motor vehicles and in other frequently used applications. As a consequence GPS are increasingly becoming an important source of evidential data for digital forensic investigations. This paper acknowledges there are only disparate documents for the guidance of an investigator when extracting evidence form such systems. The focus of this paper is to provide the technical details of recovering artifacts from four GPS currently available to the New Zealand market. Navman brand GPS are used, following a forensically robust process. The steps of the process are described, results analysed and the associated risks are discussed. In addition, the paper discusses techniques related to the visual presentation of evidence suitable for Google Maps. Automation attempts to speed up the analysis to visualization steps are also included. The outcome is a road map that may assist digital forensic investigators develop GPS examination strategies for implementation in their own organizations.

  2. Pseudorage Multipath Estimation and Analysis at the GPS Rgna Network

    Science.gov (United States)

    Vazquez, G. E.; Barron, M. A.

    2010-12-01

    A research study was conducted to evaluate the amount of pseudorange multipath at GPS sites in the National Active Geodetic Network (RGNA) that is administrated by the National Institute of Statistics, Geography and Informatics (INEGI) of México, which supports three dimensional positioning for public users. The RGNA Network consists of 20 GPS stations located throughout México, where double difference geodetic-grade receivers collect GPS data continuously the 365 days of the year. It is well known that, despite carefully selected locations, the GPS stations are to some extent, affected by the presence of multipath. Furthermore, it is very feasible that for RGNA users that relied on precise measurements of pseudorange observables, the existence of pseudorange multipath could affect any type of related application for a short period of time. Thus, in order to identify the most and the least affected stations, the pseudorange multipath (MP1 and MP2) and the daily root mean square (rms-MP1 and rms-MP2) variations were estimated and analyzed at each GPS site of the RGNA Network. The GPS data processing was performed using the public software TEQC (Test of Quality Check) by UNAVCO and the pseudorange multipath analysis is presented at each site over a year basis (in terms of time-series) considering the data span from year 2005 (doy 265) to year 2010 (doy 300).

  3. Kinematic GPS survey as validation of LIDAR strips accuracy

    Directory of Open Access Journals (Sweden)

    C. Gordini

    2006-06-01

    Full Text Available As a result of the catastrophic hydrogeological events which occurred in May 1998 in Campania, in the south of Italy, the distinctive features of airborne laser scanning mounted on a helicopter were used to survey the landslides at Sarno and Quindici. In order to survey the entire zone of interest, approximately 21 km2, it was necessary to scan 12 laser strips. Many problems arose during the survey: difficulties in receiving the GPS signal, complex terrain features and unfavorable atmospheric conditions. These problems were investigated and it emerged that one of the most influential factors is the quality of GPS signals. By analysing the original GPS data, the traces obtained by fixing phase ambiguity with an On The Fly (OTF algorithm were isolated from those with smoothed differential GPS solution (DGPS. Processing and analysis of laser data showed that not all the overlapping laser strips were congruent with each other. Since an external survey to verify the laser data accuracy was necessary, it was decided to utilize the kinematic GPS technique. The laser strips were subsequently adjusted, using the kinematic GPS data as reference points. Bearing in mind that in mountainous areas like the one studied here it is not possible to obtain nominal precision and accuracy, a good result was nevertheless obtained with a Digital Terrain Model (DTM of all the zones of interest.

  4. Permanent GPS Station Sulp: Problems and Preliminary Results

    Science.gov (United States)

    Abrikosov, O.; Zablotskyj, F.; Savchuk, S.

    The permanent GPS station SULP is operating starting from September 2001. GPS observations are carrying out by means of the receiver Trimble 4700 and the antenna Zephyr mounted at the fundamental monument of the Astronomical Observatory of the National University "Lviv Polytechnic". Starting from October 2001, daily and hourly observation files are hosted by OLG Data Center. Analysis of these data is performing by WUT and GOP Analysis Centers. Station SULP was included into episodic GPS campaigns GEODUC (1995) and CEGRN (1994 - 1999, 2001). There- fore, besides the traditional task of providing the permanent high-precision GPS ob- servations for supporting the European networks EUREF and CEGRN, it is planned to use SULP station for the following problems. (1) Investigation of recent movements of the Earth's surface in Carpathian area, particularly in the frames of CERGOP project. (2) Studying of local peculiarities of the atmosphere and constructing of correspond- ing mathematical models. (3) Providing of coordinate data for geodetic activities in the Western Ukraine. GPS data analysis for the mentioned problems is performing by means of GAMIT software. The permanent stations, which surround the Carpathian mountain area, are included into the analysis together with 4 active Ukrainian perma- nent GPS stations. First results show the possibility of the geodetic monitoring based on the permanent station SULP.

  5. Optimal probabilistic dense coding schemes

    Science.gov (United States)

    Kögler, Roger A.; Neves, Leonardo

    2017-04-01

    Dense coding with non-maximally entangled states has been investigated in many different scenarios. We revisit this problem for protocols adopting the standard encoding scheme. In this case, the set of possible classical messages cannot be perfectly distinguished due to the non-orthogonality of the quantum states carrying them. So far, the decoding process has been approached in two ways: (i) The message is always inferred, but with an associated (minimum) error; (ii) the message is inferred without error, but only sometimes; in case of failure, nothing else is done. Here, we generalize on these approaches and propose novel optimal probabilistic decoding schemes. The first uses quantum-state separation to increase the distinguishability of the messages with an optimal success probability. This scheme is shown to include (i) and (ii) as special cases and continuously interpolate between them, which enables the decoder to trade-off between the level of confidence desired to identify the received messages and the success probability for doing so. The second scheme, called multistage decoding, applies only for qudits ( d-level quantum systems with d>2) and consists of further attempts in the state identification process in case of failure in the first one. We show that this scheme is advantageous over (ii) as it increases the mutual information between the sender and receiver.

  6. A New Window-Based Program for Quality Control of GPS Sensing Data

    Directory of Open Access Journals (Sweden)

    Hongsik Yun

    2012-10-01

    Full Text Available The main purpose of this study is to develop a new Windows-based program that calculates a quality control parameter that shows the quality of GPS observations using Global Positing Sensing (GPS data in a Receiver INdependent Exchange (RINEX format. This new program, Global Positing Sensing Quality Control (GPSQC, allows general GPS users to easily and intuitively check the quality of GPS observations before post-processing, which will lead to the improvement of GPS positioning precision in diverse areas of GPS applications. The GPSQC is designed to control the multi-path, cycle slip, and ionospheric errors of L1 and L2 signals in GPS observations. The GPSQC was developed using C#.NET language for the Window series with Microsoft Graphical User Interfaces (MS GUIs. This program gives brief information for GPS observations, time series plots, graphs of quality control parameters, and a summary report in MS word, Excel and PDF formats. It can simply perform quality checking of GPS observations that is difficult for surveyors conducting field work. We expect that GPSQC can be used to improve the accuracy of positioning and to solve time-consuming problems due to data loss and large errors in GPS observations.

  7. Time aspects of the European Complement to GPS: Continental and transatlantic experimental phases

    Science.gov (United States)

    Uhrich, Pierre J. M.; Juompan, B.; Tourde, R.; Brunet, M.; Dutrey, J.-F.

    1995-01-01

    The CNES project of a European Complement to GPS (CE-GPS) is conceived to fulfill the needs of Civil Aviation for a non-precise approach phase with GPS as sole navigation means. This generates two missions: a monitoring mission - alarm of failure - ,and a navigation mission - generating a GPS-like signal on board the geostationary satellites. The host satellites will be the Inmarsat constellation. The CE-GPS missions lead to some time requirements, mainly the accuracy of GPS time restitution and of monitoring clock synchronization. To demonstrate that the requirements of the CE-GPS could be achieved, including the time aspects, an experiment has been scheduled over the Last two years, using a part of the Inmarsat II F-2 payload and specially designed ground stations based on 10 channels GPS receivers. This paper presents a review of the results obtained during the continental phase of the CE-GPS experiment with two stations in France, along with some experimental results obtained during the transatlantic phase (three stations in France, French Guyana, and South Africa). It describes the synchronization of the monitoring clocks using the GPS Common-view or the C- to L-Band transponder of the Inmarsat satellite, with an estimated accuracy better than 10 ns (1 sigma).

  8. Development and Field Testing of a Multi- Antenna GPS System for Deformation Monitoring

    Institute of Scientific and Technical Information of China (English)

    Ding Xiao-li; Huang Ding-fa; Yin Jian-hua; Chen Yong-qi; C. K. Lau; Yang Yu-wen; Sun Yong-rong; Chen Wu; He Xiu-feng

    2003-01-01

    GPS has become an important technology for monitoring deformations of structures and the crust of the Earth. A limiting factor for large-scale use of GPS in such applications is however its high hardware cost. For automatic monitoring of deformations, each point to be monitored needs equipped with a set of GPS instruments. This makes many applications such as routine monitoring of landslides too expensive in most cases. A multi-antenna GPS system has been developed and tested aiming at significantly reducing the cost of GPS when used for monitoring deformations of objects such as slopes. The system uses special hardware and software to allow one GPS receiver to be used with a number of GPS antennas. One set of such equipment can therefore be used to monitor a number of points. The system normally reduces the cost of GPS hardware by a number of folds. Besides, such a system design also eases the tasks of data communication, management and system control. This paper describes the design and system configurations of the multi-antenna GPS system that has been developed by the research team. The system consists of integrated hardware and software components for data acquisition, transmission, processing, analysis and visualization. Integration of the GPS system with conventional slope monitoring systems will also be discussed in brief.

  9. Continuous GPS Carrier-Phase Time Transfer

    Science.gov (United States)

    Yao, Jian

    Time transfer (TT) is the process of transmitting a timing signal from one place to another place. It has applications to the formation and realization of Coordinated Universal Time (UTC), telecommunications, electrical power grids, and even stock exchanges. TT is the actual bottleneck of the UTC formation and realization since the technology of atomic clocks is almost always ahead of that of TT. GPS carrier-phase time transfer (GPSCPTT), as a mainstream TT technique accepted by most national timing laboratories, has suffered from the day-boundary-discontinuity (day-BD) problem for many years. This makes us difficult to observe a remote Cesium fountain clock behavior even after a few days. We find that day-BD comes from the GPS code noise. The day-BD can be lowered by ˜40% if more satellite-clock information is provided and if a few GPS receivers at the same station are averaged. To completely eliminate day-BD, the RINEX-Shift (RS) and revised RS (RRS) algorithms have been designed. The RS/RRS result matches the two-way satellite time/frequency transfer (TWSTFT) result much better than the conventional GPSCPTT result. With the RS/RRS algorithm, we are able to observe a remote Cesium fountain after half a day. We also study the BD due to GPS data anomalies (anomaly-BD). A simple curve-fitting strategy can eliminate the anomaly-BD. Thus, we achieve continuous GPSCPTT after eliminating both day-BD and anomaly-BD.

  10. Simulation on C/A codes and analysis of GPS/pseudolite signals acquisition

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei

    2009-01-01

    The global positioning system (GPS) is an extremely mature technique in the navigation and position-ing field. However, there are still some limits in some aspects and for some special applications. Spe-cially, the performance of GPS needs to be improved with technological advances. As a GPS-like ground transmitter, the pseudolite provides a new research direction to achieve high positioning ac-curacy and reliability. In this paper, we describe the core technologies of designing and simulation on the coarse acquisition codes in constructing the pseudolite system. In the GPS/pseudolite integration system, the signal PRN 36 of the pseudolite and the GPS satellites signals are acquired in the modified receiver based on the computer software platform. It is shown that the pseudolite technology is ideally suited to augment the GPS alone and provide greater integrity, availability, and continuity of the navi-gation positioning system, especially for indoor use.

  11. De GPS al mapa

    Directory of Open Access Journals (Sweden)

    Esteban Dörries

    2016-03-01

    Full Text Available Las coordenadas Lambert obtenidas a partir de mediciones con equipos GPS de mano, llamados a veces navegadores, en ciertos casos confunden al usuario, por diferir claramente de su posición real al ser graficadas en un mapa del Instituto Geográfico Nacional (IGN: Esto puede resolverse con suficiente exactitud mediante una transformación de Molodensky, seguida de la correspondiente proyección cartográfica. Sin embargo, los tres parámetros necesarios para la transformación, supuestamente válidos para Costa Rica, se encuentran en muchas variantes y producen obviamente resultados diferentes. En este trabajo se analizan los fundamentos del problema y sus posibles soluciones, culminando con un estudio comparativo de ocho casos, que permite seleccionar los valores más adecuados para los parámetros.

  12. Navigating the Return Trip from the Moon Using Earth-Based Ground Tracking and GPS

    Science.gov (United States)

    Berry, Kevin; Carpenter, Russell; Moreau, Michael C.; Lee, Taesul; Holt, Gregg N.

    2009-01-01

    NASA s Constellation Program is planning a human return to the Moon late in the next decade. From a navigation perspective, one of the most critical phases of a lunar mission is the series of burns performed to leave lunar orbit, insert onto a trans-Earth trajectory, and target a precise re-entry corridor in the Earth s atmosphere. A study was conducted to examine sensitivity of the navigation performance during this phase of the mission to the type and availability of tracking data from Earth-based ground stations, and the sensitivity to key error sources. This study also investigated whether GPS measurements could be used to augment Earth-based tracking data, and how far from the Earth GPS measurements would be useful. The ability to track and utilize weak GPS signals transmitted across the limb of the Earth is highly dependent on the configuration and sensitivity of the GPS receiver being used. For this study three GPS configurations were considered: a "standard" GPS receiver with zero dB antenna gain, a "weak signal" GPS receiver with zero dB antenna gain, and a "weak signal" GPS receiver with an Earth-pointing direction antenna (providing 10 dB additional gain). The analysis indicates that with proper selection and configuration of the GPS receiver on the Orion spacecraft, GPS can potentially improve navigation performance during the critical final phases of flight prior to Earth atmospheric entry interface, and may reduce reliance on two-way range tracking from Earth-based ground stations.

  13. Status of Precise Orbit Determination for Jason-2 Using GPS

    Science.gov (United States)

    Melachroinos, S.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Pavlis, D. E.

    2011-01-01

    The JASON-2 satellite, launched in June 2008, is the latest follow-on to the successful TOPEX/Poseidon (T/P) and JASON-I altimetry missions. JASON-2 is equipped with a TRSR Blackjack GPS dual-frequency receiver, a laser retroreflector array, and a DORIS receiver for precise orbit determination (POD). The most recent time series of orbits computed at NASA GSFC, based on SLR/DORIS data have been completed using both ITRF2005 and ITRF2008. These orbits have been shown to agree radially at 1 cm RMS for dynamic vs SLRlDORIS reduced-dynamic orbits and in comparison with orbits produced by other analysis centers (Lemoine et al., 2010; Zelensky et al., 2010; Cerri et al., 2010). We have recently upgraded the GEODYN software to implement model improvements for GPS processing. We describe the implementation of IGS standards to the Jason2 GEODYN GPS processing, and other dynamical and measurement model improvements. Our GPS-only JASON-2 orbit accuracy is assessed using a number of tests including analysis of independent SLR and altimeter crossover residuals, orbit overlap differences, and direct comparison to orbits generated at GSFC using SLR and DORIS tracking, and to orbits generated externally at other centers. Tests based on SLR and the altimeter crossover residuals provide the best performance indicator for independent validation of the NASAlGSFC GPS-only reduced dynamic orbits. For the ITRF2005 and ITRF2008 implementation of our GPS-only obits we are using the IGS05 and IGS08 standards. Reduced dynamic versus dynamic orbit differences are used to characterize the remaining force model error and TRF instability. We evaluate the GPS vs SLR & DORIS orbits produced using the GEODYN software and assess in particular their consistency radially and the stability of the altimeter satellite reference frame in the Z direction for both ITRF2005 and ITRF2008 as a proxy to assess the consistency of the reference frame for altimeter satellite POD.

  14. 75 FR 8928 - Announcement of IS-GPS-200, IS-GPS-705, IS-GPS-800 Interface Control Working Group (ICWG...

    Science.gov (United States)

    2010-02-26

    ... Department of the Air Force Announcement of IS-GPS-200, IS-GPS-705, IS-GPS-800Interface Control Working Group... an Interface Control Working Group (ICWG) teleconference meeting for document/s IS-GPS-200E (NAVSTAR GPS Space Segment/Navigation User Interfaces), IS-GPS-705A (NAVSTAR GPS Space Segment/User Segment...

  15. GPS Time Synchronization in School-Network Cosmic Ray Detectors

    CERN Document Server

    Berns, H G; Gran, R; Wilkes, R J; Berns, Hans-Gerd; Burnett, Toby H.; Gran, Richard

    2003-01-01

    The QuarkNet DAQ card for school-network cosmic ray detectors provides a low-cost alternative to using standard particle and nuclear physics fast pulse electronics modules. Individual detector stations, each consisting of 4 scintillation counter modules, front-end electronics, and a GPS receiver, produce a stream of data in form of ASCII text strings in identifiable set of formats for different functions. The card includes a low-cost GPS receiver module, which permits timestamping event triggers to about 50 nanosecond accuracy in UTC between widely separated sites. The technique used for obtaining precise GPS time employs the 1PPS signal, which is not normally available to users of the commercial GPS module. We had the stock model slightly custom-modified to access this signal. The method for deriving time values was adapted from methods developed for the K2K long-baseline neutrino experiment. Performance of the low-cost GPS module used is compared to that of a more expensive unit with known quality.

  16. Warm dense crystallography

    Science.gov (United States)

    Valenza, Ryan A.; Seidler, Gerald T.

    2016-03-01

    The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.

  17. Dense Suspension Splash

    Science.gov (United States)

    Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.

    2014-03-01

    Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).

  18. Dense Axion Stars

    CERN Document Server

    Braaten, Eric; Zhang, Hong

    2015-01-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure.If the axion mass energy is $mc^2= 10^{-4}$ eV, these dilute axion stars have a maximum mass of about $10^{-14} M_\\odot$. We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If $mc^2 = 10^{-4}$ eV, the first branch of these dense axion stars has mas...

  19. Dense Axion Stars

    Science.gov (United States)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-01

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10-14M⊙ if the axion mass is 10-4 eV . We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10-20M⊙ to about M⊙ . If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  20. Dense Axion Stars

    Science.gov (United States)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2016-03-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. If the axion mass energy is mc2 =10-4 eV, these dilute axion stars have a maximum mass of about 10-14M⊙ . We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If mc2 =10-4 4 eV, the first branch of these dense axion stars has mass ranging from about 10-11M⊙ toabout M⊙.

  1. DENSE MEDIUM CYCLONE OPTIMIZATON

    Energy Technology Data Exchange (ETDEWEB)

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  2. Preliminary Results of 4-D Water Vapor Tomography in the Troposphere Using GPS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Slant-path water vapor amounts (SWV) from a station to all the GPS (Global Positioning System)satellites in view can be estimated by using a ground-based GPS receiver. In this paper, a tomographic method was utilized to retrieve the local horizontal and vertical structure of water vapor over a local GPS receiver network using SWV amounts as observables in the tomography. The method of obtaining SWV using ground-based GPS is described first, and then the theory of tomography using GPS is presented.A water vapor tomography experiment was made using a small GPS network in the Beijing region. The tomographic results were analyzed in two ways: (1) a pure GPS method, i.e., only using GPS observables as input to the tomography; (2) combining GPS observables with vertical constraints or a priori information,which come from average radiosonde measurements over three days. It is shown that the vertical structure of water vapor is well resolved with a priori information. Comparisons of profiles between radiosondes and GPS show that the RMS error of the tomography is about 1-2 mm. It is demonstrated that the tomography can monitor the evolution of tropospheric water vapor in space and time. The vertical resolution of the tomography is tested with layer thicknesses of 600 m, 800 m and 1000 m. Comparisons with radiosondes show that the result from a resolution of 800 m is slightly better than results from the other two resolutions in the experiment. Water vapor amounts recreated from the tomography field agree well with precipitable water vapor (PWV) calculated using GPS delays. Hourly tomographic results are also shown using the resolution of 800 m. Water vapor characteristics under the background of heavy rainfall development are analyzed using these tomographic results. The water vapor spatio-temporal structures derived from the GPS network show a great potential in the investigation of weather disasters.

  3. Global Three-Dimensional Ionospheric Data Assimilation Model Using Ground-based GPS and Radio Occultation Total Electron Content

    Science.gov (United States)

    Jann-Yenq Liu, Tiger; Lin, Chi-Yen; Matsuo, Tomoko; Lin, Charles C. H.; Tsai, Ho-Fang; Chen, Chao-Yen

    2017-04-01

    An ionospheric data assimilation approach presented here is based on the Gauss-Markov Kalman filter with International Reference Ionosphere (IRI) as the background model and designed to assimilate the total electron content (TEC) observed from ground-based GPS receivers and space-based radio occultation (RO) of FORMOSAT-3/COSMIC (F3/C) or FORMOSAT-7/COSMIC-2 (F7/C2). The Kalman filter consists of the forecast step according to Gauss-Markov process and measurement update step. Observing System Simulation Experiments (OSSEs) show that the Gauss-Markov Kalman filter procedure can increase the accuracy of the data assimilation analysis over the procedure consisting of the measurement update step alone. Moreover, in comparing to F3/C, the dense F7/C2 RO observation can further increase the model accuracy significantly. Validating the data assimilation results with the vertical TEC in Global Ionosphere Maps and that derived from ground-based GPS measurements, as well as the ionospheric F2-peak height and electron density sounded by ionosondes is also carried out. Both the OSSE results and the observation validations confirm that the developed data assimilation model can be used to reconstruct the three-dimensional electron density in the ionosphere satisfactorily.

  4. Field Evaluation of Ocean Wave Measurement With GPS Buoys

    Science.gov (United States)

    2010-09-01

    surface waves. In the experiment, conducted off the coast of California near Bodega Bay, clusters off Datawell and prototype GPS buoys were...receivers to measure ocean surface waves. In the experiment, conducted off the coast of California near Bodega Bay, clusters off Datawell and...the coast near Bodega Bay, CA. .............................................................................................17 Figure 4. R/P FLIP

  5. Hastighedskort for Danmark vha. GPS

    DEFF Research Database (Denmark)

    Andersen, Ove; Lahrmann, Harry; Torp, Kristian

    2011-01-01

    Hastighed på vejnettet er en central metrik indenfor trafikplanlægning og trafikoptimering. I denne artikel beskrives, hvorledes et hastighedskort for hele Danmark er skabt udelukkende vha. GPS data. To tilgangsvinkler til at beregne hastigheder vha. GPS data er præsenteret. Dette er hhv. en....... Opsummeret anses den turbaseret for at beregne det mest akkurate estimat, men metoden er meget datakrævende. Det er derfor nødvendigt at have den punktbaserede at falde tilbage på. Generelt mangler metoder til beregning af hastigheder vha. GPS data at blive valideret. Hvordan en sådan validering kan...

  6. Operational aspects of CASA UNO '88-The first large scale international GPS geodetic network

    Science.gov (United States)

    Neilan, Ruth E.; Dixon, T. H.; Meehan, Thomas K.; Melbourne, William G.; Scheid, John A.; Kellogg, J. N.; Stowell, J. L.

    1989-01-01

    For three weeks, from January 18 to February 5, 1988, scientists and engineers from 13 countries and 30 international agencies and institutions cooperated in the most extensive GPS (Global Positioning System) field campaign, and the largest geodynamics experiment, in the world to date. This collaborative eperiment concentrated GPS receivers in Central and South America. The predicted rates of motions are on the order of 5-10 cm/yr. Global coverage of GPS observations spanned 220 deg of longitude and 125 deg of latitude using a total of 43 GPS receivers. The experiment was the first civilian effort at implementing an extended international GPS satellite tracking network. Covariance analyses incorporating the extended tracking network predicted significant improvement in precise orbit determination, allowing accurate long-baseline geodesy in the science areas.

  7. Operational aspects of CASA UNO '88-The first large scale international GPS geodetic network

    Science.gov (United States)

    Neilan, Ruth E.; Dixon, T. H.; Meehan, Thomas K.; Melbourne, William G.; Scheid, John A.; Kellogg, J. N.; Stowell, J. L.

    1989-01-01

    For three weeks, from January 18 to February 5, 1988, scientists and engineers from 13 countries and 30 international agencies and institutions cooperated in the most extensive GPS (Global Positioning System) field campaign, and the largest geodynamics experiment, in the world to date. This collaborative eperiment concentrated GPS receivers in Central and South America. The predicted rates of motions are on the order of 5-10 cm/yr. Global coverage of GPS observations spanned 220 deg of longitude and 125 deg of latitude using a total of 43 GPS receivers. The experiment was the first civilian effort at implementing an extended international GPS satellite tracking network. Covariance analyses incorporating the extended tracking network predicted significant improvement in precise orbit determination, allowing accurate long-baseline geodesy in the science areas.

  8. Fusion of High-Rate GPS and Seismic Data: Applications to Early Warning Systems for Mitigation of Geological Hazards

    Science.gov (United States)

    Bock, Y.; Crowell, B.; Webb, F.; Kedar, S.; Clayton, R.; Miyahara, B.

    2008-12-01

    We discuss the fusion of low-latency (1 s) high-rate (1 Hz or greater) CGPS displacements and traditional seismic data, in order to extend the frequency range and timeliness of surface displacement data already available at lower frequencies from space borne InSAR and (typically daily) CGPS coordinate time series. The goal is development of components of early warning systems for mitigation of geological hazards (direct seismic damage, tsunamis, landslides, volcanoes). The advantage of the GPS data is that it is a direct measurement of ground displacement. With seismic data, this type of measure has to be obtained by deconvolution of the instrument response and integration of the broadband (velocity) measurements, or a double integration of the strong motion (acceleration) measurements. Due to the bandwidth and the dynamic range limits of seismometers the accuracy of absolute displacements so derived is poor. This problem is not present in the high-sample rate GPS data. While the seismic measurement provides a powerful constraint on the much noisier GPS measurements, unlike the seismometer, the GPS receiver never clips. Using the Network for Earthquake Engineering Simulation (NEES) Large High-Performance Outdoor Shake Table at USCD, we present an example of combining in real-time 50 Hz GPS displacements and 250 Hz raw accelerometer data using a multi-rate Kalman filter, previously applied to bridge monitoring. A full-scale 7- story building atop the shake table was subjected to high intensity shaking by replaying the Sylmar accelerometer record from the Mw 6.7 1994 Northridge earthquake. The resulting 250 Hz displacement waveform is significantly more accurate than obtained solely by low-pass filtering and double integration of the 250 Hz accelerometer records. Next we demonstrate the elements of an earthquake early warning system by analyzing the 2003 Mw 8.3 Tokachi-Oki thrust earthquake off Hokkaido Island detected by the dense Japan national real-time CGPS

  9. Robust GPS carrier tracking under ionospheric scintillation

    Science.gov (United States)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance

  10. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  11. Scintillation-Hardened GPS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) experiment is proposed to improve the performance of GPS during geomagnetic storms....

  12. Reducing antibiotic prescriptions for acute cough by motivating GPs to change their attitudes to communication and empowering patients: a cluster-randomized intervention study

    National Research Council Canada - National Science Library

    Altiner, Attila; Brockmann, Silke; Sielk, Martin; Wilm, Stefan; Wegscheider, Karl; Abholz, Heinz-Harald

    2007-01-01

    .... GPs randomized to receive the intervention were visited by peers. The intervention strategy was focused on the communication within the encounter, not on sharing knowledge about antibiotic prescribing...

  13. Continuous professional development for GPs

    DEFF Research Database (Denmark)

    Kjaer, N K; Steenstrup, A P; Pedersen, L B

    2014-01-01

    randomly chosen Danish GPs. RESULTS: Focus groups: CPD activities are chosen based on personal needs analysis, and in order to be professionally updated, to meet engaged colleagues and to prevent burnout. GPs also attend CPD to assess their own pre-existing level of competence. CPD activities need...... by topics strengthening their professional capacity and preventing burnout. There would seem to be no need for a mandatory system....

  14. Global Positioning Systems Directorate: GPS Update

    Science.gov (United States)

    2015-04-29

    Council Maintenance/Security Spectrum 39 Satellites /31 Set Healthy Baseline Constellation : 24 Satellites • All Level l and Level II...Department of Transportation • Federal Aviation Administration Satellite Block GPS IIA GPS IIR GPS IIR-M GPS IIF Constellation Department of...segment - India- IRNSS UNCLASSIFIED/APPROVED FOR PUBLIC RELEASE 3 UNCLASSIFIED/APPROVED FOR PUBLIC RELEASE GPS Constellation Status SPACE AND

  15. Potential radio frequency interference with the GPS L5 band for radio occultation measurements

    Directory of Open Access Journals (Sweden)

    A. M. Wolff

    2014-05-01

    Full Text Available New Radio Occultation (RO receivers are planned to utilize the newly implemented Global Positioning System (GPS L5 signal centered at 1176.45 MHz. Since there are currently no operational GPS L5 receivers used for space-based RO applications, the interference environment is unclear. Distance Measuring Equipment (DME and Tactical Air Navigation (TACAN stations share the same frequency band as the GPS L5 signal. DME/TACAN signals have been identified to be a means of interference for any GPS L5 receiver. This study focuses on implementing a Systems Tools Kit (STK simulation to gain insight into the power received by a RO satellite in Low Earth Orbit (LEO from a DME/TACAN transmission. In order to confirm the validity of utilizing STK for communication purposes, a theoretical scenario was recreated as a simulation and the results were confirmed. Once the method was validated, STK was used to output a received power level aboard a RO satellite from a DME/TACAN station as well as a tool to predict the number of interfering DME/TACAN stations at any point in time. Taking a conservative approach, the signal power received was much greater than the typical power level received by a RO satellite from a GPS satellite transmission. This relatively high received power along with a high number of interfering DME/TACAN stations as an RO satellite passes over North America or Western Europe indicate that DME/TACAN interference may conflict with RO receivers.

  16. A Forward GPS Multipath Simulator Based on the Vegetation Radiative Transfer Equation Model.

    Science.gov (United States)

    Wu, Xuerui; Jin, Shuanggen; Xia, Junming

    2017-06-05

    Global Navigation Satellite Systems (GNSS) have been widely used in navigation, positioning and timing. Nowadays, the multipath errors may be re-utilized for the remote sensing of geophysical parameters (soil moisture, vegetation and snow depth), i.e., GPS-Multipath Reflectometry (GPS-MR). However, bistatic scattering properties and the relation between GPS observables and geophysical parameters are not clear, e.g., vegetation. In this paper, a new element on bistatic scattering properties of vegetation is incorporated into the traditional GPS-MR model. This new element is the first-order radiative transfer equation model. The new forward GPS multipath simulator is able to explicitly link the vegetation parameters with GPS multipath observables (signal-to-noise-ratio (SNR), code pseudorange and carrier phase observables). The trunk layer and its corresponding scattering mechanisms are ignored since GPS-MR is not suitable for high forest monitoring due to the coherence of direct and reflected signals. Based on this new model, the developed simulator can present how the GPS signals (L1 and L2 carrier frequencies, C/A, P(Y) and L2C modulations) are transmitted (scattered and absorbed) through vegetation medium and received by GPS receivers. Simulation results show that the wheat will decrease the amplitudes of GPS multipath observables (SNR, phase and code), if we increase the vegetation moisture contents or the scatters sizes (stem or leaf). Although the Specular-Ground component dominates the total specular scattering, vegetation covered ground soil moisture has almost no effects on the final multipath signatures. Our simulated results are consistent with previous results for environmental parameter detections by GPS-MR.

  17. Using GPS Interferometric Reflectometry to estimate soil moisture and vegetation water content fluctuations

    Science.gov (United States)

    Chew, C. C.; Small, E. E.; Larson, K. M.; Braun, J. J.; Shreve, C. M.

    2010-12-01

    High-precision GPS receivers can be used to estimate fluctuations in near surface soil moisture, snow and vegetation water content. This approach, referred to as GPS-Interferometric Reflectometry (GPS-IR), relates precise changes in the geometry of reflected GPS signals to observe soil moisture and snow while simultaneously using signal attenuation and diffuse scattering to infer changes in vegetative state. Previous remote sensing research has shown that microwave signals (e.g., L-band) are optimal for measuring hydrologic variables, such as soil moisture, and because GPS satellites transmit similar signals, they can be useful for sensing water in the environment. In addition, standard GPS antenna configurations that are used in NSF's Plate Boundary Observatory network yield sensing footprints of ~1000 m2. Given this sensitivity, hundreds of GPS receivers that exist in the U.S. could be used to provide near-real time estimates of soil moisture and vegetation water content for satellite validation, drought monitoring and related studies. A significant obstacle to using L-band (or similar) signals for remote sensing is differentiating the effects of soil moisture and vegetation on the retrieval of hydrologic variables. This same challenge exists when using GPS-IR data. We have established nine research sites with identical GPS and hydrologic infrastructure to study this problem. These sites span a wide range of soil, vegetation, and climate types. In addition to daily GPS and hourly soil moisture data, we have collected weekly vegetation water content samples at all sites. Our data demonstrate that soil moisture fluctuations can be estimated from GPS-IR records when vegetation water content is low (moisture and vegetation signals and quantifying errors in our retrieval algorithm.

  18. Design of complete software GPS signal simulator with low complexity and precise multipath channel model

    Directory of Open Access Journals (Sweden)

    G. Arul Elango

    2016-09-01

    Full Text Available The need for GPS data simulators have become important due to the tremendous growth in the design of versatile GPS receivers. Commercial hardware and software based GPS simulators are expensive and time consuming. In this work, a low cost simple novel GPS L1 signal simulator is designed for testing and evaluating the performance of software GPS receiver in a laboratory environment. A typical real time paradigm, similar to actual satellite derived GPS signal is created on a computer generated scenario. In this paper, a GPS software simulator is proposed that may offer a lot of analysis and testing flexibility to the researchers and developers as it is totally software based primarily running on a laptop/personal computer without the requirement of any hardware. The proposed GPS simulator allows provision for re-configurability and test repeatability and is developed in VC++ platform to minimize the simulation time. It also incorporates Rayleigh multipath channel fading model under non-line of sight (NLOS conditions. In this work, to efficiently design the simulator, several Rayleigh fading models viz. Inverse Discrete Fourier Transform (IDFT, Filtering White Gaussian Noise (FWFN and modified Sum of Sinusoidal (SOS simulators are tested and compared in terms of accuracy of its first and second order statistical metrics, execution time and the later one is found to be as the best appropriate Rayleigh multipath model suitable for incorporating with GPS simulator. The fading model written in ‘MATLAB’ engine has been linked with software GPS simulator module enable to test GPS receiver’s functionality in different fading environments.

  19. 3 dimensional ionospheric electron density reconstruction based on GPS measurements

    Science.gov (United States)

    Stolle, C.; Schlüter, S.; Jacobi, C.; Jakowski, N.

    When radio waves as sended by the naviagtion system GPS are passing through the ionosphere they are subject to delays in phase, travel time and polarisation which is an effect of the free electrons. The measured integrated value of Total Electron Content can be utilised for three-dimensional reconstruction of electron density patterns in the ionosphere. Here a tomographic approach is represented. Scince the distribution of data is very sparse and patchy we decided for an algebraic iterative algorithm. The ground based GPS data collected by IGS receivers can be combined by space based GPS of radio limb sounding, incoherent scatter radar and ionosondes data. Hereby, radio occultation data improve beside the amount of available data especially the vertical resolution of electron density distribution. Ionosonde peack electron densities are taken as stop criteria determination for iteration. Reconstructed ionospheric scenarios and validations of the system by independent measurements are presented.

  20. Using Doppler Shifts of GPS Signals To Measure Angular Speed

    Science.gov (United States)

    Campbell, Charles E., Jr.

    2006-01-01

    A method has been proposed for extracting information on the rate of rotation of an aircraft, spacecraft, or other body from differential Doppler shifts of Global Positioning System (GPS) signals received by antennas mounted on the body. In principle, the method should be capable of yielding low-noise estimates of rates of rotation. The method could eliminate the need for gyroscopes to measure rates of rotation. The method is based on the fact that for a given signal of frequency ft transmitted by a given GPS satellite, the differential Doppler shift is attributable to the difference between those components of the instantaneous translational velocities of the antennas that lie along the line of sight from the antennas to the GPS satellite.

  1. Reduction Vehicle Speed Using GPS Android Smart Phone Programming

    Directory of Open Access Journals (Sweden)

    Sameer Sami Hassan

    2017-07-01

    Full Text Available Today the new generation of smart phone such as Samsung galaxy, Sony, Motorola, HTC is used to build smart applications that made the human life more comfortable and safe. The Android open source operating system with java programming language can be used to develop such applications. In this paper a new software application has been developed using Samsung, galaxy note smart phone to control the speed of vehicle using GPS and Android programming for such smart phone. By collecting the speed and location information from Global Position System (GPS receiver and using the global map application programming interface to determine the location nearby university, school and hospital in Baghdad city. The application will be check the speed of vehicle in zone of school, hospital and university using GPS information. If the speed over the limit the application produce sound alarm to reduce the speed to set up limit.

  2. Conductive dense hydrogen

    Science.gov (United States)

    Eremets, M.; Troyan, I.

    2012-12-01

    Hydrogen at ambient pressures and low temperatures forms a molecular crystal which is expected to display metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature Tc of 200-400 K. The superconductor may potentially be recovered metastably at ambient pressures, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. Recent experiments performed at low temperatures T 220 GPa, new Raman modes arose, providing evidence for the transformation to a new opaque and electrically conductive phase IV. Above 260 GPa, in the next phase V, hydrogen reflected light well. Its resistance was nearly temperature-independent over a wide temperature range, down to 30 K, indicating that the hydrogen was metallic. Releasing the pressure induced the metallic phase to transform directly into molecular hydrogen with significant hysteresis at 200 GPa and 295 K. These data were published in our paper: M. I. Eremets and I. A. Troyan "Conductive dense hydrogen." Nature Materials 10: 927-931. We will present also new results on hydrogen: phase diagram with phases IV and V determined in P,T domain up to 300 GPa and 350 K. We will also discuss possible structures of phase IV based on our Raman and infrared measurements up to 300 GPa.

  3. Dense Hypervelocity Plasma Jets

    Science.gov (United States)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  4. Heavy mesons in dense matter

    NARCIS (Netherlands)

    Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; LlanesEstrada, FJ; Pelaez,

    2011-01-01

    Charmed mesons in dense matter are studied within a unitary coupled-channel approach which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense medium, and discuss their implications on hidden c

  5. Analysis of unmanned aerial vehicle navigation and height control system based on GPS

    Institute of Scientific and Technical Information of China (English)

    Jianjun Zhang; Hong Yuan

    2010-01-01

    According to the characteristic of global positioning system(GPS)reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV)guidance localization but also realizes height measurement.A code delay algorithm is put forward,which processes the direct and land reflected signal and outputs the navigation data and specular point.The GPS terrain reflected echo signal mathematical equation is inferred.The reflecting signal area,when the GPS signal passes the land,is analyzed.The height survey model reflected land surface characteristic is established.A simulation system which carries guidance localization of the UAV and the height measuring control through the GPS direct signal and the land reflected signal is designed,taken the GPS satellite as the illumination source,the receiver is put on the UAV.Then the UAV guidance signal,the GPS reflection signal and receiver's parallel processing are realized.The parallel processing reduces UAV's payload and raises system's operating efficiency.The simulation results confirms the validity of the model and also provides the basis for the UAV's optimization design.

  6. Optimization of GPS Interferometric Reflectometry for Remote Sensing

    Science.gov (United States)

    Chen, Qiang

    GPS Interferometric Reflectometry (GPS-IR), a passive microwave remote sensing technique utilizing GPS signal as a source of opportunity, characterizes the Earth's surface through a bistatic radar configuration. The key idea of GPS-IR is utilizing a ground-based antenna to coherently receive the direct, or line-of-sight (LOS), signal and the Earth's surface reflected signal simultaneously. The direct and reflected signals create an interference pattern of the Signal-to-Noise Ratio (SNR), which contains the information about the Earth's surface environment. GPS-IR has proven its utility in a variety of environmental remote sensing applications, including the measurements of near-surface soil moisture, coastal sea level, snow depth and snow water equivalent, and vegetation biophysical parameters. A major approach of the GPS-IR technique is using the SNR data provided by the global network of the geodetic GPS stations deployed for tectonic and surveying applications. The geodetic GPS networks provide wide spatial coverage and have no additional cost for this capability expansion. However, the geodetic GPS instruments have intrinsic limitations: the geodetic-quality GPS antennas are designed to suppress the reflected signals, which is counter to the requirement of GPS-IR. As a result, it is desirable to refine and optimize the instrument and realize the full potential of the GPS-IR technique. This dissertation first analyzes the signal characteristics of four available polarizations of the GPS signal, and then discusses how these characteristics are related to and can be used for remote sensing applications of GPS-IR. Two types of antennas, a half-wavelength dipole antenna and a patch antenna, are proposed and fabricated to utilize the desired polarizations. Four field experiments are conducted to assess the feasibility of the design criteria and the performance of the proposed antennas. Three experiments are focused on snow depth measurement. The Table Mountain

  7. A Demonstration of GPS Landslide Monitoring Using Online Positioning User Service (OPUS)

    Science.gov (United States)

    Wang, G.

    2011-12-01

    Global Positioning System (GPS) technologies have been frequently applied to landslide study, both as a complement, and as an alternative to conventional surveying methods. However, most applications of GPS for landslide monitoring have been limited to the academic community for research purposes. High-accuracy GPS has not been widely equipped in geotechnical companies and used by technicians. The main issue that limits the applications of GPS in the practice of high-accuracy landslide monitoring is the complexity of GPS data processing. This study demonstrated an approach using the Online Positioning User Service (OPUS) (http://www.ngs.noaa.gov/OPUS) provided by the National Geodetic Survey (NGS) of National Oceanic and Atmospheric Administration (NOAA) to process GPS data and conduct long-term landslide monitoring in the Puerto Rico and Virgin Islands Region. Continuous GPS data collected at a creeping landslide site during two years were used to evaluate different scenarios for landslide surveying: continuous or campaign, long duration or short duration, morning or afternoon (different weather conditions). OPUS uses Continuously Operating Reference Station (CORS) managed by NGS (http://www.ngs.noaa.giv/CORS/) as references and user data as a rover to solve a position. There are 19 CORS permanent GPS stations in the Puerto Rico and Virgin Islands region. The dense GPS network provides a precise and reliable reference frame for subcentimeter-accuracy landslide monitoring in this region. Our criterion for the accuracy was the root-mean-square (RMS) of OPUS solutions over a 2-year period with respect to true landslide displacement time series overt the same period. The true landslide displacements were derived from a single-baseline (130 m) GPS processing by using 24-hour continuous data. If continuous GPS surveying is performed in the field, then OPUS static processing can provide 0.6 cm horizontal and 1.1 cm vertical precision with few outliers. If repeated

  8. GPS Earthquake Early Warning in Cascadia

    Science.gov (United States)

    Melbourne, T. I.; Scrivner, C. W.; Santillan, V. M.; Webb, F.

    2011-12-01

    Over 400 GPS receivers of the combined PANGA and PBO networks currently operate along the Cascadia subduction zone, all of which are high-rate and telemetered in real-time. These receivers span the M9 megathrust, M7 crustal faults beneath population centers, several active Cascades volcanoes, and a host of other hazard sources, and together enable a host of new approaches towards hazards mitigation. Data from the majority of the stations is received in real time at CWU and processed into one-second position estimates using 1) relative positioning within several reference frames constrained by 2) absolute point positioning using streamed satellite orbit and clock corrections. While the former produces lower-noise time series, for earthquakes greater than ~M7 and ground displacements exceeding ~20 cm, point positioning alone is shown to provide very rapid and robust estimates of the location and amplitude of both dynamic strong ground motion and permanent deformation. The advantage of point-positioning over relative positioning for earthquake applications lies primarily in the fact that each station's position is estimated independently, without double-differencing, within a reference frame defined by earth's center of mass and the satellite orbits. Point positioning does not require a nearby stable reference station or network whose motion (such as during a seismic event) aliases directly into fictitious displacement of any station in question. Thus, for real-time GPS earthquake characterization, this is of great importance in ensuring a robust measurement. We are now producing real-time point-positions using GIPSY5 and corrections to broadcast satellite clocks and orbits streamed live from the DLR in Germany. We have also developed a stream-editor to flag and fix cycle-slips and other data problems on the fly prior to positioning. We are achieving stream any or all of these data products onto local computers for customized analyses and triggers.

  9. Ambiguity resolution performance with GPS and BeiDou for LEO formation flying

    Science.gov (United States)

    Verhagen, Sandra; Teunissen, Peter J. G.

    2014-09-01

    The evolving BeiDou Navigation Satellite System constellation brings new opportunities for high-precision applications. In this contribution the focus will be on one such application, namely precise and instantaneous relative navigation of a formation of LEO satellites. The aim is to assess the ambiguity resolution performance with the future GPS and BeiDou constellations depending on system choice (GPS, BeiDou, or GPS+BeiDou), single- or dual-frequency observations, receiver noise, and uncertainties in ionosphere modelling. In addition, for the GPS+BeiDou constellation it will be shown how the growing BeiDou constellation in the years to come can already bring an important performance improvement compared to the GPS-only case. The performance will be assessed based on the percentage of time that the required precision can be obtained with a partial ambiguity resolution strategy.

  10. Simulation and Performance Evaluations of the New GPS L5 and L1 Signals

    Directory of Open Access Journals (Sweden)

    Tahir Saleem

    2017-01-01

    Full Text Available The Global Positioning System (GPS signals are used for navigation and positioning purposes by a diverse set of users. As a part of GPS modernization effort L5 has been recently introduced for better accuracy and availability service. This paper intends to study and simulate the GPS L1/L5 signal in order to fulfill the following two objectives. The first aim is to point out some important features/differences between current L1 (whose characteristics have been fairly known and documented and new L5 GPS signal for performance evaluation purpose. The second aim is to facilitate receiver development, which will be designed and assembled later for the actual acquisition of GPS data. Simulation has been carried out for evaluation of correlation properties and link budgeting for both L1 and L5 signals. The necessary programming is performed in Matlab.

  11. A Leo Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    Science.gov (United States)

    Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack

    2001-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately, a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes. This work presents the development of a technique to eliminate numerical differentiation of the GPS phase measurements and also compares the use of one versus two GPS satellites.

  12. Jason-1 and Jason-2 POD Using GPS

    Science.gov (United States)

    Melachroinos, Stavros; Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.; Beckley, Brian D.

    2012-01-01

    The Jason-2 satellite, launched in June 2008, is the latest follow-on to the successful Jason-1 altimetry satellite mission launched in December 7, 2001. Both, Jason-2 and Jason-1 are equipped with a GPS dual-frequency receiver, a laser retroreflector array, and a DORIS receiver for precise orbit determination (POD). A series of dynamic and reduced-dynamic Jason-2 orbits computed at NASA GSFC, based on GPS-only data and the std0905 standards, have been completed till cy74through cycle 74 using the IGS05 framework. These orbits, now publicly available, have been shown to agree radially at 1 cm RMS with the GSFC std0905 SLR/DORIS orbits and in comparison with orbits produced by JPL, ESA and CNES. In this paper, we describe the implementation of the IGS08 and repro1 framework for the Jason-2 and Jason-1 GPS POD processing with the NASA GSFC GEODYN software. . In our updated GPS POD, ambiguity fixing and updated time variable and static gravity fields. We also evaluate the implementation of non-tidal and degree-1 loading displacement as forward modeling to the tracking stations. Reduced-dynamic versus dynamic orbit differences are used to characterize the remaining force model errors and TRF instability. In particular, we assess their consistency radially and the stability of the altimeter satellite reference frame in the North/South direction as a proxy to assess the consistency of the reference frame.

  13. GPS/MEMS IMU/Microprocessor Board for Navigation

    Science.gov (United States)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.

  14. Jason-1 and Jason-2 POD Using GPS

    Science.gov (United States)

    Melachroinos, Stavros; Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.; Beckley, Brian D.

    2012-01-01

    The Jason-2 satellite, launched in June 2008, is the latest follow-on to the successful Jason-1 altimetry satellite mission launched in December 7, 2001. Both, Jason-2 and Jason-1 are equipped with a GPS dual-frequency receiver, a laser retroreflector array, and a DORIS receiver for precise orbit determination (POD). A series of dynamic and reduced-dynamic Jason-2 orbits computed at NASA GSFC, based on GPS-only data and the std0905 standards, have been completed till cy74through cycle 74 using the IGS05 framework. These orbits, now publicly available, have been shown to agree radially at 1 cm RMS with the GSFC std0905 SLR/DORIS orbits and in comparison with orbits produced by JPL, ESA and CNES. In this paper, we describe the implementation of the IGS08 and repro1 framework for the Jason-2 and Jason-1 GPS POD processing with the NASA GSFC GEODYN software. . In our updated GPS POD, ambiguity fixing and updated time variable and static gravity fields. We also evaluate the implementation of non-tidal and degree-1 loading displacement as forward modeling to the tracking stations. Reduced-dynamic versus dynamic orbit differences are used to characterize the remaining force model errors and TRF instability. In particular, we assess their consistency radially and the stability of the altimeter satellite reference frame in the North/South direction as a proxy to assess the consistency of the reference frame.

  15. Ionospheric error analysis in gps measurements

    Directory of Open Access Journals (Sweden)

    G. Pugliano

    2008-06-01

    Full Text Available The results of an experiment aimed at evaluating the effects of the ionosphere on GPS positioning applications are presented in this paper. Specifically, the study, based upon a differential approach, was conducted utilizing GPS measurements acquired by various receivers located at increasing inter-distances. The experimental research was developed upon the basis of two groups of baselines: the first group is comprised of "short" baselines (less than 10 km; the second group is characterized by greater distances (up to 90 km. The obtained results were compared either upon the basis of the geometric characteristics, for six different baseline lengths, using 24 hours of data, or upon temporal variations, by examining two periods of varying intensity in ionospheric activity respectively coinciding with the maximum of the 23 solar cycle and in conditions of low ionospheric activity. The analysis revealed variations in terms of inter-distance as well as different performances primarily owing to temporal modifications in the state of the ionosphere.

  16. Topo-Iberia GPS network: installation complete

    Science.gov (United States)

    Khazaradze, G.

    2009-04-01

    As part of the project, titled "Geociencias en Iberia: Estudios integrados de topografía y evolución 4D: Topo-Iberia", we have established a network of 26 continuous GPS stations, covering the Spanish part of the Iberian Peninsula (22 stations) and Morocco (4 stations). A major objective behind the establishment of this array is to monitor millimeter level deformation of the crust due to the collision of African and Eurasian (including Iberian) tectonic plates. More specific goals of the project include the identification of the areas and/or specific seismic faults which exhibit higher deformation rates, which could imply an increased seismic hazard in these specific areas. The network has been designed as two X-shaped transects crossing the peninsula from NE to SW and NW to SE, with relatively coarse distribution of the stations, superimposed with denser coverage in the seismically active areas of the Betics, Pyrenees and Cantabrian chains. The majority of the built monuments consist of 1.5-1.8 m tall concrete pillars of 40 cm in diameter anchored to the bedrock using iron rebars. One station in Huesca was built according the UNAVCO's short drilled braced monument (SDBM) specifications. All the monuments were equipped with the SCIGN leveling mounts to ensure the precise antenna alignment and re-alignment in case of the antenna replacement, as well as, tamper resistance of the monument mark. In places were the snow accumulation was possible the antennas were covered with plastic radomes. The instrumentation used is Trimble NetRS dual-frequency receivers with choke-ring antennas. The communication is mainly via cellular telephone system. As of December 2008, the network installation has been competed and all the stations are fully operational. Here we report the milestones of the installation of the network and, as well as, present the first preliminary results of the analysis of the data. Besides the newly established Topo-Iberia CGPS stations, we have included

  17. Review of current GPS methodologies for producing accurate time series and their error sources

    Science.gov (United States)

    He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping

    2017-05-01

    The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e

  18. GPS and GIS Methods in an African Rain Forest: Applications to Tropical Ecology and Conservation

    Directory of Open Access Journals (Sweden)

    Brean Duncan

    2002-01-01

    Full Text Available Since the completion of the Navstar Global Positioning System (GPS in 1995, the integration of GPS and Geographical Information Systems (GIS technology has expanded to a great number of ecological and conservation applications. In tropical rain forest ecology, however, the technology has remained relatively neglected, despite its great potential. Notwithstanding cost, this is principally due to (1 the difficulty of quality satellite reception beneath a dense forest canopy, and (2 a degree of spatial error unacceptable to fine-scale vegetation mapping. Here, we report on the technical use of GPS/GIS in the rain forest of Kibale National Park, Uganda, and the methodology necessary to acquire high-accuracy spatial measurements. We conclude that the stringent operating parameters necessary for high accuracy were rarely obtained while standing beneath the rain forest canopy. Raising the GPS antenna to heights of 25–30 m resolved this problem, allowing swift data collection on the spatial dispersion of individual rain forest trees. We discuss the impact of the 1996 Presidential Decision Directive that suspended U.S. military-induced GPS error on 1 May 2000, and comment on the potential applications of GPS/GIS technology to the ecological study and conservation of tropical rain forests.

  19. Location - Global Positioning System (GPS) Photos

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — Digital photos tagged with GPS location information. The St. Paul District maintains a digital library of over 10,000 GPS photos. Photos are often associated with...

  20. GPS Attitude Determination for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Toyon Research Corporation proposes to develop a family of compact, low-cost GPS-based attitude (GPS/A) sensors for launch vehicles. In order to obtain 3-D attitude...

  1. GPS operations at Olkiluoto in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Koivula, H.; Kallio, U.; Nyberg, S.; Jokela, J.; Poutanen, M. [Finnish Geodetic Institute, Masala (Finland)

    2012-06-15

    The Finnish Geodetic Institute has studied crustal deformations at Olkiluoto, Kivetty and Romuvaara in co-operation with Posiva Oy since 1995. At Olkiluoto a total of 32 GPS campaigns have been carried out at inner network since 1995 and 17 campaigns at outer network since 2003. Kivetty and Romuvaara were not measured in 2011. In the Olkiluoto inner network 80 percent of the estimated change rates are smaller than 0.10 mm/a. One third of the change rates are statistically significant. They are mainly related to the Olkiluoto permanent station (GPS1) and to the pillars GPS6 and GPS13. The change rates related to GPS6 are not realistic due to the site-specific changes affecting the time series. The maximum change rate (-0.20 mm/a {+-} 0.05 mm/a) is related to GPS13. The time series of GPS13 is half the length of other pillars and therefore, the change rates are more uncertain. In the Olkiluoto outer network the maximum and statistically significant change rate is between GPS1-GPS11 (0.39 mm/a {+-} 0.06 mm/a). Pillar GPS12 was not observed this year. The change rates of baselines GPS1-GPS14 and GPS1-GPS15 are first time statistically significant. The change rates indicate a small movement of the GPS1 pillar. The baseline GPS1-GPS11 crosses an old fracture zone locating in the direction of the Eurajoensalmi, which might be a reason for the deformation. On the other hand, the Onkalo excavations in the vicinity of the Olkiluoto permanent station (GPS1) may cause some movement. Electronic distance measurements have been performed at Olkiluoto at the baseline GPS7-GPS8 using the Mekometer since 2002. The measurements have been carried out simultaneously with GPS campaigns. Based on 19 measurements in 10 years, the trends of the two time series seems to be similar. Due to unmodelled or dismodelled geometrical offsets and the scale difference between GPS measurements and EDM there is about 0.3 mm difference between distances GPS7-GPS8 derived from GPS measurements and EDM

  2. A Kalman filter implementation for precision improvement in low-cost GPS positioning of tractors.

    Science.gov (United States)

    Gomez-Gil, Jaime; Ruiz-Gonzalez, Ruben; Alonso-Garcia, Sergio; Gomez-Gil, Francisco Javier

    2013-11-08

    Low-cost GPS receivers provide geodetic positioning information using the NMEA protocol, usually with eight digits for latitude and nine digits for longitude. When these geodetic coordinates are converted into Cartesian coordinates, the positions fit in a quantization grid of some decimeters in size, the dimensions of which vary depending on the point of the terrestrial surface. The aim of this study is to reduce the quantization errors of some low-cost GPS receivers by using a Kalman filter. Kinematic tractor model equations were employed to particularize the filter, which was tuned by applying Monte Carlo techniques to eighteen straight trajectories, to select the covariance matrices that produced the lowest Root Mean Square Error in these trajectories. Filter performance was tested by using straight tractor paths, which were either simulated or real trajectories acquired by a GPS receiver. The results show that the filter can reduce the quantization error in distance by around 43%. Moreover, it reduces the standard deviation of the heading by 75%. Data suggest that the proposed filter can satisfactorily preprocess the low-cost GPS receiver data when used in an assistance guidance GPS system for tractors. It could also be useful to smooth tractor GPS trajectories that are sharpened when the tractor moves over rough terrain.

  3. Comparison of the precision of three commonly used GPS models

    Directory of Open Access Journals (Sweden)

    E Chavoshi

    2016-04-01

    Full Text Available Introduction: Development of science in various fields has caused change in the methods to determine geographical location. Precision farming involves new technology that provides the opportunity for farmers to change in factors such as nutrients, soil moisture available to plants, soil physical and chemical characteristics and other factors with the spatial resolution of less than a centimeter to several meters to monitor and evaluate. GPS receivers based on precision farming operations specified accuracies are used in the following areas: 1 monitoring of crop and soil sampling (less than one meter accuracy 2 use of fertilizer, pesticide and seed work (less than half a meter accuracy 3 Transplantation and row cultivation (precision of less than 4 cm (Perez et al., 2011. In one application of GPS in agriculture, route guidance precision farming tractors in the fields was designed to reduce the transmission error that deviate from the path specified in the range of 50 to 300 mm driver informed and improved way to display (Perez et al., 2011. In another study, the system automatically guidance, based on RTK-GPS technology, precision tillage operations was used between and within the rows very close to the drip irrigation pipe and without damage to their crops at a distance of 50 mm (Abidine et al., 2004. In another study, to compare the accuracy and precision of the receivers, 5 different models of Trimble Mark GPS devices from 15 stations were mapped, the results indicated that minimum error was related to Geo XT model with an accuracy of 91 cm and maximum error was related to Pharos model with an accuracy of 5.62 m (Kindra et al., 2006. Due to the increasing use of GPS receivers in agriculture as well as the lack of trust on the real accuracy and precision of receivers, this study aimed to compare the positioning accuracy and precision of three commonly used GPS receivers models used to specify receivers with the lowest error for precision

  4. Comparison of the precision of three commonly used GPS models

    Directory of Open Access Journals (Sweden)

    E Chavoshi

    2016-04-01

    Full Text Available Introduction: Development of science in various fields has caused change in the methods to determine geographical location. Precision farming involves new technology that provides the opportunity for farmers to change in factors such as nutrients, soil moisture available to plants, soil physical and chemical characteristics and other factors with the spatial resolution of less than a centimeter to several meters to monitor and evaluate. GPS receivers based on precision farming operations specified accuracies are used in the following areas: 1 monitoring of crop and soil sampling (less than one meter accuracy 2 use of fertilizer, pesticide and seed work (less than half a meter accuracy 3 Transplantation and row cultivation (precision of less than 4 cm (Perez et al., 2011. In one application of GPS in agriculture, route guidance precision farming tractors in the fields was designed to reduce the transmission error that deviate from the path specified in the range of 50 to 300 mm driver informed and improved way to display (Perez et al., 2011. In another study, the system automatically guidance, based on RTK-GPS technology, precision tillage operations was used between and within the rows very close to the drip irrigation pipe and without damage to their crops at a distance of 50 mm (Abidine et al., 2004. In another study, to compare the accuracy and precision of the receivers, 5 different models of Trimble Mark GPS devices from 15 stations were mapped, the results indicated that minimum error was related to Geo XT model with an accuracy of 91 cm and maximum error was related to Pharos model with an accuracy of 5.62 m (Kindra et al., 2006. Due to the increasing use of GPS receivers in agriculture as well as the lack of trust on the real accuracy and precision of receivers, this study aimed to compare the positioning accuracy and precision of three commonly used GPS receivers models used to specify receivers with the lowest error for precision

  5. How do GPs in Switzerland perceive their patients' satisfaction and expectations? An observational study.

    Science.gov (United States)

    Sebo, Paul; Herrmann, François R; Haller, Dagmar M

    2015-06-10

    To assess doctors' perceptions of their patients' satisfaction and expectations in primary care. Cross-sectional study using questionnaires completed by general practitioners (GPs) and their patients. Primary care practices in Geneva, Switzerland. 23 GPs from a random list of 75 GPs practising in the canton of Geneva (participation rate 31%), who each recruited between 50 and 100 consecutive patients coming to the practice for a scheduled medical consultation, leading to a total of 1637 patients (participation rate: 97%, women: 63%, mean age: 54 years). Patient exclusion criteria were: new patients, those consulting in an emergency situation or suffering from disorders affecting their ability to consent, and those who did not speak French. Patients satisfaction with and expectations from the care they received in this practice; GPs perceptions of their patient's satisfaction and expectations. GPs underestimated all patient satisfaction items (pGPs' certification status was a significant factor. GPs tend to underestimate patients' satisfaction but overestimate their expectations in primary care. These findings may help GPs to understand patients' views in order to adequately meet their expectations and concerns. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Dike Intrusion Process of 2000 Miyakejima - Kozujima Event estimated from GPS measurements in Kozujima - Niijima Islands, central Japan

    Science.gov (United States)

    Murase, M.; Nakao, S.; Kato, T.; Tabei, T.; Kimata, F.; Fujii, N.

    2003-12-01

    Kozujima - Niijima Islands of Izu Volcano Islands are located about 180 km southeast of Tokyo, Japan. Although the last volcano eruptions in Kozujima and Niijima volcanoes are recorded more than 1000 year before, the ground deformation of 2-3 cm is detected at Kozujima - Niijima Islands by GPS measurements since 1996. On June 26, 2000, earthquake swarm and large ground deformation more than 20 cm are observed at Miyakejima volcano located 40 km east-southeastward of Kozu Island, and volcano eruption are continued since July 7. Remarkable earthquake swarm including five earthquakes more than M5 is stretching to Kozushima Island from Miyakejima Island. From the rapid ground deformation detected by continuous GPS measurements at Miyakejima Island on June 26, magma intrusion models of two or three dikes are discussed in the south and west part of Miyakejima volcano by Irwan et al.(2003) and Ueda et al.(2003). They also estimate dike intrusions are propagated from southern part of Miyakejima volcano to western part, and finally dike intrusion is stretching to 20 km distance toward Kozujima Island. From the ground deformation detected by GPS daily solution of Nation-wide dense GPS network (GEONET), some dike intrusion models are discussed. Ito et al.(2002) estimate the huge dike intrusion with length of about 20 km and volume of 1 km3 in the sea area between the Miyake Island and Kozu Island. (And) Nishimura et al.(2001) introduce not only dike but also aseismic creep source to explain the deformation in Shikinejima. Yamaoka et al.(2002) discuss the dike and spherical deflation source under the dike, because of no evidence supported large aseismic creep. They indicate a dike and spherical deflation source model is as good as dike and creep source model. In case of dike and creep, magma supply is only from the chamber under the Miyakejima volcano. In dike and spherical deflation source model, magma supply is from under Miyakejima volcano and under the dike. Furuya et al

  7. Densely crosslinked polycarbosiloxanes .1. Synthesis

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    Novel densely crosslinked polycarbosiloxanes were obtained by using functional branched prepolymers. Two types of soluble prepolymers were prepared from di- and trifunctional alkoxysilane monomers via cohydrolysis/condensation and for both final crosslinking occurred via hydrosilylation. The prepoly

  8. Accuracy Assessment of GPS Buoy Sea Level Measurements for Coastal Applications

    Science.gov (United States)

    Chiu, S.; Cheng, K.

    2008-12-01

    The GPS buoy in this study contains a geodetic antenna and a compact floater with the GPS receiver and power supply tethered to a boat. The coastal applications using GPS include monitoring of sea level and its change, calibration of satellite altimeters, hydrological or geophysical parameters modeling, seafloor geodesy, and others. Among these applications, in order to understand the overall data or model quality, it is required to gain the knowledge of position accuracy of GPS buoys or GPS-equipped vessels. Despite different new GPS data processing techniques, e.g., Precise Point Positioning (PPP) and virtual reference station (VRS), that require a prioir information obtained from the a regional GPS network. While the required a prioir information can be implemented on land, it may not be available on the sea. Hence, in this study, the GPS buoy was positioned with respect to a onshore GPS reference station using the traditional double- difference technique. Since the atmosphere starts to decorrelate as the baseline, the distance between the buoy and the reference station, increases, the positioning accuracy consequently decreases. Therefore, this study aims to assess the buoy position accuracy as the baseline increases and in order to quantify the upper limit of sea level measured by the GPS buoy. A GPS buoy campaign was conducted by National Chung Cheng University in An Ping, Taiwan with a 8- hour GPS buoy data collection. In addition, a GPS network contains 4 Continuous GPS (CGPS) stations in Taiwan was established with the goal to enable baselines in different range for buoy data processing. A vector relation from the network was utilized in order to find the correct ambiguities, which were applied to the long-baseline solution to eliminate the position error caused by incorrect ambiguities. After this procedure, a 3.6-cm discrepancy was found in the mean sea level solution between the long (~80 km) and the short (~1.5 km) baselines. The discrepancy between a

  9. Diagnosing dementia with confidence by GPs.

    NARCIS (Netherlands)

    Hout, H.P.J. van; Vernooij-Dassen, M.J.F.J.; Stalman, W.A.B.

    2007-01-01

    BACKGROUND: Earlier reports suggest limited clinical reasoning and substantial uncertainty of GPs in assessing patients suspected of dementia. OBJECTIVE: To explore the predictors of GPs to decide on the presence and absence of dementia as well as the predictors of diagnostic confidence of GPs.

  10. The SMS-GPS-Trip-Method

    DEFF Research Database (Denmark)

    Reinau, Kristian Hegner; Harder, Henrik; Weber, Michael

    2015-01-01

    This article presents a new method for collecting travel behavior data, based on a combination of GPS tracking and SMS technology, coined the SMS–GPS-Trip method. The state-of-the-art method for collecting data for activity based traffic models is a combination of travel diaries and GPS tracking...

  11. Diagnosing dementia with confidence by GPs.

    NARCIS (Netherlands)

    Hout, H.P.J. van; Vernooij-Dassen, M.J.F.J.; Stalman, W.A.B.

    2007-01-01

    BACKGROUND: Earlier reports suggest limited clinical reasoning and substantial uncertainty of GPs in assessing patients suspected of dementia. OBJECTIVE: To explore the predictors of GPs to decide on the presence and absence of dementia as well as the predictors of diagnostic confidence of GPs. DESI

  12. INS/GPS Integration Architectures

    Science.gov (United States)

    2010-03-01

    to maintain the mean code tracking error close to zero. RF FILTER I/Q DEMOD SAMPLING CORRELATION AND INTEGRATION SQUARE LAW DETECTION kth...Q(t) INERTIAL SENSORS OTHER SENSORS CORRELATOR BANK (n) x ′ˆ Figure 2.9: Code tracking information flow diagram for GPS-based navigator. The

  13. Contents of GPS Data Files

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, John P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carver, Matthew Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Norman, Benjamin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-09

    There are no very detailed descriptions of most of these instruments in the literature – we will attempt to fix that problem in the future. The BDD instruments are described in [1]. One of the dosimeter instruments on CXD boxes is described in [2]. These documents (or web links to them) and a few others are in this directory tree. The cross calibration of the CXD electron data with RBSP is described in [3]. Each row in the data file contains the data from one time bin from a CXD or BDD instrument along with a variety of parameters derived from the data. Time steps are commandable but 4 minutes is a typical setting. These instruments are on many (but not all) GPS satellites which are currently in operation. The data come from either BDD instruments on GPS Block IIR satellites (SVN41 and 48), or else CXD-IIR instruments on GPS Block IIR and IIR-M satellites (SVN53-61) or CXD-IIF instruments on GPS block IIF satellites (SVN62-73). The CXD-IIR instruments on block IIR and IIR(M) satellites use the same design.

  14. Animal Tracking ARGOS vs GPS

    Science.gov (United States)

    Robinson, P. W.; Costa, D.; Arnould, J.; Weise, M.; Kuhn, C.; Simmons, S. E.; Villegas, S.; Tremblay, Y.

    2006-12-01

    ARGOS satellite tracking technology has enabled a tremendous increase in our understanding of the movement patterns of a diverse array of marine vertebrates from Sharks to marine mammals. Our current understanding has moved from simple descriptions of large scale migratory patterns to much more sophisticated comparisons of animal movements and behavior relative to oceanic features. Further, animals are increasingly used to carry sensors that can acquire water column temperature and salinity profiles. However, a major limitation of this work is the spatial precision of ARGOS locations. ARGOS provides 7 location qualities that range from 3,2,1,0,A,B,Z and correspond to locations with a precision of 150m to tens of kilometers. Until recently, GPS technology could not be effectively used with marine mammals because they did not spend sufficient time at the surface to allow complete acquisition of satellite information. The recent development of Fastloc technology has allowed the development of GPS tags that can be deployed on marine mammals. Here we compare the location quality and frequency derived from standard ARGOS PTTs to Fastloc GPS locations acquired from 11 northern elephant seals, 5 California and 5 Galapagos sea lions and 1 Cape and 3 Australian fur seals. Our results indicate that GPS technology will greatly enhance our ability to understand the movement patterns of marine vertebrates and the in-situ oceanographic data they collect.

  15. 3D-RTK CAPABILITY OF SINGLE GNSS RECEIVERS

    OpenAIRE

    Stempfhuber, W.

    2013-01-01

    Small, aerial objects are now being utilised in many areas of civil object capture and monitoring. As a rule, the standard application of a simple GPS receiver with code solutions serves the 3D-positioning of the trajectories or recording positions. Without GPS correction information, these can be calculated at an accuracy of 10–20 metres. Corrected code solutions (DGPS) generally lie in the metre range. A precise 3D-positioning of the UAV (unmanned aerial vehicle) trajectories...

  16. Integrated navigation of aerial robot for GPS and GPS-denied environment

    Science.gov (United States)

    Suzuki, Satoshi; Min, Hongkyu; Wada, Tetsuya; Nonami, Kenzo

    2016-09-01

    In this study, novel robust navigation system for aerial robot in GPS and GPS- denied environments is proposed. Generally, the aerial robot uses position and velocity information from Global Positioning System (GPS) for guidance and control. However, GPS could not be used in several environments, for example, GPS has huge error near buildings and trees, indoor, and so on. In such GPS-denied environment, Laser Detection and Ranging (LIDER) sensor based navigation system have generally been used. However, LIDER sensor also has an weakness, and it could not be used in the open outdoor environment where GPS could be used. Therefore, it is desired to develop the integrated navigation system which is seamlessly applied to GPS and GPS-denied environments. In this paper, the integrated navigation system for aerial robot using GPS and LIDER is developed. The navigation system is designed based on Extended Kalman Filter, and the effectiveness of the developed system is verified by numerical simulation and experiment.

  17. Atmospheric refractivity profiling by the mountain-based GPS and the tomographic method

    Science.gov (United States)

    Cao, Yunchang; Guo, Zhimei; Bi, Yanmeng; Tu, Mahong; Zheng, Feifei

    2007-11-01

    Atmospheric refractivity sounding is of great importance to the meteorological and military applications. An experiment was conducted for sounding the atmospheric refractivity on the top of the Wuling Mountain in August, 2005. Profiles of the atmospheric refractivity were obtained by both the mountain-based GPS and the tomographic method. Comparison shows that there is a bias of -3.83N and a standard deviation of 7.03N between the mountain-based GPS and the radiosonde. A bias less than 1% among different receivers proves that the receivers tested can meet the demand of the radio occultation technique. A very good consistence among the profiles by the mountain-based GPS, the tomographic method and the radiosonde suggests the effectiveness of both the mountain-based GPS and the tomographic method, indicating the great potential in the future meteorological application.

  18. Where in the world are my field plots? Using GPS effectively in environmental field studies

    Science.gov (United States)

    Johnson, Chris E.; Barton, Christopher C.

    2004-01-01

    Global positioning system (GPS) technology is rapidly replacing tape, compass, and traditional surveying instruments as the preferred tool for estimating the positions of environmental research sites. One important problem, however, is that it can be difficult to estimate the uncertainty of GPS-derived positions. Sources of error include various satellite- and site-related factors, such as forest canopy and topographic obstructions. In a case study from the Hubbard Brook Experimental Forest in New Hampshire, hand-held, mapping-grade GPS receivers generally estimated positions with 1–5 m precision in open, unobstructed settings, and 20–30 m precision under forest canopy. Surveying-grade receivers achieved precisions of 10 cm or less, even in challenging terrain. Users can maximize the quality of their GPS measurements by “mission planning” to take advantage of high-quality satellite conditions. Repeated measurements and simultaneous data collection at multiple points can be used to assess accuracy and precision.

  19. GPS-aided gravimetry at 30 km altitude from a balloon-borne platform

    Science.gov (United States)

    Lazarewicz, Andrew R.; Evans, Alan G.

    1989-01-01

    A balloon-borne experiment, flown at 30 km altitude over New Mexico, was used to test dynamic differential Global Positioning System (GPS) tracking in support of gravimetry at high-altitudes. The experiment package contained a gravimeter (Vibrating String Accelerometer), a full complement of inertial instruments, a TI-4100 GPS receiver and a radar transponder. The flight was supported by two GPS receivers on the ground near the flight path. From the 8 hour flight, about a forty minute period was selected for analysis. Differential GPS phase measurements were used to estimate changes in position over the sample time interval, or average velocity. In addition to average velocity, differential positions and numerical averages of acceleration were obtained in three components. Gravitational acceleration was estimated by correcting for accelerations due to translational motion, ignoring all rotational effects.

  20. Direct GPS P-Code Acquisition Method Based on FFT

    Institute of Scientific and Technical Information of China (English)

    LI Hong; LU Mingquan; FENG Zhenming

    2008-01-01

    Recently, direct acquisition of GPS P-code has received considerable attention to enhance the anti-jamming and anti-spoofing capabilities of GPS receivers. This paper describes a P-code acquisition method that uses block searches with large-scale FFT to search code phases and carrier frequency offsets in parallel. To limit memory use, especially when implemented in hardware, only the largest correlation result with its position information was preserved after searching a block of resolution cells in both the time and frequency domains. A second search was used to solve the code phase slip problem induced by the code frequency offset. Simulation results demonstrate that the probability of detection is above 0.99 for carrier-to-noise density ratios in excess of 40 dB- Hz when the predetection integration time is 0.8 ms and 6 non-coherent integrations are used in the analysis.

  1. Uav Onboard Photogrammetry and GPS Positionning for Earthworks

    Science.gov (United States)

    Daakir, M.; Pierrot-Deseilligny, M.; Bosser, P.; Pichard, F.; Thom, C.

    2015-08-01

    Over the last decade, Unmanned Airbone Vehicles (UAVs) have been largely used for civil applications. Airborne photogrammetry has found place in these applications not only for 3D modeling but also as a measurement tool. Vinci-Construction-Terrassement is a private company specialized in public works sector and uses airborn photogrammetry as a mapping solution and metrology investigation tool on its sites. This technology is very efficient for the calculation of stock volumes for instance, or for time tracking of specific areas with risk of landslides. The aim of the present work is to perform a direct georeferencing of images acquired by the camera leaning on an embedded GPS receiver. UAV, GPS receiver and camera used are low-cost models and therefore data processing is adapted to this particular constraint.

  2. Performance Analysis of Constrained Loosely Coupled GPS/INS Integration Solutions

    Directory of Open Access Journals (Sweden)

    Fabio Dovis

    2012-11-01

    Full Text Available The paper investigates approaches for loosely coupled GPS/INS integration. Error performance is calculated using a reference trajectory. A performance improvement can be obtained by exploiting additional map information (for example, a road boundary. A constrained solution has been developed and its performance compared with an unconstrained one. The case of GPS outages is also investigated showing how a Kalman filter that operates on the last received GPS position and velocity measurements provides a performance benefit. Results are obtained by means of simulation studies and real data.

  3. Demonstrating Tools and Results of a Measurement Campaign for Indoor GPS Positioning

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Blunck, Henrik; Godsk, Torben;

    It has been considered a fact that GPS performs too poorly inside buildings to provide usable indoor positioning. We demo raw measurements and results from a measurement campaign which show that using state-of-the-art receivers GPS availability is good in many buildings with standard material walls...... satellite constellation geometry. A comprehensive analysis of the measurement campaign appears as full paper in Pervasive 2010, titled Indoor Positioning Using GPS Revisited. In this demonstration we present the campaign analysis results with an emphasis on visualization and animation. Another focus...

  4. Utilisation of co-testing 
(human papillomavirus DNA testing and cervical cytology) after treatment of CIN: - a survey of GPs' awareness and knowledge.

    Science.gov (United States)

    Munro, Aime; Codde, Jim; Semmens, James; Leung, Yee; Spilsbury, Katrina; Williams, Vincent; Steel, Nerida; Cohen, Paul; Pavicic, Heidi; Westoby, Vicki; O'Leary, Peter

    2015-01-01

    Patients have an increased risk of persistent/recurrent cervical disease if they received treatment for a high-grade squamous intraepithelial lesion (HSIL). Consequently, understanding whether co-testing (human papillomavirus [HPV] DNA testing and cervical cytology) is fully utilised by general practitioners (GPs) is paramount. After consultation with key stakeholders, an anonymous, self-completion questionnaire was developed and disseminated to GPs who had provided cervical cytology. Responses were received from 745 GPs (30.9% response rate). A significant number (34.3%) of GPs were unaware of the use of co-testing (HPV DNA testing and cervical cytology) for the management of patients after HSIL treatment. Additionally, the majority of GPs reported they did not 'always' receive a clear follow-up plan for patients after treatment of an HSIL. GPs require further support and education to ensure successful adoption of co-testing (HPV DNA testing and cervical cytology), specifically, for patients treated for an HSIL.

  5. On the reduction and analysis for GPS common view data

    Science.gov (United States)

    Wang, Z. M.

    2001-05-01

    It is necessary for an atomic time scale consisting of many atomic clocks distributed at remote time labs to have a time link network. Though a few baselines of the Two Way Satellite Time Transfer have been introduced into TAI computation, GPS Common View (GPS CV) will still be the main means for TAI as well as other time scales such as the Joint Atomic Time of China (JATC). The reduction and analysis on the data of GPS CV are important for improving the precision and accuracy of the time links. The GPS CV data of CRL-CSAO for about 18 months as well as those with different lengths of baselines in the world have been analyzed. The errors in the adopted coordinates of the antenna (?Ucoor) were the main source of errors for CSAO before the end of May 2000. The noisy receiver at CSAO causes a larger RMS in the data of CRL-CSAO than those for CRL-NAO and CRL-KRIS. The way for calculating the statistical corrections is described and the methods for obtaining the corrections for the systematic errors caused by the inaccuracy of the satellite ephemeris (?UE) and the ionosphere model (?UION) are explained. It is expectable that the uncertainty of the GPS CV could reach 2~3 ns for both short and long baselines if the main systematic errors ?Ucoor???UE and ?UION can be removed and the low noise receiver with temperature stabilized antenna as well as the choke ring for anti-multi-path interference can be used.

  6. Mapping and localization using GPS, lane markings and proprioceptive sensors

    OpenAIRE

    2013-01-01

    International audience; Estimating the pose in real-time is a primary function for intelligent vehicle navigation. Whilst different solutions exist, most of them rely on the use of high-end sensors. This paper proposes a solution that exploits an automotive type L1-GPS receiver, features extracted by low-cost perception sensors and vehicle proprioceptive information. A key idea is to use the lane detection function of a video camera to retrieve accurate lateral and orientation information wit...

  7. How to Distribute GPS-Time Over COTS-Based LANs

    Science.gov (United States)

    1999-12-01

    FWF) grant P10244-eMA, the OeNB “Jubil~umsfonds- Projekt ” 6454, the BMfWV research contract Z1.601.577/2-IV/B/9/96, the Gesellschuft fiir...interfaces to GPS receivers, are routed to the GPS and application interface. In addition, the UTCSU’s internal time information (“NTPA-bus”).is

  8. METHOD OF MAXIMAL INFORMATIVE ZONE FOR VIRTUAL REFERENCE STATION DEVELOPMENT IN KINEMATIC SYSTEMS OF GPS NETWORKS

    Directory of Open Access Journals (Sweden)

    R. A. Eminov,

    2013-03-01

    Full Text Available The existing actual material on experimental assessment of positioning error in VRS GPS networks is analyzed where the mobile receiver is provided with virtual reference station. The method of highly informative zone is suggested for removal of initial uncertainty in reference station selection with the aim to develop minimal GPS network consisting of three reference stations. Methodical recommendations and directions are given for the suggested method application.

  9. Acquisition algorithm of weak GPS/GLONASS signals%弱GPS/GLONASS信号捕获算法研究

    Institute of Scientific and Technical Information of China (English)

    刘毓; 邹星

    2013-01-01

    The design project of double receiver on GPS/GLONASS was given in the paper, GPS/GLONASS signals acquisition were researched in weak signal circumstance, GLONASS signals and GPS signals were acquired using parallel code phase search algorithm and circle correlation integration acquisition algorithm. Finally, performance of double receiver was simulated using real signals, the capacity of detection weak signal, and acquisition probability with different signals to noise and different data length were discussed. The results showed that double receiver could acquire satellite signals in low signals to noise circumstance with lesser data length, which improves receiver sensitivity.%本文给出了GPS/GLONASS双模接收机的总体设计方案,重点对弱信号环境下的接收机信号捕获进行了讨论,采用并行码相位搜索方法和改进的循环相关算法分别对GLONASS信号和GPS信号进行捕获;并利用真实数据对双模接收机性能进行了仿真研究,重点对接收机捕获弱信号的能力,以及在不同信噪比和不同累加数据长度下的捕获概率进行了讨论,结果表明该双模接收机在不需要较长数据长度的情况下能够捕获低信噪比环境下的卫星导航信号,提高了接收机的灵敏度.

  10. IMU/GPS System Provides Position and Attitude Data

    Science.gov (United States)

    Lin, Ching Fang

    2006-01-01

    A special navigation system is being developed to provide high-quality information on the position and attitude of a moving platform (an aircraft or spacecraft), for use in pointing and stabilization of a hyperspectral remote-sensing system carried aboard the platform. The system also serves to enable synchronization and interpretation of readouts of all onboard sensors. The heart of the system is a commercially available unit, small enough to be held in one hand, that contains an integral combination of an inertial measurement unit (IMU) of the microelectromechanical systems (MEMS) type, Global Positioning System (GPS) receivers, a differential GPS subsystem, and ancillary data-processing subsystems. The system utilizes GPS carrier-phase measurements to generate time data plus highly accurate and continuous data on the position, attitude, rotation, and acceleration of the platform. Relative to prior navigation systems based on IMU and GPS subsystems, this system is smaller, is less expensive, and performs better. Optionally, the system can easily be connected to a laptop computer for demonstration and evaluation. In addition to airborne and spaceborne remote-sensing applications, there are numerous potential terrestrial sensing, measurement, and navigation applications in diverse endeavors that include forestry, environmental monitoring, agriculture, mining, and robotics.

  11. GPS锁相欺骗及Matlab仿真验证%Phase-Locked GPS Spoofing Simulation and Verification on Matlab

    Institute of Scientific and Technical Information of China (English)

    金亚强; 郭承军

    2016-01-01

    GPS欺骗式干扰是通过发射伪GPS信号来顶替目标接收机中已接收到的真实GPS信号,在伪GPS信号中提供虚假导航电文、伪距信息来影响目标接收机的定位解算结果,使其定位错误.主要分析了伪GPS信号如何在接收机的跟踪环路中顶替真实GPS信号,伪信号中的参数如何设置可以实施成功的欺骗干扰,并辅以Matlab仿真验证.%The deception jamming of GPS is realized through launching pseudo GPS signal to replace the real GPS signal received in the target receiver. Through providing false navigation message and false pseudo-range information in the pseudo GPS signal, it can affect the positioning of the target receiver and make it get error position. This paper analyses how to replace real GPS signal in the target receiver tracking loop and how to set the parameters in the pseudo GPS signal for implementing GPS spoofing successfully. Matlab simulation is made for verification.

  12. Ionospheric Scintillation Effects on GPS

    Science.gov (United States)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  13. GPS-Aided Video Tracking

    Directory of Open Access Journals (Sweden)

    Udo Feuerhake

    2015-08-01

    Full Text Available Tracking moving objects is both challenging and important for a large variety of applications. Different technologies based on the global positioning system (GPS and video or radio data are used to obtain the trajectories of the observed objects. However, in some use cases, they fail to provide sufficiently accurate, complete and correct data at the same time. In this work we present an approach for fusing GPS- and video-based tracking in order to exploit their individual advantages. In this way we aim to combine the reliability of GPS tracking with the high geometric accuracy of camera detection. For the fusion of the movement data provided by the different devices we use a hidden Markov model (HMM formulation and the Viterbi algorithm to extract the most probable trajectories. In three experiments, we show that our approach is able to deal with challenging situations like occlusions or objects which are temporarily outside the monitored area. The results show the desired increase in terms of accuracy, completeness and correctness.

  14. Meteorological applications of a surface network of Global Positioning System receivers

    NARCIS (Netherlands)

    Haan, de S.

    2008-01-01

    This thesis presents meteorological applications of water vapour observations from a surface network of Global Positioning System (GPS) receivers. GPS signals are delayed by the atmo¬sphere due to atmospheric refraction and bending. Mapped to the zenith, this delay is called Zenith Total Delay (ZTD)

  15. Applications of GPS technologies to field sports.

    Science.gov (United States)

    Aughey, Robert J

    2011-09-01

    Global positioning system (GPS) technology was made possible after the invention of the atomic clock. The first suggestion that GPS could be used to assess the physical activity of humans followed some 40 y later. There was a rapid uptake of GPS technology, with the literature concentrating on validation studies and the measurement of steady-state movement. The first attempts were made to validate GPS for field sport applications in 2006. While GPS has been validated for applications for team sports, some doubts continue to exist on the appropriateness of GPS for measuring short high-velocity movements. Thus, GPS has been applied extensively in Australian football, cricket, hockey, rugby union and league, and soccer. There is extensive information on the activity profile of athletes from field sports in the literature stemming from GPS, and this includes total distance covered by players and distance in velocity bands. Global positioning systems have also been applied to detect fatigue in matches, identify periods of most intense play, different activity profiles by position, competition level, and sport. More recent research has integrated GPS data with the physical capacity or fitness test score of athletes, game-specific tasks, or tactical or strategic information. The future of GPS analysis will involve further miniaturization of devices, longer battery life, and integration of other inertial sensor data to more effectively quantify the effort of athletes.

  16. GPS Navigation Above 76,000 km for the MMS Mission

    Science.gov (United States)

    Winternitz, Luke; Bamford, Bill; Price, Samuel; Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2016-01-01

    NASA's MMS mission, launched in March of 2015,consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12and 25 Earth radii in the first and second phases of the mission. Navigation for MMS is achieved independently onboard each spacecraft by processing GPS observables using NASA GSFC's Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents the culmination of over a decade of high-altitude GPS navigation research and development at NASA GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data. We extrapolate these results to predict performance in the Phase 2b mission orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  17. Experimental validation of GPS-INS-STAR hybrid navigation system for space autonomy

    Science.gov (United States)

    Tanabe, Toru; Harigae, Masatoshi

    The experimental validation of the GPS-INS-STAR hybrid navigation system concept is performed. The hybrid navigation system combines the best features of employed sensors to improve total navigation performances. The GPS-INS-STAR hybrid navigation system consists of the three different sensors, a GPS receiver, an inertial navigation system and a STAR image sensor. In this concept, the system integrates a high positioning performance of the GPS system, an accurate attitude determination capability of the STAR image sensor and the INS signal with a wide bandwidth. It results in a complete 6-DOF (degrees of freedom) autonomous navigation system. The present paper shows the validation of the concept by the experiments using GPS, INS and STAR hardware systems. The experiments are divided into three steps. Firstly, the INS-STAR hybrid navigation system is constructed on the 3-axis motion table to verify the performances of its attitude loop. Secondly, the GPS-INS hybrid navigation system installed on the car shows the performance improvement in its translational loop. Finally, the full configuration of the GPS-INS-STAR hybrid navigation system is evaluated at night. Each experiment result is checked by the theoretical analysis. In the theoretical analysis, the concept of observability well explains the performances of the system. Its feasibility for space application is also evaluated in the point of existing hardware technology. It is concluded that the experiments vaidate the concept of the hybrid navigation system and confirm its capability to realize space autonomy.

  18. GPS derived Crustal Deformation and Strain determination in India

    Directory of Open Access Journals (Sweden)

    Abhay P. Singh,

    2011-06-01

    Full Text Available The theory of Plate tectonics has revolutionized the way thinking about the processes of Earth. According to this theory, the surface of the Earth is broken into large plates. The size and position of these plates change over time. The edges of these plates, where they move against each other, are sites of intense tectonic activity, suchas earthquakes, volcanism, and mountain building. It is well known that Indian Plate is currently moving in the northeast direction, while the Eurasian Plate is moving north. This is causing the Indian and Eurasian Plate to deform at the point of contact besides its interior. Modern geophysical and space geodetic techniques such asseismology and GPS (Global Positioning system, have become important tools in the study of the deformation in the Earth due to tectonic processes, leading to earthquakes. Geodesy has provided an important role for plate tectonics study with high temporal resolution of the plate movements, particular from space technologies such as GPS and VLBI. The Global Positioning System (GPS provides accurate measurements of the rate of displacement of crustal. Indeed, the GPS velocity field can only be compared to finite strain if one assumes adeformation mechanism and that the style of deformation has been the same over long periods of geological time. For study of crustal deformation National Center of Mineralogy and Petrology, University of Allahabad, Allahabad installed highly efficient and accurate LEICA GRX1200 Pro receiver at Ghoorpur near to Allahabad. This instrument is also equipped withMET3A sensor to record pressure, temperature, humidity at regular interval of 30 second. The Latitude and longitude of the GPS sites is 25.21N, 81.28E.

  19. High integrity carrier phase navigation using multiple civil GPS signals

    Science.gov (United States)

    Jung, Jaewoo

    2000-11-01

    A navigation system should guide users to their destinations accurately and reliably. Among the many available navigation aids, the Global Positioning System stands out due to its unique capabilities. It is a satellite-based navigation system which covers the entire Earth with horizontal accuracy of 20 meters for stand alone civil users. Today, the GPS provides only one civil signal, but two more signals will be available in the near future. GPS will provide a second signal at 1227.60 MHz (L2) and a third signal at 1176.45 MHz (Lc), in addition to the current signal at 1575.42 MHz (L1). The focus of this thesis is exploring the possibility of using beat frequencies of these signals to provide navigation aid to users with high accuracy and integrity. To achieve high accuracy, the carrier phase differential GPS is used. The integer ambiguity is resolved using the Cascade Integer Resolution (CIR), which is defined in this thesis. The CIR is an instantaneous, geometry-free integer resolution method utilizing beat frequencies of GPS signals. To insure high integrity, the probability of incorrect integer ambiguity resolution using the CIR is analyzed. The CIR can immediately resolve the Lc integer ambiguity up to 2.4 km from the reference receiver, the Widelane (L1-L2) integer ambiguity up to 22 km, and the Extra Widelane (L2-Lc) integer ambiguity from there on, with probability of incorrect integer resolution of 10-4 . The optimal use of algebraic combinations of multiple GPS signals are also investigated in this thesis. Finally, the gradient of residual differential ionospheric error is estimated to stimated to increase performance of the CIR.

  20. A qualitative study of GPs' and PCO stakeholders' views on the importance and influence of cost on prescribing.

    Science.gov (United States)

    Prosser, Helen; Walley, Tom

    2005-03-01

    With prescribing expenditure rising and evidence of prescribing costs variation, general practitioners (GPs) in the UK are under increasing pressure to contain spending. The introduction of cash-limited, unified budgets and increased monitoring of prescribing within Primary Care Organizations (PCO) are intended to increase efficiency and enhance GPs financial responsibility. Whilst GPs regularly receive data on the costs of their prescribing and also performance against a set prescribing budget, little is known about the extent to which GPs take cost into account in their prescribing decisions. This study undertook a qualitative exploration of the attitudes of various stakeholders on the relative importance and influence of cost on general practice prescribing. In order to explore a plurality of perspectives, data were obtained from focus groups and a series of individual semi-structured interviews with GPs and key PCO stakeholders. The data suggest that although almost all GPs believed costs should be taken into account when prescribing, there was great variation in the extent to which this was applied and to how sensitive GPs were to costs. Cost was secondary to clinical effectiveness and safety, whilst individual patient need was emphasized above other forms of rationality or notions of opportunity costs. Conflict was apparent between a PCO policy of cost-containment and GPs' resistance to cost-cutting. GPs largely applied simple cost-minimization while cost-consideration was undermined by contextual factors. Implications for research and policy are discussed.

  1. Constructing dense genetic linkage maps

    NARCIS (Netherlands)

    Jansen, J.; Jong, de A.G.; Ooijen, van J.W.

    2001-01-01

    This paper describes a novel combination of techniques for the construction of dense genetic linkage maps. The construction of such maps is hampered by the occurrence of even small proportions of typing errors. Simulated annealing is used to obtain the best map according to the optimality criterion:

  2. Method for dense packing discovery.

    Science.gov (United States)

    Kallus, Yoav; Elser, Veit; Gravel, Simon

    2010-11-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit-cell parameters with the other packing variables in the definition of the configuration space. The method we present led to previously reported improvements in the densest-known tetrahedron packing. Here, we use the method to reproduce the densest-known lattice sphere packings and the best-known lattice kissing arrangements in up to 14 and 11 dimensions, respectively, providing numerical evidence for their optimality. For nonspherical particles, we report a dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845 and with a similar structure to the densest-known tetrahedron packing.

  3. Unconditional Continuous Variable Dense Coding

    CERN Document Server

    Ralph, T C

    2002-01-01

    We investigate the conditions under which unconditional dense coding can be achieved using continuous variable entanglement. We consider the effect of entanglement impurity and detector efficiency and discuss experimental verification. We conclude that the requirements for a strong demonstration are not as stringent as previously thought and are within the reach of present technology.

  4. Testing mensuration of the vertical component deviation of phase center of GPS antenna combinations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, W.; Xu, S.; Li, L. [Wuhan University, Wuhan (China). School of Geodesy and Geomatics

    2004-07-01

    Five models of three types of Topcon, Trimble and Leica GPS receiver antennas were combined in pairs and tested using outdoor antenna mensuration. The differences of antenna phase center vertical component deviations of all combinations were figured out and the mm-level measuring precision was achieved when Bernese software was used to process the data. It is verified by the practical example that the difference of the same model of same type of GPS receiver antennas phase center vertical component deviations is about 1 mm or less than 1 mm. And that the difference of the different model of same type or different types of GPS receiver antennas phase center vertical component deviations is very big, and reaches several mm or several cm. Such difference must be corrected in order to obtain the exact and credible distortion value of height component. 4 refs., 3 figs., 3 tabs.

  5. Methodology for dense spatial sampling of multicomponent recording of converted waves in shallow marine environments

    NARCIS (Netherlands)

    El Allouche, N.; Drijkoningen, G.G.; Van der Neut, J.R.

    2010-01-01

    A widespread use of converted waves for shallow marine applications is hampered by spatial aliasing and field efficiency. Their short wavelengths require dense spatial sampling which often needs to be achieved by receivers deployed on the seabed. We adopted a new methodology where the dense spatial

  6. GPS in Travel and Activity Surveys

    DEFF Research Database (Denmark)

    Nielsen, Thomas Alexander Sick; Hovgesen, Henrik Harder

    2004-01-01

    The use of GPS-positioning as a monitoring tool in travel and activity surveys opens up a range of possibilities. Using a personal GPS device, the locations and movements of respondents can be followed over a longer period of time. It will then be possible to analyse how the use of urban spaces...... are embedded in the wider context of activity patterns (work, school etc.). The general pattern of everyday itineraries, including route choice and time spent at different locations ?on the way? can also be analysed. If the personal GPS device is combined with an electronic questionnaire, for example...... area. The paper presents the possibilities in travel and activity surveys with GPS and electronic questionnaires. Demonstrative mapping of test data from passive GPS registration of Copenhagen respondents is presented. The different survey possibilities given a combination of GPS and PDA based...

  7. Central and South America GPS geodesy - CASA Uno

    Science.gov (United States)

    Kellogg, James N.; Dixon, Timothy H.

    1990-01-01

    In January 1988, scientists from over 25 organizations in 13 countries and territories cooperated in the largest GPS campaign in the world to date. A total of 43 GPS receivers collected approximately 590 station-days of data in American Samoa, Australia, Canada, Colombia, Costa Rica, Ecuador, New Zealand, Norway, Panama, Sweden, United States, West Germany, and Venezuela. The experiment was entitled CASA Uno. Scientific goals of the project include measurements of strain in the northern Andes, subduction rates for the Cocos and Nazca plates beneath Central and South America, and relative motion between the Caribbean plate and South America. A second set of measurements are planned in 1991 and should provide preliminary estimates of crustal deformation and plate motion rates in the region.

  8. Conical-Domain Model for Estimating GPS Ionospheric Delays

    Science.gov (United States)

    Sparks, Lawrence; Komjathy, Attila; Mannucci, Anthony

    2009-01-01

    -latitudes under disturbed conditions, the accuracy of SBAS systems based upon the thin-shell model suffers due to the presence of complex ionospheric structure, high delay values, and large electron density gradients. Interpolation on the vertical delay grid serves as an additional source of delay error. The conical-domain model permits direct computation of the user s slant delay estimate without the intervening use of a vertical delay grid. The key is to restrict each fit of GPS measurements to a spatial domain encompassing signals from only one satellite. The conical domain model is so named because each fit involves a group of GPS receivers that all receive signals from the same GPS satellite (see figure); the receiver and satellite positions define a cone, the satellite position being the vertex. A user within a given cone evaluates the delay to the satellite directly, using (1) the IPP coordinates of the line of sight to the satellite and (2) broadcast fit parameters associated with the cone. The conical-domain model partly resembles the thin-shell model in that both models reduce an inherently four-dimensional problem to two dimensions. However, unlike the thin-shell model, the conical domain model does not involve any potentially erroneous simplifying assumptions about the structure of the ionosphere. In the conical domain model, the initially four-dimensional problem becomes truly two-dimensional in the sense that once a satellite location has been specified, any signal path emanating from a satellite can be identified by only two coordinates; for example, the IPP coordinates. As a consequence, a user s slant-delay estimate converges to the correct value in the limit that the receivers converge to the user s location (or, equivalently, in the limit that the measurement IPPs converge to the user s IPP).

  9. Central and South America GPS geodesy - CASA Uno

    Science.gov (United States)

    Kellogg, James N.; Dixon, Timothy H.

    1990-01-01

    In January 1988, scientists from over 25 organizations in 13 countries and territories cooperated in the largest GPS campaign in the world to date. A total of 43 GPS receivers collected approximately 590 station-days of data in American Samoa, Australia, Canada, Colombia, Costa Rica, Ecuador, New Zealand, Norway, Panama, Sweden, United States, West Germany, and Venezuela. The experiment was entitled CASA Uno. Scientific goals of the project include measurements of strain in the northern Andes, subduction rates for the Cocos and Nazca plates beneath Central and South America, and relative motion between the Caribbean plate and South America. A second set of measurements are planned in 1991 and should provide preliminary estimates of crustal deformation and plate motion rates in the region.

  10. Part 4: GPS Telemetry Detection Rates (GPS Test Collar Sites), GCS NAD 83 (2015)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety...

  11. Part 2: GPS Telemetry Detection Rates (Northern Arizona GPS Test Collar Data), GCS NAD 83 (2015)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Bias correction in GPS telemetry data-sets requires a strong understanding of the mechanisms that result in missing data. We tested wildlife GPS collars in a variety...

  12. Miniaturized GPS/MEMS IMU integrated board

    Science.gov (United States)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  13. Bowel cancer screening in England: a qualitative study of GPs' attitudes and information needs

    Directory of Open Access Journals (Sweden)

    Woodrow Chris

    2006-09-01

    Full Text Available Abstract Background The National Health Service Bowel Cancer Screening Programme is to be introduced in England during 2006. General Practitioners are a potentially important point of contact for participants throughout the screening process. The aims of the study were to examine GPs' attitudes and information needs with regard to bowel cancer screening, with a view to developing an information pack for primary care teams that will be circulated prior to the introduction of the programme. Methods 32 GPs participated in semi-structured telephone interviews. 18 of these had participated in the English Bowel Screening Pilot, and 14 had not. Interviews covered attitudes towards the introduction of the Bowel Cancer Screening Programme, expected or actual increases in workload, confidence in promoting informed choice, and preferences for receiving information about the programme. Results GPs in the study were generally positive about the introduction of the Bowel Cancer Screening Programme. A number of concerns were identified by GPs who had not taken part in the pilot programme, particularly relating to patient welfare, patient participation, and increased workload. GPs who had taken part in the pilot reported holding similar concerns prior to their involvement. However, in many cases these concerns were not confirmed through GPs experiences with the pilot. A number of specific information needs were identified by GPs to enable them to provide a supportive role to participants in the programme. Conclusion The study has found considerable GP support for the introduction of the new Bowel Cancer Screening Programme. Nonetheless, GPs hold some significant reservations regarding the programme. It is important that the information needs of GPs and other members of the primary care team are addressed prior to the roll-out of the programme so they are equipped to promote informed choice and provide support to patients who consult them with queries regarding

  14. Modeling the Effects of Soil Moisture at a GPS-Interferometric Reflectometry Station

    Science.gov (United States)

    Chew, C.; Small, E. E.; Larson, K. M.; Nievinski, F. G.; Zavorotny, V.

    2011-12-01

    GPS-Interferometric Reflectometry (GPS-IR) uses ground-reflected GPS signals to estimate near-surface soil moisture. Data are recorded by high-precision, geodetic-quality GPS antennas/receivers, for example those that comprise NSF's EarthScope Plate Boundary Observatory. The ground reflections used in GPS-IR are representative of a ~1000 m2 area around an antenna. As the dielectric constant of the surface fluctuates, the phase, amplitude, and frequency of signal-to-noise ratio (SNR) data recorded by the GPS unit change. Based on field observations, it has been shown that these characteristics of the SNR data are sensitive to shallow soil moisture. A single-scattering, electrodynamic model was used to simulate SNR output over a range of soil moisture conditions. All simulations were for a 2.4 m tall antenna surrounded by a surface free of roughness or vegetation. The model was run using three different types of soil moisture profiles: constant with depth, monotonic variations with depth, and observed profiles interpolated from field data. For all profiles, amplitude, phase shift, and frequency changes were calculated from simulated SNR data. The three GPS metrics are well correlated with soil moisture content modeled at the soil surface because a majority of the incident microwave energy is reflected at the air-soil interface. When surface soil is dry relative to the underlying soil, GPS metrics are also strongly correlated with soil moisture averaged over the top 5 cm of the soil column. The relationship between GPS metrics and soil moisture averaged over 5 cm is not as strong when surface soil is relatively wet (>35% volumetric soil moisture). Interpolated profiles from field data resulted in a very strong correlation between SNR metrics and soil moisture averaged over the top 5 cm of soil, suggesting that soil moisture estimated from SNR data is useful for various hydrologic applications.

  15. The GPS Laser Retroreflector Array Project

    Science.gov (United States)

    Merkowitz, Stephen M.

    2012-01-01

    Systematic co-location in space through the precision orbit determination of GPS satellites via satellite laser ranging will contribute significantly towards improving the accuracy and stability of the international terrestrial reference frame. NASA recently formed the GPS Laser Retroreflector Array Project to develop and deliver retroreflectors for integration on the next generation of GPS satellites. These retroreflectors will be an important contributor to achieving a global accuracy of 1.0 mm and 0.1 mm/year stability in the international terrestrial reference frame. We report here the current status of the GPS Laser Retroreflector Array Project.

  16. GPS operations at Olkiluoto in 2009

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.; Ahola, J. (Finnish Geodetic Institute, Masala (Finland))

    2010-06-15

    The GPS based deformation studies have been made at the investigation areas of Posiva since 1995, when the network of ten GPS pillars was established at Olkiluoto. One pillar in the investigation area belongs to the Finnish permanent GPS network, FinnRef. 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995. According to the time series of the GPS results 1/3 of the baselines at Olkiluoto have statistically significant change rates. However, the observed movements are smaller than +-0.20 mm/a. There are five pillars, which have statistically significant horizontal velocities at Olkiluoto. These local velocity components are small but taking into account the standard deviations the largest velocity components seems to be reliably determined. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured using EDM instruments in connection to the GPS observations. Changes in he difference between the GPS and EDM results indicate the systematic change in GPS results. No corrections based on only one baseline were not applied to GPS vectors. The GPS network at Olkiluoto was extended in 2003. The new pillars were built close to Kuivalahti village and on a small island of Iso Pyrekari. According to the geological evidence it is expected that a fracture zone is located between the new stations, thus enabling the determination of possible deformations along the fracture zone. The new pillars have been observed since 2003 and now we have computed the first deformation analysis from the six years data. Four new permanent stations will be established in summer 2010 at Olkiluoto. We have automated the processing of the campaign data by using the Bernese processing engine (BPE) together with our own Perl scripts. The local crustal deformations have been studied in GeoSatakunta project, too. This GPS network is located in Cities of Pori and Rauma and their neighbouring municipalities. Two new pillars

  17. Use of text messaging in general practice: a mixed methods investigation on GPs' and patients' views.

    Science.gov (United States)

    Leahy, Dorothy; Lyons, Aoife; Dahm, Matthias; Quinlan, Diarmuid; Bradley, Colin

    2017-09-25

    Text messaging has become more prevalent in general practice as a tool with which to communicate with patients. The main objectives were to assess the extent, growth, and perceived risks and benefits of text messaging by GPs to communicate with patients, and assess patients' attitudes towards receiving text messages from their GP. A mixed methods study, using surveys, a review, and a focus group, was conducted in both urban and rural practices in the south-west of Ireland. A telephone survey of 389 GPs was conducted to ascertain the prevalence of text messaging. Subsequently, the following were also carried out: additional telephone surveys with 25 GPs who use text messaging and 26 GPs who do not, a written satisfaction survey given to 78 patients, a review of the electronic information systems of five practices, and a focus group with six GPs to ascertain attitudes towards text messaging. In total, 38% (n = 148) of the surveyed GPs used text messaging to communicate with patients and 62% (n = 241) did not. Time management was identified as the key advantage of text messaging among GPs who used it (80%; n = 20) and those who did not (50%; n = 13). Confidentiality was reported as the principal concern among both groups, at 32% (n = 8) and 69% (n = 18) respectively. Most patients (99%; n = 77) were happy to receive text messages from their GP. The GP focus group identified similar issues and benefits in terms of confidentiality and time management. Data were extracted from the IT systems of five consenting practices and the number of text messages sent during the period from January 2013 to March 2016 was generated. This increased by 40% per annum. Collaborative efforts are required from relevant policymakers to address data protection and text messaging issues so that GPs can be provided with clear guidelines to protect patient confidentiality. © British Journal of General Practice 2017.

  18. Development of power transmission tower monitoring system. Landslide detection by GPS carrier sensor; Soden tetto ijo kanshi system no kaihatsu. GPS carrier sensor ni yoru jisuberi kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    In order to reduce labor required for monitoring, patrolling, and checking anomalies in power transmission towers, a development has been made on a remotely controlled monitoring system that can detect landslides easily by detecting carrier waves from the global positioning system (GPS) in combination with use of cellular phones. The present system does not use code signals from the GPS, but receives carrier waves used for its transmission at two locations, measures precisely the phase difference therein, and calculates a very small change in the distance between two points from difference in arrival time of the waves. Receivers are placed at base points (substations) and GPS measuring points (transmission towers). Pocket bells are called from a personal computer at the maintenance location (a power center) during observation, and power is supplied into the receivers from solar cells. The data of GPS carrier waves received at both locations are transmitted to the power center through a cellular phone. The phase difference is calculated and the amount of movement is displayed on the personal computer screen to carry out remote surveillance. A measurement of accuracy of about 1 cm may be realized. Demonstration tests have begun in 1995 at towers installed in the Shiga plateau district where landslide occurs frequently, and the feasibility of the system was verified. 5 figs.

  19. GOCE gradiometer validation by GPS

    Science.gov (United States)

    Visser, P. N. A. M.

    The upcoming European Space Agency (ESA) Gravity Field and Steady-State Ocean Circular Explorer (GOCE) mission, foreseen to be launched in 2007 (status: July 2006) will carry a highly sensitive gradiometer, consisting of three orthogonal pairs of ultra-sensitive accelerometers. A challenging calibration procedure has been developed to calibrate the gradiometer not only pre-launch by a series of on-ground tests, but also after launch by making use of on-board cold-gas thrusters to provoke a long series of gradiometer shaking events which will provide observations for its calibration. In addition, a number of quick-look post-launch methods has been designed and will be implemented that aim at validating the calibration of the gradiometer instrument and at the same time support the operations of the satellite. These methods are based on (1) comparison with the best available global gravity field models, (2) upward continuation of high-precision ground-based gravity field data over certain geographical areas, and (3) use of GPS Satellite-to-Satellite Tracking (SST) observations. The focus of this paper is on the third method. An assessment has been made of how well the gradiometer observations can be validated by a combination with GPS tracking observations of GOCE. It was found by a detailed simulation study that the most important parameters, the scale factors of the diagonal gravity gradient components, can be determined with an accuracy better than 0.004, provided a nominal behavior of the gradiometer and GPS instruments.

  20. Warm Dense Matter: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities

  1. Newly velocity field of Sulawesi Island from GPS observation

    Science.gov (United States)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    Sulawesi microplate Island is located at famous triple junction area of the Eurasian, India-Australian, and Philippine Sea plates. Under the influence of the northward moving Australian plate and the westward motion of the Philippine plate, the island at Eastern part of Indonesia is collide and with the Eurasian plate and Sunda Block. Those recent microplate tectonic motions can be quantitatively determine by GNSS-GPS measurement. We use combine GNSS-GPS observation types (campaign type and continuous type) from 1997 to 2015 to derive newly velocity field of the area. Several strategies are applied and tested to get the optimum result, and finally we choose regional strategy to reduce error propagation contribution from global multi baseline processing using GAMIT/GLOBK 10.5. Velocity field are analyzed in global reference frame ITRF 2008 and local reference frame by fixing with respect alternatively to Eurasian plate - Sunda block, India-Australian plate and Philippine Sea plates. Newly results show dense distribution of velocity field. This information is useful for tectonic deformation studying in geospatial era.

  2. Structural Transitions in Dense Networks

    CERN Document Server

    Lambiotte, R; Bhat, U; Redner, S

    2016-01-01

    We introduce an evolving network model in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability $p$. The resulting network is sparse for $p<\\frac{1}{2}$ and dense (average degree increasing with number of nodes $N$) for $p\\geq \\frac{1}{2}$. In the dense regime, individual networks realizations built by this copying mechanism are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at $p=\\frac{2}{3}$, $\\frac{3}{4}$, $\\frac{4}{5}$, etc., where the dependences on $N$ of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete---where all nodes are connected---is non-zero as $N\\to\\infty$.

  3. Holographic Renormalization in Dense Medium

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2014-01-01

    describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space.

  4. Radiative properties of dense nanofluids.

    Science.gov (United States)

    Wei, Wei; Fedorov, Andrei G; Luo, Zhongyang; Ni, Mingjiang

    2012-09-01

    The radiative properties of dense nanofluids are investigated. For nanofluids, scattering and absorbing of electromagnetic waves by nanoparticles, as well as light absorption by the matrix/fluid in which the nanoparticles are suspended, should be considered. We compare five models for predicting apparent radiative properties of nanoparticulate media and evaluate their applicability. Using spectral absorption and scattering coefficients predicted by different models, we compute the apparent transmittance of a nanofluid layer, including multiple reflecting interfaces bounding the layer, and compare the model predictions with experimental results from the literature. Finally, we propose a new method to calculate the spectral radiative properties of dense nanofluids that shows quantitatively good agreement with the experimental results.

  5. Dilatons for Dense Hadronic Matter

    CERN Document Server

    Lee, Hyun Kyu

    2009-01-01

    The idea that the explicit breaking of scale invariance by the trace anomaly of QCD can be rephrased as a spontaneous breaking has been recently exploited to capture the low-energy strong interaction dynamics of dense (and also hot) matter in terms of two dilaton fields, the "soft" (chi_s) and the "hard" (chi_h) fields, in the frame work of the hidden local gauge symmetry. In the Freund-Nambu model, the spontaneous symmetry breaking of scale symmetry is induced by an explicitly breaking term, while the spontaneous symmetry breaking is possible in the flat potential model which is scale symmetric. We discuss the interplay of the soft and hard dilatons using the spontaneously broken scale symmetry schemes and uncover a novel structure of dense matter hitherto unexplored.

  6. GPS tomography tests for DInSAR applications on Mt. Etna

    Directory of Open Access Journals (Sweden)

    Massimo Aranzulla

    2015-07-01

    Full Text Available Tropospheric artifacts of SAR images in a volcanic area like Mt. Etna cause ambiguity in the interpretation of deformations with such technique. It would be useful to measure the delay caused by tropospheric anomalies in synthetic aperture radar (SAR satellite signals (phase of the back-scattered radar wave that could be interpreted as deformation. From the delay estimated through the GPS data processing, the tropospheric tomography of electromagnetic waves refractivity, has been performed using the SIMULps12 software. The aim of this study was to perform software synthetic tests by using SIMULps12 applied to atmospheric tomography and to verify the influence of the different GPS geodetic network configurations on obtaining a reliable tomography. Three different anomalies of increasing complexity have been investigated in order to understand the representative parameters of a correct tomography, the best spatial resolution and the portions of space in which the tomography is reliable. The tests also focused on fixing/establishing the a-priori atmospheric model and the critical values of the main parameters involved in the tomographic inversion. To this end, we made a random choice of two days, necessary to define the tomographic problem. Three different network configurations with 15, 30 and 90 GPS receivers were studied. The results indicate that the well-resolved area of tomographic images increases with the number of GPS receivers not linearly, and that the actual GPS network of 42 receivers is capable of revealing/detecting the atmospheric anomalies.

  7. Accuracy of non-differential GPS for the determination of speed over ground.

    Science.gov (United States)

    Witte, T H; Wilson, A M

    2004-12-01

    Accurate determination of speed is important in many studies of human and animal locomotion. Some global positioning system (GPS) receivers can data log instantaneous speed. The speed accuracy of these systems is, however, unclear with manufacturers reporting velocity accuracies of 0.1-0.2 ms(-1). This study set out to trial non-differential GPS as a means of determining speed under real-life conditions. A bicycle was ridden around a running track and a custom-made bicycle speedometer was calibrated. Additional experiments were performed around circular tracks of known circumference and along a straight road. Instantaneous speed was determined simultaneously by the custom speedometer and a data logging helmet-mounted GPS receiver. GPS speed was compared to speedometer speed. The effect on speed accuracy of satellite number; changing satellite geometry, achieved through shielding the GPS antenna; speed; horizontal dilution of precision and cyclist position on a straight or a bend, was evaluated. The relative contribution of each variable to overall speed accuracy was determined by ANOVA. The speed determined by the GPS receiver was within 0.2 ms(-1) of the true speed measured for 45% of the values with a further 19% lying within 0.4 ms(-1) (n = 5060). The accuracy of speed determination was preserved even when the positional data were degraded due to poor satellite number or geometry. GPS data loggers are therefore accurate for the determination of speed over-ground in biomechanical and energetic studies performed on relatively straight courses. Errors increase on circular paths, especially those with small radii of curvature, due to a tendency to underestimate speed.

  8. Two New Permanent GPS Observatories In The Czech Republic - Snezka and Biskup

    Science.gov (United States)

    Schenk, V.; Kottnauer, P.; Schenkova, Z.; Rucki, A.; Psenicka, J.; Rehak, J., Jr.

    In summer 2001 the Institute of Rock Structure and Mechanics bought GPS receivers Ashtech Z-18 equipped with Choke-Ring antennas to establish two GPS observatories in the area of geodynamic networks "East" and "West Sudeten". For the permanent monitoring of the GPS satellite signals following two sites were tested and adopted: (a) a top of the highest mount Snezka of the Krkonose Mts. and (b) the old stone watchtower on the mount Biskupská Kupa in Silesia. The Ashtech Z - 18 receivers that monitor simultaneously NAVSTAR and GLONASS satellite signals are connected to a standard PC equipped with a capable HD to store a great amount of observed data. Just monitored data are regularly put to the HD in binary and RINEX forms, respectively. When GPS day terminates and the binary and RINEX files are successfully stored, the standard Ashtech software closes them and new binary and RINEX files for the next GPS day creates. To protect the receivers and the PCs against a power failure they are powered by 230V AC/ 12V DC power source/charger and backed up by 12V/240Ah batteries. As evident, the observatories operate without operators and approximately once per two months the stored data are copied to any PC medium. Thus, valuable databases for an intensive research in geodynamics of the north-east part of the Bo- hemian Massif and naturally for a fundamental tasks in geodesy are originated. Since each observatory is located within one of two existing GPS networks, the "East" and "West Sudeten", there is an assumption that annual campaign network data together with observatory ones will distinctly contribute to understanding and/or explanation of existing regional geodynamical movements in the Sudeten area. The establishment of the GPS observatories was essentially supported from funds of the MEYS research programme, from a Project LN00A005 "Dynamics of the Earth", and of the GA CR research project No. 205/01/0480.

  9. The Southeastern Sicily GPS network

    Directory of Open Access Journals (Sweden)

    F. Broccio

    1995-06-01

    Full Text Available The area located between Catania and Syracuse (Southeastern Sicily, characterised by the presence of the Simeto-Scordia-Lentini graben, was affected in the past by a strong seismicity as proved by the occurrence of seismic events strong enough to reach the XI degree of the MCS scale. In particular the January 11 th, 1693 (l = XI MCS earthquake with a magnitude over 7.5 (estimated, caused huge damage and a great loss of human lives. Following the last seismic event which occurred on December 13th, 1990 (Ml = 5.4 which caused heavy damage and many victims in the Catania-Syracuse area, a geodetic Global Positioning System network (GPS was set up with the aim of monitoring ground movements in one of the Italian areas subjected to high seismic risk, This "pace geodesy technique supplies high precision measurements and represent, a powerful new tool for investigating both regional stress fields and the evolution of local tectonic areas. The GPS network will allow the detection of ground movements with a centimetric accuracy through repeated surveys in time. The results obtained in two surveys carried out il1 1991 al1d 1993, are described in this paper.

  10. Application of real-time GPS to earthquake early warning

    National Research Council Canada - National Science Library

    Richard M. Allen; Alon Ziv

    2011-01-01

      Real-time GPS can provide static-offset observations during an earthquake Real-time GPS provides a robust constrain on magnitude for warnings GPS networks should be used as a companion to seismic...

  11. Near real-time GPS applications for tsunami early warning systems

    Directory of Open Access Journals (Sweden)

    C. Falck

    2010-02-01

    Full Text Available GPS (Global Positioning System technology is widely used for positioning applications. Many of them have high requirements with respect to precision, reliability or fast product delivery, but usually not all at the same time as it is the case for early warning applications. The tasks for the GPS-based components within the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009 are to support the determination of sea levels (measured onshore and offshore and to detect co-seismic land mass displacements with the lowest possible latency (design goal: first reliable results after 5 min. The completed system was designed to fulfil these tasks in near real-time, rather than for scientific research requirements. The obtained data products (movements of GPS antennas are supporting the warning process in different ways. The measurements from GPS instruments on buoys allow the earliest possible detection or confirmation of tsunami waves on the ocean. Onshore GPS measurements are made collocated with tide gauges or seismological stations and give information about co-seismic land mass movements as recorded, e.g., during the great Sumatra-Andaman earthquake of 2004 (Subarya et al., 2006. This information is important to separate tsunami-caused sea height movements from apparent sea height changes at tide gauge locations (sensor station movement and also as additional information about earthquakes' mechanisms, as this is an essential information to predict a tsunami (Sobolev et al., 2007.

    This article gives an end-to-end overview of the GITEWS GPS-component system, from the GPS sensors (GPS receiver with GPS antenna and auxiliary systems, either onshore or offshore to the early warning centre displays. We describe how the GPS sensors have been installed, how they are operated and the methods used to collect, transfer and process the GPS data in near real-time. This includes the sensor system design, the communication

  12. Capability Analysis of Blanket Jamming to GPS/INS Ultra-tight Coupling%GPS/INS超紧致耦合压制干扰能力分析

    Institute of Scientific and Technical Information of China (English)

    毛虎; 吴德伟; 卢虎; 闫占杰

    2014-01-01

    采用带限高斯噪声和同速率伪码相关信号对全球定位系统( GPS)/惯导系统( INS)超紧致耦合导航系统GPS军码接收机实施压制干扰。通过分析GPS P( Y)码和M码信号功率谱变化特点,对以上两种压制干扰进行信号参数的优化确定,进而计算出参数优化后的干扰信号造成GPS/INS超紧致耦合GPS军码接收机载波环路失锁时射频前端处所需的最小干扰功率。考虑干扰信号入射角与接收天线增益的关系,仿真得到不同高度干扰源发射功率与有效干扰距离的关系曲线。根据要地目标的防护需求,对不同制导武器所需的连续压制干扰作用距离进行定量分析,并在此基础上对沿来袭制导武器航路附近部署的多干扰源位置坐标和数量设置问题完成建模求解。%Band-limited Gaussian noise and pseudo code with the same rate signal are adopted to actualize blanket jamming to GPS military receiver of GPS/INS ultra-tight coupling navigation system. According to GPS P( Y) code and M code signal power spectrum change characteristic, above-mentioned two jamming signal parameters are optimized, the minimum jamming power causing GPS military receiver phase-locked loop( PLL) lock-lose is calculated on the receiver RF front-end. Then,in consideration of the relationship between jamming signal orientation and GPS receiver antenna gain, the curve between effective jamming range and transmitting power of jammer is obtained under different liftoff height. According to protective re-quirement of key targets, requisite uninterrupted blanket jamming effect distance to different type guided weapon is analyzed quantitatively,and location and number setting problem of multiple jammers deployed on the following path two-side are modeled and solved.

  13. GPS Navigation for the Magnetospheric Multi-Scale Mission

    Science.gov (United States)

    Bamford, William; Mitchell, Jason; Southward, Michael; Baldwin, Philip; Winternitz, Luke; Heckler, Gregory; Kurichh, Rishi; Sirotzky, Steve

    2009-01-01

    In 2014. NASA is scheduled to launch the Magnetospheric Multiscale Mission (MMS), a four-satellite formation designed to monitor fluctuations in the Earth's magnetosphere. This mission has two planned phases with different orbits (1? x 12Re and 1.2 x 25Re) to allow for varying science regions of interest. To minimize ground resources and to mitigate the probability of collisions between formation members, an on-board orbit determination system consisting of a Global Positioning System (GPS) receiver and crosslink transceiver was desired. Candidate sensors would be required to acquire GPS signals both below and above the constellation while spinning at three revolutions-per-minute (RPM) and exchanging state and science information among the constellation. The Intersatellite Ranging and Alarm System (IRAS), developed by Goddard Space Flight Center (GSFC) was selected to meet this challenge. IRAS leverages the eight years of development GSFC has invested in the Navigator GPS receiver and its spacecraft communication expertise, culminating in a sensor capable of absolute and relative navigation as well as intersatellite communication. The Navigator is a state-of-the-art receiver designed to acquire and track weak GPS signals down to -147dBm. This innovation allows the receiver to track both the main lobe and the much weaker side lobe signals. The Navigator's four antenna inputs and 24 tracking channels, together with customized hardware and software, allow it to seamlessly maintain visibility while rotating. Additionally, an extended Kalman filter provides autonomous, near real-time, absolute state and time estimates. The Navigator made its maiden voyage on the Space Shuttle during the Hubble Servicing Mission, and is scheduled to fly on MMS as well as the Global Precipitation Measurement Mission (GPM). Additionally, Navigator's acquisition engine will be featured in the receiver being developed for the Orion vehicle. The crosslink transceiver is a 1/4 Watt transmitter

  14. Multipath Estimation in Urban Environments from Joint GNSS Receivers and LiDAR Sensors

    OpenAIRE

    Fernández, Antonio J.; Fabio Dovis; David De Castro; Xin Chen; Khurram Ali

    2012-01-01

    In this paper, multipath error on Global Navigation Satellite System (GNSS) signals in urban environments is characterized with the help of Light Detection and Ranging (LiDAR) measurements. For this purpose, LiDAR equipment and Global Positioning System (GPS) receiver implementing a multipath estimating architecture were used to collect data in an urban environment. This paper demonstrates how GPS and LiDAR measurements can be jointly used to model the environment and obtain robust receivers....

  15. Investigation into the Effect of Atmospheric Particulate Matter (PM2.5 and PM10) Concentrations on GPS Signals.

    Science.gov (United States)

    Lau, Lawrence; He, Jun

    2017-03-03

    The Global Positioning System (GPS) has been widely used in navigation, surveying, geophysical and geodynamic studies, machine guidance, etc. High-precision GPS applications such as geodetic surveying need millimeter and centimeter level accuracy. Since GPS signals are affected by atmospheric effects, methods of correcting or eliminating ionospheric and tropospheric bias are needed in GPS data processing. Relative positioning can be used to mitigate the atmospheric effect, but its efficiency depends on the baseline lengths. Air pollution is a serious problem globally, especially in developing countries that causes health problems to humans and damage to the ecosystem. Respirable suspended particles are coarse particles with a diameter of 10 micrometers or less, also known as PM10. Moreover, fine particles with a diameter of 2.5 micrometers or less are known as PM2.5. GPS signals travel through the atmosphere before arriving at receivers on the Earth's surface, and the research question posed in this paper is: are GPS signals affected by the increased concentration of the PM2.5/PM10 particles? There is no standard model of the effect of PM2.5/PM10 particles on GPS signals in GPS data processing, although an approximate generic model of non-gaseous atmospheric constituents (GPS signals and validates the aforementioned approximate model with a carrier-to-noise ratio (CNR)-based empirical method. Both the approximate model and the empirical results show that the atmospheric PM2.5/PM10 particles and their concentrations have a negligible effect on GPS signals and the effect is comparable with the noise level of GPS measurements.

  16. GPS queues with heterogeneous traffic classes

    NARCIS (Netherlands)

    Borst, Sem; Mandjes, Michel; Uitert, van Miranda

    2002-01-01

    We consider a queue fed by a mixture of light-tailed and heavy-tailed traffic. The two traffic classes are served in accordance with the generalized processor sharing (GPS) discipline. GPS-based scheduling algorithms, such as weighted fair queueing (WFQ), have emerged as an important mechanism for a

  17. Effect of GPS errors on Emission model

    DEFF Research Database (Denmark)

    Lehmann, Anders; Gross, Allan

    n this paper we will show how Global Positioning Services (GPS) data obtained from smartphones can be used to model air quality in urban settings. The paper examines the uncertainty of smartphone location utilising GPS, and ties this location uncertainty to air quality models. The results presented...

  18. Stigma and GPs' perceptions of dementia

    NARCIS (Netherlands)

    Gove, D.; Downs, M.; Vernooij-Dassen, M.; Small, N.

    2016-01-01

    OBJECTIVES: General practitioners (GPs) are crucial to improving timely diagnosis, but little is reported about how they perceive dementia, and whether their perceptions display any elements of stigma. The aim of this study was to explore how GPs' perceptions of dementia map onto current

  19. Factors predicting trust between GPs and OPs

    NARCIS (Netherlands)

    A.P. Nauta; J. von Grumbkow (Jasper)

    2001-01-01

    textabstractPURPOSE: To study possible differences in trust between general practitioners (GPs) and occupational physicians (OPs) and the explanatory factors for trust. Insight into the factors predicting trust can improve programmes for stimulating the co-operation of GPs and OPs.

  20. Using GPS for studying pastoral mobility

    DEFF Research Database (Denmark)

    Adriansen, Hanne Kirstine

    2017-01-01

    geographer familiar with satellite remote sensing and GIS, I pondered how these relatively new technologies could be combined with classic ethnographic fieldwork, which we also use in human geography. I decided to use handheld GPS devices for tracking the pastoralists and their herds. My study was, as far...... as I know, the first one to use GPS for studying pastoral mobility. A total of 10 pastoralists were trained in using a GPS and asked to map their movements. This information was combined with satellite imagery on one hand and qualitative interviews on the other. This case study provides an account...... of the practical aspects of using GPS, taking the reader to the heart of some methodological issues that arose in the course of the research. The case sheds light on the particular challenges in using GPS for eliciting information about pastoral mobility. Thinking about such challenges leads to more general...

  1. The Glasgow Prognostic Score (GPS) is a novel prognostic indicator in advanced epithelial ovarian cancer: a multicenter retrospective study.

    Science.gov (United States)

    Zhu, Jiayu; Wang, Hua; Liu, Cheng-Cheng; Lu, Yue; Tang, Hailin

    2016-11-01

    The Glasgow Prognostic Score (GPS), an inflammation-based prognostic score systems composed of C-reactive protein and albumin, has been reported to be predictive of survival in several types of malignancies. The prognostic significance of GPS in epithelial ovarian cancer (EOC) remains unclear. We conducted this study to assess the prognostic value of GPS in a cohort of patients with advanced EOC receiving neoadjuvant chemotherapy (NAC) followed by debulking surgery. Six hundred and seventy-two patients newly diagnosed with advanced EOC were retrospectively analyzed. High GPS was significantly related to Eastern Cooperative Group performance status, histological type, histological grade and the size of residual tumor after the debulking surgery. In addition, patients with higher GPS at diagnosis achieved lower complete remission rates after NAC (P GPS was independent adverse predictors of PFS and OS. Our data demonstrated that GPS at diagnosis is a powerful independent prognostic factor for advanced epithelial ovarian cancer. However, further studies are needed to prospectively validate this prognostic model and investigate the mechanisms underlying the correlation between high GPS and poor prognosis in advanced epithelial ovarian cancer.

  2. A combined GPS/GLONASS global solution for the determination of diurnal and semi-diurnal Earth rotation variations

    Science.gov (United States)

    Englich, S.; Weber, R.; Schuh, H.

    2009-04-01

    Due to the global distribution of the IGS stations and the availability of continuous tracking data, GNSS observation data is very well suited for the investigation of high-frequency variations of the Earth rotation parameters (ERP). The majority of obtainable observations stems from the GPS system, but the number of stations equipped with combined GPS/GLONASS receivers is steadily increasing. One drawback in GPS only studies is that the orbital period of the GPS satellites is in a deep 2:1 resonance with Earth rotation. Consequently orbital errors which propagate to the ERP estimation limit the accurate determination of ERP variations in this frequency band (K1, K2). The purpose of this study is to make use of the rising availability of globally distributed GLONASS data for investigating the benefits of a combined GPS/GLONASS approach for the examination of diurnal and semi-diurnal Earth rotation variations. The observation data of 2008 from more than 120 IGS sites, of which around one third track GPS as well as GLONASS satellites, was chosen for analysis. We compared coordinate repeatabilities, ERP, and subsequently derived tidal variations calculated from a GPS stand-alone and a combined GPS/GLONASS solution.

  3. P-Code-Enhanced Encryption-Mode Processing of GPS Signals

    Science.gov (United States)

    Young, Lawrence; Meehan, Thomas; Thomas, Jess B.

    2003-01-01

    A method of processing signals in a Global Positioning System (GPS) receiver has been invented to enable the receiver to recover some of the information that is otherwise lost when GPS signals are encrypted at the transmitters. The need for this method arises because, at the option of the military, precision GPS code (P-code) is sometimes encrypted by a secret binary code, denoted the A code. Authorized users can recover the full signal with knowledge of the A-code. However, even in the absence of knowledge of the A-code, one can track the encrypted signal by use of an estimate of the A-code. The present invention is a method of making and using such an estimate. In comparison with prior such methods, this method makes it possible to recover more of the lost information and obtain greater accuracy.

  4. A drifting GPS buoy for retrieving effective riverbed bathymetry

    Science.gov (United States)

    Hostache, R.; Matgen, P.; Giustarini, L.; Teferle, F. N.; Tailliez, C.; Iffly, J.-F.; Corato, G.

    2015-01-01

    Spatially distributed riverbed bathymetry information are rarely available but mandatory for accurate hydrodynamic modeling. This study aims at evaluating the potential of the Global Navigation Satellite System (GNSS), like for instance Global Positioning System (GPS), for retrieving such data. Drifting buoys equipped with navigation systems such as GPS enable the quasi-continuous measurement of water surface elevation, from virtually any point in the world. The present study investigates the potential of assimilating GNSS-derived water surface elevation measurements into hydraulic models in order to retrieve effective riverbed bathymetry. First tests with a GPS dual-frequency receiver show that the root mean squared error (RMSE) on the elevation measurement equals 30 cm provided that a differential post processing is performed. Next, synthetic observations of a drifting buoy were generated assuming a 30 cm average error of Water Surface Elevation (WSE) measurements. By assimilating the synthetic observation into a 1D-Hydrodynamic model, we show that the riverbed bathymetry can be retrieved with an accuracy of 36 cm. Moreover, the WSEs simulated by the hydrodynamic model using the retrieved bathymetry are in good agreement with the synthetic "truth", exhibiting an RMSE of 27 cm.

  5. Precise orbit determination for the GOCE satellite using GPS

    Science.gov (United States)

    Bock, H.; Jäggi, A.; Švehla, D.; Beutler, G.; Hugentobler, U.; Visser, P.

    Apart from the gradiometer as the core instrument, the first ESA Earth Explorer Core Mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) will carry a 12-channel GPS receiver dedicated for precise orbit determination (POD) of the satellite. The EGG-C (European GOCE Gravity-Consortium), led by the Technical University in Munich, is building the GOCE HPF (High-level Processing Facility) dedicated to the Level 1b to Level 2 data processing. One of the tasks of this facility is the computation of the Precise Science Orbit (PSO) for GOCE. The PSO includes a reduced-dynamic and a kinematic orbit solution. The baseline for the PSO is a zero-difference procedure using GPS satellite orbits, clocks, and Earth Rotation Parameters (ERPs) from CODE (Center for Orbit Determination in Europe), one of the IGS (International GNSS Service) Analysis Centers. The scheme for reduced-dynamic and kinematic orbit determination is based on experiences gained from CHAMP and GRACE POD and is realized in one processing flow. Particular emphasis is put on maximum consistency in the analysis of day boundary overlapping orbital arcs, as well as on the higher data sampling rate with respect to CHAMP and GRACE and on differences originating from different GPS antenna configurations. We focus on the description of the procedure used for the two different orbit determinations and on the validation of the procedure using real data from the two GRACE satellites as well as simulated GOCE data.

  6. Equipamento microprocessado para geração de sinal de correção diferencial, em tempo real, para GPS Microprocessor-based equipment for real time generation of differential GPS correction signal

    Directory of Open Access Journals (Sweden)

    Thales C. B. Lima

    2006-08-01

    Full Text Available Este trabalho apresenta o desenvolvimento de um equipamento microprocessado, de baixo custo, para geração de sinal de correção diferencial para GPS, em tempo real, e configuração e supervisão do receptor GPS base. O equipamento desenvolvido possui um microcontrolador dedicado, display alfanumérico, teclado multifunção para configuração e operação do sistema e interfaces de comunicação. O circuito eletrônico do equipamento tem a função de receber as informações do GPS base e interpretá-las, transformando-as numa sentença no protocolo RTCM SC-104. O software do microcontrolador é responsável pela conversão do sinal recebido pelo GPS base, do formato proprietário para o protocolo RTCM SC-104. A placa processadora principal possui duas interfaces seriais padrão RS-232C. Uma delas tem a função de configuração e leitura das informações geradas pelo receptor GPS base. A outra atua somente como saída, enviando o sinal de correção diferencial. O projeto do equipamento microprocessado mostrou que é possível a construção de uma estação privada para a geração do sinal de correção diferencial, de baixo custo.This work presents the development of low cost microprocessor-based equipment for generation of differential GPS correction signal, in real time, and configuration and supervision of the GPS base. The developed equipment contains a dedicated microcontroller connected to the GPS receiver, alphanumeric display and multifunction keyboard for configuration and operation of the system and communication interfaces. The electronic circuit has the function of receiving the information from GPS base; interpret them, converting the sentence in the RTCM SC-104 protocol. The microcontroller software makes the conversion of the signal received by the GPS base from the specific format to RTCM SC-104 protocol. The processing main board has two serials RS-232C standard interfaces. One of them is used for configuration and

  7. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  8. Precipitable Water Vapor Estimates in the Australian Region from Ground-Based GPS Observations

    Directory of Open Access Journals (Sweden)

    Suelynn Choy

    2015-01-01

    Full Text Available We present a comparison of atmospheric precipitable water vapor (PWV derived from ground-based global positioning system (GPS receiver with traditional radiosonde measurement and very long baseline interferometry (VLBI technique for a five-year period (2008–2012 using Australian GPS stations. These stations were selectively chosen to provide a representative regional distribution of sites while ensuring conventional meteorological observations were available. Good agreement of PWV estimates was found between GPS and VLBI comparison with a mean difference of less than 1 mm and standard deviation of 3.5 mm and a mean difference and standard deviation of 0.1 mm and 4.0 mm, respectively, between GPS and radiosonde measurements. Systematic errors have also been discovered during the course of this study, which highlights the benefit of using GPS as a supplementary atmospheric PWV sensor and calibration system. The selected eight GPS sites sample different climates across Australia covering an area of approximately 30° NS/EW. It has also shown that the magnitude and variation of PWV estimates depend on the amount of moisture in the atmosphere, which is a function of season, topography, and other regional climate conditions.

  9. Simulation on C/A codes and analysis of GPS/pseudolite signals acquisition

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The global positioning system(GPS) is an extremely mature technique in the navigation and position-ing field.However,there are still some limits in some aspects and for some special applications.Spe-cially,the performance of GPS needs to be improved with technological advances.As a GPS-like ground transmitter,the pseudolite provides a new research direction to achieve high positioning ac-curacy and reliability.In this paper,we describe the core technologies of designing and simulation on the coarse acquisition codes in constructing the pseudolite system.In the GPS/pseudolite integration system,the signal PRN 36 of the pseudolite and the GPS satellites signals are acquired in the modified receiver based on the computer software platform.It is shown that the pseudolite technology is ideally suited to augment the GPS alone and provide greater integrity,availability,and continuity of the navi-gation positioning system,especially for indoor use.

  10. Plate Boundary Observatory GPS Network Status in California

    Science.gov (United States)

    Walls, C. P.; Austin, K. E.; Dittman, T.; Mann, D.; Basset, A.; Turner, R.; Lawrence, S.; Woolace, A. C.; Kasmer, D.; Hodgkinson, K. M.; Feaux, K.; Mattioli, G. S.

    2015-12-01

    The EarthScope PBO GPS network, funded by the NSF and operated by UNAVCO, is comprised of 599 permanent GPS stations spanning three principal tectonic regimes and is administered by separate management regions (Subduction - Pacific Northwest [91 sites], Extension - East [41 sites], Transform - Southwest [467 sites]). Since the close of construction in September 2008 various enhancements have been implemented through additional funding by the NSF, NOAA, and NASA and in collaboration with stakeholders such as Caltrans, Scripps, and the USGS. Initially, the majority of stations used first generation IP based cellular modems and radios capable of ~10KB/s data rates. The bandwidth limitation was a challenge for regional high-rate data downloads for GPS-seismology and airborne LiDAR surveys, and real-time data flow. Today, only 13 of the original cell modems remain with 297 upgraded cell modems providing 3G/4G/LTE data communications with transfer rates ranging from 80-400 KB/s. Ongoing radio network expansion and upgrades continue to harden communications. 32 VSAT and one manual download site remain. In CA, the network capabilities for 1Hz and 5Hz downloads or real-time streaming are ~95%, ~80% and ~65%, respectively. During the past year, uptime ranged from 94-99% with data return for 15 s data exceeding 99%. Real-time (1 Hz) data from 204 sites are distributed in BINEX and RTCM 2.3/3.1 formats with an average latency of 0.5 s and completion of 86%. A variety of geophysical sensors are co-located with the GPS stations and include: 21 MEMS accelerometers, 31 strong motion and broadband seismometers, 9 borehole strainmeters and 1 long baseline strainmeter. Vaisala meteorological instruments are located at 60 sites of which 38 stream GPS/Met data. In an effort to modernize the network, Trimble NetRS receivers are gradually being replaced with GNSS-capable/enabled receivers and antennas. Today, 11 stations are GLONASS enabled and 84 are GNSS capable.

  11. GPS Precision Timing at CERN

    CERN Document Server

    Beetham, C G

    1999-01-01

    For the past decade, the Global Positioning System (GPS) has been used to provide precise time, frequency and position co-ordinates world-wide. Recently, equipment has become available specialising in providing extremely accurate timing information, referenced to Universal Time Co-ordinates (UTC). This feature has been used at CERN to provide time of day information for systems that have been installed in the Proton Synchrotron (PS), Super Proton Synchrotron (SPS) and the Large Electron Positron (LEP) machines. The different systems are described as well as the planned developments, particularly with respect to optical transmission and the Inter-Range Instrumentation Group IRIG-B standard, for future use in the Large Hadron Collider (LHC).

  12. An assessment of the quality of GPS water vapour estimates and their use in operational meteorology and climate monitoring

    OpenAIRE

    2010-01-01

    The path delay between a GPS satellite and a ground based GPS receiver depends, after elimination of ionospheric effects using a combination of the two GPS frequencies, on the integral effect of the densities of dry air and water vapour along the signal path. The total delay in the signal from each satellite is known as the slant delay as the path is most likely to be non-azimuthal. The slant paths are then transferred into the vertical (or zenith) by an elevation mapping function, and this n...

  13. Trend-Residual Dual Modeling for Detection of Outliers in Low-Cost GPS Trajectories.

    Science.gov (United States)

    Chen, Xiaojian; Cui, Tingting; Fu, Jianhong; Peng, Jianwei; Shan, Jie

    2016-12-01

    Low-cost GPS (receiver) has become a ubiquitous and integral part of our daily life. Despite noticeable advantages such as being cheap, small, light, and easy to use, its limited positioning accuracy devalues and hampers its wide applications for reliable mapping and analysis. Two conventional techniques to remove outliers in a GPS trajectory are thresholding and Kalman-based methods, which are difficult in selecting appropriate thresholds and modeling the trajectories. Moreover, they are insensitive to medium and small outliers, especially for low-sample-rate trajectories. This paper proposes a model-based GPS trajectory cleaner. Rather than examining speed and acceleration or assuming a pre-determined trajectory model, we first use cubic smooth spline to adaptively model the trend of the trajectory. The residuals, i.e., the differences between the trend and GPS measurements, are then further modeled by time series method. Outliers are detected by scoring the residuals at every GPS trajectory point. Comparing to the conventional procedures, the trend-residual dual modeling approach has the following features: (a) it is able to model trajectories and detect outliers adaptively; (b) only one critical value for outlier scores needs to be set; (c) it is able to robustly detect unapparent outliers; and (d) it is effective in cleaning outliers for GPS trajectories with low sample rates. Tests are carried out on three real-world GPS trajectories datasets. The evaluation demonstrates an average of 9.27 times better performance in outlier detection for GPS trajectories than thresholding and Kalman-based techniques.

  14. Trend-Residual Dual Modeling for Detection of Outliers in Low-Cost GPS Trajectories

    Directory of Open Access Journals (Sweden)

    Xiaojian Chen

    2016-12-01

    Full Text Available Low-cost GPS (receiver has become a ubiquitous and integral part of our daily life. Despite noticeable advantages such as being cheap, small, light, and easy to use, its limited positioning accuracy devalues and hampers its wide applications for reliable mapping and analysis. Two conventional techniques to remove outliers in a GPS trajectory are thresholding and Kalman-based methods, which are difficult in selecting appropriate thresholds and modeling the trajectories. Moreover, they are insensitive to medium and small outliers, especially for low-sample-rate trajectories. This paper proposes a model-based GPS trajectory cleaner. Rather than examining speed and acceleration or assuming a pre-determined trajectory model, we first use cubic smooth spline to adaptively model the trend of the trajectory. The residuals, i.e., the differences between the trend and GPS measurements, are then further modeled by time series method. Outliers are detected by scoring the residuals at every GPS trajectory point. Comparing to the conventional procedures, the trend-residual dual modeling approach has the following features: (a it is able to model trajectories and detect outliers adaptively; (b only one critical value for outlier scores needs to be set; (c it is able to robustly detect unapparent outliers; and (d it is effective in cleaning outliers for GPS trajectories with low sample rates. Tests are carried out on three real-world GPS trajectories datasets. The evaluation demonstrates an average of 9.27 times better performance in outlier detection for GPS trajectories than thresholding and Kalman-based techniques.

  15. What determines the income gap between French male and female GPs - the role of medical practices

    Directory of Open Access Journals (Sweden)

    Dumontet Magali

    2012-09-01

    Full Text Available Abstract Background In many OECD countries, the gender differences in physicians’ pay favour male doctors. Due to the feminisation of the doctor profession, it is essential to measure this income gap in the French context of Fee-for-service payment (FFS and then to precisely identify its determinants. The objective of this study is to measure and analyse the 2008 income gap between males and females general practitioners (GPs. This paper focuses on the role of gender medical practices differentials among GPs working in private practice in the southwest region of France. Methods Using data from 339 private-practice GPs, we measured an average gender income gap of approximately 26% in favour of men. Using the decomposition method, we examined the factors that could explain gender disparities in income. Results The analysis showed that 73% of the income gap can be explained by the average differences in doctors’ characteristics; for example, 61% of the gender income gap is explained by the gender differences in workload, i.e., number of consultations and visits, which is on average significantly lower for female GPs than for male GPs. Furthermore, the decomposition method allowed us to highlight the differences in the marginal returns of doctors’ characteristics and variables contributing to income, such as GP workload; we found that female GPs have a higher marginal return in terms of earnings when performing an additional medical service. Conclusions The findings of this study help to understand the determinants of the income gap between male and female GPs. Even though workload is clearly an essential determinant of income, FFS does not reduce the gender income gap, and there is an imperfect relationship between the provision of medical services and income. In the context of feminisation, it appears that female GPs receive a lower income but attain higher marginal returns when performing an additional consultation.

  16. Ppp Analisys with GPS and Glonass Integration in Periods Under Ionospheric Scintillation Effects

    Science.gov (United States)

    Marques, H. A. S.

    2015-12-01

    The GNSS is widely used nowadays either for geodetic positioning or scientific purposes. The GNSS currently includes GPS, GLONASS, Galileo among other emerging systems. The GPS and GLONASS are currently operational with a full satellite constellation. The GPS is still the most used nowadays and both GPS and GLONASS are under a modernization process. The geodetic positioning by using data from multi-constellation can provide better accuracy in positioning and also more reliability. The PPP is benefited once the satellite geometry is crucial in this method, mainly for kinematic scenarios. The satellite geometry can change suddenly for data collected in urban areas or in conditions of strong atmospheric effects such as Ionospheric Scintillation (IS) that causes weakening of signals with cycle slips and even loss of lock. The IS is caused by small irregularities in the ionosphere layer and is characterized by rapid change in amplitude and phase of the signal being stronger in equatorial and high latitudes regions. In this work the PPP is evaluated with GPS and GLONASS data collected by monitoring receivers from Brazilian CIGALA/CALIBRA network under IS conditions. The PPP processing was accomplished by using the GPSPPP software provided by Natural Resources Canadian (NRCAN). The IS effects were analyzed taking account the S4 and PHI60 indices. Considering periods with moderate IS effects, the use of only GPS data in the PPP presented several peaks in the coordinate time series due to cycle slips and loos of lock. In cycle slip conditions the ambiguity parameter are reinitialized by GPSPPP and considering loss of lock few satellites can be available in some epochs affecting the positioning geometry and consequently decreasing accuracy. In such situations, the PPP using GPS and GLONASS data presented improvements in positioning accuracy of the order to 70% in height component when compared with PPP using only GPS data. Analyses of GDOP and ambiguities parameters were

  17. Mapping the Coastline Limits of the Mexican State Sinaloa Using GPS

    Science.gov (United States)

    Vazquez, G. E.

    2007-12-01

    This research work presents the delimitation of the coastline limits of Sinaloa (one of the richest states of northwestern Mexico). In order to achieve this big task, it was required to use GPS (Global Positioning System) together with leveling spirit measurements. Based on the appropriate selection of the cited measurement techniques, the objective was to map the Sinaloa's state coastline to have the cartography of approximate 1600 km of littoral. The GPS measurements were performed and referred with respect to a GPS network located across the state. This GPS network consists of at least one first-order-site at each of the sixteen counties that constitute the state, and three to four second-order-sites of the ten counties of the state surrounded by sea. The leveling spirit measurements were referred to local benchmarks pre-established by the Mexican agency SEMARNAT (SEcretaría Del Medio Ambiente y Recursos NATurales). Within the main specifications of the GPS measurements and equipment, we used geodetic-dual-frequency GPS receivers in kinematic mode for both base stations (first and second order sites of the GPS state network) and rover stations (points forming the state littoral) with 5-sec log-rate interval and 10 deg cut-off angle. The GPS data processing was performed using the commercial software Trimble Geomatics Office (TGO) with Double Differences (DD) in post-processing mode. To this point, the field measurements had been totally covered including the cartography (scale 1:1000) and this includes the specifications and appropriate labeling according to the Mexican norm NOM-146-SEMARNAT-2005.

  18. Current Arabian Plate Motion From Campaign GPS Measurements in Saudi Arabia: Preliminary Results

    Science.gov (United States)

    Almuslmani, B.; Teferle, F. N.; Bingley, R. M.; Moore, T.

    2007-12-01

    Current investigations of the motions of the Arabian and its neighboring plates are primarily based on GPS measurements obtained in the surrounding areas of the Arabian plate, with few stations actually located on the Arabian plate itself in the Kingdom of Saudi Arabia. In order to advance the knowledge of the dynamics of the Arabian plate and its intra-plate deformations, the General Directorate of Military Survey (GDMS), through collaboration with the Institute of Engineering Surveying and Space Geodesy (IESSG), densified the GPS network in Saudi Arabia, covering nearly two thirds of the tectonic plate. Since July 2002, a network of 32 GPS stations has been established at locations of the Saudi Arabia geodetic network. At all of these GPS stations a concrete pillar has been used as the monument and the locations have been selected in order to give the broadest distribution of observing sites. During 2005, 27 additional GPS stations in the Hejaz and Asser Mountains, and the Farasan Islands, all in south-western Saudi Arabia, have been established, for which the past and future campaign GPS measurements will provide valuable data for investigations of crustal deformations close to the plate boundaries between the Nubia, Somalian and Arabian plates. In this presentation we will show results in the form of velocity field and plate motion estimates based on data from at least three campaigns occupying the initial 32 GDMS GPS network stations, but also from a number of IGS stations in the region. Our reference frame is aligned to ITRF2005 and uses approximately 40 IGS reference frame stations located on all major tectonic plates, e.g. Nubia and Somalia, surrounding the Arabian plate. Furthermore, we apply absolute satellite and receiver antenna phase center models together with newly available GPS products from a recent global re-processing effort.

  19. PFISR GPS tracking mode for researching high-latitude ionospheric electron density gradients associated with GPS scintillation

    Science.gov (United States)

    Loucks, D. C.; Palo, S. E.; Pilinski, M.; Crowley, G.; Azeem, S. I.; Hampton, D. L.

    2016-12-01

    Ionospheric behavior in the high-latitudes can significantly impact Ultra High Frequency (UHF) signals in the 300 MHz to 3 GHz band, resulting in degradation of Global Positioning System (GPS) position solutions and satellite communications interruptions. To address these operational concerns, a need arises to identify and understand the ionospheric structure that leads to disturbed conditions in the Arctic. Structures in the high-latitude ionosphere are known to change on the order of seconds or less, can be decameters to kilometers in scale, and elongate across magnetic field lines at auroral latitudes. Nominal operations at Poker Flat Incoherent Scatter Radar (PFISR) give temporal resolution on the order of minutes, and range resolution on the order of tens of kilometers, while specialized GPS receivers available for ionospheric sensing have a 100Hz observation sampling rate. One of these, ASTRA's Connected Autonomous Space Environment Sensor (CASES) is used for this study. We have developed a new GPS scintillation tracking mode for PFISR to address open scientific questions regarding temporal and spatial electron density gradients. The mode will be described, a number of experimental campaigns will be analyzed, and results and lessons learned will be presented.

  20. Probing Cold Dense Nuclear Matter

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  1. Probing Cold Dense Nuclear Matter

    CERN Document Server

    Subedi, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Bertozzi, W; Boeglin, W; Chen, J -P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J -O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; De Jager, C W; Jans, E; Jiang, X; Kaufman, L; Kelleher, A; Kolarkar, A; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Širca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X -C; Zhu, L; 10.1126/science.1156675

    2009-01-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  2. Dilatons in Dense Baryonic Matter

    CERN Document Server

    Lee, Hyun Kyu

    2013-01-01

    We discuss the role of dilaton, which is supposed to be representing a special feature of scale symmetry of QCD, trace anomaly, in dense baryonic matter. The idea that the scale symmetry breaking of QCD is responsible for the spontaneous breaking of chiral symmetry is presented along the similar spirit of Freund-Nambu model. The incorporation of dilaton field in the hidden local symmetric parity doublet model is briefly sketched with the possible role of dilaton at high density baryonic matter, the emergence of linear sigma model in dilaton limit.

  3. Electronic warfare receivers and receiving systems

    CERN Document Server

    Poisel, Richard A

    2014-01-01

    Receivers systems are considered the core of electronic warfare (EW) intercept systems. Without them, the fundamental purpose of such systems is null and void. This book considers the major elements that make up receiver systems and the receivers that go in them.This resource provides system design engineers with techniques for design and development of EW receivers for modern modulations (spread spectrum) in addition to receivers for older, common modulation formats. Each major module in these receivers is considered in detail. Design information is included as well as performance tradeoffs o

  4. COCONet (Continuously Operating Caribbean GPS Observational Network) - A multihazard GPS/Met observatory: Enhancing geodetic infrastructure and the scientific community in the Caribbean

    Science.gov (United States)

    Feaux, K.; Braun, J. J.; Calais, E.; Mattioli, G. S.; Miller, M. M.; Normandeau, J.; Sandru, J.; Wang, G.

    2013-05-01

    The COCONet (Continuously Operating Caribbean GPS Observational Network) project was funded by the National Science Foundation (NSF) with the aim of developing a large-scale geodetic and atmospheric infrastructure in the Caribbean that will form the backbone for a broad range of geoscience, atmospheric, and sea-level investigations and enable research on process-oriented science questions with direct relevance to geohazards. The current COCONet network construction plan consists of the installation of 47 new GPS and meteorological stations throughout the Caribbean region, 21 existing stations refurbished with new receivers, antennas, and meteorological instruments, and will also incorporate data from at least 61 existing operational GPS stations. COCONet engineers will also install 2 new collocated GPS and tide gauge sites and GPS instruments at two existing tide gauge sites in the Caribbean region. In October 2012, the third COCONet workshop was held in Tulum, Mexico in which a number of recommendations were made concerning capacity building in the region, network sustainability, high-rate data, and developing a data center in the Caribbean region. We present the status of the construction phase of the project to date, as well as the status of some of the recommendations from the third COCONet workshop focusing on capacity building and outreach elements of the project.

  5. GPS Radio Occultation as Part of the Global Observing System for Atmosphere

    Science.gov (United States)

    Mannucci, Anthony J.; Ao, C. O.; Iijima, B. A.; Wilson, B. D.; Yunck, T. P.; Kursinski, E. R.

    2008-01-01

    Topics include: The Measurement (Physical retrievals based on time standards), GPS Retrieval Products, Retrievals and Radiances: CLARREO Mission, GPS RO and AIRS, GPS RO and Microwave, GPS RO and Radiosondes, GPS/GNSS Science, and Conclusions.

  6. Accuracy of WAAS-enabled GPS for the determination of position and speed over ground.

    Science.gov (United States)

    Witte, T H; Wilson, A M

    2005-08-01

    The Global Positioning System (GPS) offers many advantages over conventional methods for the determination of subject speed during biomechanical studies. Recent advances in GPS technology, in particular the implementation of the Wide-Angle Augmentation System and European Geostationary Navigation Overlay Service (WAAS/EGNOS), mean that small, highly portable units are available offering the potential of superior accuracy in the determination of both position and speed. This study set out to examine the accuracy of a WAAS-enabled GPS unit for the determination of position and speed. Comparison with the new and published data showed significant enhancements in both position and speed accuracy over a non-WAAS system. Position data collected during straight line cycling showed significantly lower sample-to-sample variation (mean absolute deviation from straight line 0.11 vs. 0.78 m) and greater repeatability from trial to trial (mean absolute deviation from actual path 0.37 vs. 4.8 m) for the WAAS-enabled unit compared to the non-WAAS unit. The speed determined by the WAAS-enabled GPS receiver during cycling in a straight line was within 0.2 ms(-1) of the actual speed measured for 57% of the values with 82% lying within 0.4 ms(-1), however, the data tended towards underestimation of speed during circle cycling, with 65% of values within 0.2 ms(-1) and 87% within 0.4 ms(-1) of the actual value. Local dGPS and dual frequency techniques are more accurate still, however, traditional differential GPS (dGPS), employing FM radio transmission of correction data to a separate receiver, now offers no advantage over WAAS and appears redundant.

  7. Combining METEOSAT-10 satellite image data with GPS tropospheric path delays to estimate regional Integrated Water Vapor (IWV) distribution

    OpenAIRE

    2016-01-01

    Using GPS satellites signals, we can study different processes and coupling mechanisms that can help us understand the physical conditions in the upper atmosphere, which might lead or act as proxies for severe weather events such as extreme storms and flooding. GPS signals received by ground stations are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy Precipitable Water Vapor (PWV) using collocated pressure and temperature me...

  8. FPGA-based real-time embedded system for RISS/GPS integrated navigation.

    Science.gov (United States)

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.

  9. Modeling and Assessment of GPS/BDS Combined Precise Point Positioning.

    Science.gov (United States)

    Chen, Junping; Wang, Jungang; Zhang, Yize; Yang, Sainan; Chen, Qian; Gong, Xiuqiang

    2016-07-22

    Precise Point Positioning (PPP) technique enables stand-alone receivers to obtain cm-level positioning accuracy. Observations from multi-GNSS systems can augment users with improved positioning accuracy, reliability and availability. In this paper, we present and evaluate the GPS/BDS combined PPP models, including the traditional model and a simplified model, where the inter-system bias (ISB) is treated in different way. To evaluate the performance of combined GPS/BDS PPP, kinematic and static PPP positions are compared to the IGS daily estimates, where 1 month GPS/BDS data of 11 IGS Multi-GNSS Experiment (MGEX) stations are used. The results indicate apparent improvement of GPS/BDS combined PPP solutions in both static and kinematic cases, where much smaller standard deviations are presented in the magnitude distribution of coordinates RMS statistics. Comparisons between the traditional and simplified combined PPP models show no difference in coordinate estimations, and the inter system biases between the GPS/BDS system are assimilated into receiver clock, ambiguities and pseudo-range residuals accordingly.

  10. National 2000' GPS control network of China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An accurately unified national GPS network with more than 2500 stations, named "National 2000' GPS Control Network", signed the epoch 2000.0, has been established by integrating the existing six nationwide GPS networks of China set up by different departments with different objectives. This paper presents the characteristics of the existing GPS networks, summarizes the strategies in the integrated adjustment of the GPS network, including functional model, stochastic model as well as the adjustment principle modification. By modifying the adjustment strategies according to the characteristics of the existing GPS networks and under the support of the IGS stations, the accuracy of the integrated national GPS network is greatly improved. The datum differences among the sub networks disappear, the systematic error influences are weakened, and the effects of the outliers on the estimated coordinates and their variances are controlled. It is shown that the average standard deviation for the horizontal component is smaller than 1.0 cm, the vertical component is smaller than 2.0 cm, and the three-dimensional (3-D) position of geocenter coordinates is smaller than 3.0 cm. The exterior checking accuracy for the 3-D position is averagely better than 1.0 cm.

  11. Seasonal Effects on GPS PPP Accuracy

    Science.gov (United States)

    Saracoglu, Aziz; Ugur Sanli, D.

    2016-04-01

    GPS Precise Point Positioning (PPP) is now routinely used in many geophysical applications. Static positioning and 24 h data are requested for high precision results however real life situations do not always let us collect 24 h data. Thus repeated GPS surveys of 8-10 h observation sessions are still used by some research groups. Positioning solutions from shorter data spans are subject to various systematic influences, and the positioning quality as well as the estimated velocity is degraded. Researchers pay attention to the accuracy of GPS positions and of the estimated velocities derived from short observation sessions. Recently some research groups turned their attention to the study of seasonal effects (i.e. meteorological seasons) on GPS solutions. Up to now usually regional studies have been reported. In this study, we adopt a global approach and study the various seasonal effects (including the effect of the annual signal) on GPS solutions produced from short observation sessions. We use the PPP module of the NASA/JPL's GIPSY/OASIS II software and globally distributed GPS stations' data of the International GNSS Service. Accuracy studies previously performed with 10-30 consecutive days of continuous data. Here, data from each month of a year, incorporating two years in succession, is used in the analysis. Our major conclusion is that a reformulation for the GPS positioning accuracy is necessary when taking into account the seasonal effects, and typical one term accuracy formulation is expanded to a two-term one.

  12. Briefing highlights space weather risks to GPS

    Science.gov (United States)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  13. Small satellite attitude determination based on GPS/IMU data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Golovan, Andrey [Navigation and Control Laboratory, M.V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow (Russian Federation); Cepe, Ali [Department of Applied Mechanics and Control, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-12-10

    In this paper, we present the mathematical models and algorithms that describe the problem of attitude determination for a small satellite using measurements from three angular rate sensors (ARS) and aiding measurements from multiple GPS receivers/antennas rigidly attached to the platform of the satellite.

  14. Auxiliary VHF transmitter to aid recovery of solar Argos/GPS PTTs

    Science.gov (United States)

    Christopher P. Hansen; Mark A. Rumble; R. Scott Gamo; Joshua J. Millspaugh

    2014-01-01

    While conducting greater sage-grouse (Centrocercus urophasianus) research, we found that solar-powered global positioning systems platform transmitter terminals (GPS PTTs) can be lost if the solar panel does not receive adequate sunlight. Thus, we developed 5-g (mortality sensor included; Prototype A) and 9.8-g (no mortality sensor; Prototype B) auxiliary very high...

  15. Centroid–moment tensor inversions using high-rate GPS waveforms

    NARCIS (Netherlands)

    O'Toole, T.B.; Valentine, A.P.; Woodhouse, J.H.

    2012-01-01

    Displacement time-series recorded by Global Positioning System (GPS) receivers are a new type of near-field waveformobservation of the seismic source.We have developed an inversion method which enables the recovery of an earthquake’s mechanism and centroid coordinates from such data. Our approach is

  16. GPS phase scintillation at high latitudes during the geomagnetic storm of 17-18 March 2015

    DEFF Research Database (Denmark)

    Prikryl, P.; Ghoddousi-Fard, R.; Weygand, J. M.

    2016-01-01

    The geomagnetic storm of 17–18 March 2015 was caused by the impacts of a coronal mass ejection and a high-speed plasma stream from a coronal hole. The high-latitude ionosphere dynamics is studied using arrays of ground-based instruments including GPS receivers, HF radars, ionosondes, riometers...

  17. Two Approaches for Successful Mapping GPS Data to Underlying Road Network in Location-based Services

    NARCIS (Netherlands)

    Meratnia, N.; Kyamakya, K.

    2004-01-01

    Latest data acquisition techniques facilitate the provision of real-time location-based services. With the coming about of miniature and cheap GPS receivers and cellular phones, new horizons have been opened for such services. The mobile telephony and Internet technology within the GIS environment h

  18. GPS radio occultation technique for measurement of the atmosphere above tropical cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    2009-01-01

    Occultation (RO) technique applied to a GPS receiver on the International Space Station (ISS) will be useful for characterisation of this process. Our initial assessment presented here, addresses the question if severe storms leave a significant signature in RO profiles in the upper troposphere...

  19. Two Approaches for Successful Mapping GPS Data to Underlying Road Network in Location-based Services

    NARCIS (Netherlands)

    Meratnia, Nirvana; Kyamakya, K.

    2004-01-01

    Latest data acquisition techniques facilitate the provision of real-time location-based services. With the coming about of miniature and cheap GPS receivers and cellular phones, new horizons have been opened for such services. The mobile telephony and Internet technology within the GIS environment h

  20. MULTI-GNSS RECEIVER FOR AEROSPACE NAVIGATION AND POSITIONING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    T. R. Peres

    2014-03-01

    Full Text Available The upcoming Galileo system opens a wide range of new opportunities in the Global Navigation Satellite System (GNSS market. However, the characteristics of the future GNSS signals require the development of new GNSS receivers. In the frame of the REAGE project, DEIMOS and ISEL have developed a GNSS receiver targeted for aerospace applications, supporting current and future GPS L1 and Galileo E1 signals, based on commercial (or, in the furthest extent, industrial grade components. Although the REAGE project aimed at space applications, the REAGE receiver is also applicable to many terrestrial applications (ground or airborne, such as Georeferencing and Unmanned Aerial Vehicle (UAV navigation. This paper presents the architecture and features of the REAGE receiver, as well as some results of the validation campaign with GPS L1 and Galileo E1 signals.

  1. Real-time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow

    Science.gov (United States)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time. dense stereo system to include realtime. dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop. computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  2. Mining significant semantic locations from GPS data

    DEFF Research Database (Denmark)

    Cao, Xin; Cong, Gao; Jensen, Christian S.

    2010-01-01

    With the increasing deployment and use of GPS-enabled devices, massive amounts of GPS data are becoming available. We propose a general framework for the mining of semantically meaningful, significant locations, e.g., shopping malls and restaurants, from such data. We present techniques capable...... of extracting semantic locations from GPS data. We capture the relationships between locations and between locations and users with a graph. Significance is then assigned to locations using random walks over the graph that propagates significance among the locations. In doing so, mutual reinforcement between...

  3. Mining significant semantic locations from GPS data

    DEFF Research Database (Denmark)

    Cao, Xin; Cong, Gao; Jensen, Christian S.

    2010-01-01

    With the increasing deployment and use of GPS-enabled devices, massive amounts of GPS data are becoming available. We propose a general framework for the mining of semantically meaningful, significant locations, e.g., shopping malls and restaurants, from such data. We present techniques capable...... of extracting semantic locations from GPS data. We capture the relationships between locations and between locations and users with a graph. Significance is then assigned to locations using random walks over the graph that propagates significance among the locations. In doing so, mutual reinforcement between...

  4. GPS or travel diary: Comparing spatial and temporal characteristics of visits to fast food restaurants and supermarkets.

    Science.gov (United States)

    Scully, Jason Y; Vernez Moudon, Anne; Hurvitz, Philip M; Aggarwal, Anju; Drewnowski, Adam

    2017-01-01

    To assess differences between GPS and self-reported measures of location, we examined visits to fast food restaurants and supermarkets using a spatiotemporal framework. Data came from 446 participants who responded to a survey, filled out travel diaries of places visited, and wore a GPS receiver for seven consecutive days. Provided by Public Health Seattle King County, addresses from food permit data were matched to King County tax assessor parcels in a GIS. A three-step process was used to verify travel-diary reported visits using GPS records: (1) GPS records were temporally matched if their timestamps were within the time window created by the arrival and departure times reported in the travel diary; (2) the temporally matched GPS records were then spatially matched if they were located in a food establishment parcel of the same type reported in the diary; (3) the travel diary visit was then GPS-sensed if the name of food establishment in the parcel matched the one reported in the travel diary. To account for errors in reporting arrival and departure times, GPS records were temporally matched to three time windows: the exact time, +/- 10 minutes, and +/- 30 minutes. One third of the participants reported 273 visits to fast food restaurants; 88% reported 1,102 visits to supermarkets. Of these, 77.3 percent of the fast food and 78.6 percent supermarket visits were GPS-sensed using the +/-10-minute time window. At this time window, the mean travel-diary reported fast food visit duration was 14.5 minutes (SD 20.2), 1.7 minutes longer than the GPS-sensed visit. For supermarkets, the reported visit duration was 23.7 minutes (SD 18.9), 3.4 minutes longer than the GPS-sensed visit. Travel diaries provide reasonably accurate information on the locations and brand names of fast food restaurants and supermarkets participants report visiting.

  5. Investigations of the Nature and Behavior of Plasma Density Disturbances That May Impact GPS and Other Transionospheric Systems

    Science.gov (United States)

    2006-05-31

    maintained and enhanced in association with the High-frequency Active Auroral Research Program ( HAARP ). In addition to a classic riometer and a GPS Total...Electron Content (TEC) sensor previously operating at the HAARP site, NWRA also operates a set of Transit receivers for measurements of TEC and...scintillation at VHF and UHF, supplementing the receiver at HAARP with a receiver north of the site and an additional receiver installed south of the HAARP site.

  6. GPS IIF yaw attitude control during eclipse season

    Science.gov (United States)

    Dilssner, F.; Springer, T.; Enderle, W.

    2011-12-01

    Moon and outline the consequences of a mis-modeled yaw angle in the presence of a horizontal satellite antenna phase center eccentricity. Since the Block IIF navigation antenna is about 39.4 cm off from the rotation axis ("yaw-axis"), neglecting errors in yaw may have serious impacts on the satellite antenna phase center modeling. Depending on the azimuth and the nadir angle under which a tracking station on ground is seen from the spacecraft, a error in yaw of ±180° may cause a range error in the satellite antenna phase center correction of up to ±19.0 cm. GPS data collected by low Earth orbiting (LEO) receivers such as those on-board Jason-1/2 may even be biased by up to ±23.0 cm.

  7. Multicorrelator techniques for robust mitigation of threats to GPS signal quality

    Science.gov (United States)

    Phelts, Robert Eric

    2001-10-01

    Many applications that utilize the Global Positioning System (GPS) demand highly accurate positioning information. Safety-critical applications such as aircraft navigation require position solutions with not only high accuracy but also with high integrity. Two significant threats to GPS signal quality exist which can make meeting both of these requirements a difficult task. Satellite signal anomalies, or "evil waveforms," can result from soft failures of the signal generating hardware onboard the GPS satellite. These subtle anomalies cause distortions of the signal, which if undetected may pose an integrity risk to an aircraft relying on GPS. Signal Quality Monitoring (SQM) is required to reliably detect these anomalies and thereby protect airborne users from this integrity threat. Multipath, or undesired reflected signals from the ground or other obstacles, also distorts the desired GPS signal. In addition to making evil waveforms more difficult to detect, multipath---an ever-present error source---also degrades nominal performance. Multipath mitigation techniques attempt to reduce or eliminate this threat. This thesis introduces novel signal processing techniques for addressing these twin concerns. First, a comprehensive method for designing a robust signal quality monitor to detect evil waveforms in the presence of multipath is described. This method is used to specify a practical multiple-correlator configuration for the SQM receiver that satisfies the requirements for Category I precision approaches for landing aircraft. Second, a new multipath mitigation approach is introduced that leverages "multipath invariant" properties of the GPS signals. A real-time Tracking Error Compensator (TrEC) algorithm is experimentally shown to provide significant accuracy improvements over existing techniques for low-end (or "narrowband") receivers. Additionally, it is shown that TrEC may have at least comparable multipath mitigation performance to that of a high-end (or

  8. Viscoelastic behavior of dense microemulsions

    Science.gov (United States)

    Cametti, C.; Codastefano, P.; D'arrigo, G.; Tartaglia, P.; Rouch, J.; Chen, S. H.

    1990-09-01

    We have performed extensive measurements of shear viscosity, ultrasonic absorption, and sound velocity in a ternary system consisting of water-decane-sodium di(2-ethylhexyl)sulfo- succinate(AOT), in the one-phase region where it forms a water-in-oil microemulsion. We observe a rapid increase of the static shear viscosity in the dense microemulsion region. Correspondingly the sound absorption shows unambiguous evidence of a viscoelastic behavior. The absorption data for various volume fractions and temperatures can be reduced to a universal curve by scaling both the absorption and the frequency by the measured static shear viscosity. The sound absorption can be interpreted as coming from the high-frequency tail of the viscoelastic relaxation, describable by a Cole-Cole relaxation formula with unusually small elastic moduli.

  9. Neutrino Oscillations in Dense Matter

    Science.gov (United States)

    Lobanov, A. E.

    2017-03-01

    A modification of the electroweak theory, where the fermions with the same electroweak quantum numbers are combined in multiplets and are treated as different quantum states of a single particle, is proposed. In this model, mixing and oscillations of particles arise as a direct consequence of the general principles of quantum field theory. The developed approach enables one to calculate the probabilities of the processes taking place in the detector at long distances from the particle source. Calculations of higher-order processes, including computation of the contributions due to radiative corrections, can be performed in the framework of the perturbation theory using the regular diagram technique. As a result, the analog to the Dirac-Schwinger equation of quantum electrodynamics describing neutrino oscillations and its spin rotation in dense matter can be obtained.

  10. DPIS for warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.

    2010-05-23

    Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.

  11. GPS: El sistema de posicionamiento global

    National Research Council Canada - National Science Library

    Juan Gilberto Serpas; Manuel Ramírez N; Franklin de Obaldía

    2016-01-01

    El Sistema de Posicionamiento Global (GPS, por sus siglas en inglés) se ha convertido, en la actualidad, en una herramienta invaluable para el posicionamiento de puntos sobre la superficie terrestre...

  12. Using GPS for studying pastoral mobility

    DEFF Research Database (Denmark)

    Adriansen, Hanne Kirstine

    2017-01-01

    In 1997 I embarked on a PhD to study mobility amongst nomadic pastoralists in Senegal. Previous studies had largely been conducted by anthropologists who through ethnographic fieldwork followed the nomadic pastoralists for long periods of time and did their own sketches of the movements. As a human...... as I know, the first one to use GPS for studying pastoral mobility. A total of 10 pastoralists were trained in using a GPS and asked to map their movements. This information was combined with satellite imagery on one hand and qualitative interviews on the other. This case study provides an account...... of the practical aspects of using GPS, taking the reader to the heart of some methodological issues that arose in the course of the research. The case sheds light on the particular challenges in using GPS for eliciting information about pastoral mobility. Thinking about such challenges leads to more general...

  13. Global Positioning System (GPS) Energetic Particle Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Energetic particle data from the CXD and BDD instrument on the GPS constellation are available to the space weather research community. The release of these data...

  14. Advantages and Limitations of Cluster Analysis in Interpreting Regional GPS Velocity Fields in California and Elsewhere

    Science.gov (United States)

    Thatcher, W. R.; Savage, J. C.; Simpson, R.

    2012-12-01

    Regional Global Positioning System (GPS) velocity observations are providing increasingly precise mappings of actively deforming continental lithosphere. Cluster analysis, a venerable data analysis method, offers a simple, visual exploratory tool for the initial organization and investigation of GPS velocities (Simpson et al., 2012 GRL). Here we describe the application of cluster analysis to GPS velocities from three regions, the Mojave Desert and the San Francisco Bay regions in California, and the Aegean in the eastern Mediterranean. Our goal is to illustrate the strengths and shortcomings of the method in searching for spatially coherent patterns of deformation, including evidence for and against block-like behavior in these 3 regions. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, is subjective and usually guided by the distribution of known faults. Cluster analysis applied to GPS velocities provides a completely objective method for identifying groups of observations ranging in size from 10s to 100s of km in characteristic dimension based solely on the similarities of their velocity vectors. In the three regions we have studied, statistically significant clusters are almost invariably spatially coherent, fault bounded, and coincide with elastic, geologically identified structural blocks. Often, higher order clusters that are not statistically significant are also spatially coherent, suggesting the existence of additional blocks, or defining regions of other tectonic importance (e.g. zones of localized elastic strain accumulation near locked faults). These results can be used to both formulate tentative tectonic models with testable consequences and to suggest focused new measurements in under-sampled regions. Cluster analysis applied to GPS velocities has several potential limitations, aside from the

  15. GPS and Electronic Fence Data Fusion for Positioning within Railway Worksite Scenarios

    DEFF Research Database (Denmark)

    Figueiras, Joao; Grønbæk, Lars Jesper; Ceccarelli, Andrea

    2012-01-01

    for personalized warning systems for railway workers, where the safety aspects require timely and precise identification whether a worker is located in a dangerous (red) or safe (green) zone within the worksite. The paper proposes and analyzes a data fusion approach based on low-cost GPS receivers integrated...... on mobile devices, combined with electronic fences strategically placed in the adjacent boundaries between safe and unsafe geographic zones. An approach based on the combination of a Kalman Filter for GPS-based trajectory estimation and a Hidden Markov Model for inclusion of mobility constraints and fusion...

  16. Earth Rotation Parameter Estimation by GPS Observations

    Institute of Scientific and Technical Information of China (English)

    YAO Yibin

    2006-01-01

    The methods of Earth rotation parameter (ERP) estimation based on IGS SINEX file of GPS solution are discussed in detail. There are two different ways to estimate ERP: one is the parameter transformation method, and the other is direct adjustment method with restrictive conditions. By comparing the estimated results with independent copyright program to IERS results, the residual systemic error can be found in estimated ERP with GPS observations.

  17. En Billig GPS Data Analyse Platform

    DEFF Research Database (Denmark)

    Andersen, Ove; Christiansen, Nick; Larsen, Niels T.

    2011-01-01

    Denne artikel præsenterer en komplet software platform til analyse af GPS data. Platformen er bygget udelukkende vha. open-source komponenter. De enkelte komponenter i platformen beskrives i detaljer. Fordele og ulemper ved at bruge open-source diskuteres herunder hvilke IT politiske tiltage, der...... organisationer med et digitalt vejkort og GPS data begynde at lave trafikanalyser på disse data. Det er et krav, at der er passende IT kompetencer tilstede i organisationen....

  18. En Billig GPS Data Analyse Platform

    DEFF Research Database (Denmark)

    Andersen, Ove; Christiansen, Nick; Larsen, Niels T.;

    2011-01-01

    Denne artikel præsenterer en komplet software platform til analyse af GPS data. Platformen er bygget udelukkende vha. open-source komponenter. De enkelte komponenter i platformen beskrives i detaljer. Fordele og ulemper ved at bruge open-source diskuteres herunder hvilke IT politiske tiltage, der...... organisationer med et digitalt vejkort og GPS data begynde at lave trafikanalyser på disse data. Det er et krav, at der er passende IT kompetencer tilstede i organisationen....

  19. Offset detection in GPS coordinate time series

    Science.gov (United States)

    Gazeaux, J.; King, M. A.; Williams, S. D.

    2013-12-01

    Global Positioning System (GPS) time series are commonly affected by offsets of unknown magnitude and the large volume of data globally warrants investigation of automated detection approaches. The Detection of Offsets in GPS Experiment (DOGEx) showed that accuracy of Global Positioning System (GPS) time series can be significantly improved by applying statistical offset detection methods (see Gazeaux et al. (2013)). However, the best of these approaches did not perform as well as manual detection by expert analysts. Many of the features of GPS coordinates time series have not yet been fully taken into account in existing methods. Here, we apply Bayesian theory in order to make use of prior knowledge of the site noise characteristics and metadata in an attempt to make the offset detection more accurate. In the past decades, Bayesian theory has shown relevant results for a widespread range of applications, but has not yet been applied to GPS coordinates time series. Such methods incorporate different inputs such as a dynamic model (linear trend, periodic signal..) and a-priori information in a process that provides the best estimate of parameters (velocity, phase and amplitude of periodic signals...) based on all the available information. We test the new method on the DOGEx simulated dataset and compare it to previous solutions, and to Monte-Carlo method to test the accuracy of the procedure. We make a preliminary extension of the DOGEx dataset to introduce metadata information, allowing us to test the value of this data type in detecting offsets. The flexibility, robustness and limitations of the new approach are discussed. Gazeaux, J. Williams, S., King, M., Bos, M., Dach, R., Deo, M.,Moore, A.W., Ostini, L., Petrie, E., Roggero, M., Teferle, F.N., Olivares, G.,Webb, F.H. 2013. Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. Journal of Geophysical Research: Solid Earth 118. 5. pp:2169-9356. Keywords : GPS

  20. GPS (Global Positioning System) Range Applications Study.

    Science.gov (United States)

    1982-12-31

    Portability + + All; Improved Due to Fewer Resources * Availabilty - + All; (-) Small Satellite Window, (+) Better MTMF * Data Timeliness 0 0 GPS APPLICABILITY...calculations to maxi- mum and minimum values based on the spread evidenced in his- torical range usage . 7-23 THE ANALYTIC SCIENCES CORPORATION accuracy... Availabilty 0 + Less Reliance on Older Equipment a Data Timeliness + 0 Labor Intensive Optics for Velocity GPS APPLICABILITY HIGH HIGH Accuracy and Coverage in