WorldWideScience

Sample records for dense gas clouds

  1. Dense and diffuse gas in dynamically active clouds

    CERN Document Server

    Garrod, R T; Rawlings, J M C

    2006-01-01

    We investigate the chemical and observational implications of repetitive transient dense core formation in molecular clouds. We allow a transient density fluctuation to form and disperse over a period of 1 Myr, tracing its chemical evolution. We then allow the same gas immediately to undergo further such formation and dispersion cycles. The chemistry of the dense gas in subsequent cycles is similar to that of the first, and a limit cycle is reached quickly (2 - 3 cycles). Enhancement of hydrocarbon abundances during a specific period of evolution is the strongest indicator of previous dynamical history. The molecular content of the diffuse background gas in the molecular cloud is expected to be strongly enhanced by the core formation and dispersion process. Such enhancement may remain for as long as 0.5 Myr. The frequency of repetitive core formation should strongly determine the level of background molecular enhancement. We also convolve the emission from a synthesised dark cloud, comprised of ensembles of t...

  2. Dense gas in high-latitude molecular clouds

    Science.gov (United States)

    Reach, William T.; Pound, Marc W.; Wilner, David J.; Lee, Youngung

    1995-01-01

    The nearby molecular clouds MBM 7, 12, 30, 32, 40, 41, and 55 were surveyed for tracers of dense gas, including the (1-0), (2-1), and (3-2) rotational lines of CS and the (1-0) lines of HCO(+) and HCN. MBM 7 and MBM 12 contain dense cores, while the other clouds contain little or no traces of dense gas. Comparison of the emission from dense gas tracers to that of (13)CO reveals that the former are more compact in angular size as well as line width. An extensive CS(2-1) survey of part of MBM 12 reveals that the emission is characterized by clumps on approximately 3 min scales as well as extended emission. Observations of the CS(1-0) and (3-2) lines using telescopes with matched beam sizes reveal that the volume density must be at least approximately 10(exp 4.5)/cc within the (3-2) emitting regions, which are approximately 0.03 pc in radius. Electron excitation of the CS rotational levels is ruled out (in the cores) by comparing the (3-2)/(1-0) line ratios with models including H2 and electron collisions. The volume density in the cores is substantially larger than in the portions of the cloud traced by CO emission. The density increases into the cores as r(exp -2), suggesting dynamical collapse. The masses of the cores are close to the virial mass, suggesting they are dynamically bound. The cores in MBM 7 and MBM 12 are thus likely to form stars; they are the nearest sites of star formation.

  3. Dense gas in high-latitude molecular clouds

    Energy Technology Data Exchange (ETDEWEB)

    Reach, W.R.; Pound, M.W.; Wilner, D.J. (Univ. of California, Berkeley (United States)); Lee, Y.

    1992-01-01

    The authors have surveyed high-latitude molecular clouds (MBM 12, 7, 55, 40) in spectral lines that are believed to be dense-gas' tracers due to the high H[sub 2] volume density required for collisional excitation. An extensive CS (2-1) line map of MBM 12 revealed emission that is not confined to clumps. Less than 20% of the integrated line emission from the cloud originates in clearly identified clumps with size between 0.2 pc and 0.02 pc in the integrated line map. The bulk of the emission originates from a relatively smooth horseshoe' structure about 0.1 pc wide and 1 pc long. The CS (2-1) map correlates with the published Bell Labs [sup 13] CO map, with significant [sup 13] CO emission even where the CS emission is undetectable. Within the central core, the C[sup 18]O(1-0) and CS(2-1) lines are positively correlated with significant scatter. There is some indication of higher CS/[sup 13]CO in the cores than the horseshoe'. The observed correlations suggest that both the diffuse CS and [sup 13]CO originate from either numerous, unresolved clumps, or the diffuse parts of the cloud. High-spatial-resolution observations of HCO[sup +] from MBM 12 obtained with the BIMA Hat Creek array demonstrated that the main core emission is primarily on spatial scales greater than 0.004 pc. It appears that the authors have resolved most of the spatial structure of the dense-gas' tracers and have found that the emission is primarily diffuse. To understand the excitation mechanism of the CS rotational levels, a multitransitional study of the 1-0, 2-1, and 3-2 lines is being performed. The CS excitation may be governed by electron collisions in regions with H[sub 2] column densities an order of magnitude lower than the critical density' of [approx gt] 2 [times] 10[sup 4] cm[sup -3]. If electron collisions are populating the CS levels, then the CS and [sup 13]CO lines can both be produced in the outer parts of the cloud, explaining their positive correlation

  4. The evolution of large scale dense gas clouds at Jack Rabbit

    Science.gov (United States)

    Huq, Pablo; Spicer, Tom

    2014-11-01

    Typically ammonia and chlorine are stored or transported as pressurized liquefied gas. There have been many accidents involving storage tanks and also accidents during transport. There is a need for accurate evaluation of the hazards associated with accidental releases of ammonia and chlorine which typically result in denser than air clouds which are toxic. The dense gas cloud slumps under the action of gravity into a thin layer with stable density gradients which suppress ambient atmospheric turbulence, and so complicating the physics of mixing. We present similarity analyses of one and two ton experimental releases of ammonia and chlorine at Jack Rabbit. Similarity analysis discriminates inertia-buoyancy and viscous-buoyancy regimes. Sequences of visualizations are used to determine propagation speeds of dense clouds. There is good agreement between observed speeds and the predictions of similarity analysis of the propagation of radial, dense gas clouds. Finally, comparison of one ton with two ton releases for both ammonia and chlorine lead to insights on scaling which are likely to be useful in the design of even larger scale experiments on dense gas clouds arising from similar configurations.

  5. The Galactic Center Molecular Cloud Survey. II. A Lack of Dense Gas & Cloud Evolution along Galactic Center Orbits

    CERN Document Server

    Kauffmann, Jens; Zhang, Qizhou; Menten, Karl M; Goldsmith, Paul F; Lu, Xing; Guzmán, Andrés E; Schmiedeke, Anika

    2016-01-01

    We present the first systematic study of the density structure of clouds found in a complete sample covering all major molecular clouds in the Central Molecular Zone (CMZ; inner $\\sim{}200~\\rm{}pc$) of the Milky Way. This is made possible by using data from the Galactic Center Molecular Cloud Survey (GCMS), the first study resolving all major molecular clouds in the CMZ at interferometer angular resolution. We find that many CMZ molecular clouds have unusually shallow density gradients compared to regions elsewhere in the Milky Way. This is possibly a consequence of weak gravitational binding of the clouds. The resulting relative absence of dense gas on spatial scales $\\sim{}0.1~\\rm{}pc$ is probably one of the reasons why star formation (SF) in dense gas of the CMZ is suppressed by a factor $\\sim{}10$, compared to solar neighborhood clouds. Another factor suppressing star formation are the high SF density thresholds that likely result from the observed gas kinematics. Further, it is possible but not certain t...

  6. The JCMT dense gas survey in dense molecular clouds: an HCO+/HCN comparison

    Science.gov (United States)

    Walker-Smith, Samantha; Richer, John; Buckle, Jane; Salji, Carl; Hatchell, Jennifer; Drabek, Emily

    2013-07-01

    We present the results of a large-scale survey of the very dense molecular gas in Perseus, Orion A and B, Serpens and Ophiuchus using HCO+ and HCN (J = 4 - 3) transitions. We have used this emission to trace the structure and kinematics of gas at the extremely high densities found in pre- and protostellar cores; as well as tracing outflows powered by these early star-forming cores. We present a comparison of the HCO+/HCN data, highlighting regions where there is a marked discrepancy in the spectra of the two emission lines. This is particularly noticeable in some of the more powerful outflows driven by Class 0 sources, where the HCN is greatly enhanced in the linewings in comparison with HCO+. We also use the HCO+ to positively identify protostellar outflows and their driving sources. We present a statistical analysis of the outflow properties that we derive from this tracer. We show that our results are comparable to those obtained from similar outflow analyses using 12CO.

  7. A Massive Dense Gas Cloud close to the Nucleus of the Seyfert galaxy NGC 1068

    CERN Document Server

    Furuya, Ray S

    2016-01-01

    Using the ALMA archival data of both CO(6--5) line and 689 GHz continuum emission towards the archetypical Seyfert galaxy, NGC 1068, we identified a distinct continuum peak separated by 14 pc from the nuclear radio component S1 in projection. The continuum flux gives a gas mass of ~2x10^5 Msun and bolometric luminosity of ~10^8 Lsun, leading to a star formation rate of ~0.1 Msun/yr. Subsequent analysis on the line data suggest that the gas has a size of ~10 pc, yielding to mean H2 number density of ~10^5 cm^{-3}. We therefore refer to the gas as "massive dense gas cloud": the gas density is high enough to form a "proto starcluster" whose stellar mass of ~10^4 Msun. We found that the gas stands a unique position between galactic and extraglactic clouds in the diagrams of start formation rate (SFR) vs. gas mass proposed by Lada et al. and surface density of gas vs. SFR density by Krumholz and McKee. All the gaseous and star-formation properties may be understood in terms of the turbulence-regulated star formati...

  8. Estimation of vulnerable zones due to accidental release of toxic materials resulting in dense gas clouds.

    Science.gov (United States)

    Singh, M P; Mohan, M; Panwar, T S; Chopra, H V

    1991-09-01

    Heavy gas dispersion models have been developed at IIT (hereinafter referred as IIT heavy gas models I and II) with a view to estimate vulnerable zones due to accidental (both instantaneous and continuous, respectively) release of dense toxic material in the atmosphere. The results obtained from IIT heavy gas models have been compared with those obtained from the DEGADIS model [Dense Gas Dispersion Model, developed by Havens and Spicer (1985) for the U.S. Coast Guard] as well as with the observed data collected during the Burro Series, Maplin Sands, and Thorney Island field trials. Both of these models include relevant features of dense gas dispersion, viz., gravity slumping, air entrainment, cloud heating, and transition to the passive phase, etc. The DEGADIS model has been considered for comparing the performance of IIT heavy gas models in this study because it incorporates most of the physical processes of dense gas dispersion in an elaborate manner, and has also been satisfactorily tested against field observations. The predictions from IIT heavy gas models indicate a fairly similar trend to the observed values from Thorney Island, Burro Series, and Maplin experiments with a tendency toward overprediction. There is a good agreement between the prediction of IIT Heavy Gas models I and II with those from DEGADIS, except for the simulations of IIT heavy gas model-I pertaining to very large release quantities under highly stable atmospheric conditions. In summary, the performance of IIT heavy gas models have been found to be reasonably good both with respect to the limited field data available and various simulations (selected on the basis of relevant storages in the industries and prevalent meteorological conditions performed with DEGADIS). However, there is a scope of improvement in the IIT heavy gas models (viz., better formulation for entrainment, modification of coefficients, transition criteria, etc.). Further, isotons (nomograms) have been prepared by using

  9. A detailed investigation of proposed gas-phase syntheses of ammonia in dense interstellar clouds

    Science.gov (United States)

    Herbst, Eric; Defrees, D. J.; Mclean, A. D.

    1987-01-01

    The initial reactions of the Herbst and Klemperer (1973) and the Dalgarno (1974) schemes (I and II, respectively) for the gas-phase synthesis of ammonia in dense interstellar clouds were investigated. The rate of the slightly endothermic reaction between N(+) and H2 to yield NH(+) and H (scheme I) under interstellar conditions was reinvestigated under thermal and nonthermal conditions based on laboratory data. It was found that the relative importance of this reaction in synthesizing ammonia is determined by how the laboratory data at low temperature are interpreted. On the other hand, the exothermic reaction between N and H3(+) to form NH2(+) + H (scheme II) was calculated to possess significant activation energy and, therefore, to have a negligible rate coefficient under interstellar conditions. Consequently, this reaction cannot take place appreciably in interstellar clouds.

  10. The dense gas mass fraction in the W51 cloud and its protoclusters

    CERN Document Server

    Ginsburg, Adam; Battersby, Cara; Youngblood, Allison; Darling, Jeremy; Rosolowsky, Erik; Arce, Hector; Santos, Mayra E Lebrón

    2014-01-01

    We present new 2 cm and 6 cm maps of H2CO, radio recombination lines, and the radio continuum in the W51 star forming complex acquired with Arecibo and the Green Bank Telescope at ~50" resolution. We use H2CO absorption to determine the relative line-of-sight positions of molecular and ionized gas. We measure gas densities using the H2CO densitometer, including continuous measurements of the dense gas mass fraction (DGMF) over the range 10^4 cm^-3 ~70% above n>10^4 cm^-3, while it is low, f 10^4 cm-3 is weakly correlated with low and moderate mass star formation, but does not strongly correlate with high-mass star formation. (3) The nondetection of H2CO emission implies that the emission detected in other galaxies, e.g. Arp 220, comes from high-density gas that is not directly affiliated with already-formed massive stars. Either the non-star-forming ISM of these galaxies is very dense, implying the star formation density threshold is higher, or H ii regions have their emission suppressed.

  11. Photostability of gas- and solid-phase biomolecules within dense molecular clouds due to soft X-rays

    CERN Document Server

    Pilling, S; Nascimento, E M do; Marinho, R R T; Boechat-Roberty, H M; de Coutinho, L H; de Souza, G G B; de Castilho, R B; Cavasso-Filho, R L; Lago, A F; de Brito, A N

    2010-01-01

    An experimental photochemistry study involving gas- and solid-phase amino acids (glycine, DL-valine, DL-proline) and nucleobases (adenine and uracil) under soft X-rays was performed. The aim was to test the molecular stabilities of essential biomolecules against ionizing photon fields inside dense molecular clouds and protostellar disks analogs. In these environments, the main energy sources are the cosmic rays and soft X-rays. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing 150 eV photons. In-situ sample analysis was performed by Time-of-flight mass spectrometer (TOF-MS) and Fourier transform infrared (FTIR) spectrometer, for gas- and solid- phase analysis, respectively. The half-life of solid phase amino acids, assumed to be present at grain mantles, is at least 3E5 years and 3E8 years inside dense molecular clouds and protoplanetary disks, respectively. We estimate that for gas-phase compounds these values increase one order of magnitude since the dissociation cr...

  12. Dense Gas and Star Formation Characteristics of Cloud Cores Associated with Water Masers

    CERN Document Server

    Plume, R; Evans, N J; Martín-Pintado, J; Gómez-González, J; Plume, Rene; II, Neal J. Evans

    1996-01-01

    We have observed 150 regions of massive star formation, selected originally by the presence of a water maser, in the J = 5-4, 3-2, and 2-1 transitions of CS, and 49 regions in the same transitions of C$^{34}$S. Over 90% of the 150 regions were detected in the J = 2-1 and 3-2 transitions of CS and 75% were detected in the J=5-4 transition. We have combined the data with the J = 7-6 data from our original survey (Plume et al. 1992) to determine the density by analyzing the excitation of the rotational levels. Using Large Velocity Gradient (LVG) models, we have determined densities and column densities for 71 of these regions. The gas densities are very high (the mean log of the density is 5.9), but much less than the critical density of the J=7-6 line. Small maps of 25 of the sources in the J = 5-4 line yield a mean diameter of 1.0 pc. The mean virial mass is 3800 solar masses. The mean ratio of bolometric luminosity to virial mass (L/M) is 190, about 50 times higher than estimates using CO emission, suggesting...

  13. Kinetic chemistry of dense interstellar clouds

    Energy Technology Data Exchange (ETDEWEB)

    Graedel, T.E.; Langer, W.D.; Frerking, M.A.

    1982-03-01

    A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded.

  14. The kinetic chemistry of dense interstellar clouds

    Science.gov (United States)

    Graedel, T. E.; Langer, W. D.; Frerking, M. A.

    1982-01-01

    A model of the time-dependent chemistry of dense interstellar clouds is formulated to study the dominant chemical processes in carbon and oxygen isotope fractionation, the formation of nitrogen-containing molecules, and the evolution of product molecules as a function of cloud density and temperature. The abundances of the dominant isotopes of the carbon- and oxygen-bearing molecules are calculated. The chemical abundances are found to be quite sensitive to electron concentration since the electron concentration determines the ratio of H3(+) to He(+), and the electron density is strongly influenced by the metals abundance. For typical metal abundances and for H2 cloud density not less than 10,000 molecules/cu cm, nearly all carbon exists as CO at late cloud ages. At high cloud density, many aspects of the chemistry are strongly time dependent. Finally, model calculations agree well with abundances deduced from observations of molecular line emission in cold dense clouds.

  15. Elemental nitrogen partitioning in dense interstellar clouds

    CERN Document Server

    Daranlot, Julien; Bergeat, Astrid; Costes, Michel; Loison, Jean-Christophe; Wakelam, Valentine; Hickson, Kevin M

    2012-01-01

    Many chemical models of dense interstellar clouds predict that the majority of gas-phase elemental nitrogen should be present as N2, with an abundance approximately five orders of magnitude less than that of hydrogen. As a homonuclear diatomic molecule, N2 is difficult to detect spectroscopically through infrared or millimetre-wavelength transitions so its abundance is often inferred indirectly through its reaction product N2H+. Two main formation mechanisms each involving two radical-radical reactions are the source of N2 in such environments. Here we report measurements of the low temperature rate constants for one of these processes, the N + CN reaction down to 56 K. The effect of the measured rate constants for this reaction and those recently determined for two other reactions implicated in N2 formation are tested using a gas-grain model employing a critically evaluated chemical network. We show that the amount of interstellar nitrogen present as N2 depends on the competition between its gas-phase format...

  16. Carbon chemistry in dense molecular clouds: Theory and observational constraints

    Science.gov (United States)

    Blake, Geoffrey A.

    1990-01-01

    For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. Researchers present a brief review of the basic assumptions and results of large scale modeling of the carbon chemistry in dense molecular clouds. Particular attention is to the influence of the gas phase C/O ratio in molecular clouds, and the likely role grains play in maintaining this ratio as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation. Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate inventory of the gas phase carbon budget in several different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, larger molecules are especially difficult to study both experimentally and theoretically in such dense, cold regions, and some new methods are therefore outlined which may ultimately push the detectability of small carbon chains and rings to much heavier species.

  17. Dense Cloud Formation and Star Formation in a Barred Galaxy

    CERN Document Server

    Nimori, M; Sorai, K; Watanabe, Y; Hirota, A; Namekata, D

    2012-01-01

    We investigate the properties of massive, dense clouds formed in a barred galaxy and their possible relation to star formation, performing a two-dimensional hydrodynamical simulation with the gravitational potential obtained from the 2Mass data from the barred spiral galaxy, M83. Since the environment for cloud formation and evolution in the bar region is expected to be different from that in the spiral arm region, barred galaxies are a good target to study the environmental effects on cloud formation and the subsequent star formation. Our simulation uses for an initial 80 Myr an isothermal flow of non-self gravitating gas in the barred potential, then including radiative cooling, heating and self-gravitation of the gas for the next 40 Myr, during which dense clumps are formed. We identify many cold, dense gas clumps for which the mass is more than $10^4M_{\\odot}$ (a value corresponding to the molecular clouds) and study the physical properties of these clumps. The relation of the velocity dispersion of the i...

  18. An unbiased survey for dense cores in the Lynds 1630 molecular cloud

    Science.gov (United States)

    Lada, Elizabeth A.; Bally, John; Stark, Antony A.

    1991-01-01

    An unbiased, systematic survey for dense cores within the L1630 (Orion B) molecular cloud has been completed. This survey provides the first complete census of dense (n greater tha 10,000/cu cm) cores within a molecular cloud. To identify the dense gas, 3.6 square degrees of the L1630 cloud were surveyed in the J = 2-1 transition of CS. CS emission was detected over 10 percent of the area surveyed, and this emission is not uniformly distributed throughout the cloud but is confined to 42 dense cores. The size, shape, velocity dispersion, and mass of these cores are examined. Comparison of the mass contained within dense cores with the total gas mass within the surveyed region, estimated from CO emission, reveals that the dense cores constitute only a small fraction (not greater than 19 percent) of the total cloud mass.

  19. Dense Molecular Gas in the First Galactic Quadrant: A New Distance Estimation Technique and the Molecular Cloud Clump Mass Function, Physical Properties, and Galactic Distribution from the Bolocam Galactic Plane Survey

    Science.gov (United States)

    Glenn, Jason; Ellsworth-Bowers, Timothy; Bolocam Galactic Plane Survey

    2015-01-01

    Large submillimeter and millimeter Galactic dust continuum surveys of the Milky Way, such as the Bolocam Galactic Plane Survey (BGPS), Hi-GAL, ATLAS-GAL, and JCMT-JPS cumulatively have discovered 105 cores, clumps, and other structures in Galactic molecular clouds. Robust distance measurements to these structures are needed to enable the large range of quantitative astrophysics that these surveys promise, such as physical properties of clumps, the clump mass function, and the three-dimensional distribution of dense gas and star formation in the Milky Way. We have developed a technique for deriving distances to continuum-identified molecular cloud clumps employing kinematic distances and a suite of distance estimators for breaking kinematic distance ambiguities. Application to the BGPS has yielded 3,700 distance probability density functions (DPDFs) and 1,800 well-constrained distances (typical σdist ≈ 0.5 kpc). These have been used to determine sizes and masses of molecular cloud clumps, derive the clump mass function, and map the three-dimensional distribution of dense gas in the first Galactic quadrant. Among the interesting results are a mass function intermediate between molecular clouds and the stellar initial mass function and inter-arm star formation. Next, we plan to apply the technique to Hi-GAL, which covers the entire Galactic plane and whose submilllimeter maps provide for temperature and bolometric luminosity measurements of cloud structures.

  20. Consequences of the Solar System passage through dense interstellar clouds

    Directory of Open Access Journals (Sweden)

    A. G. Yeghikyan

    Full Text Available Several consequences of the passage of the solar system through dense interstellar molecular clouds are discussed. These clouds, dense (more than 100 cm-3, cold (10–50 K and extended (larger than 1 pc, are characterized by a gas-to-dust mass ratio of about 100, by a specific power grain size spectrum (grain radii usually cover the range 0.001–3 micron and by an average dust-to-gas number density ratio of about 10-12. Frequently these clouds contain small-scale (10–100 AU condensations with gas concentrations ranging up to 10 5 cm-3. At their casual passage over the solar system they exert pressures very much enhanced with respect to today’s standards. Under these conditions it will occur that the Earth is exposed directly to the interstellar flow. It is shown first that even close to the Sun, at 1 AU, the cloud’s matter is only partly ionized and should mainly interact with the solar wind by charge exchange processes. Dust particles of the cloud serve as a source of neutrals, generated by the solar UV irradiation of dust grains, causing the evaporation of icy materials. The release of neutral atoms from dust grains is then followed by strong influences on the solar wind plasma flow. The behavior of the neutral gas inflow parameters is investigated by a 2-D hydrodynamic approach to model the interaction processes. Because of a reduction of the heliospheric dimension down to 1 AU, direct influence of the cloud’s matter to the terrestrial environment and atmosphere could be envisaged.

    Key words. Interplanetary physics (heliopause and solar wind termination; interplanetary dust; interstellar gas

  1. The ionization fraction in dense clouds

    CERN Document Server

    De Boisanger, C B; Van Dishoeck, E F

    1995-01-01

    We present submillimeter observations of various molecular ions toward two dense clouds, NGC 2264 IRS1 and W 3 IRS5, in order to investigate their ionization fraction. Analysis of the line intensity ratios by the way of statistical equilibrium calculations allows determination of the physical parameters: n(H2)~(1-2)e6 cm-3 and T(kin)~50-100 K. Column densities and abundances are also derived. Together, the abundances of the observed ions provide a lower limit to the ionization fraction, which is (2-3)e-9 in both clouds. In order to better constrain the electron abundance, a simple chemical model is built which calculates the steady state abundances of the major positive ions, using the observed abundances wherever available. With reasonable assumptions, good agreement within a factor of two with the observations can be achieved. The calculated electron fraction is x(e)= (1.0-3.3)e-8 in the case of NGC 2264 and x(e)=(0.5-1.1)e-8 for W 3 IRS5. In the first case, the high abundance of N2H+ requires a rather high...

  2. The Dynamics of Dense Cores in the Perseus Molecular Cloud II: The Relationship Between Dense Cores and the Cloud

    CERN Document Server

    Kirk, Helen; Johnstone, Doug; Goodman, Alyssa

    2010-01-01

    We utilize the extensive datasets available for the Perseus molecular cloud to analyze the relationship between the kinematics of small-scale dense cores and the larger structures in which they are embedded. The kinematic measures presented here can be used in conjunction with those discussed in our previous work as strong observational constraints that numerical simulations (or analytic models) of star formation should match. We find that dense cores have small motions with respect to the 13CO gas, about one third of the 13CO velocity dispersion along the same line of sight. Within each extinction region, the core-to-core velocity dispersion is about half of the total (13CO) velocity dispersion seen in the region. Large-scale velocity gradients account for roughly half of the total velocity dispersion in each region, similar to what is predicted from large-scale turbulent modes following a power spectrum of P(k) ~ k^{-4}.

  3. A FIRST LOOK AT THE AURIGA-CALIFORNIA GIANT MOLECULAR CLOUD WITH HERSCHEL AND THE CSO: CENSUS OF THE YOUNG STELLAR OBJECTS AND THE DENSE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Paul M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Fallscheer, Cassandra [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Ginsburg, Adam [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States); Terebey, Susan [Department of Physics and Astronomy PS315, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Andre, Philippe; Koenyves, Vera [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Di Francesco, James; Matthews, Brenda C. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Peterson, Dawn E., E-mail: pmh@astro.as.utexas.edu, E-mail: Cassandra.Fallscheer@nrc-cnrc.gc.ca, E-mail: adam.ginsburg@colorado.edu, E-mail: sterebe@calstatela.edu, E-mail: pandre@cea.fr, E-mail: vera.konyves@cea.fr, E-mail: tbourke@cfa.harvard.edu, E-mail: James.DiFrancesco@nrc-cnrc.gc.ca, E-mail: Brenda.Matthews@nrc-cnrc.gc.ca, E-mail: dpeterson@spacescience.org [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80303 (United States)

    2013-02-20

    We have mapped the Auriga/California molecular cloud with the Herschel PACS and SPIRE cameras and the Bolocam 1.1 mm camera on the Caltech Submillimeter Observatory with the eventual goal of quantifying the star formation and cloud structure in this giant molecular cloud (GMC) that is comparable in size and mass to the Orion GMC, but which appears to be forming far fewer stars. We have tabulated 60 compact 70/160 {mu}m sources that are likely pre-main-sequence objects and correlated those with Spitzer and WISE mid-IR sources. At 1.1 mm, we find 18 cold, compact sources and discuss their properties. The most important result from this part of our study is that we find a modest number of additional compact young objects beyond those identified at shorter wavelengths with Spitzer. We also describe the dust column density and temperature structure derived from our photometric maps. The column density peaks at a few Multiplication-Sign 10{sup 22} cm{sup -2} (N {sub H2}) and is distributed in a clear filamentary structure along which nearly all of the pre-main-sequence objects are found. We compare the young stellar object surface density to the gas column density and find a strong nonlinear correlation between them. The dust temperature in the densest parts of the filaments drops to {approx}10 K from values {approx}14-15 K in the low-density parts of the cloud. We also derive the cumulative mass fraction and probability density function of material in the cloud, which we compare with similar data on other star-forming clouds.

  4. Dense Cloud Cores revealed by ALMA CO observations in the low metallicity dwarf galaxy WLM

    Science.gov (United States)

    Rubio, M.; Elmegreen, B.; Hunter, D.; Cortes, J.; Brinks, E.; Cigan, P.

    2017-03-01

    Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations, they are molecular with H2 the dominant species and CO the best available. When the abundances of carbon and oxygen are low compared to hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies CO forms slowly and is easily destroyed, so it cannot accumulate inside dense clouds. Then we lose our ability to trace the gas in regions of star formation and we lose critical information on the temperatures, densities, and velocities of the material that collapses. I will report on high resolution observations with ALMA of CO clouds in the local group dwarf irregular galaxy WLM, which has a metallicity that is 13% of the solar value and 50% lower than the previous CO detection threshold and the properties derived of very small dense CO clouds mapped..

  5. The ISM in distant star-forming galaxies: Turbulent pressure, fragmentation and cloud scaling relations in a dense gas disk at z=2.3

    CERN Document Server

    Swinbank, Mark; Cox, Pierre; Krips, Melanie; Ivison, Rob; Smail, Ian; Thomson, Alasdair; Neri, Roberto; Richard, Johan; Ebeling, Harald

    2011-01-01

    We have used the IRAM Plateau de Bure Interferometer and the Expanded Very Large Array to obtain a high resolution map of the CO(6-5) and CO(1-0) emission in the lensed, star-forming galaxy SMMJ2135-0102 at z=2.32. The kinematics of the gas are well described by a model of a rotationally-supported disk with an inclination-corrected rotation speed, v_rot = 320+/-25km/s, a ratio of rotational- to dispersion- support of v/sigma=3.5+/-0.2 and a dynamical mass of 6.0+/-0.5x10^10Mo within a radius of 2.5kpc. The disk has a Toomre parameter, Q=0.50+/-0.15, suggesting the gas will rapidly fragment into massive clumps on scales of L_J ~ 400pc. We identify star-forming regions on these scales and show that they are 10x denser than those in quiescent environments in local galaxies, and significantly offset from the local molecular cloud scaling relations (Larson's relations). The large offset compared to local molecular cloud linewidth-size scaling relations imply that supersonic turbulence should remain dominant on sca...

  6. Building a dense surface map incrementally from semi-dense point cloud and RGB images

    Institute of Scientific and Technical Information of China (English)

    Qian-shan LI; Rong XIONG; Shoudong HUANG; Yi-ming HUANG

    2015-01-01

    Building and using maps is a fundamental issue for bionic robots in fi eld applications. A dense surface map, which offers rich visual and geometric information, is an ideal representation of the environment for indoor/outdoor localization, navigation, and recognition tasks of these robots. Since most bionic robots can use only small light-weight laser scanners and cameras to acquire semi-dense point cloud and RGB images, we propose a method to generate a consistent and dense surface map from this kind of semi-dense point cloud and RGB images. The method contains two main steps: (1) generate a dense surface for every single scan of point cloud and its corresponding image(s) and (2) incrementally fuse the dense surface of a new scan into the whole map. In step (1) edge-aware resampling is realized by segmenting the scan of a point cloud in advance and resampling each sub-cloud separately. Noise within the scan is reduced and a dense surface is generated. In step (2) the average surface is estimated probabilistically and the non-coincidence of different scans is eliminated. Experiments demonstrate that our method works well in both indoor and outdoor semi-structured environments where there are regularly shaped ob jects.

  7. Cloud photogrammetry with dense stereo for fisheye cameras

    Science.gov (United States)

    Beekmans, Christoph; Schneider, Johannes; Läbe, Thomas; Lennefer, Martin; Stachniss, Cyrill; Simmer, Clemens

    2016-11-01

    We present a novel approach for dense 3-D cloud reconstruction above an area of 10 × 10 km2 using two hemispheric sky imagers with fisheye lenses in a stereo setup. We examine an epipolar rectification model designed for fisheye cameras, which allows the use of efficient out-of-the-box dense matching algorithms designed for classical pinhole-type cameras to search for correspondence information at every pixel. The resulting dense point cloud allows to recover a detailed and more complete cloud morphology compared to previous approaches that employed sparse feature-based stereo or assumed geometric constraints on the cloud field. Our approach is very efficient and can be fully automated. From the obtained 3-D shapes, cloud dynamics, size, motion, type and spacing can be derived, and used for radiation closure under cloudy conditions, for example. Fisheye lenses follow a different projection function than classical pinhole-type cameras and provide a large field of view with a single image. However, the computation of dense 3-D information is more complicated and standard implementations for dense 3-D stereo reconstruction cannot be easily applied. Together with an appropriate camera calibration, which includes internal camera geometry, global position and orientation of the stereo camera pair, we use the correspondence information from the stereo matching for dense 3-D stereo reconstruction of clouds located around the cameras. We implement and evaluate the proposed approach using real world data and present two case studies. In the first case, we validate the quality and accuracy of the method by comparing the stereo reconstruction of a stratocumulus layer with reflectivity observations measured by a cloud radar and the cloud-base height estimated from a Lidar-ceilometer. The second case analyzes a rapid cumulus evolution in the presence of strong wind shear.

  8. Injection of photoelectrons into dense argon gas

    CERN Document Server

    Borghesani, A F

    2010-01-01

    The injection of photoelectrons in a gaseous or liquid sample is a widespread technique to produce a cold plasma in a weakly--ionized system in order to study the transport properties of electrons in a dense gas or liquid. We report here the experimental results of photoelectron injection into dense argon gas at the temperatureT=142.6 K as a function of the externally applied electric field and gas density. We show that the experimental data can be interpreted in terms of the so called Young-Bradbury model only if multiple scattering effects due to the dense environment are taken into account when computing the scattering properties and the energetics of the electrons.

  9. Mercury: its iron and sulfur enrichment has roots in mechanical concentration of dense particles in the inner part of rotating primordial gas-dust cloud

    Science.gov (United States)

    Kochemasov, G. G.

    2013-09-01

    After MESSENGER explorations one could crystallize an idea of nature of this innermost planet of the Solar system. It has on the whole dull low albedo surface with small variations in compositions of Mg-rich Fe-poor large tectonic units. Only widespread small hollows and their groups with darker and brighter haloes brighten this dull landscape. The relief variations are small (maximum 10 km, but normally within 3-5 km), much less than on other rocky planets. The large iron core making the planet's density high leaves a modest place for mantle. Atmosphere is practically absent notwithstanding strong degassing, and this is due to strong cleaning by the solar wind. All mentioned peculiarities could be explained by the Mercury's position in the innermost zone. This was done even before the first orbital explorations just on a basis of the wave planetology connecting planets' properties with their orbital characteristics [ 1, 2]. Surprising many planetologists the high sulfur presence in Mercury, not justified by its position in the hot inner zone was, however, practically predicted by a new model of primordial matter differentiation in a rotating gas-dust cloud [ 3, 4]. This cloud consisting of gas and mixture of solids with various densities under rotation produces concentration of heavy particles in the inner zone. This process is well known for prospectors making heavy concentrations (schlich) with use of a spiral separator. There separation of heavies is made by descending and rotating in a spiral water-sand mixture. This model for differentiation of a planetary system was presented at LPSC [3, 4]. At that time nobody could imagine volatile sulfur in the inner hot zone. In [1] is written "It is suggested that primary accretion minerals in some meteorites and probably also in the larger bodies of the Solar system are united by nearness of their densities rather than by temperatures of their condensation out of the protoplanet gas (for example, common association of

  10. Gas-particle interactions in dense gas-fluidised beds

    NARCIS (Netherlands)

    Li, J.; Kuipers, J.A.M.

    2003-01-01

    The occurrence of heterogeneous flow structures in gas-particle flows seriously affects gas¿solid contacting and transport processes in dense gas-fluidized beds. A computational study, using a discrete particle method based on Molecular Dynamics techniques, has been carried out to explore the

  11. Neutral atomic carbon in dense molecular clouds

    Science.gov (United States)

    Zmuidzinas, J.; Betz, A. L.; Boreiko, R. T.; Goldhaber, D. M.

    1988-01-01

    The 370 micron 3P2-3P1 fine-structure line of neutral carbon was detected in seven sources: OMC 1, NGC 2024, S140, W3, DR 21, M17, and W51. Simultaneous analysis of J = 2-1 data and available observations of the J = 1-0 line make it possible to deduce optical depths and excitation temperatures for these lines. These data indicate that both C I lines are likely to be optically thin, and that the ratio of C I to CO column densities in these clouds is typically about 0.1.

  12. Characterizing the Dense Gas in the Eagle and Pelican Pillars

    Science.gov (United States)

    Grand, Erin; Pound, M. W.; Mundy, L. G.

    2014-01-01

    We observed two regions with molecular pillars, the Eagle and the Pelican, in order to understand the morphology of dense gas in these structures. Molecular pillars are formed in HII regions at the boundary between ionized gas and molecular clouds through the effects of photoionization, ablation, and recombination. Two sets of models exist for the formation mechanism of the pillars: (1) the growth of radiative hydrodynamic instabilities and (2) shadowing of the ionization front due to clumps in the molecular cloud. We have CARMA observations of the two sources in HCN J=1-0, N2H+ J=1-0, HCO+ J=1-0 and CS J=2-1 with resolutions of 9x6’’ for the Eagle and 4x4’’ for the Pelican. The dense gas follows the structure outlined in the optical images and seen in CO emission, throughout the pillars, with an increase in emission in the heads of the pillars. The differencing morphologies among the molecules are consistent with typical photo-disassociation region behavior. The velocity field shows a distinct gradient from head-to-tail for the majority of the pillars. We find that the morphology and the kinematics of the pillars are consistent with the shadowing model.

  13. Cooperative scattering and radiation pressure force in dense atomic clouds

    CERN Document Server

    Bachelard, Romain; Courteille, Philippe

    2011-01-01

    We consider the collective scattering by a cloud of $N$ two-level atoms driven by an uniform radiation field. Dense atomic clouds can be described by a continuous density and the problem reduces to deriving the spectrum of the atom-atom coupling operator. For clouds much larger than the optical wavelength, the spectrum is treated as a continuum, and analytical expressions for several macroscopic quantities, such as scattered radiation intensity and radiation pressure force, are derived. The analytical results are then compared to the exact $N$-body solution and with those obtained assuming a symmetric timed Dicke state. In contrast with the symmetric timed Dicke state, our calculations takes account of the back action of the atoms on the driving field leading to phase shifts due to the finite refraction of the cloud.

  14. Ices in the Quiescent IC 5146 Dense Cloud

    CERN Document Server

    Chiar, J E; Allamandola, L J; Boogert, A C A; Ennico, K; Greene, T P; Geballe, T R; Keane, J V; Lada, C J; Mason, R E; Roellig, T L; Sandford, S A; Tielens, A G G M; Werner, M W; Whittet, D C B; Decin, L; Eriksson, K

    2011-01-01

    This paper presents spectra in the 2 to 20 micron range of quiescent cloud material located in the IC 5146 cloud complex. The spectra were obtained with NASA's Infrared Telescope Facility (IRTF) SpeX instrument and the Spitzer Space Telescope's Infrared Spectrometer. We use these spectra to investigate dust and ice absorption features in pristine regions of the cloud that are unaltered by embedded stars. We find that the H2O-ice threshold extinction is 4.03+/-0.05 mag. Once foreground extinction is taken into account, however, the threshold drops to 3.2 mag, equivalent to that found for the Taurus dark cloud, generally assumed to be the touchstone quiescent cloud against which all other dense cloud and embedded young stellar object observations are compared. Substructure in the trough of the silicate band for two sources is attributed to CH3OH and NH3 in the ices, present at the ~2% and ~5% levels, respectively, relative to H2O-ice. The correlation of the silicate feature with the E(J-K) color excess is found...

  15. Abundance of atomic carbon /C I/ in dense interstellar clouds

    Science.gov (United States)

    Phillips, T. G.; Huggins, P. J.

    1981-01-01

    The abundance of interstellar neutral atomic carbon is investigated by means of its ground state fine-structure line emission at 492 GHz using the 91.5 cm telescope of NASAs Kuiper Airborne Observatory. Atomic carbon is found to be very abundant in dense interstellar molecular clouds with column densities of about 10 to the 19th per sq cm. Because the observations have considerably greater column densities than current theories of carbon chemistry, it is suggested that the physical conditions of these clouds are not as simple as assumed in the models. Various situations are discussed which would lead to large C I abundances, including the possibility that the chemical lifetimes of the clouds are relatively short.

  16. Dense gas dispersion in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Morten

    1998-09-01

    Dense gas dispersion is characterized by buoyancy induced gravity currents and reduction of the vertical mixing. Liquefied gas releases from industrial accidents are cold because of the heat of evaporation which determines the density for a given concentration and physical properties. The temperature deficit is moderated by the heat flux from the ground, and this convection is an additional source of turbulence which affects the mixing. A simple model as the soil heat flux is used to estimate the ability of the ground to sustain the heat flux during release. The initial enthalpy, release rate, initial entrainment and momentum are discussed for generic source types and the interaction with obstacles is considered. In the MTH project BA experiments source with and without momentum were applied. The continuously released propane gas passed a two-dimensional removable obstacle perpendicular to the wind direction. Ground-level gas concentrations and vertical profiles of concentration, temperature, wind speed and turbulence were measured in front of and behind the obstacle. Ultrasonic anemometers providing fast velocity and concentration signals were mounted at three levels on the masts. The observed turbulence was influenced by the stability and the initial momentum of the jet releases. Additional information were taken from the `Dessert tortoise` ammonia jet releases, from the `Fladis` experiment with transition from dense to passive dispersion, and from the `Thorney Island` continuous releases of isothermal freon mixtures. The heat flux was found to moderate the negative buoyancy in both the propane and ammonia experiments. The heat flux measurements are compared to an estimate by analogy with surface layer theory. (au) 41 tabs., 146 ills., 189 refs.

  17. Dynamic structure of dense krypton gas

    Science.gov (United States)

    Egelstaff, P. A.; Salacuse, J. J.; Schommers, W.; Ram, J.

    1984-07-01

    We have made molecular-dynamics computer simulations of dense krypton gas (10.6×1027 atoms/m3 and 296 K) using reasonably realistic pair potentials. Comparisons are made with the recent experimental data[P. A. Egelstaff et al., Phys. Rev. A 27, 1106 (1983)] for the dynamic structure factor S(q,ω) over the range 0.4

  18. Collective resonance fluorescence in small and dense atom clouds: Comparison between theory and experiment

    CERN Document Server

    Jenkins, S D; Javanainen, J; Jennewein, S; Bourgain, R; Pellegrino, J; Sortais, Y R P; Browaeys, A

    2016-01-01

    We study the emergence of a collective optical response of a cold and dense $^{87}$Rb atomic cloud to a near-resonant low-intensity light when the atom number is gradually increased. Experimental observations are compared with microscopic stochastic simulations of recurrent scattering processes between the atoms that incorporate the atomic multilevel structure and the optical measurement setup. We analyze the optical response of an inhomogeneously-broadened gas and find that the experimental observations of the resonance line shifts and the total collected scattered light intensity in cold atom clouds substantially deviate from those of thermal atomic ensembles, indicating strong light-induced resonant dipole-dipole interactions between the atoms. At high densities, the simulations also predict a significantly slower decay of light-induced excitations in cold than in thermal atom clouds. The role of dipole-dipole interactions is discussed in terms of resonant coupling examples and the collective radiative exc...

  19. Reprocessed emission line profiles from dense clouds in geometrically thick accretion engines

    CERN Document Server

    Hartnoll, S A; Hartnoll, Sean A.

    2000-01-01

    The central engines of active galactic nuclei (AGN) contain cold, dense material as well as hot X-ray emitting gas. The standard paradigm for the engine geometry is a cold thin disc sandwiched between hot X-ray coronae. Strong support for this geometry in Seyferts comes from the study of fluorescent iron line profiles, although the evidence is not ubiquitously air tight. The thin disc model of line profiles in AGN and in X-ray binaries should be bench marked against other plausible possibilities. One proposed alternative is an engine consisting of dense clouds embedded in an optically thin, geometrically thick X-ray emitting engine. This model is further motivated by studies of geometrically thick engines such as advection dominated accretion flows (ADAFs). Here we compute the reprocessed iron line profiles from dense clouds embedded in geometrically thick, optically thin X-ray emitting discs near a Schwarzchild black hole. We consider a range of cloud distributions and disc solutions, including ADAFs, pure r...

  20. The ALMA View of Dense Molecular Gas in 30 Doradus

    Science.gov (United States)

    Bittle, Lauren E.; Indebetouw, Remy; Brogan, Crystal L.; Hunter, Todd R.; Leroy, Adam

    2017-01-01

    At a distance of 50 kpc, the 30 Doradus region within the Large Magellanic Cloud (LMC) hosts several sites of star formation including R136, a starburst region home to dozens of evolved O stars. The intense radiation from R136 creates an extreme environment for nearby star formation in such a low-metallicity, low mass galaxy. We have targeted a star-forming region ~15 pc away from R136 within 30 Doradus using the Atacama Large Millimeter/submillimeter Array (ALMA) to map the molecular gas to study the sites of star formation. We are conducting a clump-by-clump analysis of the intensities and line ratios of dense gas (HCO+, HCN, CS, H13CO+, H13CN) and diffuse gas (CO, 13CO, C18O) tracers at sub-parsec resolution. We identify and characterize ~100 molecular clumps within the region. With the observed molecular species, we aim to determine the physical conditions of each clump (e.g. size, internal turbulence, molecular abundance). We compare the intensities and line ratios to non-LTE Radex model grids of the excitation temperature, molecular column density, and volume density of the H2 collider to determine the physical excitation conditions within the clumps. We compare these properties of each clump to both associated and embedded star formation properties to quantify the relative importance of internal feedback from the star formation itself versus external feedback processes from R136 and determine which process dominates in this region.

  1. Star Forming Dense Cloud Cores in the TeV -ray SNR RX J1713.7-3946

    Energy Technology Data Exchange (ETDEWEB)

    Sano, H.; Sato, J.; Yamamoto, H.; Hayakawa, T.; Torii, K.; Moribe, N.; Kawamura, A.; Okuda, T.; Mizuno, N.; Onishi, T.; Maezawa, H.; Inoue, T.; Inutsuka, S.; Tanaka, T.; Mizuno, A.; Ogawa, H.; Stutzki, J.; Bertoldi, F.; Anderl, S.; Bronfman, L.; Koo, B.C.

    2010-10-27

    RX J1713.7-3946 is one of the TeV {gamma}-ray supernova remnants (SNRs) emitting synchrotron X rays. The SNR is associated with molecular gas located at {approx}1 kpc. We made new molecular observations toward the dense cloud cores, peaks A, C and D, in the SNR in the {sup 12}CO(J=2-1) and {sup 13}CO(J=2-1) transitions at angular resolution of 90 degrees. The most intense core in {sup 13}CO, peak C, was also mapped in the {sup 12}CO(J=4-3) transition at angular resolution of 38 degrees. Peak C shows strong signs of active star formation including bipolar outflow and a far-infrared protostellar source and has a steep gradient with a r{sup -2.2 {+-} 0.4} variation in the average density within radius r. Peak C and the other dense cloud cores are rim-brightened in synchrotron X rays, suggesting that the dense cloud cores are embedded within or on the outer boundary of the SNR shell. This confirms the earlier suggestion that the X rays are physically associated with the molecular gas (Fukui et al. 2003). We present a scenario where the densest molecular core, peak C, survived against the blast wave and is now embedded within the SNR. Numerical simulations of the shock-cloud interaction indicate that a dense clump can indeed survive shock erosion, since shock propagation speed is stalled in the dense clump. Additionally, the shock-cloud interaction induces turbulence and magnetic field amplification around the dense clump that may facilitate particle acceleration in the lower-density inter-clump space leading to the enhanced synchrotron X rays around dense cores.

  2. Dense molecular cloud cores as a source of micrometer-sized grains in galaxies

    CERN Document Server

    Hirashita, Hiroyuki; Nozawa, Takaya; Li, Zhi-Yun; Liu, Ming-Chang

    2014-01-01

    Coreshine in dense molecular cloud cores (dense cores) is interpreted as evidence for micrometer-sized grains (referred to as very large grains, VLGs). VLGs may have a significant influence on the total dust amount and the extinction curve. We estimate the total abundance of VLGs in the Galaxy, assuming that dense cores are the site of VLG formation. We find that the VLG abundance relative to the total dust mass is roughly $\\phi_\\mathrm{VLG}\\sim 0.01(1-\\epsilon )/\\epsilon (\\tau_\\mathrm{SF}/5\\times 10^9~\\mathrm{yr})^{-1} (f_\\mathrm{VLG}/0.5)(t_\\mathrm{shat}/10^8~\\mathrm{yr})$, where $\\epsilon$ is the star formation efficiency in dense cores, $\\tau_\\mathrm{SF}$ the timescale of gas consumption by star formation, $f_\\mathrm{VLG}$ the fraction of dust mass eventually coagulated into VLGs in dense cores, and $t_\\mathrm{shat}$ the lifetime of VLGs (determined by shattering). Adopting their typical values for the Galaxy, we obtain $\\phi_\\mathrm{VLG}\\sim 0.02$--0.09. This abundance is well below the value detected in...

  3. Dense Clustered Multi-Channel Wireless Sensor Cloud

    Directory of Open Access Journals (Sweden)

    Sivaramakrishnan Sivakumar

    2015-08-01

    Full Text Available Dense Wireless Sensor Network Clouds have an inherent issue of latency and packet drops with regards to data collection. Though there is extensive literature that tries to address these issues through either scheduling, channel contention or a combination of the two, the problem still largely exists. In this paper, a Clustered Multi-Channel Scheduling Protocol (CMSP is designed that creates a Voronoi partition of a dense network. Each partition is assigned a channel, and a scheduling scheme is adopted to collect data within the Voronoi partitions. This scheme collects data from the partitions concurrently and then passes it to the base station. CMSP is compared using simulation with other multi-channel protocols like Tree-based Multi-Channel, Multi-Channel MAC and Multi-frequency Media Access Control for wireless sensor networks. Results indicate CMSP has higher throughput and data delivery ratio at a lower power consumption due to network partitioning and hierarchical scheduling that minimizes load on the network.

  4. A Survey of Dense Cores in the Orion B Cloud

    Science.gov (United States)

    Ikeda, Norio; Kitamura, Yoshimi; Sunada, Kazuyoshi

    2009-02-01

    We have carried out an H13CO+(J = 1 - 0) core survey in a large area of 1 deg2, covering most of the dense region in the Orion B molecular cloud, using the Nobeyama 45 m radio telescope with the 25-BEam Array Receiver System. We cataloged 151 dense cores using the clumpfind method. The cores have mean radius, velocity width, and mass of 0.10 ± 0.02 pc, 0.53 ± 0.15 km s-1, and 8.1 ± 6.4 M sun, respectively, which are very similar to those in the Orion A cloud. We examined the spatial relation between our H13CO+ cores and the 850 μm cores observed by Johnstone and colleagues in 2001 and 2006, and found that there are two types of spatial relationships: H13CO+ cores with and without the 850 μm cores. Since the mean density of the 850 μm cores is higher than that of the H13CO+ cores, we can interpret the H13CO+ cores with 850 μm cores as being more centrally concentrated and hence more evolved, compared with those without. Considering the relationship between the masses of the H13CO+ and 850 μm cores, we estimate the 850 μm core mass function (CMF) using the H13CO+ CMF through the generalization of the confusion model proposed by Ikeda and colleagues in 2007. Our predicted 850 μm CMF is found to be quite consistent with that directly derived by Johnstone and colleagues. Furthermore, we predict the initial mass function (IMF) by the generalized confusion model assuming a star formation efficiency of 40% for the H13CO+ cores, and found that our predicted IMF is consistent with the Galactic field-averaged IMF within uncertainties. This agreement may indicate that the origin of the IMF goes back to the cloud structures with densities of less than 104 cm-3.

  5. HD 62542: Probing the Bare, Dense Core of an Interstellar Cloud

    Science.gov (United States)

    Welty, Daniel

    2010-09-01

    The line of sight to HD 62542 is remarkable for its unusual UV extinction, high column densities of various molecules {for A_v 1}, and apparent dearth of diffuse atomic gas. Most of the interstellar material resides in a single cold cloud - a small, relatively dense {n_H 500-1000 cm^-3}, molecular knot whose more diffuse outer layers appear to have been stripped away by stellar winds and shocks. As such, it provides an ideal venue for investigating the properties of moderately dense molecular gas - including the production of molecules and growth of grains in such gas - with minimal confusion from any associated diffuse atomic gas. We propose to obtain high resolution, moderately high S/N STIS spectra of C I, CO and its isotopomers, C_2, CS, C II, O I, and many other atomic species {characterized by a wide range in depletion behavior}. Those data will be used to compare various diagnostics of the physical conditions {e.g., C I and O I fine-structure excitation, CO and C_2 rotational excitation}, to determine the relative abundances of the various CO isotopomers {fractionation}, and to determine the depletions of various elements in moderately dense gas {the predicted severe depletions have likely been masked by associated diffuse gas in other cases}. Understanding the fractionation and excitation of CO in this relatively simple case will aid in understanding its behavior in other more complex regions {important because CO and its isotopomers are often used to trace and characterize molecular gas where H_2 cannot be directly measured}.

  6. CFD analysis of dense gas dispersion in indoor environment for risk assessment and risk mitigation.

    Science.gov (United States)

    Siddiqui, M; Jayanti, S; Swaminathan, T

    2012-03-30

    Environmental risks are inherent in the operation of any complex chemical process industry. The indoor release of hazardous chemicals that are denser than air is a topic of special concern, since dense clouds tend to persist at ground level or human breath level which leads to a magnification of their harmful potential. In the present work, we propose a computational fluid dynamics (CFD) based model for indoor risk assessment considering accidental release of a sustained, small, undetected leak of a dense toxic gas (chlorine) in an industrial indoor environment. Results from simulations show that the denser chlorine gas spreads like a liquid and flows all along the floor. At the same time, its concentration at a point away from the ground level increases slowly, thus showing that both stratification and dilution effects are present as the dense gas spreads. The implications of this spreading pattern from a risk assessment and risk mitigation point of view are discussed.

  7. Large-eddy simulation of dense gas dispersion over a simplified urban area

    Science.gov (United States)

    Wingstedt, E. M. M.; Osnes, A. N.; Åkervik, E.; Eriksson, D.; Reif, B. A. Pettersson

    2017-03-01

    Dispersion of neutral and dense gas over a simplified urban area, comprising four cubes, has been investigated by the means of large-eddy simulations (LES). The results have been compared to wind tunnel experiments and both mean and fluctuating quantities of velocity and concentration are in very good agreement. High-quality inflow profiles are necessary to achieve physically realistic LES results. In this study, profiles matching the atmospheric boundary layer flow in the wind tunnel, are generated by means of a separate precursor simulation. Emission of dense gas dramatically alters the flow in the near source region and introduces an upstream dispersion. The resulting dispersion patterns of neutral and dense gas differ significantly, where the plume in the latter case is wider and shallower. The dense gas is highly affected by the cube array, which seems to act as a barrier, effectively deflecting the plume. This leads to higher concentrations outside of the array than inside. On the contrary, the neutral gas plume has a Gaussian-type shape, with highest concentrations along the centreline. It is found that the dense gas reduces the vertical and spanwise turbulent momentum transport and, as a consequence, the turbulence kinetic energy. The reduction coincides with the area where the gradient Richardson number exceeds its critical value, i.e. where the flow may be characterized as stably stratified. Interestingly, this region does not correspond to where the concentration of dense gas is the highest (close to the ground), as this is also where the largest velocity gradients are to be found. Instead there is a layer in the middle of the dense gas cloud where buoyancy is dynamically dominant.

  8. MICROSPRAY SIMULATION OF DENSE GAS DISPERSION IN COMPLEX TERRAIN

    OpenAIRE

    Anfossi, D.; Tinarelli, G.; S. Trini Castelli; Commanay, J.; Nibart, M

    2008-01-01

    Abstract: An extended validation of the new Lagrangian particle model MicroSpray version for dense gas simulation is proposed. MicroSpray simulates the dense gas dispersion in situations characterized by the presence of buildings, other obstacles, complex terrain, and possible occurrence of low wind speed conditions. Its performances are compared to a chlorine railway accident (Macdona), to a field experiment (Kit Fox) and to an atmospheric CFD model.

  9. Contraction Signatures Toward Dense Cores in the Perseus Molecular Cloud

    CERN Document Server

    Campbell, J L; Martin, P G; Caselli, P; Kauffmann, J; Pineda, J E

    2016-01-01

    We report the results of an HCO+ (3-2) and N2D+ (3-2) molecular line survey performed toward 91 dense cores in the Perseus molecular cloud using the James Clerk Maxwell Telescope, to identify the fraction of starless and protostellar cores with systematic radial motions. We quantify the HCO+ asymmetry using a dimensionless asymmetry parameter $\\delta_v$, and identify 20 cores with significant blue or red line asymmetries in optically-thick emission indicative of collapsing or expanding motions, respectively. We separately fit the HCO+ profiles with an analytic collapse model and determine contraction (expansion) speeds toward 22 cores. Comparing the $\\delta_v$ and collapse model results, we find that $\\delta_v$ is a good tracer of core contraction if the optically-thin emission is aligned with the model-derived systemic velocity. The contraction speeds range from subsonic (0.03 km/s) to supersonic (0.4 km/s), where the supersonic contraction speeds may trace global rather than local core contraction. Most cor...

  10. Relaxation phenomena in dense gas separation membranes

    NARCIS (Netherlands)

    Wessling, Matthias

    1993-01-01

    Solution-diffusion membranes are widely used for the separation of gaseous and liquid mixtures. The separation of air (O2/N2), landfill gas (CH4/CO2) and purge gas streams (NH3/H2) in the ammonia synthesis are examples for state-of-the-art membrane gas separation processes. For the separation of liq

  11. Relaxation phenomena in dense gas separation membranes

    NARCIS (Netherlands)

    Wessling, Matthias

    1993-01-01

    Solution-diffusion membranes are widely used for the separation of gaseous and liquid mixtures. The separation of air (O2/N2), landfill gas (CH4/CO2) and purge gas streams (NH3/H2) in the ammonia synthesis are examples for state-of-the-art membrane gas separation processes. For the separation of

  12. Cosmic-ray acceleration during the impact of shocks on dense clouds

    Science.gov (United States)

    Jones, T. W.; Kang, Hyesung

    1993-01-01

    In order to elucidate the properties of diffusive shock acceleration in nonuniform environments, an extensive set of simulations of the dynamical interactions between plane nonradiative shocks and dense gas clouds was carried out initially in static equilibrium with their environments. These time-dependent calculations are based on the two-fluid model for diffusive cosmic ray transport, and include the dynamically active energetic proton component of the cosmic rays as well as passive electron and magnetic field components. Except when the incident shock is itself already dominated by cosmic ray pressure, it is found that the presence of the cloud adds little to the net acceleration efficiency of the original shock and can, in fact, reduce slightly the net amount of energy transferred to cosmic rays after a given time. It is found that, in 2D cloud simulations, the always-weak bow shock and the shock inside the cloud are less important to acceleration during the interaction than the tail shock.

  13. Dense gas in the Galactic central molecular zone is warm and heated by turbulence

    CERN Document Server

    Ginsburg, Adam; Ao, Yiping; Riquelme, Denise; Kauffmann, Jens; Pillai, Thushara; Mills, Elisabeth A C; Requena-Torres, Miguel A; Immer, Katharina; Testi, Leonardo; Ott, Juergen; Bally, John; Battersby, Cara; Darling, Jeremy; Aalto, Susanne; Stanke, Thomas; Kendrew, Sarah; Kruijssen, J M Diederik; Longmore, Steven; Dale, James; Guesten, Rolf; Menten, Karl M

    2016-01-01

    The Galactic center is the closest region in which we can study star formation under extreme physical conditions like those in high-redshift galaxies. We measure the temperature of the dense gas in the central molecular zone (CMZ) and examine what drives it. We mapped the inner 300 pc of the CMZ in the temperature-sensitive J = 3-2 para-formaldehyde (p-H$_2$CO) transitions. We used the $3_{2,1} - 2_{2,0} / 3_{0,3} - 2_{0,2}$ line ratio to determine the gas temperature in $n \\sim 10^4 - 10^5 $cm$^{-3}$ gas. We have produced temperature maps and cubes with 30" and 1 km/s resolution and published all data in FITS form. Dense gas temperatures in the Galactic center range from ~60 K to > 100 K in selected regions. The highest gas temperatures T_G > 100 K are observed around the Sgr B2 cores, in the extended Sgr B2 cloud, the 20 km/s and 50 km/s clouds, and in "The Brick" (G0.253+0.016). We infer an upper limit on the cosmic ray ionization rate ${\\zeta}_{CR} < 10^{-14}$ 1/s. The dense molecular gas temperature o...

  14. Contraction Signatures toward Dense Cores in the Perseus Molecular Cloud

    Science.gov (United States)

    Campbell, J. L.; Friesen, R. K.; Martin, P. G.; Caselli, P.; Kauffmann, J.; Pineda, J. E.

    2016-03-01

    We report the results of an HCO+ (3-2) and N2D+ (3-2) molecular line survey performed toward 91 dense cores in the Perseus molecular cloud using the James Clerk Maxwell Telescope, to identify the fraction of starless and protostellar cores with systematic radial motions. We quantify the HCO+ asymmetry using a dimensionless asymmetry parameter δv, and identify 20 cores with significant blue or red line asymmetries in optically thick emission indicative of collapsing or expanding motions, respectively. We separately fit the HCO+ profiles with an analytic collapse model and determine contraction (expansion) speeds toward 22 cores. Comparing the δv and collapse model results, we find that δv is a good tracer of core contraction if the optically thin emission is aligned with the model-derived systemic velocity. The contraction speeds range from subsonic (0.03 km s-1) to supersonic (0.4 km s-1), where the supersonic contraction speeds may trace global rather than local core contraction. Most cores have contraction speeds significantly less than their free-fall speeds. Only 7 of 28 starless cores have spectra well-fit by the collapse model, which more than doubles (15 of 28) for protostellar cores. Starless cores with masses greater than the Jeans mass (M/MJ > 1) are somewhat more likely to show contraction motions. We find no trend of optically thin non-thermal line width with M/MJ, suggesting that any undetected contraction motions are small and subsonic. Most starless cores in Perseus are either not in a state of collapse or expansion, or are in a very early stage of collapse.

  15. CONTRACTION SIGNATURES TOWARD DENSE CORES IN THE PERSEUS MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. L. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, M5S 3H4 (Canada); Friesen, R. K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, M5S 3H4 (Canada); Martin, P. G. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George St., Toronto, Ontario, M5S 3H8 (Canada); Caselli, P.; Pineda, J. E. [Max-Planck-Institut für extraterrestrische Physik (MPE), Gießenbachstrasse 1, D-85741 Garching (Germany); Kauffmann, J., E-mail: jessicalynn.campbell@mail.utoronto.ca [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2016-03-10

    We report the results of an HCO{sup +} (3–2) and N{sub 2}D{sup +} (3–2) molecular line survey performed toward 91 dense cores in the Perseus molecular cloud using the James Clerk Maxwell Telescope, to identify the fraction of starless and protostellar cores with systematic radial motions. We quantify the HCO{sup +} asymmetry using a dimensionless asymmetry parameter δ{sub v}, and identify 20 cores with significant blue or red line asymmetries in optically thick emission indicative of collapsing or expanding motions, respectively. We separately fit the HCO{sup +} profiles with an analytic collapse model and determine contraction (expansion) speeds toward 22 cores. Comparing the δ{sub v} and collapse model results, we find that δ{sub v} is a good tracer of core contraction if the optically thin emission is aligned with the model-derived systemic velocity. The contraction speeds range from subsonic (0.03 km s{sup −1}) to supersonic (0.4 km s{sup −1}), where the supersonic contraction speeds may trace global rather than local core contraction. Most cores have contraction speeds significantly less than their free-fall speeds. Only 7 of 28 starless cores have spectra well-fit by the collapse model, which more than doubles (15 of 28) for protostellar cores. Starless cores with masses greater than the Jeans mass (M/M{sub J} > 1) are somewhat more likely to show contraction motions. We find no trend of optically thin non-thermal line width with M/M{sub J}, suggesting that any undetected contraction motions are small and subsonic. Most starless cores in Perseus are either not in a state of collapse or expansion, or are in a very early stage of collapse.

  16. Turbulent mixing and afterburn in post-detonation flow with dense particle clouds

    Science.gov (United States)

    Gottiparthi, Kalyana C.; Menon, Suresh

    2017-01-01

    Augmentation of the impact of an explosive is routinely achieved by packing metal particles in the explosive charge. When detonated, the particles in the charge are ejected and dispersed. The ejecta influences the post-detonation combustion processes that bolster the blast wave and determines the total impact of the explosive. While the classical Eulerian-Lagrangian (EL) methods can accurately handle the post-detonation mixing zone in the dilute regime, the Eulerian-Eulerian (EE) method is preferred for the initial dense clustering. Here, we summarize the results obtained using both EL and EE methods as well as demonstrate a new hybrid EE-EL approach. The EL method, which is also developed to handle both dense and dilute flows using the discrete equation method, is used initially to study the dispersion of a relatively dense particle shell by blast waves. The results show distinct clustering of particles that later leads to the formation of jet-like structures as seen in experiments. Then, the hybrid EE-EL method is used to study the dispersion of dense clouds from explosives packed with aluminum (reactive) or steel (inert) particles. A transitioning criterion is used to smoothly transfer the initially dense Eulerian mass to Lagrangian particles when dilute. Results are presented to demonstrate that the approach is computationally efficient and accurate for certain ranges of particle sizes and loading. It is shown that mixing between the ambient and post-detonation products can be enhanced when particles are present in the flow. Furthermore, the afterburn of aluminum particles increases in the average gas-phase temperature by 100 K - 200 K when compared to a case with non-reacting particles. More studies are still needed to establish a robust strategy for wider applications.

  17. Properties of industrial dense gas plumes

    Science.gov (United States)

    Shaver, E. M.; Forney, L. J.

    Hazardous gases and vapors are often discharged into the atmosphere from industrial plants during catastrophic events (e.g. Union Carbide incident in Bhopal, India). In many cases the discharged components are more dense than air and settle to the ground surface downstream from the stack exit. In the present paper, the buoyant plume model of Hoult, Fay and Forney (1969, J. Air Pollut. Control Ass. 19, 585-590.) has been altered to predict the properties of hazardous discharges. In particular, the plume impingement point, radius and concentration are predicted for typical stack exit conditions, wind speeds and temperature profiles. Asymptotic expressions for plume properties at the impingement point are also derived for a constant crosswind and neutral temperature profile. These formulae are shown to be useful for all conditions.

  18. Testing the universality of the star-formation efficiency in dense molecular gas

    Science.gov (United States)

    Shimajiri, Y.; André, Ph.; Braine, J.; Könyves, V.; Schneider, N.; Bontemps, S.; Ladjelate, B.; Roy, A.; Gao, Y.; Chen, H.

    2017-08-01

    Context. Recent studies with, for example, Spitzer and Herschel have suggested that star formation in dense molecular gas may be governed by essentially the same "law" in Galactic clouds and external galaxies. This conclusion remains controversial, however, in large part because different tracers have been used to probe the mass of dense molecular gas in Galactic and extragalactic studies. Aims: We aimed to calibrate the HCN and HCO+ lines commonly used as dense gas tracers in extragalactic studies and to test the possible universality of the star-formation efficiency in dense gas (≳104 cm-3), SFEdense. Methods: We conducted wide-field mapping of the Aquila, Ophiuchus, and Orion B clouds at 0.04 pc resolution in the J = 1 - 0 transition of HCN, HCO+, and their isotopomers. For each cloud, we derived a reference estimate of the dense gas mass MHerschelAV > 8, as well as the strength of the local far-ultraviolet (FUV) radiation field, using Herschel Gould Belt survey data products, and estimated the star-formation rate from direct counting of the number of Spitzer young stellar objects. Results: The H13CO+(1-0) and H13CN(1-0) lines were observed to be good tracers of the dense star-forming filaments detected with Herschel. Comparing the luminosities LHCN and LHCO+ measured in the HCN and HCO+ lines with the reference masses MHerschelAV > 8, the empirical conversion factors αHerschel - HCN (=MHerschelAV > 8/LHCN) and αHerschel - HCO+ (=MHerschelAV > 8/LHCO+) were found to be significantly anti-correlated with the local FUV strength. In agreement with a recent independent study of Orion B by Pety et al., the HCN and HCO+ lines were found to trace gas down to AV ≳ 2. As a result, published extragalactic HCN studies must be tracing all of the moderate density gas down to nH2 ≲ 103 cm-3. Estimating the contribution of this moderate density gas from the typical column density probability distribution functions in nearby clouds, we obtained the following G0

  19. Chlorine in dense interstellar clouds - The abundance of HCl in OMC-1

    Science.gov (United States)

    Blake, G. A.; Keene, J.; Phillips, T. G.

    1985-01-01

    The first detection of a chlorine-bearing molecular species in the interstellar medium via emission from the J = 1-0 transition of HCl at 625.9 GHz toward OMC-1 is reported. The relative strengths, widths, and velocities of the resolved hyperfine components are consistent with moderate optical depth emission originating from dense, quiescent molecular cloud material. The overall emission strength implies a fractional abundance of f(HCl/H2) of about (0.5-5.0) x 10 to the -8th, depending on the density of the emitting region. This is approximately an order of magnitude below previous theoretical estimates and a factor of 3-30 below the cosmic abundance of Cl. Recent laboratory work suggests that the lowered fractional abundance of HCl is caused by a combination of depletion onto grains with gas-phase loss processes such as the reaction of HCl with C(+).

  20. Chlorine in dense interstellar clouds - The abundance of HCl in OMC-1

    Science.gov (United States)

    Blake, G. A.; Keene, J.; Phillips, T. G.

    1985-01-01

    The first detection of a chlorine-bearing molecular species in the interstellar medium via emission from the J = 1-0 transition of HCl at 625.9 GHz toward OMC-1 is reported. The relative strengths, widths, and velocities of the resolved hyperfine components are consistent with moderate optical depth emission originating from dense, quiescent molecular cloud material. The overall emission strength implies a fractional abundance of f(HCl/H2) of about (0.5-5.0) x 10 to the -8th, depending on the density of the emitting region. This is approximately an order of magnitude below previous theoretical estimates and a factor of 3-30 below the cosmic abundance of Cl. Recent laboratory work suggests that the lowered fractional abundance of HCl is caused by a combination of depletion onto grains with gas-phase loss processes such as the reaction of HCl with C(+).

  1. Toward Measuring Galactic Dense Molecular Gas Properties and 3D Distribution with Hi-GAL

    Science.gov (United States)

    Zetterlund, Erika; Glenn, Jason; Maloney, Phil

    2016-01-01

    The Herschel Space Observatory's submillimeter dust continuum survey Hi-GAL provides a powerful new dataset for characterizing the structure of the dense interstellar medium of the Milky Way. Hi-GAL observed a 2° wide strip covering the entire 360° of the Galactic plane in broad bands centered at 70, 160, 250, 350, and 500 μm, with angular resolution ranging from 10 to 40 arcseconds. We are adapting a molecular cloud clump-finding algorithm and a distance probability density function distance-determination method developed for the Bolocam Galactic Plane Survey (BGPS) to the Hi-GAL data. Using these methods we expect to generate a database of 105 cloud clumps, derive distance information for roughly half the clumps, and derive precise distances for approximately 20% of them. With five-color photometry and distances, we will measure the cloud clump properties, such as luminosities, physical sizes, and masses, and construct a three-dimensional map of the Milky Way's dense molecular gas distribution.The cloud clump properties and the dense gas distribution will provide critical ground truths for comparison to theoretical models of molecular cloud structure formation and galaxy evolution models that seek to emulate spiral galaxies. For example, such models cannot resolve star formation and use prescriptive recipes, such as converting a fixed fraction of interstellar gas to stars at a specified interstellar medium density threshold. The models should be compared to observed dense molecular gas properties and galactic distributions.As a pilot survey to refine the clump-finding and distance measurement algorithms developed for BGPS, we have identified molecular cloud clumps in six 2° × 2° patches of the Galactic plane, including one in the inner Galaxy along the line of sight through the Molecular Ring and the termination of the Galactic bar and one toward the outer Galaxy. Distances have been derived for the inner Galaxy clumps and compared to Bolocam Galactic Plane

  2. Dense Molecular Gas: A Sensitive Probe of Stellar Feedback Models

    CERN Document Server

    Hopkins, Philip F; Murray, Norman; Quataert, Eliot

    2012-01-01

    We show that the mass fraction of GMC gas (n>100 cm^-3) in dense (n>>10^4 cm^-3) star-forming clumps, observable in dense molecular tracers (L_HCN/L_CO(1-0)), is a sensitive probe of the strength and mechanism(s) of stellar feedback. Using high-resolution galaxy-scale simulations with pc-scale resolution and explicit models for feedback from radiation pressure, photoionization heating, stellar winds, and supernovae (SNe), we make predictions for the dense molecular gas tracers as a function of GMC and galaxy properties and the efficiency of stellar feedback. In models with weak/no feedback, much of the mass in GMCs collapses into dense sub-units, predicting L_HCN/L_CO(1-0) ratios order-of-magnitude larger than observed. By contrast, models with feedback properties taken directly from stellar evolution calculations predict dense gas tracers in good agreement with observations. Changing the strength or timing of SNe tends to move systems along, rather than off, the L_HCN-L_CO relation (because SNe heat lower-de...

  3. A Green Method for Processing Polymers using Dense Gas Technology

    Directory of Open Access Journals (Sweden)

    Roshan B. Yoganathan

    2010-05-01

    Full Text Available Dense CO2 can be used as an environmentally-benign polymer processing medium because of its liquid-like densities and gas-like mass transfer properties.In this work, polymer bio-blends of polycarbonate (PC, a biocompatible polymer, and polycaprolactone (PCL, a biodegradable polymer were prepared. Dense CO2 was used as a reaction medium for the melt-phase PC polymerization in the presence of dense CO2-swollen PCL particles and this method was used to prepare porous PC/PCL blends. To extend the applicability of dense CO2 to the biomedical industry and polymer blend processing, the impregnation of ibuprofen into the blend was conducted and subsequent dissolution characteristics were observed.

  4. LIDAR vs dense image matching point clouds in complex urban scenes

    Science.gov (United States)

    Maltezos, Evangelos; Kyrkou, Athanasia; Ioannidis, Charalabos

    2016-08-01

    This study aims to highlight the differences, in terms of robustness and efficiency, of the use of LIDAR point clouds compared to dense image matching (DIM) point clouds at urban areas that contain buildings with complex structure. The application is conducted over an area in the Greek island of Milos using two different types of data: (a) a dense point cloud which extracted by DIM using a variation of the stereo-method semi-global matching (SGM) at RGB digital aerial images, and (b) a georeferenced LIDAR point cloud. For the case of the DIM point cloud, the following steps were applied: aerial triangulation, rectification of the original images to epipolar images, extraction of disparity maps and application of a 3D similarity transformation. The evaluations that were executed included urban and rural areas. At first step, a direct cloud-to-cloud comparison between the georeferenced DIM and LIDAR point clouds was carried out. Then, the corresponding orthoimages generated by the DIM and LIDAR point clouds undergo a quality control. Although the results show that the LIDAR point clouds respond better at such complex scenes compared to DIM point clouds, the latter gave promising results. In this context, the Quality Assurance issue is also discussed so as to be more efficient towards the challenge of the increasingly greater demands for accurate and cost effective applications.

  5. Numerical simulation of the fast dense gas Ludwieg tube experiment

    NARCIS (Netherlands)

    Zamfirescu, C.; Guerdone, A.; Collona, P.

    2006-01-01

    The preliminary design of a Ludwieg tube experiment for the verification of the existence of nonclassical rarefaction shock waves in dense vapors is here critically analyzed by means of real gas numerical simulations of the experimental setup. The Flexible Asymmetric Shock Tube (FAST) setup is a den

  6. On The Gas Temperature of Molecular Cloud Cores

    CERN Document Server

    Juvela, M

    2011-01-01

    We investigate the uncertainties affecting the temperature profiles of dense cores of interstellar clouds. In regions shielded from external ultraviolet radiation, the problem is reduced to the balance between cosmic ray heating, line cooling, and the coupling between gas and dust. We show that variations in the gas phase abundances, the grain size distribution, and the velocity field can each change the predicted core temperatures by one or two degrees. We emphasize the role of non-local radiative transfer effects that often are not taken into account, for example, when modelling the core chemistry. These include the radiative coupling between regions of different temperature and the enhanced line cooling near the cloud surface. The uncertainty of the temperature profiles does not necessarily translate to a significant error in the column density derived from observations. However, depletion processes are very temperature sensitive and a two degree difference can mean that a given molecule no longer traces t...

  7. Sandqvist 187 - A dense molecular cloud in Norma

    Science.gov (United States)

    Alvarez, H.; Bronfman, L.; Cohen, R.; Garay, G.; Graham, J.; Thaddeus, P.

    1986-01-01

    Observations of Sandqvist 187, an elongated dust cloud in the southern constellation Norma are presented and discussed. The cloud contains two Herbig-Haro objects, HH 56 and HH 57. HH 57 currently displays on its NE edge a 17th mag variable star of the FU Ori type. Using the Columbia University 1.2 m millimeter-wave telescope at Cerro Tololo, the region is mapped and an extended CO cloud which envelops and is elongated along the optical dust cloud is found. The position of maximum CO emission coincides with HH 56 and HH 57. Assuming a distance of 0.7 kpc, the total mass of the cloud is found to be close to 500 solar masses. The CO spectra show evidence of a molecular flow. Photographs and CCD images obtained mostly with the CTIO 4 m telescope show the detailed optical structure of the dark cloud's core region. The Herbig-Haro object HH 56 appears to be related to an emission-line star embedded in the small nebula Reipurth 13, not to the FU Ori star in HH 57.

  8. Sandqvist 187 - A dense molecular cloud in Norma

    Science.gov (United States)

    Alvarez, H.; Bronfman, L.; Cohen, R.; Garay, G.; Graham, J.; Thaddeus, P.

    1986-01-01

    Observations of Sandqvist 187, an elongated dust cloud in the southern constellation Norma are presented and discussed. The cloud contains two Herbig-Haro objects, HH 56 and HH 57. HH 57 currently displays on its NE edge a 17th mag variable star of the FU Ori type. Using the Columbia University 1.2 m millimeter-wave telescope at Cerro Tololo, the region is mapped and an extended CO cloud which envelops and is elongated along the optical dust cloud is found. The position of maximum CO emission coincides with HH 56 and HH 57. Assuming a distance of 0.7 kpc, the total mass of the cloud is found to be close to 500 solar masses. The CO spectra show evidence of a molecular flow. Photographs and CCD images obtained mostly with the CTIO 4 m telescope show the detailed optical structure of the dark cloud's core region. The Herbig-Haro object HH 56 appears to be related to an emission-line star embedded in the small nebula Reipurth 13, not to the FU Ori star in HH 57.

  9. Simple box model for dense-gas dispersion in a straight sloping channel.

    Science.gov (United States)

    Kunsch, J P; Webber, D M

    2000-07-10

    A box model for instantaneous release and subsequent one-dimensional spreading of isothermal dense gases on sloping surfaces is presented. A numerical solution and an approximate analytical solution of the model equations are compared to the experimental data obtained in a sloping heavy-gas channel of the Institute of Fluid Dynamics at ETH-Zürich. The influence of the rear wall of the containment from where the cloud is released is analysed. Different entrainment assumptions, in particular the scaling of the entrainment parameters, are discussed. The numerical values of the entrainment parameters are tuned by computer optimization in order to obtain best agreement of the theoretical results with experimental data.

  10. Distribution and mass of diffuse and dense CO gas in the Milky Way

    CERN Document Server

    Roman-Duval, Julia; Brunt, Christopher; Clark, Paul; Klessen, Ralf; Shetty, Rahul

    2016-01-01

    Emission from carbon monoxide (CO) is ubiquitously used as a tracer of dense star forming molecular clouds. There is, however, growing evidence that a significant fraction of CO emission originates from diffuse molecular gas. Quantifying the contribution of diffuse CO-emitting gas is vital for understanding the relation between molecular gas and star formation. We examine the Galactic distribution of two CO-emitting gas components, a high column density component detected in 13CO and 12CO, and a low column density component detected in 12CO, but not in 13CO. The "diffuse" and "dense" components are identified using a combination of smoothing, masking, and erosion/dilation procedures, making use of three large-scale 12CO and 13CO surveys of the Inner and Outer Milky Way. The diffuse component, which globally represents 25 (1.5x1e8 Mo) of the total molecular gas mass (6.5x1e8 Mo), is more extended perpendicular to the Galactic plane. The fraction of diffuse gas increases from 15% at a galactocentric radius of 3...

  11. 3D Building Reconstruction Using Dense Photogrammetric Point Cloud

    Science.gov (United States)

    Malihi, S.; Valadan Zoej, M. J.; Hahn, M.; Mokhtarzade, M.; Arefi, H.

    2016-06-01

    Three dimensional models of urban areas play an important role in city planning, disaster management, city navigation and other applications. Reconstruction of 3D building models is still a challenging issue in 3D city modelling. Point clouds generated from multi view images of UAV is a novel source of spatial data, which is used in this research for building reconstruction. The process starts with the segmentation of point clouds of roofs and walls into planar groups. By generating related surfaces and using geometrical constraints plus considering symmetry, a 3d model of building is reconstructed. In a refinement step, dormers are extracted, and their models are reconstructed. The details of the 3d reconstructed model are in LoD3 level, with respect to modelling eaves, fractions of roof and dormers.

  12. Cooperative scattering and radiation pressure force in dense atomic clouds

    Energy Technology Data Exchange (ETDEWEB)

    Bachelard, R. [University of Nova Gorica, School of Applied Sciences, Vipavska 11c SI-5270 Ajdovscina (Slovenia); Piovella, N. [Dipartimento di Fisica, Universita Degli Studi di Milano, Via Celoria 16, I-20133 Milano (Italy); Courteille, Ph. W. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, 13560-970 Sao Carlos, SP (Brazil)

    2011-07-15

    Atomic clouds prepared in ''timed Dicke'' states, i.e. states where the phase of the oscillating atomic dipole moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully et al., Phys. Rev. Lett. 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke states are not the states automatically generated by incident laser light. In reality, the atoms act back on the driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of macroscopic observables, such as the radiation pressure force.

  13. The Dense Gas in the Central Kiloparsec of NGC 6946

    CERN Document Server

    Levine, E S; Meijerink, R; Blitz, Leo

    2007-01-01

    We present observations of the HCN and HCO+ J=1-0 transitions in the center of the nearby spiral galaxy NGC 6946 made with the BIMA and CARMA interferometers. Using the BIMA SONG CO map, we investigate the change in the I_HCN/I_CO and I_ HCO/I_CO integrated intensity ratios as a function of radius in the central kiloparsec of the galaxy, and find that they are strongly concentrated at the center. We use the 2MASS K_S band image to find the stellar surface density, and then construct a map of the hydrostatic midplane pressure. We apply a PDR model to the observed I_HCN/I_HCO+ integrated intensity ratio to calculate the number density of molecular hydrogen in the dense gas tracer emitting region, and find that it is roughly constant at 10^5 cm^-3 across our map. We explore two hypotheses for the distribution of the dense gas. If the HCN and HCO+ emission comes from self-gravitating density peaks inside of a less dense gas distribution, there is a linear proportionality between the internal velocity dispersion o...

  14. Gas dynamics in Massive Dense Cores in Cygnus-X

    CERN Document Server

    Csengeri, T; Schneider, N; Motte, F; Dib, S

    2010-01-01

    We study the kinematic properties of dense gas surrounding massive protostars recognized by Bontemps et a. (2010) in a sample of five Massive Dense Cores in Cygnus-X. We investigate whether turbulent support plays a major role in stabilizing the core against fragmentation into Jeans-mass objects or alternatively, the observed kinematics could indicate a high level of dynamics. We present IRAM 30m single-dish (HCO+ and H13CO+) and IRAM PdBI high angular-resolution observations of dense gas tracers (H13CO+ and H13CN) to reveal the kinematics of molecular gas at scales from 0.03 to 0.1 pc. Radiative transfer modeling shows that H13CO+ is depleted within the envelopes of massive protostars and traces the bulk of material surrounding the protostars rather than their inner envelopes. H13CN shows a better correspondence with the peak of the continuum emission, possibly due to abundance anomalies and specific chemistry in the close vicinity of massive protostars. Analyzing the line-widths we show that the observed li...

  15. Isotopologues of dense gas tracers in NGC 1068

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junzhi; Qiu, Jianjie [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, 200030, Shanghai (China); Zhang, Zhi-Yu [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Shi, Yong [School of Astronomy and Space Science, Nanjing University, Nanjing, 210093 (China); Zhang, Jiangshui [Center For Astrophysics, GuangZhou University, 510006, GuangZhou (China); Fang, Min, E-mail: jzwang@shao.ac.cn [ESO, Karl Schwarzschild Strasse 2, D-85748 Garching bei Munich (Germany)

    2014-11-20

    We present observations of isotopic lines of dense gas tracers toward the nuclear region of nearby Seyfert 2 galaxy NGC 1068 with the IRAM 30 m telescope and the Atacama Pathfinder Experiment (APEX) 12 m telescope. We detected four isotopic lines (H{sup 13}CN 1-0, H{sup 13}CO{sup +} 1-0, HN{sup 13}C 1-0, and HC{sup 18}O{sup +} 1-0) at the 3 mm band with the IRAM 30 m telescope and obtained upper limits of other lines. We calculated optical depths of dense gas tracers with the detected isotopic lines of HCN 1-0, HCO{sup +} 1-0, and HNC 1-0. We find that the {sup 14}N/{sup 15}N abundance ratio is greater than 420 if we adopt the upper limit of HC{sup 15}N(1-0) emission. Combining this with fluxes of 1-0 lines from IRAM 30 m observations and the upper limit of 3-2 lines from APEX 12 m observations, we also estimated the excitation condition of molecular gas in the nuclear region of NGC 1068, which is less dense than that in the extreme starburst regions of galaxies.

  16. Origins of Scatter in the Relationship between HCN 1-0 and Dense Gas Mass in the Galactic Center

    Science.gov (United States)

    Mills, Elisabeth A. C.; Battersby, Cara

    2017-01-01

    We investigate the correlation of HCN 1-0 with gas mass in the central 300 pc of the Galaxy. We find that on the ∼10 pc size scale of individual cloud cores, HCN 1-0 is well correlated with dense gas mass when plotted as a log–log relationship. There is ∼0.75 dex of scatter in this relationship from clouds like Sgr B2, which has an integrated HCN 1-0 intensity of a cloud less than half its mass, and others that have HCN 1-0 enhanced by a factor of 2–3 relative to clouds of comparable mass. We identify the two primary sources of scatter to be self-absorption and variations in HCN abundance. We also find that the extended HCN 1-0 emission is more intense per unit mass than in individual cloud cores. In fact the majority (80%) of HCN 1-0 emission comes from extended gas with column densities below 7 × 1022 cm‑2, accounting for 68% of the total mass. We find variations in the brightness of HCN 1-0 would only yield a ∼10% error in the dense gas mass inferred from this line in the Galactic center. However, the observed order of magnitude HCN abundance variations, and the systematic nature of these variations, warn of potential biases in the use of HCN as dense gas mass tracer in more extreme environments such as an active galactic nucleus and shock-dominated regions. We also investigate other 3 mm tracers, finding that HNCO is better correlated with mass than HCN, and might be a better tracer of cloud mass in this environment.

  17. A shallow water model for dense gas simulation in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Michael [Los Alamos National Laboratory; Williams, Mike D [Los Alamos National Laboratory; Gowardhan, Akshay [Los Alamos National Laboratory; Brambilla, Sara [POLITECNICO DI MILANO; Manca, Davide [POLITECNICO DI MILANO

    2009-01-01

    Large quantities of toxic chemicals are stored at industrial facilities and transported around the country via train and truck. In the event of an accidental release, many of these chemicals are released as heavier-than-air gases that stay low to the ground as they are transported by the wind . Breathing height concentrations can remain high due to reduced vertical mixing and hazard zone coverage area can be larger due to near-source gravitational slumping . A number of fast-response dense gas dispersion models have been developed and are routinely used to deal with heavier-than-air releases over unobstructed terrain. If a release were to occur in a built-up environment, however, the effects of buildings and other obstacles will significantly alter the initial spreading, the transport direction, and the amount of mixing of the dense gas cloud . We have developed a new fast-running dense gas dispersion model that is intended for handling releases in cities and at large industrial facilities. In this paper we describe the scheme employed and how the model has been integrated into the Quick Urban & Industrial Complex (QUIC) dispersion modeling system.

  18. Hydrodynamical Models of Gas Cloud - Galaxy Collisions

    Science.gov (United States)

    Franklin, M.; Dinge, D.; Jones, T.; Benjamin, B.

    1999-05-01

    Clouds of neutral hydrogen falling toward the Galactic plane with a speed of about 100 km/s or more are among those considered to be "high velocity clouds" (HVCs). As HVCs are often observed approaching the midplane, the collision of such clouds with the gaseous disk of the Galaxy has been proposed as a precursor event to the phenomena known as "supershells" and as a catalyst to star formation. While many previous analytic calculations have assumed that ram pressure of the resisting medium was negligible, and a ballistic approximation was valid, observations showing a correlation between speed and increased height above the plane, the opposite of what is expected for free fall, suggest otherwise. Benjamin & Danly suggested in 1997 that clouds falling at terminal velocity provide a simple explanation for the observed velocity distribution. In this work, numerical models are used to test the above hypotheses with clouds falling through a more modern model of the interstellar medium than that used in the seminal work by Tenorio-Tagle et al. (TT) in 1987. With the addition of more dense material to the model background, clouds were still able to form supershell-like remnants, though star formation does not appear to be triggered. Further, though agreement was not perfect, the terminal velocity model was found to be a better approximation for these clouds' fall than the ballistic case. Cooling was a physical process included in TT's work which was not included here, but was found to be non-negligible. Simulations which include a cooling algorithm must be done to confirm these results. This work was supported in part by NSF grant AST96-19438.

  19. Dense circum-nuclear molecular gas in starburst galaxies

    CERN Document Server

    Green, Claire-Elise; Green, James A; Dawson, Joanne R; Jones, Paul A; López-Sánchez, Ángel R; Verdes-Montenegro, Lourdes; Henkel, Christian; Baan, Willem A; Martín, Sergio

    2016-01-01

    We present results from a study of the dense circum-nuclear molecular gas of starburst galaxies. The study aims to investigate the interplay between starbursts, active galactic nuclei and molecular gas. We characterise the dense gas traced by HCN, HCO$^{+}$ and HNC and examine its kinematics in the circum-nuclear regions of nine starburst galaxies observed with the Australia Telescope Compact Array. We detect HCN (1$-$0) and HCO$^{+}$ (1$-$0) in seven of the nine galaxies and HNC (1$-$0) in four. Approximately 7 arcsec resolution maps of the circum-nuclear molecular gas are presented. The velocity integrated intensity ratios, HCO$^{+}$ (1$-$0)/HCN (1$-$0) and HNC (1$-$0)/HCN (1$-$0), are calculated. Using these integrated intensity ratios and spatial intensity ratio maps we identify photon dominated regions (PDRs) in NGC 1097, NGC 1365 and NGC 1808. We find no galaxy which shows the PDR signature in only one part of the observed nuclear region. We also observe unusually strong HNC emission in NGC 5236, but it...

  20. H2O Southern Galactic Plane Survey (HOPS): Paper III - properties of dense molecular gas across the inner Milky Way

    Science.gov (United States)

    Longmore, S. N.; Walsh, A. J.; Purcell, C. R.; Burke, D. J.; Henshaw, J.; Walker, D.; Urquhart, J.; Barnes, A. T.; Whiting, M.; Burton, M. G.; Breen, S. L.; Britton, T.; Brooks, K. J.; Cunningham, M. R.; Green, J. A.; Harvey-Smith, L.; Hindson, L.; Hoare, M. G.; Indermuehle, B.; Jones, P. A.; Lo, N.; Lowe, V.; Moore, T. J. T.; Thompson, M. A.; Voronkov, M. A.

    2017-09-01

    The H2O Southern Galactic Plane Survey (HOPS) has mapped 100 deg2 of the Galactic plane for water masers and thermal molecular line emission using the 22 m Mopra telescope. We describe the automated spectral-line fitting pipelines used to determine the properties of emission detected in HOPS data cubes, and use these to derive the physical and kinematic properties of gas in the survey. A combination of the angular resolution, sensitivity, velocity resolution and high critical density of lines targeted make the HOPS data cubes ideally suited to finding precursor clouds to the most massive and dense stellar clusters in the Galaxy. We compile a list of the most massive HOPS ammonia regions and investigate whether any may be young massive cluster progenitor gas clouds. HOPS is also ideally suited to trace the flows of dense gas in the Galactic Centre. We find the kinematic structure of gas within the inner 500 pc of the Galaxy is consistent with recent predictions for the dynamical evolution of gas flows in the centre of the Milky Way. We confirm a recent finding that the dense gas in the inner 100 pc has an oscillatory kinematic structure with characteristic length-scale of 20 pc, and also identify similar oscillatory kinematic structure in the gas at radii larger than 100 pc. Finally, we make all of the above fits and the remaining HOPS data cubes across the 100 deg2 of the survey available to the community.

  1. The Deuterium Fractionation Timescale in Dense Cloud Cores: A Parameter Space Exploration

    CERN Document Server

    Kong, Shuo; Tan, Jonathan C; Wakelam, Valentine

    2013-01-01

    The deuterium fraction of simple species such as N$_2$H$^+$ can be easily measured and can provide information about the age of dense and cold material, important to compare with dynamical models of cloud core formation and evolution. Here we perform a parameter space exploration using a gas-phase chemical model which includes deuterium chemistry and the spin states of H$_2$ and H$_3^+$ isotopologues. This allows us to study the effect of various poorly known parameters on the timescale to achieve the deuterium fractions observed in starless cores and clumps in various star-forming regions. We conclude that for a broad range of parameters, the relatively large deuterium fractions ($\\gtrsim$ 0.1) observed towards both low- and high-mass starless cores require core ages to be at least a few times longer than the free-fall timescale. This condition could be relaxed if cosmic ray ionization rates are very high $\\gtrsim 10^{-16}\\:{\\rm s}^{-1}$ or initial ortho-to-para ratios of $\\rm H_2$ are very low ($\\lesssim 10...

  2. Dense cloud cores revealed by CO in the low metallicity dwarf galaxy WLM

    CERN Document Server

    Rubio, Monica; Hunter, Deidre A; Brinks, Elias; Cortes, Juan R; Cigan, Phil

    2016-01-01

    Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations, they are molecular with H_2 the dominant species and CO the best available tracer. When the abundances of carbon and oxygen are low compared to hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies, CO forms slowly and is easily destroyed, so it is difficult for it to accumulate inside dense clouds. Here we report interferometric observations of CO clouds in the local group dwarf irregular galaxy Wolf-Lundmark-Melotte (WLM), which has a metallicity that is 13% of the solar value and 50% lower than the previous CO detection threshold. The clouds are tiny compared to the surrounding atomic and H_2 envelopes, but they have typical densities and column densities for CO clouds in the Milky Way. The normal CO density explains why star clusters forming in dwarf irregulars have similar densities to star ...

  3. Dense Gas in the Outer Spiral Arm of M51

    Science.gov (United States)

    Chen, Hao; Braine, Jonathan; Gao, Yu; Koda, Jin; Gu, Qiusheng

    2017-02-01

    There is a linear relation between the mass of dense gas traced by the HCN(1–0) luminosity and the star formation rate (SFR) traced by the far-infrared luminosity. Recent observations of galactic disks have shown some systematic variations. In order to explore the SFR–dense gas link at high resolution (∼4″, ∼150 pc) in the outer disk of an external galaxy, we have mapped a region about 5 kpc from the center along the northern spiral arm of M51 in the HCN(1–0), HCO+(1–0), and HNC(1–0) emission lines using the Northern Extended Millimeter Array interferometer. The HCN and HCO+ lines were detected in six giant molecular associations (GMAs), while HNC emission was only detected in the two brightest GMAs. One of the GMAs hosts a powerful H ii region, and HCN is stronger than HCO+ there. Comparing observations of GMAs in the disks of M31 and M33 at similar angular resolution (∼100 pc), we find that GMAs in the outer disk of M51 are brighter in both the HCN and the HCO+ lines by a factor of 3, on average. However, the {I}{HCN}/{I}{CO} and {I}{{HCO}+}/{I}{CO} ratios are similar to the ratios in nearby galactic disks and the Galactic plane. Using the Herschel 70 μm data to trace the total IR luminosity at the resolution of the GMAs, we find that both the {L}{IR}–{L}{HCN} and {L}{IR}–{L}{{HCO}+} relations in the outer disk GMAs are consistent with the proportionality between the {L}{IR} and the dense gas mass established globally in galaxies within the scatter. The IR/HCN and IR/HCO+ ratios of the GMAs vary by a factor of 3, probably depending on whether massive stars are forming.

  4. Dense Gas Fraction and Star Formation Efficiency Variations in the Antennae Galaxies

    CERN Document Server

    Bigiel, Frank; Blitz, Leo; Bolatto, Alberto D; da Cunha, Elisabete; Rosolowsky, Erik; Sandstrom, Karin; Usero, Antonio; Walter, Fabian

    2015-01-01

    We use the CARMA millimeter interferometer to map the Antennae Galaxies (NGC4038/39), tracing the bulk of the molecular gas via the 12CO(1-0) line and denser molecular gas via the high density transitions HCN(1-0), HCO+(1-0), CS(2-1), and HNC(1-0). We detect bright emission from all tracers in both the two nuclei and three locales in the overlap region between the two nuclei. These three overlap region peaks correspond to previously identified "supergiant molecular clouds". We combine the CARMA data with Herschel infrared (IR) data to compare observational indicators of the star formation efficiency (SFR/H2~IR/CO), dense gas fraction (HCN/CO), and dense gas star formation efficiency (IR/HCN). Regions within the Antennae show ratios consistent with those seen for entire galaxies, but these ratios vary by up to a factor of 6 within the galaxy. The five detected regions vary strongly in both their integrated intensities and these ratios. The northern nucleus is the brightest region in mm-wave line emission, whil...

  5. Dense film polyimide membranes for aggressive sour gas feed separations

    KAUST Repository

    Kraftschik, Brian

    2013-02-01

    Dense film membranes of the copolyimide 6FDA-DAM:DABA (3:2) are studied for simultaneous removal of CO2 and H2S from sour natural gas streams. Pure and mixed gas permeation as well as pure gas sorption data are reported at 35°C and pressures up to 62bar. The H2S partial pressures used are representative of highly aggressive field operations. Penetrant-induced plasticization effects are evident at feed pressures below 1bar in pure H2S feeds; sub-Tg thermal annealing is used to effectively mitigate this effect, and these annealed films are used throughout the study. Surprisingly, H2S/CH4 selectivity nearly doubles for mixed gas testing in comparison to the pure component ideal selectivity values and approaches the level of a state-of-the-art glassy polymer, cellulose acetate (CA), at H2S partial pressures above 2bar. Furthermore, permeation experiments using a 9.95% H2S, 19.9% CO2, 70.15% CH4 mixture at low feed pressures give CO2/CH4 selectivity of up to 49-over 30% greater than the pure component selectivity for 6FDA-DAM:DABA (3:2). The overall sour gas separation performance of this polyimide is comparable to high-performance rubbery polymer membranes, which have been reported for only moderate H2S partial pressure feeds, and is superior to that for CA based on a practical combined acid gas separation efficiency metric that we introduce. Finally, methods for continued development of the current polyimide membrane material for aggressive sour gas separations are presented. © 2012 Elsevier B.V.

  6. The Galactic Center Cloud G0.253+0.016: A Massive Dense Cloud with low Star Formation Potential

    CERN Document Server

    Kauffmann, Jens; Zhang, Qizhou

    2013-01-01

    We present the first interferometric molecular line and dust emission maps for the Galactic Center (GC) cloud G0.253+0.016, observed using the Combined Array for Research in Millimeter--wave Astronomy (CARMA) and the Submillimeter Array (SMA). This cloud is very dense, and concentrates a mass exceeding the Orion Molecular Cloud Complex (2x10^5 M_sun) into a radius of only 3pc, but it is essentially starless. G0.253+0.016 therefore violates "star formation laws" presently used to explain trends in galactic and extragalactic star formation by a factor ~45. Our observations show a lack of dense cores of significant mass and density, thus explaining the low star formation activity. Instead, cores with low densities and line widths 1km/s---probably the narrowest lines reported for the GC region to date---are found. Evolution over several 10^5 yr is needed before more massive cores, and possibly an Arches--like stellar cluster, could form. Given the disruptive dynamics of the GC region, and the potentially unbound ...

  7. TWO MASS DISTRIBUTIONS IN THE L 1641 MOLECULAR CLOUDS: THE HERSCHEL CONNECTION OF DENSE CORES AND FILAMENTS IN ORION A

    Energy Technology Data Exchange (ETDEWEB)

    Polychroni, D. [Department of Astrophysics, University of Athens, Astronomy and Mechanics, Faculty of Physics, Panepistimiopolis, 15784 Zografos, Athens (Greece); Schisano, E.; Elia, D.; Molinari, S.; Turrini, D.; Rygl, K. L. J.; Benedettini, M.; Busquet, G.; Di Giorgio, A. M.; Pestalozzi, M.; Pezzuto, S. [Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Roy, A.; André, Ph.; Hennemann, M.; Hill, T.; Könyves, V. [Laboratoire AIM, CEA/IRFU CNRS/INSU Université Paris Diderot, Paris-Saclay, F-91191 Gif-sur-Yvette (France); Martin, P. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Di Francesco, J. [National Research Council Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Arzoumanian, D. [IAS, CNRS (UMR 8617), Université Paris-Sud, Bâtiment 121, F-91400 Orsay (France); Bontemps, S., E-mail: dpolychroni@phys.uoa.gr [Université de Bordeaux, Laboratoire d' Astrophysique de Bordeaux, CNRS/INSU, UMR 5804, BP 89, F-33271, Floirac Cedex (France); and others

    2013-11-10

    We present Herschel survey maps of the L 1641 molecular clouds in Orion A. We extracted both the filaments and dense cores in the region. We identified which of the dense sources are proto- or pre-stellar, and studied their association with the identified filaments. We find that although most (71%) of the pre-stellar sources are located on filaments there, is still a significant fraction of sources not associated with such structures. We find that these two populations (on and off the identified filaments) have distinctly different mass distributions. The mass distribution of the sources on the filaments is found to peak at 4 M {sub ☉} and drives the shape of the core mass function (CMF) at higher masses, which we fit with a power law of the form dN/dlogM∝M {sup –1.4±0.4}. The mass distribution of the sources off the filaments, on the other hand, peaks at 0.8 M {sub ☉} and leads to a flattening of the CMF at masses lower than ∼4 M {sub ☉}. We postulate that this difference between the mass distributions is due to the higher proportion of gas that is available in the filaments, rather than in the diffuse cloud.

  8. Enhanced Dense Gas Fraction in Ultra-Luminous Infrared Galaxies

    CERN Document Server

    Juneau, S; Moustakas, J; Shirley, Y L; Bussmann, R S; Kennicutt, R C; Bout, P A Vanden

    2009-01-01

    We present a detailed analysis of the relation between infrared luminosity and molecular line luminosity, for a variety of molecular transitions, using a sample of 34 nearby galaxies spanning a broad range of infrared luminosities (10^{10} < L_{IR} < 10^{12.5} L_sun). We show that the power-law index of the relation is sensitive to the critical density of the molecular gas tracer used, and that the dominant driver in observed molecular line ratios in galaxies is the gas density. As most nearby ultraluminous infrared galaxies (ULIRGs) exhibit strong signatures of active galactic nuclei (AGN) in their center, we revisit previous claims questioning the reliability of HCN as a probe of the dense gas responsible for star formation in the presence of AGN. We find that the enhanced HCN(1-0)/CO(1-0) luminosity ratio observed in ULIRGs can be successfully reproduced using numerical models with fixed chemical abundances and without AGN-induced chemistry effects. We extend this analysis to a total of ten molecular...

  9. Dense Ionized and Neutral Gas Surrounding Sgr A*

    CERN Document Server

    Shukla, Hemant; Scoville, N Z

    2004-01-01

    We present high resolution H41a hydrogen recombination line observations of the 1.2' (3 pc) region surrounding Sgr A* at 92 GHz using the OVRO Millimeter Array with an angular resolution of 7" x 3" and velocity resolution of 13 km/s. New observations of H31a, H35a, H41a, and H44a lines were obtained using the NRAO 12-m telescope, and their relative line strengths are interpreted in terms of various emission mechanisms. These are the most extensive and most sensitive observations of recombination line to date. Observations of HCO+ (1 - 0) transition at 89 GHz are also obtained simultaneously with a 40% improved angular resolution and 4-15 times improved sensitivity over previous observations, and the distribution and kinematics of the dense molecular gas in the circumnuclear disk (CND) are mapped and compared with those of the ionized gas. The line brightness ratios of the hydrogen recombination lines are consistent with purely spontaneous emission from 7000 K gas with n_e = 20,000 cm$^{-3}$ near LTE condition...

  10. The Dense Filamentary Giant Molecular Cloud G23.0-0.4: Birthplace of Ongoing Massive Star Formation

    CERN Document Server

    Su, Yang; Shao, Xiangjun; Yang, Ji

    2015-01-01

    We present observations of 1.5 square degree maps of the 12CO, 13CO, and C18O (J=1-0) emission toward the complex region of the supernova remnant (SNR) W41 and SNR G22.7-0.2. A massive (~5E5Msun), large (~84x15 pc), and dense (~10E3 cm^-3) giant molecular cloud (GMC), G23.0-0.4 with VLSR~77 km/s, is found to be adjacent to the two SNRs. The GMC displays a filamentary structure approximately along the Galactic plane. The filamentary structure of the dense molecular gas, traced by C18O (J=1-0) emission, is also coincident well with the distribution of the dust-continuum emission in the direction. Two dense massive MC clumps, two 6.7 GHz methanol masers, and one HII/SNR complex, associated with the 77 km/s GMC G23.0-0.4, are aligned along the filamentary structure, indicating the star forming activity within the GMC. These sources have periodic projected spacing of 0.18-0.26degree along the giant filament, which is consistent well with the theoretical predictions of 0.22degree. It indicates that the turbulence s...

  11. DENSE GAS FRACTION AND STAR FORMATION EFFICIENCY VARIATIONS IN THE ANTENNAE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Bigiel, F. [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Strasse 2, D-69120 Heidelberg (Germany); Leroy, A. K. [Department of Astronomy, The Ohio State University, 140 W 18th Street, Columbus, OH 43210 (United States); Blitz, L. [Department of Astronomy, Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 (United States); Bolatto, A. D. [Department of Astronomy and Laboratory for Millimeter-Wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Da Cunha, E. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Rosolowsky, E. [Department of Physics, University of Alberta, Edmonton, AB (Canada); Sandstrom, K. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Usero, A., E-mail: bigiel@uni-heidelberg.de [Observatorio Astronomico Nacional, Alfonso XII 3, E-28014, Madrid (Spain)

    2015-12-20

    We use the Combined Array for Research in Millimeter-wave Astronomy (CARMA) millimeter interferometer to map the Antennae Galaxies (NGC 4038/39), tracing the bulk of the molecular gas via the {sup 12}CO(1–0) line and denser molecular gas via the high density transitions HCN(1–0), HCO{sup +}(1–0), CS(2–1), and HNC(1–0). We detect bright emission from all tracers in both the two nuclei and three locales in the overlap region between the two nuclei. These three overlap region peaks correspond to previously identified “supergiant molecular clouds.” We combine the CARMA data with Herschel infrared (IR) data to compare observational indicators of the star formation efficiency (star formation rate/H{sub 2} ∝ IR/CO), dense gas fraction (HCN/CO), and dense gas star formation efficiency (IR/HCN). Regions within the Antennae show ratios consistent with those seen for entire galaxies, but these ratios vary by up to a factor of six within the galaxy. The five detected regions vary strongly in both their integrated intensities and these ratios. The northern nucleus is the brightest region in millimeter-wave line emission, while the overlap region is the brightest part of the system in the IR. We combine the CARMA and Herschel data with ALMA CO data to report line ratio patterns for each bright point. CO shows a declining spectral line energy distribution, consistent with previous studies. HCO{sup +} (1–0) emission is stronger than HCN (1–0) emission, perhaps indicating either more gas at moderate densities or higher optical depth than is commonly seen in more advanced mergers.

  12. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-Lived Radioisotopes with a Shock Wave. II. Varied Shock Wave and Cloud Core Parameters

    CERN Document Server

    Boss, Alan P

    2013-01-01

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest Solar System solids, including Type II supernovae, AGB and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin supernova shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct supernova injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that supernova shocks remain as the most promising stellar source, though planetary nebulae resulting f...

  13. The Role of Deposition in Limiting the Hazard Extent of Dense-Gas Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, M B

    2008-05-11

    Accidents that involve large (multi-ton) releases of toxic industrial chemicals and form dense-gas clouds often yield far fewer fatalities, casualties and environmental effects than standard assessment and emergency response models predict. This modeling study, which considers both dense-gas turbulence suppression and deposition to environmental objects (e.g. buildings), demonstrates that dry deposition to environmental objects may play a significant role in reducing the distance at which adverse impacts occur - particularly under low-wind, stable atmospheric conditions which are often considered to be the worst-case scenario for these types of releases. The degree to which the released chemical sticks to (or reacts with) environmental surfaces is likely a key parameter controlling hazard extents. In all modeled cases, the deposition to vertical surfaces of environmental objects (e.g. building walls) was more efficient in reducing atmospheric chemical concentrations than deposition to the earth's surface. This study suggests that (1) hazard extents may vary widely by release environment (e.g. grasslands vs. suburbia) and release conditions (e.g. sunlight or humidity may change the rate at which chemicals react with a surface) and (2) greenbelts (or similar structures) may dramatically reduce the impacts of large-scale releases. While these results are demonstrated to be qualitatively consistent with the downwind extent of vegetation damage in two chlorine releases, critical knowledge gaps exist and this study provides recommendations for additional experimental studies.

  14. The Role of Deposition in Limiting the Hazard Extent of Dense-Gas Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, M B

    2008-05-11

    Accidents that involve large (multi-ton) releases of toxic industrial chemicals and form dense-gas clouds often yield far fewer fatalities, casualties and environmental effects than standard assessment and emergency response models predict. This modeling study, which considers both dense-gas turbulence suppression and deposition to environmental objects (e.g. buildings), demonstrates that dry deposition to environmental objects may play a significant role in reducing the distance at which adverse impacts occur - particularly under low-wind, stable atmospheric conditions which are often considered to be the worst-case scenario for these types of releases. The degree to which the released chemical sticks to (or reacts with) environmental surfaces is likely a key parameter controlling hazard extents. In all modeled cases, the deposition to vertical surfaces of environmental objects (e.g. building walls) was more efficient in reducing atmospheric chemical concentrations than deposition to the earth's surface. This study suggests that (1) hazard extents may vary widely by release environment (e.g. grasslands vs. suburbia) and release conditions (e.g. sunlight or humidity may change the rate at which chemicals react with a surface) and (2) greenbelts (or similar structures) may dramatically reduce the impacts of large-scale releases. While these results are demonstrated to be qualitatively consistent with the downwind extent of vegetation damage in two chlorine releases, critical knowledge gaps exist and this study provides recommendations for additional experimental studies.

  15. The structure and kinematics of dense gas in NGC 2068

    Science.gov (United States)

    Walker-Smith, S. L.; Richer, J. S.; Buckle, J. V.; Smith, R. J.; Greaves, J. S.; Bonnell, I. A.

    2013-03-01

    We have carried out a survey of the NGC 2068 region in the Orion B molecular cloud using HARP on the James Clerk Maxwell Telescope, in the 13CO and C18O (J = 3-2) and H13CO+ (J = 4-3) lines. We used 13CO to map the outflows in the region, and matched them with previously defined Submillimetre Common-User Bolometer Array cores. We decomposed the C18O and H13CO+ into Gaussian clumps, finding 26 and eight clumps, respectively. The average deconvolved radii of these clumps are 6200 ± 2000 and 3600 ± 900 au for C18O and H13CO+, respectively. We have also calculated virial and gas masses for these clumps, and hence determined how bound they are. We find that the C18O clumps are more bound than the H13CO+ clumps (average gas mass to virial mass ratio of 4.9 compared to 1.4). We measure clump internal velocity dispersions of 0.28 ± 0.02 and 0.27 ± 0.04 km s-1 for C18O and H13CO+, respectively, although the H13CO+ values are heavily weighted by a majority of the clumps being protostellar, and hence having intrinsically greater linewidths. We suggest that the starless clumps correspond to local turbulence minima, and we find that our clumps are consistent with formation by gravoturbulent fragmentation. We also calculate interclump velocity dispersions of 0.39 ± 0.05 and 0.28 ± 0.08 km s-1 for C18O and H13CO+, respectively. The velocity dispersions (both internal and external) for our clumps match results from numerical simulations of decaying turbulence in a molecular cloud. However, there is still insufficient evidence to conclusively determine the type of turbulence and time-scale of star formation, due to the small size of our sample.

  16. Theory for Indirect Conduction in Dense, Gas-Solid Systems

    Science.gov (United States)

    Lattanzi, Aaron; Hrenya, Christine

    2016-11-01

    Heat transfer in dense gas-solid systems is dominated by conduction, and critical to the operation of rotary-kilns, catalytic cracking, and heat exchangers with solid particles as the heat transfer fluid. In particular, the indirect conduction occurring between two bodies separated by a thin layer of fluid can significantly impact the heat transfer within gas-solid systems. Current state-of-the-art models for indirect conduction assume that particles are surrounded by a static "fluid lens" and that one-dimensional conduction occurs through the fluid lens when the lens overlaps another body. However, attempts to evaluate the effect of surface roughness and fluid lens thickness (theoretical inputs) on indirect conduction have been restricted to static, single-particle cases. By contrast, here we quantify these effects for dynamic, multi-particle systems. This analysis is compared to outputs from computational fluid dynamics and discrete element method (CFD-DEM) simulations of heat transfer in a packed bed and flow down a heated ramp. Analytical predictions for model sensitivity are found to be in agreement with simulation results and differ greatly from the static, single-particle analysis. Namely, indirect conduction in static systems is found to be most sensitive to surface roughness, while dynamic systems are sensitive to the fluid lens thickness.

  17. The Dense Gas Fraction in the Central Molecular Zone in the Milky Way

    Science.gov (United States)

    Vargas-Salazar, Irene; Battersby, Cara; Walker, Daniel; Zhang, Qizhou; CMZoom

    2017-01-01

    The Central Molecular Zone (CMZ), a large reservoir of dense molecular gas occupying the central 500pc of the Milky Way, is an extreme star-formation environment where the validity of star formation prescriptions can be tested. The star formation rate (SFR) in the CMZ is about an order of magnitude lower than predicted by the currently accepted prescriptions. An international team lead by PIs Battersby and Keto conducted a survey from 2013-2016 called CMZoom using the Submillimeter Array (SMA) to characterize star formation within resolved molecular clouds in this extreme region. One of the main goals of this survey is to further quantify and understand the low SFR found in this region of the Galaxy. Here, we use the CASA software package to run synthetic observations of hydrodynamical simulations of molecular clouds and vary the observation parameters in such a way that we explore the real parameter space that was probed during the survey. The purpose of this is to investigate how the different observational parameters affect the resultant data. Afterwards, we estimate the “dense gas fraction” (DGF) found in regions across the CMZ. This estimate was found by using the interferometric flux from SMA and the single-dish flux from the Bolocam Galactic Plane Survey. We analyzed the effects that different locations of the CMZ had on these approximate DGF. With these simulations and DGF estimates, we are able to generate improved methods to analyze the data from this survey that will help understand star formation in an extreme environment.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no.1262851, and by the Smithsonian Institution.

  18. Dense gas without star formation: The kpc-sized molecular disk in 3C326 N

    CERN Document Server

    Nesvadba, Nicole; Lehnert, Matt; Guillard, Pierre; Salome, Philippe

    2011-01-01

    We report the discovery of a 3 kpc disk of few 10^9 Ms of dense, warm H_2 in the nearby radio galaxy 3C326 N, which shows no signs of on-going or recent star formation and falls a factor 60 below the Schmidt-Kennicutt law. VLT/SINFONI imaging spectroscopy shows broad (FWHM \\sim 500 km/s) ro-vibrational H_2 lines across all of the disk, with irregular profiles and line ratios consistent with shocks. The ratio of turbulent and gravitational energy suggests that the gas is highly turbulent and not gravitationally bound. In absence of the driving by the jet, short turbulent dissipation times suggest the gas should collapse rapidly and form stars, at odds with the recent star-formation history. Motivated by hydrodynamic models of rapid H_2 formation boosted by turbulent compression, we propose that the molecules formed from diffuse atomic gas in the turbulent jet cocoon. Since the gas is not self-gravitating, it cannot form molecular clouds or stars while the jet is active, and is likely to disperse and become ato...

  19. The structure and kinematics of dense gas in NGC 2068

    CERN Document Server

    Walker-Smith, S L; Buckle, J V; Smith, R J; Greaves, J S; Bonnell, I A

    2012-01-01

    We have carried out a survey of the NGC 2068 region in the Orion B molecular cloud using HARP on the JCMT, in the 13CO and C18O (J = 3-2) and H13CO+ (J = 4-3) lines. We used 13CO to map the outflows in the region, and matched them with previously defined SCUBA cores. We decomposed the C18O and H13CO+ into Gaussian clumps, finding 26 and 8 clumps respectively. The average deconvolved radii of these clumps is 6200 +/- 2000 AU and 3600 +/- 900 AU for C18O and H13CO+ respectively. We have also calculated virial and gas masses for these clumps, and hence determined how bound they are. We find that the C18O clumps are more bound than the H13CO+ clumps (average gas mass to virial mass ratio of 4.9 compared to 1.4). We measure clump internal velocity dispersions of 0.28 +/- 0.02 kms-1 and 0.27 +/- 0.04 kms-1 for C18O and H13CO+ respectively, although the H13CO+ values are heavily weighted by a majority of the clumps being protostellar, and hence having intrinsically greater linewidths. We suggest that the starless cl...

  20. Characterising the Dense Molecular Gas in Exceptional Local Galaxies

    Science.gov (United States)

    Tunnard, Richard C. A.

    2016-08-01

    The interferometric facilities now coming online (the Atacama Large Millimetre Array (ALMA) and the NOrthern Extended Millimeter Array (NOEMA)) and those planned for the coming decade (the Next Generation Very Large Array (ngVLA) and the Square Kilometre Array (SKA)) in the radio to sub-millimetre regimes are opening a window to the molecular gas in high-redshift galaxies. However, our understanding of similar galaxies in the local universe is still far from complete and the data analysis techniques and tools needed to interpret the observations in consistent and comparable ways are yet to be developed. I first describe the Monte Carlo Markov Chain (MCMC) script developed to empower a public radiative transfer code. I characterise both the public code and MCMC script, including an exploration of the effect of observing molecular lines at high redshift where the Cosmic Microwave Background (CMB) can provide a significant background, as well as the effect this can have on well-known local correlations. I present two studies of ultraluminous infrared galaxies (ULIRGs) in the local universe making use of literature and collaborator data. In the first of these, NGC6240, I use the wealth of available data and the geometry of the source to develop a multi-phase, multi-species model, finding evidence for a complex medium of hot diffuse and cold dense gas in pressure equilibrium. Next, I study the prototypical ULIRG Arp 220; an extraordinary galaxy rendered especially interesting by the controversy over the power source of the western of the two merger nuclei and its immense luminosity and dust obscuration. Using traditional grid based methods I explore the molecular gas conditions within the nuclei and find evidence for chemical differentiation between the two nuclei, potentially related to the obscured power source. Finally, I investigate the potential evolution of proto-clusters over cosmic time with sub-millimetre observations of 14 radio galaxies, unexpectedly finding

  1. Dense 3d Point Cloud Generation from Uav Images from Image Matching and Global Optimazation

    Science.gov (United States)

    Rhee, S.; Kim, T.

    2016-06-01

    3D spatial information from unmanned aerial vehicles (UAV) images is usually provided in the form of 3D point clouds. For various UAV applications, it is important to generate dense 3D point clouds automatically from over the entire extent of UAV images. In this paper, we aim to apply image matching for generation of local point clouds over a pair or group of images and global optimization to combine local point clouds over the whole region of interest. We tried to apply two types of image matching, an object space-based matching technique and an image space-based matching technique, and to compare the performance of the two techniques. The object space-based matching used here sets a list of candidate height values for a fixed horizontal position in the object space. For each height, its corresponding image point is calculated and similarity is measured by grey-level correlation. The image space-based matching used here is a modified relaxation matching. We devised a global optimization scheme for finding optimal pairs (or groups) to apply image matching, defining local match region in image- or object- space, and merging local point clouds into a global one. For optimal pair selection, tiepoints among images were extracted and stereo coverage network was defined by forming a maximum spanning tree using the tiepoints. From experiments, we confirmed that through image matching and global optimization, 3D point clouds were generated successfully. However, results also revealed some limitations. In case of image-based matching results, we observed some blanks in 3D point clouds. In case of object space-based matching results, we observed more blunders than image-based matching ones and noisy local height variations. We suspect these might be due to inaccurate orientation parameters. The work in this paper is still ongoing. We will further test our approach with more precise orientation parameters.

  2. DISPLAY-2: a two-dimensional shallow layer model for dense gas dispersion including complex features.

    Science.gov (United States)

    Venetsanos, A G; Bartzis, J G; Würtz, J; Papailiou, D D

    2003-04-25

    A two-dimensional shallow layer model has been developed to predict dense gas dispersion, under realistic conditions, including complex features such as two-phase releases, obstacles and inclined ground. The model attempts to predict the time and space evolution of the cloud formed after a release of a two-phase pollutant into the atmosphere. The air-pollutant mixture is assumed ideal. The cloud evolution is described mathematically through the Cartesian, two-dimensional, shallow layer conservation equations for mixture mass, mixture momentum in two horizontal directions, total pollutant mass fraction (vapor and liquid) and mixture internal energy. Liquid mass fraction is obtained assuming phase equilibrium. Account is taken in the conservation equations for liquid slip and eventual liquid rainout through the ground. Entrainment of ambient air is modeled via an entrainment velocity model, which takes into account the effects of ground friction, ground heat transfer and relative motion between cloud and surrounding atmosphere. The model additionally accounts for thin obstacles effects in three ways. First a stepwise description of the obstacle is generated, following the grid cell faces, taking into account the corresponding area blockage. Then obstacle drag on the passing cloud is modeled by adding flow resistance terms in the momentum equations. Finally the effect of extra vorticity generation and entrainment enhancement behind obstacles is modeled by adding locally into the entrainment formula without obstacles, a characteristic velocity scale defined from the obstacle pressure drop and the local cloud height.The present model predictions have been compared against theoretical results for constant volume and constant flux gravity currents. It was found that deviations of the predicted cloud footprint area change with time from the theoretical were acceptably small, if one models the frictional forces between cloud and ambient air, neglecting the Richardson

  3. A proposed chemical scheme for HCCO formation in cold dense clouds

    CERN Document Server

    Wakelam, V; Hickson, K M; Ruaud, M

    2015-01-01

    The ketenyl radical (HCCO) has recently been discovered in two cold dense clouds with a non-negligible abundance of a few 1e-11 (compared to H2) (Agundez et al. 2015). Until now, no chemical network has been able to reproduce this observation. We propose here a chemical scheme that can reproduce HCCO abundances together with HCO, H2CCO and CH3CHO in the dark clouds Lupus-1A and L486. The main formation pathway for HCCO is the OH + CCH -> HCCO + H reaction as suggested by Agundez et al. (2015) but with a much larger rate coefficient than used in current models. Since this reaction has never been studied experimentally or theoretically, this larger value is based on a comparison with other similar systems.

  4. Automatic Detection of Building Points from LIDAR and Dense Image Matching Point Clouds

    Science.gov (United States)

    Maltezos, E.; Ioannidis, C.

    2015-08-01

    This study aims to detect automatically building points: (a) from LIDAR point cloud using simple techniques of filtering that enhance the geometric properties of each point, and (b) from a point cloud which is extracted applying dense image matching at high resolution colour-infrared (CIR) digital aerial imagery using the stereo method semi-global matching (SGM). At first step, the removal of the vegetation is carried out. At the LIDAR point cloud, two different methods are implemented and evaluated using initially the normals and the roughness values afterwards: (1) the proposed scan line smooth filtering and a thresholding process, and (2) a bilateral filtering and a thresholding process. For the case of the CIR point cloud, a variation of the normalized differential vegetation index (NDVI) is computed for the same purpose. Afterwards, the bare-earth is extracted using a morphological operator and removed from the rest scene so as to maintain the buildings points. The results of the extracted buildings applying each approach at an urban area in northern Greece are evaluated using an existing orthoimage as reference; also, the results are compared with the corresponding classified buildings extracted from two commercial software. Finally, in order to verify the utility and functionality of the extracted buildings points that achieved the best accuracy, the 3D models in terms of Level of Detail 1 (LoD 1) and a 3D building change detection process are indicatively performed on a sub-region of the overall scene.

  5. CARMA Large Area Star Formation Survey: Dense Gas in the Young L1451 Region of Perseus

    CERN Document Server

    Storm, Shaye; Lee, Katherine I; Fernández-López, Manuel; Looney, Leslie W; Teuben, Peter; Arce, Héctor G; Rosolowsky, Erik W; Meisner, Aaron M; Isella, Andrea; Kauffmann, Jens; Shirley, Yancy L; Kwon, Woojin; Plunkett, Adele L; Pound, Marc W; Segura-Cox, Dominique M; Tassis, Konstantinos; Tobin, John J; Volgenau, Nikolaus H; Crutcher, Richard M; Testi, Leonardo

    2016-01-01

    We present a 3 mm spectral line and continuum survey of L1451 in the Perseus Molecular Cloud. These observations are from the CARMA Large Area Star Formation Survey (CLASSy), which also imaged Barnard 1, NGC 1333, Serpens Main and Serpens South. L1451 is the survey region with the lowest level of star formation activity---it contains no confirmed protostars. HCO+, HCN, and N2H+ (J=1-0) are all detected throughout the region, with HCO+ the most spatially widespread, and molecular emission seen toward 90% of the area above N(H_2) column densities of 1.9x10^21 cm^-2. HCO+ has the broadest velocity dispersion, near 0.3 km/s on average, compared to ~0.15 km/s for the other molecules, thus representing a range from supersonic to subsonic gas motions. Our non-binary dendrogram analysis reveals that the dense gas traced by each molecule has similar hierarchical structure, and that gas surrounding the candidate first hydrostatic core (FHSC), L1451-mm, and other previously detected single-dish continuum clumps have sim...

  6. Dense molecular gas toward W49A: A template for extragalactic starbursts?

    CERN Document Server

    Roberts, Helen; Fuller, Gary; Plume, René; Bayet, Estelle

    2010-01-01

    The HCN, HCO+, and HNC molecules are commonly used as tracers of dense star-forming gas in external galaxies, but such observations are spatially unresolved. Reliably inferring the properties of galactic nuclei and disks requires detailed studies of sources whose structure is spatially resolved. We compare the spatial distributions and abundance ratios of HCN, HCO+, and HNC in W49A, the most massive and luminous star-forming region in the Galactic disk, based on maps of a 2' (6.6 pc) field at 14" (0.83 pc) resolution of the J=4-3 transitions of HCN, H13CN, HC15N, HCO+, H13CO+, HC18O+ and HNC. The kinematics of the molecular gas in W49A appears complex, with a mixture of infall and outflow motions. Both the line profiles and comparison of the main and rarer species show that the main species are optically thick. Two 'clumps' of infalling gas appear to be at ~40 K, compared to ~100 K at the source centre, and may be ~10x denser than the rest of the outer cloud. Chemical modelling suggests that the HCN/HNC ratio...

  7. Condition for the formation of micron-sized dust grains in dense molecular cloud cores

    CERN Document Server

    Hirashita, Hiroyuki

    2013-01-01

    We investigate the condition for the formation of micron-sized grains in dense cores of molecular clouds. This is motivated by the detection of the mid-infrared emission from deep inside a number of dense cores, the so-called `coreshine,' which is thought to come from scattering by micron-sized grains. Based on numerical calculations of coagulation starting from the typical grain size distribution in the diffuse interstellar medium, we obtain a conservative lower limit to the time $t$ to form micron-sized grains: $t/t_\\mathrm{ff}>3 (5/S) (n_\\mathrm{H}/10^5 \\mathrm{cm}^{-3})^{-1/4}$ (where $t_\\mathrm{ff}$ is the free-fall time at hydrogen number density $n_\\mathrm{H}$ in the core, and $S$ the enhancement factor to the grain-grain collision cross-section to account for non-compact aggregates). At the typical core density $n_\\mathrm{H}=10^5 \\mathrm{cm}^{-3}$, it takes at least a few free-fall times to form the micron-sized grains responsible for coreshine. The implication is that those dense cores observed in co...

  8. Charge of interstellar dust in dense molecular clouds: Effect of cosmic rays

    CERN Document Server

    Ivlev, Alexei; Galli, Daniele; Caselli, Paola

    2015-01-01

    The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold dense molecular cloud, to investigate two so far neglected mechanisms of dust charging: collection of suprathermal CR electrons and protons by grains, and photoelectric emission from grains due to the UV radiation generated by CRs. The two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: While the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities $n(\\mathrm{H_2})$ between $\\sim10^4$ cm$^{-3}$ and $\\sim10^6$ cm$^{-3}$. The charging effect o...

  9. Design Private Cloud of Oil and Gas SCADA System

    Directory of Open Access Journals (Sweden)

    Liu Miao

    2014-05-01

    Full Text Available SCADA (Supervisory Control and Data Acquisition system is computer control system based on supervisory. SCADA system is very important to oil and gas pipeline engineering. Cloud computing is fundamentally altering the expectations for how and when computing, storage and networking resources should be allocated, managed and consumed. In order to increase resource utilization, reliability and availability of oil and gas pipeline SCADA system, the SCADA system based on cloud computing is proposed in the paper. This paper introduces the system framework of SCADA system based on cloud computing and the realization details about the private cloud platform of SCADA system.

  10. Modelling the dust emission from dense interstellar clouds: disentangling the effects of radiative transfer and dust properties

    OpenAIRE

    Ysard, N.; Juvela, M.; Demyk, K.; Guillet, V.; Abergel, A.; Bernard, J. -P.; Malinen, J.; Mény, C.; Montier, L.; Paradis, D.; Ristorcelli, I.; L. Verstraete

    2012-01-01

    With Planck and Herschel, we now have the spectral coverage and angular resolution required to observe dense and cold molecular clouds. As these clouds are optically thick at short wavelength but optically thin at long wavelength, it is tricky to conclude anything about dust properties without a proper treatment of the radiative transfer (RT). Our aim is to disentangle the effects of RT and of dust properties on the variations in the dust emission to provide observers with keys to analyse the...

  11. Particle Dispersion Behaviors of Dense Gas-Particle Flows in Bubble Fluidized Bed

    OpenAIRE

    Xue Liu; Guohui Li; Sihao Lv

    2013-01-01

    An Euler-Euler two-fluid model incorporating a developed momentum transfer empirical coefficient is developed to study the particle dispersion behaviors of dense gas-particle flows in gas-fluidization reactor. In this model, the four-way couplings among gas-particles, particle-gas, and particle-particle collisions are fully considered based on kinetic theory of granular flows and an improved smooth continuous drag coefficient is utilized. Gas turbulent flow is solved by large eddy simulation....

  12. Automatic method for building indoor boundary models from dense point clouds collected by laser scanners.

    Science.gov (United States)

    Valero, Enrique; Adán, Antonio; Cerrada, Carlos

    2012-11-22

    In this paper we present a method that automatically yields Boundary Representation Models (B-rep) for indoors after processing dense point clouds collected by laser scanners from key locations through an existing facility. Our objective is particularly focused on providing single models which contain the shape, location and relationship of primitive structural elements of inhabited scenarios such as walls, ceilings and floors. We propose a discretization of the space in order to accurately segment the 3D data and generate complete B-rep models of indoors in which faces, edges and vertices are coherently connected. The approach has been tested in real scenarios with data coming from laser scanners yielding promising results. We have deeply evaluated the results by analyzing how reliably these elements can be detected and how accurately they are modeled.

  13. True-Amplitude Seismic Imaging Beneath Gas Clouds

    NARCIS (Netherlands)

    Ghazali, A.R.

    2011-01-01

    A gas cloud is a region of gas accumulation in the subsurface, which can severely deteriorate the seismic data quality from deeper reflectors. Due to complex wave propagation through the anomaly and the resulting transmission imprint on the reflections from below this area, the image below the gas c

  14. True-Amplitude Seismic Imaging Beneath Gas Clouds

    NARCIS (Netherlands)

    Ghazali, A.R.

    2011-01-01

    A gas cloud is a region of gas accumulation in the subsurface, which can severely deteriorate the seismic data quality from deeper reflectors. Due to complex wave propagation through the anomaly and the resulting transmission imprint on the reflections from below this area, the image below the gas c

  15. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    CERN Document Server

    Izumi, Takuma; Kohno, Kotaro

    2016-01-01

    We present a positive correlation between the mass of dense molecular gas ($M_{\\rm dense}$) of $\\sim 100$ pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ($\\dot{M}_{\\rm BH}$) in total 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture $\\theta_{\\rm med}$ = 220 pc). A typical $M_{\\rm dense}$ of CNDs is 10$^{7-8}$ $M_\\odot$, estimated from the luminosity of the dense gas tracer, the HCN($1-0$) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between nuclear star formation rate and $\\dot{M}_{\\rm BH}$ revealed previously. Moreover, the $M_{\\rm dense}-\\dot{M}_{\\rm BH}$ correlation was tighter for CND-scale gas than for the gas on kpc or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas $>$kpc scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Mill...

  16. Monte Carlo simulations of dense gas flow and heat transfer in micro- and nano-channels

    Institute of Scientific and Technical Information of China (English)

    WANG Moran; LI Zhixin

    2005-01-01

    The dense gas flow and heat transfer in micro- and nano-channels was simulated using the Enskog simulation Monte Carlo (ESMC) method. The results were compared with those from the direct simulation Monte Carlo (DSMC) method and from the consistent Boltzmann algorithm (CBA). The dense gas flow and heat transfer characteristics were thus analyzed. The results showed that when the gas density was large enough, the finite gas density effect on the flow and heat transfer cannot be ignored, which decreased the skin friction coefficient and changed the heat transfer characteristics on the channel wall surfaces.

  17. Low-metallicity Absorbers Account for Half of the Dense Circumgalactic Gas at z < 1

    CERN Document Server

    Wotta, Christopher B; Howk, J Christopher; O'Meara, John M; Prochaska, J Xavier

    2016-01-01

    We present an analysis of the metallicity distribution of the dense circumgalactic medium (CGM) of galaxies at 0.1 19.0) show a much lower fraction of metal-poor gas; therefore, the metallicity distribution of gas in and around galaxies depends sensitively on N(H I) at z -1) pLLSs and LLSs as arising in outflows, recycling winds, and tidally-stripped gas around galaxies. The low-metallicity pLLSs and LLSs imply that the CGM of z < 1 galaxies is also host to a substantial mass of cool, dense, low-metallicity gas that may ultimately accrete onto the galaxies.

  18. Collapse of primordial gas clouds and the formation of quasar black holes

    Science.gov (United States)

    Loeb, Abraham; Rasio, Frederic A.

    1994-01-01

    The formation of quasar black holes during the hydrodynamic collapse of protogalactic gas clouds is discussed. The dissipational collapse and long-term dynamical evolution of these systems is analyzed using three-dimensional numerical simulations. The calculations focus on the final collapse stages of the inner baryonic component and therefore ignore the presence of dark matter. Two types of initial conditions are considered: uniformly rotating spherical clouds, and iirotational ellipsoidal clouds. In both cases the clouds are initially cold, homogeneous, and not far from rotational support (T/(absolute value of W) approximately equals 0.1). Although the details of the dynamical evolution depend sensitively on the initial conditions, the qualitative features of the final configurations do not. Most of the gas is found to fragment into small dense clumps, that eventually make up a spheroidal component resembling a galactic bulge. About 5% of the initial mass remains in the form of a smooth disk of gas supported by rotation in the gravitational potential potential well of the outer spheroid. If a central seed black hole of mass approximately greater than 10(exp 6) solar mass forms, it can grow by steady accretion from the disk and reach a typical quasar black hole mass approximately 10(exp 8) solar mass in less than 5 x 10(exp 8) yr. In the absence of a sufficiently massive seed, dynamical instabilities in a strongly self-gravitating inner region of the disk will inhibit steady accretion of gas and may prevent the immediate formation of quasar.

  19. Collapse of primordial gas clouds and the formation of quasar black holes

    Science.gov (United States)

    Loeb, Abraham; Rasio, Frederic A.

    1994-01-01

    The formation of quasar black holes during the hydrodynamic collapse of protogalactic gas clouds is discussed. The dissipational collapse and long-term dynamical evolution of these systems is analyzed using three-dimensional numerical simulations. The calculations focus on the final collapse stages of the inner baryonic component and therefore ignore the presence of dark matter. Two types of initial conditions are considered: uniformly rotating spherical clouds, and iirotational ellipsoidal clouds. In both cases the clouds are initially cold, homogeneous, and not far from rotational support (T/(absolute value of W) approximately equals 0.1). Although the details of the dynamical evolution depend sensitively on the initial conditions, the qualitative features of the final configurations do not. Most of the gas is found to fragment into small dense clumps, that eventually make up a spheroidal component resembling a galactic bulge. About 5% of the initial mass remains in the form of a smooth disk of gas supported by rotation in the gravitational potential potential well of the outer spheroid. If a central seed black hole of mass approximately greater than 10(exp 6) solar mass forms, it can grow by steady accretion from the disk and reach a typical quasar black hole mass approximately 10(exp 8) solar mass in less than 5 x 10(exp 8) yr. In the absence of a sufficiently massive seed, dynamical instabilities in a strongly self-gravitating inner region of the disk will inhibit steady accretion of gas and may prevent the immediate formation of quasar.

  20. Dense Molecular Gas Excitation at High Redshift: Detection of HCO+(J=4-3) Emission in the Cloverleaf Quasar

    CERN Document Server

    Riechers, Dominik A; Carilli, Christopher L; Cox, Pierre; Weiss, Axel; Bertoldi, Frank; Menten, Karl M

    2010-01-01

    We report the detection of HCO+(J=4-3) emission in the Cloverleaf Quasar at z=2.56, using the IRAM Plateau de Bure Interferometer. HCO+ emission is a star formation indicator similar to HCN, tracing dense molecular hydrogen gas (n(H2) ~= 10^5 cm^-3) within star-forming molecular clouds. We derive a lensing-corrected HCO+(J=4-3) line luminosity of L'(HCO+(4-3)) = (1.6+/-0.3) x 10^9 (mu_L/11)^-1 K km/s pc^2, which corresponds to only 48% of the HCO+(J=1=0) luminosity, and <~4% of the CO(J=3-2) luminosity. The HCO+ excitation thus is clearly subthermal in the J=4-3 transition. Modeling of the HCO+ line radiative transfer suggests that the HCO+ emission emerges from a region with physical properties comparable to that exhibiting the CO line emission, but 2x higher gas density. This suggests that both HCO+ and CO lines trace the warm, dense molecular gas where star formation actively takes place. The HCO+ lines have only ~2/3 the width of the CO lines, which may suggest that the densest gas is more spatially co...

  1. HCN Observations of Dense Star-Forming Gas in High Redshift Galaxies

    CERN Document Server

    Gao, Y; Solomon, P M; Bout, P A V; Gao, Yu; Carilli, Chris L.; Solomon, Philip M.; Bout, Paul A. Vanden

    2007-01-01

    We present here the sensitive HCN(1-0) observations made with the VLA of two submillimeter galaxies and two QSOs at high-redshift. HCN emission is the signature of dense molecular gas found in GMC cores, the actual sites of massive star formation. We have made the first detection of HCN in a submillimeter galaxy, SMM J16359+6612. The HCN emission is seen with a signal to noise ratio of 4$\\sigma$ and appears to be resolved as a double-source of $\\approxlt 2''$ separation. Our new HCN observations, combined with previous HCN detections and upper limits, show that the FIR/HCN ratios in these high redshift sources lie systematically above the FIR/HCN correlation established for nearby galaxies by about a factor of 2. Even considering the scatter in the data and the presence of upper limits, this is an indication that the FIR/HCN ratios for the early Universe molecular emission line galaxies (EMGs) deviate from the correlation that fits Galactic giant molecular cloud cores, normal spirals, LIRGs, and ULIRGs. This ...

  2. Dense Core Properties in the Infrared Dark Cloud G14.225-0.506 Revealed by ALMA

    Science.gov (United States)

    Ohashi, Satoshi; Sanhueza, Patricio; Chen, Huei-Ru Vivien; Zhang, Qizhou; Busquet, Gemma; Nakamura, Fumitaka; Palau, Aina; Tatematsu, Ken'ichi

    2016-12-01

    We have performed a dense core survey toward the Infrared Dark Cloud G14.225-0.506 at 3 mm continuum emission with the Atacama Large Millimeter/Submillimeter Array (ALMA). This survey covers the two hub-filament systems with an angular resolution of ˜ 3\\prime\\prime (˜0.03 pc). We identified 48 dense cores. 20 out of the 48 cores are protostellar due to their association with young stellar objects (YSOs) and/or X-ray point-sources, while the other 28 cores are likely prestellar and unrelated with known IR or X-ray emission. Using APEX 870 μm continuum emission, we also identified the 18 clumps hosting these cores. Through virial analysis using the ALMA N2H+ and VLA/Effelsberg NH3 molecular line data, we found a decreasing trend in the virial parameter with decreasing scales from filaments to clumps, and then to cores. The virial parameters of 0.1-1.3 in cores indicate that cores are likely undergoing dynamical collapse. The cumulative core mass function for the prestellar core candidates has a power law index of α =1.6, with masses ranging from 1.5 to 22 {M}⊙ . We find no massive prestellar or protostellar cores. Previous studies suggest that massive O-type stars have not been produced yet in this region. Therefore, high-mass stars should be formed in the prestellar cores by accreting a significant amount of gas from the surrounding medium. Another possibility is that low-mass YSOs become massive by accreting from their parent cores that are fed by filaments. These two possibilities might be consistent with the scenario of global hierarchical collapse.

  3. The Efficiency of Grain Alignment in Dense Interstellar Clouds: A Reassessment of Constraints from Near Infrared Polarization

    CERN Document Server

    Whittet, D C B; Lazarian, A; Hoang, Thiem

    2007-01-01

    A detailed study of interstellar polarization efficiency toward molecular clouds is used to attempt discrimination between grain alignment mechanisms in dense regions of the ISM. Background field stars are used to probe polarization efficiency in quiescent regions of dark clouds, yielding a dependence on visual extinction well-represented by a power law. No significant change in this behavior is observed in the transition region between the diffuse outer layers and dense inner regions of clouds, where icy mantles are formed, and we conclude that mantle formation has little or no effect on the efficiency of grain alignment. Young stellar objects generally exhibit greater polarization efficiency compared with field stars at comparable extinctions, displaying enhancements by factors of up to 6. Of the proposed alignment mechanisms, that based on radiative torques appears best able to explain the data. The attenuated external radiation field accounts for the observed polarization in quiescent regions, and radiati...

  4. Multi-line spectral imaging of dense cores in the Lupus molecular cloud

    CERN Document Server

    Benedettini, Milena; Burton, Micheal G; Viti, Serena; Molinari, Sergio; Caselli, Paola; Testi, Leonardo

    2011-01-01

    The molecular clouds Lupus 1, 3 and 4 were mapped with the Mopra telescope at 3 and 12 mm. Emission lines from high density molecular tracers were detected, i.e. NH$_3$ (1,1), NH$_3$ (2,2), N$_2$H$^+$ (1-0), HC$_3$N (3-2), HC$_3$N (10-9), CS (2-1), CH$_3$OH (2$_0-1_0$)A$^+$ and CH$_3$OH (2$_{-1}-1_{-1}$)E. Velocity gradients of more than 1 km s$^{-1}$ are present in Lupus 1 and 3 and multiple gas components are present in these clouds along some lines of sight. Lupus 1 is the cloud richest in high density cores, 8 cores were detected in it, 5 cores were detected in Lupus 3 and only 2 in Lupus 4. The intensity of the three species HC$_3$N, NH$_3$ and N$_2$H$^+$ changes significantly in the various cores: cores that are brighter in HC$_3$N are fainter or undetected in NH$_3$ and N$_2$H$^+$ and vice versa. We found that the column density ratios HC$_3$N/N$_2$H$^+$ and HC$_3$N/NH$_3$ change by one order of magnitude between the cores, indicating that also the chemical abundance of these species is different. The ...

  5. A Search for Small-Scale Clumpiness in Dense Cores of Molecular Clouds

    CERN Document Server

    Pirogov, L E; 10.1134/S1063772908120020

    2009-01-01

    We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high signal-to-noise ratios toward distinct positions in three selected objects in order to search for small-scale structure in molecular cloud cores associated with regions of high-mass star formation. In some cases, ripples were detected in the line profiles, which could be due to the presence of a large number of unresolved small clumps in the telescope beam. The number of clumps for regions with linear scales of ~0.2-0.5 pc is determined using an analytical model and detailed calculations for a clumpy cloud model; this number varies in the range: ~2 10^4-3 10^5, depending on the source. The clump densities range from ~3 10^5-10^6 cm^{-3}, and the sizes and volume filling factors of the clumps are ~(1-3) 10^{-3} pc and ~0.03-0.12. The clumps are surrounded by inter-clump gas with densities not lower than ~(2-7) 10^4 cm^{-3}. The internal thermal energy of the gas in the model clumps is much higher than their gravitational energy. Their mean ...

  6. Stability of Gas Clouds in Galactic Nuclei: An Extended Virial Theorem

    Science.gov (United States)

    Chen, Xian; Amaro-Seoane, Pau; Cuadra, Jorge

    2016-03-01

    Cold gas entering the central 1-102 pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulate a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest—in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.

  7. STABILITY OF GAS CLOUDS IN GALACTIC NUCLEI: AN EXTENDED VIRIAL THEOREM

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian; Cuadra, Jorge [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 782-0436 Santiago (Chile); Amaro-Seoane, Pau, E-mail: xchen@astro.puc.cl, E-mail: jcuadra@astro.puc.cl, E-mail: Pau.Amaro-Seoane@aei.mpg.de [Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam (Germany)

    2016-03-10

    Cold gas entering the central 1–10{sup 2} pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulate a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest—in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.

  8. On the origin of heterogeneous structure in dense gas-solid flows

    NARCIS (Netherlands)

    Li, J.; Kuipers, J.A.M.

    2005-01-01

    The formation and evolution of flow structures in dense gas-fluidized beds with ideal collisional particles (elastic and frictionless) are investigated numerically by employing the discrete particle method, with special focus on the effect of gas¿particle interaction. It is clarified that

  9. THE BOLOCAM GALACTIC PLANE SURVEY. XII. DISTANCE CATALOG EXPANSION USING KINEMATIC ISOLATION OF DENSE MOLECULAR CLOUD STRUCTURES WITH {sup 13}CO(1-0)

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason [CASA, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Rosolowsky, Erik [Department of Physics, 4-183 CCIS, University of Alberta, Edmonton, AB T6G 2E1 (Canada); Ginsburg, Adam [European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching bei München (Germany); Evans II, Neal J. [Department of Astronomy, University of Texas, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Battersby, Cara [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shirley, Yancy L.; Svoboda, Brian, E-mail: timothy.ellsworthbowers@colorado.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2015-01-20

    We present an expanded distance catalog for 1710 molecular cloud structures identified in the Bolocam Galactic Plane Survey (BGPS) version 2, representing a nearly threefold increase over the previous BGPS distance catalog. We additionally present a new method for incorporating extant data sets into our Bayesian distance probability density function (DPDF) methodology. To augment the dense-gas tracers (e.g., HCO{sup +}(3-2), NH{sub 3}(1,1)) used to derive line-of-sight velocities for kinematic distances, we utilize the Galactic Ring Survey (GRS) {sup 13}CO(1-0) data to morphologically extract velocities for BGPS sources. The outline of a BGPS source is used to select a region of the GRS {sup 13}CO data, along with a reference region to subtract enveloping diffuse emission, to produce a line profile of {sup 13}CO matched to the BGPS source. For objects with a HCO{sup +}(3-2) velocity, ≈95% of the new {sup 13}CO(1-0) velocities agree with that of the dense gas. A new prior DPDF for kinematic distance ambiguity (KDA) resolution, based on a validated formalism for associating molecular cloud structures with known objects from the literature, is presented. We demonstrate this prior using catalogs of masers with trigonometric parallaxes and H II regions with robust KDA resolutions. The distance catalog presented here contains well-constrained distance estimates for 20% of BGPS V2 sources, with typical distance uncertainties ≲ 0.5 kpc. Approximately 75% of the well-constrained sources lie within 6 kpc of the Sun, concentrated in the Scutum-Centaurus arm. Galactocentric positions of objects additionally trace out portions of the Sagittarius, Perseus, and Outer arms in the first and second Galactic quadrants, and we also find evidence for significant regions of interarm dense gas.

  10. Star formation in metal-poor gas clouds

    CERN Document Server

    Glover, Simon C O

    2012-01-01

    Observations of molecular clouds in metal-poor environments typically find that they have much higher star formation rates than one would expect based on their observed CO luminosities and the molecular gas masses that are inferred from them. This finding can be understood if one assumes that the conversion factor between CO luminosity and H2 mass is much larger in these low metallicity systems than in nearby molecular clouds. However, it is unclear whether this is the only factor at work, or whether the star formation rate of the clouds is directly sensitive to the metallicity of the gas. To investigate this, we have performed numerical simulations of the coupled dynamical, chemical and thermal evolution of model clouds with metallicities ranging from 0.01 Z_solar to Z_solar. We find that the star formation rate in our model clouds has little sensitivity to the metallicity. Reducing the metallicity of the gas by two orders of magnitude delays the onset of star formation in the clouds by no more than a cloud ...

  11. Dense Molecular Gas and Star Formation in Nearby Seyfert Galaxies

    CERN Document Server

    Kohno, K; Vila-Vilaro, B; Okumura, S K; Shibatsuka, T; Okiura, M; Ishizuki, S; Kawabe, R

    2002-01-01

    An imaging survey of CO(1-0), HCN(1-0), and HCO$^+$(1-0) lines in the centers of nearby Seyfert galaxies has been conducted using the Nobeyama Millimeter Array and the RAINBOW interferometer. Preliminary results reveal that 3 Seyferts out of 7 show abnormally high HCN/CO and HCN/HCO$^+$ ratios, which cannot occur even in nuclear starburst galaxies. We suggest that the enhanced HCN emission originated from X-ray irradiated dense obscuring tori, and that these molecular line ratios can be a new diagnostic tool to search for ``pure'' AGNs. According to our HCN diagram, we suggest that NGC 1068, NGC 1097, and NGC 5194 host ``pure'' AGNs, whereas Seyfert nuclei of NGC 3079, NGC 6764, and NGC 7469 may be ``composite'' in nature.

  12. Non-linear dense core formation in the dark cloud L1517

    Science.gov (United States)

    Heigl, S.; Burkert, A.; Hacar, A.

    2016-09-01

    We present a solution for the observed core fragmentation of filaments in the Taurus L1517 dark cloud which previously could not be explained (Hacar & Tafalla 2011). Core fragmentation is a vital step for the formation of stars. Observations suggest a connection to the filamentary structure of the cloud gas, but it remains unclear which process is responsible. We show that the gravitational instability process of an infinite, isothermal cylinder can account for the exhibited fragmentation under the assumption that the perturbation grows on the dominant wavelength. We use numerical simulations with the code RAMSES, estimate observed column densities and line-of-sight velocities, and compare them to the observations. A critical factor for the observed fragmentation is that cores grow by redistributing mass within the filament and thus the density between the cores decreases over the fragmentation process. This often leads to wrong dominant wavelength estimates, as it is strongly dependent on the initial central density. We argue that non-linear effects also play an important role on the evolution of the fragmentation. Once the density perturbation grows above the critical line-mass, non-linearity leads to an enhancement of the central core density in comparison to the analytical prediction. Choosing the correct initial conditions with perturbation strengths of around 20%, leads to inclination corrected line-of-sight velocities and central core densities within the observational measurement error in a realistic evolution time.

  13. Local instability signatures in ALMA observations of dense gas in NGC7469

    CERN Document Server

    Fathi, Kambiz; Romeo, Alessandro B; Martín, Sergio; Imanishi, Masatoshi; Hatziminaoglou, Evanthia; Aalto, Susanne; Espada, Daniel; Kohno, Kotaro; Krips, Melanie; Matsushita, Satoki; Meier, David S; Nakai, Naomasa; Terashima, Yuichi

    2015-01-01

    We present an unprecedented measurement of the disc stability and local instability scales in the luminous infrared Seyfert 1 host, NGC7469, based on ALMA observations of dense gas tracers and with a synthesized beam of 165 x 132 pc. While we confirm that non-circular motions are not significant in redistributing the dense interstellar gas in this galaxy, we find compelling evidence that the dense gas is a suitable tracer for studying the origin of its intensely high-mass star forming ring-like structure. Our derived disc stability parameter accounts for a thick disc structure and its value falls below unity at the radii in which intense star formation is found. Furthermore, we derive the characteristic instability scale and find a striking agreement between our measured scale of ~ 180 pc, and the typical sizes of individual complexes of young and massive star clusters seen in high-resolution images.

  14. High Temperature Electron Localization in dense He Gas

    CERN Document Server

    Borghesani, A F

    2002-01-01

    We report new accurate mesasurements of the mobility of excess electrons in high density Helium gas in extended ranges of temperature $[(26\\leq T\\leq 77) K ]$ and density $[ (0.05\\leq N\\leq 12.0) {atoms} \\cdot {nm}^{-3}]$ to ascertain the effect of temperature on the formation and dynamics of localized electron states. The main result of the experiment is that the formation of localized states essentially depends on the relative balance of fluid dilation energy, repulsive electron-atom interaction energy, and thermal energy. As a consequence, the onset of localization depends on the medium disorder through gas temperature and density. It appears that the transition from delocalized to localized states shifts to larger densities as the temperature is increased. This behavior can be understood in terms of a simple model of electron self-trapping in a spherically symmetric square well.

  15. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    Science.gov (United States)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (i.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  16. Stability of Gas Clouds in Galactic Nuclei: An Extended Virial Theorem

    CERN Document Server

    Chen, Xian; Cuadra, Jorge

    2015-01-01

    Cold gas entering the central $1$ to $10^2$ pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulate a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to include an external tidal field, crucial for the stability in the region of interest -- in dense star clusters, around SMBHs. We apply our extended Virial theorem to find the cor...

  17. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-Lived Radioisotopes with a Shock Wave. III. Rotating Three Dimensional Cloud Cores

    CERN Document Server

    Boss, Alan P

    2014-01-01

    A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure to undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, ...

  18. Dense Molecular Gas and H2O Maser Emission in Galaxies

    Indian Academy of Sciences (India)

    F. Huang; J. S. Zhang; R. M. Li; H. K. Li

    2014-09-01

    Extragalactic H2O masers have been found in dense gas circumstance in off-nuclear star formation regions or within parsecs of Active Galactic Nuclei (AGNs). HCN molecular (one of the best dense gas tracers) Emission has been detected in more than 60 galaxies. For HCN-detected galaxy sample, the relation of maser and gas emission was investigated here to identify physical observable properties that differentiate maser and non-maser galaxies. Our analysis results show that there is no significant difference on the infrared and gas emission between maser galaxies and galaxies without maser detection. For maser host HCN-galaxies, maser luminosity is found to be correlated to CO luminosity (a proxy of the total molecular gas) and HCN luminosity, i.e., kilomasers (H2O < 10⊙) with low maser luminosity having low gas emission luminosity, with respect to megamasers (H2O > 10⊙). For normalized maser and HCN luminosity (for removing distance effect), the correlation is still apparent. However, for normalized maser and CO luminosity, the correlation disappeared completely. Thus one proposition that the amount of dense molecular gas should be a good tracer of H2O maser emission can be made.

  19. Gas cloud G2 can illuminate the black hole population near the galactic center.

    Science.gov (United States)

    Bartos, Imre; Haiman, Zoltán; Kocsis, Bence; Márka, Szabolcs

    2013-05-31

    Galactic nuclei are expected to be densely populated with stellar- and intermediate-mass black holes. Exploring this population will have important consequences for the observation prospects of gravitational waves as well as understanding galactic evolution. The gas cloud G2 currently approaching Sgr A* provides an unprecedented opportunity to probe the black hole and neutron star population of the Galactic nucleus. We examine the possibility of a G2-cloud-black-hole encounter and its detectability with current x-ray satellites, such as Chandra and NuSTAR. We find that multiple encounters are likely to occur close to the pericenter, which may be detectable upon favorable circumstances. This opportunity provides an additional important science case for leading x-ray observatories to closely follow G2 on its way to the nucleus.

  20. Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas.

    Science.gov (United States)

    Mishima, Kenji

    2008-02-14

    Recent developments in biodegradable particle formation using supercritical fluids and dense gases have been reviewed with an emphasis on studies of micronizing and encapsulating poorly-soluble pharmaceuticals and gene. General review articles published in previous years have then been provided. A brief description of the operating principles of some types of particle formation processes is given. These include the rapid expansion of supercritical solutions (RESS), the particles from gas-saturated solution (PGSS) processes, the gas antisolvent process (GAS), and the supercritical antisolvent process (SAS). The papers have been reviewed under two groups, one involving the production of particles from pure biodegradable substances, and the other involving coating, capsule, and impregnation that contain active components, especially those that relate to pharmaceuticals. This review is a comprehensive review specifically focused on the formation of biodegradable particles for drug and gene delivery system using supercritical fluid and dense gas.

  1. Molecular cloud formation as seen in synthetic Hi and molecular gas observations

    CERN Document Server

    Heiner, Jonathan S; Ballesteros-Paredes, Javier

    2014-01-01

    We present synthetic Hi and CO observations of a simulation of decaying turbulence in the thermally bistable neutral medium. We first present the simulation, with clouds initially consisting of clustered clumps. Self-gravity causes these clump clusters to form more homogeneous dense clouds. We apply a simple radiative transfer algorithm, and defining every cell with > 1 as molecular. We then produce maps of Hi, CO-free molecular gas, and CO, and investigate the following aspects: i) The spatial distribution of the warm, cold, and molecular gas, finding the well-known layered structure, with molecular gas surrounded by cold Hi, surrounded by warm Hi. ii) The velocity of the various components, with atomic gas generally flowing towards the molecular gas, and that this motion is reflected in the frequently observed bimodal shape of the Hi profiles. This conclusion is tentative, because we do not include feedback. iii) The production of Hi self-absorption (HISA) profiles, and the correlation of HISA with molecul...

  2. Hot gas in the large magellanic cloud

    Directory of Open Access Journals (Sweden)

    You Hua Chu

    2000-01-01

    Full Text Available Debido a su cercanía, su orientación casi de frente y la baja extinción externa e interna, la Nube Mayor de Magallanes (LMC es un laboratorio excelente para estudiar la estructura física del medio interestelar (ISM. Estudios del gas de la LMC en el óptico y en el radio han mostrado estructuras interestelares que van de unos cuantos parsecs hasta más de 1000 pc. Los mosaicos hechos con ROSAT en rayos-X muestran la abundancia del gas caliente a 106 K, el cual a veces está rodeado de grandes cascarones, pero el resto no parece estar asociado a ninguna estructura interestelar visible. Las observaciones de rayos-X han sido analizadas para determinar las condiciones físicas del gas caliente. Para determinar su origen, la distribución del gas caliente puede ser comparada con la del gas más frío y con la de las estrellas masivas. Observaciones UV de líneas de absorción de iones de alta ionización como C IV, N V y O VI, pueden ser usadas para estudiar las interfases del gas a 106 K con el gas más frío y para dar restricciones sobre la localización de ambos a lo largo de la línea de visión.

  3. The Diamagnetic Phase Transition of Dense Electron Gas: Astrophysical Applications

    Science.gov (United States)

    Wang, Zhaojun; Lü, Guoliang; Zhu, Chunhua; Wu, Baoshan

    2016-10-01

    Neutron stars are ideal astrophysical laboratories for testing theories of the de Haas-van Alphen effect and diamagnetic phase transition which is associated with magnetic domain formation. The “magnetic interaction” between delocalized magnetic moments of electrons (the Shoenberg effect), can result in an effect of the diamagnetic phase transition into domains of alternating magnetization (Condon's domains). Associated with the domain formation are prominent magnetic field oscillation and anisotropic magnetic stress which may be large enough to fracture the crust of magnetar with a super-strong field. Even if the fracture is impossible as in “low-field” magnetar, the depinning phase transition of domain wall (DW) motion driven by low field rate (mainly due to the Hall effect) in the randomly perturbed crust can result in a catastrophically variation of magnetic field. This intermittent motion, similar to the avalanche process, makes the Hall effect be dissipative. These qualitative consequences about magnetized electron gas are consistent with observations of magnetar emission, and especially the threshold critical dynamics of driven DW can partially overcome the difficulties of “low-field” magnetar bursts and the heating mechanism of transient, or “outbursting” magnetar.

  4. Massive Gas Cloud Speeding Toward Collision With Milky Way

    Science.gov (United States)

    2008-01-01

    "The leading edge of this cloud is already interacting with gas from our Galaxy," said Felix J. Lockman, of the National Radio Astronomy Observatory (NRAO), leader of a team of astronomers who used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to study the object. The scientists presented their findings to the American Astronomical Society's meeting in Austin, Texas. The cloud, called Smith's Cloud, after the astronomer who discovered it in 1963, contains enough hydrogen to make a million stars like the Sun. Eleven thousand light-years long and 2,500 light-years wide, it is only 8,000 light-years from our Galaxy's disk. It is careening toward our Galaxy at more than 150 miles per second, aimed to strike the Milky Way's disk at an angle of about 45 degrees. "This is most likely a gas cloud left over from the formation of the Milky Way or gas stripped from a neighbor galaxy. When it hits, it could set off a tremendous burst of star formation. Many of those stars will be very massive, rushing through their lives quickly and exploding as supernovae. Over a few million years, it'll look like a celestial New Year's celebration, with huge firecrackers going off in that region of the Galaxy," Lockman said. When Smith's Cloud was first discovered, and for decades after, the available images did not have enough detail to show whether the cloud was part of the Milky Way, something being blown out of the Milky Way, or something falling in. Lockman and his colleagues used the GBT to make an extremely detailed study of hydrogen in Smith's Cloud. Their observations included nearly 40,000 individual pointings of the giant telescope to cover the cloud with unprecedented sensitivity and resolution. Smith's Cloud is about 15 degrees long in the sky, 30 times the width of the full moon. "If you could see this cloud with your eyes, it would be a very impressive sight in the night sky," Lockman said. "From tip to tail it would cover almost as much sky as

  5. Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy

    NARCIS (Netherlands)

    van der Hoef, Martin Anton; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    Dense gas-particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic and is related to the intrinsic complexities of these flows which are unfortunately not

  6. Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy

    NARCIS (Netherlands)

    Hoef, van der M.A.; Sint Annaland, van M.; Kuipers, J.A.M.

    2005-01-01

    Dense gas-particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic and is related to the intrinsic complexities of these flows which are unfortunately not

  7. Effect of pressure on gas-solid flow behavior in dense gas-fluidised beds: a discrete particle simulation study

    NARCIS (Netherlands)

    Li, Jie; Kuipers, J.A.M.

    2002-01-01

    A computational study has been carried out to assess the influence of pressure on the flow structures and regime transitions in dense gas-fluidized beds using the discrete particle simulation (DPS) approach. By employing particle level simulation, the particle–particle–fluid interactions were analyz

  8. The polytropic equation of state of primordial gas clouds

    NARCIS (Netherlands)

    Spaans, M; Silk, J

    2005-01-01

    The polytropic equation of state (EOS) of primordial gas clouds with modest enrichment is computed, motivated by the recent observations of very Fe-deficient stars, [Fe/H] similar to 10(-3.5) to 10(-5), such as HE 0107 -5240 and CS 29498-043. These stars are overabundant, relative to Fe, in C and O.

  9. gravitational collapse of a molecular gas cloud

    Directory of Open Access Journals (Sweden)

    Guillermo Arreaga-Garcia

    2008-01-01

    Full Text Available Presentamos los resultados de un conjunto de simulaciones num ericas dedi- cadas a estudiar el colapso gravitacional de una nube de gas interestelar, r gidamente rotante, aislada y esf ericamente sim etrica. Usamos una ecuaci on de estado barotr opica (beos por brevedad que depende de la densidad de la nube y que incluye una densidad cr tica como par ametro libre, crit. Durante el colapso tem- prano, cuando crit, la beos se comporta como una ecuaci on de estado del gas ideal. Para el colapso posterior, cuando crit, la beos incluye un t ermino adicional que toma en cuenta el calentamiento del gas debido a la contracci on gravi- tacional. Investigamos la ocurrencia de fragmentaci on r apida en la nube para lo cual usamos cuatro valores diferentes de la crit. Trabajamos con dos tipos de modelos de colapso, de acuerdo con el per l radial inicial de la densidad.

  10. The Bolocam Galactic Plane Survey. XII. Distance Catalog Expansion Using Kinematic Isolation of Dense Molecular Cloud Structures With 13CO(1-0)

    CERN Document Server

    Ellsworth-Bowers, Timothy P; Glenn, Jason; Ginsburg, Adam; Evans, Neal J; Battersby, Cara; Shirley, Yancy L; Svoboda, Brian

    2014-01-01

    We present an expanded distance catalog for 1,710 molecular cloud structures identified in the Bolocam Galactic Plane Survey (BGPS) version 2, representing a nearly threefold increase over the previous BGPS distance catalog. We additionally present a new method for incorporating extant data sets into our Bayesian distance probability density function (DPDF) methodology. To augment the dense-gas tracers (e.g., HCO+(3-2), NH3(1,1)) used to derive line-of-sight velocities for kinematic distances, we utilize the Galactic Ring Survey 13CO(1-0) data to morphologically extract velocities for BGPS sources. The outline of a BGPS source is used to select a region of the GRS 13CO data, along with a reference region to subtract enveloping diffuse emission, to produce a line profile of 13CO matched to the BGPS source. For objects with a HCO+(3-2) velocity, \\approx 95% of the new 13CO(1-0) velocities agree with that of the dense gas. A new prior DPDF for kinematic distance ambiguity (KDA) resolution, based on a validated f...

  11. Point Cloud Classification of Tesserae from Terrestrial Laser Data Combined with Dense Image Matching for Archaeological Information Extraction

    Science.gov (United States)

    Poux, F.; Neuville, R.; Billen, R.

    2017-08-01

    Reasoning from information extraction given by point cloud data mining allows contextual adaptation and fast decision making. However, to achieve this perceptive level, a point cloud must be semantically rich, retaining relevant information for the end user. This paper presents an automatic knowledge-based method for pre-processing multi-sensory data and classifying a hybrid point cloud from both terrestrial laser scanning and dense image matching. Using 18 features including sensor's biased data, each tessera in the high-density point cloud from the 3D captured complex mosaics of Germigny-des-prés (France) is segmented via a colour multi-scale abstraction-based featuring extracting connectivity. A 2D surface and outline polygon of each tessera is generated by a RANSAC plane extraction and convex hull fitting. Knowledge is then used to classify every tesserae based on their size, surface, shape, material properties and their neighbour's class. The detection and semantic enrichment method shows promising results of 94% correct semantization, a first step toward the creation of an archaeological smart point cloud.

  12. Variations in the Star Formation Efficiency of the Dense Molecular Gas across the Disks of Star-forming Galaxies

    NARCIS (Netherlands)

    Usero, Antonio; Leroy, Adam K.; Walter, Fabian; Schruba, Andreas; García-Burillo, Santiago; Sandstrom, Karin; Bigiel, Frank; Brinks, Elias; Kramer, Carsten; Rosolowsky, Erik; Schuster, Karl-Friedrich; de Blok, W. J. G.

    2015-01-01

    We present a new survey of HCN(1-0) emission, a tracer of dense molecular gas, focused on the little-explored regime of normal star-forming galaxy disks. Combining HCN, CO, and infrared (IR) emission, we investigate the role of dense gas in star formation, finding systematic variations in both the a

  13. Dense Molecular Gas Around Protostars and in Galactic Nuclei European Workshop on Astronomical Molecules 2004

    CERN Document Server

    Baan, W A; Langevelde, H J

    2004-01-01

    The phenomena observed in young stellar objects (YSO), circumstellar regions and extra-galactic nuclei show some similarity in their morphology, dynamical and physical processes, though they may differ in scale and energy. The European Workshop on Astronomical Molecules 2004 gave astronomers a unique opportunity to discuss the links among the observational results and to generate common interpretations of the phenomena in stars and galaxies, using the available diagnostic tools such as masers and dense molecular gas. Their theoretical understanding involves physics, numerical simulations and chemistry. Including a dozen introductory reviews, topics of papers in this book also cover: maser and dense gas diagnostics and related phenomena, evolution of circumstellar regions around protostars, evolution of circumnuclear regions of active galaxies, diagnostics of the circumnuclear gas in stars and galactic nuclei. This book summarizes our present knowledge in these topics, highlights major problems to be addressed...

  14. Dark Gas in the Translucent Cloud MBM 12

    Science.gov (United States)

    Abrahams, Ryan; Paglione, T.

    2013-01-01

    Gamma-ray studies of nearby molecular clouds show some residual emission after removing emission derived from spatial maps of HI and CO. This residual emission is called “dark gas” and it represents molecular hydrogen not traced by CO. We study the gamma-ray emission from MBM 12, a nearby translucent cloud. These clouds have very low column density which allows UV radiation from the interstellar radiation field to penetrate through the entire cloud. The UV irradiation creates large photodissociation regions in the cloud, where a significant amount of CO is dissociated into atomic carbon. The neutral and ionized atomic carbon should trace the molecular hydrogen in these regions. MBM 12 is free of known sources of high energy cosmic rays, such as OB associations or supernova remnants, and it is both close and extended enough that we expect it to be resolvable in gamma-rays with the Fermi LAT. This makes it an ideal laboratory to identify whether other molecular tracers, such as atomic carbon, can trace the dark gas. We compare the gamma-ray emission with spatial maps of HI, CO, dust, CI, and CII to try to identify the source of the dark gas.

  15. An LMT/AzTEC 1.1 mm Survey of Dense Cores in the Monoceros R2 Giant Molecular Cloud

    Science.gov (United States)

    Sokol, Alyssa D.; Gutermuth, Robert A.; Wilson, Grant; Offner, Stella; Heyer, Mark H.; Pokhrel, Riwaj; Gomez-Ruiz, Arturo; Luna, Abraham

    2017-01-01

    We present a census of dense gas cores in the MonR2 Giant Molecular Cloud with observations from the AzTEC instrument on the Large Millimeter Telescope (LMT) at λ = 1.1 mm. We detect 270 cores total, 84 with protostars, and 186 starless. AzTEC’s excellent 8‧‧resolution allows for the identification of discrete 1.1 mm sources about 0.05 × 0.05 pc in size in this distant (830 pc) cloud. After performing total flux and half-power area corrections for under-detected low S/N cores, we find that the cores have a median mass ˜ 2.8 M⊙ and a median deconvolved FWHM size ˜ 0.09 pc. 58% of the cores (154) lie above the Bonnor-Ebert mass versus size stability line for cores with T˜12K, suggesting they are unstable to further collapse. Bonnor-Ebert, Plummer-like, and Gaussian models are fit to 1-D and 2-D core radial column density profiles, with Plummer-like performing the best fit of the three models. We present a correlation between local core mass density and column density of gas (as traced by Herschel) characterized by a steep power-law that flattens above Σgas ~ 62 M⊙pc-2 (4.15 AV )smoothing over parsec scales. This core-gas correlation’s resemblance to the star-gas correlation for YSOs in Gutermuth et al. (2011) yields an approximate Mstar ˜ 0.4Mcore and indicates that stellar clustering is likely set by core clustering. Finally we derive an estimated global core formation efficiency that increases with increasing Herschel column density and asymptotically approaches CFE ˜ 0.4 for AV > 15.

  16. Properties of Diffuse Molecular Gas in the Magellanic Clouds

    Science.gov (United States)

    Welty, Daniel

    2012-10-01

    Studies of the interstellar medium in the lower-metallicity Magellanic Clouds explore somewhat different environmental conditions from those typically probed in our own Galactic ISM. Recent studies based on optical/UV spectra of SMC and LMC targets, for example, have revealed unexpected differences in gas-phase abundance patterns {for various atomic and molecular species} and have begun to explore the effects of differences in metallicity on the atomic-to-molecular transition and resulting molecular fraction f{H_2} - a key aspect in the formation of molecular clouds. We propose a more detailed study of the abundances, depletions, and local physical conditions characterizing diffuse molecular material in the Magellanic Clouds, using STIS E140H and E230M spectra of two sight lines with N{H_2} > 10^20 cm^-2 {both probing the outskirts of molecular clouds seen in CO emission}. The two STIS settings will include lines from various neutral and ionized species {with a range in depletion behavior}, several C I multiplets, and several bands of CO and C_2. By probing and characterizing the atomic-to-molecular transition in the Magellanic Clouds, we will address key issues regarding the effects of differences in metallicity on the relationship between the atomic and molecular gas in galaxies; on cloud structure, physical conditions, and diffuse cloud chemistry; and on the composition and properties of interstellar dust. The results of this project should thus aid in the interpretation of observations of atomic and molecular material in more distant low-metallicity systems.

  17. VLT Observations of the Gas Cloud G2

    Science.gov (United States)

    Gillessen, Stefan

    2014-01-01

    In 2011, we discovered a small, compact gas cloud G2 that is falling on a near-radial orbit toward the massive black hole in the Galactic Center. The orbit is well-constrained and the pericenter passage will occur in early 2014. Our data beautifully show that G2 gets tidally sheared apart due to the massive black hole's force. We expect that in addition to the tidal effects, hydrodynamics will become important when G2 collides with the hot ambient gas around Sgr A*. This might be a unique opportunity in the next years to observe how gas feeds a massive black hole.

  18. Direct numerical simulations of homogeneous isotropic turbulence in a dense gas

    Science.gov (United States)

    Giauque, A.; Corre, C.; Menghetti, M.

    2017-03-01

    A study of turbulence in BZT dense gas flows is performed using DNS. It is shown that for a large but realistic intensity, the turbulence in dense gas flows behaves in a highly compressible manner when the average thermodynamic state lies within the inversion region in which the gas fundamental derivative is negative. A close similarity is observed in the evolution of the kinetic energy when the initial turbulent Mach number and the Taylor Reynolds number are matched regardless of the Equation of State (EoS) considered. A large turbulent Mach number is yet more easily attained in dense gas flows lying in the inversion region because of the low speed of sound associated with it. In this case the turbulence shows a highly compressible evolution with periodic exchanges between the internal and kinetic energies. In order to assess the capabilities of currently available Large Eddy Simulation (LES) subgrid-scale models, a-posteriori tests are performed using the dynamic Smagorinsky model. Coherently with the hypothesis it relies on, the model perfectly captures the evolution of the kinetic energy when the turbulent Mach number is low enough. When using the perfect gas EoS at a higher turbulent Mach number the agreement is reasonable. Yet, when the average thermodynamic state lies within the inversion region and when using the thermal and caloric Martin&Hou EoS, the model is not able to capture the correct evolution of the kinetic energy. The results presented in this study call for a specific research effort directed towards the assessment and possibly the development of advanced subgrid-scale models for LES of turbulent dense gas flows.

  19. Characterizing the Transition from Diffuse Atomic to Dense Molecular Clouds in the Magellanic Clouds with [C ii], [C i], and CO

    Science.gov (United States)

    Pineda, Jorge L.; Langer, William D.; Goldsmith, Paul F.; Horiuchi, Shinji; Kuiper, Thomas B. H.; Muller, Erik; Hughes, Annie; Ott, Jürgen; Requena-Torres, Miguel A.; Velusamy, Thangasamy; Wong, Tony

    2017-04-01

    We present and analyze deep Herschel/HIFI observations of the [C ii] 158 μm, [C i] 609 μm, and [C i] 370 μm lines toward 54 lines of sight in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). These observations are used to determine the physical conditions of the line-emitting gas, which we use to study the transition from atomic to molecular gas and from C+ to C0 to CO in their low-metallicity environments. We trace gas with molecular fractions in the range 0.1UV absorption (f({{{H}}}2) 0.45 in both the LMC and the SMC. Ionized carbon is the dominant gas-phase form of this element that is associated with molecular gas, with C0 and CO representing a small fraction, implying that most (89% in the LMC and 77% in the SMC) of the molecular gas in our sample is CO-dark H2. The mean {X}{CO} conversion factors in our LMC and SMC sample are larger than the value typically found in the Milky Way. When applying a correction based on the filling factor of the CO emission, we find that the values of {X}{CO} in the LMC and SMC are closer to that in the Milky Way. The observed [C ii] intensity in our sample represents about 1% of the total far-infrared intensity from the lines of sight observed in both Magellanic clouds.

  20. Rapid formation of molecular clouds from turbulent atomic gas

    Science.gov (United States)

    Glover, S. C. O.; Mac Low, M.-M.

    The characteristic lifetimes of molecular clouds remain uncertain and a topic of frequent debate, with arguments having recently been advanced both in support of short-lived clouds, with lifetimes of a few Myr or less (see e.g. Elmegreen 2000; Hartmann et al. 2001) and in support of much longer-lived clouds, with lifetimes of the order of 10 Myr or more (see e.g. Tassis & Mouschovias, 2004; Goldsmith & Li, 2005). An argument that has previously been advanced in favour of longer lived clouds is the apparent difficulty involved in converting sufficient atomic hydrogen to molecular hydrogen within the short timescale required by the rapid cloud formation scenario. However, previous estimates of the time required for this conversion to occur have not taken into account the effects of the supersonic turbulence which is inferred to be present in the atomic gas. In this contribution, we present results from a set of high resolution three-dimensional simulations of turbulence in gravitationally unstable atomic gas. These simulations were performed using a modified version of the ZEUS-MP hydrodynamical code (Norman 2000), and include a detailed treatment of the thermal balance of the gas and of the formation of molecular hydrogen. The effects of photodissociation of H2 by the Galactic UV field are also included, with a simple local approximation used to compute the effects of H2 self-shielding. The results of our simulations demonstrate that H2 formation occurs rapidly in turbulent atomic gas. Starting from purely atomic gas, large quantities of molecular gas can be produced on timescales of less than a Myr, given turbulent velocity dispersions and magnetic field strengths consistent with observations. Moreover, as our simulations underestimate the effectiveness of H2 self-shielding and dust absorption, we can be confident that the molecular fractions which we compute are strong lower limits on the true values. The formation of large quantities of molecular gas on the

  1. Numerical evaluation of turbulence models for dense to dilute gas-solid flows in vertical conveyor

    Institute of Scientific and Technical Information of China (English)

    Salar Azizi; Dariush Mowla; Goodarz Ahmadi

    2012-01-01

    A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas-solid flows in vertical pneumatic conveyor.An axisymmetric 2-dimensional,vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain,same to that used for experimentation in the literature.The chosen particles are spherical,of diameter 1.91 mm and density 2500 kg/m3.Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles.Flow regimes transition and pressure drop were predicted.Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe.It was found that the voidage has a minimum,and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime.Slug length and pressure fluctuation reduction were predicted with increasing gas velocity,too.It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.

  2. Variations in the Star Formation Efficiency of the Dense Molecular Gas across the Disks of Star-Forming Galaxies

    CERN Document Server

    Usero, Antonio; Walter, Fabian; Schruba, Andreas; García-Burillo, Santiago; Sandstrom, Karin; Bigiel, Frank; Brinks, Elias; Kramer, Carsten; Rosolowsky, Erik; Schuster, Karl-Friedrich; de Blok, W J G

    2015-01-01

    We present a new survey of HCN(1-0) emission, a tracer of dense molecular gas, focused on the little-explored regime of normal star-forming galaxy disks. Combining HCN, CO, and infrared (IR) emission, we investigate the role of dense gas in Star Formation (SF), finding systematic variations in both the apparent dense gas fraction and the apparent SF efficiency (SFE) of dense gas. The latter may be unexpected, given the popularity of gas density threshold models to explain SF scaling relations. We used the IRAM 30-m telescope to observe HCN(1-0) across 29 nearby disk galaxies whose CO(2-1) emission has previously been mapped by the HERACLES survey. Because our observations span a range of galactocentric radii, we are able to investigate the properties of the dense gas as a function of local conditions. We focus on how the IR/CO, HCN/CO, and IR/HCN ratios (observational cognates of the SFE, dense gas fraction, and dense gas SFE) depend on the stellar surface density and the molecular/atomic ratio. The HCN/CO ra...

  3. Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit

    Science.gov (United States)

    Dornheim, Tobias; Groth, Simon; Sjostrom, Travis; Malone, Fionn D.; Foulkes, W. M. C.; Bonitz, Michael

    2016-10-01

    We perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N =1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy Fxc of the macroscopic electron gas with an unprecedented accuracy of |Δ V |/|V |,|Δ Fxc|/|F |xc˜10-3 . A comparison of our new data to the recent parametrization of Fxc by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.

  4. CARMA Large Area Star Formation Survey: project overview with analysis of dense gas structure and kinematics in Barnard 1

    Energy Technology Data Exchange (ETDEWEB)

    Storm, Shaye; Mundy, Lee G.; Lee, Katherine I.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu; Gong, Hao [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Rosolowsky, Erik [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Arce, Héctor G.; Plunkett, Adele L. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Ostriker, Eve C. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Volgenau, Nikolaus H. [Owens Valley Radio Observatory, MC 105-24 OVRO, Pasadena, CA 91125 (United States); Shirley, Yancy L. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Kwon, Woojin [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); Isella, Andrea, E-mail: sstorm@astro.umd.edu [Astronomy Department, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125 (United States); and others

    2014-10-20

    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N{sub 2}H{sup +}, HCO{sup +}, and HCN (J = 1 → 0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7'' and spectral resolution near 0.16 km s{sup –1}. We imaged ∼150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N{sub 2}H{sup +} shows the strongest emission, with morphology similar to cool dust in the region, while HCO{sup +} and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N{sub 2}H{sup +} velocity dispersions ranging from ∼0.05 to 0.50 km s{sup –1} across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new, non-binary dendrogram algorithm is used to analyze dense gas structures in the N{sub 2}H{sup +} position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01 to 0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that overdense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.

  5. A dense molecular cloud in the OMC-1/OMC-2 region

    Science.gov (United States)

    Kutner, M. L.; Evans, N. J., II; Tucker, K. D.

    1976-01-01

    H2CO emission at 2 mm is seen over a region 30 arcmin in extent which includes OMC-1 and OMC-2. The mass of this cloud, estimated from H2CO and CO observations, is about 7000 solar masses. The velocity pattern is one of rotation, with evidence for fragmentation into two or three distinct condensations. A sharp boundary to the molecular cloud is observed at the edge of the H II region in NGC 1977. It appears likely that NGC 1977 is a condensation at the northern end of the cloud, complementary to the Orion Nebula at the southern end.

  6. A dense molecular cloud in the OMC-1/OMC-2 region

    Science.gov (United States)

    Kutner, M. L.; Evans, N. J., II; Tucker, K. D.

    1976-01-01

    H2CO emission at 2 mm is seen over a region 30 arcmin in extent which includes OMC-1 and OMC-2. The mass of this cloud, estimated from H2CO and CO observations, is about 7000 solar masses. The velocity pattern is one of rotation, with evidence for fragmentation into two or three distinct condensations. A sharp boundary to the molecular cloud is observed at the edge of the H II region in NGC 1977. It appears likely that NGC 1977 is a condensation at the northern end of the cloud, complementary to the Orion Nebula at the southern end.

  7. Boundary conditions for the paleoenvironment: Chemical and Physical Processes in dense interstellar clouds

    Science.gov (United States)

    Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.

    1986-01-01

    The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.

  8. Laser cooling of dense atomic gases by collisional redistribution of radiation and spectroscopy of molecular dimers in a dense buffer gas environment

    CERN Document Server

    Saß, Anne; Christopoulos, Stavros; Knicker, Katharina; Moroshkin, Peter; Weitz, Martin

    2014-01-01

    We study laser cooling of atomic gases by collisional redistribution of fluorescence. In a high pressure buffer gas regime, frequent collisions perturb the energy levels of alkali atoms, which allows for the absorption of a far red detuned irradiated laser beam. Subsequent spontaneous decay occurs close to the unperturbed resonance frequency, leading to a cooling of the dense gas mixture by redistribution of fluorescence. Thermal deflection spectroscopy indicates large relative temperature changes down to and even below room temperature starting from an initial cell temperature near 700 K. We are currently performing a detailed analysis of the temperature distribution in the cell. As we expect this cooling technique to work also for molecular-noble gas mixtures, we also present initial spectroscopic experiments on alkali-dimers in a dense buffer gas surrounding.

  9. Dense Gas in Nearby Galaxies: XVII. The Distribution of Ammonia in NGC253, Maffei2 and IC342

    CERN Document Server

    Lebron, M; Mauersberger, R; Henkel, C; Peck, A B; Menten, K M; Tarchi, A; Weiss, A

    2011-01-01

    The central few 100 pc of galaxies often contain large amounts of molecular gas. The chemical and physical properties of these extragalactic star formation regions differ from those in galactic disks, but are poorly constrained. This study aims to develop a better knowledge of the spatial distribution and kinetic temperature of the dense neutral gas associated with the nuclear regions of three prototypical spiral galaxies, NGC253, IC342, and Maffei2. VLA CnD and D configuration measurements have been made of three ammonia (NH3) inversion transitions. The (J,K)=(1,1) and (2,2) transitions of NH3 were imaged toward IC342 and Maffei2. The (3,3) transition was imaged toward NGC253. The entire flux obtained from single-antenna measurements is recovered for all three galaxies observed. Derived lower limits to the kinetic temperatures determined for the giant molecular clouds in the centers of these galaxies are between 25 and 50K. There is good agreement between the distributions of NH3 and other H2 tracers, such a...

  10. CO/H2, C/CO, OH/CO, and OH/O2 in dense interstellar gas: from high ionization to low metallicity

    Science.gov (United States)

    Bialy, Shmuel; Sternberg, Amiel

    2015-07-01

    We present numerical computations and analytic scaling relations for interstellar ion-molecule gas-phase chemistry down to very low metallicities (10-3 × solar), and/or up to high driving ionization rates. Relevant environments include the cool interstellar medium (ISM) in low-metallicity dwarf galaxies, early enriched clouds at the reionization and Pop-II star formation era, and in dense cold gas exposed to intense X-ray or cosmic ray sources. We focus on the behaviour for H2, CO, CH, OH, H2O and O2, at gas temperatures ˜100 K, characteristic of a cooled ISM at low metallicities. We consider shielded or partially shielded one-zone gas parcels, and solve the gas-phase chemical rate equations for the steady-state `metal-molecule abundances for a wide range of ionization parameters, ζ/n, and metallicties, Z '. We find that the OH abundances are always maximal near the H-to-H2 conversion points, and that large OH abundances persist at very low metallicities even when the hydrogen is predominantly atomic. We study the OH/O2, C/CO and OH/CO abundance ratios, from large to small, as functions of ζ/n and Z '. Much of the cold dense ISM for the Pop-II generation may have been OH-dominated and atomic rather than CO-dominated and molecular.

  11. Kondo cloud of single heavy quark in cold and dense matter

    CERN Document Server

    Yasui, Shigehiro

    2016-01-01

    The Kondo effect is a universal phenomena observed in a variety of fermion systems containing a heavy impurity particle whose interaction is governed by the non-Abelian interaction. At extremely high density, I study the Kondo effect by color exchange in quark matter containing a single heavy (charm or bottom) quark as an impurity particle. To obtain the ground state with the Kondo effect, I introduce the condensate mixing the light quark and the heavy quark (Kondo cloud) in the mean-field approximation. I estimate the energy gain by formation of the Kondo cloud, and present that the Kondo cloud exhibits the resonant structure. I also evaluate the scattering cross section for the light quark and the heavy quark, and discuss its effect to the finite size quark matter.

  12. Kondo cloud of single heavy quark in cold and dense matter

    Science.gov (United States)

    Yasui, Shigehiro

    2017-10-01

    The Kondo effect is a universal phenomena observed in a variety of fermion systems containing a heavy impurity particle whose interaction is governed by the non-Abelian interaction. At extremely high density, I study the Kondo effect by color exchange in quark matter containing a single heavy (charm or bottom) quark as an impurity particle. To obtain the ground state with the Kondo effect, I introduce the condensate mixing the light quark and the heavy quark (Kondo cloud) in the mean-field approximation. I estimate the energy gain by formation of the Kondo cloud, and present that the Kondo cloud exhibits the resonant structure. I also evaluate the scattering cross section for the light quark and the heavy quark, and discuss its effect to the finite size quark matter.

  13. Evolution of binary seeds in collapsing protostellar gas clouds

    CERN Document Server

    Satsuka, Tatsuya; Tanaka, Suguru; Nagamine, Kentaro

    2016-01-01

    We perform three dimensional smoothed particle hydrodynamics (SPH) simulations of gas accretion onto the seeds of binary stars to investigate their short-term evolution. Our simulation setup is more realistic compared to the previous works by taking into account of dynamically evolving envelope with non-uniform distribution of gas density and angular momentum of accreting flow. Our initial condition includes a seed binary and a surrounding gas envelope, modelling the phase of core collapse of gas cloud when the fragmentation has already occurred. We assume that the seed binary has no eccentricity and no growth by gas accretion. The envelope is assumed to be an isothermal gas with no self-gravity. We run multiple simulations with different values of initial mass ratio $q_0$ (the ratio of secondary over primary mass) and gas temperature, and find a critical value of $q_{\\rm c} = 0.25$ which distinguishes the later evolution of mass ratio $q$ as a function of time. If $q_0 \\ga q_{\\rm c}$, the secondary seed grow...

  14. COMPUTATIONAL FLUID DYNAMICS FOR DENSE GAS-SOLID FLUIDIZED BEDS: A MULTI-SCALE MODELING STRATEGY

    Institute of Scientific and Technical Information of China (English)

    M.; A.; van; der; Hoef; M.; van; Sint; Annaland; J.; A.; M.; Kuipers

    2005-01-01

    Dense gas-particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic and is related to the intrinsic complexities of these flows which are unfortunately not yet fully understood despite significant efforts made in both academic and industrial research laboratories. In dense gas-particle flows both (effective) fluid-particle and (dissipative) particle-particle interactions need to be accounted for because these phenomena to a large extent govern the prevailing flow phenomena, i.e. the formation and evolution of heterogeneous structures. These structures have significant impact on the quality of the gas-solid contact and as a direct consequence thereof strongly affect the performance of the process. Due to the inherent complexity of dense gas-particles flows, we have adopted a multi-scale modeling approach in which both fluid-particle and particle-particle interactions can be properly accounted for. The idea is essentially that fundamental models, taking into account the relevant details of fluid-particle (lattice Boltzmann model) and particle-particle (discrete particle model) interactions, are used to develop closure laws to feed continuum models which can be used to compute the flow structures on a much larger (industrial) scale. Our multi-scale approach (see Fig. 1 ) involves the lattice Boltzmann model, the discrete particle model, the continuum model based on the kinetic theory of granular flow,and the discrete bubble model. In this paper we give an overview of the multi-scale modeling strategy, accompanied by illustrative computational results for bubble formation. In addition, areas which need substantial further attention will be highlighted.

  15. An origin of arc structures deeply embedded in dense molecular cloud cores

    CERN Document Server

    Matsumoto, Tomoaki; Tokuda, Kazuki; Inutsuka, Shu-ichiro

    2015-01-01

    We investigated the formation of arc-like structures in the infalling envelope around protostars, motivated by the recent ALMA observations of the high-density molecular cloud core, MC27/L1527F. We performed self-gravitational hydrodynamical numerical simulations with an adaptive mesh refinement code. A filamentary cloud with a 0.1~pc width fragments into cloud cores because of perturbations due to weak turbulence. The cloud core undergoes gravitational collapse to form multiple protostars, and gravitational torque from the orbiting protostars produces arc structures extending up to a 1000~AU scale. As well as on a spatial extent, the velocity ranges of the arc structures, $\\sim0.5\\,\\mathrm{km\\,s}^{-1}$, are in agreement with the ALMA observations. We also found that circumstellar disks are often misaligned in triple system. The misalignment is caused by the tidal interaction between the protostars when they undergo close encounters because of a highly eccentric orbit of the tight binary pair.

  16. The Clump Mass Function of the Dense Clouds in the Carina Nebula Complex

    CERN Document Server

    Pekruhl, Stephanie; Schuller, Frederic; Menten, Karl

    2012-01-01

    We want to characterize the properties of the cold dust clumps in the Carina Nebula Complex (CNC), which shows a very high level of massive star feedback. We derive the Clump Mass Function (ClMF), explore the reliability of different clump extraction algorithms, and investigate the influence of the temperatures within the clouds on the resulting shape of the ClMF. We analyze a 1.25x1.25 deg^2 wide-field sub-mm map obtained with LABOCA (APEX), which provides the first spatially complete survey of the clouds in the CNC. We use the three clump-finding algorithms CLUMPFIND (CF), GAUSSCLUMPS (GC) and SExtractor (SE) to identify individual clumps and determine their total fluxes. In addition to assuming a common `typical' temperature for all clouds, we also employ an empirical relation between cloud column densities and temperature to determine an estimate of the individual clump temperatures, and use this to determine individual clump masses. While the ClMF based on the CF extraction is very well described by a po...

  17. D Point Cloud Model Colorization by Dense Registration of Digital Images

    Science.gov (United States)

    Crombez, N.; Caron, G.; Mouaddib, E.

    2015-02-01

    Architectural heritage is a historic and artistic property which has to be protected, preserved, restored and must be shown to the public. Modern tools like 3D laser scanners are more and more used in heritage documentation. Most of the time, the 3D laser scanner is completed by a digital camera which is used to enrich the accurate geometric informations with the scanned objects colors. However, the photometric quality of the acquired point clouds is generally rather low because of several problems presented below. We propose an accurate method for registering digital images acquired from any viewpoints on point clouds which is a crucial step for a good colorization by colors projection. We express this image-to-geometry registration as a pose estimation problem. The camera pose is computed using the entire images intensities under a photometric visual and virtual servoing (VVS) framework. The camera extrinsic and intrinsic parameters are automatically estimated. Because we estimates the intrinsic parameters we do not need any informations about the camera which took the used digital image. Finally, when the point cloud model and the digital image are correctly registered, we project the 3D model in the digital image frame and assign new colors to the visible points. The performance of the approach is proven in simulation and real experiments on indoor and outdoor datasets of the cathedral of Amiens, which highlight the success of our method, leading to point clouds with better photometric quality and resolution.

  18. Spinning gas clouds: III. Solutions of minimal energy with precession

    CERN Document Server

    Gaffet, B

    2003-01-01

    We consider the model of rotating and expanding gas cloud originally proposed by Ovsiannikov (1956 Dokl. Akad. Nauk SSSR 111 47) and Dyson (1968 J. Math. Mech. 18 91). Under the restricting assumptions of an adiabatic index gamma = 5/3 and of vorticity-free motion, this has been shown (Gaffet 2001 J. Phys. A: Math. Gen. 34 2097) to be a Liouville integrable Hamiltonian system. In the present work, we consider the precessing solutions where the cloud does not retain a fixed rotation axis. Choosing for definiteness a particular set of constants of motion (which corresponds to a minimum of the energy), we show that a separation of variables occurs, and that the equations of motion are reducible to the form of a Riccati equation, whose integration merely involves an elliptic integral.

  19. Spinning gas clouds: III. Solutions of minimal energy with precession

    Science.gov (United States)

    Gaffet, B.

    2003-05-01

    We consider the model of rotating and expanding gas cloud originally proposed by Ovsiannikov (1956 Dokl. Akad. Nauk SSSR 111 47) and Dyson (1968 J. Math. Mech. 18 91). Under the restricting assumptions of an adiabatic index gamma = 5/3 and of vorticity-free motion, this has been shown (Gaffet 2001 J. Phys. A: Math. Gen. 34 2097) to be a Liouville integrable Hamiltonian system. In the present work, we consider the precessing solutions where the cloud does not retain a fixed rotation axis. Choosing for definiteness a particular set of constants of motion (which corresponds to a minimum of the energy), we show that a separation of variables occurs, and that the equations of motion are reducible to the form of a Riccati equation, whose integration merely involves an elliptic integral.

  20. A dense gas of laser-cooled atoms for hybrid atom-ion trapping

    Science.gov (United States)

    Höltkemeier, Bastian; Glässel, Julian; López-Carrera, Henry; Weidemüller, Matthias

    2017-01-01

    We describe the realization of a dark spontaneous-force trap of rubidium atoms. The atoms are loaded from a beam provided by a two-dimensional magneto-optical trap yielding a capture efficiency of 75%. The dense and cold atomic sample is characterized by saturated absorption imaging. Up to 10^9 atoms are captured with a loading rate of 3× 10^9 atoms/s into a cloud at a temperature of 250 μK with the density exceeding 10^{11} atoms/cm^3. Under steady-state conditions, more than 90% of the atoms can be prepared into the absolute atomic ground state, which provides favorable conditions for the investigation of sympathetic cooling of ions in a hybrid atom-ion trap.

  1. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-Lived Radioisotopes with a Shock Wave. IV. Effects of Rotational Axis Orientation

    CERN Document Server

    Boss, Alan P

    2015-01-01

    Both astronomical observations of the interaction of Type II supernova remnants (SNR) with dense interstellar clouds as well as cosmochemical studies of the abundances of daughter products of short-lived radioisotopes (SLRIs) formed by supernova nucleosynthesis support the hypothesis that the Solar Systems SLRIs may have been derived from a supernova. This paper continues a series devoted to examining whether such a shock wave could have triggered the dynamical collapse of a dense, presolar cloud core and simultaneously injected sufficient abundances of SLRIs to explain the cosmochemical evidence. Here we examine the effects of shock waves striking clouds whose spin axes are oriented perpendicular, rather than parallel, to the direction of propagation of the shock front. The models start with 2.2 solar mass cloud cores and shock speeds of 20 or 40 km/sec. Central protostars and protoplanetary disks form in all models, though with disk spin axes aligned somewhat randomly. The disks derive most of their angular...

  2. HUBBLE SPACE TELESCOPE AND HI IMAGING OF STRONG RAM PRESSURE STRIPPING IN THE COMA SPIRAL NGC 4921: DENSE CLOUD DECOUPLING AND EVIDENCE FOR MAGNETIC BINDING IN THE ISM

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, Jeffrey D. P.; Abramson, Anne [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Bravo-Alfaro, Hector, E-mail: jeff.kenney@yale.edu [Institut d’Astrophysique de Paris, CNRS/UPMC, 98bis, Boulevard Arago F-75014, Paris (France)

    2015-08-15

    Remarkable dust extinction features in the deep Hubble Space Telescope (HST) V and I images of the face-on Coma cluster spiral galaxy NGC 4921 show in unprecedented ways how ram pressure strips the ISM from the disk of a spiral galaxy. New VLA HI maps show a truncated and highly asymmetric HI disk with a compressed HI distribution in the NW, providing evidence for ram pressure acting from the NW. Where the HI distribution is truncated in the NW region, HST images show a well-defined, continuous front of dust that extends over 90° and 20 kpc. This dust front separates the dusty from dust-free regions of the galaxy, and we interpret it as galaxy ISM swept up near the leading side of the ICM–ISM interaction. We identify and characterize 100 pc–1 kpc scale substructure within this dust front caused by ram pressure, including head–tail filaments, C-shaped filaments, and long smooth dust fronts. The morphology of these features strongly suggests that dense gas clouds partially decouple from surrounding lower density gas during stripping, but decoupling is inhibited, possibly by magnetic fields that link and bind distant parts of the ISM.

  3. SEGMENTATION AND CLASSIFICATION OF POINT CLOUDS FROM DENSE AERIAL IMAGE MATCHING

    Directory of Open Access Journals (Sweden)

    Mohammad Omidalizarandi

    2013-08-01

    Full Text Available In the recent years, 3D city reconstruction is one of the active researches in the field of photogrammetry. The goal of this work is to improve and extend surface growing based segmentation in the X-Y-Z image in the form of 3D structured data with combination of spectral information of RGB and grayscale image to extract building roofs, streets and vegetation. In order to process 3D point clouds, hybrid segmentation is carried out in both object space and image space. Our experiments on three case studies verify that updating plane parameters and robust least squares plane fitting improves the results of building extraction especially in case of low accurate point clouds. In addition, region growing in image space has been derived to the fact that grayscale image is more flexible than RGB image and results in more realistic building roofs.

  4. Hot and Dense Hadron Gas (HG): A New Excluded-volume approach

    CERN Document Server

    Tiwari, S K

    2013-01-01

    We formulate a thermodynamically consistent equation of state (EOS), based on excluded-volume approach, for a hot, dense hadron gas (HG). We calculate various thermodynamical quantities of HG and various hadron ratios and compare our model results with the results of other excluded-volume models and experimental data. We also calculate various transport coefficients such as $\\eta/s$ etc. and compare them with other HG model results. Furthermore, we test the validity of our model in getting the rapidity spectra of various hadrons and the effect of flow on them is investigated by matching our predictions with the experimental data.

  5. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds.

    Science.gov (United States)

    Hamraz, Hamid; Contreras, Marco A; Zhang, Jun

    2017-07-28

    Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis.

  6. CARMA Large Area Star Formation Survey: Project Overview with Analysis of Dense Gas Structure and Kinematics in Barnard 1

    CERN Document Server

    Storm, S; Fernández-López, M; Lee, K I; Looney, L W; Teuben, P J; Rosolowsky, E; Arce, H G; Ostriker, E C; Segura-Cox, D; Pound, M W; Salter, D M; Volgenau, N H; Shirley, Y L; Chen, C; Gong, H; Plunkett, A L; Tobin, J J; Kwon, W; Isella, A; Kauffmann, J; Tassis, K; Crutcher, R M; Gammie, C F; Testi, L

    2014-01-01

    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N2H+, HCO+, and HCN (J=1-0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7" and spectral resolution near 0.16 km/s. We imaged ~150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N2H+ shows the strongest emission, with morphology similar to cool dust in the region, while HCO+ and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N2H+ velocity dispersions ranging from ~0.05-0.50 km/s across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new non-binary dendrogram algorithm is used to analyze dense gas structures in the N2H+ position...

  7. Study of the dense molecular gas surrounding the "Extended Green Object" G35.03+0.35

    CERN Document Server

    Paron, S; Petriella, A; Rubio, M; Giacani, E; Dubner, G

    2011-01-01

    We present the results of a new study of the molecular gas associated with the "extended green object" (EGO) G35.03+0.35. This object, very likely a massive young stellar object, is embedded in a molecular cloud at the border of an HII region. The observations were performed with the Atacama Submillimeter Telescope Experiment (ASTE) in the 12CO and 13CO J=3-2, HCO+ J=4-3, and CS J=7-6 lines with an angular resolution about 22". From the 12CO J=3-2 line we discovered outflowing activity of the massive young stellar object. We obtained a total mass and kinetic energy for the outflows of 30 M_sun and 3000 M_sun (km/s)^2 (6 x 10^{46} ergs), respectively. We discovered a HCO+ and CS clump towards the EGO G35.03+0.35. The detection of these molecular species supports the presence of molecular outflows and a dense molecular envelope with temperatures and densities above 40 K and 6 x 10^{6} cm^{-3}, respectively. Using public near- and mid-IR, and sub-mm data we investigated the spectral energy distribution confirmin...

  8. Gas suspension flows of a moderately dense binary mixture of solid particles in vertical tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zamankhan, P.; Huotari, J. [VTT Energy, Jyvaeskylae (Finland). Combustion and Conversion Lab.

    1996-12-01

    The turbulent, steady, fully-developed flow of a moderately dense (solid volume faction >>0.001) binary mixture of spherical particles in a gaseous carrier is investigated for the case of flow in a vertical riser. The suspended particles are considered to be in turbulent motion, driven by random aerodynamic forces acting between the particle and the gaseous carrier as well as particle-particle interactive forces. A model is constructed based on the combination of the time-averaged after volume-averaged conservation equations of mass, momentum and mechanical energy of the gas phase in the continuum theory and the corresponding equations for the solid particles obtained using the recently developed Enskog theory for dense multi-component mixtures of slightly inelastic spherical particles. The model properly takes into account the contributions of particle-particle collisions, as well as the fluid-dynamic fluctuating forces on individual particles. To demonstrate the validity of this approach, the fully-developed steady-state mean velocity and concentration distributions of a moderately dense binary mixture of solid particles in a turbulent vertical flow calculated by the present model are compared with available experimental measurements. The results provide a qualitative description of the experimentally observed motion of coarse particles in a fast bed of fine solids. (author)

  9. The Green Bank Telescope Maps the Dense, Star-Forming Gas in the Nearby Starburst Galaxy M82

    CERN Document Server

    Kepley, Amanda A; Frayer, David; Usero, Antonio; Marvil, Josh; Walter, Fabian

    2013-01-01

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO+. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope -- the largest single-dish millimeter radio telescope -- for mapping dense gas in galaxies by presenting the most sensitive maps yet of HCN and HCO+ in the starburst galaxy M82. The HCN and HCO+ in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO+ emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and...

  10. The clump mass function of the dense clouds in the Carina nebula complex

    Science.gov (United States)

    Pekruhl, S.; Preibisch, T.; Schuller, F.; Menten, K.

    2013-02-01

    Context. The question how the initial conditions in a star-forming region affect the resulting mass function of the forming stars is one of the most fundamental open topics in star formation theory. Aims: We want to characterize the properties of the cold dust clumps in the Carina nebula complex, which is one of the most massive star forming regions in our Galaxy and shows a very high level of massive star feedback. We derive the clump mass function (ClMF), explore the reliability of different clump extraction algorithms, and investigate the influence of the temperatures within the clouds on the resulting shape of the ClMF. Methods: We analyze a 1.25° × 1.25° wide-field submillimeter map obtained with LABOCA at the APEX telescope, which provides the first spatially complete survey of the clouds in the Carina nebula complex. We use the three clump-finding algorithms CLUMPFIND, GAUSSCLUMPS and SExtractor to identify individual clumps and determine their total fluxes. In addition to assuming a common "typical" temperature for all clouds, we also employ an empirical relation between cloud column densities and temperature to determine an estimate of the individual clump temperatures, and use this to determine individual clump masses. Results: We find that the ClMFs resulting from the different extraction methods show considerable differences in their shape. While the ClMF based on the CLUMPFIND extraction is very well described by a power-law (for clump masses well above the completeness limit), the ClMFs based on the extractions with GAUSSCLUMPS and SExtractor are better represented by a log-normal distribution. We also find that the use of individual clump temperatures leads to a shallower ClMF slope than the (often used) assumption of a common temperature (e.g. 20 K) of all clumps. Conclusions: The power-law of dN/dM ∝ M-1.95 we find for the CLUMPFIND sample is in good agreement with ClMF slopes found in previous studies of the ClMFs of other regions. The

  11. CARMA Large Area Star Formation Survey: Structure and Kinematics of Dense Gas in Serpens Main

    CERN Document Server

    Lee, Katherine I; Storm, Shaye; Looney, Leslie W; Mundy, Lee G; Segura-Cox, Dominique; Teuben, Peter; Rosolowsky, Erik; Arce, Hector G; Ostriker, Eve C; Shirley, Yancy L; Kwon, Woojin; Kauffmann, Jens; Tobin, John J; Plunkett, Adele L; Pound, Marc W; Salter, Demerese M; Volgenau, N H; Chen, Che-Yu; Tassis, Konstantinos; Isella, Andrea; Crutcher, Richard M; Gammie, Charles F; Testi, Leonardo

    2014-01-01

    We present observations of N2H+(1-0), HCO+(1-0), and HCN(1-0) toward the Serpens Main molecular cloud from the CARMA Large Area Star Formation Survey (CLASSy). We mapped 150 square arcminutes of Serpens Main with an angular resolution of 7 arcsecs. The gas emission is concentrated in two subclusters (the NW and SE subclusters). The SE subcluster has more prominent filamentary structures and more complicated kinematics compared to the NW subcluster. The majority of gas in the two subclusters has subsonic to sonic velocity dispersions. We applied a dendrogram technique with N2H+(1-0) to study the gas structures; the SE subcluster has a higher degree of hierarchy than the NW subcluster. Combining the dendrogram and line fitting analyses reveals two distinct relations: a flat relation between nonthermal velocity dispersion and size, and a positive correlation between variation in velocity centroids and size. The two relations imply a characteristic depth of 0.15 pc for the cloud. Furthermore, we have identified s...

  12. Dense core properties in the Infrared Dark cloud G14.225-0.506 revealed by ALMA

    CERN Document Server

    Ohashi, Satoshi; Chen, Huei-Ru Vivien; Zhang, Qizhou; Busquet, Gemma; Nakamura, Fumitaka; Palau, Aina; Tatematsu, Ken'ichi

    2016-01-01

    We have performed a dense core survey toward the Infrared Dark Cloud G14.225-0.506 at 3 mm continuum emission with the Atacama Large Millimeter/Submillimeter Array (ALMA). This survey covers the two hub-filament systems with an angular resolution of $\\sim3$\\arcsec ($\\sim0.03$ pc). We identified 48 dense cores. Twenty out of the 48 cores are protostellar due to their association with young stellar objects (YSOs) and/or X-ray point-sources, while the other 28 cores are likely prestellar and unrelated with known IR or X-ray emission. Using APEX 870 $\\mu$m continuum emission, we also identified the 18 clumps hosting these cores. Through virial analysis using the ALMA N$_2$H$^+$ and VLA/Effelsberg NH$_3$ molecular line data, we found a decreasing trend in the virial parameter with decreasing scales from filaments to clumps, and then to cores. The virial parameters of $0.1-1.3$ in cores, indicate that cores are likely undergoing dynamical collapse. The cumulative Core Mass Function (CMF) for the prestellar cores ca...

  13. Two Mass Distributions in the L 1641 Molecular Clouds: The Herschel connection of Dense Cores and Filaments in Orion A

    CERN Document Server

    Polychroni, D; Elia, D; Roy, A; Molinari, S; Martin, P; Andre, Ph; Turrini, D; Rygl, K L J; Benedettini, M; Busquet, G; di Giorgio, A M; Pestalozzi, M; Pezzuto, S; Arzoumanian, D; Bontemps, S; Di Francesco, J; Hennemann, M; Hill, T; Konyves, V; Menshchikov, A; Motte, F; Nguyen-Luong, Q; Peretto, N; Schneider, N; White, G

    2013-01-01

    We present the Herschel Gould Belt survey maps of the L\\,1641 molecular clouds in Orion A. We extracted both the filaments and dense cores in the region. We identified which of dense sources are proto- or pre-stellar, and studied their association with the identified filaments. We find that although most (71%) of the pre-stellar sources are located on filaments there is still a significant fraction of sources not associated with such structures. We find that these two populations (on and off the identified filaments) have distinctly different mass distributions. The mass distribution of the sources on the filaments is found to peak at 4 Solar masses and drives the shape of the CMF at higher masses, which we fit with a power law of the form d$N$/dlog$M \\propto M^{-1.4\\pm0.4}$. The mass distribution of the sources off the filaments, on the other hand, peaks at 0.8 Solar masses and leads to a flattening of the CMF at masses lower than ~4 Solar masses. We postulate that this difference between the mass distributi...

  14. Particle Dispersion Behaviors of Dense Gas-Particle Flows in Bubble Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Sihao Lv

    2013-01-01

    Full Text Available An Euler-Euler two-fluid model incorporating a developed momentum transfer empirical coefficient is developed to study the particle dispersion behaviors of dense gas-particle flows in gas-fluidization reactor. In this model, the four-way couplings among gas-particles, particle-gas, and particle-particle collisions are fully considered based on kinetic theory of granular flows and an improved smooth continuous drag coefficient is utilized. Gas turbulent flow is solved by large eddy simulation. The particle fraction, the time-averaged axial particle velocity, the histogram of particle fluctuation velocity, and the wavelet analysis of pressure signals are obtained. The results are in good agreement with experimental measurements. The mean value and the variance of axial particle velocity are greater than those of radial particle velocities. Particle collision frequencies at bubble vibrant movement regions along axial direction are much higher than those of radial direction and attenuated along height increase. Low-frequency component of pressure signal indicating the bubble movement behaviors in the center of reactor is stronger than wall regions. Furthermore, the negative values represent the passed bubble and positive peak values disclose the continuous motion of single bubble.

  15. Dense gas towards the RXJ1713.7-3946 supernova remnant

    Science.gov (United States)

    Maxted, Nigel I.; Rowell, Gavin P.; Dawson, Bruce R.; Burton, Michael G.; Fukui, Yasuo; Walsh, Andrew J.; Kawamura, Akiko; Sano, Hidetoshi; Lazendic, Jasmina

    2012-12-01

    A summary of results from a 7 mm-wavelength survey towards the young X-ray and γ-ray-bright supernova remnant, RXJ1713.7-3946 (SNR G347.3-0.5) is presented. Using the Mopra telescope, the high critical density tracer CS(1-0) was targeted, complementing previous Nanten2 molecular gas studies of CO transitions. In hadronic γ-ray emission scenarios (p-p interactions), the mass of cosmic ray target material available is an important factor, so we estimate the mass of dense gas towards RX J1713.7-3946. Also of interest was the shock-tracing molecule, SiO. Although there was no evidence of SiO emission physically excited by the RXJ1713.7-3946 shock, a chance-discovery of vibrationallyexcited SiO(1-0) emission is likely to be a maser that is associated with an evolved star.

  16. A multiscale-contour-based interpolation framework for generating a time-varying quasi-dense point cloud sequence

    Institute of Scientific and Technical Information of China (English)

    Chu-hua HUANG; Dong-ming LU; Chang-yu DIAO

    2016-01-01

    To speed up the reconstruction of 3D dynamic scenes in an ordinary hardware platform, we propose an efficient framework to reconstruct 3D dynamic objects using a multiscale-contour-based interpolation from multi-view videos. Our framework takes full advantage of spatio-temporal-contour consistency. It exploits the property to interpolate single contours, two neighboring contours which belong to the same model, and two contours which belong to the same view at different times, cor-responding to point-, contour-, and model-level interpolations, respectively. The framework formulates the interpolation of two models as point cloud transport rather than non-rigid surface deformation. Our framework speeds up the reconstruction of a dynamic scene while improving the accuracy of point-pairing which is used to perform the interpolation. We obtain a higher frame rate, spatio-temporal-coherence, and a quasi-dense point cloud sequence with color information. Experiments with real data were conducted to test the efficiency of the framework.

  17. Dense Molecular Gas Tracers in the Outflow of the Starburst Galaxy NGC 253

    Science.gov (United States)

    Walter, Fabian; Bolatto, Alberto D.; Leroy, Adam K.; Veilleux, Sylvain; Warren, Steven R.; Hodge, Jacqueline; Levy, Rebecca C.; Meier, David S.; Ostriker, Eve C.; Ott, Jürgen; Rosolowsky, Erik; Scoville, Nick; Weiss, Axel; Zschaechner, Laura; Zwaan, Martin

    2017-02-01

    We present a detailed study of a molecular outflow feature in the nearby starburst galaxy NGC 253 using ALMA. We find that this feature is clearly associated with the edge of NGC 253's prominent ionized outflow, has a projected length of ∼300 pc, with a width of ∼50 pc, and a velocity dispersion of ∼40 km s‑1, which is consistent with an ejection from the disk about 1 Myr ago. The kinematics of the molecular gas in this feature can be interpreted (albeit not uniquely) as accelerating at a rate of 1 km s‑1 pc‑1. In this scenario, the gas is approaching an escape velocity at the last measured point. Strikingly, bright tracers of dense molecular gas (HCN, CN, HCO+, CS) are also detected in the molecular outflow: we measure an HCN(1–0)/CO(1–0) line ratio of ∼ 1/10 in the outflow, similar to that in the central starburst region of NGC 253 and other starburst galaxies. By contrast, the HCN/CO line ratio in the NGC 253 disk is significantly lower (∼ 1/30), similar to other nearby galaxy disks. This strongly suggests that the streamer gas originates from the starburst, and that its physical state does not change significantly over timescales of ∼1 Myr during its entrainment in the outflow. Simple calculations indicate that radiation pressure is not the main mechanism for driving the outflow. The presence of such dense material in molecular outflows needs to be accounted for in simulations of galactic outflows.

  18. The Dense Molecular Gas and Nuclear Activity in the ULIRG IRAS 13120–5453

    Science.gov (United States)

    Privon, G. C.; Aalto, S.; Falstad, N.; Muller, S.; González-Alfonso, E.; Sliwa, K.; Treister, E.; Costagliola, F.; Armus, L.; Evans, A. S.; Garcia-Burillo, S.; Izumi, T.; Sakamoto, K.; van der Werf, P.; Chu, J. K.

    2017-02-01

    We present new Atacama Large Millimeter/submillimeter Array Band 7 (∼340 GHz) observations of the dense gas tracers HCN, HCO+, and CS in the local, single-nucleus, ultraluminous infrared galaxy IRAS 13120–5453. We find centrally enhanced HCN (4–3) emission, relative to HCO+ (4–3), but do not find evidence for radiative pumping of HCN. Considering the size of the starburst (0.5 kpc) and the estimated supernovae rate of ∼1.2 yr‑1, the high HCN/HCO+ ratio can be explained by an enhanced HCN abundance as a result of mechanical heating by the supernovae, though the active galactic nucleus and winds may also contribute additional mechanical heating. The starburst size implies a high ΣIR of 4.7 × 1012 L⊙ kpc‑2, slightly below predictions of radiation-pressure limited starbursts. The HCN line profile has low-level wings, which we tentatively interpret as evidence for outflowing dense molecular gas. However, the dense molecular outflow seen in the HCN line wings is unlikely to escape the Galaxy and is destined to return to the nucleus and fuel future star formation. We also present modeling of Herschel observations of the H2O lines and find a nuclear dust temperature of ∼40 K. IRAS 13120–5453 has a lower dust temperature and ΣIR than is inferred for the systems termed “compact obscured nuclei (CONs)” (such as Arp 220 and Mrk 231). If IRAS 13120–5453 has undergone a CON phase, we are likely witnessing it at a time when the feedback has already inflated the nuclear ISM and diluted star formation in the starburst/active galactic nucleus core.

  19. The Star Formation Rate - Dense Gas Relation in the Nuclei of Nearby Galaxies

    CERN Document Server

    Narayanan, Desika; Hernquist, Lars

    2008-01-01

    We investigate the relationship between the star formation rate (SFR) and dense molecular gas mass in the nuclei of galaxies. To do this, we utilize the observed 850 micron luminosity as a proxy for the infrared luminosity and SFR, and correlate this with the observed CO (J=3-2) luminosity. We find tentative evidence that the LIR-CO (J=3-2) index is similar to the Kennicutt-Schmidt (KS) index (N ~ 1.5) in the central ~1.7 kpc of galaxies, and flattens to a roughly linear index when including emission from the entire galaxy. This result may imply that the volumetric Schmidt relation is the underlying driver behind the observed SFR-dense gas correlations, and provides tentative confirmation for recent numerical models. While the data exclude the possibility of a constant LIR-CO (J=3-2) index for both galaxy nuclei and global measurements at the ~80% confidence level, the considerable error bars cannot preclude alternative interpretations.

  20. Cyanoacetylene in IC 342: An Evolving Dense Gas Component with Starburst Age

    CERN Document Server

    Meier, David S; Schinnerer, Eva

    2011-01-01

    We present the first images of the J=5-4 and J=16-15 lines of the dense gas tracer, cyanoacetylene, HC_3N, in an external galaxy. The central 200 pc of the nearby star-forming spiral galaxy, IC 342, was mapped using the VLA and the Plateau de Bure Interferometer. HC_3N(5-4) line emission is found across the nuclear mini-spiral, but is very weak towards the starburst site, the location of the strongest mid-IR and radio emission. The J=16-15 and 10-9 lines are also faint near the large HII region complex, but are brighter relative to the 5-4 line, consistent with higher excitation. The brightest HC_3N emission is located in the northern arm of the nuclear minispiral, 100 pc away from the radio/IR source to the southwest of the nucleus. This location appears less affected by ultraviolet radiation, and may represent a more embedded, earlier stage of star formation. HC_3N excitation temperatures are consistent with those determined from C^{18}O; the gas is dense, 10^{4-5}/cc, and cool, T_K ~< 40 K. So as to not...

  1. VERTICAL VEGETATION STRUCTURE ANALYSIS AND HYDRAULIC ROUGHNESS DETERMINATION USING DENSE ALS POINT CLOUD DATA - A VOXEL BASED APPROACH

    Directory of Open Access Journals (Sweden)

    M. Vetter

    2012-09-01

    Full Text Available In this contribution the complexity of the vertical vegetation structure, based on dense airborne laser scanning (ALS point cloud data (25 echoes/m2 , is analyzed to calculate vegetation roughness for hydraulic applications. Using the original 3D ALS point cloud, three levels of abstractions are derived (cells, voxels and connections to analyze ALS data based on a 1×1 m2 raster over the whole data set. A voxel structure is used to count the echoes in predefined detrended height levels within each cell. In general, it is assumed that the number of voxels containing echoes is an indicator for elevated objects and consequently for increased roughness. Neighboring voxels containing at least one data point are merged together to connections. An additional height threshold is applied to connect vertical neighboring voxels with a certain distance in between. Thus, the connections indicate continuous vegetation structures. The height of the surface near or lowest connection is an indicator for hydrodynamic roughness coefficients. For cells, voxels and connections the laser echoes are counted within the structure and various statistical measures are calculated. Based on these derived statistical parameters a rule-based classification is developed by applying a decision tree to assess vegetation types. Roughness coefficient values such as Manning's n are estimated, which are used as input for 2D hydrodynamic-numerical modeling. The estimated Manning’s values from the ALS point cloud are compared with a traditional Manning's map. Finally, the effect of these two different Manning's n maps as input on the 2D hydraulics are quantified by calculating a height difference model of the inundated depth maps. The results show the large potential of using the entire vertical vegetation structure for hydraulic roughness estimation.

  2. Extinction of Beamed Gamma-ray Burst Afterglows in a Dense Circumstellar Cloud

    Institute of Scientific and Technical Information of China (English)

    Shun-Lin Liang; Zi-Gao Dai; Yong-Feng Huang; Tan Lu

    2003-01-01

    Broadband afterglow observations provide a probe of the density structure of the circumburst medium. In the spreading jet model, prompt and intense X-ray/UV radiation from the reverse shock may destroy and clear the dust in the circumburst cloud out to about 30 pc within the initial solid angle of the jet. As the jet expands significantly, optical radiation from the high-latitude part of the jet may suffer extinction by dust outside the initial solid angle, while radiation from the part within the initial solid angle can be observed without extinction. In previous studies, it is usually assumed that the extinction is complete. We calculate the extinction effect by taking the optical depth into account. Our numerical results show that a break appears in the light curve of optical afterglow but it extends over a factor of ~ 80 in time rather than a factor of ~ 10 in time for the case of strong dust extinction and a factor of ~ 60 in time for the case without dust extinction. These results may provide a way to judge how large the number density of the circumburst cloud is. Finally, we carry out a detailed modeling for the afterglow of GRB 000926.Our model can provide a good fit to the multi-color observations of this event.

  3. Multiconnectivity for Mobility Robustness in Standalone 5G Ultra Dense Networks with Intrafrequency Cloud Radio Access

    Directory of Open Access Journals (Sweden)

    Fasil B. Tesema

    2017-01-01

    Full Text Available Capacity and ultra-reliable communication are some of the requirements for 5th generation (5G networks. One of the candidate technologies to satisfy capacity requirement is standalone Ultra Dense Network (UDN. However, UDNs are characterized by fast change of received signal strength that creates mobility challenges in terms of increased handovers and connection failures. In this paper, a low layer multiconnectivity scheme is presented for standalone UDN aiming at ultra-reliable communication that is free of interruptions from handover procedures and connection failures. Furthermore, the problem in managing of the set of serving cells, that are involved in multiconnectivity for each user, is formulated. By using numerical method, feasible scheme for management of the set of serving cells is derived. Performance of the proposed multiconnectivity scheme is evaluated and compared against single connectivity. It is shown that the proposed multiconnectivity scheme outperforms single connectivity considerably in terms of connection failures and cell-edge throughput.

  4. Evolution of binary seeds in collapsing protostellar gas clouds

    Science.gov (United States)

    Satsuka, Tatsuya; Tsuribe, Toru; Tanaka, Suguru; Nagamine, Kentaro

    2017-02-01

    We perform 3D smoothed particle hydrodynamics (SPH) simulations of gas accretion on to the seeds of binary stars to investigate their short-term evolution. Taking into account the dynamically evolving envelope with non-uniform distribution of gas density and angular momentum of accreting flow, our initial condition includes a seed binary and a surrounding gas envelope, modelling the phase of core collapse of gas cloud when the fragmentation has already occurred. We run multiple simulations with different values of initial mass ratio q0 (the ratio of secondary over primary mass) and gas temperature. For our simulation setup, we find a critical value of qc = 0.25 which distinguishes the later evolution of mass ratio q as a function of time. If q0 ≳ qc, the secondary seed grows faster and q increases monotonically towards unity. If q0 ≲ qc, on the other hand, the primary seed grows faster and q is lower than q0 at the end of the simulation. Based on our numerical results, we analytically calculate the long-term evolution of the seed binary including the growth of binary by gas accretion. We find that the seed binary with q0 ≳ qc evolves towards an equal-mass binary star and that with q0 ≲ qc evolves to a binary with an extreme value of q. Binary separation is a monotonically increasing function of time for any q0, suggesting that the binary growth by accretion does not lead to the formation of close binaries.

  5. CARMA LARGE AREA STAR FORMATION SURVEY: STRUCTURE AND KINEMATICS OF DENSE GAS IN SERPENS MAIN

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Katherine I.; Storm, Shaye; Mundy, Lee G.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique [Department of Astronomy, University of Illinois, Urbana-Champaign, IL 61801 (United States); Rosolowsky, Erik [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Arce, Héctor G.; Plunkett, Adele L. [Department of Astronomy, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States); Ostriker, Eve C. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Shirley, Yancy L. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kwon, Woojin [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); Kauffmann, Jens [Max Planck Institut für Radioastronomie, Auf dem Hügel 69 D-53121, Bonn Germany (Germany); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Volgenau, N. H. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Tassis, Konstantinos, E-mail: ijlee9@astro.umd.edu [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, PO Box 2208, GR-710 03, Heraklion, Crete (Greece); and others

    2014-12-20

    We present observations of N{sub 2}H{sup +} (J = 1 → 0), HCO{sup +} (J = 1 → 0), and HCN (J = 1 → 0) toward the Serpens Main molecular cloud from the CARMA Large Area Star Formation Survey (CLASSy). We mapped 150 arcmin{sup 2} of Serpens Main with an angular resolution of ∼7''. The gas emission is concentrated in two subclusters (the NW and SE subclusters). The SE subcluster has more prominent filamentary structures and more complicated kinematics compared to the NW subcluster. The majority of gas in the two subclusters has subsonic to sonic velocity dispersions. We applied a dendrogram technique with N{sub 2}H{sup +}(1-0) to study the gas structures; the SE subcluster has a higher degree of hierarchy than the NW subcluster. Combining the dendrogram and line fitting analyses reveals two distinct relations: a flat relation between nonthermal velocity dispersion and size, and a positive correlation between variation in velocity centroids and size. The two relations imply a characteristic depth of 0.15 pc for the cloud. Furthermore, we have identified six filaments in the SE subcluster. These filaments have lengths of ∼0.2 pc and widths of ∼0.03 pc, which is smaller than a characteristic width of 0.1 pc suggested by Herschel observations. The filaments can be classified into two types based on their properties. The first type, located in the northeast of the SE subcluster, has larger velocity gradients, smaller masses, and nearly critical mass-per-unit-length ratios. The other type, located in the southwest of the SE subcluster, has the opposite properties. Several YSOs are formed along two filaments which have supercritical mass per unit length ratios, while filaments with nearly critical mass-per-unit-length ratios are not associated with YSOs, suggesting that stars are formed on gravitationally unstable filaments.

  6. HCO mapping of the Horsehead: tracing the illuminated dense molecular cloud surfaces

    Science.gov (United States)

    Gerin, M.; Goicoechea, J. R.; Pety, J.; Hily-Blant, P.

    2009-02-01

    Context: Far-UV photons (FUV) strongly affect the physical and chemical state of molecular gas in the vicinity of young massive stars. Aims: Finding molecular tracers of the presence of FUV radiation fields in the millimeter wavelength domain is desirable because IR diagnostics (for instance PAHs) are not easily accessible along high extinction line-of-sights. Furthermore, gas phase diagnostics provide information on the velocity fields. Methods: We have obtained maps of the HCO and H13CO+ ground state lines towards the Horsehead edge at 5'' angular resolution with a combination of Plateau de Bure Interferometer (PdBI) and the IRAM-30 m telescope observations. These maps have been complemented with IRAM-30 m observations of several excited transitions at two different positions. Results: Bright formyl radical emission delineates the illuminated edge of the nebula, with a faint emission remaining towards the shielded molecular core. Viewed from the illuminated star, the HCO emission almost coincides with the PAH and CCH emission. HCO reaches a similar abundance to HCO+ in the photon dissociation region (PDR), ≃1-2×10-9 with respect to H2. To our knowledge, this is the highest HCO abundance ever measured. Pure gas-phase chemistry models fail to reproduce the observed HCO abundance by ~2 orders of magnitude, except if reactions of atomic oxygen with carbon radicals abundant in the PDR (i.e., CH2) play a significant role in the HCO formation. Alternatively, HCO could be produced in the PDR by non-thermal processes such as photo-processing of ice mantles and subsequent photo-desorption of either HCO or H2CO, and further gas phase photodissociation. Conclusions: The measured HCO/H13CO+ abundance ratio is large towards the PDR (≃50), and much lower toward the gas shielded from FUV radiation (≲1). We propose that high HCO abundances (≳10-10) together with large HCO/H13CO+ abundance ratios (≳1) are sensitive diagnostics of the presence of active photochemistry

  7. The Bolocam Galactic Plane Survey. XIII. Physical Properties and Mass Functions of Dense Molecular Cloud Structures

    CERN Document Server

    Ellsworth-Bowers, Timothy P; Riley, Allyssa; Rosolowsky, Erik; Ginsburg, Adam; Evans, Neal J; Bally, John; Battersby, Cara; Shirley, Yancy L; Merello, Manuel

    2015-01-01

    We use the distance probability density function (DPDF) formalism of Ellsworth-Bowers et al. (2013, 2015) to derive physical properties for the collection of 1,710 Bolocam Galactic Plane Survey (BGPS) version 2 sources with well-constrained distance estimates. To account for Malmquist bias, we estimate that the present sample of BGPS sources is 90% complete above 400 $M_\\odot$ and 50% complete above 70 $M_\\odot$. The mass distributions for the entire sample and astrophysically motivated subsets are generally fitted well by a lognormal function, with approximately power-law distributions at high mass. Power-law behavior emerges more clearly when the sample population is narrowed in heliocentric distance (power-law index $\\alpha = 2.0\\pm0.1$ for sources nearer than 6.5 kpc and $\\alpha = 1.9\\pm0.1$ for objects between 2 kpc and 10 kpc). The high-mass power-law indices are generally $1.85 \\leq \\alpha \\leq 2.05$ for various subsamples of sources, intermediate between that of giant molecular clouds and the stellar ...

  8. Disentangling the excitation conditions of the dense gas in M17 SW

    CERN Document Server

    Pérez-Beaupuits, J P; Spaans, M; Ossenkopf, V; Menten, K M; Requena-Torres, M A; Wiesemeyer, H; Stutzki, J; Guevara, C; Simon, R

    2015-01-01

    We probe the chemical and energetic conditions in dense gas created by radiative feedback through observations of multiple CO, HCN and HCO$^+$ transitions toward the dense core of M17 SW. We used the dual band receiver GREAT on board the SOFIA airborne telescope to obtain maps of the $J=16-15$, $J=12-11$, and $J=11-10$ transitions of $^{12}$CO. We compare these maps with corresponding APEX and IRAM 30m telescope data for low- and mid-$J$ CO, HCN and HCO$^+$ emission lines, including maps of the HCN $J=8-7$ and HCO$^+$ $J=9-8$ transitions. The excitation conditions of $^{12}$CO, HCO$^+$ and HCN are estimated with a two-phase non-LTE radiative transfer model of the line spectral energy distributions (LSEDs) at four selected positions. The energy balance at these positions is also studied. We obtained extensive LSEDs for the CO, HCN and HCO$^+$ molecules toward M17 SW. The LSED shape, particularly the high-$J$ tail of the CO lines observed with SOFIA/GREAT, is distinctive for the underlying excitation conditions...

  9. Dissipative Collapse of a Spherical Cluster of Gas Clouds

    CERN Document Server

    Indulekha, K; Ramadurai, S

    2000-01-01

    We investigate the dissipative collapse of a spherical cluster of gas clouds with an isotropic velocity distribution. The time scale for collapse to one tenth radius is studied as a function of the collision time in the system. The scalar virial equation is used to investigate the evolution of the size of the cluster. This is supplemented with an evolution equation for the random kinetic energy. The above system is numerically solved and the results analyzed. For small values of the collision time we find that the time scale for collapse is proportional to the collision time as expected. However for large values of the dissipation the collapse time shows a nonlinear dependence on the collision time.

  10. Tracing the Spiral Structure of the Outer Milky Way with Dense Atomic Hydrogen Gas

    Science.gov (United States)

    Koo, Bon-Chul; Park, Geumsook; Kim, Woong-Tae; Lee, Myung Gyoon; Balser, Dana S.; Wenger, Trey V.

    2017-09-01

    We present a new face-on map of dense neutral atomic hydrogen ({{H}} i) gas in the outer Galaxy. Our map has been produced from the Leiden/Argentine/Bonn {{H}} i 21 cm line all-sky survey by finding intensity maxima along every line of sight and then by projecting them on the Galactic plane. The resulting face-on map strikingly reveals the complex spiral structure beyond the solar circle, which is characterized by a mixture of distinct long arcs of {{H}} i concentrations and numerous “interarm” features. The comparison with more conventional spiral tracers confirms the nature of those long arc structures as spiral arms. Our map shows that the {{H}} i spiral structure in the outer Galaxy is well described by a four-arm spiral model (pitch angle of 12^\\circ ) with some deviations, and gives a new insight into identifying {{H}} i features associated with individual arms.

  11. Dense Gas in Molecular Cores Associated with Planck Galactic Cold Clumps

    Science.gov (United States)

    Yuan, Jinghua; Wu, Yuefang; Liu, Tie; Zhang, Tianwei; Zeng Li, Jin; Liu, Hong-Li; Meng, Fanyi; Chen, Ping; Hu, Runjie; Wang, Ke

    2016-03-01

    We present the first survey of dense gas toward Planck Galactic Cold Clumps (PGCCs). Observations in the J = 1-0 transitions of HCO+ and HCN toward 621 molecular cores associated with PGCCs were performed using the Purple Mountain Observatory’s 13.7 m telescope. Among them, 250 sources were detected, including 230 cores detected in HCO+ and 158 in HCN. Spectra of the J = 1-0 transitions from 12CO, 13CO, and C18O at the centers of the 250 cores were extracted from previous mapping observations to construct a multi-line data set. The significantly low detection rate of asymmetric double-peaked profiles, together with the good consistency among central velocities of CO, HCO+, and HCN spectra, suggests that the CO-selected Planck cores are more quiescent than classical star-forming regions. The small difference between line widths of C18O and HCN indicates that the inner regions of CO-selected Planck cores are no more turbulent than the exterior. The velocity-integrated intensities and abundances of HCO+ are positively correlated with those of HCN, suggesting that these two species are well coupled and chemically connected. The detected abundances of both HCO+ and HCN are significantly lower than values in other low- to high-mass star-forming regions. The low abundances may be due to beam dilution. On the basis of an inspection of the parameters given in the PGCC catalog, we suggest that there may be about 1000 PGCC objects that have a sufficient reservoir of dense gas to form stars.

  12. Testing of a new dense gas approach in the Lagrangian Dispersion Model SPRAY.

    Science.gov (United States)

    Mortarini, Luca; Alessandrini, Stefano; Ferrero, Enrico; Anfossi, Domenico; Manfrin, Massimiliano

    2013-04-01

    A new original method for the dispersion of a positively and negatively buoyant plume is proposed. The buoyant pollutant movement is treated introducing a fictitious scalar inside the Lagrangian Stochastic Particle Model SPRAY. The method is based on the same idea of Alessandrini and Ferrero (Phys. A 388:1375-1387, 2009) for the treatment of a background substance entrainment into the plume. In this application, the fictitious scalar is the density and momentum difference between the plume portions and the environment air that naturally takes into account the interaction between the plume and the environment. As a consequence, no more particles than those inside the plume have to be released to simulate the entrainment of the background air temperature. In this way the entrainment is properly simulated and the plume sink is calculated from the local property of the flow. This new approach is wholly Lagrangian in the sense that the Eulerian grid is only used to compute the propriety of a portion of the plume from the particles contained in every cell. No equation of the bulk plume is solved on a fixed grid. To thoroughly test the turbulent velocity field calculated by the model, the latter is compared with a water tank experiment carried out in the TURLAB laboratory in Turin (Italy). A vertical density driven current was created releasing a saline solution (salt and water) in a water tank with no mean flow. The experiment reproduces in physical similarity, based on the density Froud number, the release of a dense gas in the planetary boundary layer and the Particle Image Velocimetry technique has been used to analyze the buoyancy generated velocity field. The high temporal and spatial resolution of the measurements gives a deep insight to the problems of the bouncing of the dense gas and of the creation of the outflow velocity at the ground.

  13. Interstellar Cloud Formation through Aggregation of Cold Blobs in a Two-Phase Gas Mixture

    Science.gov (United States)

    Kamaya, Hideyuki

    1997-05-01

    We propose a new formation scenario for interstellar clouds through the aggregation of dense cold blobs (phase II [PII]), which drift in a diffuse warm medium (phase I [PI]). We examine how important it is that there exist numerous PII blobs when the properties of such a two-phase flow are studied. First, we solve a one-dimensional shock-tube problem and find that the shock wave in the mixture is considerably damped because of the drag force between the two phases. This is because the PII blobs are left behind the shock front, since their inertia is larger than that of PI, thus suppressing large spatial variations of PI gas via the drag force. The PII blobs thus play the role of anchors. Therefore, mass aggregation by shocks may be ineffective in a two-phase medium. However, the PII blobs can still aggregate through a kind of fluid dynamical instability. We next suppose that the PI gas is accelerated upward by shocks against downward gravity, while the PII blobs are at rest because of balance between the drag force due to PI and gravity. If we put a positive perturbation in the number density of PII blobs, the upward PI flow above the perturbation is decelerated by the enhanced drag force, and the velocity difference between PI and PII is thereby reduced. Then the PII blobs above the perturbation are accelerated downward, since the gravity on PII now dominates the reduced drag force. As a result, the blobs will fall onto this perturbed region, and this region becomes denser and denser. This is the mechanism of the instability. Therefore, we expect efficient cloud formation by this instability in spiral arms, even when galactic shocks are extremely damped.

  14. Structure of dense molecular gas in TMC 1 from observations of three transitions of HC3N

    Science.gov (United States)

    Schloerb, F. P.; Snell, R. L.; Young, J. S.

    1983-01-01

    The Taurus dark cloud complex is a collection of many individual clouds scattered across approximately 50 pc. Within one of these, Heiles Cloud 2, is the dense condensation TMC 1. TMC 1 is one of the few sources in which some of the long carbon chain molecules are found. The present investigation is concerned with a mapping of the density structure in a narrow ridge of the TMC 1 structure. It is shown that the HC3N emission from the J = 5 to 4, J = 9 to 8, and J = 12 to 11 transitions is well matched by a narrow ridge of material at a single density of 50,000-100,000 per cu cm. There is evidence that the HC3N fractional abundance is variable along the ridge. Evidence is also found for the presence of subcondensations within this ridge from maps at individual velocities.

  15. A census of dense cores in the Taurus L1495 cloud from the Herschel Gould Belt Survey

    CERN Document Server

    Marsh, K A; Andre, Ph; Griffin, M J; Konyves, V; Palmeirim, P; Men'shchikov, A; Ward-Thompson, D; Benedettini, M; Bresnahan, D W; Di Francesco, J; Elia, D; Peretto, N; Pezzuto, S; Roy, A; Sadavoy, S; Schneider, N; Spinoglio, L; White, G J

    2016-01-01

    We present a catalogue of dense cores in a $\\sim 4^\\circ\\times2^\\circ$ field of the Taurus star-forming region, inclusive of the L1495 cloud, derived from Herschel SPIRE and PACS observations in the 70 $\\mu$m, 160 $\\mu$m, 250 $\\mu$m, 350 $\\mu$m, and 500 $\\mu$m continuum bands. Estimates of mean dust temperature and total mass are derived using modified blackbody fits to the spectral energy distributions. We detect 528 starless cores of which $\\sim10$-20% are gravitationally bound and therefore presumably prestellar. Our census of unbound objects is $\\sim85$% complete for $M>0.015\\,M_\\odot$ in low density regions ($A_V\\stackrel{0.1\\,M_\\odot$ overall. The prestellar core mass function (CMF) is consistent with lognormal form, resembling the stellar system initial mass function, as has been reported previously. All of the inferred prestellar cores lie on filamentary structures whose column densities exceed the expected threshold for filamentary collapse, in agreement with previous reports. Unlike the prestellar C...

  16. A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey

    CERN Document Server

    Konyves, V; Men'shchikov, A; Palmeirim, P; Arzoumanian, D; Schneider, N; Roy, A; Didelon, P; Maury, A; Shimajiri, Y; Di Francesco, J; Bontemps, S; Peretto, N; Benedettini, M; Bernard, J -Ph; Elia, D; Griffin, M J; Hill, T; Kirk, J; Ladjelate, B; Marsh, K; Martin, P G; Motte, F; Luong, Q Nguyen; Pezzuto, S; Roussel, H; Rygl, K L J; Sadavoy, S I; Schisano, E; Spinoglio, L; Ward-Thompson, D; White, G J

    2015-01-01

    We present and discuss the results of the Herschel Gould Belt survey observations in a ~11 deg^2 area of the Aquila molecular cloud complex at d~260 pc, imaged with the SPIRE/PACS cameras from 70 to 500 micron. We identify a complete sample of starless dense cores and embedded protostars in this region, and analyze their global properties and spatial distributions. We find a total of 651 starless cores, ~60% of which are gravitationally bound prestellar cores, and they will likely form stars in the future. We also detect 58 protostellar cores. The core mass function (CMF) derived for the prestellar cores is very similar in shape to the stellar initial mass function (IMF), supporting the earlier view that there is a close physical link between the IMF and the CMF. The global shift in mass scale observed between the CMF and the IMF is consistent with a typical star formation efficiency of ~40%. By comparing the numbers of starless cores to the number of young stellar objects, we estimate that the lifetime of pr...

  17. A 100-parsec elliptical and twisted ring of cold and dense molecular clouds revealed by Herschel around the Galactic Center

    CERN Document Server

    Molinari, S; Noriega-Crespo, A; Compiègne, M; Bernard, J P; Paradis, D; Martin, P; Testi, L; Barlow, M; Moore, T; Plume, R; Swinyard, B; Zavagno, A; Calzoletti, L; Di Giorgio, A M; Elia, D; Faustini, F; Natoli, P; Pestalozzi, M; Pezzuto, S; Piacentini, F; Polenta, G; Polychroni, D; Schisano, E; Traficante, A; Veneziani, M; Battersby, C; Burton, M; Carey, S; Fukui, Y; Li, J Z; Lord, S D; Morgan, L; Motte, F; Schuller, F; Stringfellow, G S; Tan, J C; Thompson, M A; Ward-Thompson, D; White, G; Umana, G

    2011-01-01

    Thermal images of cold dust in the Central Molecular Zone of the Milky Way, obtained with the far-infrared cameras on-board the Herschel satellite, reveal a 3x10^7 solar masses ring of dense and cold clouds orbiting the Galactic Center. Using a simple toy-model, an elliptical shape having semi-major axes of 100 and 60 parsecs is deduced. The major axis of this 100-pc ring is inclined by about 40 degrees with respect to the plane-of-the-sky and is oriented perpendicular to the major axes of the Galactic Bar. The 100-pc ring appears to trace the system of stable x_2 orbits predicted for the barred Galactic potential. Sgr A* is displaced with respect to the geometrical center of symmetry of the ring. The ring is twisted and its morphology suggests a flattening-ratio of 2 for the Galactic potential, which is in good agreement with the bulge flattening ratio derived from the 2MASS data.

  18. The Composition of Interstellar Grains Toward Zeta Ophiuchi: Constraining the Elemental Budget Near the Diffuse-Dense Cloud Transition

    CERN Document Server

    Poteet, Charles A; Draine, Bruce T

    2015-01-01

    We investigate the composition of interstellar grains along the line of sight toward Zeta Ophiuchi, a well-studied environment near the diffuse-dense cloud transition. A spectral decomposition analysis of the solid-state absorbers is performed using archival spectroscopic observations from the Spitzer Space Telescope and Infrared Space Observatory. We find strong evidence for the presence of sub-micron-sized amorphous silicate grains, principally comprised of olivine-like composition, with no convincing evidence of H2O ice mantles. However, tentative evidence for thick H2O ice mantles on large (a ~ 2.8 microns) grains is presented. Solid-state abundances of elemental Mg, Si, Fe, and O are inferred from our analysis and compared to standard reference abundances. We find that nearly all of elemental Mg and Si along the line of sight are present in amorphous silicate grains, while a substantial fraction of elemental Fe resides in compounds other than silicates. Moreover, we find that the total abundance of eleme...

  19. THE COMPOSITION OF INTERSTELLAR GRAINS TOWARD ζ OPHIUCHI: CONSTRAINING THE ELEMENTAL BUDGET NEAR THE DIFFUSE-DENSE CLOUD TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Poteet, Charles A.; Whittet, Douglas C. B. [New York Center for Astrobiology, Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Draine, Bruce T., E-mail: charles.poteet@gmail.com [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States)

    2015-03-10

    We investigate the composition of interstellar grains along the line of sight toward ζ Ophiuchi, a well-studied environment near the diffuse-dense cloud transition. A spectral decomposition analysis of the solid-state absorbers is performed using archival spectroscopic observations from the Spitzer Space Telescope and Infrared Space Observatory. We find strong evidence for the presence of sub-micron-sized amorphous silicate grains, principally comprised of olivine-like composition, with no convincing evidence of H{sub 2}O ice mantles. However, tentative evidence for thick H{sub 2}O ice mantles on large (a ≈ 2.8 μm) grains is presented. Solid-state abundances of elemental Mg, Si, Fe, and O are inferred from our analysis and compared to standard reference abundances. We find that nearly all of the Mg and Si atoms along the line of sight reside in amorphous silicate grains, while a substantial fraction of the elemental Fe resides in compounds other than silicates. Moreover, we find that the total abundance of elemental O is largely inconsistent with the adopted reference abundances, indicating that as much as ∼156 ppm of interstellar O is missing along the line of sight. After taking into account additional limits on the abundance of elemental O in other O-bearing solids, we conclude that any missing reservoir of elemental O must reside on large grains that are nearly opaque to infrared radiation.

  20. Dense Clumps in Giant Molecular Clouds in the Large Magellanic Cloud: Density and Temperature Derived from $^{13}$CO($J=3-2$) Observations

    CERN Document Server

    Minamidani, Tetsuhiro; Mizuno, Yoji; Mizuno, Norikazu; Kawamura, Akiko; Onishi, Toshikazu; Hasegawa, Tetsuo; Tatematsu, Ken'ichi; Takekoshi, Tatsuya; Sorai, Kazuo; Moribe, Nayuta; Torii, Kazufumi; Sakai, Takeshi; Muraoka, Kazuyuki; Tanaka, Kunihiko; Ezawa, Hajime; Kohno, Kotaro; Kim, Sungeun; Rubio, Mónica; Fukui, Yasuo

    2010-01-01

    In order to precisely determine temperature and density of molecular gas in the Large Magellanic Cloud, we made observations of optically thin $^{13}$CO($J=3-2$) transition by using the ASTE 10m telescope toward 9 peaks where $^{12}$CO($J=3-2$) clumps were previously detected with the same telescope. The molecular clumps include those in giant molecular cloud (GMC) Types I (with no signs of massive star formation), II (with HII regions only), and III (with HII regions and young star clusters). We detected $^{13}$CO($J=3-2$) emission toward all the peaks and found that their intensities are 3 -- 12 times lower than those of $^{12}$CO($J=3-2$). We determined the intensity ratios of $^{12}$CO($J=3-2$) to $^{13}$CO($J=3-2$), $R^{12/13}_{3-2}$, and $^{13}$CO($J=3-2$) to $^{13}$CO($J=1-0$), $R^{13}_{3-2/1-0}$, at 45$\\arcsec$ resolution. These ratios were used for radiative transfer calculations in order to estimate temperature and density of the clumps. The parameters of these clumps range kinetic temperature $T\\ma...

  1. Dense Molecular Gas around AGN: HCN/CO in NGC3227

    CERN Document Server

    Davies, R; Sternberg, A

    2011-01-01

    There is now convincing evidence that the intensity of HCN molecular line emission is enhanced around active galactic nuclei. In this paper we examine the specific case of the Seyfert galaxy NGC3227, for which there are subarcsecond resolution data for the HCN (1-0) 88 GHz and CO (2-1) 230 GHz rotational lines, enabling us to spatially separate a circumnuclear ring at a radius of 140pc and an inner nuclear region within 40pc of the AGN. The HCN(1-0)/CO(2-1) flux ratio differs by more than an order of magnitude between these two regions. We carry out large velocity gradient (LVG) computations to determine the range of parameters (gas temperature and density, HCN/CO abundance ratio, column densities and velocity gradients) that yield physically plausible solutions for the observed flux ratio in the central 100pc. The observed HCN/CO intensity ratio in the nucleus is consistent with very optically thick thermalized emission in very dense (>=10^5cm^{-3}) gas, in which case the HCN/CO abundance ratio there is unco...

  2. Stability of gas channels in a dense suspension in the presence of obstacles

    Science.gov (United States)

    Poryles, Raphaël; Varas, Germán; Vidal, Valérie

    2017-06-01

    We investigate experimentally the influence of a fixed obstacle on gas rising in a dense suspension. Air is injected at a constant flow rate by a single nozzle at the bottom center of a Hele-Shaw cell. Without obstacles, previous works have shown that a fluidized zone is formed with a parabolic shape, with a central air channel and two granular convection rolls on its sides. Here, we quantify the influence of the obstacle's shape, size, and height on the location and dynamics of the central air channel. Different regimes are reported: the air channel can simply deviate (stable), or it can switch sides over time (unstable), leading to two signatures not only above the obstacle, but sometimes also below it. This feedback also influences the channel deviation when bypassing the obstacle. A wake of less or no motion is reported above the largest obstacles as well as the maximum probability of gas location, which can be interesting for practical applications. The existence of a critical height hc≃7 cm is discussed and compared with the existence of an air finger that develops from the injection nozzle and is stable in time. A dimensionless number describing the transition between air fingering and fracturing makes it possible to predict the channel's stability.

  3. A gas cloud on its way towards the super-massive black hole in the Galactic Centre

    CERN Document Server

    Gillessen, S; Fritz, T K; Quataert, E; Alig, C; Burkert, A; Cuadra, J; Eisenhauer, F; Pfuhl, O; Dodds-Eden, K; Gammie, C F; Ott, T

    2011-01-01

    Measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* at the Galactic Centre is a black hole four million times the mass of the Sun. With the exception of modest X-ray and infrared flares, Sgr A* is surprisingly faint, suggesting that the accretion rate and radiation efficiency near the event horizon are currently very low. Here we report the presence of a dense gas cloud approximately three times the mass of Earth that is falling into the accretion zone of Sgr A*. Our observations tightly constrain the cloud's orbit to be highly eccentric, with an innermost radius of approach of only ~3,100 times the event horizon that will be reached in 2013. Over the past three years the cloud has begun to disrupt, probably mainly through tidal shearing arising from the black hole's gravitational force. The cloud's dynamic evolution and radiation in the next few years will probe the properties of the accretion flow and the feeding processes of the super-massive black hole. ...

  4. Spectrum of fast electrons in a dense gas in the presence of a nonuniform pulsed field

    Science.gov (United States)

    Tkachev, A. N.; Yakovlenko, S. I.

    2007-01-01

    The problems of gas preionization in discharges related to laser physics are considered. The propagation of fast electrons injected from the cathode in the presence of a nonuniform nonstationary field and the motion of multiplying electrons at the edge of the avalanche in the presence of a nonuniform nonstationary field are simulated. The effect of the voltage pulse steepness and the field nonuniformity on the mean propagation velocity of fast electrons and their energy distribution is demonstrated. At certain combinations of the voltage pulse rise time and amplitude and at a certain time interval, the center of gravity of the electron cloud can move in the opposite direction relative to the direction of force acting upon electrons. It is also demonstrated that the number of hard particles (and, hence, the hard component of the x-ray bremsstrahlung) increases with both an increase in the voltage amplitude and a decrease in the pulse rise time. For nonoptimal conditions of the picosecond voltage pulse, an assumption is formulated: an electron beam in gas is formed due to the electrons at the edge of the avalanche rather than the background multiplication wave approaching the anode.

  5. ALMA maps the Star-Forming Regions in a Dense Gas Disk at z~3

    CERN Document Server

    Swinbank, Mark; Nightgale, James; Furlanetto, Christina; Smail, Ian; Cooray, Asantha; Dannerbauer, Helmut; Dunne, Loretta; Eales, Steve; Gavazzi, Raphael; Hunter, Todd; Ivison, Rob; Negrello, Mattia; Oteo, Ivan; Smit, Renske; van der Werf, Paul; Vlahakis, Catherine

    2015-01-01

    We exploit long-baseline ALMA sub-mm observations of the lensed star-forming galaxy SDP 81 at z=3.042 to investigate the properties of inter-stellar medium on scales of 50-100pc. The kinematics of the CO gas within this system are well described by a rotationally-supported disk with an inclination-corrected rotation speed, v=320+/-20km/s and a dynamical mass of M=(3.5+/-1.0)x10^10Mo within a radius of 1.5 kpc. The disk is gas rich and unstable, with a Toomre parameter, Q=0.30+/-0.10 and so should collapse in to star-forming regions with Jeans length L_J~130pc. We identify five star-forming regions within the ISM on these scales and show that their scaling relations between luminosity, line-widths and sizes are significantly offset from those typical of molecular clouds in local Galaxies (Larson's relations). These offsets are likely to be caused by the high external hydrostatic pressure for the interstellar medium (ISM), P/kB=(40+/-20)x10^7K/cm3, which is ~10,000x higher than the typical ISM pressure in the M...

  6. Mitigation of dense gas releases in buildings: use of simple models.

    Science.gov (United States)

    Deaves, D M; Gilham, S; Spencer, H

    2000-01-07

    When an accidental release of a hazardous material is considered within a safety case or risk assessment, its off-site effects are generally assessed by calculating the dispersion of vapour from the site. Although most installations handling flammables will be in the open air, many types of plant, particularly those handling toxics, are enclosed, partly to provide some form of containment and hence to mitigate the effects of any release. When such a release occurs within a building, the gas or vapour will undergo some mixing before emerging from any openings. The degree of mixing will depend upon the building geometry and the nature of the ventilation, which in turn may be modified by the leak. This situation is considered in this paper, with specific application to calculating the rate of release of a dense vapour from a building. All the calculations presented are based upon simple zone modelling, such that the region occupied by the vapour is assumed to be well mixed, and, in the isothermal case, either its concentration or its depth increases as it is fed by the gas leak. Transfer of air or gas/air mixture through the building openings is estimated by use of standard ventilation calculation methods. For the non-isothermal case, a preliminary model is presented in which it is assumed that there is complete mixing throughout the building and no wind-driven ventilation effects. A moderate release of chlorine is used as an example, and results are shown of the effects of various ventilation possibilities on the release rate to the atmosphere. In addition, comparisons are given between model results and experimental data, demonstrating the level of confidence which can be placed in the models, and also identifying areas where there is scope for further improvement.

  7. A Cloud Microphysics Model for the Gas Giant Planets

    Science.gov (United States)

    Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler

    2016-10-01

    Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303–326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141–156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.

  8. Dynamics of gas and particulate clouds: parametric analysis of cloud motion

    Science.gov (United States)

    Anderson, Mark E.; Larsen, Jeremy C.; Cornelsen, Scott S.; Call, Seth T.; Stokes, Scott T.; Earl, Curtis L.; Hayes, Travis M.; Wilkerson, Thomas D.

    2004-09-01

    This paper describes a project on automating the interpretation of cloud images recorded during several types of atmospheric observations: (1) dust clouds generated by controlled explosions, (2) chemical releases of infrared-active gases, and (3) lidar measurements of cloud altitude winds. This program began with a basic cloud tracking system for lidar comparisons, which has since been upgraded. We describe automated methods for tracking clouds of relatively constant shape, segmenting time-dependent clouds and plumes from scenic backgrounds, characterizing cloud and plume shapes, and measuring the speed and direction of cloud motion. Dust clouds were created by fireworks, releases of pressurized aerosols and by propane-driven blast tubes. Chemical clouds of organic vapors were created by evaporation or with pressurized balloon releases. Cloud imagery for particle releases was recorded primarily with a pair of visible video cameras. The chemical clouds were imaged with a high framing rate infrared camera in the 2.5 - 3.5 micron region. Current project goals include an end-to-end system for cloud warnings, wind measurement, and dispersion predictions in real time.

  9. Observations and model calculations of trace gas scavenging in a dense Saharan dust plume during MINATROC

    Directory of Open Access Journals (Sweden)

    M. de Reus

    2005-01-01

    Full Text Available An intensive field measurement campaign was performed in July/August 2002 at the Global Atmospheric Watch station Izaña on Tenerife to study the interaction of mineral dust aerosol and tropospheric chemistry (MINATROC. A dense Saharan dust plume, with aerosol masses exceeding 500 µg m-3, persisted for three days. During this dust event strongly reduced mixing ratios of ROx (HO2, CH3O2 and higher organic peroxy radicals, H2O2, NOx (NO and NO2 and O3 were observed. A chemistry boxmodel, constrained by the measurements, has been used to study gas phase and heterogeneous chemistry. It appeared to be difficult to reproduce the observed HCHO mixing ratios with the model, possibly related to the representation of precursor gas concentrations or the absence of dry deposition. The model calculations indicate that the reduced H2O2 mixing ratios in the dust plume can be explained by including the heterogeneous removal reaction of HO2 with an uptake coefficient of 0.2, or by assuming heterogeneous removal of H2O2 with an accommodation coefficient of 5x10-4. However, these heterogeneous reactions cannot explain the low ROx mixing ratios observed during the dust event. Whereas a mean daytime net ozone production rate (NOP of 1.06 ppbv/hr occurred throughout the campaign, the reduced ROx and NOx mixing ratios in the Saharan dust plume contributed to a reduced NOP of 0.14-0.33 ppbv/hr, which likely explains the relatively low ozone mixing ratios observed during this event.

  10. DRAG FORCE IN DENSE GAS-PARTICLE TWO-PHASE FLOW

    Institute of Scientific and Technical Information of China (English)

    由长福; 祁海鹰; 徐旭常

    2003-01-01

    Numerical simulations of flow over a stationary particle in a dense gas-particle two-phase flow have been carried out for small Reynolds numbers (less than 100).In order to study the influence of the particles interaction on the drag force,three particle arrangements have been tested:a single particle,two particles placed in the flow direction and many particles located regularly in the flow field.The Navier-Stokes equations are discretized in the three-dimensional space using finite volume method.For the first and second cases,the numerical results agree reasonably well with the data in literature.For the third case,i.e.,the multiparticle case,the influence of the particle volume fraction and Reynolds numbers on the drag force has been investigated.The results show that the computational values of the drag ratio agree approximately with the published results at higher Reynolds numbers (from 34.2 to 68.4),but there is a large difference between them at small Reynolds numbers.

  11. Molecular observations of HH34 - Does NH3 accurately trace dense molecular gas near young stars?

    Science.gov (United States)

    Davis, C. J.; Dent, W. R. F.

    1993-03-01

    Single-dish observations in HCO(+) J = 4-3 are presented of the regions around HH34 and around HH34IRS. The former is one of the best examples of the association between Herbig-Haro shocks, optical jets, and young stellar objects. The HCO(+) and CS maps peak toward the outflow source HH34IRS and suggest the presence of a hot dense molecular core. The NH3 is confined to a peak about 4-0 arcsec east of HH34IRS and to a ridge which extends in a north-south direction and peaks about 20 arcsec south of the end of the optical jet. Thus, the NH3 observations do not trace the underlying gas density and temperature in this outflow source. Toward HH34IRS the NH3 column density is less by a factor of about 10 than toward the NH3 peak position is the HH34 region, providing evidence that the NH3 is underabundant towards the central exciting stars. This underabundance may explain the toroidal structures often seen in NH3 observations of other outflow sources.

  12. Dense gas in molecular cores associated with Planck Galactic cold clumps

    CERN Document Server

    Yuan, Jinghua; Liu, Tie; Zhang, Tianwei; Li, Jin Zeng; Liu, Hong-Li; Meng, Fanyi; Chen, Ping; Hu, Runjie; Wang, Ke

    2016-01-01

    We present the first survey of dense gas towards Planck Galactic Cold Clumps (PGCCs). Observations in the J=1-0 transitions of HCO+ and HCN towards 621 molecular cores associated with PGCCs were performed using the Purple Mountain Observatory 13.7-m telescope. Among them, 250 sources have detection, including 230 cores detected in HCO+ and 158 in HCN. Spectra of the J=1-0 transitions from CO, 13CO, and C18O at the centers of the 250 cores were extracted from previous mapping observations to construct a multi-line data set. The significantly low detection rate of asymmetric double-peaked profiles, together with the well consistence among central velocities of CO, HCO+, and HCN spectra, suggests that the CO-selected Planck cores are more quiescent compared to classical star-forming regions. The small difference between line widths of C18O and HCN indicates that the inner regions of CO-selected Planck cores are not more turbulent than the exterior. The velocity-integrated intensities and abundances of HCO+ are p...

  13. Hydrodynamic modeling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2000-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  14. Hydrodynamic modeling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics.

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  15. Hydrodynamic modeling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    2000-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  16. Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics.

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    2001-01-01

    A two-dimensional multi-fluid Eulerian CFD model with closure laws according to the kinetic theory of granular flow has been applied to study the influence of the coefficient of restitution on the hydrodynamics of dense gas-fluidised beds. It is demonstrated that hydrodynamics of dense gas-fluidised

  17. Numerical simulation of dense particle-gas two-phase flow using the minimal potential energy principle

    Institute of Scientific and Technical Information of China (English)

    Xiangjun Liu; Xuchang Xu; Wurong Zhang

    2006-01-01

    A simulation method of dense particle-gas two-phase flow has been developed. The binding force is introduced to present the impact of particle clustering and its expression is deduced according to the principle of minimal potential energy. The cluster collision,break-up and coalescence models are proposed based on the assumption that the particle cluster are treated as one discrete phase. These models are used to numerically study the two-phase flow field in a circulating fluidized bed (CFB). Detailed results of the cluster structure, cluster size, particle volume fraction, gas velocity, and particle velocity are obtained. The correlation between the simulation results and experimental data justifies that these models and algorithm are reasonable, and can be used to efficiently study the dense particle-gas two-phase flow.

  18. (Talk) The Survival Of Gas Clouds In The Circumgalactic Medium Of Milky Way-Like Galaxies

    Science.gov (United States)

    Armillotta, Lucia

    2017-06-01

    Several lines of evidence have shown that low-redshift galaxies are surrounded by extended halos of multiphase gas, the so-called 'circumgalactic medium' with a significant component of cold and ionized gas (T < 10^5 K). Through high-resolution hydrodynamical simulations, we studied the physical phenomena that drive the interaction and mixing between the different gas phases and, in particular, which conditions allow the survival of clouds of cold gas in the hot and low-density galactic coronae. Our simulations include radiative cooling, thermal conduction and photoionizing heating. The main result is that the survival time of the clouds strongly depends on their mass: clouds with mass larger than 5x10^4 solar masses lose cold gas during their trajectory but at very low rates. They can survive the journey through the galactic corona for several hundreds of Myr, potentially providing a significant amount of cold gas accretion in star-forming galaxies.

  19. Survey of ortho-H2D+(1_{1,0}-1_{1,1}) in dense cloud cores

    CERN Document Server

    Caselli, Paola; Ceccarelli, Cecilia; van der Tak, Floris; Crapsi, Antonio; Bacmann, Aurore

    2008-01-01

    We present a survey of the ortho-H2D+(1_{1,0}-1_{1,1}) line toward a sample of 10 starless cores and 6 protostellar cores, carried out at the Caltech Submillimeter Observatory. The high diagnostic power of this line is revealed for the study of the chemistry, and the evolutionary and dynamical status of low-mass dense cores. The line is detected in 7 starless cores and in 4 protostellar cores. N(ortho-H2D+) ranges between 2 and 40x10^{12} cm^{-2} in starless cores and between 2 and 9x10^{12} cm^{-2} in protostellar cores. The brightest lines are detected toward the densest and most centrally concentrated starless cores, where the CO depletion factor and the deuterium fractionation are also largest. The large scatter observed in plots of N(ortho-H2D+) vs. the observed deuterium fractionation and vs. the CO depletion factor is likely to be due to variations in the ortho-to-para (o/p) ratio of H2D+ from >0.5 for T_{kin} < 10 K gas in pre-stellar cores to ~0.03 (consistent with T_{kin} ~15 K for protostellar c...

  20. Origin of interfacial nanoscopic gaseous domains and formation of dense gas layer at hydrophobic solid-water interface.

    Science.gov (United States)

    Peng, Hong; Birkett, Greg R; Nguyen, Anh V

    2013-12-10

    Interfacial gas enrichment (IGE) covering the entire area of hydrophobic solid-water interface has recently been detected by atomic force microscopy (AFM) and hypothesized to be responsible for the unexpected stability and anomalous contact angle of gaseous nanobubbles and the significant change from DLVO to non-DLVO forces. In this paper, we provide further proof of the existence of IGE in the form of a dense gas layer (DGL) by molecular dynamic simulation. Nitrogen gas adsorption at the water-graphite interface is investigated using molecular dynamic simulation at 300 K and 1 atm normal pressure. The results show that a DGL with a density equivalent to a gas at pressure of 500 atm is formed and equilibrated with a normal pressure of 1 atm. By varying the number of gas molecules in the system, we observe several types of dense gas domains: aggregates, cylindrical caps, and DGLs. Spherical cap gas domains form during the simulation but are unstable and always revert to another type of gas domain. Furthermore, the calculated surface potential of the DGL-water interface, -17.5 mV, is significantly closer to 0 than the surface potential, -65 mV, of normal gas bubble-water interface. This result supports our previously stated hypothesis that the change in surface potential causes the switch from repulsion to attraction for an AFM tip when the graphite surface is covered by an IGE layer. The change in surface potential comes from the structure change of water molecules at the DGL-water interface as compared with the normal gas-water interface. In addition, the contact angle of the cylindrical cap high density nitrogen gas domains is 141°. This contact angle is far greater than 85° observed for water on graphite at ambient conditions and much closer to the 150° contact angle observed for nanobubbles in experiments.

  1. Star formation in galaxy mergers: ISM turbulence, dense gas excess, and scaling relations for disks and starbusts

    CERN Document Server

    Bournaud, Frederic; Chapon, Damien; Teyssier, Romain

    2010-01-01

    Galaxy interactions and mergers play a significant, but still debated and poorly understood role in the star formation history of galaxies. Numerical and theoretical models cannot yet explain the main properties of merger-induced starbursts, including their intensity and their spatial extent. Usually, the mechanism invoked in merger-induced starbursts is a global inflow of gas towards the central kpc, resulting in a nuclear starburst. We show here, using high-resolution AMR simulations and comparing to observations of the gas component in mergers, that the triggering of starbursts also results from increased ISM turbulence and velocity dispersions in interacting systems. This forms cold gas that are denser and more massive than in quiescent disk galaxies. The fraction of dense cold gas largely increases, modifying the global density distribution of these systems, and efficient star formation results. Because the starbursting activity is not just from a global compacting of the gas to higher average surface de...

  2. Spin-resolved correlations in the warm-dense homogeneous electron gas

    Science.gov (United States)

    Arora, Priya; Kumar, Krishan; Moudgil, R. K.

    2017-04-01

    We have studied spin-resolved correlations in the warm-dense homogeneous electron gas by determining the linear density and spin-density response functions, within the dynamical self-consistent mean-field theory of Singwi et al. The calculated spin-resolved pair-correlation function gσσ'(r) is compared with the recent restricted path-integral Monte Carlo (RPIMC) simulations due to Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)], while interaction energy Eint and exchange-correlation free energy Fxc with the RPIMC and very recent ab initio quantum Monte Carlo (QMC) simulations by Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. g↑↓(r) is found to be in good agreement with the RPIMC data, while a mismatch is seen in g↑↑(r) at small r where it becomes somewhat negative. As an interesting result, it is deduced that a non-monotonic T-dependence of g(0) is driven primarily by g↑↓(0). Our results of Eint and Fxc exhibit an excellent agreement with the QMC study due to Dornheim et al., which deals with the finite-size correction quite accurately. We observe, however, a visible deviation of Eint from the RPIMC data for high densities ( 8% at rs = 1). Further, we have extended our study to the fully spin-polarized phase. Again, with the exception of high density region, we find a good agreement of Eint with the RPIMC data. This points to the need of settling the problem of finite-size correction in the spin-polarized phase also. Interestingly, we also find that the thermal effects tend to oppose spatial localization as well as spin polarization of electrons. Supplementary material in the form of one zip file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-70532-y

  3. The C(3P) + NH3 reaction in interstellar chemistry: II. Low temperature rate constants and modeling of NH, NH2 and NH3 abundances in dense interstellar clouds

    CERN Document Server

    Hickson, Kevin M; Bourgalais, Jérémy; Capron, Michael; Picard, Sebastien D Le; Goulay, Fabien; Wakelam, Valentine

    2016-01-01

    A continuous supersonic flow reactor has been used to measure rate constants for the C + NH3 reaction over the temperature range 50 to 296 K. C atoms were created by the pulsed laser photolysis of CBr4. The kinetics of the title reaction were followed directly by vacuum ultra-violet laser induced fluorescence (VUV LIF) of C loss and through H formation. The experiments show unambiguously that the reaction is rapid at 296 K, becoming faster at lower temperatures, reaching a value of 1.8 10-10 cm3 molecule-1 s-1 at 50 K. As this reaction is not currently included in astrochemical networks, its influence on interstellar nitrogen hydride abundances is tested through a dense cloud model including gas-grain interactions. In particular, the effect of the ortho-to-para ratio of H2 which plays a crucial role in interstellar NH3 synthesis is examined.

  4. {\\em Ab initio} Quantum Monte Carlo simulation of the warm dense electron gas in the thermodynamic limit

    CERN Document Server

    Dornheim, Tobias; Sjostrom, Travis; Malone, Fionn D; Foulkes, W M C; Bonitz, Michael

    2016-01-01

    We perform \\emph{ab initio} quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with linear response theory we are able to remove finite-size errors from the potential energy over the entire warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown \\emph{et al.}~[PRL \\textbf{110}, 146405 (2013)]. Extensive new QMC results for up to $N=1000$ electrons enable us to compute the potential energy $V$ and the exchange-correlation free energy $F_{xc}$ of the macroscopic electron gas with an unprecedented accuracy of $|\\Delta V|/|V|, |\\Delta F_{xc}|/|F|_{xc} \\sim 10^{-3}$. A comparison of our new data to the recent parametrization of $F_{xc}$ by Karasiev {\\em et al.} [PRL {\\bf 112}, 076403 (2014)] reveals significant inaccuracies of the latter.

  5. A sensitivity study of the neutral-neutral reactions C + C3 and C + C5 in cold dense interstellar clouds

    CERN Document Server

    Wakelam, Valentine; Herbst, Eric; Talbi, Dahbia; Quan, Dongui; Caralp, Françoise

    2009-01-01

    Chemical networks used for models of interstellar clouds contain many reactions, some of them with poorly determined rate coefficients and/or products. In this work, we report a method for improving the predictions of molecular abundances using sensitivity methods and ab initio calculations. Based on the chemical network osu.2003, we used two different sensitivity methods to determine the most important reactions as a function of time for models of dense cold clouds. Of these reactions, we concentrated on those between C and C3 and between C and C5, both for their effect on specific important species such as CO and for their general effect on large numbers of species. We then used ab initio and kinetic methods to determine an improved rate coefficient for the former reaction and a new set of products, plus a slightly changed rate coefficient for the latter. Putting our new results in a pseudo-time-dependent model of cold dense clouds, we found that the abundances of many species are altered at early times, ba...

  6. Measurements of the ion velocity distribution in an ultracold neutral plasma derived from a cold, dense Rydberg gas

    OpenAIRE

    S. D. Bergeson; Lyon, M

    2016-01-01

    We report measurements of the ion velocity distribution in an ultracold neutral plasma derived from a dense, cold Rydberg gas in a MOT. The Rydberg atoms are excited using a resonant two-step excitation pathway with lasers of 4 ns duration. The plasma forms spontaneously and rapidly. The rms width of the ion velocity distribution is determined by measuring laser-induced fluorescence (LIF) of the ions. The measured excitation efficiency is compared with a Monte-Carlo wavefunction calculation, ...

  7. The EMPIRE Survey: Systematic Variations in the Dense Gas Fraction and Star Formation Efficiency from Full-Disk Mapping of M51

    CERN Document Server

    Bigiel, F; Jimenez-Donaire, M J; Pety, J; Usero, A; Cormier, D; Bolatto, A; Garcia-Burillo, S; Colombo, D; Gonzalez-Garcia, M; Hughes, A; Kepley, A; Kramer, C; Sandstrom, K; Schinnerer, E; Schruba, A; Schuster, K; Tomicic, N; Zschaechner, L

    2016-01-01

    We present the first results from the EMPIRE survey, an IRAM large program that is mapping tracers of high density molecular gas across the disks of nine nearby star-forming galaxies. Here, we present new maps of the 3-mm transitions of HCN, HCO+, and HNC across the whole disk of our pilot target, M51. As expected, dense gas correlates with tracers of recent star formation, filling the "luminosity gap" between Galactic cores and whole galaxies. In detail, we show that both the fraction of gas that is dense, f_dense traced by HCN/CO, and the rate at which dense gas forms stars, SFE_dense traced by IR/HCN, depend on environment in the galaxy. The sense of the dependence is that high surface density, high molecular gas fraction regions of the galaxy show high dense gas fractions and low dense gas star formation efficiencies. This agrees with recent results for individual pointings by Usero et al. 2015 but using unbiased whole-galaxy maps. It also agrees qualitatively with the behavior observed contrasting our ow...

  8. MALATANG: MApping the dense moLecular gAs in the sTrongest stAr-formiNg Galaxies

    Science.gov (United States)

    Gao, Yu; Zhang, Zhiyu; Greve, Thomas; MALATANG Team

    2017-01-01

    The MALATANG Large Program is a 390 hr campaign, using the heterodyne array HARP on the JCMT to map theHCN and HCO+ J = 4 - 3 line emission in 23 of the nearest IR-brightest galaxies beyond the Local Group. Theobservations will reach a sensitivity of 0.3 K km/s (~ 4.5 x 10^6 Msun) at linear resolutions of 0.2-2.8kpc. It is thefirst survey to systematically map the distribution of dense molecular gas out to large galactocentric distances in a statisticallysignificant sample of nearby galaxies. MALATANG will bridge the gap, in terms of physical scale and luminosity,between extragalactic (i.e., galaxy-integrated) and Galactic (i.e., single molecular clouds) observations. A primarygoal of the survey is to delineate for the first time the distributed dense gas star-formation relations, as traced by theHCN and HCO+ J = 4-3, on scales of ~1kpc across our targets. Exploring the behaviour of these star-formationrelations in low surface density regions found in the disks as well as in the nuclear regions where surface densitiesare high, will shed new light on whether such environments are host to fundamentally different star-formation modes.The MALATANG data products of resolved HCN and HCO+ J = 4-3 maps of 23 IR-bright local galaxies, will beof great value to the extragalactic community and, in and of themselves, carry significant legacy value. At the moment,about 50% (~195hrs) of the 390hrs of time allocated to MALATANG has been observed. We here show somevery preliminary results as well after introducing our project.

  9. The influence of dense gas rings on the dynamics of a stellar disk in the Galactic center

    CERN Document Server

    Trani, Alessandro Alberto; Bressan, Alessandro; Pelupessy, Federico Inti; van Elteren, Arjen; Zwart, Simon Portegies

    2015-01-01

    The Galactic center hosts several hundred early-type stars, about 20% of which lie in the so-called clockwise disk, while the remaining 80% do not belong to any disks. The circumnuclear ring (CNR), a ring of molecular gas that orbits the supermassive black hole (SMBH) with a radius of 1.5 pc, has been claimed to induce precession and Kozai-Lidov oscillations onto the orbits of stars in the innermost parsec. We investigate the perturbations exerted by a gas ring on a nearly-Keplerian stellar disk orbiting a SMBH by means of combined direct N-body and smoothed particle hydrodynamics simulations. We simulate the formation of gas rings through the infall and disruption of a molecular gas cloud, adopting different inclinations between the infalling gas cloud and the stellar disk. We find that a CNR-like ring is not efficient in affecting the stellar disk on a timescale of 3 Myr. In contrast, a gas ring in the innermost 0.5 pc induces precession of the longitude of the ascending node Omega, significantly affecting ...

  10. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    NARCIS (Netherlands)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the

  11. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    NARCIS (Netherlands)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-01-01

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the ef

  12. The Relationship between the Dense Neutral and Diffuse Ionized Gas in the Thick Disks of Two Edge-on Spiral Galaxies

    Science.gov (United States)

    Rueff, Katherine M.; Howk, J. Christopher; Pitterle, Marissa; Hirschauer, Alec S.; Fox, Andrew J.; Savage, Blair D.

    2013-03-01

    We present high-resolution, optical images (BVI + Hα) of the multiphase interstellar medium (ISM) in the thick disks of the edge-on spiral galaxies NGC 4013 and NGC 4302. Our images from the Hubble Space Telescope (HST), Large Binocular Telescope, and WIYN 3.5 m telescope reveal an extensive population of filamentary dust absorption seen to z ~2-2.5 kpc. Many of these dusty thick disk structures have characteristics reminiscent of molecular clouds found in the Milky Way disk. Our Hα images show that the extraplanar diffuse ionized gas (DIG) in these galaxies is dominated by a smooth, diffuse component. The strongly filamentary morphologies of the dust absorption have no counterpart in the smoothly distributed Hα emission. We argue that the thick disk DIG and dust-bearing filaments trace physically distinct phases of the thick disk ISM, the latter tracing a dense, warm or cold neutral medium. The dense, dusty matter in the thick disks of spiral galaxies is largely tracing matter ejected from the thin disk via energetic feedback from massive stars. The high densities of the gas may be a result of converging gas flows. This dense material fuels some thick disk star formation, as evidenced by the presence of thick disk H II regions. Based on observations obtained with the NASA/ESA Hubble Space Telescope operated at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Also, based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the US, Italy, and Germany. LBT Corporation partners are the University of Arizona, on behalf of the Arizona University System; Instituto Nazionale do Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute of Potsdam, and Heidelberg University; Ohio State University, and the Research Corporation, on

  13. CO/H$_2$, C/CO, OH/CO, and OH/O$_2$ in Dense Interstellar Gas: From High Ionization to Low Metallicity

    CERN Document Server

    Bialy, Shmuel

    2014-01-01

    We present numerical computations and analytic scaling relations for cold-gas, ionization-driven interstellar ion-molecule chemistry, down to the very low metallicities (< 10$^{-3}$ solar) associated with the Pop-III to Pop-II star transition and the early enrichment reionization epoch. We focus on the behavior for H$_2$, CO, CH, OH, H$_2$O and O$_2$. We consider shielded or partially shielded one-zone gas parcels, and solve the chemical rate equations for steady-state conditions for a wide range of ionization parameters, $\\zeta/n$, and metallicties, $Z'$. We find that the OH abundances are always maximal at the H-to-H$_2$ conversion points, and that large OH abundances persist at very low metallicities even when the hydrogen is predominantly atomic. We study the OH/O$_2$, C/CO and OH/CO abundance ratios, from large to small, as functions of $\\zeta/n$ and $Z'$. Cold dense star-forming clouds for the Pop-II generation may have been OH-dominated and atomic rather than CO-dominated and molecular.

  14. Molecular Cloud Evolution III. Accretion vs. stellar feedback

    CERN Document Server

    Vazquez-Semadeni, Enrique; Gomez, Gilberto C; Watson, Alan

    2010-01-01

    We numerically investigate the effect of feedback from the ionizing radiation heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE). We find that the star-forming regions within the GMCs are invariably formed by gravitational contraction. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. The competition of accretion against dense gas consumption by star formation (SF) and evaporation by the feedback, regulates the clouds' mass and energy balance, as well as their SFE. We find that, in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable SF rates (SFRs). However, we observe that the dense gas mass is larger in general in the presence of feedback, while the total (dense gas + stars) is nearly insensitive to...

  15. The CarboCount CH sites: characterization of a dense greenhouse gas observation network

    Directory of Open Access Journals (Sweden)

    B. Oney

    2015-10-01

    Full Text Available We describe a new rural network of four densely placed (2, CH4, and CO measurement sites in north-central Switzerland and analyze its suitability for regional-scale (~ 100–500 km carbon flux studies. We characterize each site for the period from March 2013 to February 2014 by analyzing surrounding land cover, observed local meteorology, and sensitivity to surface fluxes, as simulated with the Lagrangian particle dispersion model FLEXPART-COSMO (FLEXible PARTicle dispersion model-Consortium for Small-Scale Modeling. The Beromünster measurements are made on a tall tower (212 m located on a gentle hill. At Beromünster, regional CO2 signals (measurement minus background vary diurnally from −4 to +4 ppmv, on average, and are simulated to come from nearly the entire Swiss Plateau, where 50 % of surface influence is simulated to be within 130–260 km distance. The Früebüel site measurements are made 4 m above ground on the flank of a gently sloping mountain. Nearby (2 signals varying diurnally from −5 to +12 ppmv and elevated summer daytime CH4 signals (+30 ppbv above other sites. The Gimmiz site measurements are made on a small tower (32 m in flat terrain. Here, strong summertime regional signals (−5 to +60 ppmv CO2 stem from large, nearby (2. Here, considerable anthropogenic influence from the nearby industrialized region near Zurich causes the average wintertime regional CO2 signals to be 5 ppmv above the regional signals simultaneously measured at the Früebüel site. We find that the suitability of the data sets from our current observation network for regional carbon budgeting studies largely depends on the ability of the high-resolution (2 km atmospheric transport model to correctly capture the temporal dynamics of the stratification of the lower atmosphere at the different sites. The current version of the atmospheric transport model captures these dynamics well, but it clearly reaches its limits at the sites in steep topography

  16. The CarboCount CH sites: characterization of a dense greenhouse gas observation network

    Directory of Open Access Journals (Sweden)

    B. Oney

    2015-05-01

    Full Text Available We describe a new rural network of four densely placed (2, CH4, and CO measurement sites in north-central Switzerland and analyze their suitability for regional-scale (~ 100 to 500 km carbon flux studies. We characterize each site by analyzing surrounding land cover, observed local meteorology, and sensitivity to surface fluxes, as simulated with the Lagrangian particle dispersion model FLEXPART-COSMO. The Beromünster measurements are made on a tall tower (212 m located on a gentle hill. At Beromünster, regional CO2 signals (measurement minus background vary diurnally from −4 to +4 ppmv on average, and are simulated to come from nearly the entire Swiss Plateau, where 50% of surface influence is simulated to be within 130 to 260 km distance. The Früebüel site measurements are made 4 m above ground on the flank of a gently sloping mountain. Nearby (2 signals varying diurnally from −5 to +12 ppmv and elevated summer daytime CH4 signals (+30 ppbv above other sites. The Gimmiz site measurements are made on a small tower (32 m in flat terrain. Here, strong summertime regional signals (−5 to +60 ppmv CO2 stem from large, nearby (2. Here, considerable anthropogenic influence from the nearby industrialized region near Zurich cause the average wintertime regional CO2 signals to be 5 ppmv above the regional signals simultaneously measured at Früebüel site. We find that the suitability of the datasets from our current observation network for regional carbon budgeting studies largely depends on the ability of the high-resolution (2 km atmospheric transport model to correctly capture the temporal dynamics of the stratification of the lower atmosphere at the different sites. The current version of the atmospheric transport model captures these dynamics well, but it clearly reaches its limits at the sites in steep topography, and at the sites that generally remain in the surface layer. Trace gas transport and inverse modeling studies will be

  17. Dense ion clouds of 0.1 − 2 keV ions inside the CPS-region observed by Astrid-2

    Directory of Open Access Journals (Sweden)

    O. Norberg

    Full Text Available Data from the Astrid-2 satellite taken between April and July 1999 show several examples of dense ion clouds in the 0.1–2 keV energy range inside the inner mag-netosphere, both in the northern and southern hemispheres. These inner magnetospheric ion clouds are found predomi-nantly in the early morning sector, suggesting that they could have originated from substorm-related ion injections on the night side. However, their location and density show no cor-relation with Kp, and their energy-latitude dispersion is not easily reproduced by a simple particle drift model. There-fore, these ion clouds are not necessarily caused by substorm-related ion injections. Alternative explanations for the ion clouds are the direct solar wind injections and up-welling ions from the other hemisphere. These explanations do not, however, account for all of the observations.Key words. Magnetospheric physics (energetic particles, trapped; magnetospheric configuration and dynamics; storm and substorms

  18. Transient and steady inertially tethered clouds of gas in a vacuum

    Science.gov (United States)

    Farnham, Tony L.; Muntz, E. P.

    1989-01-01

    The generation, formation, and dissipation of a transient cloud of gas produced by a multiorifice ring jet are experimentally studied, and the results are compared to a long-term steady-state flow. The transient case is related to the steady-state case by comparison of their respective number density distributions in the flowfield. The shapes of the clouds are also observed and compared to the shape of the theoretical collisionless cloud. The results indicate that the steady-state cloud is concentrated into a smaller volume than the transient cloud, which tends to spread out farther radially as well as upstream. These differences seem to indicate that a surprisingly long time is required to attain steady flow, which may be due to a long-term buildup of collision products.

  19. Characterization of the gas pulse frequency, amplitude and velocity in non-steady dense phase pneumatic conveying of powders

    Institute of Scientific and Technical Information of China (English)

    Kenneth C.Williams; Mark G.Jones; Ahmed A.Cenna

    2008-01-01

    Current modelling techniques for the prediction of conveying line pressure drop in low velocity dense phase pneumatic conveying are largely based on steady state analyses.Work in this area has been on-going for many years with only marginal improvements in the accuracy of prediction being achieved.Experimental and theoretical investigations undertaken by the authors suggest that the flow mechanisms involved in dense phase conveying are dominated by transient effects rather than those of steady state and are possibly the principal reasons for the limited improvement in accuracy.This paper reports on investigations on the pressure fluctuation behaviour in dense phase pneumatic conveying of powders.The pressure behaviour of the gas flow in the top section of the pipeline was found to exhibit pulsatile oscillations.In particular,the pulse velocity showed variation in magnitude while the frequency of the oscillations rarely exceeded 5 Hz.A wavelet analysis using the Daubechie 4 wavelet found that the amplitude of the oscillations increased along the pipeline.Furthermore,there was significant variation in gas pulse amplitude for different types of particulate material.

  20. \\emph{Ab initio} Quantum Monte Carlo simulation of the warm dense electron gas

    CERN Document Server

    Dornheim, Tobias; Malone, Fionn; Schoof, Tim; Sjostrom, Travis; Foulkes, W M C; Bonitz, Michael

    2016-01-01

    Warm dense matter is one of the most active frontiers in plasma physics due to its relevance for dense astrophysical objects as well as for novel laboratory experiments in which matter is being strongly compressed e.g. by high-power lasers. Its description is theoretically very challenging as it contains correlated quantum electrons at finite temperature---a system that cannot be accurately modeled by standard analytical or ground state approaches. Recently several breakthroughs have been achieved in the field of fermionic quantum Monte Carlo simulations. First, it was shown that exact simulations of a finite model system ($30 \\dots 100$ electrons) is possible that avoid any simplifying approximations such as fixed nodes [Schoof {\\em et al.}, Phys. Rev. Lett. {\\bf 115}, 130402 (2015)]. Second, a novel way to accurately extrapolate these results to the thermodynamic limit was reported by Dornheim {\\em et al.} [Phys. Rev. Lett. {\\bf 117}, 156403 (2016)]. As a result, now thermodynamic results for the warm dense...

  1. A general model for Io's neutral gas clouds. I - Mathematical description

    Science.gov (United States)

    Smyth, W. H.; Combi, M. R.

    1988-01-01

    A general mathematical formalism for calculating the physical properties of any of Io's neutral gas clouds (Na, K, O, S, SO2) is presented. The dynamical effects of both the gravitational fields of Io and Jupiter and solar radiation pressure are included, in addition to the many complex space- and time-dependent interactions that occur between the neutral clouds and the plasma torus. The importance of this new model in studying both the plasma conditions prevalent in the inner planetary magnetosphere and the nature of Io's local atmosphere is discussed. A numerical method for evaluating the physical properties of the neutral clouds using the new model is described.

  2. Sulfur depletion in dense clouds and circumstellar regions I. H2S ice abundance and UV-photochemical reactions in the H2O-matrix

    CERN Document Server

    Jiménez-Escobar, A

    2011-01-01

    This work aims to study the unexplained sulfur depletion observed toward dense clouds and protostars. We made simulation experiments of the UV-photoprocessing and sublimation of H2S and H2S:H2O ice in dense clouds and circumstellar regions, using the Interstellar Astrochemistry Chamber (ISAC), a state-of-the-art ultra-high-vacuum setup. The ice was monitored in situ by mid-infrared spectroscopy in transmittance. Temperature-programmed desorption (TPD) of the ice was performed using a quadrupole mass spectrometer (QMS) to detect the volatiles desorbing from the ice. Comparing our laboratory data to infrared observations of protostars we obtained a more accurate upper limit of the abundance of H2S ice toward these objects. We determined the desorption temperature of H2S ice, which depends on the initial H2S:H2O ratio. UV-photoprocessing of H2S:H2O ice led to the formation of several species. Among them, H2S2 was found to photodissociate forming S2 and, by elongation, other species up to S8, which are refractory...

  3. Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy

    NARCIS (Netherlands)

    van der Hoef, Martin Anton; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    Dense gas–particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic, which can be related to the intrinsic complexities of these flows which are

  4. Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy

    NARCIS (Netherlands)

    Hoef, van der M.A.; Sint Annaland, van M.; Kuipers, J.A.M.

    2004-01-01

    Dense gas–particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic, which can be related to the intrinsic complexities of these flows which are unfortunate

  5. Radiative and mechanical feedback into the molecular gas in the Large Magellanic Cloud. I. N159W

    CERN Document Server

    Lee, Min-Young; Lebouteiller, Vianney; Gusdorf, Antoine; Godard, Benjamin; Wu, Ronin; Galametz, Maud; Cormier, Diane; Petit, Franck Le; Roueff, Evelyne; Bron, Emeric; Carlson, Lynn; Chevance, Melanie; Fukui, Yasuo; Galliano, Frederic; Hony, Sacha; Hughes, Annie; Indebetouw, Remy; Israel, Franck; Kawamura, Akiko; Bourlot, Jacques Le; Lesaffre, Pierre; Meixner, Margaret; Muller, Erik; Nayak, Omnarayani; Onishi, Toshikazu; Roman-Duval, Julia; Sewilo, Marta

    2016-01-01

    We present Herschel SPIRE Fourier Transform Spectrometer (FTS) observations of N159W, an active star-forming region in the Large Magellanic Cloud (LMC). In our observations, a number of far-infrared cooling lines including CO(4-3) to CO(12-11), [CI] 609 and 370 micron, and [NII] 205 micron are clearly detected. With an aim of investigating the physical conditions and excitation processes of molecular gas, we first construct CO spectral line energy distributions (SLEDs) on 10 pc scales by combining the FTS CO transitions with ground-based low-J CO data and analyze the observed CO SLEDs using non-LTE radiative transfer models. We find that the CO-traced molecular gas in N159W is warm (kinetic temperature of 153-754 K) and moderately dense (H2 number density of (1.1-4.5)e3 cm-3). To assess the impact of the energetic processes in the interstellar medium on the physical conditions of the CO-emitting gas, we then compare the observed CO line intensities with the models of photodissociation regions (PDRs) and shock...

  6. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. II. GAS-TO-DUST RATIO VARIATIONS ACROSS INTERSTELLAR MEDIUM PHASES

    Energy Technology Data Exchange (ETDEWEB)

    Roman-Duval, Julia; Gordon, Karl D.; Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bot, Caroline [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' université, F-67000 Strasbourg (France); Bolatto, Alberto; Jameson, Katherine [Department of Astronomy, Lab for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Hughes, Annie; Hony, Sacha [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Wong, Tony [University of Illinois at Urbana-Champaign, 1002 W. Green St., Urbana, IL 61801 (United States); Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter St., Madison, WI 53706 (United States); Bernard, Jean-Philippe [CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France); Clayton, Geoffrey C. [Louisiana State University, Department of Physics and Astronomy, 233-A Nicholson Hall, Tower Dr., Baton Rouge, LA 70803-4001 (United States); Fukui, Yasuo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Galametz, Maud [European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching (Germany); Galliano, Frederic; Lebouteiller, Vianney; Lee, Min-Young [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Glover, Simon [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg, Albert-Ueberle Strasse 2, D-69120 Heidelberg (Germany); Israel, Frank [Sterrewacht Leiden, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Li, Aigen, E-mail: duval@stsci.edu [314 Physics Building, Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); and others

    2014-12-20

    The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50 pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21 cm, CO, and Hα observations. In the diffuse atomic interstellar medium (ISM), we derive the GDR as the slope of the dust-gas relation and find GDRs of 380{sub −130}{sup +250} ± 3 in the LMC, and 1200{sub −420}{sup +1600} ± 120 in the SMC, not including helium. The atomic-to-molecular transition is located at dust surface densities of 0.05 M {sub ☉} pc{sup –2} in the LMC and 0.03 M {sub ☉} pc{sup –2} in the SMC, corresponding to A {sub V} ∼ 0.4 and 0.2, respectively. We investigate the range of CO-to-H{sub 2} conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on X {sub CO} to be 6 × 10{sup 20} cm{sup –2} K{sup –1} km{sup –1} s in the LMC (Z = 0.5 Z {sub ☉}) at 15 pc resolution, and 4 × 10{sup 21} cm{sup –2} K{sup –1} km{sup –1} s in the SMC (Z = 0.2 Z {sub ☉}) at 45 pc resolution. In the LMC, the slope of the dust-gas relation in the dense ISM is lower than in the diffuse ISM by a factor ∼2, even after accounting for the effects of CO-dark H{sub 2} in the translucent envelopes of molecular clouds. Coagulation of dust grains and the subsequent dust emissivity increase in molecular clouds, and/or accretion of gas-phase metals onto dust grains, and the subsequent dust abundance (dust-to-gas ratio) increase in molecular clouds could explain the observations. In the SMC, variations in the dust-gas slope caused by coagulation or accretion are degenerate with the effects of CO-dark H{sub 2}. Within the expected 5-20 times Galactic X {sub CO} range, the dust-gas slope can be either constant or decrease by a factor of several across ISM phases. Further modeling

  7. Change of Magnetic Field$-$Gas Alignment at Gravity-Driven Alfv\\'enic Transition in Molecular Clouds: Implications for Dust Polarization Observations

    CERN Document Server

    Chen, Che-Yu; Li, Zhi-Yun

    2016-01-01

    Diffuse striations in molecular clouds are preferentially aligned with local magnetic fields whereas dense filaments tend to be perpendicular to them. When and why this transition occurs remain uncertain. To explore the physics behind this transition, we compute the histogram of relative orientation (HRO) between the density gradient and the magnetic field in 3D MHD simulations of prestellar core formation in shock-compressed regions within GMCs. We find that, in the magnetically-dominated (sub-Alfv\\'enic) post-shock region, the gas structure is preferentially aligned with the local magnetic field. For overdense sub-regions with super-Alfv\\'enic gas, their elongation becomes preferentially perpendicular to the local magnetic field instead. The transition occurs when self-gravitating gas gains enough kinetic energy from the gravitational acceleration to overcome the magnetic support against the cross-field contraction, which results in a power-law increase of the field strength with density. Similar results ca...

  8. Molecular line emission in NGC 1068 imaged with ALMA. II. The chemistry of the dense molecular gas

    Science.gov (United States)

    Viti, S.; García-Burillo, S.; Fuente, A.; Hunt, L. K.; Usero, A.; Henkel, C.; Eckart, A.; Martin, S.; Spaans, M.; Muller, S.; Combes, F.; Krips, M.; Schinnerer, E.; Casasola, V.; Costagliola, F.; Marquez, I.; Planesas, P.; van der Werf, P. P.; Aalto, S.; Baker, A. J.; Boone, F.; Tacconi, L. J.

    2014-10-01

    Aims: We present a detailed analysis of Atacama Large Millimeter/submillimeter Array (ALMA) Bands 7 and 9 data of CO, HCO+, HCN, and CS, augmented with Plateau de Bure Interferometer (PdBI) data of the ~200 pc circumnuclear disc (CND) and the ~1.3 kpc starburst ring (SB ring) of NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy. We aim to determine the physical characteristics of the dense gas present in the CND, and to establish whether the different line intensity ratios we find within the CND, as well as between the CND and the SB ring, are due to excitation effects (gas density and temperature differences) or to a different chemistry. Methods: We estimate the column densities of each species in local thermodynamic equilibrium (LTE). We then compute large one-dimensional, non-LTE radiative transfer grids (using RADEX) by using only the CO transitions first, and then all the available molecules to constrain the densities, temperatures, and column densities within the CND. We finally present a preliminary set of chemical models to determine the origin of the gas. Results: We find that, in general, the gas in the CND is very dense (>105 cm-3) and hot (T> 150 K), with differences especially in the temperature across the CND. The AGN position has the lowest CO/HCO+, CO/HCN, and CO/CS column density ratios. The RADEX analyses seem to indicate that there is chemical differentiation across the CND. We also find differences between the chemistry of the SB ring and some regions of the CND; the SB ring is also much colder and less dense than the CND. Chemical modelling does not succeed in reproducing all the molecular ratios with one model per region, suggesting the presence of multi-gas phase components. Conclusions: The LTE, RADEX, and chemical analyses all indicate that more than one gas-phase component is necessary to uniquely fit all the available molecular ratios within the CND. A higher number of molecular transitions at the ALMA resolution is necessary to

  9. The Transition from Atomic to Molecular Hydrogen in Interstellar Clouds: 21cm Signature of the Evolution of Cold Atomic Hydrogen in Dense Clouds

    CERN Document Server

    Goldsmith, P F; Krco, M; Goldsmith, Paul F.; Li, Di; Krco, Marko

    2006-01-01

    We have investigated the time scale for formation of molecular clouds by examining the conversion of HI to H2 using a time-dependent model. H2 formation on dust grains and cosmic ray and photo destruction are included in one-dimensional model slab clouds which incorporate time-independent density and temperature distributions. We calculate 21cm spectral line profiles seen in absorption against a background provided by general Galactic HI emission, and compare the model spectra with HI Narrow Self-Absorption, or HINSA, profiles absorbed in a number of nearby molecular clouds. The time evolution of the HI and H2 densities is dramatic, with the atomic hydrogen disappearing in a wave propagating from the central, denser regions which have a shorter H2 formation time scale, to the edges, where the density is lower and the time scale for H2 formation longer. The model 21cm spectra are characterized by very strong absorption at early times, when the HI column density through the model clouds is extremely large. The ...

  10. Ultracold chemical reactions of a single Rydberg atom in a dense gas

    CERN Document Server

    Schlagmüller, Michael; Engel, Felix; Kleinbach, Kathrin S; Böttcher, Fabian; Westphal, Karl M; Gaj, Anita; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman; Pérez-Ríos, Jesús; Greene, Chris H

    2016-01-01

    Within a dense environment ($\\rho \\approx 10^{14}\\,$atoms/cm$^3$) at ultracold temperatures ($T 140$ compared to $1\\,\\mu\\text{s}$ at $n=90$. In addition, a second observed reaction mechanism, namely Rb$_2^+$ molecule formation, was studied. Both reaction products are equally probable for $n=40$ but the fraction of Rb$_2^+$ created drops to below 10$\\,$% for $n\\ge90$.

  11. Molecular clouds. [significance in stellar evolution

    Science.gov (United States)

    Thaddeus, P.

    1977-01-01

    An attempt is made to understand star formation in the context of the dense interstellar molecular gas from which stars are made. Attention is given to how molecular observations (e.g., UV spectroscopy and radio 21-cm and recombination line observations) provide data on the physical state of the dense interstellar gas; observations of H II regions, stellar associations, and dark nebulae are discussed. CO clouds are studied with reference to radial velocity, temperature, density, ionization, magnetic field.

  12. ALMA observations of the dense and shocked gas in the nuclear region of NGC 4038 (Antennae galaxies)

    Science.gov (United States)

    Ueda, Junko; Watanabe, Yoshimasa; Iono, Daisuke; Wilner, David J.; Fazio, Giovanni G.; Ohashi, Satoshi; Kawabe, Ryohei; Saito, Toshiki; Komugi, Shinya

    2017-02-01

    We present 1″(Antennae galaxies, with the Atacama Large Millimeter/submillimeter Array. Three molecules (CN, CH3OH, and HNCO) were detected for the first time in the nuclear region of NGC 4038. High-resolution mapping reveals a systematic difference in distributions of different molecular species and continuum emission. Active star-forming regions identified by the 3 mm and 850 μm continuum emission are offset from the gas-rich region associated with the HCN (1-0) and CO (3-2) peaks. The CN (1-0)/HCN (1-0) line ratios are enhanced (CN/HCN ≃ 0.8-1.2) in the star-forming regions, suggesting that the regions are photon dominated. The large molecular gas mass (108 M⊙) within a 0{^''.}6 (˜60 pc) radius of the CO (3-2) peak and a high dense gas fraction (>20%) suggested by the HCN (1-0)/CO (3-2) line ratio may signify a future burst of intense star formation there. The shocked gas traced in the CH3OH and HNCO emission indicates sub-kpc-scale molecular shocks. We suggest that the molecular shocks may be driven by collisions between inflowing gas and the central massive molecular complex.

  13. The survival of gas clouds in the circumgalactic medium of Milky Way-like galaxies

    Science.gov (United States)

    Armillotta, L.; Fraternali, F.; Werk, J. K.; Prochaska, J. X.; Marinacci, F.

    2017-09-01

    Observational evidence shows that low-redshift galaxies are surrounded by extended haloes of multiphase gas, the so-called circumgalactic medium (CGM). To study the survival of relatively cool gas (T < 105 K) in the CGM, we performed a set of hydrodynamical simulations of cold (T = 104 K) neutral gas clouds travelling through a hot (T = 2 × 106 K) and low-density (n = 10-4 cm-3) coronal medium, typical of Milky Way-like galaxies at large galactocentric distances (∼50-150 kpc). We explored the effects of different initial values of relative velocity and radius of the clouds. Our simulations were performed on a two-dimensional grid with constant mesh size (2 pc), and they include radiative cooling, photoionization heating and thermal conduction. We found that for large clouds (radii larger than 250 pc), the cool gas survives for very long time (larger than 250 Myr): despite that they are partially destroyed and fragmented into smaller cloudlets during their trajectory, the total mass of cool gas decreases at very low rates. We found that thermal conduction plays a significant role: its effect is to hinder formation of hydrodynamical instabilities at the cloud-corona interface, keeping the cloud compact and therefore more difficult to destroy. The distribution of column densities extracted from our simulations is compatible with those observed for low-temperature ions (e.g. Si ii and Si iii) and for high-temperature ions (O vi) once we take into account that O vi covers much more extended regions than the cool gas and, therefore, it is more likely to be detected along a generic line of sight.

  14. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    Directory of Open Access Journals (Sweden)

    Christiane Helling

    2014-04-01

    Full Text Available We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  15. Disk evolution, element abundances and cloud properties of young gas giant planets.

    Science.gov (United States)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-04-14

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  16. Design and initial results from a kilojoule level dense plasma focus with hollow anode and cylindrically symmetric gas puff

    Science.gov (United States)

    Ellsworth, J. L.; Falabella, S.; Tang, V.; Schmidt, A.; Guethlein, G.; Hawkins, S.; Rusnak, B.

    2014-01-01

    We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ˜6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 107 per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.

  17. The Relationship between the Dust and Gas-Phase CO across the California Molecular Cloud

    Science.gov (United States)

    Kong, S.; Lada, C. J.; Lada, E. A.; Román-Zúñiga, C.; Bieging, J. H.; Lombardi, M.; Forbrich, J.; Alves, J. F.

    2015-05-01

    We present results of an extinction-CO line survey of the southeastern part of the California molecular cloud (CMC). Deep, wide-field, near-infrared images were used to construct a sensitive, relatively high resolution (˜0.5 arcmin) (NICEST) extinction map of the region. The same region was also surveyed in the 12CO(2-1), 13CO(2-1), and C18O(2-1) emission lines at the same angular resolution. These data were used to investigate the relation between the molecular gas, traced by CO emission lines, and the dust column density, traced by extinction, on spatial scales of 0.04 pc across the cloud. We found strong spatial variations in the abundances of 13CO and C18O that were correlated with variations in gas temperature, consistent with temperature-dependent CO depletion/desorption on dust grains. The 13CO-to-C18O abundance ratio was found to increase with decreasing extinction, suggesting selective photodissociation of C18O by the ambient UV radiation field. The effect is particularly pronounced in the vicinity of an embedded cluster where the UV radiation appears to have penetrated deeply (i.e., {{A}V} ≲ 15 mag) into the cloud. We derived the cloud-averaged X-factor to be = 2.53 × 1020 c{{m}-2}{{≤ft( K km {{s}-1} \\right)}-1}, a value somewhat higher than the Milky Way average. On sub-parsec scales we find there is no single empirical value of the 12CO X-factor that can characterize the molecular gas in cold (Tk ≲ 15 K) cloud regions, with XCO ∝ AV0.74 for {{A}V} ≳ 3 mag. However, in regions containing relatively hot (Tex ≳ 25 K) molecular gas we find a clear correlation between W(12CO) and {{A}V} over a large (3 ≲ {{A}V} ≲ 25 mag) range of extinction. This results in a constant XCO = 1.5 × 1020 c{{m}-2} {{≤ft( K km {{s}-1} \\right)}-1} for the hot gas, a lower value than either the average for the CMC or the Milky Way. Overall we find an (inverse) correlation between XCO and Tex in the cloud with XCO ∝ Tex -0.7. This correlation suggests that

  18. Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model

    NARCIS (Netherlands)

    Colonna, P.; Guardone, A.

    2006-01-01

    The van der Waals polytropic gas model is used to investigate the role of attractive and repulsive intermolecular forces and the influence of molecular complexity on the possible nonclassical gas dynamic behavior of vapors near the liquid-vapor saturation curve. The decrease of the sound speed upon

  19. Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model

    NARCIS (Netherlands)

    Colonna, P.; Guardone, A.

    2006-01-01

    The van der Waals polytropic gas model is used to investigate the role of attractive and repulsive intermolecular forces and the influence of molecular complexity on the possible nonclassical gas dynamic behavior of vapors near the liquid-vapor saturation curve. The decrease of the sound speed upon

  20. The cloud of gas falling toward the central black hole in the milky way

    Directory of Open Access Journals (Sweden)

    Miralda-Escudé J.

    2012-12-01

    Full Text Available The cloud of gas that will pass within 200AU of the central black hole of our Galaxy in 2013 may be generated by a disk around an old, low-mass star that was created in a tidal encounter with one of the stellar black holes that are expected to accumulate in the central region of the stellar cusp.

  1. Photoluminescence of dense nanocrystalline titanium dioxide thin films: effect of doping and thickness and relation to gas sensing.

    Science.gov (United States)

    Mercado, Candy; Seeley, Zachary; Bandyopadhyay, Amit; Bose, Susmita; McHale, Jeanne L

    2011-07-01

    The photoluminescence (PL) of dense nanocrystalline (anatase) TiO(2) thin films is reported as a function of calcination temperature, thickness, and tungsten and nickel doping. The dependence of the optical absorption, Raman spectra, and PL spectra on heat treatment and dopants reveals the role of oxygen vacancies, crystallinity, and phase transformation in the performance of TiO(2) films used as gas sensors. The broad visible PL from defect states of compact and undoped TiO(2) films is found to be much brighter and less sensitive to the presence of oxygen than that of mesoporous films. The dense nanocrystalline grains and the nanoparticles comprising the mesoporous film are comparable in size, demonstrating the importance of film morphology and carrier transport in determining the intensity of defect photoluminescence. At higher calcination temperatures, the transformation to rutile results in the appearance of a dominant near-infrared peak. This characteristic change in the shape of the PL spectra demonstrates efficient capture of conduction band electrons by the emerging rutile phase. The W-doped samples show diminished PL with quenching on the red side of the emission spectrum occurring at lower concentration and eventual disappearance of the PL at higher W concentration. The results are discussed within the context of the performance of the TiO(2) thin films as CO gas sensors and the chemical nature of luminescent defects.

  2. Duality principle from rarefied to dense gas and extended thermodynamics with six fields

    Science.gov (United States)

    Arima, Takashi; Ruggeri, Tommaso; Sugiyama, Masaru

    2017-01-01

    We present an extended thermodynamics (ET) theory of dissipative dense gases. In particular, we study the ET theory with six fields, where we neglect shear viscosity and heat conductivity. We postulate a simple principle of duality between rarefied and dense gases. This principle is based on the microscopic analysis of the energy exchange between different modes of the molecular motion. The basic system of equations satisfies all principles of ET, that is, Galilean invariance, entropy principle, and thermodynamic stability (entropy convexity), and, as in the ET theory of rarefied gases, the constitutive equations are completely determined by the thermal and caloric equations of state. The system is simplest after the Euler system, but, in contrast to the Euler system, we may have a global smooth solution due to the fact that the system is dissipative symmetric hyperbolic and satisfies the so-called K condition. There emerge two nonequilibrium temperatures; one is due to the translational modes, and the other is due to the internal modes such as rotation and vibration of a molecule. This viewpoint allows us to understand the origin of the dynamic pressure in a more clear way. Furthermore we evaluate the characteristic velocities associated with the hyperbolic system and address the fluctuation-dissipation relation of the bulk viscosity. As a typical example, we analyze van der Waals fluids based on the present theory.

  3. Specific features of SRS-CARS monitoring of low impurity concentrations of hydrogen in dense gas mixtures

    Science.gov (United States)

    Mikheev, Gennady M.; Mogileva, Tatyana N.; Popov, Aleksey Yu.

    2006-09-01

    The possibility of measuring the hydrogen impurity concentration in dense gas mixtures by coherent anti-Stokes Raman scattering (CARS) is studied. In this technique, biharmonic laser pumping based on stimulated Raman scattering (SRS) in compressed hydrogen is used. Because of the interference between the coherent scattering components from buffer gas molecules and molecules of the impurity to be detected, the signal recorded may depend on the hydrogen concentration by a parabolic law, which has a minimum and makes the results uncertain. It is shown that this uncertainty can be removed if the frequency of the biharmonic laser pump, which is produced by the SRS oscillator, somewhat differs from the frequency of molecular oscillations of hydrogen in the test mixture. A sensitivity of 5 ppm is obtained as applied to the hydrogen-air mixture under normal pressure. The description of a set-up for the determination of the coefficient of the hydrogen diffusion in gas mixtures is given. The main assembly units are a diffusion chamber and an automated laser system for the selective hydrogen diagnostics in gas mixtures by the SRS-CARS method. The determination of the diffusion coefficient is based on the approximation of the experimental data describing the hydrogen concentration varying with time at a specified point in the diffusion chamber and the accurate solution of the diffusion equation for the selected one-dimensional geometry of the experiment.

  4. C18O Observations of the Dark Molecular Cloud L134 and Gas Depletion onto Dust

    Institute of Scientific and Technical Information of China (English)

    Xin-Jie Mao; Xiao-Xia Sun

    2005-01-01

    We map the dark molecular cloud core of L134 in the C18O (J =1 -0) emission line using the PMO 13.7m telescope, and present a contour map of integrated intensity of C18O (J = 1 - 0) emission. The C18O cloud is inside the distribution of extinction AB, the visual extinction of blue light, as well as inside the 13CO cloud in the L134 region. The depletion factors in this C18O cloud are generally greater than unity, which means there is gas depletion onto dust. Since only a minimum AB = 9.7 mag is available, and our observations measure both undepleted and depleted regions along the line of sight, the depletion factors could very likely be larger in the central core than the calculated value. So we conclude that depletion does occur in the bulk of the C18O cloud through a comparison between the C18O and blue extinction maps in the L134 region. There is no direct evidence as yet for star formation in L134, and so cores on the verge of collapse will not be visible in CO and other gas molecules.

  5. Atomic Hydrogen Gas in Dark-Matter Minihalos and the Compact High Velocity Clouds

    CERN Document Server

    Sternberg, A; Wolfire, M G

    2002-01-01

    We calculate the coupled hydrostatic and ionization structures of pressure-supported gas clouds that are confined by gravitationally dominant dark-matter (DM) mini-halos and by an external bounding pressure provided by a hot medium. We focus on clouds that are photoionized and heated by the present-day background metagalactic field and determine the conditions for the formation of warm (WNM), and multi-phased (CNM/WNM) neutral atomic hydrogen (HI) cores in the DM-dominated clouds. We consider LCDM dark-matter halos, and we compute models for a wide range of halo masses, total cloud gas masses, and external bounding pressures. We present models for the pressure-supported HI structures observed in the Local Group dwarf galaxies Leo A and Sag DIG. We then construct minihalo models for the multi-phased (and low-metallicity) compact high-velocity HI clouds (CHVCs). If the CHVCs are drawn from the same family of halos that successfully reproduce the dwarf galaxy observations, then the CHVCs must be "circumgalactic ...

  6. Satellite and ground detection of very dense smoke clouds produced on the islands of the Paraná river delta that affected a large region in Central Argentina

    Science.gov (United States)

    Ipiña, A.; Salum, G. M.; Crinó, E.; Piacentini, R. D.

    2012-03-01

    Intense fires were produced on the Paraná river delta islands, Argentina, during most part of 2008, by a combination of an exceptionally dry period and the farmers' use of a fire land-cleaning technique. In April 2008, those fires significantly affected the nearby regions and their inhabitants, from Rosario city to Buenos Aires mega-city. In this work we present satellite as well as ground Aerosol Optical Depth (AOD) at 550 nm data obtained during the propagation of pollution clouds to the central zone of Argentina. The highest value (1.18) was registered at Buenos Aires by atmospheric remote sensing, using the satellite instrument MODIS/Terra on April 18th 2008 at 10:35 local time (= UT - 3 h). On the same day, ground air quality detectors also measured in this city the highest Total Suspended Particle (TSP) value of the month, 2.02 mg/m3. The AOD(550) daily variation at Rosario Astronomical Observatory, which is located near the Paraná riverside, was derived by combining solar ultraviolet erythemal irradiance data (measured with a YES biometre) with model calculations. On April 25th 2008, from 12:00 to 15:30 local time, a rather high and constant AOD(550) value was registered, with a mean value of (0.90 ± 0.21). Cities located on the side of the Rosario-Buenos Aires highway (San Nicolás, Baradero and San Pedro) were also affected, showing a mean AOD(550) between the Rosario and Buenos Aires values. The particulate matter was collected with gridded samplers placed on the Paraná river islands as well as at the Rosario Observatory. They were analysed with a Scanning Electron Microscope (SEM) and mainly showed a biological origin. Even if normally large particles travel small distances from the source, organic aerosol in the range of 40-100 μm and complex asymmetric structures were registered several kilometres away from the aerosol sources on the islands. Another event of intense UV index attenuation (98.6%) occurred on September 18th 2008, due to very dense

  7. A NEW APPROACH FOR PROGRESSIVE DENSE RECONSTRUCTION FROM CONSECUTIVE IMAGES BASED ON PRIOR LOW-DENSITY 3D POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    Z. Lari

    2017-09-01

    Full Text Available In recent years, the increasing incidence of climate-related disasters has tremendously affected our environment. In order to effectively manage and reduce dramatic impacts of such events, the development of timely disaster management plans is essential. Since these disasters are spatial phenomena, timely provision of geospatial information is crucial for effective development of response and management plans. Due to inaccessibility of the affected areas and limited budget of first-responders, timely acquisition of the required geospatial data for these applications is usually possible only using low-cost imaging and georefencing sensors mounted on unmanned platforms. Despite rapid collection of the required data using these systems, available processing techniques are not yet capable of delivering geospatial information to responders and decision makers in a timely manner. To address this issue, this paper introduces a new technique for dense 3D reconstruction of the affected scenes which can deliver and improve the needed geospatial information incrementally. This approach is implemented based on prior 3D knowledge of the scene and employs computationally-efficient 2D triangulation, feature descriptor, feature matching and point verification techniques to optimize and speed up 3D dense scene reconstruction procedure. To verify the feasibility and computational efficiency of the proposed approach, an experiment using a set of consecutive images collected onboard a UAV platform and prior low-density airborne laser scanning over the same area is conducted and step by step results are provided. A comparative analysis of the proposed approach and an available image-based dense reconstruction technique is also conducted to prove the computational efficiency and competency of this technique for delivering geospatial information with pre-specified accuracy.

  8. Observations of the gas cloud G2 in the Galactic Center

    CERN Document Server

    Gillessen, Stefan; Fritz, Tobias K; Eisenhauer, Frank; Pfuhl, Oliver; Ott, Thomas; Burkert, Andreas; Schartmann, Marc; Ballone, Alessandro

    2013-01-01

    In 2011, we discovered a compact gas cloud ("G2") with roughly three Earth masses that is falling on a near-radial orbit toward the massive black hole in the Galactic Center. The orbit is well constrained and pericenter passage is predicted for early 2014. Our data beautifully show that G2 gets tidally sheared apart due to the massive black hole's force. During the next months, we expect that in addition to the tidal effects, hydrodynamics get important, when G2 collides with the hot ambient gas around Sgr A*. Simulations show that ultimately, the cloud's material might fall into the massive black hole. Predictions for the accretion rate and luminosity evolution, however, are very difficult due to the many unknowns. Nevertheless, this might be a unique opportunity in the next years to observe how gas feeds a massive black hole in a galactic nucleus.

  9. Observations of the gas cloud G2 in the Galactic center

    Science.gov (United States)

    Gillessen, S.; Genzel, R.; Fritz, T. K.; Eisenhauer, F.; Pfuhl, O.; Ott, T.; Burkert, A.; Schartmann, M.; Ballone, A.

    2014-05-01

    In 2011, we discovered a compact gas cloud ("G2") with roughly three Earth masses that is falling on a near-radial orbit toward the massive black hole in the Galactic center. The orbit is well constrained and pericenter passage is predicted for early 2014. Our data beautifully show that G2 gets tidally sheared apart due to the massive black hole's force. During the next months, we expect that in addition to the tidal effects, hydrodynamics get important, when G2 collides with the hot ambient gas around Sgr A*. Simulations show that ultimately, the cloud's material might fall into the massive black hole. Predictions for the accretion rate and luminosity evolution, however, are very difficult due to the many unknowns. Nevertheless, this might be a unique opportunity in the next years to observe how gas feeds a massive black hole in a galactic nucleus.

  10. Spatially resolved chemistry in nearby galaxies. III. Dense molecular gas in the inner disk of the LIRG IRAS 04296+2923

    Energy Technology Data Exchange (ETDEWEB)

    Meier, David S. [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 (United States); Turner, Jean L. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Beck, Sara C., E-mail: dmeier@nmt.edu, E-mail: turner@astro.ucla.edu, E-mail: sara@wise.tau.ac.il [Department of Physics and Astronomy, Tel Aviv University, 69978 Ramat Aviv (Israel)

    2014-11-10

    We present a survey of 3 mm molecular lines in IRAS 04296+2923, one of the brightest known molecular-line emitting galaxies, and one of the closest luminous infrared galaxies (LIRGs). Data are from the Owens Valley and CARMA millimeter interferometers. Species detected at ≲ 4'' resolution include C{sup 18}O, HCN, HCO{sup +}, HNC, CN, CH{sub 3}OH, and, tentatively, HNCO. Along with existing CO, {sup 13}CO, and radio continuum data, these lines constrain the chemical properties of the inner disk. Dense molecular gas in the nucleus fuels a star formation rate ≳10 M {sub ☉} yr{sup –1} and is traced by lines of HCN, HCO{sup +}, HNC, and CN. A correlation between HCN and star formation rate is observed on sub-kiloparsec scales, consistent with global relations. Toward the nucleus, CN abundances are similar to those of HCN, indicating emission comes from a collection (∼40-50) of moderate visual extinction, photon-dominated-region clouds. The CO isotopic line ratios are unusual: CO(1-0)/{sup 13}CO(1-0) and CO(1-0)/C{sup 18}O(1-0) line ratios are large toward the starburst, as is commonly observed in LIRGs, but farther out in the disk these ratios are remarkably low (≲ 3). {sup 13}CO/C{sup 18}O abundance ratios are lower than in Galactic clouds, possibly because the C{sup 18}O is enriched by massive star ejecta from the starburst. {sup 13}CO is underabundant relative to CO. Extended emission from CH{sub 3}OH indicates that dynamical shocks pervade both the nucleus and the inner disk. The unusual CO isotopologue ratios, the CO/HCN intensity ratio versus L {sub IR}, the HCN/CN abundance ratio, and the gas consumption time versus inflow rate all indicate that the starburst in IRAS 04296+2923 is in an early stage of development.

  11. Modeling CO2 air dispersion from gas driven lake eruptions (Invited)

    OpenAIRE

    Chiodini, G.(INFN Sezione di Lecce, Lecce, Italy); COSTA, A.; Rouwet, D; F. Tassi

    2010-01-01

    The most tragic event of gas driven lake eruption occurred at Lake Nyos (Cameroon) on 21 August 1986, when a dense cloud of CO2 suffocated more than 1700 people and an uncounted number of animals in just one night. The event stimulated a series of researches aimed to understand gas origins, gas release mechanisms and strategies for gas hazard mitigation. Very few studies have been carried out for describing the transport of dense CO2 clouds in the atmosphere. Although from a...

  12. The Galactic IMF: origin in the combined mass distribution functions of dust grains and gas clouds

    CERN Document Server

    Casuso, E

    2011-01-01

    We present here a theoretical model to account for the stellar IMF as a result of the composite behaviour of the gas and dust distribution functions. Each of these has previously been modelled and the models tested against observations. The model presented here implies a relation between the characteristic size of the dust grains and the characteristic final mass of the stars formed within the clouds containing the grains, folded with the relation between the mass of a gas cloud and the characteristic mass of the stars formed within it. The physical effects of dust grain size are due to equilibrium relations between the efficiency of grains in cooling the clouds, which is a falling function of grain size, and the efficiency of grains in catalyzing the production of molecular hydrogen, which is a rising function of grain size. We show that folding in the effects of grain distribution can yield a reasonable quantitative account of the IMF, while gas cloud mass function alone cannot do so.

  13. The survival of gas clouds in the Circumgalactic Medium of Milky-Way-like galaxies

    CERN Document Server

    Armillotta, L; Prochaska, J X; Fraternali, F; Marinacci, F

    2016-01-01

    Observational evidence shows that low-redshift galaxies are surrounded by extended haloes of multiphase gas, the so-called 'circumgalactic medium' (CGM). To study the survival of relatively cool gas (T < 10^5 K) in the CGM, we performed a set of hydrodynamical simulations of cool (T = 10^4 K) neutral gas clouds travelling through a hot (T = 2x10^6 K) and low-density (n = 10^-4 cm^-3) coronal medium, typical of Milky Way-like galaxies at large galactocentric distances (~ 50-150 kpc). We explored the effects of different values of relative velocity and radius of the clouds. Our simulations include radiative cooling, photoionization heating and thermal conduction. The main result is that large clouds (radii larger than 250 pc) may survive for very long time (at least 250 Myr): their mass decreases during their trajectory but at very low rates. We found that thermal conduction plays a significant role: its effect is to prevent formation of Kelvin-Helmholtz instabilities at the cloud-corona interface, keeping t...

  14. The dynamics and stability of radiatively driven gas clouds. I - Plane-parallel slabs

    Science.gov (United States)

    Haas, M. R.

    1979-01-01

    A combination of numerical and analytical techniques has been used to investigate the dynamics and stability of optically thin plane-parallel radiatively driven slabs of gas confined by the thermal gas pressure of a high-temperature low-density medium. Scaling laws allow the individual model 'clouds' to be characterized by a single free parameter, chi, a normalized column density which measures the strength of the acceleration due to radiation pressure relative to that due to thermal gas pressure. It is found that these clouds are stable and coherently accelerated only when chi is small. In this regime a simple slab model is constructed which accurately reproduces the more complex gasdynamic results. The low-chi clouds are marginally able to reach the high velocities seen in the atmospheres of quasi-stellar objects, but only if their motion is subsonic with respect to the external confining medium. This implies either that the medium is extremely hot and tenuous or that it is moving outward with the clouds.

  15. Evolution of a dense neutrino gas in matter and electromagnetic field

    CERN Document Server

    Dvornikov, Maxim

    2011-01-01

    We describe the system of massive Weyl fields propagating in background matter and interacting with an external electromagnetic field. The interaction with an electromagnetic field is due to the presence of anomalous magnetic moments. To canonically quantize this system first we develop the classical field theory treatment of Weyl spinors in frames of the Hamilton formalism which accounts for the external fields. Then, on the basis of the exact solution of the wave equation for a massive Weyl field in background matter we obtain the effective Hamiltonian for the description of spin-flavor oscillations of Majorana neutrinos in matter and a magnetic field. Finally, we incorporate in our analysis the neutrino self-interaction which is essential when the neutrino density is sufficiently high. We also discuss the applicability of our results for the studies of collective effects in spin-flavor oscillations of supernova neutrinos in dense matter and strong magnetic field.

  16. Disks around CQ Tau and MWC 758: dense PDR or gas dispersal?

    CERN Document Server

    Chapillon, Edwige; Dutrey, Anne; Piétu, Vincent

    2008-01-01

    The overall properties of disks surrounding intermediate PMS stars (HAe) are not yet well constrained by current observations. The disk inclination, which significantly affect SED modeling, is often unknown. We attempted to resolve the disks around CQ Tau and MWC 758, to provide accurate constraints on the disk parameters, in particular the temperature and surface density distribution. We report arcsecond resolution observations of dust and CO line emissions with the IRAM array. The disk properties are derived using a standard disk model. We use the Meudon PDR code to study the chemistry. The two disks share some common properties. The mean CO abundance is low despite disk temperatures above the CO condensation temperature. Furthermore, the CO surface density and dust opacity have different radial dependence. The CQ Tau disk appears warmer, and perhaps less dense than that of MWC 758. Modeling the chemistry, we find that photodissociation of CO is a viable mechanism to explain the low abundance. The photosphe...

  17. Zooming in on major mergers: dense, starbursting gas in cosmological simulations

    Science.gov (United States)

    Sparre, Martin; Springel, Volker

    2016-11-01

    We introduce the `Illustris zoom simulation project', which allows the study of selected galaxies forming in the Λcold dark matter (ΛCDM) cosmology with a 40 times better mass resolution than in the parent large-scale hydrodynamical Illustris simulation. We here focus on the starburst properties of the gas in four cosmological simulations of major mergers. The galaxies in our high-resolution zoom runs exhibit a bursty mode of star formation with gas consumption time-scales 10 times shorter than for the normal star formation mode. The strong bursts are only present in the simulations with the highest resolution, hinting that a too low resolution is the reason why the original Illustris simulation showed a dearth of starburst galaxies. Very pronounced bursts of star formation occur in two out of four major mergers we study. The high star formation rates, the short gas consumption time-scales and the morphology of these systems strongly resemble observed nuclear starbursts. This is the first time that a sample of major mergers is studied through self-consistent cosmological hydrodynamical simulations instead of using isolated galaxy models setup on a collision course. We also study the orbits of the colliding galaxies and find that the starbursting gas preferentially appears in head-on mergers with very high collision velocities. Encounters with large impact parameters do typically not lead to the formation of starbursting gas.

  18. Cloud and Star Formation in Disk Galaxy Models with Feedback

    CERN Document Server

    Shetty, Rahul

    2008-01-01

    We include feedback in global hydrodynamic simulations in order to study the star formation properties, and gas structure and dynamics, in models of galactic disks. We extend previous models by implementing feedback in gravitationally bound clouds: momentum is injected at a rate proportional to the star formation rate. This mechanical energy disperses cloud gas back into the surrounding ISM, truncating star formation in a given cloud, and raising the overall level of ambient turbulence. Propagating star formation can however occur as expanding shells collide, enhancing the density and triggering new cloud and star formation. By controlling the momentum injection per massive star and the specific star formation rate in dense gas, we find that the negative effects of high turbulence outweigh the positive ones, and in net feedback reduces the fraction of dense gas and thus the overall star formation rate. The properties of the large clouds that form are not, however, very sensitive to feedback, with cutoff masse...

  19. Constraining cloud parameters using high density gas tracers in galaxies

    CERN Document Server

    Kazandjian, M V; Meijerink, R; Israel, F P; Coppola, C M; Rosenberg, M J F; Spaans, M

    2016-01-01

    Far-infrared molecular emission is an important tool used to understand the excitation mechanisms of the gas in the inter-stellar medium of star-forming galaxies. In the present work, we model the emission from rotational transitions with critical densities n >~ 10^4 cm-3. We include 4-3 ~ 30 in order to obtain significant emission from n > 10^4 cm-3 gas. Such Mach numbers are expected in star-forming galaxies, LIRGS, and ULIRGS. By fitting line ratios of HCN(1-0), HNC(1-0), and HCO+(1-0) for a sample of LIRGS and ULIRGS using mechanically heated PDRs, we constrain the Mach number of these galaxies to 29 < M < 77.

  20. Numerical Simulation of Dense Gas-Solid Fluidized Beds: A Multiscale Modeling Strategy

    NARCIS (Netherlands)

    Hoef, van der M.A.; Sint Annaland, van M.; Deen, N.G.; Kuipers, J.A.M.

    2008-01-01

    Gas-solid fluidized beds are widely applied in many chemical processes involving physical and/or chemical transformations, and for this reason they are the subject of intense research in chemical engineering science. Over the years, researchers have developed a large number of numerical models of ga

  1. Molecular line emission in NGC1068 imaged with ALMA: II. The chemistry of the dense molecular gas

    CERN Document Server

    Viti, S; Fuente, A; Hunt, L K; Usero, A; Henkel, C; Eckart, A; Martin, S; Spaans, M; Muller, S; Combes, F; Krips, M; Schinnerer, E; Casasola, V; Costagliola, F; Marquez, I; Planesas, P; van der Werf, P P; Aalto, S; Baker, A J; Boone, F; Tacconi, L J

    2014-01-01

    We present a detailed analysis of ALMA Bands 7 and 9 data of CO, HCO+, HCN and CS, augmented with Plateau de Bure Interferometer (PdBI) data of the ~ 200 pc circumnuclear disk (CND) and the ~ 1.3 kpc starburst ring (SB ring) of NGC~1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy. We aim at determining the physical characteristics of the dense gas present in the CND and whether the different line intensity ratios we find within the CND as well as between the CND and the SB ring are due to excitation effects (gas density and temperature differences) or to a different chemistry. We estimate the column densities of each species in Local Thermodynamic Equilibrium (LTE). We then compute large one-dimensional non-LTE radiative transfer grids (using RADEX) by using first only the CO transitions, and then all the available molecules in order to constrain the densities, temperatures and column densities within the CND. We finally present a preliminary set of chemical models to determine the origin of the gas. We fi...

  2. Molecular line emission in NGC1068 imaged with ALMA. I An AGN-driven outflow in the dense molecular gas

    CERN Document Server

    Garcia-Burillo, S; Usero, A; Aalto, S; Krips, M; Viti, S; Alonso-Herrero, A; Hunt, L K; Schinnerer, E; Baker, A J; Casasola, F Boone V; Colina, L; Costagliola, F; Eckart, A; Fuente, A; Henkel, C; Labiano, A; Martin, S; Marquez, I; Muller, S; Planesas, P; Almeida, C Ramos; Spaans, M; Tacconi, L J; van der Werf, P P

    2014-01-01

    We investigate the fueling and the feedback of star formation and nuclear activity in NGC1068, a nearby (D=14Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We have used ALMA to map the emission of a set of dense molecular gas tracers (CO(3-2), CO(6-5), HCN(4-3), HCO+(4-3) and CS(7-6)) and their underlying continuum emission in the central r ~ 2kpc of NGC1068 with spatial resolutions ~ 0.3"-0.5" (~ 20-35pc). Molecular line and dust continuum emissions are detected from a r ~ 200pc off-centered circumnuclear disk (CND), from the 2.6kpc-diameter bar region, and from the r ~ 1.3kpc starburst (SB) ring. Most of the emission in HCO+, HCN and CS stems from the CND. Molecular line ratios show dramatic order-of-magnitude changes inside the CND that are correlated with the UV/X-ray illumination by the AGN, betraying ongoing feedback. The gas kinematics from r ~ 50pc out to r ~ 400pc reveal a massive (M_mol ~ 2.7 (+0.9, -1.2) x 10^7 Msun) outflow in all molec...

  3. The Dust-to-Gas Ratio in the Small Magellanic Cloud Tail

    CERN Document Server

    Gordon, K D; Müller, E; Misselt, K A; Bolatto, A; Bernard, J -P; Reach, W; Engelbracht, C W; Babler, B; Bracker, S; Block, M; Clayton, G C; Hora, J; Indebetouw, R; Israel, F P; Li, A; Madden, S; Meade, M; Meixner, M; Sewilo, M; Shiao, B; Smith, L J; van Loon, J Th; Whitney, B A

    2008-01-01

    The Tail region of the Small Magellanic Cloud (SMC) was imaged using the MIPS instrument on the Spitzer Space Telescope as part of the SAGE-SMC Spitzer Legacy. Diffuse infrared emission from dust was detected in all the MIPS bands. The Tail gas-to-dust ratio was measured to be 1200 +/- 350 using the MIPS observations combined with existing IRAS and HI observations. This gas-to-dust ratio is higher than the expected 500-800 from the known Tail metallicity indicating possible destruction of dust grains. Two cluster regions in the Tail were resolved into multiple sources in the MIPS observations and local gas-to-dust ratios were measured to be ~440 and ~250 suggests dust formation and/or significant amounts of ionized gas in these regions. These results support the interpretation that the SMC Tail is a tidal tail recently stripped from the SMC that includes gas, dust, and young stars.

  4. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    Science.gov (United States)

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  5. Dynamic modeling of a solar receiver/thermal energy storage system based on a compartmented dense gas fluidized bed

    Science.gov (United States)

    Solimene, Roberto; Chirone, Roberto; Chirone, Riccardo; Salatino, Piero

    2017-06-01

    Fluidized beds may be considered a promising option to collection and storage of thermal energy of solar radiation in Concentrated Solar Power (CSP) systems thanks to their excellent thermal properties in terms of bed-to-wall heat transfer coefficient and thermal diffusivity and to the possibility to operate at much higher temperature. A novel concept of solar receiver for combined heat and power (CHP) generation consisting of a compartmented dense gas fluidized bed has been proposed to effectively accomplish three complementary tasks: collection of incident solar radiation, heat transfer to the working fluid of the thermodynamic cycle and thermal energy storage. A dynamical model of the system laid the basis for optimizing collection of incident radiative power, heat transfer to the steam cycle, storage of energy as sensible heat of bed solids providing the ground for the basic design of a 700kWth demonstration CSP plant.

  6. Measurements of the ion velocity distribution in an ultracold neutral plasma derived from a cold, dense Rydberg gas

    Science.gov (United States)

    Bergeson, Scott; Lyon, Mary

    2016-05-01

    We report measurements of the ion velocity distribution in an ultracold neutral plasma derived from a dense, cold Rydberg gas in a MOT. The Rydberg atoms are excited using a resonant two-step excitation pathway with lasers of 4 ns duration. The plasma forms spontaneously and rapidly. The rms width of the ion velocity distribution is determined by measuring laser-induced fluorescence (LIF) of the ions. The measured excitation efficiency is compared with a Monte-Carlo wavefunction calculation, and significant differences are observed. We discuss the conditions for blockaded Rydberg excitation and the subsequent spatial ordering of Rydberg atom domains. While the blockade interaction is greater than the Rabi frequency in portions of the atomic sample, no evidence for spatial ordering is observed. This research is supported in part by the Air Force Office of Scientific Research (Grant No. FA9950-12- 0308) and by the National Science Foundation (Grant No. PHY-1404488).

  7. Measurements of the ion velocity distribution in an ultracold neutral plasma derived from a cold, dense Rydberg gas

    CERN Document Server

    Bergeson, S D

    2016-01-01

    We report measurements of the ion velocity distribution in an ultracold neutral plasma derived from a dense, cold Rydberg gas in a MOT. The Rydberg atoms are excited using a resonant two-step excitation pathway with lasers of 4 ns duration. The plasma forms spontaneously and rapidly. The rms width of the ion velocity distribution is determined by measuring laser-induced fluorescence (LIF) of the ions. The measured excitation efficiency is compared with a Monte-Carlo wavefunction calculation, and significant differences are observed. We discuss the conditions for blockaded Rydberg excitation and the subsequent spatial ordering of Rydberg atom domains. While the blockade interaction is greater than the Rabi frequency in portions of the atomic sample, no evidence for spatial ordering is observed.

  8. Recent Advances in the Development and Application of Power Plate Transducers in Dense Gas Extraction and Aerosol Agglomeration Processes

    Science.gov (United States)

    Riera, E.; Cardoni, A.; Gallego-Juárez, J. A.; Acosta, V. M.; Blanco, A.; Rodríguez, G.; Blasco, M.; Herranz, L. E.

    Power ultrasound (PU) is an emerging, innovative, energy saving and environmental friendly technology that is generating a great interest in sectors such as food and pharmaceutical industries, green chemistry, environmental pollution, and other processes, where sustainable and energy efficient methods are required to improve and/or produce specific effects. Two typical effects of PU are the enhancement of mass transfer in gases and liquids, and the induction of particle agglomeration in aerosols. These effects are activated by a variety of mechanisms associated to the nonlinear propagation of high amplitude ultrasonic waves such as diffusion, agitation, entrainment, turbulence, etc. During the last years a great effort has been jointly made by the Spanish National Research Council (CSIC) and the company Pusonics towards introducing novel processes into the market based on airborne ultrasonic plate transducers. This technology was specifically developed for the treatment of gas and multiphasic media characterized by low specific acoustic impedance and high acoustic absorption. Different strategies have been developed to mitigate the effects of the nonlinear dynamic behavior of such ultrasonic piezoelectric transducers in order to enhance and stabilize their response at operational power conditions. This work deals with the latter advances in the mitigation of nonlinear problems found in power transducers; besides it describes two applications assisted by ultrasound developed at semi-industrial and laboratory scales and consisting in extraction via dense gases and particle agglomeration. Dense Gas Extraction (DGE) assisted by PU is a new process with a potential to enhance the extraction kinetics with supercritical CO2. Acoustic agglomeration of fine aerosol particles has a great potential for the treatment of air pollution problems generated by particulate materials. Experimental and numerical results in both processes will be shown and discussed.

  9. Ultrafast Magnetization of a Dense Molecular Gas with an Optical Centrifuge

    Science.gov (United States)

    Milner, A. A.; Korobenko, A.; Milner, V.

    2017-06-01

    Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the subnanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in a high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the nonresonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work) and producing a large amount of spin-polarized electrons.

  10. A study on thermodynamical properties of hot and dense hadron gas using the event generator

    CERN Document Server

    Sasaki, N

    2001-01-01

    We investigate the equilibration and the equation of state of the hot hadron gas at finite baryon density using an event generator that satisfies detailed balance at temperatures and baryon densities of present interests (80 < T < 170 MeV, 0.157 < n_B < 0.315 fm^-3). Molecular-dynamic-simulations are performed to the system of hadrons in the box with periodic boundary conditions. Starting from an initial condition composed of nucleons with uniform momentum distribution, the evolution takes place through interactions, productions and absorptions. The system approaches to a stationary state of baryons, mesons and their resonances. The system is characterized by an exponent in the energy distribution irrespective of the particle species, i.e., temperature. After the equilibration, thermodynamical quantities such as energy density, particle density, entropy and pressure are calculated. Obtained equation of state shows a remarkable deviation from the mixed free gas of mesons and baryons above T = m_pi....

  11. Negative chlorine ion chemistry in the upper stratosphere and its application to an artificially created dense electron cloud

    Directory of Open Access Journals (Sweden)

    S. S. Prasad

    Full Text Available This paper discusses new potential reactions of chlorine-bearing anions (negative ions in the upper stratosphere. These reactions are then applied to the negative-ion chemistry following the injection of an electron cloud of very high density, of the order of 106-107 e- cm-3, in the 40-45-km region. The idea is to evaluate the recently proposed scheme to mitigate ozone depletion by converting the reactive chlorine atoms at these altitudes into Cl- ions which are unreactive towards ozone, i.e., electron scavenging of Cl. We find that the previously neglected photodetachment from Cl- is fast. For an overhead sun, this process may have a rate coefficient of 0.08 s-1 when multiple scattering is included. The rate could be even higher, depending on the ground albedo. Switching reaction between Cl-·H2O and HCl might lead to the formation of Cl-·HCl anion. Possible reactions of Cl-·H2O and Cl-·HCl with O atoms could produce ClO- and Cl-2. The production of ClO- in this manner is significant because Cl- having a high photodetachment rate constant would be regenerated in the very likely reactions of ClO- with O. When these possibilities are considered, then it is found that the chlorine anions may not be the major ions inside the electron cloud due to the rapid photodetachment from Cl-. Furthermore, in such a cloud, there may be the hazard that the Cl--Cl-·H2O-ClO--Cl- cycle amounts to catalytic destruction of two O atoms. Thus, the scheme could be risky if practised in the altitude region where atomic oxygen is an important constituent. Similar conclusions apply even if the ClO- species forms ClO-3 by three-body association with O2

  12. ATLASGAL - Kinematic distances and the dense gas mass distribution of the inner Galaxy

    CERN Document Server

    Wienen, M; Menten, K M; Urquhart, J S; Csengeri, T; Walmsley, C M; Bontemps, S; Russeil, D; Bronfman, L; Koribalski, B S; Schuller, F

    2015-01-01

    The formation of high mass stars and clusters occurs in giant molecular clouds. Objects in evolved stages of massive star formation such as protostars, hot molecular cores, and ultracompact HII regions have been studied in more detail than earlier, colder objects. With this in mind, the APEX Telescope Large Area Survey of the whole inner Galactic plane at 870 micron (ATLASGAL) has been carried out to provide a global view of cold dust and star formation at submillimetre wavelengths. To derive kinematic distances to a large sample of ATLASGAL clumps we divided them into groups of sources, which are located close together, mostly within a radius of 2 pc, and have velocities in a similar range with a median velocity dispersion of ~ 1 km/s. Using NH3, N2H+ and CS velocities we calculate near and far kinematic distances to 296 groups of ATLASGAL sources in the first quadrant and 393 groups in the fourth quadrant. We analyse HI self-absorption and HI absorption to resolve the kinematic distance ambiguity. We obtain...

  13. On the quasihydrostatic flows of radiatively cooling self-gravitating gas clouds

    Energy Technology Data Exchange (ETDEWEB)

    Meerson, B.; Megged, E. [Hebrew Univ. of Jerusalem (Israel). Racah Institute of Physics; Tajima, T. [Univ. of Texas, Austin, TX (United States)

    1995-03-01

    Two model problems are considered, illustrating the dynamics of quasihydrostatic flows of radiatively cooling, optically thin self-gravitating gas clouds. In the first problem, spherically symmetric flows in an unmagnetized plasma are considered. For a power-law dependence of the radiative loss function on the temperature, a one-parameter family of self-similar solutions is found. The authors concentrate on a constant-mass cloud, one of the cases, when the self-similarity indices are uniquely selected. In this case, the self-similar flow problem can be formally reduced to the classical Lane-Emden equation and therefore solved analytically. The cloud is shown to undergo radiative condensation, if the gas specific heat ratio {gamma} > 4/3. The condensation proceeds either gradually, or in the form of (quasihydrostatic) collapse. For {gamma} < 4/3, the cloud is shown to expand. The second problem addresses a magnetized plasma slab that undergoes quasihydrostatic radiative cooling and condensation. The problem is solved analytically, employing the Lagrangian mass coordinate.

  14. Localized starbursts in dwarf galaxies produced by impact of low metallicity cosmic gas clouds

    CERN Document Server

    Almeida, J Sanchez; Munoz-Tunon, C; Elmegreen, D M; Perez-Montero, E; Amorin, R; Filho, M E; Ascasibar, Y; Papaderos, P; Vilchez, J M

    2015-01-01

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter haloes. Although these predictions are unambiguous, the observational support has been indirect so far. Here we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local Universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias (GTC) optical spectra of ten XMPs show that the galaxy hosts have metallicities around 60 % solar on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6 % solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possib...

  15. Dynamical cooling of galactic discs by molecular cloud collisions - origin of giant clumps in gas-rich galaxy discs

    Science.gov (United States)

    Li, Guang-Xing

    2017-10-01

    Different from Milky Way-like galaxies, discs of gas-rich galaxies are clumpy. It is believed that the clumps form because of gravitational instability. However, a necessary condition for gravitational instability to develop is that the disc must dissipate its kinetic energy effectively, this energy dissipation (also called cooling) is not well understood. We propose that collisions (coagulation) between molecular clouds dissipate the kinetic energy of the discs, which leads to a dynamical cooling. The effectiveness of this dynamical cooling is quantified by the dissipation parameter D, which is the ratio between the free-fall time t_ff≈ 1/ √{G ρ _{disc}} and the cooling time determined by the cloud collision process tcool. This ratio is related to the ratio between the mean surface density of the disc Σdisc and the mean surface density of molecular clouds in the disc Σcloud. When D cloud), cloud collision cooling is inefficient, and fragmentation is suppressed. When D > 1/3 (which roughly corresponds to Σdisc > 1/3Σcloud), cloud-cloud collisions lead to a rapid cooling through which clumps form. On smaller scales, cloud-cloud collisions can drive molecular cloud turbulence. This dynamical cooling process can be taken into account in numerical simulations as a sub-grid model to simulate the global evolution of disc galaxies.

  16. Accurate exchange-correlation energies for the warm dense electron gas

    OpenAIRE

    Malone, FD; Blunt, NS; Brown, EW; Lee, DKK; Spencer, JS; Foulkes, WMC; Shepherd, JJ

    2016-01-01

    Density matrix quantum Monte Carlo (DMQMC) is used to sample exact-on-average $N$-body density matrices for uniform electron gas systems of up to 10$^{124}$ matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the $k$-space configurati...

  17. Dissipative properties of hot and dense hadronic matter in excluded volume hadron resonance gas model

    CERN Document Server

    Kadam, Guru Prakash

    2015-01-01

    We estimate dissipative properties viz: shear and bulk viscosities of hadronic matter using rel- ativistic Boltzmann equation in relaxation time approximation within ambit of excluded volume hadron resonance gas (EHRG) model. We find that at zero baryon chemical potential the shear viscosity to entropy ratio ({\\eta}/s) decreases with temperature and reaches very close to Kovtun-Son- Starinets (KSS) bound. At sufficiently large baryon chemical potential this ratio shows same behav- ior as a function of temperature but goes below KSS bound. We further find that along chemical freezout line {\\eta}/s increases monotonically while the bulk viscosity to entropy ratio ({\\zeta}/s) decreases monotonically.

  18. Hybrid optical pumping of optically dense alkali-metal vapor without quenching gas

    CERN Document Server

    Romalis, M V

    2010-01-01

    Optical pumping of an optically thick atomic vapor typically requires a quenching buffer gas, such as N$_{2}$, to prevent radiation trapping of unpolarized photons which would depolarize the atoms. We show that optical pumping of a trace contamination of Rb present in K metal results in a 4.5 times higher polarization of K than direct optical pumping of K in the absence of N$_{2}$. Such spin-exchange polarization transfer from optically-thin species is useful in a variety of areas, including spin-polarized nuclear scattering targets and electron beams, quantum-non-demolition spin measurements, and ultra-sensitive magnetometry.

  19. twodee-2 : A Shallow Layer Model for Dense Gas Dispersion on Complex Topography

    OpenAIRE

    Folch, A.; COSTA, A.; Hankin, R. K. S.

    2007-01-01

    twodee-2 is a Fortran 90 code based on a previous code (twodee). It is de- 8 signed to solve the shallow water equations for fluid depth, depth-averaged horizon- 9 tal velocities and depth-averaged fluid density. The shallow layer approach used by 10 twodee-2 is a compromise between the complexity of CFD models and the simpler 11 integral models. It can be used for forecasting gas dispersion near the ground and/or 12 for hazard assessment over complex terrains. The inputs to th...

  20. The BLAST Survey of the Vela Molecular Cloud: Physical Properties of the Dense Cores in Vela-D

    CERN Document Server

    Olmi, Luca; Angles-Alcazar, Daniel; Bock, James J; Chapin, Edward L; De Luca, Massimo; Devlin, Mark J; Dicker, Simon; Elia, Davide; Fazio, Giovanni G; Giannini, Teresa; Griffin, Matthew; Gundersen, Joshua O; Halpern, Mark; Hargrave, Peter C; Hughes, David H; Klein, Jeff; Lorenzetti, Dario; Marengo, Massimo; Marsden, Gaelen; Martin, Peter G; Massi, Fabrizio; Mauskopf, Philip; Netterfield, Calvin B; Patanchon, Guillaume; Rex, Marie; Salama, Alberto; Scott, Douglas; Semisch, Christopher; Smith, Howard A; Strafella, Francesco; Thomas, Nicholas; Truch, Matthew D P; Tucker, Carole; Tucker, Gregory S; Viero, Marco P; Wiebe, Donald V

    2009-01-01

    The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest, dense cores possibly associated with the earliest stages of star formation. Here we present the results from observations of the Vela-D region, covering about 4 square degrees, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index beta = 2.0. This combination of data allows us to determine the temperature, luminosity and mass of each BLAST core, and also enables us to separate starless from proto-stellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and proto-stellar cores, and we find that there appe...

  1. SEMANTIC LABELLING OF ULTRA DENSE MLS POINT CLOUDS IN URBAN ROAD CORRIDORS BASED ON FUSING CRF WITH SHAPE PRIORS

    Directory of Open Access Journals (Sweden)

    W. Yao

    2017-09-01

    Full Text Available In this paper, a labelling method for the semantic analysis of ultra-high point density MLS data (up to 4000 points/m2 in urban road corridors is developed based on combining a conditional random field (CRF for the context-based classification of 3D point clouds with shape priors. The CRF uses a Random Forest (RF for generating the unary potentials of nodes and a variant of the contrastsensitive Potts model for the pair-wise potentials of node edges. The foundations of the classification are various geometric features derived by means of co-variance matrices and local accumulation map of spatial coordinates based on local neighbourhoods. Meanwhile, in order to cope with the ultra-high point density, a plane-based region growing method combined with a rule-based classifier is applied to first fix semantic labels for man-made objects. Once such kind of points that usually account for majority of entire data amount are pre-labeled; the CRF classifier can be solved by optimizing the discriminative probability for nodes within a subgraph structure excluded from pre-labeled nodes. The process can be viewed as an evidence fusion step inferring a degree of belief for point labelling from different sources. The MLS data used for this study were acquired by vehicle-borne Z+F phase-based laser scanner measurement, which permits the generation of a point cloud with an ultra-high sampling rate and accuracy. The test sites are parts of Munich City which is assumed to consist of seven object classes including impervious surfaces, tree, building roof/facade, low vegetation, vehicle and pole. The competitive classification performance can be explained by the diverse factors: e.g. the above ground height highlights the vertical dimension of houses, trees even cars, but also attributed to decision-level fusion of graph-based contextual classification approach with shape priors. The use of context-based classification methods mainly contributed to smoothing of

  2. Semantic Labelling of Ultra Dense Mls Point Clouds in Urban Road Corridors Based on Fusing Crf with Shape Priors

    Science.gov (United States)

    Yao, W.; Polewski, P.; Krzystek, P.

    2017-09-01

    In this paper, a labelling method for the semantic analysis of ultra-high point density MLS data (up to 4000 points/m2) in urban road corridors is developed based on combining a conditional random field (CRF) for the context-based classification of 3D point clouds with shape priors. The CRF uses a Random Forest (RF) for generating the unary potentials of nodes and a variant of the contrastsensitive Potts model for the pair-wise potentials of node edges. The foundations of the classification are various geometric features derived by means of co-variance matrices and local accumulation map of spatial coordinates based on local neighbourhoods. Meanwhile, in order to cope with the ultra-high point density, a plane-based region growing method combined with a rule-based classifier is applied to first fix semantic labels for man-made objects. Once such kind of points that usually account for majority of entire data amount are pre-labeled; the CRF classifier can be solved by optimizing the discriminative probability for nodes within a subgraph structure excluded from pre-labeled nodes. The process can be viewed as an evidence fusion step inferring a degree of belief for point labelling from different sources. The MLS data used for this study were acquired by vehicle-borne Z+F phase-based laser scanner measurement, which permits the generation of a point cloud with an ultra-high sampling rate and accuracy. The test sites are parts of Munich City which is assumed to consist of seven object classes including impervious surfaces, tree, building roof/facade, low vegetation, vehicle and pole. The competitive classification performance can be explained by the diverse factors: e.g. the above ground height highlights the vertical dimension of houses, trees even cars, but also attributed to decision-level fusion of graph-based contextual classification approach with shape priors. The use of context-based classification methods mainly contributed to smoothing of labelling by removing

  3. Acoustic 2D full waveform inversion to solve gas cloud challenges

    Directory of Open Access Journals (Sweden)

    Srichand Prajapati

    2015-09-01

    Full Text Available The existing conventional inversion algorithm does not provide satisfactory results due to the complexity of propagated wavefield though the gas cloud. Acoustic full waveform inversion has been developed and applied to a realistic synthetic offshore shallow gas cloud feature with Student-t approach, with and without simultaneous sources encoding. As a modeling operator, we implemented the grid based finite-difference method in frequency domain using second order elastic wave equation. Jacobin operator and its adjoint provide a necessary platform for solving full waveform inversion problem in a reduced Hessian matrix. We invert gas cloud model in 5 frequency band selected from 1 to 12 Hz, each band contains 3 frequencies. The inversion results are highly sensitive to the misfit. The model allows better convergence and recovery of amplitude losses. This approach gives better resolution then the existing least-squares approach. In this paper, we implement the full waveform inversion for low frequency model with minimum number of iteration providing a better resolution of inversion results.

  4. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E. [Instituto Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Elmegreen, B. G. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, D. M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Pérez-Montero, E.; Vílchez, J. M. [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Amorín, R. [INAF-Osservatorio Astronomico di Roma, Monte Porzio Catone (Italy); Ascasibar, Y. [Universidad Autonoma de Madrid, Madrid (Spain); Papaderos, P., E-mail: jos@iac.es [Centro de Astrofísica da Universidade do Porto, Porto (Portugal)

    2015-09-10

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.

  5. Detection of HCN, HCO+ and HNC in the Mrk231 molecular outflow - Dense molecular gas in the AGN wind

    CERN Document Server

    Aalto, S; Muller, S; Winters, J M; van der Werf, P; Henkel, C; Costagliola, F; Neri, R

    2011-01-01

    We detect luminous emission from HCN, HCO+ and HNC 1--0 in the QSO ULIRG Mrk~231 with the IRAM Plateau de Bure Interferometer at 1."55 by 1."28 resolution. All three lines show broad line wings - which are particularly prominent for HCN. Velocities are found to be similar (750 km/s) to those found for CO 1-0. This is the first time bright HCN, HCO+ and HNC emission has been detected in a large-scale galactic outflow. We find that both the blue- and red-shifted line wings are spatially extended by at least 0."75 (700 pc) in a north-south direction. The line wings are brighter (relative to the line center intensity) in HCN than in CO 1-0 and line ratios suggest that the molecular outflow consists of dense (n>10E4 cmE-3) and clumpy gas with a high HCN abundance X(HCN)>10E-8. These properties are consistent with the molecular gas being compressed and fragmented by shocks in the outflow. Alternatively, HCN is instead pumped by mid-IR continuum, but we propose that this effect is not strong for the spatially extend...

  6. Local-field approach to the interaction of an ultracold dense Bose gas with a light field

    CERN Document Server

    Krutitsky, K V; Audretsch, J

    1999-01-01

    The propagation of the electromagnetic field of a laser through a dense Bose gas is examined and nonlinear operator equations for the motion of the center of mass of the atoms are derived. The goal is to present a self-consistent set of coupled Maxwell-Bloch equations for atomic and electromagnetic fields generalized to include the atomic center-of-mass motion. Two effects are considered: The ultracold gas forms a medium for the Maxwell field which modifies its propagation properties. Combined herewith is the influence of the dipole-dipole interaction between atoms which leads to a density dependent shift of the atomic transition frequency. It is expressed in a position dependent detuning and is the reason for the nonlinearity. This results in a direct and physically transparent way from the quantum field theoretical version of the local-field approach to electrodynamics in quantum media. The equations for the matter fields are general. Previously published nonlinear equations are obtained as limiting cases. ...

  7. HIPASS Detection of an Intergalactic Gas Cloud in the NGC 2442 Group

    CERN Document Server

    Ryder, S D; Staveley-Smith, L; Kilborn, V A; Malin, D; Banks, G; Barnes, D; Bhatal, R; De Blok, W J G; Boyce, P; Disney, M J; Drinkwater, M J; Ekers, R D; Freeman, Kenneth C; Gibson, B; Henning, P; Jerjen, H; Knezek, P M; Marquarding, M; Minchin, R F; Mould, J; Oosterloo, T A; Price, R; Putman, M E; Sadler, E M; Stewart, I; Stootman, F; Webster, R; Wright, A

    2001-01-01

    We report the discovery, from the HI Parkes All-Sky Survey (HIPASS), of a gas cloud associated with the asymmetric spiral galaxy NGC 2442. This object, designated HIPASS J0731-69, contains ~10^9 M_sun of HI, or nearly one-third as much atomic gas as NGC 2442 itself. No optical counterpart to any part of HIPASS J0731-69 has yet been identified, consistent with the gas being diffuse, and with its stream-like kinematics. If the gas in HIPASS J0731-69 was once part of NGC 2442, then it was most likely a fairly recent tidal encounter with a moderately massive companion which tore it loose, although the possibility of ram-pressure stripping cannot be ruled out. This discovery highlights the potential of the HIPASS data for yielding new clues to the nature of some of the best-known galaxies in the local universe.

  8. The State of the Gas and the Relation Between Gas and Star Formation at Low Metallicity: the Small Magellanic Cloud

    CERN Document Server

    Bolatto, Alberto D; Jameson, Katherine; Ostriker, Eve; Gordon, Karl; Lawton, Brandon; Stanimirovic, Snezana; Israel, Frank P; Madden, Suzanne C; Hony, Sacha; Sandstrom, Karin M; Bot, Caroline; Rubio, Monica; Winkler, P Frank; Roman-Duval, Julia; van Loon, Jacco Th; Oliveira, Joana M; Indebetouw, Remy

    2011-01-01

    We compare atomic gas, molecular gas, and the recent star formation rate (SFR) inferred from H-alpha in the Small Magellanic Cloud (SMC). By using infrared dust emission and local dust-to-gas ratios, we construct a map of molecular gas that is independent of CO emission. This allows us to disentangle conversion factor effects from the impact of metallicity on the formation and star formation efficiency of molecular gas. On scales of 200 pc to 1 kpc we find a characteristic molecular gas depletion time of ~1.6 Gyr, similar to that observed in the molecule-rich parts of large spiral galaxies on similar spatial scales. This depletion time shortens on much larger scales to ~0.6 Gyr because of the presence of a diffuse H-alpha component, and lengthens on much smaller scales to ~7.5 Gyr because the H-alpha and H2 distributions differ in detail. We estimate the systematic uncertainties in our measurement to be a factor of 2-3. We suggest that the impact of metallicity on the physics of star formation in molecular ga...

  9. C+/H2 gas in star-forming clouds and galaxies

    Science.gov (United States)

    Nordon, Raanan; Sternberg, Amiel

    2016-11-01

    We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.

  10. 无约束气云弱点火爆炸压力实验研究%EXPERIMENTAL STUDY ON EXPLOSION PRESSURES OF UNRESTRICTED GAS CLOUD EXPLOSIONS

    Institute of Scientific and Technical Information of China (English)

    毕明树; 王淑兰; 丁信伟; 罗正鸿

    2001-01-01

    The strength of flammable gas cloud explosion has been experimentally researched by means of acetylene-air clouds which were ignited by electric sparks.The ignition device which provides ignition energy of about 100mJ was made according to international standard ISO 6184 and American Standard NFPA68. The explosion pressure was picked up by pressure transducer with a dynamic responding time of 0.001 s and recorded by computer. By regressing the experimental data,the relationship of gas cloud explosion pressure to the initial radius of gas cloud and the distance to the center of gas cloud can be obtained. That is p=Ar20/r where A is a constant depending on flammable gas cloud.The damage of unrestricted gas cloud to building structure is discussed based on the strength of houses.

  11. Accurate Exchange-Correlation Energies for the Warm Dense Electron Gas.

    Science.gov (United States)

    Malone, Fionn D; Blunt, N S; Brown, Ethan W; Lee, D K K; Spencer, J S; Foulkes, W M C; Shepherd, James J

    2016-09-09

    The density matrix quantum Monte Carlo (DMQMC) method is used to sample exact-on-average N-body density matrices for uniform electron gas systems of up to 10^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the k-space configuration path-integral formalism disagree by up to ∼10% at certain reduced temperatures T/T_{F}≤0.5 and densities r_{s}≤1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that the DMQMC method can calculate free energies directly and present exact free energies for T/T_{F}≥1 and r_{s}≤2.

  12. Hydrodynamic modelling of dense gas-fluidised beds: comparison of the kinetic theory of granular flow with 3D hard-sphere discrete particle simulations

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Beetstra, R.; Kuipers, J.A.M.

    2002-01-01

    A novel technique to sample particle velocity distributions and collision characteristics from dynamic discrete particle simulations of intrinsically unsteady, non-homogeneous systems, such as those encountered in dense gas-fluidised beds, is presented. The results are compared to the isotropic Maxw

  13. Optical/Near-IR Polarization Survey of Sh 2-29: Magnetic Fields, Dense Cloud Fragmentations and Anomalous Dust Grain Sizes

    CERN Document Server

    Santos, Fábio P; Roman-Lopes, Alexandre; Reis, Wilson; Román-Zúñiga, Carlos G

    2013-01-01

    Sh 2-29 is a conspicuous star-forming region marked by the presence of massive embedded stars as well as several notable interstellar structures. In this research, our goals were to determine the role of magnetic fields and to study the size distribution of interstellar dust particles within this turbulent environment. We have used a set of optical and near-infrared polarimetric data obtained at OPD/LNA (Brazil) and CTIO (Chile), correlated with extinction maps, 2MASS data and images from DSS and Spitzer. The region's most striking feature is a swept out interstellar cavity whose polarimetric maps indicate that magnetic field lines were dragged outwards, pilling up along its borders. This led to a higher magnetic strength value ($\\approx400\\,\\mu$G) and an abrupt increase in polarization degree, probably due to an enhancement in alignment efficiency. Furthermore, dense cloud fragmentations with peak $A_{V}$ between 20 and 37 mag were probably triggered by its expansion. The presence of $24\\,\\mu$m point-like so...

  14. Disk evolution, element abundances and cloud properties of young gas giant planets

    CERN Document Server

    Helling, Ch; Rimmer, P B; Kamp, I; Thi, W -F; Meijerink, R

    2014-01-01

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. ProDiMo protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O i...

  15. The 35Cl/37Cl isotopic ratio in dense molecular clouds: HIFI observations of hydrogen chloride towards W3A

    CERN Document Server

    Cernicharo, J; Daniel, F; Agundez, M; Caux, E; de Graauw, T; De Jonge, A; Kester, D; Leduc, H G; Steinmetz, E; Stutzki, J; Ward, J S

    2010-01-01

    We report on the detection with the HIFI instrument on board the Herschel satellite of the two hydrogen chloride isotopologues, H35Cl and H37Cl, towards the massive star-forming region W3A. The J=1-0 line of both species was observed with receiver 1b of the HIFI instrument at 625.9 and 624.9 GHz. The different hyperfine components were resolved. The observations were modeled with a non-local, non-LTE radiative transfer model that includes hyperfine line overlap and radiative pumping by dust. Both effects are found to play an important role in the emerging intensity from the different hyperfine components. The inferred H35Cl column density (a few times 1e14 cm^-2), and fractional abundance relative to H nuclei (~7.5e^-10), supports an upper limit to the gas phase chlorine depletion of ~200. Our best-fit model estimate of the H35Cl/H37Cl abundance ratio is ~2.1+/-0.5, slightly lower, but still compatible with the solar isotopic abundance ratio (~3.1). Since both species were observed simultaneously, this is the...

  16. Molecular cloud evolution and star formation

    Science.gov (United States)

    Silk, J.

    1985-01-01

    The present state of knowledge of the relationship between molecular clouds and young stars is reviewed. The determination of physical parameters from molecular line observations is summarized, and evidence for fragmentation of molecular clouds is discussed. Hierarchical fragmentation is reviewed, minimum fragment scales are derived, and the stability against fragmentation of both spherically and anisotropically collapsing clouds is discussed. Observational evidence for high-velocity flows in clouds is summarized, and the effects of winds from pre-main sequence stars on molecular gas are discussed. The triggering of cloud collapse by enhanced pressure is addressed, as is the formation of dense shells by spherical outflows and their subsequent breakup. A model for low-mass star formation is presented, and constraints on star formation from the initial mass function are examined. The properties of giant molecular clouds and massive star formation are described. The implications of magnetic fields for cloud evolution and star formation are addressed.

  17. The circumnuclear disk and ionized gas filaments as remnants of tidally disrupted clouds

    CERN Document Server

    Sanders, R H

    1998-01-01

    Sticky particle calculations indicate that a coherent structure, a dispersion ring, forms when a cloud on a low angular momentum orbit passes close to the dynamical center of an isothermal sphere containing a central point mass. The cloud is tidally stretched and differentially wrapped, and dissipation in shocks organizes the gas into a precessing off-set elliptical ring which can persist for many rotation periods. The morphology and kinematics of the circumnuclear disk (CND) between 2 and 5 pc and the Northern arm in the inner 1 pc are well-represented by such structures. In the case of the Northern Arm, strong shocks which arise during the formation of the dispersion ring can lead to star formation even in the near tidal field of a massive black hole.

  18. Ultra resolution chemical fingerprinting of dense non-aqueous phase liquids from manufactured gas plants by reversed phase comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    McGregor, Laura A; Gauchotte-Lindsay, Caroline; Daéid, Niamh Nic; Thomas, Russell; Daly, Paddy; Kalin, Robert M

    2011-07-22

    Ultra resolution chemical fingerprinting of dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plants (FMGPs) was investigated using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC×GC TOFMS). Reversed phase GC×GC (i.e. a polar primary column coupled to a non-polar secondary column) was found to significantly improve the separation of polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues. Sample extraction and cleanup was performed simultaneously using accelerated solvent extraction (ASE), with recovery rates between 76% and 97%, allowing fast, efficient extraction with minimal solvent consumption. Principal component analysis (PCA) of the GC×GC data was performed in an attempt to differentiate between twelve DNAPLs based on their chemical composition. Correlations were discovered between DNAPL composition and historic manufacturing processes used at different FMGP sites. Traditional chemical fingerprinting methods generally follow a tiered approach with sample analysis on several different instruments. We propose ultra resolution chemical fingerprinting as a fast, accurate and precise method of obtaining more chemical information than traditional tiered approaches while using only a single analytical technique.

  19. Effect of Non-Condensable Gas on Cavity Dynamics and Sheet to Cloud Transition

    Science.gov (United States)

    Makiharju, Simo; Ganesh, Harish; Ceccio, Steven

    2014-11-01

    Partial cavitation occurs in numerous industrial and naval applications. Cavities on lifting surfaces, in cryogenic rocket motors or in fuel injectors can damage equipment and in general be detrimental to the system performance, especially as partial cavities can undergo auto-oscillation causing large pressure pulsations, unsteady loading of machinery and generate significant noise. In the current experiments incipient, intermittent cloud shedding and fully shedding cavities forming in the separated flow region downstream of a wedge were investigated. The Reynolds number based on hydraulic diameter was of the order of one million. Gas was injected directly into the cavitation region downstream of the wedge's apex or into the recirculating region such that with the same amount of injected gas less ended up in the shear layer. The cavity dynamics were studied with and without gas injection. The hypothesis to be tested were that i) relatively miniscule amounts of gas introduced into the shear layer at the cavity interface can reduce vapor production and ii) gas introduced into the separated region can dampen the auto oscillations. The authors also examined whether the presence of gas can switch the shedding mechanism from one dominated by condensation shock to one dominantly by re-entrant jet. The work was supported by ONR Grant Number N00014-11-1-0449.

  20. The HI Chronicles of LITTLE THINGS BCDs: VII Zw 403’s External Gas Cloud

    Science.gov (United States)

    Ashley, Trisha L.; Simpson, Caroline E.; Elmegreen, Bruce; Johnson, Megan C.; Pokhrel, Nau Raj

    2017-01-01

    Blue compact dwarf (BCD) galaxies are characterized by their concentrated bursts of star formation. Yet, for many BCDs, it is unclear what has triggered this activity. VII Zw 403 is a well-known BCD that is relatively isolated from other galaxies. Using the high angular and velocity resolution Very Large Array (VLA) atomic hydrogen (HI) data from the LITTLE THINGS1 survey, we study the detailed kinematics and morphology of VII Zw 403’s HI gas. High sensitivity HI Green Bank Telescope (GBT) observations were also used to search the surrounding area for companion galaxies and extended HI emission, but they did not result in detections of either. The VLA data show a kinematically and morphologically disturbed HI disk. From the VLA HI data cubes, we have separated out most of the emission from what is likely an external gas cloud that is in the line of sight of the HI disk. This external gas cloud appears to be accreting onto the disk and could trigger a future burst of star formation. 1Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey; https://science.nrao.edu/science/surveys/ littlethings

  1. Dust, Gas, and Star Formation in the MBM 18--19 High-Latitude Cloud Complex

    Science.gov (United States)

    Larson, Kristen A.; Reed, Cyrus M.

    Projected on the plane of the sky, the MBM 19 molecular cloud extends from the MBM 18 high-latitude cloud toward the Taurus star-forming regions. We present a new CO(J = 1--0) map of MBM 19 that shows clumpy emission with line intensities above 3 K in some regions despite low, relatively smooth 100 micron emission and modest visual extinction. This map complements data that show extremely high polarization efficiency of dust aligned along the bridge axis and low values of the ratio of total-to-selective extinction throughout the complex. In addition, several ongoing searches for spectral signatures of young stars have found evidence for star formation associated with MBM 18--19. We discuss variation in the molecular gas fraction and dust-to-gas ratio estimates, as well as the implications all these data have for understanding star formation in the region. Results of this study and others like it will provide insight into dust and gas of the translucent interstellar medium and star formation at high galactic latitude. This research was supported by the American Astronomical Society's Small Research Grant Program.

  2. Interesting Scientific Questions Regarding Interactions in the Gas-aerosol-cloud System

    Science.gov (United States)

    Tabazadeh, Azadeh

    2002-01-01

    The growth of human population and their use of land, food and energy resources affect the Earth's atmosphere, biosphere and oceans in a complex manner. Many important questions in earth sciences today deal with issues regarding the impact of human activities on our immediate and future environment, ranging in scope from local (i.e. air pollution) to global (i.e. global warming) scale problems. Because the mass of the Earth's atmosphere is negligible compare to that found in the oceans and the biosphere, the atmosphere can respond quickly to natural and/or manmade perturbations. For example, seasonal 'ozone hole' formation in the Antarctic is a result of manmade CFC emissions in just the last 40 years. Also, the observed rise in global temperatures (known as global warming) is linked to a rapid increase in carbon dioxide and other greenhouse gas concentrations (emitted primarily by combustion processes) over the last century. The Earth's atmosphere is composed of a mixture of gases, aerosol and cloud particles. Natural and anthropogenic emissions of gases and aerosols affect the composition of the Earth's atmosphere. Changes in the chemical and physical makeup of the atmosphere can influence how the Earth will interact with the incoming solar radiation and the outgoing infrared radiation and vise versa. While, some perturbations are short-lived, others are long-lived and can affect the Earth's global climate and chemistry in many decades to come, In order to be able to separate the natural effects from anthropogenic ones, it is essential that we understand the basic physics and chemistry of interactions in the gas-aerosol-cloud system in the Earth's atmosphere. The important physics and chemistry that takes place in the coupled gas-aerosol-cloud system as it relates to aircraft observations are discussed.

  3. Collision of an Arched Plasma-Filled Flux Rope with a Target Cloud of Initially Neutral Gas

    Science.gov (United States)

    Wongwaitayakornkul, Pakorn; Bellan, Paul M.

    2015-11-01

    The Caltech solar loop experiment apparatus had been used to create an arched plasma-filled flux rope that expands to collide with a pre-injected initially-neutral gas. We investigated such a situation in two regimes: (i) plasma made by heavy gas impacting a much lighter neutral gas cloud and (ii) a light-gas plasma impacting much heavier neutral gas. The neutral gas became ionized immediately upon impact. In regime (i), multiple shock layers were formed in the target cloud; these magnetized collisionless shocks are relevant to solar physics as such shocks develop ahead of Coronal Mass Ejections and occur in Co-rotating Interaction Regions. In regime (ii), plasma expansion was inhibited. In both cases, fast camera images, magnetic probe measurements, and spectroscopy data will be reported. The analysis of plasma and shock expansion, as well as associated density and temperature changes, will be presented.

  4. HD and H2 formation in low-metallicity dusty gas clouds at high reshift

    CERN Document Server

    Cazaux, S

    2009-01-01

    Context: The HD and H2 molecules play important roles in the cooling of primordial and very metal-poor gas at high redshift. Aims: Grain surface and gas phase formation of HD and H2 is investigated to assess the importance of trace amounts of dust, 10^{-5}-10^{-3} Zo, in the production of HD and H2. Methods: We consider carbonaceous and silicate grains and include both physisorption and chemisorption, tunneling, and realistic grain surface barriers. We find, for a collapsing gas cloud environment with coupled chemical and thermal balance, that dust abundances as small as 10^{-5} solar lead to a strong boost in the H2 formation rate due to surface reactions. As a result of this enhancement in H2, HD is formed more efficiently in the gas phase through the D+ +H2 reaction. Direct formation of HD on dust grains cannot compete well with this gas phase process for dust temperatures below 150 K. We also derive up-to-date analytic fitting formulae for the grain surface formation of H2 and HD, including the different ...

  5. Cold and warm atomic gas around the Perseus molecular cloud I: Basic Properties

    CERN Document Server

    Stanimirovic, Snezana; Lee, Min-Young; Heiles, Carl; Miller, Jesse

    2014-01-01

    (Abridged) Using the Arecibo Observatory we have obtained neutral hydrogen (HI) absorption and emission spectral pairs in the direction of 26 background radio continuum sources in the vicinity of the Perseus molecular cloud. Strong absorption lines were detected in all cases allowing us to estimate spin temperature (T_s) and optical depth for 107 individual Gaussian components along these lines of sight. Basic properties of individual HI clouds (spin temperature, optical depth, and the column density of the cold and warm neutral medium, CNM and WNM) in and around Perseus are very similar to those found for random interstellar lines of sight sampled by the Millennium HI survey. This suggests that the neutral gas found in and around molecular clouds is not atypical. However, lines of sight in the vicinity of Perseus have on average a higher total HI column density and the CNM fraction, suggesting an enhanced amount of cold HI relative to an average interstellar field. Our estimated optical depth and spin temper...

  6. Molecular and Atomic Gas in the Large Magellanic Cloud - I. Conditions for CO Detection

    CERN Document Server

    Wong, T; Fukui, Y; Kawamura, A; Mizuno, N; Ott, J; Müller, E; Pineda, J L; Welty, D E; Kim, S; Mizuno, Y; Murai, M; Onishi, T

    2009-01-01

    We analyze the conditions for detection of CO(1-0) emission in the Large Magellanic Cloud (LMC), using the recently completed second NANTEN CO survey. In particular, we investigate correlations between CO integrated intensity and HI integrated intensity, peak brightness temperature, and line width at a resolution of 2.6' (~40 pc). We find that significant HI column density and peak brightness temperature are necessary but not sufficient conditions for CO detection, with many regions of strong HI emission not associated with molecular clouds. The large scatter in CO intensities for a given HI intensity persists even when averaging on scales of >200 pc, indicating that the scatter is not solely due to local conversion of HI into H_2 near GMCs. We focus on two possibilities to account for this scatter: either there exist spatial variations in the I(CO) to N(H_2) conversion factor, or a significant fraction of the atomic gas is not involved in molecular cloud formation. A weak tendency for CO emission to be suppr...

  7. The Stefan outflow in a multicomponent vapor-gas atmosphere around a droplet and its role for cloud expansion

    CERN Document Server

    Kuchma, A E; Martyukova, D S

    2016-01-01

    A new comprehensive analysis of Stefan's flow caused by a free growing droplet in vapor-gas atmosphere with several condensing components is presented. This analysis, based on the nonstationary heat and material balance and diffusion transport equations, shows the appearance of the Stefan inflow in the vicinity of the growing droplet and the outflow at large distances from the droplet as a consequence of nonisothermal condensation. For an ensemble of droplets in the atmospheric cloud, this flow provides an increase of the total volume of the cloud, which can be treated as cloud thermal expansion and leads to floating the cloud as a whole due to buoyancy. We have formulated the self-similar solutions of the nonstationary diffusion and heat conduction equations for a growing multicomponent droplet and have derived analytical expressions for the nonstationary velocity profile of Stefan's flow and the expansion volume of the vapor-gas mixture around the growing droplet. To illustrate the approach, we computed the...

  8. Optical depth estimates and effective critical densities of dense gas tracers in the inner parts of nearby galaxy discs

    Science.gov (United States)

    Jiménez-Donaire, M. J.; Bigiel, F.; Leroy, A. K.; Cormier, D.; Gallagher, M.; Usero, A.; Bolatto, A.; Colombo, D.; García-Burillo, S.; Hughes, A.; Kramer, C.; Krumholz, M. R.; Meier, D. S.; Murphy, E.; Pety, J.; Rosolowsky, E.; Schinnerer, E.; Schruba, A.; Tomičić, N.; Zschaechner, L.

    2017-04-01

    High critical density molecular lines like HCN (1-0) or HCO+ (1-0) represent our best tool to study currently star-forming, dense molecular gas at extragalactic distances. The optical depth of these lines is a key ingredient to estimate the effective density required to excite emission. However, constraints on this quantity are even scarcer in the literature than measurements of the high-density tracers themselves. Here, we combine new observations of HCN, HCO+ and HNC (1-0) and their optically thin isotopologues H13CN, H13CO+ and HN13C (1-0) to measure isotopologue line ratios. We use IRAM 30-m observations from the large programme EMPIRE and new Atacama Large Millimetre/submillimetre Array observations, which together target six nearby star-forming galaxies. Using spectral stacking techniques, we calculate or place strong upper limits on the HCN/H13CN, HCO+/H13CO+ and HNC/HN13C line ratios in the inner parts of these galaxies. Under simple assumptions, we use these to estimate the optical depths of HCN (1-0) and HCO+ (1-0) to be τ ∼ 2-11 in the active, inner regions of our targets. The critical densities are consequently lowered to values between 5 and 20 × 105 cm-3, 1 and 3 × 105 cm-3 and 9 × 104 cm-3 for HCN, HCO+ and HNC, respectively. We study the impact of having different beam-filling factors, η, on these estimates and find that the effective critical densities decrease by a factor of η _{12}/η _{13} τ_{12}. A comparison to existing work in NGC 5194 and NGC 253 shows the HCN/H13CN and HCO+/H13CO+ ratios in agreement with our measurements within the uncertainties. The same is true for studies in other environments such as the Galactic Centre or nuclear regions of active galactic nucleus dominated nearby galaxies.

  9. On the massive star-forming capacity of molecular clouds

    Science.gov (United States)

    Franco, Jose; Shore, Steven N.; Tenorio-Tagle, Guillermo

    1994-01-01

    Assuming that photoionization is the self-limiting process for continued star formation, we estimate the maximum number of massive (OB) stars that can form within a molecular cloud. The most efficient cloud destruction mechanism in the early stages of H II region evolution is the evaporation of the cloud by stars located near the cloud boundary. The maximum number of OB stars is of order 1 per 10(exp 4) solar mass of average molecular gas, or 10 per 10(exp 4) solar mass of dense molecular gas. The resulting star-forming efficiencies within cloud complexes range from 2% to 16% depending on both the location of the stars in the cloud and the details of the initial mass function, with an overall value of about 5% for average molecular gas.

  10. PdBI U/LIRG Survey (PULS): Dense molecular gas in Arp 220 and NGC 6240

    Science.gov (United States)

    Sliwa, Kazimierz; Downes, Dennis

    2017-07-01

    Aims: We present new IRAM Plateau de Bure Interferometer observations of Arp 220 in HCN, HCO+, HN13C J = 1 - 0, C2H N = 1 - 0, SiO J = 2 - 1, HNCO Jk,k' = 50,4 - 40,4, CH3CN(6-5), CS J = 2 - 1 and 5-4 and 13CO J = 1 - 0 and 2-1 and of NGC 6240 in HCN, HCO+J = 1 - 0 and C2H N = 1 - 0. In addition, we present Atacama Large Millimeter/submill-meter Array science verification observations of Arp 220 in CS J = 4 - 3 and CH3CN(10-9). Various lines are used to analyse the physical conditions of the molecular gas including the [12CO]/[13CO] and [12CO]/[C18O] abundance ratios. These observations will be made available to the public. Methods: We create brightness temperature line ratio maps to present the different physical conditions across Arp 220 and NGC 6240. In addition, we use the radiative transfer code RADEX and a Monte Carlo Markov chain likelihood code to model the 12CO, 13CO and C18O lines of Arp 220 at 2'' ( 700 pc) scales, where the 12CO and C18O measurements were obtained from literature. Results: Line ratios of optically thick lines such as 12CO show smoothly varying ratios while the line ratios of optically thin lines such as 13CO show a east-west gradient across Arp 220. The HCN/HCO+ line ratio differs between Arp 220 and NGC 6240, where Arp 220 has line ratios above 2 and NGC 6240 below 1. The radiative transfer analysis solution is consistent with a warm ( 40 K), moderately dense ( 103.4 cm-3) molecular gas component averaged over the two nuclei. We find [12CO]/[13CO] and [12CO]/[C18O] abundance ratios of 90 for both. The abundance enhancement of C18O can be explained by stellar nucleosynthesis enrichment of the interstellar medium.

  11. The Relationship Between the Dust and Gas-Phase CO Across the California Molecular Cloud

    CERN Document Server

    Kong, S; Lada, E A; Román-Zúñiga, C; Bieging, J H; Lombardi, M; Forbrich, J; Alves, J F

    2015-01-01

    A deep, wide-field, near-infrared imaging survey was used to construct an extinction map of the southeastern part of the California Molecular Cloud (CMC) with $\\sim$ 0.5 arc min resolution. The same region was also surveyed in the $^{12}$CO(2-1), $^{13}$CO(2-1), C$^{18}$O(2-1) emission lines at the same angular resolution. Strong spatial variations in the abundances of $^{13}$CO and C$^{18}$O were found to be correlated with variations in gas temperature, consistent with temperature dependent CO depletion/desorption on dust grains. The $^{13}$CO to C$^{18}$O abundance ratio was found to increase with decreasing extinction, suggesting selective photodissociation of C$^{18}$O by the ambient UV radiation field. The cloud averaged X-factor is found to be $$ $=$ 2.53 $\\times$ 10$^{20}$ ${\\rm cm}^{-2}~({\\rm K~km~s}^{-1})^{-1}$, somewhat higher than the Milky Way average. On sub-parsec scales we find no single empirical value of the X-factor that can characterize the molecular gas in cold (T$_{\\rm k}$ $\\lesssim$ 15 ...

  12. Temperature structures in Galactic Center clouds - Direct evidence for gas heating via turbulence

    CERN Document Server

    Immer, K; Pillai, T; Ginsburg, A; Menten, K M

    2016-01-01

    The Central Molecular Zone (CMZ) at the center of our Galaxy is the best template to study star formation processes under extreme conditions, similar to those in high-redshift galaxies. We observed on-the-fly maps of para-H$_{2}$CO transitions at 218 GHz and 291 GHz towards seven Galactic Center clouds. From the temperature-sensitive integrated intensity line ratios of H$_{2}$CO(3$_{2,1}-$2$_{2,0}$)/H$_{2}$CO(3$_{0,3}-$2$_{0,2}$) and H$_{2}$CO(4$_{2,2}-$3$_{2,1}$)/H$_{2}$CO(4$_{0,4}-$3$_{0,3}$) in combination with radiative transfer models, we produce gas temperature maps of our targets. These transitions are sensitive to gas with densities of $\\sim$10$^{5}$ cm$^{-3}$ and temperatures 40 K) than their dust temperatures ($\\sim$25 K). Our targets have a complex velocity structure that requires a careful disentanglement of the different components. We produce temperature maps for each of the velocity components and show that the temperatures of the components differ, revealing temperature gradients in the clouds...

  13. Numerical simulations of a shock interacting with multiple magnetized clouds

    Science.gov (United States)

    Alūzas, R.; Pittard, J. M.; Falle, S. A. E. G.; Hartquist, T. W.

    2014-10-01

    We present 2D adiabatic magnetohydrodynamic simulations of a shock interacting with groups of two or three cylindrical clouds. We study how the presence of a nearby cloud influences the dynamics of this interaction, and explore the resulting differences and similarities in the evolution of each cloud. The understanding gained from this small-scale study will help to interpret the behaviour of systems with many 10s or 100s of clouds. We observe a wide variety of behaviour in the interactions studied, which is dependent on the initial positions of the clouds and the orientation and strength of the magnetic field. We find (i) some clouds are stretched along their field lines, whereas others are confined by their field lines; (ii) upstream clouds may accelerate past downstream clouds (though magnetic tension can prevent this); (iii) clouds may also change their relative positions transverse to the direction of shock propagation as they `slingshot' past each other; (iv) downstream clouds may be offered some protection from the oncoming flow as a result of being in the lee of an upstream cloud; (v) the cycle of cloud compression and re-expansion is generally weaker when there are nearby neighbouring clouds; (vi) the plasma β in cloud material can vary rapidly as clouds collide with one another, but low values of β are always transitory. This work is relevant to studies of multiphase regions, where fast, low-density gas interacts with dense clouds, such as in circumstellar bubbles, supernova remnants, superbubbles and galactic winds.

  14. Giant Molecular Cloud Formation in Disk Galaxies: Characterizing Simulated versus Observed Cloud Catalogs

    Science.gov (United States)

    Benincasa, Samantha M.; Tasker, Elizabeth J.; Pudritz, Ralph E.; Wadsley, James

    2013-10-01

    We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 104 M ⊙ and 107 M ⊙. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulated cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n thresh >= 104 cm-3—is 3% per 10 Myr, in clouds of roughly 106 M ⊙. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.

  15. GIANT MOLECULAR CLOUD FORMATION IN DISK GALAXIES: CHARACTERIZING SIMULATED VERSUS OBSERVED CLOUD CATALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Benincasa, Samantha M.; Pudritz, Ralph E.; Wadsley, James [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Tasker, Elizabeth J. [Department of Physics, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810 (Japan)

    2013-10-10

    We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 10{sup 4} M{sub ☉} and 10{sup 7} M{sub ☉}. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulated cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n{sub thresh} ≥ 10{sup 4} cm{sup –3}—is 3% per 10 Myr, in clouds of roughly 10{sup 6} M{sub ☉}. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.

  16. The Fundamentally Different Dynamics of Dust and Gas in Molecular Clouds

    CERN Document Server

    Hopkins, Philip F

    2015-01-01

    We study the behavior of large dust grains in turbulent molecular clouds (MCs). In primarily neutral regions, dust grains move as aerodynamic particles, not necessarily with the gas. We therefore directly simulate, for the first time, the behavior of aerodynamic grains in highly supersonic, magnetohydrodynamic turbulence typical of MCs. We show that, under these conditions, grains with sizes a>0.01 micron exhibit dramatic (exceeding factor ~1000) fluctuations in the local dust-to-gas ratio (implying large small-scale variations in abundances, dust cooling rates, and dynamics). The dust can form highly filamentary structures (which would be observed in both dust emission and extinction), which can be much thinner than the characteristic width of gas filaments. Sometimes, the dust and gas filaments are not even in the same location. The 'clumping factor' of the dust (critical for dust evolution) can reach ~100, for grains in the ideal size range. The dust clustering is maximized around scales ~0.2pc*(a/micron)*...

  17. Aviation response to a widely dispersed volcanic ash and gas cloud from the August 2008 eruption of Kasatochi, Alaska, USA

    Science.gov (United States)

    Guffanti, Marianne; Schneider, David J.; Wallace, Kristi L.; Hall, Tony; Bensimon, Dov R.; Salinas, Leonard J.

    2010-01-01

    The extensive volcanic cloud from Kasatochi's 2008 eruption caused widespread disruptions to aviation operations along Pacific oceanic, Canadian, and U.S. air routes. Based on aviation hazard warnings issued by the National Oceanic and Atmospheric Administration, U.S. Geological Survey, the Federal Aviation Administration, and Meteorological Service of Canada, air carriers largely avoided the volcanic cloud over a 5 day period by route modifications and flight cancellations. Comparison of time coincident GOES thermal infrared (TIR) data for ash detection with Ozone Monitoring Instrument (OMI) ultraviolet data for SO2 detection shows congruent areas of ash and gas in the volcanic cloud in the 2 days following onset of ash production. After about 2.5 days, the area of SO2 detected by OMI was more extensive than the area of ash indicated by TIR data, indicating significant ash depletion by fall out had occurred. Pilot reports of visible haze at cruise altitudes over Canada and the northern United States suggested that SO2 gas had converted to sulfate aerosols. Uncertain about the hazard potential of the aging cloud, airlines coped by flying over, under, or around the observed haze layer. Samples from a nondamaging aircraft encounter with Kasatochi's nearly 3 day old cloud contained volcanic silicate particles, confirming that some fine ash is present in predominantly gas clouds. The aircraft's exposure to ash was insufficient to cause engine damage; however, slightly damaging encounters with volcanic clouds from eruptions of Reventador in 2002 and Hekla in 2000 indicate the possibility of lingering hazards associated with old and/or diffuse volcanic clouds.

  18. An Ammonia Spectral Map of the L1495-B218 Filaments in the Taurus Molecular Cloud : I. Physical Properties of Filaments and Dense cores

    CERN Document Server

    Seo, Young Min; Goldsmith, Paul; Ward-Thompson, Derek; Kirk, Jason M; Schmalzl, Markus; Lee, Jeong-Eun; Friesen, Rachel; Langston, Glen; Masters, Joe; Garwood, Robert W

    2015-01-01

    We present deep NH$_3$ observations of the L1495-B218 filaments in the Taurus molecular cloud covering over a 3 degree angular range using the K-band focal plane array on the 100m Green Bank Telescope. The L1495-B218 filaments form an interconnected, nearby, large complex extending over 8 pc. We observed NH$_3$ (1,1) and (2,2) with a spectral resolution of 0.038 km/s and a spatial resolution of 31$"$. Most of the ammonia peaks coincide with intensity peaks in dust continuum maps at 350 $\\mu$m and 500 $\\mu$m. We deduced physical properties by fitting a model to the observed spectra. We find gas kinetic temperatures of 8 $-$ 15 K, velocity dispersions of 0.05 $-$ 0.25 km/s, and NH$_3$ column densities of 5$\\times$10$^{12}$ $-$ 1$\\times$10$^{14}$ cm$^{-2}$. The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithms, identifies a total of 55 NH$_3$ structures including 39 leaves and 16 branches. The masses of the NH$_3$ sources range from 0.05 M$_\\odot$ to 9.5 M$_\\odot$. The masses...

  19. Cosmic rays and molecular clouds

    OpenAIRE

    2012-01-01

    This paper deals with the cosmic-ray penetration into molecular clouds and with the related gamma--ray emission. High energy cosmic rays interact with the dense gas and produce neutral pions which in turn decay into two gamma rays. This makes molecular clouds potential sources of gamma rays, especially if they are located in the vicinity of a powerful accelerator that injects cosmic rays in the interstellar medium. The amplitude and duration in time of the cosmic--ray overdensity around a giv...

  20. Using gas clouds to probe the accretion flow around SgrA*: G2's delayed pericenter passage

    CERN Document Server

    Madigan, Ann-Marie; O'Leary, Ryan

    2016-01-01

    We study the dynamical evolution of the putative gas clouds G1 and G2 recently discovered in the Galactic center. Following earlier studies suggesting that these two clouds are part of a larger gas streamer, we combine their orbits into a single trajectory. Since the gas clouds experience a drag force from background gas, this trajectory is not exactly Keplerian. By assuming the G1 and G2 clouds trace this trajectory, we fit for the drag force they experience and thus extract information about the accretion flow at a distance of thousands of Schwarzschild radii from the black hole. This range of radii is important for theories of black hole accretion, but is currently unconstrained by observations. In this paper we extend our previous work by accounting for radial forces due to possible inflow or outflow of the background gas. Such radial forces drive precession in the orbital plane, allowing a slightly better fit to the G1 and G2 data. This precession delays the pericenter passage of G2 by 4-5 months relativ...

  1. Gas Clouds in Whirlpool Galaxy Yield Important Clues Supporting Theory on Spiral Arms

    Science.gov (United States)

    2004-06-01

    Astronomers studying gas clouds in the famous Whirlpool Galaxy have found important clues supporting a theory that seeks to explain how the spectacular spiral arms of galaxies can persist for billions of years. The astronomers applied techniques used to study similar gas clouds in our own Milky Way to those in the spiral arms of a neighbor galaxy for the first time, and their results bolster a theory first proposed in 1964. M51 The spiral galaxy M51: Left, as seen with the Hubble Space Telescope; Right, radio image showing location of Carbon Monoxide gas. CREDIT: STScI, OVRO, IRAM (Click on image for larger version) Image Files Optical and Radio (CO) Views (above image) HST Optical Image with CO Contours Overlaid Radio/Optical Composite Image of M51 VLA/Effelsberg Radio Image of M51, With Panel Showing Magnetic Field Lines The Whirlpool Galaxy, about 31 million light-years distant, is a beautiful spiral in the constellation Canes Venatici. Also known as M51, it is seen nearly face-on from Earth and is familiar to amateur astronomers and has been featured in countless posters, books and magazine articles. "This galaxy made a great target for our study of spiral arms and how star formation works along them," said Eva Schinnerer, of the National Radio Astronomy Observatory in Socorro, NM. "It was ideal for us because it's one of the closest face-on spirals in the sky," she added. Schinnerer worked with Axel Weiss of the Institute for Millimeter Radio Astronomy (IRAM) in Spain, Susanne Aalto of the Onsala Space Observatory in Sweden, and Nick Scoville of Caltech. The astronomers presented their findings to the American Astronomical Society's meeting in Denver, Colorado. The scientists analyzed radio emission from Carbon Monoxide (CO) molecules in giant gas clouds along M51's spiral arms. Using telescopes at Caltech's Owens Valley Radio Observatory and the 30-meter radio telescope of IRAM, they were able to determine the temperatures and amounts of turbulence within the

  2. Gas Kinematics on GMC scales in M51 with PAWS: cloud stabilization through dynamical pressure

    CERN Document Server

    Meidt, Sharon E; Garcia-Burillo, Santiago; Hughes, Annie; Colombo, Dario; Pety, Jerome; Dobbs, Clare L; Schuster, Karl F; Kramer, Carsten; Leroy, Adam K; Dumas, Gaelle; Thompson, Todd A

    2013-01-01

    We use the high spatial and spectral resolution of the PAWS CO(1-0) survey of the inner 9 kpc of the iconic spiral galaxy M51 to examine the effect of gas streaming motions on the star-forming properties of individual GMCs. We compare our view of gas flows in M51 -- which arise due to departures from axi-symmetry in the gravitational potential (i.e. the nuclear bar and spiral arms) -- with the global pattern of star formation as traced by Halpha and 24\\mu m emission. We find that the dynamical environment of GMCs strongly affects their ability to form stars, in the sense that GMCs situated in regions with large streaming motions can be stabilized, while similarly massive GMCs in regions without streaming go on to efficiently form stars. We argue that this is the result of reduced surface pressure felt by clouds embedded in an ambient medium undergoing large streaming motions, which prevents collapse. Indeed, the variation in gas depletion time expected based on the observed streaming motions throughout the di...

  3. Small hydrocarbon molecules in cloud-forming Brown Dwarf and giant gas planet atmospheres

    CERN Document Server

    Bilger, Camille; Helling, Christiane

    2013-01-01

    We study the abundances of complex carbon-bearing molecules in the oxygen-rich dust- forming atmospheres of Brown Dwarfs and giant gas planets. The inner atmospheric re- gions that form the inner boundary for thermochemical gas-phase models are investigated. Results from Drift-phoenix atmosphere simulations, which include the feedback of phase- non-equilibrium dust cloud formation on the atmospheric structure and the gas-phase abun- dances, are utilised. The resulting element depletion leads to a shift in the carbon-to-oxygen ratio such that several hydrocarbon molecules and cyanopolycyanopolyynene molecules can be present. An increase in surface gravity and/or a decrease in metallicity support the increase in the partial pressures of these species. CO, CO2, CH4, and HCN contain the largest fraction of carbon. In the upper atmosphere of low-metallicity objects, more carbon is contained in C4H than in CO, and also CH3 and C2H2 play an increasingly important role as carbon-sink. We determine chemical relaxation...

  4. Redistributing hot gas around galaxies: do cool clouds signal a solution to the overcooling problem?

    CERN Document Server

    Kaufmann, Tobias; Maller, Ariyeh H; Fang, Taotao; Wadsley, James

    2008-01-01

    We present a pair of high-resolution smoothed particle hydrodynamics (SPH) simulations that explore the evolution and cooling behavior of hot gas around Milky-Way size galaxies. The simulations contain the same total baryonic mass and are identical other than their initial gas density distributions. The first is initialised with a low entropy hot gas halo that traces the cuspy profile of the dark matter, and the second is initialised with a high-entropy hot halo with a cored density profile as might be expected in models with pre-heating feedback. Galaxy formation proceeds in dramatically different fashion depending on the initial setup. While the low-entropy halo cools rapidly, primarily from the central region, the high-entropy halo is quasi-stable for ~4 Gyr and eventually cools via the fragmentation and infall of clouds from ~100 kpc distances. The low-entropy halo's X-ray surface brightness is ~100 times brighter than current limits and the resultant disc galaxy contains more than half of the system's ba...

  5. The Spitzer Survey of the Small Magellanic Cloud: FIR Emission and Cold Gas in the SMC

    CERN Document Server

    Leroy, A; Stanimirovic, S; Mizuno, N; Israel, F; Bot, C; Leroy, Adam; Bolatto, Alberto; Stanimirovic, Snezana; Mizuno, Norikazu; Israel, Frank; Bot, Caroline

    2006-01-01

    We present new far infrared maps of the Small Magellanic Cloud (SMC) at 24, 70, and 160 microns obtained as part of the Spitzer Survey of the Small Magellanic Cloud (S3MC,Bolatto et al. 2006). These maps cover most of the active star formation in the SMC Bar and the more quiescent Wing. We combine our maps with literature data to derive the dust surface density across the SMC. We find a total dust mass of Mdust = 3 10^5 Msun, implying a dust-to-hydrogen ratio over the region studied of log D/H = -2.86, or 1-to-700, which includes H_2. Assuming the dust to trace the total gas column, we derive H_2 surface densities across the SMC. We find a total H_2 mass M_H2 = 3.2 10^7 Msun in a distribution similar to that of the CO, but more extended. We compare profiles of CO and H_2 around six molecular peaks and find that on average H_2 is more extended than CO by a factor of \\sim 1.3. The implied CO-to-H_2 conversion factor over the whole SMC is XCO = 13 +/- 1 10^21 cm^-2 (K km/s)^-1. Over the volume occupied by CO we ...

  6. The formation of molecular clouds in spiral galaxies

    CERN Document Server

    Dobbs, C L

    2006-01-01

    We present Smoothed Particle Hydrodynamics (SPH) simulations of molecular cloud formation in spiral galaxies. These simulations model the response of a non-self-gravitating gaseous disk to a galactic potential. The formation of molecular gas occurs when cold ($T \\le 100$ K) gas is compressed during the passage of a spiral arm. The spiral arms display considerable structure and the molecular gas accumulates into dense clouds. We identify the formation of these structures as due to the dynamics of clumpy shocks, which perturb the orbits of particles passing through the spiral arm. In addition, the spiral shocks induce a large velocity dispersion in the spiral arms, comparable with the magnitude of the velocity dispersion observed in molecular clouds. The molecular clouds are largely confined to the spiral arms, since most molecular gas is photodissociated to atomic hydrogen upon leaving the arms. However a low photodissociation rate increases the amount of interarm molecular gas, and the possibility of molecula...

  7. The role of ices in star-forming clouds

    CERN Document Server

    Hocuk, Seyit

    2016-01-01

    Ices play a critical role during the evolution of interstellar clouds. Their presence is ubiquitous in the dense molecular medium and their impact is not only limited to chemistry. Species adsorbed onto dust grains also affect cloud thermodynamics. It all depends on the interstellar conditions, the chemical parameters, and the composition of ice layers. In this work, I study the formation of ices by focusing on the interplay between gas and solid phase to determine their role on cloud evolution and star formation. I show that while the formation of ices greatly impacts the cloud chemistry, their role on the thermodynamics is more conservative, and their influence on star formation is only marginal.

  8. Modelling the reversible uptake of chemical species in the gas phase by ice particles formed in a convective cloud

    Directory of Open Access Journals (Sweden)

    K. M. Longo

    2009-11-01

    Full Text Available The present paper is a preliminary study preparing the introduction of reversible trace gas uptake by ice particles into a 3-D cloud resolving model. For this a 3-D simulation of a tropical deep convection cloud was run with the BRAMS cloud resolving model using a two-moment bulk microphysical parameterization. Trajectories encountering the convective clouds were computed from these simulation outputs along which the variations of the pristine ice, snow and aggregate mixing ratios and size distributions were extracted. The reversible uptake of 11 trace gases by ice was examined assuming applicability of Langmuir isotherms using recently evaluated (IUPAC laboratory data. The results show that ice uptake is only significant for HNO3, HCl, CH3COOH and HCOOH. For H2O2, using new results for the partition coefficient results in significant partitioning to the ice phase for this trace gas also. It was also shown that the uptake is largely dependent on the temperature for some species. The adsorption saturation at the ice surface for large gas concentrations is generally not a limiting factor except for HNO3 and HCl for gas concentration greater than 1 ppbv. For HNO3, results were also obtained using a trapping theory, resulting in a similar order of magnitude of uptake, although the two approaches are based on different assumptions. The results were compared to those obtained using a BRAMS cloud simulation based on a single-moment microphysical scheme instead of the two moment scheme. We found similar results with a slightly more important uptake when using the single-moment scheme which is related to slightly higher ice mixing ratios in this simulation. The way to introduce these results in the 3-D cloud model is discussed.

  9. Modelling the reversible uptake of chemical species in the gas phase by ice particles formed in a convective cloud

    Directory of Open Access Journals (Sweden)

    V. Marécal

    2010-05-01

    Full Text Available The present paper is a preliminary study preparing the introduction of reversible trace gas uptake by ice particles into a 3-D cloud resolving model. For this a 3-D simulation of a tropical deep convection cloud was run with the BRAMS cloud resolving model using a two-moment bulk microphysical parameterization. Trajectories within the convective clouds were computed from these simulation outputs along which the variations of the pristine ice, snow and aggregate mixing ratios and concentrations were extracted. The reversible uptake of 11 trace gases by ice was examined assuming applicability of Langmuir isotherms using recently evaluated (IUPAC laboratory data. The results show that ice uptake is only significant for HNO3, HCl, CH3COOH and HCOOH. For H2O2, using new results for the partition coefficient results in significant partitioning to the ice phase for this trace gas also. It was also shown that the uptake is largely dependent on the temperature for some species. The adsorption saturation at the ice surface for large gas mixing ratios is generally not a limiting factor except for HNO3 and HCl for gas mixing ratio greater than 1 ppbv. For HNO3, results were also obtained using a trapping theory, resulting in a similar order of magnitude of uptake, although the two approaches are based on different assumptions. The results were compared to those obtained using a BRAMS cloud simulation based on a single-moment microphysical scheme instead of the two moment scheme. We found similar results with a slightly more important uptake when using the single-moment scheme which is related to slightly higher ice mixing ratios in this simulation. The way to introduce these results in the 3-D cloud model is discussed.

  10. FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals

    Directory of Open Access Journals (Sweden)

    M. van Roozendael

    2008-11-01

    Full Text Available The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A-band algorithm has been used to retrieve cloud information from measurements of the O2 A-band around 760 nm by GOME, SCIAMACHY and GOME-2. The cloud parameters retrieved by FRESCO are the effective cloud fraction and cloud pressure, which are used for cloud correction in the retrieval of trace gases like O3 and NO2. To improve the cloud pressure retrieval for partly cloudy scenes, single Rayleigh scattering has been included in an improved version of the algorithm, called FRESCO+. We compared FRESCO+ and FRESCO effective cloud fractions and cloud pressures using simulated spectra and one month of GOME measured spectra. As expected, FRESCO+ gives more reliable cloud pressures over partly cloudy pixels. Simulations and comparisons with ground-based radar/lidar measurements of clouds show that the FRESCO+ cloud pressure is about the optical midlevel of the cloud. Globally averaged, the FRESCO+ cloud pressure is about 50 hPa higher than the FRESCO cloud pressure, while the FRESCO+ effective cloud fraction is about 0.01 larger. The effect of FRESCO+ cloud parameters on O3 and NO2 vertical column density (VCD retrievals is studied using SCIAMACHY data and ground-based DOAS measurements. We find that the FRESCO+ algorithm has a significant effect on tropospheric NO2 retrievals but a minor effect on total O3 retrievals. The retrieved SCIAMACHY tropospheric NO2 VCDs using FRESCO+ cloud parameters (v1.1 are lower than the tropospheric NO2VCDs which used FRESCO cloud parameters (v1.04, in particular over heavily polluted areas with low clouds. The difference between SCIAMACHY tropospheric NO2 VCDs v1.1 and ground-based MAXDOAS measurements performed in Cabauw, The Netherlands, during the DANDELIONS campaign is about −2.12×1014molec cm−2.

  11. A protoplanetary system formation modeling into a dust-gas protoplanetary cloud

    Science.gov (United States)

    Minervina, H.

    2009-04-01

    This work investigates a protoplanetary system forming with usage of computational modeling based on modern program packages. Pictures of fields for pressure and velocity into a gravitating and rotating gas-dust cloud (around of a protostar) are obtained. The work shows that evolution of rotating gas-dust cloud forms planetary embryos in the centrally symmetric gravitational field. This work also develops an analysis of hydrodynamic flows into a rotating protoplanetary cloud [1] with usage of nonlinear dynamics methods based on the matrix decomposition in the state-space [2] and the fractal-topological methods [3]. The computer simulation of hydrodynamic flows is carried out by means of program package STAR-CD [4]. The system of differential equations in partial derivatives containing the Navier-Stokes and continuity equations in cylindrical coordinates is investigated. Using a representation of velocity field as a sum of basic flow velocity (satisfying the Navier-Stokes equation) and disturbance of velocity the equation system relative to components of velocity disturbance is obtained. The system of partial differential equations (modeling the hydrodynamic processes in the vortex flow) is reduced to the system of ordinary differential equations (describing an attractor) based on the Galerkin's method. Taking into account the continuity equation the form of components of velocity disturbance is chosen. This work shows the similar attractor of this system has been obtained in [5]. Then the fractal-topological characteristics of this attractor are investigated using matrix decomposition methods [2], [3]. The obtained results of analysis are in accord with the computational simulation. References: [1] Schlichting H. Grenzschicht-Theorie. Verlag G Braun, Karlsruhe, 1970. [2] Krot A.M. Matrix decompositions of vector functions and shift operators on the trajectories of a nonlinear dynamical system. Nonlinear Phenomena in Complex Systems, vol. 4, no.2, pp. 106-115, 2001

  12. High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption

    Science.gov (United States)

    Folch, Arnau; Barcons, Jordi; Kozono, Tomofumi; Costa, Antonio

    2017-06-01

    Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities if the terrain and meteorological conditions favour its accumulation in topographic depressions, thereby reaching toxic concentration levels. Numerical modelling of atmospheric gas dispersion constitutes a useful tool for gas hazard assessment studies, essential for planning risk mitigation actions. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behaviour, potentially leading to inaccurate results if not captured by coarser-scale modelling. We introduce a methodology for microscale wind field characterisation based on transfer functions that couple a mesoscale numerical weather prediction model with a microscale computational fluid dynamics (CFD) model for the atmospheric boundary layer. The resulting time-dependent high-resolution microscale wind field is used as input for a shallow-layer gas dispersal model (TWODEE-2.1) to simulate the time evolution of CO2 gas concentration at different heights above the terrain. The strategy is applied to review simulations of the 1986 Lake Nyos event in Cameroon, where a huge CO2 cloud released by a limnic eruption spread downslopes from the lake, suffocating thousands of people and animals across the Nyos and adjacent secondary valleys. Besides several new features introduced in the new version of the gas dispersal code (TWODEE-2.1), we have also implemented a novel impact criterion based on the percentage of human fatalities depending on CO2 concentration and exposure time. New model results are quantitatively validated using the reported percentage of fatalities at several locations. The comparison with previous simulations that assumed coarser-scale steady winds and topography illustrates the importance of high-resolution modelling in complex terrains.

  13. CLASS 0 PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD: A CORRELATION BETWEEN THE YOUNGEST PROTOSTARS AND THE DENSE GAS DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Sadavoy, S. I.; Di Francesco, J. [Department of Physics and Astronomy, University of Victoria, P.O. Box 355, STN CSC, Victoria, BC, V8W 3P6 (Canada); André, Ph.; Maury, A.; Men' shchikov, A.; Motte, F.; Hennemann, M.; Könyves, V.; Louvet, F.; Roy, A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service dAstrophysique, Saclay, F-91191 Gif-sur-Yvette (France); Pezzuto, S.; Benedettini, M.; Elia, D. [Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Bernard, J.-P. [CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France); Nguyên-Lu' o' ng, Q. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 (Canada); Schneider, N.; Bontemps, S. [Université de Bordeaux, LAB, UMR 5804, F-33270 Floirac (France); Arzoumanian, D. [IAS, CNRS (UMR 8617), Université Paris-Sud 11, Bâtiment 121, F-91400 Orsay (France); Hill, T. [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura 763-0355, Santiago (Chile); Peretto, N., E-mail: sadavoy@mpia.de [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); and others

    2014-06-01

    We use PACS and SPIRE continuum data at 160 μm, 250 μm, 350 μm, and 500 μm from the Herschel Gould Belt Survey to sample seven clumps in Perseus: B1, B1-E, B5, IC 348, L1448, L1455, and NGC 1333. Additionally, we identify and characterize the embedded Class 0 protostars using detections of compact Herschel sources at 70 μm as well as archival Spitzer catalogs and SCUBA 850 μm photometric data. We identify 28 candidate Class 0 protostars, four of which are newly discovered sources not identified with Spitzer. We find that the star formation efficiency of clumps, as traced by Class 0 protostars, correlates strongly with the flatness of their respective column density distributions at high values. This correlation suggests that the fraction of high column density material in a clump reflects only its youngest protostellar population rather than its entire source population. We propose that feedback from either the formation or evolution of protostars changes the local density structure of clumps.

  14. Dynamical evolution and molecular abundances of interstellar clouds

    Science.gov (United States)

    Prasad, Sheo S.; Heere, Karen R.; Tarafdar, Shankar P.

    1991-01-01

    Dynamical models are presented that start with interstellar gas in an initial diffuse state and consider their gravitational collapse and the formation of dense cores. Frozen-in tangled magnetic fields are included to mimic forces that might oppose gravitational contraction and whose effectiveness may increase with increasing core densities. Results suggest the possibility that dense cloud cores may be dynamically evolving ephemeral objects, such that their lifespan at a given core density decreases as that density increases.

  15. The space density of primordial gas clouds near galaxies and groups and their relation to galactic high-velocity clouds

    NARCIS (Netherlands)

    Zwaan, MA; Briggs, FH

    2000-01-01

    The Arecibo H I Strip Survey probed the halos of similar to 300 cataloged galaxies and the environments of similar to 14 groups with sensitivity to neutral hydrogen masses greater than or equal to 10(7) M-circle dot. The survey detected no objects with properties resembling the high-velocity clouds

  16. Infalling clouds on to supermassive black hole binaries - I. Formation of discs, accretion and gas dynamics

    Science.gov (United States)

    Goicovic, F. G.; Cuadra, J.; Sesana, A.; Stasyszyn, F.; Amaro-Seoane, P.; Tanaka, T. L.

    2016-01-01

    There is compelling evidence that most - if not all - galaxies harbour a supermassive black hole (SMBH) at their nucleus; hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the Universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall towards and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall on to equal-mass SMBH binaries, using a modified version of the SPH (smoothed particle hydrodynamics) code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that the formation of circumbinary discs and discs around each SMBH (`mini-discs') depend on those parameters. We also study the dynamics of the formed discs, and the variability of the feeding rate on to the SMBHs in the different configurations.

  17. Expanding gas clouds of ellipsoidal shape - the solutions of minimal energy

    Science.gov (United States)

    Gaffet, B.

    1999-07-01

    Ovsiannikov [Dokl. Akad. Nauk SSSR 111 (1965)] and Dyson [J. Math. Mech. 18 (1968) 91] have proposed a model of an ellipsoidal gas cloud adiabatically expanding into a vacuum, and have shown that the equations of fluid motion are thereby reduced to a set of ordinary differential equations, of order 18 in the most general case. Gaffet [J. Fluid Mech. 325 (1996) 113] has shown that their integration reduces to quadratures (if the gas is monatomic and there is no rotating motion of the ellipsoid’s principal axes), as a result of the existence of two integrals of the motion, m and I2. In the present work we establish the minimum value m0( I2) of m, compatible with the existence of physically meaningful solutions. We succeed in performing the separation of variables, and obtain the unexpected result that, when the energy integral m takes its minimum value m0( I2), the general solution of the equations of motion is described by elliptic functions.

  18. The relation between gas and dust in the Taurus Molecular Cloud

    CERN Document Server

    Pineda, Jorge L; Chapman, Nicholas; Snell, Ronald L; Li, Di; Cambresy, Laurent; Brunt, Chris

    2010-01-01

    (abridged) We report a study of the relation between dust and gas over a 100deg^2 area in the Taurus molecular cloud. We compare the H2 column density derived from dust extinction with the CO column density derived from the 12CO and 13CO J= 1-0 lines. We derive the visual extinction from reddening determined from 2MASS data. The comparison is done at an angular size of 200", corresponding to 0.14pc at a distance of 140pc. We find that the relation between visual extinction Av and N(CO) is linear between Av~3 and 10 mag in the region associated with the B213--L1495 filament. In other regions the linear relation is flattened for Av > 4 mag. We find that the presence of temperature gradients in the molecular gas affects the determination of N(CO) by ~30--70% with the largest difference occurring at large column densities. Adding a correction for this effect and accounting for the observed relation between the column density of CO and CO2 ices and Av, we find a linear relationship between the column of carbon mon...

  19. Planck intermediate results. XXVIII. Interstellar gas and dust in the Chamaeleon clouds as seen by Fermi LAT and Planck

    CERN Document Server

    Planck,; Ade, P A R; Aghanim, N; Aniano, G; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoit-Levy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Casandjian, J M; Catalano, A; Chamballu, A; Chiang, H C; Christensen, P R; Colombo, L P L; Combet, C; Couchot, F; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Desert, F -X; Dickinson, C; Diego, J M; Digel, S W; Dole, H; Donzelli, S; Dore, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Ensslin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Fukui, Y; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Gjerlow, E; Gonzalez-Nuevo, J; Gorski, K M; Gregorio, A; Grenier, I A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versille, S; Hernandez-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Holmes, W A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Keihanen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Levrier, F; Liguori, M; Lilje, P B; Linden-Vornle, M; Lopez-Caniego, M; Lubin, P M; Macias-Perez, J F; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martinez-Gonzalez, E; Masi, S; Matarrese, S; Mazzotta, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Miville-Deschenes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Natoli, P; Norgaard-Nielsen, H U; Novikov, D; Novikov, I; Oxborrow, C A; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Pasian, F; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Ristorcelli, I; Rocha, G; Roudier, G; Rusholme, B; Sandri, M; Santos, D; Scott, D; Spencer, L D; Stolyarov, V; Strong, A W; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Tibaldo, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    Shortened abstract: Observations of the nearby Chamaeleon clouds in gamma rays with the Fermi Large Area Telescope and in thermal dust emission with Planck and IRAS have been used with the HI and CO radio data to (i) map the gas column densities in the different phases and at the dark neutral medium (DNM) transition between the HI-bright and CO-bright media; (ii) constrain the CO-to-$H_2$ conversion factor, $X_{CO}$; (iii) probe the dust properties per gas nucleon in each gas phase and spatially across the clouds. We have separated clouds in velocity in HI and CO emission and modelled the 0.4-100 GeV intensity, the dust optical depth at 353 GHz, the thermal radiance of the large grains, and an estimate of the dust extinction empirically corrected for the starlight intensity, $A_{VQ}$. The gamma-ray emissivity spectra confirm that the GeV-TeV cosmic rays uniformly permeate all gas phases up to the CO cores. The dust and cosmic rays reveal large amounts of DNM gas, with comparable spatial distributions and twic...

  20. Validation of a model of gas and dense phase CO jet releases for carbon capture and storage application

    OpenAIRE

    Wareing, CJ; Fairweather, M; Woolley, RM; Falle, SAEG

    2014-01-01

    Carbon capture and storage (CCS) presents a short-term option for significantly reducing the amount of carbon dioxide (CO) released into the atmosphere and mitigating the effects of climate change. To this end, National Grid initiated a programme of research known as the COOLTRANS research programme. Part of this work involves the development of a mathematical model for predicting the near-field dispersion of CO following the puncture or rupture of a high pressure dense phase pipeline typical...

  1. The Relationship Between Molecular Gas, HI, and Star Formation in the Low-Mass, Low-Metallicity Magellanic Clouds

    CERN Document Server

    Jameson, Katherine E; Leroy, Adam K; Meixner, Margaret; Roman-Duval, Julia; Gordon, Karl; Hughes, Annie; Israel, Frank P; Rubio, Monica; Indebetouw, Remy; Madden, Suzanne C; Bot, Caroline; Hony, Sacha; Cormier, Diane; Pellegrini, Eric W; Galametz, Maud; Sonneborn, George

    2015-01-01

    The Magellanic Clouds provide the only laboratory to study the effect of metallicity and galaxy mass on molecular gas and star formation at high (~20 pc) resolution. We use the dust emission from HERITAGE Herschel data to map the molecular gas in the Magellanic Clouds, avoiding the known biases of CO emission as a tracer of H2. Using our dust-based molecular gas estimates, we find molecular gas depletion times of ~0.4 Gyr in the LMC and ~0.6 SMC at 1 kpc scales. These depletion times fall within the range found for normal disk galaxies, but are shorter than the average value, which could be due to recent bursts in star formation. We find no evidence for a strong intrinsic dependence of the molecular gas depletion time on metallicity. We study the relationship between gas and star formation rate across a range in size scales from 20 pc to ~1 kpc, including how the scatter in molecular gas depletion time changes with size scale, and discuss the physical mechanisms driving the relationships. We compare the metal...

  2. The Serpens Molecular Cloud

    CERN Document Server

    Eiroa, C; Casali, M M

    2008-01-01

    The Serpens cloud has received considerable attention in the last years, in particular the small region known as the Serpens cloud core where a plethora of star formation related phenomena are found. This review summarizes our current observational knowledge of the cloud, with emphasis on the core. Recent results are converging to a distance for the cloud of ~ 230 +- 20 pc, an issue which has been controversial over the years. We present the gas and dust properties of the cloud core and describe its structure and appearance at different wavelengths. The core contains a dense, very young, low mass stellar cluster with more than 300 objects in all evolutionary phases, from collapsing gaseous condensations to pre-main sequence stars. We describe the behaviour and spatial distribution of the different stellar populations (mm cores, Classes 0, I and II sources). The spatial concentration and the fraction number of Class 0/Class I/Class II sources is considerably larger in the Serpens core than in any other low mas...

  3. Molecular cloud evolution - V. Cloud destruction by stellar feedback

    Science.gov (United States)

    Colín, Pedro; Vázquez-Semadeni, Enrique; Gómez, Gilberto C.

    2013-10-01

    We present a numerical study of the evolution of molecular clouds, from their formation by converging flows in the warm interstellar medium, to their destruction by the ionizing feedback of the massive stars they form. We improve with respect to our previous simulations by including a different stellar-particle formation algorithm, which allows them to have masses corresponding to single stars rather than to small clusters, and with a mass distribution following a near-Salpeter stellar initial mass function. We also employ a simplified radiative-transfer algorithm that allows the stellar particles to feedback on the medium at a rate that depends on their mass and the local density. Our results are as follows: (a) contrary to the results from our previous study, where all stellar particles injected energy at a rate corresponding to a star of ˜10 M⊙, the dense gas is now completely evacuated from 10 pc regions around the stars within 10-20 Myr, suggesting that this feat is accomplished essentially by the most massive stars. (b) At the scale of the whole numerical simulations, the dense gas mass is reduced by up to an order of magnitude, although star formation (SF) never shuts off completely, indicating that the feedback terminates SF locally, but new SF events continue to occur elsewhere in the clouds. (c) The SF efficiency (SFE) is maintained globally at the ˜10 per cent level, although locally, the cloud with largest degree of focusing of its accretion flow reaches SFE ˜30 per cent. (d) The virial parameter of the clouds approaches unity before the stellar feedback begins to dominate the dynamics, becoming much larger once feedback dominates, suggesting that clouds become unbound as a consequence of the stellar feedback, rather than unboundness being the cause of a low SFE. (e) The erosion of the filaments that feed the star-forming clumps produces chains of isolated dense blobs reminiscent of those observed in the vicinity of the dark globule B68.

  4. Collision Experiment of an Arched Plasma-Filled Flux Rope and a Target Cloud of Initially Neutral Gas

    Science.gov (United States)

    Wongwaitayakornkul, Pakorn; Bellan, Paul; Li, Hui; Li, Shengtai

    2016-10-01

    Shocks occur in the co-rotating interaction regions just beyond the solar corona, in the corona during CME events, and when the solar wind impacts Earth's magnetosphere. The Caltech solar loop experiment investigates shock physics by creating an arched plasma-filled flux rope that expands to collide with a pre-injected, initially-neutral gas. We focus the investigation on the situation of a heavy-gas plasma (Argon) impacting a much lighter neutral gas cloud (Hydrogen). The neutral gas target cloud ionizes immediately upon being impacted and plasma-induced shock waves propagate in the target cloud away from the impact region. Analysis of data from magnetic probes, Langmuir probes, a fast camera, and spectroscopic measurements will be presented. The measurements suggest that a thin, compressed, ionized layer of hydrogen is formed just downstream of the Argon plasma loop and that thin, supersonic shocks form further downstream and propagate obliquely away from the plasma loop. Numerical simulation of an ideal MHD plasma is underway to enable comparison of the measurements with the predictions of MHD theory.

  5. Molecular line emission in NGC 1068 imaged with ALMA : I. An AGN-driven outflow in the dense molecular gas

    NARCIS (Netherlands)

    García-Burillo, S.; Combes, F.; Usero, A.; Aalto, S.; Krips, M.; Viti, S.; Alonso-Herrero, A.; Hunt, L. K.; Schinnerer, E.; Baker, A. J.; Boone, F.; Casasola, V.; Colina, L.; Costagliola, F.; Eckart, A.; Fuente, A.; Henkel, C.; Labiano, A.; Martín, S.; Márquez, I.; Muller, S.; Planesas, P.; Ramos Almeida, C.; Spaans, M.; Tacconi, L. J.; van der Werf, P. P.

    2014-01-01

    Aims: We investigate the fueling and the feedback of star formation and nuclear activity in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We aim to understand if and how gas accretion can self-regulate. Methods

  6. Molecular line emission in NGC 1068 imaged with ALMA. I. An AGN-driven outflow in the dense molecular gas

    NARCIS (Netherlands)

    García-Burillo, S.; Combes, F.; Usero, A.; Aalto, S.; Krips, M.; Viti, S.; Alonso-Herrero, A.; Hunt, L. K.; Schinnerer, E.; Baker, A. J.; Boone, F.; Casasola, V.; Colina, L.; Costagliola, F.; Eckart, A.; Fuente, A.; Henkel, C.; Labiano, A.; Martín, S.; Márquez, I.; Muller, S.; Planesas, P.; Ramos Almeida, C.; Spaans, M.; Tacconi, L. J.; van der Werf, P. P.

    2014-01-01

    Aims: We investigate the fueling and the feedback of star formation and nuclear activity in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We aim to understand if and how gas accretion can self-regulate. Methods

  7. Dense Breasts

    Science.gov (United States)

    ... also appear white on mammography, they can be hidden by or within dense breast tissue. Other imaging ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  8. No asymmetric outflows from Sagittarius A* during the pericenter passage of the gas cloud G2

    CERN Document Server

    Park, J -H; Krichbaum, T P; Kim, J -Y; Kino, M; Bertarini, A; Bremer, M; de Vicente, P

    2015-01-01

    The gas cloud G2 falling toward Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, is supposed to provide valuable information on the physics of accretion flows and the environment of the black hole. We observed Sgr A* with four European stations of the Global Millimeter Very Long Baseline Interferometry Array (GMVA) at 86 GHz on 1 October 2013 when parts of G2 had already passed the pericenter. We searched for possible transient asymmetric structure -- such as jets or winds from hot accretion flows -- around Sgr A* caused by accretion of material from G2. The interferometric closure phases remained zero within errors during the observation time. We thus conclude that Sgr A* did not show significant asymmetric (in the observer frame) outflows in late 2013. Using simulations, we constrain the size of the outflows that we could have missed to ~2.5 mas along the major axis, ~0.4 mas along the minor axis of the beam, corresponding to approximately 232 and 35 Schwarzschild radii, ...

  9. Vertical Distribution of Galactic Disc Stars and Gas Constrained by a Molecular Cloud Complex

    CERN Document Server

    Jog, C J; Jog, Chanda J.; Narayan, Chaitra A.

    2001-01-01

    We investigate the dynamical effects of a molecular cloud complex with a mass of about 10**7 M_sun and a size of a few 100 pc on the vertical distribution of stars and atomic hydrogen gas in a spiral galactic disc. Such massive complexes have now been observed in a number of spiral galaxies. The extended mass distribution in a complex, with an average mass density 6 times higher than the Oort limit, is shown to dominate the local gravitational field. This results in a significant redistribution of the surrounding disc components towards the mid-plane, with a resulting decrease in their vertical scaleheights. A surprising result is the large radial distance of about 500 pc from the complex centre over which the complex influences the disc. The complex has a comparable effect on the vertical distribution of HI in the galactic disc. This `pinching' or constraining effect should be detectable in the nearby spiral galaxies. Thus the gravitational field of a complex results in local corrugations of the stellar and ...

  10. Accretion-caused deceleration of a gravitationally powerful compact stellar object moving within a dense Fermi gas

    CERN Document Server

    Tito, Elizabeth P

    2016-01-01

    We consider accretion-caused deceleration of a gravitationally-powerful compact stellar object traveling within a cold Fermi-gas medium. We provide analytical and numerical estimates of the effect manifestation.

  11. Warm gas phase chemistry as possible origin of high HDO/H2O ratios in hot and dense gases: application to inner protoplanetary discs

    CERN Document Server

    Thi, Wing-Fai; Kamp, Inga

    2009-01-01

    The origin of Earth oceans is controversial. Earth could have acquired its water either from hydrated silicates (wet Earth scenario) or from comets (dry Earth scenario). [HDO]/[H2O] ratios are used to discriminate between the scenarios. High [HDO]/[H2O] ratios are found in Earth oceans. These high ratios are often attributed to the release of deuterium enriched cometary water ice, which was formed at low gas and dust temperatures. Observations do not show high [HDO]/[H2O] in interstellar ices. We investigate the possible formation of high [HDO]/[H2O] ratios in dense (nH> 1E6 cm^{-3}) and warm gas (T=100-1000 K) by gas-phase photochemistry in the absence of grain surface chemistry. We derive analytical solutions, taking into account the major neutral-neutral reactions for gases at T>100 K. The chemical network is dominated by photodissociation and neutral-neutral reactions. Despite the high gas temperature, deuterium fractionation occurs because of the difference in activation energy between deuteration enrich...

  12. ALMA observations of the dense and shocked gas in the nuclear region of NGC 4038 (Antennae galaxies)

    CERN Document Server

    Ueda, Junko; Iono, Daisuke; Wilner, David J; Fazio, Giovanni G; Ohashi, Satoshi; Kawabe, Ryohei; Saito, Toshiki; Komugi, Shinya

    2016-01-01

    We present 1" (20 %) suggested by the HCN (1-0)/CO (3-2) line ratio may signify a future burst of intense star formation there. The shocked gas traced in the CH3OH and HNCO emission indicates sub-kpc scale molecular shocks. We suggest that the molecular shocks may be driven by collisions between inflowing gas and the central massive molecular complex.

  13. Methylacetylene (CH3CCH) and propene (C3H6) formation in cold dense clouds: a case of dust grain chemistry

    CERN Document Server

    Hickson, Kevin M; Loison, Jean-Christophe

    2016-01-01

    We present an extensive review of gas phase reactions producing methylacetylene and propene showing that these relatively abundant unsaturated hydrocarbons cannot be synthesized through gas-phase reactions. We explain the formation of propene and methylacetylene through surface hydrogenation of C3 depleted onto interstellar ices, C3 being a very abundant species in the gas phase.

  14. MUSE searches for galaxies near very metal-poor gas clouds at z~3: new constraints for cold accretion models

    CERN Document Server

    Fumagalli, Michele; Dekel, Avishai; Morris, Simon L; O'Meara, John M; Prochaska, J Xavier; Theuns, Tom

    2016-01-01

    We report on the search for galaxies in the proximity of two very metal-poor gas clouds at z~3 towards the quasar Q0956+122. With a 5-hour MUSE integration in a ~500x500 kpc^2 region centred at the quasar position, we achieve a >80% complete spectroscopic survey of continuum-detected galaxies with m3e41 erg/s. We do not identify galaxies at the redshift of a z~3.2 Lyman limit system (LLS) with log Z/Zsun = -3.35 +/- 0.05, placing this gas cloud in the intergalactic medium or circumgalactic medium of a galaxy below our sensitivity limits. Conversely, we detect five Ly{\\alpha} emitters at the redshift of a pristine z~3.1 LLS with log Z/Zsun < -3.8, while ~0.4 sources were expected given the z~3 Ly{\\alpha} luminosity function. Both this high detection rate and the fact that at least three emitters appear aligned in projection with the LLS suggest that this pristine cloud is tracing a gas filament that is feeding one or multiple galaxies. Our observations uncover two different environments for metal-poor LLSs,...

  15. Dynamical evolution of high velocity clouds in the intergalactic medium

    CERN Document Server

    Konz, C; Birk, G T

    2002-01-01

    HI observations of high-velocity clouds (HVCs) indicate, that they are interacting with their ambient medium. Even clouds located in the very outer Galactic halo or the intergalactic space seem to interact with their ambient medium. In this paper, we investigate the dynamical evolution of high velocity neutral gas clouds moving through a hot magnetized ambient plasma by means of two-dimensional magnetohydrodynamic plasma-neutral gas simulations. This situation is representative for the fast moving dense neutral gas cloudlets in the Magellanic Stream as well as for high velocity clouds in general. The question on the dynamical and thermal stabilization of a cold dense neutral cloud in a hot thin ambient halo plasma is numerically investigated. The simulations show the formation of a comet-like head-tail structure combined with a magnetic barrier of increased field strength which exerts a stabilizing pressure on the cloud and hinders hot plasma from diffusing into the cloud. The simulations can explain both the...

  16. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-lived Radioisotopes with a Shock Wave. V. Nonisothermal Collapse Regime

    Science.gov (United States)

    Boss, Alan P.

    2017-08-01

    Recent meteoritical analyses support an initial abundance of the short-lived radioisotope (SLRI) 60Fe that may be high enough to require nucleosynthesis in a core-collapse supernova, followed by rapid incorporation into primitive meteoritical components, rather than a scenario where such isotopes were inherited from a well-mixed region of a giant molecular cloud polluted by a variety of supernovae remnants and massive star winds. This paper continues to explore the former scenario, by calculating three-dimensional, adaptive mesh refinement, hydrodynamical code (FLASH 2.5) models of the self-gravitational, dynamical collapse of a molecular cloud core that has been struck by a thin shock front with a speed of 40 km s-1, leading to the injection of shock front matter into the collapsing cloud through the formation of Rayleigh-Taylor fingers at the shock-cloud intersection. These models extend the previous work into the nonisothermal collapse regime using a polytropic approximation to represent compressional heating in the optically thick protostar. The models show that the injection efficiencies of shock front materials are enhanced compared to previous models, which were not carried into the nonisothermal regime, and so did not reach such high densities. The new models, combined with the recent estimates of initial 60Fe abundances, imply that the supernova triggering and injection scenario remains a plausible explanation for the origin of the SLRIs involved in the formation of our solar system.

  17. Unified rheology of vibro-fluidized dry granular media: From slow dense flows to fast gas-like regimes

    Science.gov (United States)

    Gnoli, Andrea; Lasanta, Antonio; Sarracino, Alessandro; Puglisi, Andrea

    2016-01-01

    Granular media take on great importance in industry and geophysics, posing a severe challenge to materials science. Their response properties elude known soft rheological models, even when the yield-stress discontinuity is blurred by vibro-fluidization. Here we propose a broad rheological scenario where average stress sums up a frictional contribution, generalizing conventional μ(I)-rheology, and a kinetic collisional term dominating at fast fluidization. Our conjecture fairly describes a wide series of experiments in a vibrofluidized vane setup, whose phenomenology includes velocity weakening, shear thinning, a discontinuous thinning transition, and gaseous shear thickening. The employed setup gives access to dynamic fluctuations, which exhibit a broad range of timescales. In the slow dense regime the frequency of cage-opening increases with stress and enhances, with respect to μ(I)-rheology, the decrease of viscosity. Diffusivity is exponential in the shear stress in both thinning and thickening regimes, with a huge growth near the transition. PMID:27924928

  18. Numerical Investigation of the Impact of Different Configurations and Aspect Ratios on Dense Gas Dispersion in Urban Street Canyons

    Institute of Scientific and Technical Information of China (English)

    YANG Rui; ZHANG Jing; SHEN Shifei; LI Xiaomeng; CHEN Jianguo

    2007-01-01

    The dispersion of chlorine gas in urban street canyons was numerically simulated using the fire dynamics simulator, a code developed by the National Institute of Standards and Technology of USA, which uses large eddy simulation coupled with the Smagorinsky sub-grid scale model. The unsteady flow fields were computed by solving the filtered incompressible Navier-Stokes equations under low Mach number approximation by the finite difference method. The studies analyzed the influence of different street canyon configurations and aspect ratios on the flow and chlorine gas dispersion. The geometric configuration and aspect ratio both affect the vortices and the local concentration distributions in street canyons.

  19. Retrieval algorithm of quantitative analysis of passive Fourier transform infrared (FTRD) remote sensing measurements of chemical gas cloud from measuring the transmissivity by passive remote Fourier transform infrared

    Institute of Scientific and Technical Information of China (English)

    Liu Zhi-Ming; Liu Wen-qing; Gao Ming-Guang; Tong Jing-Jing; Zhang Wian-Shu; Xu Liang; Wei Xiuai

    2008-01-01

    Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology.It takes an important part in many fields for the detection of released gases.The principle of concentration measurement is based on the Beer-Lambert law.Unlike the active measurement,for the passive remote sensing,in most cases,the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins.The gas cloud emission is almost equal to the background emission,thereby the emission of the gas cloud cannot be ignored.The concentration retrieval algorithm is quite different from the active measurement.In this paper,the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail,which involves radiative transfer model,radiometric calibration,absorption coefficient calculation,et al.The background spectrum has a broad feature,which is a slowly varying function of frequency.In this paper,the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm.No background spectra are required.Thus,this method allows mobile,real-time and fast measurements of gas clouds.

  20. The Atlas3D Project -- XI. Dense molecular gas properties of CO-luminous early-type galaxies

    CERN Document Server

    Crocker, Alison; Bureau, Martin; Young, Lisa M; Davis, Timothy A; Bayet, Estelle; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Cappellari, Michele; Davies, Roger L; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Rchard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie

    2011-01-01

    Surveying eighteen 12CO-bright galaxies from the ATLAS3D early-type galaxy sample with the Institut de Radio Astronomie Millim\\'etrique (IRAM) 30m telescope, we detect 13CO(1-0) and 13CO(2-1) in all eighteen galaxies, HCN(1-0) in 12/18 and HCO+(1-0) in 10/18. We find that the line ratios 12CO(1-0)/13CO(1-0) and 12CO(1-0)/HCN(1-0) are clearly correlated with several galaxy properties: total stellar mass, luminosity-weighted mean stellar age, molecular to atomic gas ratio, dust temperature and dust morphology. We suggest that these correlations are primarily governed by the optical depth in the 12CO lines; interacting, accreting and/or starbursting early-type galaxies have more optically thin molecular gas while those with settled dust and gas discs host optically thick molecular gas. The ranges of the integrated line intensity ratios generally overlap with those of spirals, although we note some outliers in the 12CO(1- 0)/13CO(1-0), 12CO(2-1)/13CO(2-1) and HCN/HCO+(1-0) ratios. In particular, three galaxies ar...

  1. Hydrodynamic modelling of dense gas-fluidised beds: comparison and validation of 3D discrete particle and continuum models

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Beetstra, R.; Kuipers, J.A.M.

    2004-01-01

    A critical comparison of a hard-sphere discrete particle model, a two-fluid model with kinetic theory closure equations and experiments performed in a pseudo-two-dimensional gas-fluidised bed is made. Bubble patterns, time-averaged particle distributions and bed expansion dynamics measured with a no

  2. The circumnuclear disk and ionized gas filaments as remnants of tidally disrupted clouds

    NARCIS (Netherlands)

    Sanders, RH; Falcke, H; Cotera, A; Duschl, WJ; Melia, F; Rieke, MJ

    1999-01-01

    Sticky particle calculations indicate that a coherent structure, a dispersion ring, forms when a cloud on a low angular momentum orbit passes close to the dynamical center of a potential containing a point mass. The cloud is tidally stretched and differentially wrapped, and dissipation in shocks org

  3. The circumnuclear disk and ionized gas filaments as remnants of tidally disrupted clouds

    NARCIS (Netherlands)

    Sanders, R. H.

    1998-01-01

    Abstract: Sticky particle calculations indicate that a coherent structure, a dispersion ring, forms when a cloud on a low angular momentum orbit passes close to the dynamical center of an isothermal sphere containing a central point mass. The cloud is tidally stretched and differentially wrapped, an

  4. The structure of molecular cloud W51 and dense cores--CO(J=1-0) and HCO+(J=1-0) spectral line mapping

    Institute of Scientific and Technical Information of China (English)

    MA; Hongjun; PEI; Chunchuan; ZENG; Qin

    2005-01-01

    We present a large scale map of about 15′×15′of CO(J=1-0) toward W51 giant molecular cloud (GMC), which covers the most active star-forming region of W51 GMC, and an interferometry HCO+(J=1-0) map of a high spatial resolution (I.e. 8″.7×6″.1) with a field of view (2′×2′) centered at W51IRS1. A structure model of W51GMC is obtained according to the results of the observations and analyses. The observations demonstrate that some small molecular cores generated by the collision between the W51GMC and the 60-73 km·s-1 foreground cloud are collapsing toward their own centers. In addition, 16 new molecular cores are discovered from the HCO+(J=1-0) map.

  5. Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions.

    Science.gov (United States)

    Williams, Daniel R; Tang, Yinshan

    2013-05-07

    Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft's cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.

  6. Chemical composition and structural phase changes of Pd sample and properties of novel synthesized structure at dense deuterium gas under irradiation by γ-quanta

    Science.gov (United States)

    Didyk, A. Yu.; Wiśniewski, R.

    2012-12-01

    Studies have been carried out into the element composition of Pd and brass with associated materials and synthesized novel structure, placed in dense deuterium gas in a deuterium high-pressure chamber (DHPC) under the pressure 3 kbar and irradiated with γ-quanta of energy up to 8.8 MeV. Using the methods of scanning electron microscopy, microelement chemical analysis and X-ray diffraction, it was determined that in the absence in the chamber volume and walls of all HPC-forming materials the synthesized structure is largely composed of alumosilicates and Al and Si oxides with high content of Ti compounds as rutile TiO2. Pd1.5D2. Considerable anomalies in the chemical composition were found both in the surface and at large depth in a Pd specimen. The entire Pd surface turned into a structure comprised of Pd clusters, Cu and Zn compounds, with a notable content of Mg, Al, S, Si, K, Ca, Ti and Fe compounds. Results of evaluative calculations, including computation of the Q-value, are presented for nuclear reactions produced in a saturated with deuterium Pd specimen and dense deuterium gas under the action of γ-quanta, neutrons and protons of energies up to E n + E p ≈ E γ - E D MeV generated by deuteron fission. The obtained results can be explained by "collective effects" as chain reactions caused by deuteron fission induced by protons ( E p > 3.39 MeV) and neutrons ( E n > 2.25 MeV), as well as by thermonuclear synthesis of deuterium atoms elastically scattered by protons of energies up to E P < E γ - E D MeV.

  7. Seeding the Galactic Centre gas stream: gravitational instabilities set the initial conditions for the formation of protocluster clouds

    CERN Document Server

    Henshaw, J D; Kruijssen, J M D

    2016-01-01

    Star formation within the Central Molecular Zone (CMZ) may be intimately linked to the orbital dynamics of the gas. Recent models suggest that star formation within the dust ridge molecular clouds (from G0.253+0.016 to Sgr B2) follows an evolutionary time sequence, triggered by tidal compression during their preceding pericentre passage. Given that these clouds are the most likely precursors to a generation of massive stars and extreme star clusters, this scenario would have profound implications for constraining the time-evolution of star formation. In this Letter, we search for the initial conditions of the protocluster clouds, focusing on the kinematics of gas situated upstream from pericentre. We observe a highly-regular corrugated velocity field in $\\{l,\\,v_{\\rm LSR}\\}$ space, with amplitude and wavelength $A=3.7\\,\\pm\\,0.1$ kms$^{-1}$ and $\\lambda_{\\rm vel, i}=22.5\\,\\pm\\,0.1$ pc, respectively. The extremes in velocity correlate with a series of massive ($\\sim10^{4}$M$_{\\odot}$) and compact ($R_{\\rm eq}\\s...

  8. Dust and Gas in the Magellanic Clouds from the HERITAGE Herschel Key Project. II. Gas-to-Dust Ratio Variations across ISM Phases

    CERN Document Server

    Roman-Duval, Julia; Meixner, Margaret; Bot, Caroline; Bolatto, Alberto D; Hughes, Annie; Wong, Tony; Babler, Brian; Bernard, Jean-Philippe; Clayton, Geoffrey; Fukui, Yasuo; Galametz, Maud; Galliano, Frederic; Glover, Simon C O; Hony, Sacha; Israel, Frank; Jameson, Katherine; Lebouteiller, Vianney; Lee, Min-Young; Li, Aigen; Madden, Suzanne C; Misselt, Karl; Montiel, Edward; Okumura, K; Onishi, Toshikazu; Panuzzo, Pasquale; Reach, William; Remy-Ruyer, A; Robitaille, Thomas; Rubio, Monica; Sauvage, Marc; Seale, Jonathan; Sewilo, Marta; Staveley-Smith, Lister; Zhukovska, Svitlana

    2014-01-01

    The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50 pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21 cm, CO, and Halpha observations. In the diffuse atomic ISM, we derive the gas-to-dust ratio as the slope of the dust-gas relation and find gas-to-dust ratios of 380+250-130 in the LMC, and 1200+1600-420 in the SMC, not including helium. The atomic-to-molecular transition is located at dust surface densities of 0.05 Mo pc-2 in the LMC and 0.03 Mo pc-2 in the SMC, corresponding to AV ~ 0.4 and 0.2, respectively. We investigate the range of CO-to-H2 conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on XCO to be 6x1020 cm-2 K-1 km-1 s in the LMC (Z=0.5Zo) at 15 pc resolution, and 4x 1021 cm-2 K-1 km-1 s in the SMC (Z=0.2Zo) at 45 pc resolution. In the ...

  9. Probing the Physical Structures of Dense Filaments

    Science.gov (United States)

    Li, Di

    2015-08-01

    Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.

  10. Detection of a turbulent gas component associated with a starless core with subthermal turbulence in the Orion A cloud

    Science.gov (United States)

    Ohashi, Satoshi; Tatematsu, Ken'ichi; Sanhueza, Patricio; Hirota, Tomoya; Choi, Minho; Mizuno, Norikazu

    2016-07-01

    We report the detection of a wing component in NH3 emission towards the starless core TUKH122 with subthermal turbulence in the Orion A cloud. This NH3 core is suggested to be on the verge of star formation because the turbulence inside the NH3 core is almost completely dissipated, and also because it is surrounded by CCS, which resembles the prestellar core L1544 in Taurus showing infall motions. Observations were carried out with the Nobeyama 45-m telescope at 0.05 km s-1 velocity resolution. We find that the NH3 line profile consists of two components. The quiescent main component has a small linewidth of 0.3 km s-1 dominated by thermal motion, and the red-shifted wing component has a large linewidth of 1.36 km s-1 representing turbulent motion. These components show kinetic temperatures of 11 and wing components may indicate a sharp transition from the turbulent parent cloud to the quiescent dense core.

  11. Regional variations in the dense gas heating and cooling in M51 from Herschel far-infrared spectroscopy

    CERN Document Server

    Parkin, T J; Schirm, M R P; Baes, M; Boquien, M; Boselli, A; Cooray, A; Cormier, D; Foyle, K; Karczewski, O L; Lebouteiller, V; de Looze, I; Madden, S C; Roussel, H; Sauvage, M; Spinoglio, L

    2013-01-01

    We present Herschel PACS and SPIRE spectroscopy of the most important far-infrared cooling lines in M51, [CII](158 \\mu m), [NII](122 & 205 \\mu m), [OI](63 and 145 \\mu m) and [OIII](88 \\mu m). We compare the observed flux of these lines with the predicted flux from a photon dominated region model to determine characteristics of the cold gas such as density, temperature and the far-ultraviolet radiation field, G_0, resolving details on physical scales of roughly 600 pc. We find an average [CII]/F_TIR of 4 x 10^{-3}, in agreement with previous studies of other galaxies. A pixel-by-pixel analysis of four distinct regions of M51 shows a radially decreasing trend in both the far-ultraviolet (FUV) radiation field, G_0 and the hydrogen density, n, peaking in the nucleus of the galaxy, then falling off out to the arm and interarm regions. We see for the first time that the FUV flux and gas density are similar in the differing environments of the arm and interarm regions, suggesting that the inherent physical prope...

  12. Hydrodynamic Modeling of the Interaction of Winds within a Collapsing Turbulent Gas Cloud

    Directory of Open Access Journals (Sweden)

    Guillermo Arreaga-García

    2015-01-01

    a velocity according to a turbulent spectrum built in a Fourier space of 643 grid elements. The level of turbulence and the temperature of the cloud are both adjusted so that a gravitational collapse of the cloud is initially induced. All the winds are activated in a very early stage of evolution of the cloud. We consider only two kinds of winds, namely, one with spherical symmetry and the second one of a bipolar collimated jet. In order to assess the dynamical change in the cloud due to interactions with the winds, we show isovelocity and isodensity plots for all our simulations. We also report on the accretion centers detected at the last simulation time available for each model.

  13. Particulate matter and trace-gas changes at Beltsville, MD, and influences on cloud condensation nuclei

    Science.gov (United States)

    Doughty, David

    This dissertation seeks to further our understanding of how rainfall processes are affected by the 3 complex interactions among trace gases, aerosols, and clouds in semi-urban areas. (Abstract shortened by ProQuest.).

  14. The JCMT and Herschel Gould Belt Surveys: A comparison of SCUBA-2 and Herschel data of dense cores in the Taurus dark cloud L1495

    CERN Document Server

    Ward-Thompson, Derek; Kirk, Jason; Marsh, Ken; Buckle, Jane; Hatchell, Jennifer; Nutter, David; Griffin, Matt; Di Francesco, James; André, Philippe; Beaulieu, Sylvie; Berry, David; Broekhoven-Fiene, Hannah; Currie, Malcolm; Fich, Michel; Jenness, Timothy; Johnstone, Doug; Kirk, Helen; Mottram, Joseph; Pineda, Jaime; Quinn, Ciera; Sadavoy, Sarah; Salji, Carl; Tisi, Sam; Walker-Smith, Sarah; White, Glenn; Hill, Tracey; Könyves, Vera; Palmeirim, Pedro; Pezzuto, Stefano

    2016-01-01

    We present a comparison of SCUBA-2 850-$\\mu$m and Herschel 70--500-$\\mu$m observations of the L1495 filament in the Taurus Molecular Cloud with the goal of characterising the SCUBA-2 Gould Belt Survey (GBS) data set. We identify and characterise starless cores in three data sets: SCUBA-2 850-$\\mu$m, Herschel 250-$\\mu$m, and Herschel 250-$\\mu$m spatially filtered to mimic the SCUBA-2 data. SCUBA-2 detects only the highest-surface-brightness sources, principally detecting protostellar sources and starless cores embedded in filaments, while Herschel is sensitive to most of the cloud structure, including extended low-surface-brightness emission. Herschel detects considerably more sources than SCUBA-2 even after spatial filtering. We investigate which properties of a starless core detected by Herschel determine its detectability by SCUBA-2, and find that they are the core's temperature and column density (for given dust properties). For similar-temperature cores, such as those seen in L1495, the surface brightness...

  15. Modeling the role of electron attachment rates on column density ratios for CnH-/CnH (n=4,6,8) in dense molecular clouds

    CERN Document Server

    Gianturco, F A; Wester, R

    2016-01-01

    (abridged) The fairly recent detection of a variety of anions in the Interstellar Molecular Clouds have underlined the importance of realistically modeling the processes governing their abundance. To this aim, our earlier calculations for the radiative electron attachment (REA) rates for C4H-, C6H-, and C8H- are employed to generate the corresponding column density ratios of anion/neutral (A/N) relative abundances. The latter are then compared with those obtained from observational measurements. The calculations involved the time-dependent solutions of a large network of chemical processes over an extended time interval and included a series of runs in which the values of REA rates were repeatedly scaled. Macroscopic parameters for the clouds' modeling were also varied to cover a broad range of physical environments. It was found that, within the range and quality of the processes included in the present network,and selected from state-of-the-art astrophysical databases, the REA values required to match the o...

  16. Effects of Security and Privacy Concerns on using of Cloud Services in Energy Industry, an Oil and Gas Company: A Case Study

    Directory of Open Access Journals (Sweden)

    Alireza Poorebrahimi

    2015-11-01

    Full Text Available The topic of ‘‘the cloud’’ has attracted significant attention throughout the past few years. It allows resource sharing that includes software, platform and infrastructure by means of virtualization. Cloud Adoption in Oil & Gas companies have approached cloud with caution, but they are increasingly deploying cloud services. Energy companies have carefully weighed whether they should opt for a public cloud versus a private one, and which applications are fit for deployment via the cloud. For the most part, the industry has opted to use cloud for generic purposes. Generic business functions like payroll process and procurement are being run through the cloud, along with customer relationship management, likely through software-as-a-service offerings that have become well-known. Security is as much of an issue in the cloud as it is anywhere else. Different people share different point of view on cloud computing. Some believe it is unsafe to use cloud. Cloud vendors go out of their way to ensure security. This paper aims to understand the effects of security and privacy concerns on educational use of cloud services. This proposed a research model based on Ajzen’s (1991 Theory of Planned Behavior (TPB. Following the TPB, the research developed a model, which posits that staff attitudes predicted by security and privacy perceptions and behavioral intentions are predicted by attitudes towards using cloud services. The Model was assess the based on the data collected by means of survey questionnaires. Results supported the proposed model, validating the predictive power of the TPB.

  17. A two-scale second-order moment two-phase turbulence model for simulating dense gas-particle flows

    Institute of Scientific and Technical Information of China (English)

    Zhuoxiong Zeng; Lixing Zhou; Jian Zhang; Keren Wang

    2005-01-01

    A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision and through a unified treatment of these two kinds of fluctuations. The proposed model is used to simulate gas-particle flows in a channel and in a downer. Simulation results are in agreement with the experimental results reported in references and are near the results obtained using the single-scale second-order moment two-phase turbulence model superposed with a particle collision model (USM-θ model)in most regions.

  18. Gas giants in hot water: inhibiting giant planet formation and planet habitability in dense star clusters through cosmic time

    Science.gov (United States)

    Thompson, Todd A.

    2013-05-01

    I show that the temperature of nuclear star clusters, starburst clusters in M82, compact high-z galaxies and some globular clusters of the Galaxy likely exceeded the ice-line temperature (TIce ≈ 150-170 K) during formation for a time comparable to the planet formation time-scale. The protoplanetary discs within these systems will thus, not have an ice line, decreasing the total material available for building protoplanetary embryos, inhibiting the formation of gas- and ice-giants if they form by core accretion, and prohibiting habitability. Planet formation by gravitational instability is similarly suppressed because Toomre's Q > 1 in all but the most massive discs. I show that cluster irradiation can in many cases dominate the thermodynamics and structure of passive and active protoplanetary discs for semi-major axes larger than ˜1-5 au. I discuss these results in the context of the observed lack of planets in 47 Tuc. I predict that a similar search for planets in the globular cluster NGC 6366 ([Fe/H] = -0.82) should yield detections, whereas (counterintuitively) the relatively metal-rich globular clusters NGC 6440, 6441 and 6388 should be devoid of giant planets. The characteristic stellar surface density above which TIce is exceeded in star clusters is ˜ 6 × 103 M⊙ pc- 2 f- 1/2dg, MW, where fdg, MW is the dust-to-gas ratio of the embedding material, normalized to the Milky Way value. Simple estimates suggest that ˜5-50 per cent of the stars in the universe formed in an environment exceeding this surface density. Future microlensing planet searches that directly distinguish between the bulge and disc planet populations of the Galaxy and M31 can test these predictions. Caveats and uncertainties are detailed.

  19. Controlling thermal properties of dense gas fluidized beds for concentrated solar power by internal and external solids circulation

    Science.gov (United States)

    Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto

    2017-06-01

    Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.

  20. 3 to 12 millimetre studies of dense gas towards the western rim of supernova remnant RX J1713.7-3946

    Science.gov (United States)

    Maxted, Nigel I.; Rowell, Gavin P.; Dawson, Bruce R.; Burton, Michael G.; Nicholas, Brent P.; Fukui, Yasuo; Walsh, Andrew J.; Kawamura, Akiko; Horachi, Hirotaka; Sano, Hidetoshi

    2012-05-01

    The young X-ray and gamma-ray-bright supernova remnant RX J1713.7-3946 (SNR G347.3-0.5) is believed to be associated with molecular cores that lie within regions of the most intense TeV emission. Using the Mopra telescope, four of the densest cores were observed using high critical density tracers such as CS(J= 1-0, J= 2-1) and its isotopologue counterparts, NH3(1, 1) and (2, 2) inversion transitions and N2H+(J= 1-0) emission, confirming the presence of dense gas ≳104 cm-3 in the region. The mass estimates for Core C range from 40 (from CS) to 80 M⊙ (from NH3 and N2H+), an order of magnitude smaller than published mass estimates from CO(J= 1-0) observations. We also modelled the energy-dependent diffusion of cosmic ray protons accelerated by RX J1713.7-3946 into Core C, approximating the core with average density and magnetic field values. We find that for considerably suppressed diffusion coefficients (factors χ= 10-3 down to 10-5 the Galactic average), low-energy cosmic rays can be prevented from entering the inner core region. Such an effect could lead to characteristic spectral behaviour in the GeV to TeV gamma-ray and multi-keV X-ray fluxes across the core. These features may be measurable with future gamma-ray and multi-keV telescopes offering arcminute or better angular resolution, and can be a novel way to understand the level of cosmic ray acceleration in RX J1713.7-3946 and the transport properties of cosmic rays in the dense molecular cores.

  1. Gas Giants in Hot Water: Inhibiting Giant Planet Formation and Planet Habitability in Dense Star Clusters Through Cosmic Time

    CERN Document Server

    Thompson, Todd A

    2012-01-01

    I show that the temperature of nuclear star clusters, starburst clusters in M82, compact high-z galaxies, and some globular clusters of the Galaxy likely exceeded the ice line temperature (T_Ice ~ 150-170 K) during formation for a time comparable to the planet formation timescale. The protoplanetary disks within these systems will thus not have an ice line, decreasing the total material available for building protoplanetary embryos, inhibiting the formation of gas- and ice-giants if they form by core accretion, and prohibiting habitability. Planet formation by gravitational instability is similarly suppressed because Toomre's Q > 1 in all but the most massive disks. I discuss these results in the context of the observed lack of planets in 47 Tuc. I predict that a similar search for planets in the globular cluster NGC 6366 ([Fe/H] = -0.82) should yield detections, whereas (counterintuitively) the relatively metal-rich globular clusters NGC 6440, 6441, and 6388 should be devoid of giant planets. The characteris...

  2. ALMA Observations of Warm Dense Gas in NGC 1614 --- Breaking of Star Formation Law in the Central kpc

    CERN Document Server

    Xu, C K; Lu, N; Gao, Y; Diaz-Santos, T; Herrero-Illana, R; Meijerink, R; Privon, G; Zhao, Y -H; Evans, A S; König, S; Mazzarella, J M; Aalto, S; Appleton, P; Armus, L; Charmandaris, V; Chu, J; Haan, S; Inami, H; Murphy, E J; Sanders, D B; Schulz, B; van der Werf, P

    2014-01-01

    We present ALMA Cycle-0 observations of the CO (6-5) line emission and of the 435um dust continuum emission in the central kpc of NGC 1614, a local luminous infrared galaxy (LIRG) at a distance of 67.8 Mpc (1 arcsec = 329 pc). The CO emission is well resolved by the ALMA beam (0".26 x 0".20) into a circum-nuclear ring, with an integrated flux of f_{CO(6-5)} = 898 (+-153) Jy km/s, which is 63(+-12)% of the total CO(6-5) flux measured by Herschel. The molecular ring, located between 100pc < r < 350pc from the nucleus, looks clumpy and includes seven unresolved (or marginally resolved) knots with median velocity dispersion of 40 km/s. These knots are associated with strong star formation regions with \\Sigma_{SFR} 100 M_\\sun/yr/kpc^{2} and \\Sigma_{Gas} 1.0E4 M_\\sun/pc^{2}. The non-detections of the nucleus in both the CO (6-5) line emission and the 435um continuum rule out, with relatively high confidence, a Compton-thick AGN in NGC 1614. Comparisons with radio continuum emission show a strong deviation fro...

  3. Aerosol and Trace Gas Processing by Clouds During the Cumulus Humilis Aerosol Processing Study (CHAPS)

    Science.gov (United States)

    Yu, X.; Berg, L.; Berkowitz, C.; Alexander, L.; Lee, Y.; Ogren, J.; Andrews, B.

    2008-12-01

    Clouds play an active role in the processing and cycling of atmospheric constituents. Gases and particles can partition to cloud droplets by absorption and condensation as well as activation and pact scavenging. The Cumulus Humilis Aerosol Processing Study (CHAPS) aimed at characterizing freshly emitted aerosols above, within and below fields of cumulus humilis (or fair-weather cumulus) in the vicinity of Oklahoma City. The experiment took place in June 2007. Evolution of aerosol and cloud properties downwind of the Oklahoma City is of particular interest in this project. These observations of a mid-size and mid-latitude city can be used in the development and evaluation of regional-scale and global climate model cumulus parameterizations that describes the transport and transformations of these aerosols by fair-weather cumulus. The Department of Energy (DOE) G-1 aircraft was one of the main platforms used in CHAPS. It carried a suite of instruments to measure properties of interstitial aerosols behind an isokinetic inlet and a set of duplicate instruments to determine properties of activated particles behind a counter-flow virtual impactor (CVI). The sampling line to the Aerodyne Aerosol Mass Spectrometer was switched between the isokinetic inlet and the CVI to allow characterization of interstitial particles out of clouds in contrast to particles activated in clouds. Trace gases including ozone, carbon monoxide, sulfur dioxide, and a series of volatile organic compounds (VOCs) were also measured as were key meteorological state parameters including liquid water content, cloud drop size, and dew point temperature were measured. This presentation will focus on results related to the transformation and transport of aerosols and trace gases observed in fair-weather cumulus and compare these results with concurrent observations made outside these clouds. Our interest will focus on the differences in particle size and composition under varying conditions. The role of

  4. What can simulated molecular clouds tell us about real molecular clouds?

    Science.gov (United States)

    Duarte-Cabral, A.; Dobbs, C. L.

    2016-06-01

    We study the properties of giant molecular clouds (GMCs) from a smoothed particle hydrodynamics simulation of a portion of a spiral galaxy, modelled at high resolution, with robust representations of the physics of the interstellar medium. We examine the global molecular gas content of clouds, and investigate the effect of using CO or H2 densities to define the GMCs. We find that CO can reliably trace the high-density H2 gas, but misses less dense H2 clouds. We also investigate the effect of using 3D CO densities versus CO emission with an observer's perspective, and find that CO-emission clouds trace well the peaks of the actual GMCs in 3D, but can miss the lower density molecular gas between density peaks which is often CO-dark. Thus, the CO emission typically traces smaller clouds within larger GMC complexes. We also investigate the effect of the galactic environment (in particular the presence of spiral arms), on the distribution of GMC properties, and we find that the mean properties are similar between arm and inter-arm clouds, but the tails of some distributions are indicative of intrinsic differences in the environment. We find highly filamentary clouds (similar to the giant molecular filaments of our Galaxy) exclusively in the inter-arm region, formed by galactic shear. We also find that the most massive GMC complexes are located in the arm, and that as a consequence of more frequent cloud interactions/mergers in the arm, arm clouds are more sub-structured and have higher velocity dispersions than inter-arm clouds.

  5. The Bolocam Galactic Plane Survey. X. A Complete Spectroscopic Catalog of Dense Molecular Gas Observed toward 1.1 mm Dust Continuum Sources with 7.5 <= l <= 194 degrees

    CERN Document Server

    Shirley, Yancy L; Svoboda, Brian; Schlingman, Wayne M; Ginsburg, Adam; Rosolowsky, Erik; Gerner, Thomas; Mairs, Steven; Battersby, Cara; Stringfellow, Guy; Dunham, Miranda K; Glenn, Jason; Bally, John

    2013-01-01

    The Bolocam Galactic Plane Survey (BGPS) is a 1.1 mm continuum survey of dense clumps of dust throughout the Galaxy covering 170 square degrees. We present spectroscopic observations using the Heinrich Hertz Submillimeter Telescope of the dense gas tracers, HCO+ and N2H+ 3-2, for all 6194 sources in the Bolocam Galactic Plane Survey v1.0.1 catalog between 7.5 0.5 K) without HCO+ 3-2 emission does not occur in this catalog. We characterize the properties of the dense molecular gas emission toward the entire sample. HCO+ is very sub-thermally populated and the 3-2 transitions are optically thick toward most BGPS clumps. The median observed line width is 3.3 km/s consistent with supersonic turbulence within BGPS clumps. We find strong correlations between dense molecular gas integrated intensities and 1.1 mm peak flux and the gas kinetic temperature derived from previously published NH3 observations. These intensity correlations are driven by the sensitivity of the 3-2 transitions to excitation conditions rathe...

  6. CH as a Molecular Gas Tracer and C-shock Tracer Across a Molecular Cloud Boundary in Taurus

    Science.gov (United States)

    Xu, Duo; Li, Di

    2016-12-01

    We present new observations of all three ground-state transitions of the methylidyne (CH) radical and all four ground-state transitions of the hydroxyl (OH) radical toward a sharp boundary region of the Taurus molecular cloud. These data were analyzed in conjunction with existing CO and dust images. The derived CH abundance is consistent with previous observations of translucent clouds (0.8 ≤ A v ≤ 2.1 mag). The X(CH)-factor is nearly a constant (1.0 ± 0.06) × 1022 cm-2 K-1 km-1 s in this extinction range, with less dispersion than that of the more widely used molecular tracers CO and OH. CH turns out be a better tracer of total column density in such an intermediate extinction range than CO or OH. Compared with previous observations, CH is overabundant below 1 mag extinction. Such an overabundance of CH is consistent with the presence of a C-shock. CH has two kinematic components, one of which shifts from 5.3 to 6 km s-1, while the other stays at 6.8 km s-1 when moving from outside toward inside of the cloud. These velocity behaviors exactly match previous OH observation. The shifting of the two kinematic components indicates colliding streams or gas flow at the boundary region, which could be the cause of the C-shock.

  7. The SAGE-Spec Spitzer Legacy program: The life-cycle of dust and gas in the Large Magellanic Cloud

    CERN Document Server

    Kemper, F; Antoniou, V; Bernard, J -P; Blum, R D; Boyer, M L; Chan, J; Chen, C -H R; Cohen, M; Dijkstra, C; Engelbracht, C; Galametz, M; Galliano, F; Gielen, C; Gordon, Karl D; Gorjian, V; Harris, J; Hony, S; Hora, J L; Indebetouw, R; Jones, O; Kawamura, A; Lagadec, E; Lawton, B; Leisenring, J M; Madden, S C; Marengo, M; Matsuura, M; McDonald, I; McGuire, C; Meixner, M; Mulia, A J; O'Halloran, B; Oliveira, J M; Paladini, R; Paradis, D; Reach, W T; Rubin, D; Sandstrom, K; Sargent, B A; Sewilo, M; Shiao, B; Sloan, G C; Speck, A K; Srinivasan, S; Szczerba, R; Tielens, A G G M; van Aarle, E; Van Dyk, S D; van Loon, J Th; Van Winckel, H; Vijh, Uma P; Volk, K; Whitney, B A; Wilkins, A N; Zijlstra, A A

    2010-01-01

    The SAGE-Spec Spitzer Legacy program is a spectroscopic follow-up to the SAGE-LMC photometric survey of the Large Magellanic Cloud carried out with the Spitzer Space Telescope. We present an overview of SAGE-Spec and some of its first results. The SAGE-Spec program aims to study the life cycle of gas and dust in the Large Magellanic Cloud, and to provide information essential to the classification of the point sources observed in the earlier SAGE-LMC photometric survey. We acquired 224.6 hours of observations using the InfraRed Spectrograph and the SED mode of the Multiband Imaging Photometer for Spitzer. The SAGE-Spec data, along with archival Spitzer spectroscopy of objects in the Large Magellanic Cloud, are reduced and delivered to the community. We discuss the observing strategy, the specific data reduction pipelines applied and the dissemination of data products to the scientific community. Initial science results include the first detection of an extragalactic "21 um" feature towards an evolved star and...

  8. Gamma rays from atomic and molecular gas in the large complex of clouds in Orion and Monoceros

    Science.gov (United States)

    Bloemen, J. B. G. M.; Caraveo, P. A.; Hermsen, W.; Lebrun, F.; Maddalena, R. J.; Strong, A. W.; Thaddeus, P.

    1984-01-01

    A comparison of COS-B gamma-ray observations of the large complex of interstellar clouds in Orion and Monoceros with the Columbia CO and Berkeley H I surveys of this region reveals a good correlation between gamma-ray emission and total gas distribution. The observed gamma-ray emission is explainable in terms of interactions of cosmic rays that are uniformly distributed in this region with the interstellar gas. The correlation is used as the basis of a calibration of the ratio between H2 column density and the integrated CO line intensity; the value of (2.6 + or - 1.2) X 10 to the 20th mol/sq cm K km s thereby obtained is consistent with the value derived from a similar analysis for the inner galaxy.

  9. Molecular cloud regulated star formation in galaxies

    CERN Document Server

    Booth, C M; Okamoto, T

    2007-01-01

    We describe a numerical implementation of star formation in disk galaxies, in which the conversion of cooling gas to stars in the multiphase interstellar medium is governed by the rate at which molecular clouds are formed and destroyed. In the model, clouds form from thermally unstable ambient gas and get destroyed by feedback from massive stars and thermal conduction. Feedback in the ambient phase cycles gas into a hot galactic fountain or wind. We model the ambient gas hydrodynamically using smoothed particle hydrodynamics (SPH). However, we cannot resolve the Jeans mass in the cold and dense molecular gas and, therefore, represent the cloud phase with ballistic particles that coagulate when colliding. We show that this naturally produces a multiphase medium with cold clouds, a warm disk, hot supernova bubbles and a hot, tenuous halo. Our implementation of this model is based on the Gadget N-Body code. We illustrate the model by evolving an isolated Milky Way-like galaxy and study the properties of a disk f...

  10. The Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE): The Dust Extinction Curve from Red Clump Stars

    Science.gov (United States)

    Yanchulova Merica-Jones, Petia; Sandstrom, Karin M.; Johnson, L. Clifton; Dalcanton, Julianne; Dolphin, Andrew E.; Gordon, Karl; Roman-Duval, Julia; Weisz, Daniel R.; Williams, Benjamin F.

    2017-10-01

    We use Hubble Space Telescope (HST) observations of red clump stars taken as part of the Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE) program to measure the average dust extinction curve in a ∼200 pc × 100 pc region in the southwest bar of the Small Magellanic Cloud (SMC). The rich information provided by our eight-band ultraviolet through near-infrared photometry allows us to model the color–magnitude diagram of the red clump accounting for the extinction curve shape, a log-normal distribution of A V , and the depth of the stellar distribution along the line of sight. We measure an extinction curve with {R}475 ={A}475/({A}475{--}{A}814)=2.65+/- 0.11. This measurement is significantly larger than the equivalent values of published Milky Way (MW) R V = 3.1 ({R}475=1.83) and SMC Bar R V = 2.74 ({R}475=1.86) extinction curves. Similar extinction curve offsets in the Large Magellanic Cloud (LMC) have been interpreted as the effect of large dust grains. We demonstrate that the line-of-sight depth of the SMC (and LMC) introduces an apparent “gray” contribution to the extinction curve inferred from the morphology of the red clump. We show that no gray dust component is needed to explain extinction curve measurements when FWHM depth of 10 ± 2 kpc in the stellar distribution of the SMC (5 ± 1 kpc for the LMC) is considered, which agrees with recent studies of Magellanic Cloud stellar structure. The results of our work demonstrate the power of broadband HST imaging for simultaneously constraining dust and galactic structure outside the MW.

  11. What can simulated molecular clouds tell us about real molecular clouds?

    CERN Document Server

    Duarte-Cabral, A

    2016-01-01

    We study the properties of giant molecular clouds (GMCs) from an SPH simulation of a portion of a spiral galaxy, modelled at high resolution, with robust representations of the physics of the interstellar medium. We examine the global molecular gas content of clouds, and investigate the effect of using CO or H2 densities to define the GMCs. We find that CO can reliably trace the high-density H2 gas, but misses less dense H2 clouds. We also investigate the effect of using 3D CO densities versus CO emission with an observer's perspective, and find that CO-emission clouds trace well the peaks of the actual GMCs in 3D, but can miss the lower density molecular gas between density peaks which is often CO-dark. Thus the CO emission typically traces smaller clouds within larger GMC complexes. We also investigate the effect of the galactic environment (in particular the presence of spiral arms), on the distribution of GMC properties, and we find that the mean properties are similar between arm and inter-arm clouds, bu...

  12. Speeding Clouds May Reveal Invisible Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Several small, speeding clouds have been discovered at the center of our galaxy. A new study suggests that these unusual objects may reveal the lurking presence of inactive black holes.Peculiar Cloudsa) Velocity-integrated intensity map showing the location of the two high-velocity compact clouds, HCN0.0090.044 and HCN0.0850.094, in the context of larger molecular clouds. b) and c) Latitude-velocity and longitude-velocity maps for HCN0.0090.044 and HCN0.0850.094, respectively. d) and e) spectra for the two compacts clouds, respectively. Click for a closer look. [Takekawa et al. 2017]Sgr A*, the supermassive black hole marking the center of our galaxy, is surrounded by a region roughly 650 light-years across known as the Central Molecular Zone. This area at the heart of our galaxy is filled with large amounts of warm, dense molecular gas that has a complex distribution and turbulent kinematics.Several peculiar gas clouds have been discovered within the Central Molecular Zone within the past two decades. These clouds, dubbed high-velocity compact clouds, are characterized by their compact sizes and extremely broad velocity widths.What created this mysterious population of energetic clouds? The recent discovery of two new high-velocity compact clouds, reported on in a paper led by Shunya Takekawa (Keio University, Japan), may help us to answer this question.Two More to the CountUsing the James Clerk Maxwell Telescope in Hawaii, Takekawa and collaborators detected the small clouds near the circumnuclear disk at the centermost part of our galaxy. These two clouds have velocity spreads of -80 to -20 km/s and -80 to 0 km/s and compact sizes of just over 1 light-year. The clouds similar appearances and physical properties suggest that they may both have been formed by the same process.Takekawa and collaborators explore and discard several possible origins for these clouds, such as outflows from massive protostars (no massive, luminous stars have been detected affiliated

  13. WATER ABSORPTION IN GALACTIC TRANSLUCENT CLOUDS: CONDITIONS AND HISTORY OF THE GAS DERIVED FROM HERSCHEL /HIFI PRISMAS OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Flagey, N.; Goldsmith, P. F. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lis, D. C.; Monje, R.; Phillips, T. G. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Gerin, M.; De Luca, M.; Godard, B. [LERMA, UMR 8112 du CNRS, Observatoire de Paris, Ecole Normale Superieure, UPMC and UCP (France); Neufeld, D. [Department of Physics and Astronomy, Johns Hopkins Univ. 3400 N. Charles St., Baltimore, MD 21218 (United States); Sonnentrucker, P. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Goicoechea, J. R., E-mail: nflagey@jpl.nasa.gov [Centro de Astrobiologia (CSIC-INTA), E-28850 Torrejon de Ardoz, Madrid (Spain)

    2013-01-01

    is below 10{sup 4} cm{sup -3}. We derive the water ortho-to-para ratio for each absorption feature along the line of sight and find that most of the clouds show ratios consistent with the value of 3 expected in thermodynamic equilibrium in the high-temperature limit. However, two clouds with large column densities exhibit a ratio that is significantly below 3. This may argue that the history of water molecules includes a cold phase, either when the molecules were formed on cold grains in the well-shielded, low-temperature regions of the clouds, or when they later become at least partially thermalized with the cold gas ({approx}25 K) in those regions; evidently, they have not yet fully thermalized with the warmer ({approx}50 K) translucent portions of the clouds.

  14. Characterisation of dense non-aqueous phase liquids of coal tar using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry.

    Science.gov (United States)

    Gauchotte-Lindsay, Caroline; McGregor, Laura; Richards, Phil; Kerr, Stephanie; Glenn, Aliyssa; Thomas, Russell; Kalin, Robert

    2013-04-01

    Comprehensive two-dimensional gas chromatography (GCxGC) is a recently developed analytical technique in which two capillary columns with different stationary phases are placed in series enabling planar resolution of the analytes. The resolution power of GCxGC is one order of magnitude higher than that of one dimension gas chromatography. Because of its high resolution capacity, the use of GCxGC for complex environmental samples such as crude oils, petroleum derivatives and polychlorinated biphenyls mixtures has rapidly grown in recent years. We developed a one-step method for the forensic analysis of coal tar dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plant (FMGP) sites. Coal tar is the by-product of the gasification of coal for heating and lighting and it is composed of thousands of organic and inorganic compounds. Before the boom of natural gases and oils, most towns and cities had one or several manufactured gas plants that have, in many cases, left a devastating environmental print due to coal tar contamination. The fate of coal tar DNAPLs, which can persist in the environment for more than a hundred years, is therefore of crucial interest. The presented analytical method consists of a unique clean-up/ extraction stage by pressurized liquid extraction and a single analysis of its organic chemical composition using GCxGC coupled with time of flight mass spectrometry (TOFMS). The chemical fingerprinting is further improved by derivatisation by N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) of the tar compounds containing -OH functions such as alcohols and carboxylic acids. We present here how, using the logical order of elution in GCxGC-TOFMS system, 1) the identification of never before observed -OH containing compounds is possible and 2) the isomeric selectivity of an oxidation reaction on a DNAPL sample can be revealed. Using samples collected at various FMGP sites, we demonstrate how this GCxGC method enables the simultaneous

  15. 3 to 12 millimetre studies of dense gas towards the western rim of supernova remnant RX J1713.7-3946

    CERN Document Server

    Maxted, Nigel I; Dawson, Bruce R; Burton, Michael G; Nicholas, Brent P; Fukui, Yasuo; Walsh, Andrew J; Kawamura, Akiko; Horachi, Hirotaka; Sano, Hidetoshi

    2012-01-01

    The young X-ray and gamma-ray-bright supernova remnant RXJ1713.7-3946 (SNR G347.3-0.5) is believed to be associated with molecular cores that lie within regions of the most intense TeV emission. Using the Mopra telescope, four of the densest cores were observed using high-critical density tracers such as CS(J=1-0,J=2-1) and its isotopologue counterparts, NH3(1,1) and (2,2) inversion transitions and N2H+(J=1-0) emission, confirming the presence of dense gas >10^4cm^-3 in the region. The mass estimates for Core C range from 40M_{\\odot} (from CS(J=1-0)) to 80M_{\\odot} (from NH3 and N2H+), an order of magnitude smaller than published mass estimates from CO(J=1-0) observations. We also modelled the energy-dependent diffusion of cosmic-ray protons accelerated by RXJ1713.7-3946 into Core C, approximating the core with average density and magnetic field values. We find that for considerably suppressed diffusion coefficients (factors \\chi=10^{-3} down to 10^{-5} the galactic average), low energy cosmic-rays can be pre...

  16. Water, methanol and dense gas tracers in the local ULIRG Arp 220: results from the new SEPIA Band 5 Science Verification campaign

    Science.gov (United States)

    Galametz, M.; Zhang, Z.-Y.; Immer, K.; Humphreys, E.; Aladro, R.; De Breuck, C.; Ginsburg, A.; Madden, S. C.; Møller, P.; Arumugam, V.

    2016-10-01

    We present a line survey of the ultraluminous infrared galaxy Arp 220, taken with the newly installed SEPIA (Swedish-European Southern Observatory PI receiver for APEX) Band 5 instrument on APEX (Atacama Pathfinder Experiment). We illustrate the capacity of SEPIA to detect the 183.3 GHz H2O 31,3-22,0 line against the atmospheric H2O absorption feature. We confirm the previous detection of the HCN(2-1) line, and detect new transitions of standard dense gas tracers such as HNC(2-1), HCO+(2-1), CS(4-3), C34S(4-3) and HC3N(20-19). We also detect HCN(2-1) v2 = 1 and the 193.5 GHz methanol (4-3) group for the first time. The absence of time variations in the megamaser water line compared to previous observations seems to rule out an AGN nuclear origin for the line. It could, on the contrary, favour a thermal origin instead, but also possibly be a sign that the megamaser emission is associated with star-forming cores washed out in the beam. We finally discuss how the new transitions of HCN, HNC and HCO+ refine our knowledge of the interstellar medium physical conditions in Arp 220.

  17. Water, methanol and dense gas tracers in the local ULIRG Arp 220: Results from the new SEPIA Band 5 Science Verification campaign

    CERN Document Server

    Galametz, M; Immer, K; Humphreys, E; Aladro, R; De Breuck, C; Ginsburg, A; Madden, S C; Møller, P; Arumugam, V

    2016-01-01

    We present a line survey of the ultra-luminous infrared galaxy Arp 220, taken with the newly installed SEPIA Band 5 instrument on APEX. We illustrate the capacity of SEPIA to detect the 183.3 GHz H2O 31,3-22,0 line against the atmospheric H2O absorption feature. We confirm the previous detection of the HCN(2-1) line, and detect new transitions of standard dense gas tracers such as HNC(2-1), HCO+(2-1), CS(4-3), C34S(4-3), HC3N(20-19). We also detect HCN(2-1) v2=1 and the 193.5 GHz methanol (4-3) group for the first time. The absence of time variations in the megamaser water line compared to previous observations seems to rule out an AGN nuclear origin for the line. It could, on the contrary, favor a thermal origin instead, but also possibly be a sign that the megamaser emission is associated with star-forming cores washed-out in the beam. We finally discuss how the new transitions of HCN, HNC, HCO+ refine our knowledge of the ISM physical conditions in Arp 220.

  18. The nearby interstellar medium toward α Leo. UV observations and modeling of a warm cloud within hot gas

    Science.gov (United States)

    Gry, Cecile; Jenkins, Edward B.

    2017-02-01

    Aims: Our aim is to characterize the conditions in the nearest interstellar cloud. Methods: We analyze interstellar absorption features in the full UV spectrum of the nearby (d = 24 pc) B8 IVn star α Leo (Regulus). Observations were obtained with STIS at high resolution and high signal-to-noise ratio by the HST ASTRAL Treasury program. We derive column densities for many key atomic species and interpret their partial ionizations. Results: The gas in front of α Leo exhibits two absorption components. The main one is kinematically identified as the local interstellar cloud (LIC) that surrounds the Sun. The second component is shifted by +5.6 km s-1 relative to the main component, in agreement with results for other lines of sight in this region of the sky, and shares its ionization and physical conditions. The excitation of the C II fine-structure levels and the ratio of Mg I to Mg II reveal a temperature T = 6500 (+750, -600) K and electron density n(e) = 0.11 (+0.025, -0.03) cm-3. Our investigation of the ionization balance yields the ion fractions for 10 different atoms and indicates that about 1/3 of the hydrogen atoms are ionized. Metals are significantly depleted onto grains, with sulfur showing [S/H] -0.27. N(H I) = 1.9 (+0.9, -0.6) × 1018 cm-3, which indicates that this partly neutral gas occupies only 2 to 8 parsecs (about 13%) of the space toward the star, with the remaining volume being filled with a hot gas that emits soft X-rays. We do not detect any absorption features from the highly ionized species that could be produced in an interface between the warm medium and the surrounding hot gas, possibly because of non-equilibrium conditions or a particular magnetic field orientation that reduces thermal conduction. Finally, the radial velocity of the LIC agrees with that of the Local Leo Cold Cloud, indicating that they may be physically related.

  19. Effects of Strong Magnetic Fields on Photoionised Clouds

    CERN Document Server

    Mackey, Jonathan

    2012-01-01

    Simulations are presented of the photoionisation of three dense gas clouds threaded by magnetic fields, showing the dynamical effects of different initial magnetic field orientations and strengths. For moderate magnetic field strengths the initial radiation-driven implosion phase is not strongly affected by the field geometry, and the photoevaporation flows are also similar. Over longer timescales, the simulation with an initial field parallel to the radiation propagation direction (parallel field) remains basically axisymmetric, whereas in the simulation with a perpendicular initial field the pillar of neutral gas fragments in a direction aligned with the magnetic field. For stronger initial magnetic fields, the dynamics in all gas phases are affected at all evolutionary times. In a simulation with a strong initially perpendicular field, photoevaporated gas forms filaments of dense ionised gas as it flows away from the ionisation front along field lines. These filaments are potentially a useful diagnostic of...

  20. From the warm magnetized atomic medium to molecular clouds

    CERN Document Server

    Hennebelle, P; Vázquez-Semadeni, E; Klessen, R; Audit, E

    2008-01-01

    {It has recently been proposed that giant molecular complexes form at the sites where streams of diffuse warm atomic gas collide at transonic velocities.} {We study the global statistics of molecular clouds formed by large scale colliding flows of warm neutral atomic interstellar gas under ideal MHD conditions. The flows deliver material as well as kinetic energy and trigger thermal instability leading eventually to gravitational collapse.} {We perform adaptive mesh refinement MHD simulations which, for the first time in this context, treat self-consistently cooling and self-gravity.} {The clouds formed in the simulations develop a highly inhomogeneous density and temperature structure, with cold dense filaments and clumps condensing from converging flows of warm atomic gas. In the clouds, the column density probability density distribution (PDF) peaks at $\\sim 2 \\times 10^{21} \\psc$ and decays rapidly at higher values; the magnetic intensity correlates weakly with density from $n \\sim 0.1$ to $10^4 \\pcc$, an...

  1. Modelling the role of electron attachment rates on column density ratios for C n H-/C n H (n=4,6,8) in dense molecular clouds

    Science.gov (United States)

    Gianturco, F. A.; Grassi, T.; Wester, R.

    2016-10-01

    The fairly recent detection of a variety of anions in the interstellar molecular clouds have underlined the importance of realistically modelling the processes governing their abundance. To pursue this task, our earlier calculations for the radiative electron attachment (REA) rates for C4H-, C6H-, and C8H- are employed in the present work, within a broad network of other concurrent reactions, to generate the corresponding column density ratios of anion/neutral (A/N) relative abundances. The latter are then compared with those obtained in recent years from observational measurements. The calculations involved the time-dependent solutions of a large network of chemical processes over an extended time interval and included a series of runs in which the values of REA rates were repeatedly scaled over several orders of magnitude. Macroscopic parameters for the Clouds’ modelling were also varied to cover a broad range of physical environments. It was found that, within the range and quality of the processes included in the present network,and selected from state-of-the-art astrophysical databases, the REA values required to match the observed A/N ratios needed to be reduced by orders of magnitude for C4H- case, while the same rates for C6H- and C8H- only needed to be scaled by much smaller factors. The results suggest that the generally proposed formation of interstellar anions by REA mechanism is overestimated by current models for the C4H- case, for which is likely to be an inefficient path to formation. This path is thus providing a rather marginal contribution to the observed abundances of C4H-, the latter being more likely to originate from other chemical processes in the network, as we discuss in some detail in the present work. Possible physical reasons for the much smaller differences against observations found instead for the values of the (A/N) ratios in two other, longer members of the series are put forward and analysed within the evolutionary modelling

  2. Tracing dense and diffuse neutral hydrogen in the halo of the Milky Way

    CERN Document Server

    Moss, Vanessa A; McClure-Griffiths, Naomi M

    2016-01-01

    We have combined observations of Galactic high-velocity HI from two surveys: a very sensitive survey from the Green Bank 140ft Telescope with limited sky coverage, and the less sensitive but complete Galactic All Sky Survey from the 64m Parkes Radio Telescope. The two surveys preferentially detect different forms of neutral gas due to their sensitivity. We adopt a machine learning approach to divide our data into two populations that separate across a range in column density: 1) a narrow line-width population typical of the majority of bright high velocity cloud components, and 2) a fainter, broad line-width population that aligns well with that of the population found in the Green Bank survey. We refer to these populations as dense and diffuse gas respectively, and find that diffuse gas is typically located at the edges and in the tails of high velocity clouds, surrounding dense components in the core. A fit to the average spectrum of each type of gas in the Galactic All Sky Survey data reveals the dense pop...

  3. Herschel observations of extra-ordinary sources: H{sub 2}S as a probe of dense gas and possibly hidden luminosity toward the Orion KL hot core

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, N. R.; Bergin, E. A.; Neill, J. L. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Black, J. H. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala (Sweden); Blake, G. A.; Kleshcheva, M. [California Institute of Technology, Division of Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125 (United States)

    2014-02-01

    We present Herschel/HIFI observations of the light hydride H{sub 2}S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the Herschel Observations of EXtra-Ordinary Sources GT (guaranteed time) key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H{sub 2} {sup 32}S, H{sub 2} {sup 34}S, and H{sub 2} {sup 33}S, respectively. We only analyze emission from the so-called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H{sub 2}S follow straight lines given the uncertainties and yield T {sub rot} = 141 ± 12 K. This indicates H{sub 2}S is in local thermodynamic equilibrium and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E {sub up} ≳ 1000 K) are likely populated primarily by radiation pumping. We derive a column density, N {sub tot}(H{sub 2} {sup 32}S) = 9.5 ± 1.9 × 10{sup 17} cm{sup –2}, gas kinetic temperature, T {sub kin} = 120±{sub 10}{sup 13} K, and constrain the H{sub 2} volume density, n{sub H{sub 2}} ≳ 9 × 10 {sup 7} cm{sup –3}, for the H{sub 2}S emitting gas. These results point to an H{sub 2}S origin in markedly dense, heavily embedded gas, possibly in close proximity to a hidden self-luminous source (or sources), which are conceivably responsible for Orion KL's high luminosity. We also derive an H{sub 2}S ortho/para ratio of 1.7 ± 0.8 and set an upper limit for HDS/H{sub 2}S of <4.9 × 10 {sup –3}.

  4. Reviewing Molecular Clouds

    Science.gov (United States)

    Fernandez Lopez, Manuel

    2017-07-01

    The star formation process involves a wide range of spatial scales, densities and temperatures. Herschel observations of the cold and low density molecular gas extending tens of parsecs, that constitutes the bulk of the molecular clouds of the Milky Way, have shown a network of dense structures in the shape of filaments. These filaments supposedly condense into higher density clumps to form individual stars or stellar clusters. The study of the kinematics of the filaments through single-dish observations suggests the presence of gas flows along the filaments, oscillatory motions due to gravity infall, and the existence of substructure inside filaments that may be threaded by twisted fibers. A few molecular clouds have been mapped with interferometric resolutions bringing more insight into the filament structure. Compression due to large-scale supersonic flows is the preferred mechanism to explain filament formation although the exact nature of the filaments, their origin and evolution are still not well understood. Determining the turbulence drivers behind the origin of the filaments, the relative importance of turbulence, gravity and magnetic fields on regulating the filament structure and evolution, and providing detailed insight on the substructure inside the filaments are among the current open questions in this research area.

  5. THE C({sup 3}P) + NH{sub 3} REACTION IN INTERSTELLAR CHEMISTRY. II. LOW TEMPERATURE RATE CONSTANTS AND MODELING OF NH, NH{sub 2}, AND NH{sub 3} ABUNDANCES IN DENSE INTERSTELLAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Hickson, Kevin M.; Loison, Jean-Christophe [Université de Bordeaux, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence (France); Bourgalais, Jérémy; Capron, Michael; Picard, Sébastien D. Le [Institut de Physique de Rennes, Astrophysique de Laboratoire, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France); Goulay, Fabien [Department of Chemistry, West Virginia University, Morgantown, WV 26506 (United States); Wakelam, Valentine, E-mail: kevin.hickson@u-bordeaux.fr [Université de Bordeaux, Laboratoire d’Astrophysique de Bordeaux, UMR 5804, F-33270 Floirac (France)

    2015-10-20

    A continuous supersonic flow reactor has been used to measure rate constants for the C({sup 3}P) + NH{sub 3} reaction over the temperature range 50–296 K. C({sup 3}P) atoms were created by the pulsed laser photolysis of CBr{sub 4}. The kinetics of the title reaction were followed directly by vacuum ultra-violet laser induced fluorescence of C({sup 3}P) loss and through H({sup 2}S) formation. The experiments show unambiguously that the reaction is rapid at 296 K, becoming faster at lower temperatures, reaching a value of (1.8 ± 0.2) × 10{sup −10} cm{sup 3} molecule{sup −1} s{sup −1} at 50 K. As this reaction is not currently included in astrochemical networks, its influence on interstellar nitrogen hydride abundances is tested through a dense cloud model including gas–grain interactions. In particular, the effect of the ortho-to-para ratio of H{sub 2}, which plays a crucial role in interstellar NH{sub 3} synthesis, is examined.

  6. Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering

    Science.gov (United States)

    DeWitt, Jessica D.; Warner, Timothy A.; Chirico, Pete; Bergstresser, Sarah

    2017-01-01

    For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be photogrammetrically created using globally available high-spatial resolution stereo satellite imagery. The resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface features. In densely vegetated conditions, this inclusion can limit its usefulness in applications requiring a bare-earth DEM. This study explores the use of techniques designed for filtering lidar point clouds to mitigate the elevation artifacts caused by above ground features, within the context of a case study of Prince William Forest Park, Virginia, USA. The influences of land cover and leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar Topography Mission DEM. Although the filtered leaf-on photogrammetric DEM retains some artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in accuracy comparable of that to the lidar DEM.

  7. Studying the molecular gas towards the R Coronae Australis dark cloud

    CERN Document Server

    Paron, S; Ortega, M E; Cunningham, M; Jones, P A; Rubio, M

    2016-01-01

    The R Coronae Australis dark cloud is one of the closest star-forming regions to the Sun. The cloud is known to be very active in star formation, harboring many Herbig-Haro objects (HHs) and Molecular Hydrogen emission-line Objects (MHOs). In this work we present results from molecular observations (a $5.5^{'}\\times5.5^{'}$ map of $^{12}$CO J$=3-2$ and HCO$^{+}$ J$=4-3$, and a single spectrum of N$_{2}$H$^{+}$ J$=4-3$) obtained with the Atacama Submillimeter Telescope Experiment (ASTE) towards the R CrA dark cloud with an angular and spectral resolution of 22$^{"}$ and 0.11 km s$^{-1}$, respectively. From the $^{12}$CO J$=3-2$ line we found kinematical spectral features strongly suggesting the presence of outflows towards a region populated by several HHs and MHOs. Moreover, most of these objects lie within an HCO$^{+}$ maximum, suggesting that its emission arises from an increasement of its abundance due to the chemistry triggered by the outflow activity. Additionally, we are presenting the first reported de...

  8. The Gas-to-Dust Relation in the Dark Cloud L1523 - Observational Evidence for CO Gas Depletion

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Correlation between gas and dust column density has been studied for the dark globule L1523. The 13CO(J= 1→0) emission is used for tracing the gas, and the IR emissions, for tracing the dust constituent. In order to match the beam resolution between the images, a beam de-convolution algorithm based on the Maximum Correlation Method (MCM) was applied on the Infrared Astronomical Satellite (IRAS) data. The morphology of 13CO column density map shows a close correlation to that of 100μm dust optical depth. The distribution of the optical depth at 100 μm follows that of gas column density more closely than does the flux map at either 60 or 100μm. The ratio of the 13CO column density to the 100μm optical depth shows a decreasing trend with increasing dust optical depth in the central part, indicating possible molecular gas condensation onto dust particles. The excessive decrease in the CO column density in the envelope may most probably be due to the photo-dissociation of CO molecules.

  9. Molecular and Atomic Gas in the Large Magellanic Cloud II. Three-dimensional Correlation between CO and HI

    CERN Document Server

    Fukui, Y; Wong, T; Murai, M; Iritani, H; Mizuno, N; Mizuno, Y; Onishi, T; Hughes, A; Ott, J; Müller, E; Staveley-Smith, L; Kim, S

    2009-01-01

    We compare the CO J =(1-0) and HI emission in the Large Magellanic Cloud (LMC) in three dimensions, i.e. including a velocity axis in addition to the two spatial axes, with the aim of elucidating the physical connection between giant molecular clouds (GMCs) and their surrounding HI gas. The CO J =1-0 dataset is from the second NANTEN CO survey and the HI dataset is from the merged Australia Telescope Compact Array (ATCA) and Parkes Telescope surveys. The major findings of our analysis are: 1) GMCs are associated with an envelope of HI emission, 2) in GMCs [average CO intensity] is proportional to [average HI intensity]^[1.1+-0.1] and 3) the HI intensity tends to increase with the star formation activity within GMCs, from Type I to Type III. An analysis of the HI envelopes associated with GMCs shows that their average linewidth is 14 km s-1 and the mean density in the envelope is 10 cm-3. We argue that the HI envelopes are gravitationally bound by GMCs. These findings are consistent with a continual increase i...

  10. Age, size, and position of H ii regions in the Galaxy. Expansion of ionized gas in turbulent molecular clouds

    CERN Document Server

    Tremblin, P; Didelon, P; Raga, A C; Minier, V; Ntormousi, E; Pettitt, A; Pinto, C; Samal, M; Schneider, N; Zavagno, A

    2014-01-01

    This work aims at improving the current understanding of the interaction between H ii regions and turbulent molecular clouds. We propose a new method to determine the age of a large sample of OB associations by investigating the development of their associated H ii regions in the surrounding turbulent medium. Using analytical solutions, one-dimensional (1D), and three-dimensional (3D) simulations, we constrained the expansion of the ionized bubble depending on the turbulent level of the parent molecular cloud. A grid of 1D simulations was then computed in order to build isochrone curves for H ii regions in a pressure-size diagram. This grid of models allowed to date large sample of OB associations and was used on the H ii Region Discovery Survey (HRDS). Analytical solutions and numerical simulations showed that the expansion of H ii regions is slowed down by the turbulence up to the point where the pressure of the ionized gas is in a quasi-equilibrium with the turbulent ram pressure. Based on this result, we ...

  11. Dense, Parsec-Scale Clumps near the Great Annihilator

    CERN Document Server

    Hodges-Kluck, E J; Harris, A I; Lamb, J W; Hodges, M W

    2009-01-01

    We report on Combined Array for Research in Millimeter-Wave Astronomy (CARMA) and James Clerk Maxwell Telescope (JCMT) observations toward the Einstein source 1E 1740.7-2942, a LMXB commonly known as the "Great Annihilator." The Great Annihilator is known to be near a small, bright molecular cloud on the sky in a region largely devoid of emission in 12-CO surveys of the Galactic Center. The region is of interest because it is interior to the dust lanes which may be the shock zones where atomic gas from HI nuclear disk is converted into molecular gas. We find that the region is populated with a number of dense (n ~ 10^5 cm^-3) regions of excited gas with small filling factors, and estimate that up to 1-3 x 10^5 solar masses of gas can be seen in our maps. The detection suggests that a significant amount of mass is transported from the shock zones to the GC star-forming regions in the form of small, dense bundles.

  12. Molecular gas and stars in the translucent cloud MBM 18 (LDN 1569)

    Science.gov (United States)

    Brand, J.; Wouterloot, J. G. A.; Magnani, L.

    2012-11-01

    Context. We investigate star formation in translucent, high-latitude clouds. Aims: Our aim is to understand the star-formation history and rate in the solar neighbourhood. Methods: We used spectroscopic observations of newly found candidate Hα emission-line stars to establish their pre-main-sequence nature. The environment was studied through molecular line observations of the cloud (MBM 18/LDN 1569) in which the stars are presumably embedded. Results: Ten candidate Hα emission-line stars were found in an objective grism survey of a ~1 square degree region in MBM 18, of which seven have been observed spectroscopically in this study. Four of these have weak (| W(Hα)| ≲ 5 Å) Hα emission, and six out of seven have spectral types M1-M4 V. One star is of type F7-G1 V, and has Hα in absorption. The spectra of three of the M-stars may show an absorption line of LiI, although none of these is an unambiguous detection. The M-stars lie at distances between ~60 pc and 250 pc, while most distance determinations of MBM 18 found in the literature agree on 120-150 pc. For the six M-stars a good fit is obtained with pre-main-sequence isochrones indicating ages between 7.5 and 15 Myr. The mass of the molecular material, derived from the integrated 12CO(1-0) emission, is ~160 M⊙ (for a distance of 120 pc). This is much smaller than the virial mass (~103 M⊙), and the cloud is not gravitationally bound. Using a clump-finding routine, we identify 12 clumps from the CO-data, with masses between 2.2 and 22 M⊙. All clumps have a virial mass at least six times higher than their CO-mass, and thus none are in gravitational equilibrium. A similar situation is found from higher-resolution CO-observations of the northern part of the cloud. Conclusions: Considering the relative weakness or absence of the Hα emission, the absence of other emission lines, and the lack of clear LiI absorption, the targets are not T Tauri stars. With ages between 7.5 and 15 Myr they are old enough to

  13. Chemical enrichment of the pre-solar cloud by supernova dust grains

    Science.gov (United States)

    Goodson, Matthew D.; Luebbers, Ian; Heitsch, Fabian; Frazer, Christopher C.

    2016-11-01

    The presence of short-lived radioisotopes (SLRs) in Solar system meteorites has been interpreted as evidence that the Solar system was exposed to a supernova shortly before or during its formation. Yet results from hydrodynamical models of SLR injection into the proto-solar cloud or disc suggest that gas-phase mixing may not be efficient enough to reproduce the observed abundances. As an alternative, we explore the injection of SLRs via dust grains as a way to overcome the mixing barrier. We numerically model the interaction of a supernova remnant containing SLR-rich dust grains with a nearby molecular cloud. The dust grains are subject to drag forces and both thermal and non-thermal sputtering. We confirm that the expanding gas shell stalls upon impact with the dense cloud and that gas-phase SLR injection occurs slowly due to hydrodynamical instabilities at the cloud surface. In contrast, dust grains of sufficient size ( ≳ 1 μm) decouple from the gas and penetrate into the cloud within 0.1 Myr. Once inside the cloud, the dust grains are destroyed by sputtering, releasing SLRs and rapidly enriching the dense (potentially star-forming) regions. Our results suggest that SLR transport on dust grains is a viable mechanism to explain SLR enrichment.

  14. LABOCA observations of giant molecular clouds in the south west region of the Small Magellanic Cloud

    CERN Document Server

    Bot, Caroline; Boulanger, Francois; Albrecht, Marcus; Leroy, Adam; Bolatto, Alberto D; Bertoldi, Frank; Gordon, Karl; Engelbracht, Chad; Block, Miwa; Misselt, Karl

    2010-01-01

    The amount of molecular gas is a key for understanding the future star formation in a galaxy. Because H2 is difficult to observe directly in dense and cold clouds, tracers like CO are used. However, at low metallicities especially, CO only traces the shielded interiors of the clouds. mm dust emission can be used as a tracer to unveil the total dense gas masses. The comparison of masses deduced from the continuum SIMBA 1.2 mm emission and virial masses in a sample of giant molecular clouds (GMCs), in the SW region of the Small Magellanic Cloud (SMC), showed a discrepancy that is in need of an explanation. This study aims at better assessing possible uncertainties on the dust emission observed in the sample of GMCs from the SMC and focuses on the densest parts of the GMCs where CO is detected. New observations were obtained with the LABOCA camera on the APEX telescope. All GMCs previously observed in CO are detected and their emission at 870microns is compared to ancillary data. The different contributions to t...

  15. Molecular gas and stars in the translucent cloud MBM 18 (LDN 1569)

    CERN Document Server

    Brand, J; Magnani, L

    2012-01-01

    Seven of ten candidate H-alpha emission-line stars found in an objective grism survey of a 1 square degree region in MBM 18, were observed spectroscopically. Four of these have weak H-alpha emission, and 6 out of 7 have spectral types M1-M4V. One star is of type F7-G1V, and has H-alpha in absorption. The spectra of three of the M-stars may show an absorption line of LiI, although none of these is an unambiguous detection. For the six M-stars a good fit is obtained with pre-main-sequence isochrones indicating ages between 7.5 and 15Myr. The molecular cloud mass, derived from the integrated 12CO(1-0) emission, is 160Mo (for a distance of 120pc), much smaller than the virial mass (10^3Mo), and the cloud is not gravitationally bound. Nor are the individual clumps we identified through a clump-finding routine. Considering the relative weakness or absence of the H-alpha emission, the absence of other emission lines, and the lack of clear LiI absorption, the targets are not T Tauri stars. With ages between 7.5 and 1...

  16. Comparing young massive clusters and their progenitor clouds in the Milky Way

    Science.gov (United States)

    Walker, D. L.; Longmore, S. N.; Bastian, N.; Kruijssen, J. M. D.; Rathborne, J. M.; Galván-Madrid, R.; Liu, H. B.

    2016-04-01

    Young massive clusters (YMCs) have central stellar mass surface densities exceeding 104 M⊙ pc-2. It is currently unknown whether the stars formed at such high (proto)stellar densities. We compile a sample of gas clouds in the Galaxy which have sufficient gas mass within a radius of a few parsecs to form a YMC, and compare their radial gas mass distributions to the stellar mass distribution of Galactic YMCs. We find that the gas in the progenitor clouds is distributed differently than the stars in YMCs. The mass surface density profiles of the gas clouds are generally shallower than the stellar mass surface density profiles of the YMCs, which are characterized by prominent dense core regions with radii ˜0.1 pc, followed by a power-law tail. On the scale of YMC core radii, we find that there are no known clouds with significantly more mass in their central regions when compared to Galactic YMCs. Additionally, we find that models in which stars form from very dense initial conditions require surface densities that are generally higher than those seen in the known candidate YMC progenitor clouds. Our results show that the quiescent, less evolved clouds contain less mass in their central regions than in the highly star-forming clouds. This suggests an evolutionary trend in which clouds continue to accumulate mass towards their centres after the onset of star formation. We conclude that a conveyor-belt scenario for YMC formation is consistent with the current sample of Galactic YMCs and their progenitor clouds.

  17. Distribution of Water Vapor in Molecular Clouds

    CERN Document Server

    Melnick, Gary J; Snell, Ronald L; Bergin, Edwin A; Hollenbach, David J; Kaufman, Michael J; Li, Di; Neufeld, David A

    2010-01-01

    We report the results of a large-area study of water vapor along the Orion Molecular Cloud ridge, the purpose of which was to determine the depth-dependent distribution of gas-phase water in dense molecular clouds. We find that the water vapor measured toward 77 spatial positions along the face-on Orion ridge, excluding positions surrounding the outflow associated with BN/KL and IRc2, display integrated intensities that correlate strongly with known cloud surface tracers such as CN, C2H, 13CO J =5-4, and HCN, and less well with the volume tracer N2H+. Moreover, at total column densities corresponding to Av < 15 mag., the ratio of H2O to C18O integrated intensities shows a clear rise approaching the cloud surface. We show that this behavior cannot be accounted for by either optical depth or excitation effects, but suggests that gas-phase water abundances fall at large Av. These results are important as they affect measures of the true water-vapor abundance in molecular clouds by highlighting the limitations...

  18. The determination of electron abundances in interstellar clouds

    Science.gov (United States)

    Wootten, A.; Snell, R.; Glassgold, A. E.

    1979-01-01

    An independent method is proposed for the determination of electron abundances in dense clouds based upon the abundance ratio of HCO(+) and CO. The method is derived from a simple application of gas phase ion molecule interstellar chemistry. It is noted that unlike the fractionation of deuterated molecules, it applies to warm as well as to cool clouds. The method is illustrated with the results of the recent abundance survey of Wooten et al. (1978). Finally, it is shown that in cases where deuterium enhancement is measured, an upper limit can be obtained for the cosmic ray ionization rate.

  19. Development of the ARISTOTLE webware for cloud-based rarefied gas flow modeling

    Science.gov (United States)

    Deschenes, Timothy R.; Grot, Jonathan; Cline, Jason A.

    2016-11-01

    Rarefied gas dynamics are important for a wide variety of applications. An improvement in the ability of general users to predict these gas flows will enable optimization of current, and discovery of future processes. Despite this potential, most rarefied simulation software is designed by and for experts in the community. This has resulted in low adoption of the methods outside of the immediate RGD community. This paper outlines an ongoing effort to create a rarefied gas dynamics simulation tool that can be used by a general audience. The tool leverages a direct simulation Monte Carlo (DSMC) library that is available to the entire community and a web-based simulation process that will enable all users to take advantage of high performance computing capabilities. First, the DSMC library and simulation architecture are described. Then the DSMC library is used to predict a number of representative transient gas flows that are applicable to the rarefied gas dynamics community. The paper closes with a summary and future direction.

  20. 3D adaptive mesh refinement simulations of the gas cloud G2 born within the disks of young stars in the Galactic Center

    CERN Document Server

    Schartmann, M; Burkert, A; Gillessen, S; Genzel, R; Pfuhl, O; Eisenhauer, F; Plewa, P M; Ott, T; George, E M; Habibi, M

    2015-01-01

    The dusty, ionized gas cloud G2 is currently passing the massive black hole in the Galactic Center at a distance of roughly 2400 Schwarzschild radii. We explore the possibility of a starting point of the cloud within the disks of young stars. We make use of the large amount of new observations in order to put constraints on G2's origin. Interpreting the observations as a diffuse cloud of gas, we employ three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations with the PLUTO code and do a detailed comparison with observational data. The simulations presented in this work update our previously obtained results in multiple ways: (1) high resolution three-dimensional hydrodynamical AMR simulations are used, (2) the cloud follows the updated orbit based on the Brackett-$\\gamma$ data, (3) a detailed comparison to the observed high-quality position-velocity diagrams and the evolution of the total Brackett-$\\gamma$ luminosity is done. We concentrate on two unsolved problems of the diffuse cloud scen...

  1. Detection of a turbulent gas component associated with a starless core with subthermal turbulence in the Orion A cloud

    CERN Document Server

    Ohashi, Satoshi; Sanhueza, Patricio; Luong, Quang Nguyn; Hirota, Tomoya; Choi, Minho; Mizuno, Norikazu

    2016-01-01

    We report the detection of a wing component in NH$_3$ emission toward the starless core TUKH122 with subthermal turbulence in the Orion A cloud. This NH$_3$ core is suggested to be on the verge of star formation because the turbulence inside the NH$_3$ core is almost completely dissipated, and also because it is surrounded by CCS, which resembles the prestellar core L1544 in Taurus showing infall motions. Observations were carried out with the Nobeyama 45 m telescope at 0.05 km s$^{-1}$ velocity resolution. We find that the NH$_3$ line profile consists of two components. The quiescent main component has a small linewidth of 0.3 km s$^{-1}$ dominated by thermal motions, and the red-shifted wing component has a large linewidth of 1.36 km s$^{-1}$ representing turbulent motions. These components show kinetic temperatures of 11 K and $<$ 30 K, respectively. Furthermore, there is a clear velocity offset between the NH$_3$ quiescent gas ($VLSR=3.7$ km s$^{-1}$) and the turbulent gas ($VLSR=4.4$ km s$^{-1}$). The...

  2. Infalling clouds onto super-massive black hole binaries - I. Formation of discs, accretion and gas dynamics

    CERN Document Server

    Goicovic, F G; Sesana, A; Stasyszyn, F; Amaro-Seoane, P; Tanaka, T L

    2015-01-01

    There is compelling evidence that most -if not all- galaxies harbour a super-massive black hole (SMBH) at their nucleus, hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall toward and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall onto equal-mass SMBH binaries, using a modified version of the SPH code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that t...

  3. Evolution of OH and CO-dark Molecular Gas Fraction Across a Molecular Cloud Boundary In Taurus

    CERN Document Server

    Xu, Duo; Yue, Nannan; Goldsmith, Paul F

    2016-01-01

    We present observations of 12CO J=1-0, 13CO J=1-0, HI, and all four ground-state transitions of the hydroxyl (OH) radical toward a sharp boundary region of the Taurus molecular cloud. Based on a PDR model that reproduces CO and [CI] emission from the same region, we modeled the three OH transitions, 1612, 1665, 1667 MHz successfully through escape probability non-LTE radiative transfer model calculations. We could not reproduce the 1720 MHz observations, due to un-modeled pumping mechanisms, of which the most likely candidate is a C-shock. The abundance of OH and CO-dark molecular gas (DMG) are well constrained. The OH abundance [OH]/[H2] decreases from 8*10-7 to 1*10-7 as Av increases from 0.4 to 2.7 mag, following an empirical law [OH]/[H2]= 1.5 * 10^{-7} + 9.0 * 10^{-7} * exp(-Av/0.81), which is higher than PDR model predictions for low extinction regions by a factor of 80. The overabundance of OH at extinctions at or below 1 mag is likely the result of a C-shock. The dark gas fraction (DGF, defined as fra...

  4. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    Science.gov (United States)

    Helling, Ch; Rimmer, P. B.; Rodriguez-Barrera, I. M.; Wood, Kenneth; Robertson, G. B.; Stark, C. R.

    2016-07-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field \\gg {{B}\\text{Earth}} , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.

  5. Interaction of cosmic rays with cold clouds in galactic haloes

    Science.gov (United States)

    Wiener, Joshua; Oh, S. Peng; Zweibel, Ellen G.

    2017-05-01

    We investigate the effects of cosmic ray (CR) dynamics on cold, dense clouds embedded in a hot, tenuous galactic halo. If the magnetic field does not increase too much inside the cloud, the local reduction in Alfvén speed imposes a bottleneck on CRs streaming out from the star-forming galactic disc. The bottleneck flattens the upstream CR gradient in the hot gas, implying that multiphase structure could have global effects on CR-driven winds. A large CR pressure gradient can also develop on the outward-facing edge of the cloud. This pressure gradient has two independent effects. The CRs push the cloud upwards, imparting it with momentum. On smaller scales, the CRs pressurize cold gas in the fronts, reducing its density, consistent with the low densities of cold gas inferred in recent Cosmic Origins Spectrograph (COS) observations of local L* galaxies. They also heat the material at the cloud edge, broadening the cloud-halo interface and causing an observable change in interface ionic abundances. Due to the much weaker temperature dependence of CR heating relative to thermal-conductive heating, CR mediated fronts have a higher ratio of low-to-high ions compared to conduction fronts, in better agreement with observations. We investigate these effects separately using 1D simulations and analytic techniques.

  6. Interaction of Cosmic Rays with Cold Clouds in Galactic Halos

    CERN Document Server

    Wiener, Joshua; Zweibel, Ellen G

    2016-01-01

    We investigate the effects of cosmic ray (CR) dynamics on cold, dense clouds embedded in a hot, tenuous galactic halo. If the magnetic field does not increase too much inside the cloud, the local reduction in Alfv\\'en speed imposes a bottleneck on CRs streaming out from the star-forming galactic disk. The bottleneck flattens the upstream CR gradient in the hot gas, implying that multi-phase structure could have global effects on CR driven winds. A large CR pressure gradient can also develop on the outward-facing edge of the cloud. This pressure gradient has two independent effects. The CRs push the cloud upward, imparting it with momentum. On smaller scales, the CRs pressurize cold gas in the fronts, reducing its density, consistent with the low densities of cold gas inferred in recent COS observations of local $L_{*}$ galaxies. They also heat the material at the cloud edge, broadening the cloud-halo interface and causing an observable change in interface ionic abundances. Due to the much weaker temperature d...

  7. Interaction of Cosmic Rays with Cold Clouds in Galactic Halos

    Science.gov (United States)

    Wiener, Joshua; Peng Oh, S.; Zweibel, Ellen G.

    2017-01-01

    We investigate the effects of cosmic ray (CR) dynamics on cold, dense clouds embedded in a hot, tenuous galactic halo. If the magnetic field does not increase too much inside the cloud, the local reduction in Alfvén speed imposes a bottleneck on CRs streaming out from the star-forming galactic disk. The bottleneck flattens the upstream CR gradient in the hot gas, implying that multi-phase structure could have global effects on CR driven winds. A large CR pressure gradient can also develop on the outward-facing edge of the cloud. This pressure gradient has two independent effects. The CRs push the cloud upward, imparting it with momentum. On smaller scales, the CRs pressurize cold gas in the fronts, reducing its density, consistent with the low densities of cold gas inferred in recent COS observations of local L★ galaxies. They also heat the material at the cloud edge, broadening the cloud-halo interface and causing an observable change in interface ionic abundances. Due to the much weaker temperature dependence of cosmic ray heating relative to thermal conductive heating, CR mediated fronts have a higher ratio of low to high ions compared to conduction fronts, in better agreement with observations. We investigate these effects separately using 1D simulations and analytic techniques.

  8. Connecting diverse molecular cloud environments with nascent protostars in Orion

    Science.gov (United States)

    Stutz, Amelia M.; Megeath, S.; Fischer, W. J.; Ali, B.; Furlan, E.; Tobin, J. J.; Stanke, T.; Henning, T.; Krause, O.; Manoj, P.; Osorio, M.; Robitaille, T.; HOPS Team

    2014-01-01

    Understanding how the gas environment within molecular clouds influences the properties of protostars is a key step towards understanding the physical factors that control star formation. We report on an analysis of the connection between molecular cloud environment and protostellar properties using the Herschel Orion Protostar Survey (HOPS), a large multi-observatory survey of protostars in the Orion molecular clouds. HOPS has produced well sampled 1 um to 870 um SEDs of over 300 protostars in the Orion molecular clouds using images and spectra from 2MASS, Spitzer, Herschel and APEX. Furthermore, the combination of APEX 870 um continuum observations with the HOPS/PACS 160 um data over the same area allows for a determination of the temperatures and column densities in the often filamentary dense gas surrounding the Orion protostars. Based on these data, we link the protostellar properties with their environmental properties. Utilizing the diverse environments present within the Orion molecular clouds, we show how the luminosity and spacing of protostars in Orion depends on the local gas column density. Furthermore, we report an unusual concentration of the youngest known protostars (the Herschel identified PBRS, PACS Bright Red Sources) in the Orion B cloud, and we discuss possible reasons for this concentration.

  9. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    CERN Document Server

    Helling, Ch; Rodriguez-Barrera, I M; Wood, Kenneth; Robertson, G B; Stark, C R

    2016-01-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with a rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field $\\gg B_{\\rm Earth}$, a chromosphere and aurorae might form as suggested by radio and X-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheri...

  10. UCLCHEM: A Gas-grain Chemical Code for Clouds, Cores, and C-Shocks

    Science.gov (United States)

    Holdship, J.; Viti, S.; Jiménez-Serra, I.; Makrymallis, A.; Priestley, F.

    2017-07-01

    We present a publicly available, open source version of the time-dependent, gas-grain chemical code UCLCHEM. UCLCHEM propagates the abundances of chemical species through a large network of chemical reactions in a variety of physical conditions. The model is described in detail, along with its applications. As an example of possible uses, UCLCHEM is used to explore the effect of protostellar collapse on commonly observed molecules, and study the behavior of molecules in C-type shocks. We find the collapse of a simple Bonnor-Ebert sphere successfully reproduces most of the behavior of CO, CS, and NH3 from cores observed by Tafalla et al. (2004), but cannot predict the behavior of N2H+. In the C-shock application, we find that molecules can be categorized such that they become useful observational tracers of shocks and their physical properties. Although many molecules are enhanced in shocked gas, we identify two groups of molecules in particular. A small number of molecules are enhanced by the sputtering of the ices as the shock propagates, and then remain high in abundance throughout the shock. A second, larger set is also enhanced by sputtering, but then destroyed as the gas temperature rises. Through these applications, the general applicability of UCLCHEM is demonstrated.

  11. Molecular Clouds in the North American and Pelican Nebulae: Structures

    CERN Document Server

    Zhang, Shaobo; Yang, Ji

    2013-01-01

    We present observations of 4.25 square degree area toward the North American and Pelican Nebulae in the $J = 1-0$ transitions of $^{12}$CO, $^{13}$CO, and C$^{18}$O. Three molecules show different emission area with their own distinct structures. These different density tracers reveal several dense clouds with surface density over 500 $M_\\odot$ pc$^{-2}$ and a mean H$_2$ column density of 5.8, 3.4, and 11.9$\\times10^{21}$ cm$^{-2}$ for $^{12}$CO, $^{13}$CO, and C$^{18}$O, respectively. We obtain a total mass of $5.4\\times10^4 M_\\odot$ ($^{12}$CO), $2.0\\times10^4 M_\\odot$ ($^{13}$CO), and $6.1\\times10^3 M_\\odot$ (C$^{18}$O) in the complex. The distribution of excitation temperature shows two phase of gas: cold gas ($\\sim$10 K) spreads across the whole cloud; warm gas ($>$20 K) outlines the edge of cloud heated by the W80 H II region. The kinetic structure of the cloud indicates an expanding shell surrounding the ionized gas produced by the H II region. There are six discernible regions in the cloud including t...

  12. Water Deuteration and Ortho-to-Para Nuclear Spin Ratio of H2 in Molecular Clouds Formed via Accumulation of HI Gas

    CERN Document Server

    Furuya, K; Hincelin, U; Hassel, G E; Bergin, E A; Vasyunin, A I; Herbst, Eric

    2015-01-01

    We investigate the water deuteration ratio and ortho-to-para nuclear spin ratio of H2 (OPR(H2)) during the formation and early evolution of a molecular cloud, following the scenario that accretion flows sweep and accumulate HI gas to form molecular clouds. We follow the physical evolution of post-shock materials using a one-dimensional shock model, with post-processing gas-ice chemistry simulations. This approach allows us to study the evolution of the OPR(H2) and water deuteration ratio without an arbitrary assumption concerning the initial molecular abundances, including the initial OPR(H2). When the conversion of hydrogen into H2 is almost complete, the OPR(H2) is already much smaller than the statistical value of three due to the spin conversion in the gas phase. As the gas accumulates, the OPR(H2) decreases in a non-equilibrium manner. We find that water ice can be deuterium-poor at the end of its main formation stage in the cloud, compared to water vapor observed in the vicinity of low-mass protostars w...

  13. The impact of flue gas cleaning technologies in coal-fired power plants on the CCN distribution and cloud properties in Germany

    Science.gov (United States)

    Bangert, M.; Vogel, B.; Junkermann, W.; Brachert, L.; Schaber, K.

    2013-05-01

    Gas-cleaning technologies used in modern coal-fired power plants cause an unintended nucleation of H2SO4 aerosol droplets during the cleaning process. As a result, high concentrations of ultra-fine aerosol droplets are emitted into the atmosphere. In this study, the impact of these emissions on the atmospheric aerosol distribution, on the cloud condensation nuclei number concentration, and consequently on cloud properties is investigated. Therefore, a sophisticated modeling framework is used combining regional simulations of the atmospheric aerosol distribution and its impact on cloud properties with detailed process simulations of the nucleation during the cleaning process inside the power plant. Furthermore, the simulated aerosol size distributions downwind of the coal-fired power plants are compared with airborne aerosol measurements performed inside the plumes.

  14. Can the removal of molecular cloud envelopes by external feedback affect the efficiency of star formation?

    Science.gov (United States)

    Lucas, William E.; Bonnell, Ian A.; Forgan, Duncan H.

    2017-01-01

    We investigate how star formation efficiency can be significantly decreased by the removal of a molecular cloud's envelope by feedback from an external source. Feedback from star formation has difficulties halting the process in dense gas but can easily remove the less dense and warmer envelopes where star formation does not occur. However, the envelopes can play an important role keeping their host clouds bound by deepening the gravitational potential and providing a constraining pressure boundary. We use numerical simulations to show that removal of the cloud envelopes results in all cases in a fall in the star formation efficiency (SFE). At 1.38 free-fall times our 4 pc cloud simulation experienced a drop in the SFE from 16 to six percent, while our 5 pc cloud fell from 27 to 16 per cent. At the same time, our 3 pc cloud (the least bound) fell from an SFE of 5.67 per cent to zero when the envelope was lost. The star formation efficiency per free-fall time varied from zero to ≈0.25 according to α, defined to be the ratio of the kinetic plus thermal to gravitational energy, and irrespective of the absolute star forming mass available. Furthermore the fall in SFE associated with the loss of the envelope is found to even occur at later times. We conclude that the SFE will always fall should a star forming cloud lose its envelope due to stellar feedback, with less bound clouds suffering the greatest decrease.

  15. 槽车密相补气式气力输送系统的设计%Design of air conveying system of tank trailer dense phase replenish gas type

    Institute of Scientific and Technical Information of China (English)

    言仿雷; 罗宝东

    2001-01-01

    介绍密相气力输送的基本原理和技术,一种采用密相脉冲补气式气力输送PET切片的槽车贮罐运输、中转、卸料、仓贮的系统的建立,节约投资、降低能耗,提高了经济效益.%Basic principle and technology of dense phase air conve ying were introduced,a system was built which dense phase impluse replenish gas air conveying tank trailer storage was used to transport,transfer,discharge and store PET chip.The investment was saved,the energy consumption was reduced,the ecnomic benefit was improved.

  16. Laboratory Studies of Stabilities of Heterocyclic Aromatic Molecules: Suggested Gas Phase Ion-Molecule Routes to Production in Interstellar Gas Clouds

    Science.gov (United States)

    Adams, Nigel G.; Fondren, L. Dalila; McLain, Jason L.; Jackson, Doug M.

    2006-01-01

    Several ring compounds have been detected in interstellar gas clouds, ISC, including the aromatic, benzene. Polycyclic aromatic hydrocarbons, PAHs, have been implicated as carriers of diffuse interstellar bands (DIBs) and unidentified infrared (UIR) bands. Heterocyclic aromatic rings of intermediate size containing nitrogen, possibly PreLife molecules, were included in early searches but were not detected and a recent search for Pyrimidine was unsuccessful. Our laboratory investigations of routes to such molecules could establish their existence in ISC and suggest conditions under which their concentrations would be maximized thus aiding the searches. The stability of such ring compounds (C5H5N, C4H4N2, C5H11N and C4H8O2) has been tested in the laboratory using charge transfer excitation in ion-molecule reactions. The fragmentation paths, including production of C4H4(+), C3H3N(+) and HCN, suggest reverse routes to the parent molecules, which are presently under laboratory investigation as production sources.

  17. Kinematic Structure of Molecular Gas around High-mass YSO, Papillon Nebula, in N159 East in the Large Magellanic Cloud: A New Perspective with ALMA

    Science.gov (United States)

    Saigo, Kazuya; Onishi, Toshikazu; Nayak, Omnarayani; Meixner, Margaret; Tokuda, Kazuki; Harada, Ryohei; Morioka, Yuuki; Sewiło, Marta; Indebetouw, Remy; Torii, Kazufumi; Kawamura, Akiko; Ohama, Akio; Hattori, Yusuke; Yamamoto, Hiroaki; Tachihara, Kengo; Minamidani, Tetsuhiro; Inoue, Tsuyoshi; Madden, Suzanne; Galametz, Maud; Lebouteiller, Vianney; Chen, C.-H. Rosie; Mizuno, Norikazu; Fukui, Yasuo

    2017-01-01

    We present the ALMA Band 3 and Band 6 results of 12CO(2-1), 13CO(2-1), H30α recombination line, free–free emission around 98 GHz, and the dust thermal emission around 230 GHz toward the N159 East Giant Molecular Cloud (N159E) in the Large Magellanic Cloud (LMC). LMC is the nearest active high-mass star-forming face-on galaxy at a distance of 50 kpc and is the best target for studing high-mass star formation. ALMA observations show that N159E is the complex of filamentary clouds with the width and length of ∼1 pc and several parsecs. The total molecular mass is 0.92 × 105 M⊙ from the 13CO(2-1) intensity. N159E harbors the well-known Papillon Nebula, a compact high-excitation H ii region. We found that a YSO associated with the Papillon Nebula has the mass of 35 M⊙ and is located at the intersection of three filamentary clouds. It indicates that the formation of the high-mass YSO was induced by the collision of filamentary clouds. Fukui et al. reported a similar kinematic structure toward two YSOs in the N159 West region, which are the other YSOs that have the mass of ≳35 M⊙. This suggests that the collision of filamentary clouds is a primary mechanism of high-mass star formation. We found a small molecular hole around the YSO in Papillon Nebula with a sub-parsec scale. It is filled by free–free and H30α emission. The temperature of the molecular gas around the hole reaches ∼80 K. It indicates that this YSO has just started the distruction of parental molecular cloud.

  18. Dense core formation by fragmentation of velocity-coherent filaments in L1517

    CERN Document Server

    Hacar, A

    2011-01-01

    Context. Low-mass star-forming cores differ from their surrounding molecular cloud in turbulence, shape, and density structure. Aims. We aim to understand how dense cores form out of the less dense cloud material by studying the connection between these two regimes. Methods. We observed the L1517 dark cloud in C18O(1-0), N2H+(1-0), and SO(JN=32-21) with the FCRAO 14m telescope, and in the 1.2mm dust continuum with the IRAM 30m telescope. Results. Most of the gas in the cloud lies in four filaments that have typical lengths of 0.5 pc. Five starless cores are embedded in these filaments and have chemical compositions indicative of different evolutionary stages. The filaments have radial profiles of C18O(1-0) emission with a central flattened region and a power-law tail, and can be fitted approximately as isothermal, pressure-supported cylinders. The filaments, in addition, are extremely quiescent. They have subsonic internal motions and are coherent in velocity over their whole length. The large-scale motions i...

  19. Cloud formation by combined instabilities in galactic gas layers - Evidence for a Q threshold in the fragmentation of shearing wavelets

    Science.gov (United States)

    Elmegreen, Bruce G.

    1991-09-01

    The growth of shearing wavelets in thick galactic gas disks is studied, including the magnetic Rayleigh-Taylor instability perpendicular to the plane, various degrees of thermal instability, and the gravitational instability. Growth rates are calculated numerically for a wide range of parameter values, giving an effective dispersion relation and mass distribution function, and an approximate dispersion relation is derived analytically for the epoch of peak growth. An extensive coverage of parameter space illustrates the relative insensitivity of the gaseous shear instability to the axisymmetric stability parameter Q. The fragmentation of shearing wavelets by self-gravitational collapse parallel to the wave crest is also considered. Such fragmentation is sensitive to Q, requiring Q equal to or less than 1-2 for the growth of parallel perturbations to overcome shear inside the wavelet. Fragmentation instabilities may provide the link between shear instabilities and the formation of individual clouds. They are much more sensitive to Q than shear instabilities, and may regulate star formation so that Q approximately equals 1.

  20. Cloud point extraction and gas chromatography with direct microvial insert thermal desorption for the determination of haloanisoles in alcoholic beverages.

    Science.gov (United States)

    Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M

    2016-11-01

    A sensitive analytical procedure for the determination of four haloanisoles (2,4,6 trichloroanisole, 2,4,6-tribromoanisole, 2,3,4,6-tetrachloroanisole and pentachloroanisole) related with cork taint defects in wines, in different types of alcoholic beverages has been developed. The analytes were extracted from the matrix samples by cloud point extraction (CPE) using Triton X-114 heated to 75°C, and the surfactant rich phase was separated by centrifugation. By means of direct microvial insert thermal desorption, 20µL of the CPE obtained extract was submitted to gas chromatography-mass spectrometry (GC-MS) analysis. The parameters affecting the CPE and microvial insert thermal desorption were optimized. Quantification was carried by matrix-matched calibration using an internal standard. Detection limits ranged between 12.9 and 20.8ngL(-1), depending on the compound, for beer and wine samples, whereas for whiskies values in the 46.3-48ngL(-1) range were obtained, since these samples were diluted for analysis. Recoveries for alcoholic beverages were in the 89-111% range, depending on the analyte and the sample.

  1. The nearby interstellar medium towards alpha Leo -- UV observations and modeling of a warm cloud within hot gas

    CERN Document Server

    Gry, Cecile

    2016-01-01

    We analyze interstellar absorption features in the full UV spectrum of the nearby (d = 24 pc) B8 IVn star alpha Leo (Regulus) obtained at high resolution and high S/N by the HST ASTRAL Treasury program. We derive column densities for many key atomic species and interpret their partial ionizations. The gas in front of alpha Leo exhibits two absorption components, one of which coincides in velocity with the local interstellar cloud (LIC) that surrounds the Sun. The second, smaller, component is shifted by +5.6 km/s relative to the main component, in agreement with results for other lines of sight in this region of the sky. The excitation of the C II fine-structure levels and the ratio of Mg I to Mg II reveal a temperature T = 6500 (+750,-600)K and electron density n(e) = 0.11 (+0.025,-0.03) cm^-3. Our investigation of the ionization balance of all the available species indicates that about 1/3 of the hydrogen atoms are ionized and that metals are significantly depleted onto grains. We infer that N(H I) = 1.9 (+...

  2. The evolution of interstellar clouds in a streaming hot plasma including heat conduction

    CERN Document Server

    Vieser, W

    2007-01-01

    To examine the evolution of giant molecular clouds in the stream of a hot plasma we performed two-dimensional hydrodynamical simulations that take full account of self-gravity, heating and cooling effects and heat conduction by electrons. We use the thermal conductivity of a fully ionized hydrogen plasma proposed by Spitzer and a saturated heat flux according to Cowie & McKee in regions where the mean free path of the electrons is large compared to the temperature scaleheight. Significant structural and evolutionary differences occur between simulations with and without heat conduction. Dense clouds in pure dynamical models experience dynamical destruction by Kelvin-Helmholtz (KH) instability. In static models heat conduction leads to evaporation of such clouds. Heat conduction acting on clouds in a gas stream smooths out steep temperature and density gradients at the edge of the cloud because the conduction timescale is shorter than the cooling timescale. This diminishes the velocity gradient between the...

  3. SHOCKFIND - An algorithm to identify magnetohydrodynamic shock waves in turbulent clouds

    CERN Document Server

    Lehmann, Andrew; Wardle, Mark

    2016-01-01

    The formation of stars occurs in the dense molecular cloud phase of the interstellar medium. Observations and numerical simulations of molecular clouds have shown that supersonic magnetised turbulence plays a key role for the formation of stars. Simulations have also shown that a large fraction of the turbulent energy dissipates in shock waves. The three families of MHD shocks --- fast, intermediate and slow --- distinctly compress and heat up the molecular gas, and so provide an important probe of the physical conditions within a turbulent cloud. Here we introduce the publicly available algorithm, SHOCKFIND, to extract and characterise the mixture of shock families in MHD turbulence. The algorithm is applied to a 3-dimensional simulation of a magnetised turbulent molecular cloud, and we find that both fast and slow MHD shocks are present in the simulation. We give the first prediction of the mixture of turbulence-driven MHD shock families in this molecular cloud, and present their distinct distributions of s...

  4. Numerical Simulations of Turbulent Molecular Clouds Regulated by Reprocessed Radiation Feedback from Nascent Super Star Clusters

    CERN Document Server

    Skinner, M Aaron

    2015-01-01

    Radiation feedback from young star clusters embedded in giant molecular clouds (GMCs) is believed to be important to the control of star formation. For the most massive and dense clouds, including those in which super star clusters (SSCs) are born, pressure from reprocessed radiation exerted on dust grains may disperse a significant portion of the cloud mass back into the interstellar medium (ISM). Using our radiaton hydrodynamics (RHD) code, Hyperion, we conduct a series of numerical simulations to test this idea. Our models follow the evolution of self-gravitating, strongly turbulent clouds in which collapsing regions are replaced by radiating sink particles representing stellar clusters. We evaluate the dependence of the star formation efficiency (SFE) on the size and mass of the cloud and $\\kappa$, the opacity of the gas to infrared (IR) radiation. We find that the single most important parameter determining the evolutionary outcome is $\\kappa$, with $\\kappa \\gtrsim 15 \\text{ cm}^2 \\text{ g}^{-1}$ needed ...

  5. Mutual influence of supernovae and molecular clouds

    CERN Document Server

    Iffrig, Olivier

    2014-01-01

    Context. Molecular clouds are known to be turbulent and strongly affected by stellar feedback. Moreover, stellar feedback is believed to be driving turbulence at large scales in galaxies. Aims. We study the role played by supernovae in molecular clouds and the influence of the magnetic field on this process. Methods. We perform three-dimensional numerical simulations of supernova explosions, in and near turbulent self-gravitating molecular clouds. In order to study the influence of the magnetic field, we perform both hydrodynamical and MHD simulations. We also run a series of simple uniform density medium simulations and develop a simple analytical model. Results. We find that the total amount of momentum that is delivered during supernova explosions typically varies by a factor of about 2 even when the gas density changes by 3 orders of magnitude. However, the amount of momentum delivered to the dense gas varies by almost a factor 10 if the supernova explodes within or outside the molecular cloud. The magnet...

  6. Data flood : using processes such as data quality management and cloud computing, oil and gas producers harness the growing quantities of digital information

    Energy Technology Data Exchange (ETDEWEB)

    Wells, P.

    2009-07-15

    One of the greatest challenges facing companies today is information growth. The oil and gas sector is one of the most data-intensive businesses in the world. Seismic data alone is growing at more than 30 per cent per year. In addition, the ability to efficiently handle the increase in data can be compromised as reservoir models grow bigger with the use of more sophisticated algorithms. The oil and gas industry is also faced with the challenge of protecting the integrity of information while making it available to all who need it. Better information management is essential to identifying risks, expanding markets, managing costs and improving integration across the global enterprise. This article described how Schlumberger has implemented an ongoing process that improves data quality and keeps the data quality from degrading over time. The company has developed a solution called Data Quality Management (DQM) to better control and manage the huge flow of data. A set of DQM training classes have been developed along with a DQM Handbook. This article also addressed the issue of cloud computing which will continue to gain prominence as oil and gas companies try to handle high volumes of data more effectively. Cloud computing refers to accessing resources and services needed to perform functions with dynamically changing needs. A cloud service has 3 characteristics that differentiate it from traditional hosting, notably it is sold on demand; it is elastic; and the service is fully managed by the provider. 2 refs., 2 figs.

  7. Mass estimates for very cold (< 8 K) gas in molecular cloud cores

    CERN Document Server

    Steinacker, Juergen; Beuther, Henrik; Henning, Thomas; Bacmann, Aurore

    2016-01-01

    The mass of prestellar cores is an essential ingredient to understand the onset of star formation in the core. The low level of emission from cold dust may keep parts of it hidden from observation. We aim to determine the fraction of core mass in the temperature range < 8 K that can be expected for typical low- and high-mass star formation regions. We calculate the dust temperature within standard spherically symmetric prestellar cores for a grid of density powerlaws in the outer core regions, core masses, and variation in the external multi-component radiation field. The dust is assumed to be composed of amorphous silicate and carbon, and variations of its optical properties are discussed. As measure for the distribution of cores and clumps, we use core mass functions derived for various environments. In view of the high densities in very cold central regions, dust and gas temperatures are assumed to be equal. We find that the fraction of mass with temperatures < 8 K in typical low- and high-mass cores...

  8. The evolution of the core mass function by gas accretion

    CERN Document Server

    Dib, Sami

    2012-01-01

    We show how the mass function of dense cores (CMF) which results from the gravoturbulent fragmentation of a molecular cloud evolves in time under the effect of gas accretion. Accretion onto the cores leads to the formation of larger numbers of massive cores and to a flattening of the CMF. This effect should be visible in the CMF of star forming regions that are massive enough to contain high mass cores and when comparing the CMF of cores in and off dense filaments which have different environmental gas densities.

  9. MASSIVE STAR FORMATION IN THE MAGELLANIC CLOUDS

    Directory of Open Access Journals (Sweden)

    M. Rubio

    2009-01-01

    Full Text Available Multiwavelenghts studies of massive star formation regions in the LMC and SMC reveal that a second generation of stars is being formed in dense molecular clouds located in the surroundings of the massive clusters. These dense molecular clouds have survive the action of massive star UV radiation elds and winds and they appear as compact dense H2 knots in regions of weak CO emission. We present results of observations obtained towards massive star forming regions in the low metallicity molecular clouds in the Magellanic Clouds and investigate its implication on star formation in the early universe.

  10. Millimeter emission from protoplanetary disks : dust, cold gas, and relativistic electrons

    NARCIS (Netherlands)

    Salter, Demerese Marie

    2010-01-01

    Star formation occurs when a dense cloud of interstellar gas and dust gravitationally collapses. Rotation during this collapse leads naturally to the formation of a flattened circumstellar disk around the forming star. These disks are additionally known as protoplanetary disks because the orbiting c

  11. Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest.

    Science.gov (United States)

    Song, Liang; Zhang, Yong-Jiang; Chen, Xi; Li, Su; Lu, Hua-Zheng; Wu, Chuan-Sheng; Tan, Zheng-Hong; Liu, Wen-Yao; Shi, Xian-Meng

    2015-07-01

    Fan life forms are bryophytes with shoots rising from vertical substratum that branch repeatedly in the horizontal plane to form flattened photosynthetic surfaces, which are well suited for intercepting water from moving air. However, detailed water relations, gas exchange characteristics of fan bryophytes and their adaptations to particular microhabitats remain poorly understood. In this study, we measured and analyzed microclimatic data, as well as water release curves, pressure-volume relationships and photosynthetic water and light response curves for three common fan bryophytes in an Asian subtropical montane cloud forest (SMCF). Results demonstrate high relative humidity but low light levels and temperatures in the understory, and a strong effect of fog on water availability for bryophytes in the SMCF. The facts that fan bryophytes in dry air lose most of their free water within 1 h, and a strong dependence of net photosynthesis rates on water content, imply that the transition from a hydrated, photosynthetically active state to a dry, inactive state is rapid. In addition, fan bryophytes developed relatively high cell wall elasticity and the osmoregulatory capacity to tolerate desiccation. These fan bryophytes had low light saturation and compensation point of photosynthesis, indicating shade tolerance. It is likely that fan bryophytes can flourish on tree trunks in the SMCF because of substantial annual precipitation, average relative humidity, and frequent and persistent fog, which can provide continual water sources for them to intercept. Nevertheless, the low water retention capacity and strong dependence of net photosynthesis on water content of fan bryophytes indicate a high risk of unbalanced carbon budget if the frequency and severity of drought increase in the future as predicted.

  12. Deuteration in infrared dark clouds

    CERN Document Server

    Lackington, Matias; Pineda, Jaime E; Garay, Guido; Peretto, Nicolas; Traficante, Alessio

    2015-01-01

    Much of the dense gas in molecular clouds has a filamentary structure but the detailed structure and evolution of this gas is poorly known. We have observed 54 cores in infrared dark clouds (IRDCs) using N$_2$H$^+$ (1-0) and (3-2) to determine the kinematics of the densest material, where stars will form. We also observed N$_2$D$^+$ (3-2) towards 29 of the brightest peaks to analyse the level of deuteration which is an excellent probe of the quiescent of the early stages of star formation. There were 13 detections of N$_2$D$^+$ (3-2). This is one of the largest samples of IRDCs yet observed in these species. The deuteration ratio in these sources ranges between 0.003 and 0.14. For most of the sources the material traced by N$_2$D$^+$ and N$_2$H$^+$ (3-2) still has significant turbulent motions, however three objects show subthermal N$_2$D$^+$ velocity dispersion. Surprisingly the presence or absence of an embedded 70 $\\mu$m source shows no correlation with the detection of N$_2$D$^+$ (3-2), nor does it correl...

  13. Smith's Cloud: No chemistry but we did find some of the Milky Way's Missing Baryons

    Science.gov (United States)

    Minter, Anthony Howard

    2017-01-01

    The Green Bank Observatory's 100 meter Green Bank Telescope (GBT) was used to search for OH emission from Smith's Cloud. Smith's Cloud is a large, few 106 Solar Mass cloud which will impact the Milkay Way's disk in about 35 Million years. The origin of Smith's Cloud is uncertain but its environmental conditions should have allowed for the formation of molecules. The GBT OH observations did not detect any OH from Smith's Cloud and limits the metalicity to be below 3% solar. Sulpher has been observed in the Smith's Cloud with a metalicity of 0.5 solar. Since OH is the first molecule to form and should have been easily detected, the GBT observations indicate that there is currently no active chemistry occuring in Smith's Cloud.The observations did turn up a substantial amount of OH emission from the Milky Way along the line of sight. The observed lines of sight do not have any detected CO emission and suggests "dark gas" (dense enough to form OH but not CO) is present. The column density of this "dark gas" could be as high as 1018-19 at a galactic latitude of 35o. The "dark gas" could represent a significant fraction of the Milky Way's missing baryons.

  14. Dense topological spaces and dense continuity

    Science.gov (United States)

    Aldwoah, Khaled A.

    2013-09-01

    There are several attempts to generalize (or "widen") the concept of topological space. This paper uses equivalence relations to generalize the concept of topological space via the concept of equivalence relations. By the generalization, we can introduce from particular topology on a nonempty set X many new topologies, we call anyone of these new topologies a dense topology. In addition, we formulate some simple properties of dense topologies and study suitable generalizations of the concepts of limit points, closeness and continuity, as well as Jackson, Nörlund and Hahn dense topologies.

  15. Compression and ablation of the photo-irradiated molecular cloud the Orion Bar

    Science.gov (United States)

    Goicoechea, Javier R.; Pety, Jérôme; Cuadrado, Sara; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne; Joblin, Christine; Marcelino, Nuria; Pilleri, Paolo

    2016-09-01

    The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth-Sun distance). Static equilibrium models used to interpret previous far-infrared and radio observations of the neutral gas in the Orion Bar (typically at 10-20 arcsecond resolution) predict an inhomogeneous cloud structure comprised of dense clumps embedded in a lower-density extended gas component. Here we report one-arcsecond-resolution millimetre-wave images that allow us to resolve the molecular cloud surface. In contrast to stationary model predictions, there is no appreciable offset between the peak of the H2 vibrational emission (delineating the H/H2 transition) and the edge of the observed CO and HCO+ emission. This implies that the H/H2 and C+/C/CO transition zones are very close. We find a fragmented ridge of high-density substructures, photoablative gas flows and instabilities at the molecular cloud surface. The results suggest that the cloud edge has been compressed by a high-pressure wave that is moving into the molecular cloud, demonstrating that dynamical and non-equilibrium effects are important for the cloud evolution.

  16. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  17. Beyond the pseudo-time-dependent approach: chemical models of dense core precursors

    CERN Document Server

    Hassel, G E; Bergin, E A

    2010-01-01

    Context: Chemical models of dense cloud cores often utilize the so-called pseudo-time-dependent approximation, in which the physical conditions are held fixed and uniform as the chemistry occurs. In this approximation, the initial abundances chosen, which are totally atomic in nature except for molecular hydrogen, are artificial. A more detailed approach to the chemistry of dense cold cores should include the physical evolution during their early stages of formation. Aims: Our major goal is to investigate the initial synthesis of molecular ices and gas-phase molecules as cold molecular gas begins to form behind a shock in the diffuse interstellar medium. The abundances calculated as the conditions evolve can then be utilized as reasonable initial conditions for a theory of the chemistry of dense cores. Methods: Hydrodynamic shock-wave simulations of the early stages of cold core formation are used to determine the time-dependent physical conditions for a gas-grain chemical network. We follow the cold post-sho...

  18. Spatially Resolved Chemistry in Nearby Galaxies III. Dense Molecular Gas in the Inner Disk of the LIRG IRAS 04296+2923

    CERN Document Server

    Meier, David S; Beck, Sara C

    2014-01-01

    We present a survey of 3 mm molecular lines in IRAS 04296+2923, one of the brightest known molecular-line emitting galaxies, and one of the closest LIRGs. Data are from the Owens Valley and CARMA millimeter interferometers. Species detected at ~10 M_sun/yr and is traced by lines of HCN, HCO+, HNC, and CN. A correlation between HCN and star formation rate is observed on sub-kpc scales, consistent with global relations. Toward the nucleus, CN abundances are similar to those of HCN, indicating emission comes from a collection (~40-50) of moderate visual extinction, photon-dominated region clouds. The CO isotopic line ratios are unusual: CO(1-0)/^13CO(1-0) and CO(1-0)/C^18O(1-0) line ratios are large toward the starburst, as is commonly observed in LIRGs, but farther out in the disk these ratios are remarkably low (~<3). ^13CO/C^18O abundance ratios are lower than in Galactic clouds, possibly because the C^18O is enriched by massive star ejecta from the starburst. ^13CO is underabundant relative to CO. Extende...

  19. Climate Response to Warm Cloud-Aerosol Interactions: Comparisons With Direct Aerosol and Long-Lived Greenhouse Gas Impacts

    Science.gov (United States)

    Ramaswamy, V.; Ming, Y.

    2006-12-01

    We employ the NOAA/ GFDL global atmospheric model coupled to a mixed-layer ocean to investigate the mechanisms and quantitative aspects underlying the radiative perturbations and climate response arising due to cloud-aerosol interactions in low-lying clouds. The aerosol species considered include sulfate, sea-salt and carbonaceous species, whose space-time distributions are determined offline by the MOZART 2 chemistry- transport model based on emissions data. The model's prognostic cloud scheme of liquid water and amount is expanded to include cloud droplet concentration in a way that importantly allows them to be computed using the same large-scale and convective updraft velocity field. The equilibrium response of the model's global climate system to the change in aerosols from pre- industrial to present-day is evaluated, in terms of the forcing applied and the role of the large- and cloud-scale feedback mechanisms. The cloud characteristics simulated are compared against observations, while the model's response is compared with that obtained from using a diagnostic aerosol-cloud relationship to highlight the significance of specific cloud microphysical processes. The spatial distributions of the thermal and hydrologic responses are also compared with those resulting from simulations performed for the pre-industrial to present-day direct aerosol effect. The temperature responses in the low and high latitudes, including changes in the large-scale precipitation pattern, are contrasted with those due to the well-mixed greenhouse gases. The forcing-response relationship is examined for the radiative perturbations investigated, with surface radiative forcing included in these considerations. We finally investigate the concept of linear additivity of the responses in various climate variables for the set of radiative perturbations considered above, extending from the global- and zonal-mean to continental scales.

  20. PRELIMINARY DISCUSS ON EXPLOSION SUPPRESSION TECHNIQUE OF FLAMMABLE GAS CLOUD%可燃气云抑爆技术初探

    Institute of Scientific and Technical Information of China (English)

    汪剑辉; 刘飞; 薛一江

    2011-01-01

    Tests indicate that the combustion reaction process of explosion can be refrained by spraying explosion suppression materials in the process of explosion triggered or initial explosion phrase of flammable gas cloud, then explosion reaction can be interrupted or explosion intensity will be weakened strongly. Inorganic powders, inactive gas, and water mist are excellent materials on explosion suppression, which are worthy of being used widely. The mechanisms on explosion suppression of flammable gas cloud were discussed, and the most important problems for subsequent study were pointed out, which provide the reference for the application of explosion suppression technology.%试验表明,在可燃气云爆炸引发过程或爆炸初始阶段,通过喷洒抑爆材料可抑制爆炸燃烧反应进程,继而中断爆炸反应或显著削弱爆炸强度.无机粉末、惰气和水雾是性价比较高的抑爆材料,具有大面积推广的价值.探讨了可燃气云的抑爆机理,并指出可燃气云抑爆技术后续研究中亟待解决的问题,为可燃气云抑爆技术的实际应用提供了技术参考.