WorldWideScience

Sample records for dense depth maps

  1. Dense depth maps from correspondences derived from perceived motion

    Science.gov (United States)

    Kirby, Richard; Whitaker, Ross

    2017-01-01

    Many computer vision applications require finding corresponding points between images and using the corresponding points to estimate disparity. Today's correspondence finding algorithms primarily use image features or pixel intensities common between image pairs. Some 3-D computer vision applications, however, do not produce the desired results using correspondences derived from image features or pixel intensities. Two examples are the multimodal camera rig and the center region of a coaxial camera rig. We present an image correspondence finding technique that aligns pairs of image sequences using optical flow fields. The optical flow fields provide information about the structure and motion of the scene, which are not available in still images but can be used in image alignment. We apply the technique to a dual focal length stereo camera rig consisting of a visible light-infrared camera pair and to a coaxial camera rig. We test our method on real image sequences and compare our results with the state-of-the-art multimodal and structure from motion (SfM) algorithms. Our method produces more accurate depth and scene velocity reconstruction estimates than the state-of-the-art multimodal and SfM algorithms.

  2. Constructing dense genetic linkage maps

    NARCIS (Netherlands)

    Jansen, J.; Jong, de A.G.; Ooijen, van J.W.

    2001-01-01

    This paper describes a novel combination of techniques for the construction of dense genetic linkage maps. The construction of such maps is hampered by the occurrence of even small proportions of typing errors. Simulated annealing is used to obtain the best map according to the optimality criterion:

  3. Photon counting compressive depth mapping

    CERN Document Server

    Howland, Gregory A; Ware, Matthew R; Howell, John C

    2013-01-01

    We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 x 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 x 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second.

  4. Dense Visual SLAM with Probabilistic Surfel Map.

    Science.gov (United States)

    Yan, Zhixin; Ye, Mao; Ren, Liu

    2017-11-01

    Visual SLAM is one of the key technologies to align the virtual and real world together in Augmented Reality applications. RGBD dense Visual SLAM approaches have shown their advantages in robustness and accuracy in recent years. However, there are still several challenges such as the inconsistencies in RGBD measurements across multiple frames that could jeopardize the accuracy of both camera trajectory and scene reconstruction. In this paper, we propose a novel map representation called Probabilistic Surfel Map (PSM) for dense visual SLAM. The main idea is to maintain a globally consistent map with both photometric and geometric uncertainties encoded in order to address the inconsistency issue. The key of our PSM is proper modeling and updating of sensor measurement uncertainties, as well as the strategies to apply them for improving both the front-end pose estimation and the back-end optimization. Experimental results on publicly available datasets demonstrate major improvements with our approach over the state-of-the-art methods. Specifically, comparing with σ-DVO, we achieve a 40% reduction in absolute trajectory error and an 18% reduction in relative pose error in visual odometry, as well as an 8.5% reduction in absolute trajectory error in complete SLAM. Moreover, our PSM enables generation of a high quality dense point cloud with comparable accuracy as the state-of-the-art approach.

  5. Temporal and Spatial Denoising of Depth Maps

    Directory of Open Access Journals (Sweden)

    Bor-Shing Lin

    2015-07-01

    Full Text Available This work presents a procedure for refining depth maps acquired using RGB-D (depth cameras. With numerous new structured-light RGB-D cameras, acquiring high-resolution depth maps has become easy. However, there are problems such as undesired occlusion, inaccurate depth values, and temporal variation of pixel values when using these cameras. In this paper, a proposed method based on an exemplar-based inpainting method is proposed to remove artefacts in depth maps obtained using RGB-D cameras. Exemplar-based inpainting has been used to repair an object-removed image. The concept underlying this inpainting method is similar to that underlying the procedure for padding the occlusions in the depth data obtained using RGB-D cameras. Therefore, our proposed method enhances and modifies the inpainting method for application in and the refinement of RGB-D depth data image quality. For evaluating the experimental results of the proposed method, our proposed method was tested on the Tsukuba Stereo Dataset, which contains a 3D video with the ground truths of depth maps, occlusion maps, RGB images, the peak signal-to-noise ratio, and the computational time as the evaluation metrics. Moreover, a set of self-recorded RGB-D depth maps and their refined versions are presented to show the effectiveness of the proposed method.

  6. Building a dense surface map incrementally from semi-dense point cloud and RGB images

    Institute of Scientific and Technical Information of China (English)

    Qian-shan LI; Rong XIONG; Shoudong HUANG; Yi-ming HUANG

    2015-01-01

    Building and using maps is a fundamental issue for bionic robots in fi eld applications. A dense surface map, which offers rich visual and geometric information, is an ideal representation of the environment for indoor/outdoor localization, navigation, and recognition tasks of these robots. Since most bionic robots can use only small light-weight laser scanners and cameras to acquire semi-dense point cloud and RGB images, we propose a method to generate a consistent and dense surface map from this kind of semi-dense point cloud and RGB images. The method contains two main steps: (1) generate a dense surface for every single scan of point cloud and its corresponding image(s) and (2) incrementally fuse the dense surface of a new scan into the whole map. In step (1) edge-aware resampling is realized by segmenting the scan of a point cloud in advance and resampling each sub-cloud separately. Noise within the scan is reduced and a dense surface is generated. In step (2) the average surface is estimated probabilistically and the non-coincidence of different scans is eliminated. Experiments demonstrate that our method works well in both indoor and outdoor semi-structured environments where there are regularly shaped ob jects.

  7. Depth-Dependent Halos : Illustrative Rendering of Dense Line Data

    NARCIS (Netherlands)

    Everts, Maarten H.; Bekker, Henk; Roerdink, Jos B.T.M.; Isenberg, Tobias

    2009-01-01

    We present a technique for the illustrative rendering of 3D line data at interactive frame rates. We create depth-dependent halos around lines to emphasize tight line bundles while less structured lines are de-emphasized. Moreover, the depth-dependent halos combined with depth cueing via line width

  8. Rapid haplotype reconstruction in predigrees with dense marker maps

    NARCIS (Netherlands)

    Windig, J.J.; Meuwissen, T.H.E.

    2004-01-01

    Reconstruction of marker phases is not straightforward when parents are untyped. In these cases information from other relatives has to be used. In dense marker maps, however, the space of possible haplotype configurations tends to be too large for procedures such as Monte Carlo Markov chains (MCMC)

  9. Comparing Dense Galaxy Cluster Redshift Surveys with Weak Lensing Maps

    CERN Document Server

    Hwang, Ho Seong; Diaferio, Antonaldo; Rines, Kenneth J; Zahid, H Jabran

    2014-01-01

    We use dense redshift surveys of nine galaxy clusters at $z\\sim0.2$ to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70--89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross correlate the galaxy number density maps with the weak-lensing maps. The cross correlation signal when we include foreground and background galaxies at 0.5$z_{\\rm cl}$20% for A383, A689 and A750). The fractional excess in the cross correlation signal including foreground and background structures could be a useful proxy for assessing th...

  10. Interactive Global Illumination Effects Using Deterministically Directed Layered Depth Maps

    DEFF Research Database (Denmark)

    Aalund, F. P.; Frisvad, Jeppe Revall; Bærentzen, Jakob Andreas

    2015-01-01

    A layered depth map is an extension of the well-known depth map used in rasterization. Multiple layered depth maps can be used as a coarse scene representation. We develop two global illumination methods which use said scene representation. The first is an interactive ambient occlusion method...

  11. Fast Facial Detection by Depth Map Analysis

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Shieh

    2013-01-01

    Full Text Available In order to obtain correct facial recognition results, one needs to adopt appropriate facial detection techniques. Moreover, the effects of facial detection are usually affected by the environmental conditions such as background, illumination, and complexity of objectives. In this paper, the proposed facial detection scheme, which is based on depth map analysis, aims to improve the effectiveness of facial detection and recognition under different environmental illumination conditions. The proposed procedures consist of scene depth determination, outline analysis, Haar-like classification, and related image processing operations. Since infrared light sources can be used to increase dark visibility, the active infrared visual images captured by a structured light sensory device such as Kinect will be less influenced by environmental lights. It benefits the accuracy of the facial detection. Therefore, the proposed system will detect the objective human and face firstly and obtain the relative position by structured light analysis. Next, the face can be determined by image processing operations. From the experimental results, it demonstrates that the proposed scheme not only improves facial detection under varying light conditions but also benefits facial recognition.

  12. The Depth Map Construction from a 3D Point Cloud

    OpenAIRE

    Chmelar Pavel; Beran Ladislav; Rejfek Lubos

    2016-01-01

    A depth map transforms 3D points into a 2D image and gives a different view of an observed scene. This paper deals with a depth map construction. It describes the whole process, how to transform any 3D point cloud into a 2D depth map. The described method uses 3D rotation matrixes and the line equation. This process allows to create the desired view from arbitrary point and rotation in an exploration space. Using of a depth map allows to apply image processing methods on depth data to get add...

  13. Mapping topographic plant location properties using a dense matching approach

    Science.gov (United States)

    Niederheiser, Robert; Rutzinger, Martin; Lamprecht, Andrea; Bardy-Durchhalter, Manfred; Pauli, Harald; Winkler, Manuela

    2017-04-01

    Within the project MEDIALPS (Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains) six regions in Alpine and in Mediterranean mountain regions are investigated to assess how plant species respond to climate change. The project is embedded in the Global Observation Research Initiative in Alpine Environments (GLORIA), which is a well-established global monitoring initiative for systematic observation of changes in the plant species composition and soil temperature on mountain summits worldwide to discern accelerating climate change pressures on these fragile alpine ecosystems. Close-range sensing techniques such as terrestrial photogrammetry are well suited for mapping terrain topography of small areas with high resolution. Lightweight equipment, flexible positioning for image acquisition in the field, and independence on weather conditions (i.e. wind) make this a feasible method for in-situ data collection. New developments of dense matching approaches allow high quality 3D terrain mapping with less requirements for field set-up. However, challenges occur in post-processing and required data storage if many sites have to be mapped. Within MEDIALPS dense matching is used for mapping high resolution topography for 284 3x3 meter plots deriving information on vegetation coverage, roughness, slope, aspect and modelled solar radiation. This information helps identifying types of topography-dependent ecological growing conditions and evaluating the potential for existing refugial locations for specific plant species under climate change. This research is conducted within the project MEDIALPS - Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains funded by the Earth System Sciences Programme of the Austrian Academy of Sciences.

  14. Robotic Mapping and Localization with Real-Time Dense Stereo on Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    John Kalomiros

    2010-01-01

    Full Text Available A reconfigurable architecture for dense stereo is presented as an observation framework for a real-time implementation of the simultaneous localization and mapping problem in robotics. The reconfigurable sensor detects point features from stereo image pairs to use at the measurement update stage of the procedure. The main hardware blocks are a dense depth stereo accelerator, a left and right image corner detector, and a stage performing left-right consistency check. For the stereo-processor stage, we have implemented and tested a global-matching component based on a maximum-likelihood dynamic programming technique. The system includes a Nios II processor for data control and a USB 2.0 interface for host communication. Remote control is used to guide a vehicle equipped with a stereo head in an indoor environment. The FastSLAM Bayesian algorithm is applied in order to track and update observations and the robot path in real time. The system is assessed using real scene depth detection and public reference data sets. The paper also reports resource usage and a comparison of mapping and localization results with ground truth.

  15. Technique of Embedding Depth Maps into 2D Images

    Institute of Scientific and Technical Information of China (English)

    Kazutake Uehira; Hiroshi Unno; Youichi Takashima

    2014-01-01

    This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.

  16. KINECT V2 AND RGB STEREO CAMERAS INTEGRATION FOR DEPTH MAP ENHANCEMENT

    OpenAIRE

    Ravanelli, R.; A. Nascetti; Crespi, M.

    2016-01-01

    Today range cameras are widespread low-cost sensors based on two different principles of operation: we can distinguish between Structured Light (SL) range cameras (Kinect v1, Structure Sensor, ...) and Time Of Flight (ToF) range cameras (Kinect v2, ...). Both the types are easy to use 3D scanners, able to reconstruct dense point clouds at high frame rate. However the depth maps obtained are often noisy and not enough accurate, therefore it is generally essential to improve their qual...

  17. Mapping Alpine Vegetation Location Properties by Dense Matching

    Science.gov (United States)

    Niederheiser, Robert; Rutzinger, Martin; Lamprecht, Andrea; Steinbauer, Klaus; Winkler, Manuela; Pauli, Harald

    2016-06-01

    Highly accurate 3D micro topographic mapping in mountain research demands for light equipment and low cost solutions. Recent developments in structure from motion and dense matching techniques provide promising tools for such applications. In the following, the feasibility of terrestrial photogrammetry for mapping topographic location properties of sparsely vegetated areas in selected European mountain regions is investigated. Changes in species composition at alpine vegetation locations are indicators of climate change consequences, such as the pronounced rise of average temperatures in mountains compared to the global average. Better understanding of climate change effects on plants demand for investigations on a micro-topographic scale. We use professional and consumer grade digital single-lens reflex cameras mapping 288 plots each 3 x 3 m on 18 summits in the Alps and Mediterranean Mountains within the GLORIA (GLobal Observation Research Initiative in Alpine environments) network. Image matching tests result in accuracies that are in the order of millimetres in the XY-plane and below 0.5 mm in Z-direction at the second image pyramid level. Reconstructing vegetation proves to be a challenge due to its fine and small structured architecture and its permanent movement by wind during image acquisition, which is omnipresent on mountain summits. The produced 3D point clouds are gridded to 6 mm resolution from which topographic parameters such as slope, aspect and roughness are derived. At a later project stage these parameters will be statistically linked to botanical reference data in order to conclude on relations between specific location properties and species compositions.

  18. St. John Benthic Habitat Mapping - Moderate Depth Ground Validation Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic habitats of the moderate-depth marine environment in and around the Virgin Islands Coral Reef National Monument were mapped using a combination of...

  19. Real-time depth map manipulation for 3D visualization

    Science.gov (United States)

    Ideses, Ianir; Fishbain, Barak; Yaroslavsky, Leonid

    2009-02-01

    One of the key aspects of 3D visualization is computation of depth maps. Depth maps enables synthesis of 3D video from 2D video and use of multi-view displays. Depth maps can be acquired in several ways. One method is to measure the real 3D properties of the scene objects. Other methods rely on using two cameras and computing the correspondence for each pixel. Once a depth map is acquired for every frame, it can be used to construct its artificial stereo pair. There are many known methods for computing the optical flow between adjacent video frames. The drawback of these methods is that they require extensive computation power and are not very well suited to high quality real-time 3D rendering. One efficient method for computing depth maps is extraction of motion vector information from standard video encoders. In this paper we present methods to improve the 3D visualization quality acquired from compression CODECS by spatial/temporal and logical operations and manipulations. We show how an efficient real time implementation of spatial-temporal local order statistics such as median and local adaptive filtering in 3D-DCT domain can substantially improve the quality of depth maps and consequently 3D video while retaining real-time rendering. Real-time performance is achived by utilizing multi-core technology using standard parallelization algorithms and libraries (OpenMP, IPP).

  20. Erosion and deposition in depth-averaged models of dense, dry, inclined, granular flows

    Science.gov (United States)

    Jenkins, James T.; Berzi, Diego

    2016-11-01

    We derive expressions for the rates of erosion and deposition at the interface between a dense, dry, inclined granular flow and an erodible bed. In obtaining these, we assume that the interface between the flowing grains and the bed moves with the speed of a pressure wave in the flow, for deposition, or with the speed of a disturbance through the contacting particles in the bed, for erosion. We employ the expressions for the rates of erosion and deposition to show that after an abrupt change in the angle of inclination of the bed the characteristic time for the motion of the interface is much shorter than the characteristic time of the flow. This eliminates the need for introducing models of erosion and deposition rate in the mass balance; and the instantaneous value of the particle flux is the same function of the instantaneous value of the flow depth as in a steady, uniform flow.

  1. Plenoptic depth map in the case of occlusions

    Science.gov (United States)

    Yu, Zhan; Yu, Jingyi; Lumsdaine, Andrew; Georgiev, Todor

    2013-03-01

    Recent realizations of hand-held plenoptic cameras have given rise to previously unexplored effects in photography. Designing a mobile phone plenoptic camera is becoming feasible with the significant increase of computing power of mobile devices and the introduction of System on a Chip. However, capturing high numbers of views is still impractical due to special requirements such as ultra-thin camera and low costs. In this paper, we analyze a mobile plenoptic camera solution with a small number of views. Such a camera can produce a refocusable high resolution final image if a depth map is generated for every pixel in the sparse set of views. With the captured multi-view images, the obstacle to recovering a high-resolution depth is occlusions. To robustly resolve these, we first analyze the behavior of pixels in such situations. We show that even under severe occlusion, one can still distinguish different depth layers based on statistics. We estimate the depth of each pixel by discretizing the space in the scene and conducting plane sweeping. Specifically, for each given depth, we gather all corresponding pixels from other views and model the in-focus pixels as a Gaussian distribution. We show how it is possible to distinguish occlusion pixels, and in-focus pixels in order to find the depths. Final depth maps are computed in real scenes captured by a mobile plenoptic camera.

  2. Efficient Depth Map Compression Exploiting Segmented Color Data

    DEFF Research Database (Denmark)

    Milani, Simone; Zanuttigh, Pietro; Zamarin, Marco;

    2011-01-01

    performances is still an open research issue. This paper presents a novel compression scheme that exploits a segmentation of the color data to predict the shape of the different surfaces in the depth map. Then each segment is approximated with a parameterized plane. In case the approximation is sufficiently...

  3. Efficient Depth Map Compression Exploiting Segmented Color Data

    DEFF Research Database (Denmark)

    Milani, Simone; Zanuttigh, Pietro; Zamarin, Marco

    2011-01-01

    performances is still an open research issue. This paper presents a novel compression scheme that exploits a segmentation of the color data to predict the shape of the different surfaces in the depth map. Then each segment is approximated with a parameterized plane. In case the approximation is sufficiently...

  4. Depth-Trim Mapping Control of Underwater Vehicle with Fins

    Institute of Scientific and Technical Information of China (English)

    LI Ye; PANG Yong-jie; HUANG Shu-ling; WAN Lei

    2011-01-01

    Underwater vehicle plays an important role in ocean engineering.Depth control by fin is one of the difficulties for underwater vehicle in motion control.Depth control is indirect due to the freedom coupling between trim and axial motion.It includes the method of dynamic analysis and lift-resistance-coefficient experiment and theory algorithm.By considering the current speed and depth deviation,comprehensive interpretation is used in object-planning instruction.Expected depth is transformed into expected trim.Dynamic output fluctuation can be avoided,which is caused by linear mapping of deviation.It is steady and accurate for the motion of controlled underwater vehicles.The feasibility and efficiency of the control method are testified in the pool and natural area for experiments.

  5. High-dimensional camera shake removal with given depth map.

    Science.gov (United States)

    Yue, Tao; Suo, Jinli; Dai, Qionghai

    2014-06-01

    Camera motion blur is drastically nonuniform for large depth-range scenes, and the nonuniformity caused by camera translation is depth dependent but not the case for camera rotations. To restore the blurry images of large-depth-range scenes deteriorated by arbitrary camera motion, we build an image blur model considering 6-degrees of freedom (DoF) of camera motion with a given scene depth map. To make this 6D depth-aware model tractable, we propose a novel parametrization strategy to reduce the number of variables and an effective method to estimate high-dimensional camera motion as well. The number of variables is reduced by temporal sampling motion function, which describes the 6-DoF camera motion by sampling the camera trajectory uniformly in time domain. To effectively estimate the high-dimensional camera motion parameters, we construct the probabilistic motion density function (PMDF) to describe the probability distribution of camera poses during exposure, and apply it as a unified constraint to guide the convergence of the iterative deblurring algorithm. Specifically, PMDF is computed through a back projection from 2D local blur kernels to 6D camera motion parameter space and robust voting. We conduct a series of experiments on both synthetic and real captured data, and validate that our method achieves better performance than existing uniform methods and nonuniform methods on large-depth-range scenes.

  6. Depth Map Calculation for Autostereoscopic 3D Display

    OpenAIRE

    IVANČÁK Peter; Hrozek, František

    2012-01-01

    Creation of content for 3D displays is veryactual problematic. This paper focus on thisproblematic and is divided into two parts. First partpresents various 3D displays and displayingtechnologies, especially stereoscopic displays – passive,active and autostereoscopic. Second part presentsapplication that calculates depth map fromstereoscopic image and was developed at DCI FEEITU of Košice (Department of computersand informatics, Faculty of electrical engineeringand informatics, Technical univ...

  7. Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations

    Science.gov (United States)

    Bühler, Yves; Adams, Marc S.; Bösch, Ruedi; Stoffel, Andreas

    2016-05-01

    Detailed information on the spatiotemporal snow depth distribution is a crucial input for numerous applications in hydrology, climatology, ecology and avalanche research. Today, snow depth distribution is usually estimated by combining point measurements from weather stations or observers in the field with spatial interpolation algorithms. However, even a dense measurement network like the one in Switzerland, with more than one measurement station per 10 km2 on average, is not able to capture the large spatial variability of snow depth present in alpine terrain.Remote sensing methods, such as laser scanning or digital photogrammetry, have recently been successfully applied to map snow depth variability at local and regional scales. However, in most countries such data acquisition is costly if manned airplanes are involved. The effectiveness of ground-based measurements on the other hand is often hindered by occlusions, due to the complex terrain or acute viewing angles. In this paper, we investigate the application of unmanned aerial systems (UASs), in combination with structure-from-motion photogrammetry, to map snow depth distribution. Compared to manual measurements, such systems are relatively cost-effective and can be applied very flexibly to cover terrain not accessible from the ground. In this study, we map snow depth at two different locations: (a) a sheltered location at the bottom of the Flüela valley (1900 m a.s.l.) and (b) an exposed location on a peak (2500 m a.s.l.) in the ski resort Jakobshorn, both in the vicinity of Davos, Switzerland. At the first test site, we monitor the ablation on three different dates. We validate the photogrammetric snow depth maps using simultaneously acquired manual snow depth measurements. The resulting snow depth values have a root mean square error (RMSE) of less than 0.07 to 0.15 m on meadows and rocks and a RMSE of less than 0.30 m on sections covered by bushes or tall grass, compared to manual probe measurements

  8. Depth Averaged Equations Applied To Study of Defense Structures Effects On Dense Avalanche Flows

    Science.gov (United States)

    Naaim, M.; Bouvet-Naaim, F.; Faug, T.; Lachamp, P.

    Avalanche zoning and protection devices are the complementary tools used to assess avalanche risk and protect persons and human activities in mountainous areas. Despite the intensive use of defense structures as protection against avalanches, their hydraulic and structural effects are not well known. Many structures were designed empirically using expert knowledge or knowledge developed in other domain such as hydraulic. Defence structures effects in terms of energy dissipation, deviation and snow retention are difficult to study in situ. The cost and difficulties of experiments, the danger and the weak annual number of avalanches in a given site, are the reasons why scientists oriented their research towards the use of numerical or laboratory physical models. This paper presents and discuss the possibilities to use depth averaged equations to study dense avalanche flows around defence structures. The used numerical resolu- tion method is based on an upwind numerical scheme. Equations are integrated on each cell of the mesh and the numerical fluxes are calculated thanks to a simplified Riemann solver where the retained solution is obtained as a combination of shock and rarefaction founctions. This allows taking into account the topography variation and jets and surges presence. These two characteristics are needed because both exper- imental and in situ observations showed a significant topography modifications and jets and surges formations during interaction between avalanche flows and structures. The case of vertical surfaces such as those made of concrete destined to deviate flows are treated by appropriated boundary condition functions. A discussion about the best way to integrate defence structures in such model is presented and discussed. This modelisation has, in a first time, been tested on analytical solutions and on experimen- tal laboratory scale model results. These tests have shown the capacity of this model, despite the strong hypothesis, to

  9. Dense 3D Map Construction for Indoor Search and Rescue

    DEFF Research Database (Denmark)

    Ellekilde, Lars-Peter; Huang, Shoudong; Miró, Jaime Valls

    2007-01-01

    The main contribution of this paper is a new simultaneous localization and mapping  SLAM algorithm for building dense three-dimensional maps using information ac- quired from a range imager and a conventional camera, for robotic search and rescue in unstructured indoor environments. A key challen...... invariant feature transformation SIFT feature detection and matching, random sampling consensus RANSAC , and least square 3D point sets ?tting. Experimental results are provided to demonstrate the effectiveness of the techniques developed.......The main contribution of this paper is a new simultaneous localization and mapping  SLAM algorithm for building dense three-dimensional maps using information ac- quired from a range imager and a conventional camera, for robotic search and rescue in unstructured indoor environments. A key challenge...

  10. Indoor Positioning System Using Depth Maps and Wireless Networks

    Directory of Open Access Journals (Sweden)

    Jaime Duque Domingo

    2016-01-01

    Full Text Available This work presents a new Indoor Positioning System (IPS based on the combination of WiFi Positioning System (WPS and depth maps, for estimating the location of people. The combination of both technologies improves the efficiency of existing methods, based uniquely on wireless positioning techniques. While other positioning systems force users to wear special devices, the system proposed in this paper just requires the use of smartphones, besides the installation of RGB-D sensors in the sensing area. Furthermore, the system is not intrusive, being not necessary to know people’s identity. The paper exposes the method developed for putting together and exploiting both types of sensory information with positioning purposes: the measurements of the level of the signal received from different access points (APs of the wireless network and the depth maps provided by the RGB-D cameras. The obtained results show a significant improvement in terms of positioning with respect to common WiFi-based systems.

  11. Prediction of total genetic value using genome-wide dense marker maps

    NARCIS (Netherlands)

    Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E.

    2001-01-01

    Recent advances in molecular genetic techniques will make dense marker maps available and genotyping many individuals for these markers feasible. Here we attempted to estimate the effects of ∼50,000 marker haplotypes simultaneously from a limited number of phenotypic records. A genome of 1000 cM was

  12. Depth map upsampling using joint edge-guided convolutional neural network for virtual view synthesizing

    Science.gov (United States)

    Dong, Yan; Lin, Chunyu; Zhao, Yao; Yao, Chao

    2017-07-01

    In texture-plus-depth format of three-dimensional visual data, both texture and depth maps are required to synthesize a desired view via depth-image-based rendering. However, the depth maps captured or estimated always exist with low resolution compared to their corresponding texture images. We introduce a joint edge-guided convolutional neural network that upsamples the resolution of a depth map on the premise of synthesized view quality. The network takes the low-resolution depth map as an input using a joint edge feature extracted from the depth map and the registered texture image as a reference, and then produces a high-resolution depth map. We further use local constraints that preserve smooth regions and sharp edges so as to improve the quality of the depth map and synthesized view. Finally, a global looping optimization is performed with virtual view quality as guidance in the recovery process. We train our model using pairs of depth maps and texture images and then make tests on other depth maps and video sequences. The experimental results demonstrate that our scheme outperforms existing methods both in the quality of the depth maps and synthesized views.

  13. The First Automatic Survey of Impact Craters on Mars: Global Maps of Depth/Diameter Ratio

    Science.gov (United States)

    Stepinski, T. F.; Urbach, E. R.

    2009-03-01

    The catalog of 75,919 craters on Mars is compiled by a computer algorithm. Using crater depths listed by this catalog, global maps of depth/diameter ratio are created. Such maps indicate existence of cryosphere at depths that varies with latitude.

  14. Investigation of Dense Sand Properties in Shallow Depth using CPT and DMT

    DEFF Research Database (Denmark)

    Gaydadzhiew, Dimitar Todorov; Puscasu, Ionut; Vaitkunaite, Evelina;

    2015-01-01

    ABSTRACT: The present paper is an investigation of the soil parameters of the given Aalborg University Sand No. 1 using the Flat Dilatometer Test (DMT) and the Cone Penetration Test (CPT). This clean sand type is considered to be similar to the sands found in the North Sea area. The research...... is mainly based on experimental laboratory testing, followed by computer assisted data interpretation. The mentioned tools are used in testing the sand properties in shallow depth and examining any occurrence of an effect induced by the limited size of the laboratory set-up....

  15. Mapping Craters Depths in Terra Cimmeria, Mars: Implications for Spatial Distribution of Ground Ice

    Science.gov (United States)

    Stepinski, T. F.; Urbach, E. R.

    2007-07-01

    Spatial distribution of ground ice is derived from maps of depth/diameter ratio obtained using 7845 craters in the T. Cimmeria region. The result supports models predictions, and indicates spatial variability of depth to ice in the equatorial zone.

  16. An ultra-dense SNP linkage map for the octoploid, cultivated strawberry and its application in genetic research

    Science.gov (United States)

    We will present an ultra-dense genetic linkage map for the octoploid, cultivated strawberry (Fragaria x ananassa) consisting of over 13K Axiom® based SNP markers and 150 previously mapped reference SSR loci. The high quality of the map is demonstrated by the short sizes of each of the 28 linkage gro...

  17. Land Cover and Permafrost Change Mapping Using Dense Time Stacks of Landsat and Quickbird Imagery

    Science.gov (United States)

    Nyland, K. E.; Streletskiy, D. A.; Shiklomanov, N. I.

    2014-12-01

    Climate change is especially pronounced in the Arctic, and regions on permafrost are at the frontier of these changes. Increasing air temperatures affect the extent, type, and characteristics of permafrost which is critical to many natural phenomena and northern infrastructure. In areas of discontinuous permafrost certain land cover types are indicative of permafrost conditions making satellite imagery an important tool for assessing environmental change in these remote areas. In arctic environments remote sensing can be particularly challenging due to consistently high cloud cover, data gaps, and landscape heterogeneity. However, there has been success at dealing with such challenges in lower latitude regions using the emerging dense time stack methodology. In place of using an anniversary date for land cover comparisons from different years, this methodology includes scenes from all seasons in addition to imagery normally rejected due to data gaps and high amounts of cloud cover. The incorporation of all available data creates a "dense time stack" which provides both a more complete dataset and more nuanced spectral signatures for classification. This work applied the dense time stack method to mapping five drainage basins in the close vicinity of the city of Igarka, Russia using both Landsat and Quickbird satellite imagery. The resulting map series proved this method to be effective within the Arctic for multiscalar mapping both temporally (annual and seasonal) and spatially (at the resolutions of Landsat and Quickbird). The time series of observed land cover changes produced allowed areas of permafrost degradation to be identified. These maps will be applied in the future to ongoing hydrological research in the region investigating the sources of increased run off and its relation to permafrost degradation.

  18. Tight coupling UFMArcGIS for simulating inundation depth in densely area

    Science.gov (United States)

    Kang, S. H.

    2010-07-01

    The integration of hydrological models and Geographical Information Systems (GIS) usually takes two approaches: loose coupling and tight coupling. This paper presents a tight coupling approach within a GIS environment that is achieved by integrating the urban flood model with the macro language of GIS. Such an approach affords an uncomplicated way to capitalize on the GIS visualization and spatial analysis functions, thereby significantly supporting the dynamic simulation process of hydrological modeling. The tight coupling approach is illustrated by UFMArcGIS (Urban Flood Model with ArcGIS), which is a realization of an urban flood model integrated with the VBA (visual basic of application) language of ArcGIS. Within this model, major stages of model structures are created from the initial parameter input and transformation of datasets, intermediate maps are then visualized, and the results are finally presented in various graphical formats in their geographic context. This approach provides a convenient and single environment in which users can visually interact with the model, e.g. by adjusting parameters while simultaneously observing the corresponding results. This significantly facilitates users in the exploratory data analysis and decision-making stages in terms of the model applications.

  19. Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin

    Science.gov (United States)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2016-12-01

    The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.

  20. Wyner-Ziv Coding of Depth Maps Exploiting Color Motion Information

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Zamarin, Marco; Forchhammer, Søren

    2013-01-01

    of depth maps exploiting corresponding color information is proposed. Due to the high correlation of the motion in color and corresponding depth videos, motion information from the decoded color signal can effectively be exploited to generate accurate side information for the depth signal, allowing...

  1. Kinect v2 and RGB Stereo Cameras Integration for Depth Map Enhancement

    Science.gov (United States)

    Ravanelli, R.; Nascetti, A.; Crespi, M.

    2016-06-01

    Today range cameras are widespread low-cost sensors based on two different principles of operation: we can distinguish between Structured Light (SL) range cameras (Kinect v1, Structure Sensor, ...) and Time Of Flight (ToF) range cameras (Kinect v2, ...). Both the types are easy to use 3D scanners, able to reconstruct dense point clouds at high frame rate. However the depth maps obtained are often noisy and not enough accurate, therefore it is generally essential to improve their quality. Standard RGB cameras can be a valuable solution to solve such issue. The aim of this paper is therefore to evaluate the integration feasibility of these two different 3D modelling techniques, characterized by complementary features and based on standard low-cost sensors. For this purpose, a 3D model of a DUPLOTM bricks construction was reconstructed both with the Kinect v2 range camera and by processing one stereo pair acquired with a Canon Eos 1200D DSLR camera. The scale of the photgrammetric model was retrieved from the coordinates measured by Kinect v2. The preliminary results are encouraging and show that the foreseen integration could lead to an higher metric accuracy and a major level of completeness with respect to that obtained by using only separated techniques.

  2. Mapping water table depth using geophysical and environmental variables.

    Science.gov (United States)

    Buchanan, S; Triantafilis, J

    2009-01-01

    Despite its importance, accurate representation of the spatial distribution of water table depth remains one of the greatest deficiencies in many hydrological investigations. Historically, both inverse distance weighting (IDW) and ordinary kriging (OK) have been used to interpolate depths. These methods, however, have major limitations: namely they require large numbers of measurements to represent the spatial variability of water table depth and they do not represent the variation between measurement points. We address this issue by assessing the benefits of using stepwise multiple linear regression (MLR) with three different ancillary data sets to predict the water table depth at 100-m intervals. The ancillary data sets used are Electromagnetic (EM34 and EM38), gamma radiometric: potassium (K), uranium (eU), thorium (eTh), total count (TC), and morphometric data. Results show that MLR offers significant precision and accuracy benefits over OK and IDW. Inclusion of the morphometric data set yielded the greatest (16%) improvement in prediction accuracy compared with IDW, followed by the electromagnetic data set (5%). Use of the gamma radiometric data set showed no improvement. The greatest improvement, however, resulted when all data sets were combined (37% increase in prediction accuracy over IDW). Significantly, however, the use of MLR also allows for prediction in variations in water table depth between measurement points, which is crucial for land management.

  3. Optical depth estimates and effective critical densities of dense gas tracers in the inner parts of nearby galaxy discs

    Science.gov (United States)

    Jiménez-Donaire, M. J.; Bigiel, F.; Leroy, A. K.; Cormier, D.; Gallagher, M.; Usero, A.; Bolatto, A.; Colombo, D.; García-Burillo, S.; Hughes, A.; Kramer, C.; Krumholz, M. R.; Meier, D. S.; Murphy, E.; Pety, J.; Rosolowsky, E.; Schinnerer, E.; Schruba, A.; Tomičić, N.; Zschaechner, L.

    2017-04-01

    High critical density molecular lines like HCN (1-0) or HCO+ (1-0) represent our best tool to study currently star-forming, dense molecular gas at extragalactic distances. The optical depth of these lines is a key ingredient to estimate the effective density required to excite emission. However, constraints on this quantity are even scarcer in the literature than measurements of the high-density tracers themselves. Here, we combine new observations of HCN, HCO+ and HNC (1-0) and their optically thin isotopologues H13CN, H13CO+ and HN13C (1-0) to measure isotopologue line ratios. We use IRAM 30-m observations from the large programme EMPIRE and new Atacama Large Millimetre/submillimetre Array observations, which together target six nearby star-forming galaxies. Using spectral stacking techniques, we calculate or place strong upper limits on the HCN/H13CN, HCO+/H13CO+ and HNC/HN13C line ratios in the inner parts of these galaxies. Under simple assumptions, we use these to estimate the optical depths of HCN (1-0) and HCO+ (1-0) to be τ ∼ 2-11 in the active, inner regions of our targets. The critical densities are consequently lowered to values between 5 and 20 × 105 cm-3, 1 and 3 × 105 cm-3 and 9 × 104 cm-3 for HCN, HCO+ and HNC, respectively. We study the impact of having different beam-filling factors, η, on these estimates and find that the effective critical densities decrease by a factor of η _{12}/η _{13} τ_{12}. A comparison to existing work in NGC 5194 and NGC 253 shows the HCN/H13CN and HCO+/H13CO+ ratios in agreement with our measurements within the uncertainties. The same is true for studies in other environments such as the Galactic Centre or nuclear regions of active galactic nucleus dominated nearby galaxies.

  4. Tsunami inundation modelling based on detailed roughness maps of densely populated areas

    Directory of Open Access Journals (Sweden)

    G. Gayer

    2010-08-01

    Full Text Available An important part within the German-Indonesian Tsunami Early Warning System (GITEWS project was the detailed numerical investigation of the impact of tsunamis in densely populated coastal areas of Indonesia. This work, carried out by the German Research Centre Geesthacht (GKSS, in co-operation with DHI-WASY, also provides the basis for the preparation of high resolution hazard and risk maps by the German Aerospace Center (DLR.

    In this paper a method is described of how to prepare very detailed roughness maps for scenario computations performed with the MIKE 21 Flow Model FM in three highly resolved (~10 m priority regions, namely Kuta (Bali, Padang (West-Sumatra, and Cilacap (southern coast of Java. Roughness values are assigned to 43 land use classes, e.g. different types of buildings, rural and urban sub-areas, by using equivalent coefficients found in literature or by performing numerical experiments.

    Comparisons of simulations using differentiated roughness maps with simulations using constant values (a widely used approach are presented and it is demonstrated that roughness takes considerable influence on run-up and inundation.

    Out of all simulations, the results of the worst case scenarios for each of the three priority areas are discussed. Earthquakes with magnitudes of MW=8.5 or higher lead to considerable inundation in all study sites. A spatially distinguished consideration of roughness has been found to be necessary for detailed modelling onshore.

  5. Tsunami inundation modelling based on detailed roughness maps of densely populated areas

    Science.gov (United States)

    Gayer, G.; Leschka, S.; Nöhren, I.; Larsen, O.; Günther, H.

    2010-08-01

    An important part within the German-Indonesian Tsunami Early Warning System (GITEWS) project was the detailed numerical investigation of the impact of tsunamis in densely populated coastal areas of Indonesia. This work, carried out by the German Research Centre Geesthacht (GKSS), in co-operation with DHI-WASY, also provides the basis for the preparation of high resolution hazard and risk maps by the German Aerospace Center (DLR). In this paper a method is described of how to prepare very detailed roughness maps for scenario computations performed with the MIKE 21 Flow Model FM in three highly resolved (~10 m) priority regions, namely Kuta (Bali), Padang (West-Sumatra), and Cilacap (southern coast of Java). Roughness values are assigned to 43 land use classes, e.g. different types of buildings, rural and urban sub-areas, by using equivalent coefficients found in literature or by performing numerical experiments. Comparisons of simulations using differentiated roughness maps with simulations using constant values (a widely used approach) are presented and it is demonstrated that roughness takes considerable influence on run-up and inundation. Out of all simulations, the results of the worst case scenarios for each of the three priority areas are discussed. Earthquakes with magnitudes of MW=8.5 or higher lead to considerable inundation in all study sites. A spatially distinguished consideration of roughness has been found to be necessary for detailed modelling onshore.

  6. Non-wandering points and the depth for graph maps

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Let G be a graph and f: G → G be continuous. Denote by R(f) and Ω(f) the set of recurrent points and the set of non-wandering points of f respectively. Let Ω0 (f) = G and Ωn (f) =Ω(f|Ωn-1(f)) for all n ∈ N. The minimal m ∈ NU {∞} such that Ωm(f) = Ωm+1(f) is called the depth of f. In this paper, we show that Ω2(f) = R(f) and the depth of f is at most 2. Furthermore, we obtain some properties of non-wandering points of f.

  7. Deep ReMi Imaging - Mapping Shear-Wave Velocities to 1 km Depth and Greater Using Refraction Microtremor

    Science.gov (United States)

    Louie, J. N.; Pancha, A.; Munger, D.; Law, C.; Adams, D.; Mick, T. M.; Pullammanappallil, S. K.

    2016-12-01

    The Refraction Microtremor (ReMi) surface-wave technique, in use since 2002, has become a standard tool for assessing urban shear-wave velocities for engineering applications. ReMi is effective for site-class studies as well as assessing ground conditions, including 1D and 2D velocity-depth profiling to shallow depths of approximately 100 m. Over the last few years, we have successfully extended the application of the method to depths greater than 1 km. The use of deep ReMi, which relies primarily on ambient noise, for estimation of shear-wave velocities to kilometer depths, allows for mapping the thickness and velocity of deep urban basins. Accurate 3D modeling and calibration of recorded earthquake ground motions in urban areas is one use of deep ReMi results. Such models have the potential to be an essential part of seismic hazard evaluation. We present results from several deep ReMi studies conducted in the Reno-area and Tahoe basins of Nevada and California. Wireless instruments coupled with low-frequency geophones deployed in 3-km-long arrays across the densely populated urban environment acquired data in 2012, 2014, and 2015. In addition to mapping basement as deep as 900 m, the lateral velocity variations reveal deep-seated fault structure in the initial studies. A study of the Reno-area basin in 2016 employed arrays of 90 IRIS-PASSCAL Texans, 15 and 22 km long. This data set appears to constrain a sub-basin interface between Tertiary volcanics and Mesozoic basement at 1-2 km depth. Characterization of shear velocity at greater than 100 m depth, to basement, along with previously unknown faults, is vital towards quantifying earthquake ground motion and seismic hazard potential in geologically complex urban basins. Our measurements will allow Nevada communities to become more resilient against natural hazards.

  8. Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis.

    Science.gov (United States)

    Liu, Jimmy Z; Almarri, Mohamed A; Gaffney, Daniel J; Mells, George F; Jostins, Luke; Cordell, Heather J; Ducker, Samantha J; Day, Darren B; Heneghan, Michael A; Neuberger, James M; Donaldson, Peter T; Bathgate, Andrew J; Burroughs, Andrew; Davies, Mervyn H; Jones, David E; Alexander, Graeme J; Barrett, Jeffrey C; Sandford, Richard N; Anderson, Carl A

    2012-10-01

    We genotyped 2,861 cases of primary biliary cirrhosis (PBC) from the UK PBC Consortium and 8,514 UK population controls across 196,524 variants within 186 known autoimmune risk loci. We identified 3 loci newly associated with PBC (at P0.8) with the most associated variant at the locus. We found multiple independent common, low-frequency and rare variant association signals at five loci. Of the 26 independent non-human leukocyte antigen (HLA) signals tagged on the Immunochip, 15 have SNPs in B-lymphoblastoid open chromatin regions in high LD (r2>0.8) with the most associated variant. This study shows how data from dense fine-mapping arrays coupled with functional genomic data can be used to identify candidate causal variants for functional follow-up.

  9. An in-depth map of polyadenylation sites in cancer.

    Science.gov (United States)

    Lin, Yuefeng; Li, Zhihua; Ozsolak, Fatih; Kim, Sang Woo; Arango-Argoty, Gustavo; Liu, Teresa T; Tenenbaum, Scott A; Bailey, Timothy; Monaghan, A Paula; Milos, Patrice M; John, Bino

    2012-09-01

    We present a comprehensive map of over 1 million polyadenylation sites and quantify their usage in major cancers and tumor cell lines using direct RNA sequencing. We built the Expression and Polyadenylation Database to enable the visualization of the polyadenylation maps in various cancers and to facilitate the discovery of novel genes and gene isoforms that are potentially important to tumorigenesis. Analyses of polyadenylation sites indicate that a large fraction (∼30%) of mRNAs contain alternative polyadenylation sites in their 3' untranslated regions, independent of the cell type. The shortest 3' untranslated region isoforms are preferentially upregulated in cancer tissues, genome-wide. Candidate targets of alternative polyadenylation-mediated upregulation of short isoforms include POLR2K, and signaling cascades of cell-cell and cell-extracellular matrix contact, particularly involving regulators of Rho GTPases. Polyadenylation maps also helped to improve 3' untranslated region annotations and identify candidate regulatory marks such as sequence motifs, H3K36Me3 and Pabpc1 that are isoform dependent and occur in a position-specific manner. In summary, these results highlight the need to go beyond monitoring only the cumulative transcript levels for a gene, to separately analysing the expression of its RNA isoforms.

  10. Depth

    NARCIS (Netherlands)

    Koenderink, J.J.; Van Doorn, A.J.; Wagemans, J.

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the f

  11. Depth

    NARCIS (Netherlands)

    Koenderink, J.J.; Van Doorn, A.J.; Wagemans, J.

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the

  12. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  13. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  14. The Green Bank Telescope Maps the Dense, Star-Forming Gas in the Nearby Starburst Galaxy M82

    CERN Document Server

    Kepley, Amanda A; Frayer, David; Usero, Antonio; Marvil, Josh; Walter, Fabian

    2013-01-01

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO+. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope -- the largest single-dish millimeter radio telescope -- for mapping dense gas in galaxies by presenting the most sensitive maps yet of HCN and HCO+ in the starburst galaxy M82. The HCN and HCO+ in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO+ emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and...

  15. Evolutionary origins and dynamics of octoploid strawberry subgenomes revealed by dense targeted capture linkage maps.

    Science.gov (United States)

    Tennessen, Jacob A; Govindarajulu, Rajanikanth; Ashman, Tia-Lynn; Liston, Aaron

    2014-12-04

    Whole-genome duplications are radical evolutionary events that have driven speciation and adaptation in many taxa. Higher-order polyploids have complex histories often including interspecific hybridization and dynamic genomic changes. This chromosomal reshuffling is poorly understood for most polyploid species, despite their evolutionary and agricultural importance, due to the challenge of distinguishing homologous sequences from each other. Here, we use dense linkage maps generated with targeted sequence capture to improve the diploid strawberry (Fragaria vesca) reference genome and to disentangle the subgenomes of the wild octoploid progenitors of cultivated strawberry, Fragaria virginiana and Fragaria chiloensis. Our novel approach, POLiMAPS (Phylogenetics Of Linkage-Map-Anchored Polyploid Subgenomes), leverages sequence reads to associate informative interhomeolog phylogenetic markers with linkage groups and reference genome positions. In contrast to a widely accepted model, we find that one of the four subgenomes originates with the diploid cytoplasm donor F. vesca, one with the diploid Fragaria iinumae, and two with an unknown ancestor close to F. iinumae. Extensive unidirectional introgression has converted F. iinumae-like subgenomes to be more F. vesca-like, but never the reverse, due either to homoploid hybridization in the F. iinumae-like diploid ancestors or else strong selection spreading F. vesca-like sequence among subgenomes through homeologous exchange. In addition, divergence between homeologous chromosomes has been substantially augmented by interchromosomal rearrangements. Our phylogenetic approach reveals novel aspects of the complicated web of genetic exchanges that occur during polyploid evolution and suggests a path forward for unraveling other agriculturally and ecologically important polyploid genomes.

  16. 3D Aware Correction and Completion of Depth Maps in Piecewise Planar Scenes

    KAUST Repository

    Thabet, Ali Kassem

    2015-04-16

    RGB-D sensors are popular in the computer vision community, especially for problems of scene understanding, semantic scene labeling, and segmentation. However, most of these methods depend on reliable input depth measurements, while discarding unreliable ones. This paper studies how reliable depth values can be used to correct the unreliable ones, and how to complete (or extend) the available depth data beyond the raw measurements of the sensor (i.e. infer depth at pixels with unknown depth values), given a prior model on the 3D scene. We consider piecewise planar environments in this paper, since many indoor scenes with man-made objects can be modeled as such. We propose a framework that uses the RGB-D sensor’s noise profile to adaptively and robustly fit plane segments (e.g. floor and ceiling) and iteratively complete the depth map, when possible. Depth completion is formulated as a discrete labeling problem (MRF) with hard constraints and solved efficiently using graph cuts. To regularize this problem, we exploit 3D and appearance cues that encourage pixels to take on depth values that will be compatible in 3D to the piecewise planar assumption. Extensive experiments, on a new large-scale and challenging dataset, show that our approach results in more accurate depth maps (with 20 % more depth values) than those recorded by the RGB-D sensor. Additional experiments on the NYUv2 dataset show that our method generates more 3D aware depth. These generated depth maps can also be used to improve the performance of a state-of-the-art RGB-D SLAM method.

  17. Systems and methods that generate height map models for efficient three dimensional reconstruction from depth information

    Energy Technology Data Exchange (ETDEWEB)

    Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert

    2015-12-08

    Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.

  18. Depth map resolution enhancement for 2D/3D imaging system via compressive sensing

    Science.gov (United States)

    Han, Juanjuan; Loffeld, Otmar; Hartmann, Klaus

    2011-08-01

    This paper introduces a novel approach for post-processing of depth map which enhances the depth map resolution in order to achieve visually pleasing 3D models from a new monocular 2D/3D imaging system consists of a Photonic mixer device (PMD) range camera and a standard color camera. The proposed method adopts the revolutionary inversion theory framework called Compressive Sensing (CS). The depth map of low resolution is considered as the result of applying blurring and down-sampling techniques to that of high-resolution. Based on the underlying assumption that the high-resolution depth map is compressible in frequency domain and recent theoretical work on CS, the high-resolution version can be estimated and furthermore reconstructed via solving non-linear optimization problem. And therefore the improved depth map reconstruction provides a useful help to build an improved 3D model of a scene. The experimental results on the real data are presented. In the meanwhile the proposed scheme opens new possibilities to apply CS to a multitude of potential applications on various multimodal data analysis and processing.

  19. Application and evaluation of kriging and cokriging methods on groundwater depth mapping.

    Science.gov (United States)

    Ahmadi, Seyed Hamid; Sedghamiz, Abbas

    2008-03-01

    Groundwater and water resources management play a key role in conserving the sustainable conditions in arid and semi-arid regions. Applying some techniques that can reveal the critical and hot conditions of water resources seem necessary. In this study, kriging and cokriging methods were evaluated for mapping the groundwater depth across a plain in which has experienced different climatic conditions (dry, wet, and normal) and consequently high variations in groundwater depth in a 12 year led in maximum, minimum, and mean depths. During this period groundwater depth has considerable fluctuations. Results obtained from geostatistical analysis showed that groundwater depth varies spatially in different climatic conditions. Furthermore, the calculated RMSE showed that cokriging approach was more accurate than kriging in mapping the groundwater depth though there was not a distinct difference. As a whole, kriging underestimated the real groundwater depth for dry, wet, and normal conditions by 5.5, 2.2, and 5.3%, while cokriging underestimations were 3.3, 2, and 2.2%, respectively; which showed the unbiasedness in estimations. Results implied that in the study area farming and cultivation in dry conditions needs more attention due to higher variability in groundwater depth in short distances compared to the other climate conditions. It is believed that geostatistical approaches are reliable tools for water resources managers and water authorities to allocate groundwater resources in different environmental conditions.

  20. Structured light 3D depth map enhancement and gesture recognition using image content adaptive filtering

    Science.gov (United States)

    Ramachandra, Vikas; Nash, James; Atanassov, Kalin; Goma, Sergio

    2013-03-01

    A structured-light system for depth estimation is a type of 3D active sensor that consists of a structured-light projector that projects an illumination pattern on the scene (e.g. mask with vertical stripes) and a camera which captures the illuminated scene. Based on the received patterns, depths of different regions in the scene can be inferred. In this paper, we use side information in the form of image structure to enhance the depth map. This side information is obtained from the received light pattern image reflected by the scene itself. The processing steps run real time. This post-processing stage in the form of depth map enhancement can be used for better hand gesture recognition, as is illustrated in this paper.

  1. Development of an ultra-dense genetic map of the sunflower genome based on single-feature polymorphisms.

    Directory of Open Access Journals (Sweden)

    John E Bowers

    Full Text Available The development of ultra-dense genetic maps has the potential to facilitate detailed comparative genomic analyses and whole genome sequence assemblies. Here we describe the use of a custom Affymetrix GeneChip containing nearly 2.4 million features (25 bp sequences targeting 86,023 unigenes from sunflower (Helianthus annuus L. and related species to test for single-feature polymorphisms (SFPs in a recombinant inbred line (RIL mapping population derived from a cross between confectionery and oilseed sunflower lines (RHA280×RHA801. We then employed an existing genetic map derived from this same population to rigorously filter out low quality data and place 67,486 features corresponding to 22,481 unigenes on the sunflower genetic map. The resulting map contains a substantial fraction of all sunflower genes and will thus facilitate a number of downstream applications, including genome assembly and the identification of candidate genes underlying QTL or traits of interest.

  2. Snow depth mapping in high-alpine catchments using digital photogrammetry

    Science.gov (United States)

    Bühler, Y.; Marty, M.; Egli, L.; Veitinger, J.; Jonas, T.; Thee, P.; Ginzler, C.

    2015-02-01

    Information on snow depth and its spatial distribution is crucial for numerous applications in snow and avalanche research as well as in hydrology and ecology. Today, snow depth distributions are usually estimated using point measurements performed by automated weather stations and observers in the field combined with interpolation algorithms. However, these methodologies are not able to capture the high spatial variability of the snow depth distribution present in alpine terrain. Continuous and accurate snow depth mapping has been successfully performed using laser scanning but this method can only cover limited areas and is expensive. We use the airborne ADS80 optoelectronic scanner, acquiring stereo imagery with 0.25 m spatial resolution to derive digital surface models (DSMs) of winter and summer terrains in the neighborhood of Davos, Switzerland. The DSMs are generated using photogrammetric image correlation techniques based on the multispectral nadir and backward-looking sensor data. In order to assess the accuracy of the photogrammetric products, we compare these products with the following independent data sets acquired simultaneously: (a) manually measured snow depth plots; (b) differential Global Navigation Satellite System (dGNSS) points; (c) terrestrial laser scanning (TLS); and (d) ground-penetrating radar (GPR) data sets. We demonstrate that the method presented can be used to map snow depth at 2 m resolution with a vertical depth accuracy of ±30 cm (root mean square error) in the complex topography of the Alps. The snow depth maps presented have an average accuracy that is better than 15 % compared to the average snow depth of 2.2 m over the entire test site.

  3. Solum depth spatial prediction comparing conventional with knowledge-based digital soil mapping approaches

    Directory of Open Access Journals (Sweden)

    Michele Duarte de Menezes

    2014-08-01

    Full Text Available Solum depth and its spatial distribution play an important role in different types of environmental studies. Several approaches have been used for fitting quantitative relationships between soil properties and their environment in order to predict them spatially. This work aimed to present the steps required for solum depth spatial prediction from knowledge-based digital soil mapping, comparing the prediction to the conventional soil mapping approach through field validation, in a watershed located at Mantiqueira Range region, in the state of Minas Gerais, Brazil. Conventional soil mapping had aerial photo-interpretation as a basis. The knowledge-based digital soil mapping applied fuzzy logic and similarity vectors in an expert system. The knowledge-based digital soil mapping approach showed the advantages over the conventional soil mapping approach by applying the field expert-knowledge in order to enhance the quality of final results, predicting solum depth with suited accuracy in a continuous way, making the soil-landscape relationship explicit.

  4. Mapping burned areas using dense time-series of Landsat data

    Science.gov (United States)

    Hawbaker, Todd J.; Vanderhoof, Melanie; Beal, Yen-Ju G.; Takacs, Joshua; Schmidt, Gail L.; Falgout, Jeff T.; Williams, Brad; Brunner, Nicole M.; Caldwell, Megan K.; Picotte, Joshua J.; Howard, Stephen M.; Stitt, Susan; Dwyer, John L.

    2017-01-01

    Complete and accurate burned area data are needed to document patterns of fires, to quantify relationships between the patterns and drivers of fire occurrence, and to assess the impacts of fires on human and natural systems. Unfortunately, in many areas existing fire occurrence datasets are known to be incomplete. Consequently, the need to systematically collect burned area information has been recognized by the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change, which have both called for the production of essential climate variables (ECVs), including information about burned area. In this paper, we present an algorithm that identifies burned areas in dense time-series of Landsat data to produce the Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm uses gradient boosted regression models to generate burn probability surfaces using band values and spectral indices from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference predictors. Burn classifications are generated from the burn probability surfaces using pixel-level thresholding in combination with a region growing process. The algorithm can be applied anywhere Landsat and training data are available. For this study, BAECV products were generated for the conterminous United States from 1984 through 2015. These products consist of pixel-level burn probabilities for each Landsat scene, in addition to, annual composites including: the maximum burn probability and a burn classification. We compared the BAECV burn classification products to the existing Global Fire Emissions Database (GFED; 1997–2015) and Monitoring Trends in Burn Severity (MTBS; 1984–2013) data. We found that the BAECV products mapped 36% more burned area than the GFED and 116% more burned area than MTBS. Differences between the BAECV products and the GFED were especially high in the West and East where the

  5. HectoMAP and Horizon Run 4: Dense Structures and Voids in the Real and Simulated Universe

    CERN Document Server

    Hwang, Ho Seong; Park, Changbom; Fabricant, Daniel G; Kurtz, Michael J; Rines, Kenneth J; Kim, Juhan; Diaferio, Antonaldo; Zahid, H Jabran; Berlind, Perry; Calkins, Michael; Tokarz, Susan; Moran, Sean

    2016-01-01

    HectoMAP is a dense redshift survey of red galaxies covering a 53 $deg^{2}$ strip of the northern sky. HectoMAP is 97\\% complete for galaxies with $r1.0$, and $(r-i)>0.5$. The survey enables tests of the physical properties of large-scale structure at intermediate redshift against cosmological models. We use the Horizon Run 4, one of the densest and largest cosmological simulations based on the standard $\\Lambda$ Cold Dark Matter ($\\Lambda$CDM) model, to compare the physical properties of observed large-scale structures with simulated ones in a volume-limited sample covering 8$\\times10^6$ $h^{-3}$ Mpc$^3$ in the redshift range $0.22dense large-scale features of the galaxy distribution. The richness and size distributions of observed over-dense structures agree well with the simulated ones. Observations and simulations also agree for the volume and size distributions of under-dense structures, voids. The ...

  6. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization

    Science.gov (United States)

    Bouligand, C.; Glen, J.M.G.; Blakely, R.J.

    2009-01-01

    We have revisited the problem of mapping depth to the Curie temperature isotherm from magnetic anomalies in an attempt to provide a measure of crustal temperatures in the western United States. Such methods are based on the estimation of the depth to the bottom of magnetic sources, which is assumed to correspond to the temperature at which rocks lose their spontaneous magnetization. In this study, we test and apply a method based on the spectral analysis of magnetic anomalies. Early spectral analysis methods assumed that crustal magnetization is a completely uncorrelated function of position. Our method incorporates a more realistic representation where magnetization has a fractal distribution defined by three independent parameters: the depths to the top and bottom of magnetic sources and a fractal parameter related to the geology. The predictions of this model are compatible with radial power spectra obtained from aeromagnetic data in the western United States. Model parameters are mapped by estimating their value within a sliding window swept over the study area. The method works well on synthetic data sets when one of the three parameters is specified in advance. The application of this method to western United States magnetic compilations, assuming a constant fractal parameter, allowed us to detect robust long-wavelength variations in the depth to the bottom of magnetic sources. Depending on the geologic and geophysical context, these features may result from variations in depth to the Curie temperature isotherm, depth to the mantle, depth to the base of volcanic rocks, or geologic settings that affect the value of the fractal parameter. Depth to the bottom of magnetic sources shows several features correlated with prominent heat flow anomalies. It also shows some features absent in the map of heat flow. Independent geophysical and geologic data sets are examined to determine their origin, thereby providing new insights on the thermal and geologic crustal

  7. Multiple Description Coding Based on Optimized Redundancy Removal for 3D Depth Map

    Directory of Open Access Journals (Sweden)

    Sen Han

    2016-06-01

    Full Text Available Multiple description (MD coding is a promising alternative for the robust transmission of information over error-prone channels. In 3D image technology, the depth map represents the distance between the camera and objects in the scene. Using the depth map combined with the existing multiview image, it can be efficient to synthesize images of any virtual viewpoint position, which can display more realistic 3D scenes. Differently from the conventional 2D texture image, the depth map contains a lot of spatial redundancy information, which is not necessary for view synthesis, but may result in the waste of compressed bits, especially when using MD coding for robust transmission. In this paper, we focus on the redundancy removal of MD coding based on the DCT (discrete cosine transform domain. In view of the characteristics of DCT coefficients, at the encoder, a Lagrange optimization approach is designed to determine the amounts of high frequency coefficients in the DCT domain to be removed. It is noted considering the low computing complexity that the entropy is adopted to estimate the bit rate in the optimization. Furthermore, at the decoder, adaptive zero-padding is applied to reconstruct the depth map when some information is lost. The experimental results have shown that compared to the corresponding scheme, the proposed method demonstrates better rate central and side distortion performance.

  8. Method for the Preparation of Hazard Map in Urban Area Using Soil Depth and Groundwater Level

    Science.gov (United States)

    Kim, Sung-Wook; Choi, Eun-Kyeong; Cho, Jin Woo; Lee, Ju-Hyoung

    2017-04-01

    The hazard maps for predicting collapse on natural slopes consists of a combination of topographic, hydrological, and geological factors. Topographic factors are extracted from DEM, including aspect, slope, curvature, and topographic index. Hydrological factors, such as distance to drainage, drainage density, stream-power index, and wetness index are most important factors for slope instability. However, most of the urban areas are located on the plains and it is difficult to apply the hazard map using the topography and hydrological factors. In order to evaluate the risk of collapse of flat and low slope areas, soil depth and groundwater level data were collected and used as a factor for interpretation. In addition, the reliability of the hazard map was compared with the disaster history of the study area (Gangnam-gu and Yeouido district). In the disaster map of the disaster prevention agency, the urban area was mostly classified as the stable area and did not reflect the collapse history. Soil depth, drainage conditions and groundwater level obtained from boreholes were added as input data of hazard map, and disaster vulnerability increased at the location where the actual collapse points. In the study area where damage occurred, the moderate and low grades of the vulnerability of previous hazard map were 12% and 88%, respectively. While, the improved map showed 2% high grade, moderate grade 29%, low grade 66% and very low grade 2%. These results were similar to actual damage. Keywords: hazard map, urban area, soil depth, ground water level Acknowledgement This research was supported by a Grant from a Strategic Research Project (Horizontal Drilling and Stabilization Technologies for Urban Search and Rescue (US&R) Operation) funded by the Korea Institute of Civil Engineering and Building Technology.

  9. Spatially continuous mapping of snow depth in high alpine catchments using digital photogrammetry

    Directory of Open Access Journals (Sweden)

    Y. Bühler

    2014-06-01

    Full Text Available Information on snow depth and its spatial distribution is crucial for many applications in snow and avalanche research as well as in hydrology and ecology. Today snow depth distributions are usually estimated using point measurements performed by automated weather stations and observers in the field combined with interpolation algorithms. However, these methodologies are not able to capture the high spatial variability of the snow depth distribution present in alpine terrain. Continuous and accurate snow depth mapping has been done using laser scanning but this method can only cover limited areas and is expensive. We use the airborne ADS80 opto-electronic scanner with 0.25 m spatial resolution to derive digital surface models (DSMs of winter and summer terrains in the neighborhood of Davos, Switzerland. The DSMs are generated using photogrammetric image correlation techniques based on the multispectral nadir and backward looking sensor data. We compare these products with the following independent datasets acquired simultaneously: (a manually measured snow depth plots (b differential Global Navigation Satellite System (dGNSS points (c Terrestrial Laser Scanning (TLS and (d Ground Penetrating Radar (GPR datasets, to assess the accuracy of the photogrammetric products. The results of this investigation demonstrate the potential of optical scanners for wide-area, continuous and high spatial resolution snow-depth mapping over alpine catchments above tree line.

  10. Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications

    Directory of Open Access Journals (Sweden)

    Sander Oude Elberink

    2012-02-01

    Full Text Available Consumer-grade range cameras such as the Kinect sensor have the potential to be used in mapping applications where accuracy requirements are less strict. To realize this potential insight into the geometric quality of the data acquired by the sensor is essential. In this paper we discuss the calibration of the Kinect sensor, and provide an analysis of the accuracy and resolution of its depth data. Based on a mathematical model of depth measurement from disparity a theoretical error analysis is presented, which provides an insight into the factors influencing the accuracy of the data. Experimental results show that the random error of depth measurement increases with increasing distance to the sensor, and ranges from a few millimeters up to about 4 cm at the maximum range of the sensor. The quality of the data is also found to be influenced by the low resolution of the depth measurements.

  11. Inter-comparison of hydrological model simulations with dense time series of SAR-derived soil moisture maps

    Science.gov (United States)

    Iacobellis, V.; Gioia, A.; Milella, P.; Satalino, G.; Balenzano, A.; Mattia, F.

    2012-04-01

    Over the last years, a vast number of experimental and theoretical studies has widely demonstrated the sensitivity of SAR data to soil moisture content, however, operational services integrating SAR measurements into land process models are not yet available. Important progresses in this field are expected, on the one hand, from SAR missions characterized by a short revisiting time, such as the COSMO-SkyMed or the forthcoming Sentinel-1 and ALOS-2 missions, on the other hand, from a strong effort in implementing hydrological models able to reproduce the dynamic of soil moisture content of the top layer (5 cm depth) of soil. With this latter purpose, we used the DREAM model [Manfreda et al., 2005], realized in a GIS-based approach, that explicitly takes into account the spatial heterogeneity of hydrological processes. The DREAM model carries out continuous hydrological simulations using the daily and the hourly scales. The distinctive feature of the model, which consists of evaluating the lateral flow through a water content redistribution weighted by the topographic index, was preserved. The latter provided the basis for the nested implementation of the Richard equation which has been used for evaluating vertical flows in the top soil layer (5cm).The Richard routine exploits the numerical solution proposed by Simunek et al. [2009] and runs, for each cell of the river basin, in a sub-module of 60 minutes with a vertical (i.e. depth) and temporal resolution of 1 cm and 1 s, respectively. The model was applied to the portion of the Celone at Foggia San Severo river basin downstream the San Giusto Dam, which is a tributary of the Candelaro river, in Puglia region (Southern Italy). Over this area quasi-dense time series of ALOS/PALSAR ScanSAR WB1 and COSMO-SkyMedStripMap images were acquired in 2007 and 2010, respectively. The SAR data have been used to derive time-series of soil moisture maps by means of the SMOSAR software developed for Sentinel-1 data [Balenzano et

  12. High resolution mapping of Dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H.

    Science.gov (United States)

    Shahinnia, Fahimeh; Druka, Arnis; Franckowiak, Jerome; Morgante, Michele; Waugh, Robbie; Stein, Nils

    2012-02-01

    Spike density in barley is under the control of several major genes, as documented previously by genetic analysis of a number of morphological mutants. One such class of mutants affects the rachis internode length leading to dense or compact spikes and the underlying genes were designated dense spike (dsp). We previously delimited two introgressed genomic segments on chromosome 3H (21 SNP loci, 35.5 cM) and 7H (17 SNP loci, 20.34 cM) in BW265, a BC(7)F(3) nearly isogenic line (NIL) of cv. Bowman as potentially containing the dense spike mutant locus dsp.ar, by genotyping 1,536 single nucleotide polymorphism (SNP) markers in both BW265 and its recurrent parent. Here, the gene was allocated by high-resolution bi-parental mapping to a 0.37 cM interval between markers SC57808 (Hv_SPL14)-CAPSK06413 residing on the short and long arm at the genetic centromere of chromosome 7H, respectively. This region putatively contains more than 800 genes as deduced by comparison with the collinear regions of barley, rice, sorghum and Brachypodium, Classical map-based isolation of the gene dsp.ar thus will be complicated due to the infavorable relationship of genetic to physical distances at the target locus.

  13. Mapping soil texture targeting predefined depth range or synthetizing from standard layers?

    Science.gov (United States)

    Laborczi, Annamária; Dezső Kaposi, András; Szatmári, Gábor; Takács, Katalin; Pásztor, László

    2017-04-01

    There are increasing demands nowadays on spatial soil information in order to support environmental related and land use management decisions. Physical soil properties, especially particle size distribution play important role in this context. A few of the requirements can be satisfied by the sand-, silt-, and clay content maps compiled according to global standards such as GlobalSoilMap (GSM) or Soil Grids. Soil texture classes (e. g. according to USDA classification) can be derived from these three fraction data, in this way texture map can be compiled based on the proper separate maps. Soil texture class as well as fraction information represent direct input of crop-, meteorological- and hydrological models. The model inputs frequently require maps representing soil features of 0-30 cm depth, which is covered by three consecutive depth intervals according to standard specifications: 0-5 cm, 5-15 cm, 15-30 cm. Becoming GSM and SoilGrids the most detailed freely available spatial soil data sources, the common model users (e. g. meteorologists, agronomists, or hydrologists) would produce input map from (the weighted mean of) these three layers. However, if the basic soil data and proper knowledge is obtainable, a soil texture map targeting directly the 0-30 cm layer could be independently compiled. In our work we compared Hungary's soil texture maps compiled using the same reference and auxiliary data and inference methods but for differing layer distribution. We produced the 0-30 cm clay, silt and sand map as well as the maps for the three standard layers (0-5 cm, 5-15 cm, 15-30 cm). Maps of sand, silt and clay percentage were computed through regression kriging (RK) applying Additive Log-Ratio (alr) transformation. In addition to the Hungarian Soil Information and Monitoring System as reference soil data, digital elevation model and its derived components, soil physical property maps, remotely sensed images, land use -, geological-, as well as meteorological data

  14. Scalable coding of depth maps with R-D optimized embedding.

    Science.gov (United States)

    Mathew, Reji; Taubman, David; Zanuttigh, Pietro

    2013-05-01

    Recent work on depth map compression has revealed the importance of incorporating a description of discontinuity boundary geometry into the compression scheme. We propose a novel compression strategy for depth maps that incorporates geometry information while achieving the goals of scalability and embedded representation. Our scheme involves two separate image pyramid structures, one for breakpoints and the other for sub-band samples produced by a breakpoint-adaptive transform. Breakpoints capture geometric attributes, and are amenable to scalable coding. We develop a rate-distortion optimization framework for determining the presence and precision of breakpoints in the pyramid representation. We employ a variation of the EBCOT scheme to produce embedded bit-streams for both the breakpoint and sub-band data. Compared to JPEG 2000, our proposed scheme enables the same the scalability features while achieving substantially improved rate-distortion performance at the higher bit-rate range and comparable performance at the lower rates.

  15. A dense genetic linkage map for common carp and its integration with a BAC-based physical map.

    Directory of Open Access Journals (Sweden)

    Lan Zhao

    Full Text Available BACKGROUND: Common carp (Cyprinus carpio is one of the most important aquaculture species with an annual global production of 3.4 million metric tons. It is also an important ornamental species as well as an important model species for aquaculture research. To improve the economically important traits of this fish, a number of genomic resources and genetic tools have been developed, including several genetic maps and a bacterial artificial chromosome (BAC-based physical map. However, integrated genetic and physical maps are not available to study quantitative trait loci (QTL and assist with fine mapping, positional cloning and whole genome sequencing and assembly. The objective of this study was to integrate the currently available BAC-based physical and genetic maps. RESULTS: The genetic map was updated with 592 novel markers, including 312 BAC-anchored microsatellites and 130 SNP markers, and contained 1,209 genetic markers on 50 linkage groups, spanning 3,565.9 cM in the common carp genome. An integrated genetic and physical map of the common carp genome was then constructed, which was composed of 463 physical map contigs and 88 single BACs. Combined lengths of the contigs and single BACs covered a physical length of 498.75 Mb, or around 30% of the common carp genome. Comparative analysis between common carp and zebrafish genomes was performed based on the integrated map, providing more insights into the common carp specific whole genome duplication and segmental rearrangements in the genome. CONCLUSION: We integrated a BAC-based physical map to a genetic linkage map of common carp by anchoring BAC-associated genetic markers. The density of the genetic linkage map was significantly increased. The integrated map provides a tool for both genetic and genomic studies of common carp, which will help us to understand the genomic architecture of common carp and facilitate fine mapping and positional cloning of economically important traits for

  16. Fast computer-generated hologram computation using rendered depth map image

    Science.gov (United States)

    Kazempourradi, Seyedmahdi; Ulusoy, Erdem; Urey, Hakan

    2017-03-01

    We propose a method for computing realistic computer-generated holograms (CGHs) of three-dimensional (3D) objects, where we benefit from well-established graphical processing units (GPUs) and computer graphics techniques to handle occlusion, shading and parallax effects. The graphics render provides a 2D perspective image including occlusion and shading effects. We also extract the depth map data of the scene. The intensity values and 3D positions of object points are extracted by combining the rendered intensity image and the depth map (Z-buffer) image. We divide the depth range into several planes and quantize the depth value of 3D image points to the nearest plane. In the CGH computation part, we perform proper Fresnel transformations of these planar objects and sum them up to create the hologram corresponding to the particular viewpoint. We then repeat the entire procedure for all possible viewpoints and cover the hologram area. The experimental results show that the technique is capable of performing high quality reconstructions in a fast manner.

  17. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision.

    Science.gov (United States)

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-10

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  18. Herschel-Planck dust optical depth and column density maps - II. Perseus

    CERN Document Server

    Zari, E; Alves, J; Lada, C J; Bouy, H

    2015-01-01

    We present optical depth and temperature maps of the Perseus molecular cloud, obtained combining dust emission data from the Herschel and Planck satellites and 2MASS/NIR dust extinction maps. The maps have a resolution of 36 arcsec in the Herschel regions, and of 5 arcmin elsewhere. The dynamic range of the optical depth map ranges from $1\\times10^{-2}\\, \\mathrm{mag}$ up to $20 \\,\\mathrm{mag}$ in the equivalent K band extinction. We also evaluate the ratio between the $2.2 \\,\\mathrm{\\mu m}$ extinction coefficient and the $850 \\,\\mathrm{\\mu m}$ opacity. The value we obtain is close to the one found in the Orion B molecular cloud. We show that the cumulative and the differential area function of the data (which is proportional to the probability distribution function of the cloud column density) follow power laws with index respectively $\\simeq -2$, and $\\simeq -3$. We use WISE data to improve current YSO catalogues based mostly on \\emph{Spitzer} data and we build an up-to-date selection of Class~I/0 objects. U...

  19. Upsampling range camera depth maps using high-resolution vision camera and pixel-level confidence classification

    Science.gov (United States)

    Tian, Chao; Vaishampayan, Vinay; Zhang, Yifu

    2011-03-01

    We consider the problem of upsampling a low-resolution depth map generated by a range camera, by using information from one or more additional high-resolution vision cameras. The goal is to provide an accurate high resolution depth map from the viewpoint of one of the vision cameras. We propose an algorithm that first converts the low resolution depth map into a depth/disparity map through coordinate mappings into the coordinate frame of one vision camera, then classifies the pixels into regions according to whether the range camera depth map is trustworthy, and finally refine the depth values for the pixels in the untrustworthy regions. For the last refinement step, both a method based on graph cut optimization and that based on bilateral filtering are examined. Experimental results show that the proposed methods using classification are able to upsample the depth map by a factor of 10 x 10 with much improved depth details, with significantly better accuracy comparing to those without the classification. The improvements are visually perceptible on a 3D auto-stereoscopic display.

  20. Three-dimensional whole breast segmentation in sagittal MR images with dense depth field modeling and localized self-adaptation

    Science.gov (United States)

    Wei, Dong; Weinstein, Susan; Hsieh, Meng-Kang; Pantalone, Lauren; Schnall, Mitchell; Kontos, Despina

    2017-02-01

    Whole breast segmentation is the first step in quantitative analysis of breast MR images. This task is challenging due mainly to the chest-wall line's (CWL) spatially varying appearance and nearby distracting structures, both being complex. In this paper, we propose an automatic three-dimensional (3-D) segmentation method of whole breast in sagittal MR images. This method distinguishes itself from others in two main aspects. First, it reformulates the challenging problem of CWL localization into an equivalence that searches for an optimal smooth depth field and so fully utilizes the 3-D continuity of the CWLs. Second, it employs a localized self- adapting algorithm to adjust to the CWL's spatial variation. Experimental results on real patient data with expert-outlined ground truth show that the proposed method can segment breasts accurately and reliably, and that its segmentation is superior to that of previously established methods.

  1. Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars.

    Directory of Open Access Journals (Sweden)

    Carolina Klagges

    Full Text Available Despite the agronomical importance and high synteny with other Prunus species, breeding improvements for cherry have been slow compared to other temperate fruits, such as apple or peach. However, the recent release of the peach genome v1.0 by the International Peach Genome Initiative and the sequencing of cherry accessions to identify Single Nucleotide Polymorphisms (SNPs provide an excellent basis for the advancement of cherry genetic and genomic studies. The availability of dense genetic linkage maps in phenotyped segregating progenies would be a valuable tool for breeders and geneticists. Using two sweet cherry (Prunus avium L. intra-specific progenies derived from crosses between 'Black Tartarian' × 'Kordia' (BT×K and 'Regina' × 'Lapins'(R×L, high-density genetic maps of the four parental lines and the two segregating populations were constructed. For BT×K and R×L, 89 and 121 F(1 plants were used for linkage mapping, respectively. A total of 5,696 SNP markers were tested in each progeny. As a result of these analyses, 723 and 687 markers were mapped into eight linkage groups (LGs in BT×K and R×L, respectively. The resulting maps spanned 752.9 and 639.9 cM with an average distance of 1.1 and 0.9 cM between adjacent markers in BT×K and R×L, respectively. The maps displayed high synteny and co-linearity between each other, with the Prunus bin map, and with the peach genome v1.0 for all eight LGs (LG1-LG8. These maps provide a useful tool for investigating traits of interest in sweet cherry and represent a qualitative advance in the understanding of the cherry genome and its synteny with other members of the Rosaceae family.

  2. Construction and Comparative Analyses of Highly Dense Linkage Maps of Two Sweet Cherry Intra-Specific Progenies of Commercial Cultivars

    Science.gov (United States)

    Quero-García, José; Guzmán, Alejandra; Mansur, Levi; Gratacós, Eduardo; Silva, Herman; Rosyara, Umesh R.; Iezzoni, Amy; Meisel, Lee A.; Dirlewanger, Elisabeth

    2013-01-01

    Despite the agronomical importance and high synteny with other Prunus species, breeding improvements for cherry have been slow compared to other temperate fruits, such as apple or peach. However, the recent release of the peach genome v1.0 by the International Peach Genome Initiative and the sequencing of cherry accessions to identify Single Nucleotide Polymorphisms (SNPs) provide an excellent basis for the advancement of cherry genetic and genomic studies. The availability of dense genetic linkage maps in phenotyped segregating progenies would be a valuable tool for breeders and geneticists. Using two sweet cherry (Prunus avium L.) intra-specific progenies derived from crosses between ‘Black Tartarian’ × ‘Kordia’ (BT×K) and ‘Regina’ × ‘Lapins’(R×L), high-density genetic maps of the four parental lines and the two segregating populations were constructed. For BT×K and R×L, 89 and 121 F1 plants were used for linkage mapping, respectively. A total of 5,696 SNP markers were tested in each progeny. As a result of these analyses, 723 and 687 markers were mapped into eight linkage groups (LGs) in BT×K and R×L, respectively. The resulting maps spanned 752.9 and 639.9 cM with an average distance of 1.1 and 0.9 cM between adjacent markers in BT×K and R×L, respectively. The maps displayed high synteny and co-linearity between each other, with the Prunus bin map, and with the peach genome v1.0 for all eight LGs (LG1–LG8). These maps provide a useful tool for investigating traits of interest in sweet cherry and represent a qualitative advance in the understanding of the cherry genome and its synteny with other members of the Rosaceae family. PMID:23382953

  3. Mapping snow depth in open alpine terrain from stereo satellite imagery

    Science.gov (United States)

    Marti, R.; Gascoin, S.; Berthier, E.; de Pinel, M.; Houet, T.; Laffly, D.

    2016-07-01

    To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km2) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km2). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available.

  4. A dense linkage map for Chinook salmon (Oncorhynchus tshawytscha) reveals variable chromosomal divergence after an ancestral whole genome duplication event.

    Science.gov (United States)

    Brieuc, Marine S O; Waters, Charles D; Seeb, James E; Naish, Kerry A

    2014-03-20

    Comparisons between the genomes of salmon species reveal that they underwent extensive chromosomal rearrangements following whole genome duplication that occurred in their lineage 58-63 million years ago. Extant salmonids are diploid, but occasional pairing between homeologous chromosomes exists in males. The consequences of re-diploidization can be characterized by mapping the position of duplicated loci in such species. Linkage maps are also a valuable tool for genome-wide applications such as genome-wide association studies, quantitative trait loci mapping or genome scans. Here, we investigated chromosomal evolution in Chinook salmon (Oncorhynchus tshawytscha) after genome duplication by mapping 7146 restriction-site associated DNA loci in gynogenetic haploid, gynogenetic diploid, and diploid crosses. In the process, we developed a reference database of restriction-site associated DNA loci for Chinook salmon comprising 48528 non-duplicated loci and 6409 known duplicated loci, which will facilitate locus identification and data sharing. We created a very dense linkage map anchored to all 34 chromosomes for the species, and all arms were identified through centromere mapping. The map positions of 799 duplicated loci revealed that homeologous pairs have diverged at different rates following whole genome duplication, and that degree of differentiation along arms was variable. Many of the homeologous pairs with high numbers of duplicated markers appear conserved with other salmon species, suggesting that retention of conserved homeologous pairing in some arms preceded species divergence. As chromosome arms are highly conserved across species, the major resources developed for Chinook salmon in this study are also relevant for other related species.

  5. Multi-layer 3D imaging using a few viewpoint images and depth map

    Science.gov (United States)

    Suginohara, Hidetsugu; Sakamoto, Hirotaka; Yamanaka, Satoshi; Suyama, Shiro; Yamamoto, Hirotsugu

    2015-03-01

    In this paper, we propose a new method that makes multi-layer images from a few viewpoint images to display a 3D image by the autostereoscopic display that has multiple display screens in the depth direction. We iterate simple "Shift and Subtraction" processes to make each layer image alternately. The image made in accordance with depth map like a volume slicing by gradations is used as the initial solution of iteration process. Through the experiments using the prototype stacked two LCDs, we confirmed that it was enough to make multi-layer images from three viewpoint images to display a 3D image. Limiting the number of viewpoint images, the viewing area that allows stereoscopic view becomes narrow. To broaden the viewing area, we track the head motion of the viewer and update screen images in real time so that the viewer can maintain correct stereoscopic view within +/- 20 degrees area. In addition, we render pseudo multiple viewpoint images using depth map, then we can generate motion parallax at the same time.

  6. HAGR-D: A Novel Approach for Gesture Recognition with Depth Maps.

    Science.gov (United States)

    Santos, Diego G; Fernandes, Bruno J T; Bezerra, Byron L D

    2015-11-12

    The hand is an important part of the body used to express information through gestures, and its movements can be used in dynamic gesture recognition systems based on computer vision with practical applications, such as medical, games and sign language. Although depth sensors have led to great progress in gesture recognition, hand gesture recognition still is an open problem because of its complexity, which is due to the large number of small articulations in a hand. This paper proposes a novel approach for hand gesture recognition with depth maps generated by the Microsoft Kinect Sensor (Microsoft, Redmond, WA, USA) using a variation of the CIPBR (convex invariant position based on RANSAC) algorithm and a hybrid classifier composed of dynamic time warping (DTW) and Hidden Markov models (HMM), called the hybrid approach for gesture recognition with depth maps (HAGR-D). The experiments show that the proposed model overcomes other algorithms presented in the literature in hand gesture recognition tasks, achieving a classification rate of 97.49% in the MSRGesture3D dataset and 98.43% in the RPPDI dynamic gesture dataset.

  7. A multi-modal face recognition method using complete local derivative patterns and depth maps.

    Science.gov (United States)

    Yin, Shouyi; Dai, Xu; Ouyang, Peng; Liu, Leibo; Wei, Shaojun

    2014-10-20

    In this paper, we propose a multi-modal 2D + 3D face recognition method for a smart city application based on a Wireless Sensor Network (WSN) and various kinds of sensors. Depth maps are exploited for the 3D face representation. As for feature extraction, we propose a new feature called Complete Local Derivative Pattern (CLDP). It adopts the idea of layering and has four layers. In the whole system, we apply CLDP separately on Gabor features extracted from a 2D image and depth map. Then, we obtain two features: CLDP-Gabor and CLDP-Depth. The two features weighted by the corresponding coefficients are combined together in the decision level to compute the total classification distance. At last, the probe face is assigned the identity with the smallest classification distance. Extensive experiments are conducted on three different databases. The results demonstrate the robustness and superiority of the new approach. The experimental results also prove that the proposed multi-modal 2D + 3D method is superior to other multi-modal ones and CLDP performs better than other Local Binary Pattern (LBP) based features.

  8. T1rho mapping of entire femoral cartilage using depth- and angle-dependent analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Taiki; Kaneko, Yasuhito; Yu, Hon J.; Yoshioka, Hiroshi [University of California Irvine, Department of Radiological Sciences, Orange, CA (United States); Kaneshiro, Kayleigh [University of California Irvine, School of Medicine, Irvine, CA (United States); Schwarzkopf, Ran [University of California Irvine, Department of Orthopedic Surgery, Irvine, CA (United States); Hara, Takeshi [Gifu University Graduate School of Medicine, Department of Intelligent Image Information, Division of Regeneration and Advanced Medical Sciences, Gifu (Japan)

    2016-06-15

    To create and evaluate normalized T1rho profiles of the entire femoral cartilage in healthy subjects with three-dimensional (3D) angle- and depth-dependent analysis. T1rho images of the knee from 20 healthy volunteers were acquired on a 3.0-T unit. Cartilage segmentation of the entire femur was performed slice-by-slice by a board-certified radiologist. The T1rho depth/angle-dependent profile was investigated by partitioning cartilage into superficial and deep layers, and angular segmentation in increments of 4 over the length of segmented cartilage. Average T1rho values were calculated with normalized T1rho profiles. Surface maps and 3D graphs were created. T1rho profiles have regional and depth variations, with no significant magic angle effect. Average T1rho values in the superficial layer of the femoral cartilage were higher than those in the deep layer in most locations (p < 0.05). T1rho values in the deep layer of the weight-bearing portions of the medial and lateral condyles were lower than those of the corresponding non-weight-bearing portions (p < 0.05). Surface maps and 3D graphs demonstrated that cartilage T1rho values were not homogeneous over the entire femur. Normalized T1rho profiles from the entire femoral cartilage will be useful for diagnosing local or early T1rho abnormalities and osteoarthritis in clinical applications. (orig.)

  9. Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements

    Science.gov (United States)

    Cerrato, R.; Casal, A.; Mateo, M. P.; Nicolas, G.

    2017-04-01

    The dealloying phenomenon, also called demetalification, is a; consequence of a corrosion problem found in binary alloys where an enrichment of one of the two main elements of the alloy is produced at the expense of the leaching of the other element. In the present work, the ability of laser induced breakdown spectroscopy (LIBS) for the detection and characterization of dealloying films formed on metal has been tested. For this purpose, specific areas of brass specimens have been subjected to a chemical attack of the surface in order to produce a selective leaching of zinc or dezincification. For the lateral and in-depth characterization of the dealloyed areas by LIBS, depth profiles, 2D and 3D maps have been generated from the treated samples and from a reference non-treated sample. The differences in the maps and depth profiles between the corroded and non-corroded regions have allowed to reveal the localization and extension of the dealloying process along the brass sample surface and to estimate the thickness of the dezincification layers, demonstrating the capability of LIBS technique for the characterization of dealloying phenomena.

  10. A Multi-Modal Face Recognition Method Using Complete Local Derivative Patterns and Depth Maps

    Directory of Open Access Journals (Sweden)

    Shouyi Yin

    2014-10-01

    Full Text Available In this paper, we propose a multi-modal 2D + 3D face recognition method for a smart city application based on a Wireless Sensor Network (WSN and various kinds of sensors. Depth maps are exploited for the 3D face representation. As for feature extraction, we propose a new feature called Complete Local Derivative Pattern (CLDP. It adopts the idea of layering and has four layers. In the whole system, we apply CLDP separately on Gabor features extracted from a 2D image and depth map. Then, we obtain two features: CLDP-Gabor and CLDP-Depth. The two features weighted by the corresponding coefficients are combined together in the decision level to compute the total classification distance. At last, the probe face is assigned the identity with the smallest classification distance. Extensive experiments are conducted on three different databases. The results demonstrate the robustness and superiority of the new approach. The experimental results also prove that the proposed multi-modal 2D + 3D method is superior to other multi-modal ones and CLDP performs better than other Local Binary Pattern (LBP based features.

  11. Joint depth map and color consistency estimation for stereo images with different illuminations and cameras.

    Science.gov (United States)

    Heo, Yong Seok; Lee, Kyoung Mu; Lee, Sang Uk

    2013-05-01

    Abstract—In this paper, we propose a method that infers both accurate depth maps and color-consistent stereo images for radiometrically varying stereo images. In general, stereo matching and performing color consistency between stereo images are a chicken-and-egg problem since it is not a trivial task to simultaneously achieve both goals. Hence, we have developed an iterative framework in which these two processes can boost each other. First, we transform the input color images to log-chromaticity color space, from which a linear relationship can be established during constructing a joint pdf of transformed left and right color images. From this joint pdf, we can estimate a linear function that relates the corresponding pixels in stereo images. Based on this linear property, we present a new stereo matching cost by combining Mutual Information (MI), SIFT descriptor, and segment-based plane-fitting to robustly find correspondence for stereo image pairs which undergo radiometric variations. Meanwhile, we devise a Stereo Color Histogram Equalization (SCHE) method to produce color-consistent stereo image pairs, which conversely boost the disparity map estimation. Experimental results show that our method produces both accurate depth maps and color-consistent stereo images, even for stereo images with severe radiometric differences.

  12. The EMPIRE Survey: Systematic Variations in the Dense Gas Fraction and Star Formation Efficiency from Full-Disk Mapping of M51

    CERN Document Server

    Bigiel, F; Jimenez-Donaire, M J; Pety, J; Usero, A; Cormier, D; Bolatto, A; Garcia-Burillo, S; Colombo, D; Gonzalez-Garcia, M; Hughes, A; Kepley, A; Kramer, C; Sandstrom, K; Schinnerer, E; Schruba, A; Schuster, K; Tomicic, N; Zschaechner, L

    2016-01-01

    We present the first results from the EMPIRE survey, an IRAM large program that is mapping tracers of high density molecular gas across the disks of nine nearby star-forming galaxies. Here, we present new maps of the 3-mm transitions of HCN, HCO+, and HNC across the whole disk of our pilot target, M51. As expected, dense gas correlates with tracers of recent star formation, filling the "luminosity gap" between Galactic cores and whole galaxies. In detail, we show that both the fraction of gas that is dense, f_dense traced by HCN/CO, and the rate at which dense gas forms stars, SFE_dense traced by IR/HCN, depend on environment in the galaxy. The sense of the dependence is that high surface density, high molecular gas fraction regions of the galaxy show high dense gas fractions and low dense gas star formation efficiencies. This agrees with recent results for individual pointings by Usero et al. 2015 but using unbiased whole-galaxy maps. It also agrees qualitatively with the behavior observed contrasting our ow...

  13. Distributed multi-hypothesis coding of depth maps using texture motion information and optical flow

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Zamarin, Marco; Rakêt, Lars Lau

    2013-01-01

    Distributed Video Coding (DVC) is a video coding paradigm allowing a shift of complexity from the encoder to the decoder. Depth maps are images enabling the calculation of the distance of an object from the camera, which can be used in multiview coding in order to generate virtual views, but also...... information, a block-based and an optical flow-based methods are employed. Finally we fuse the proposed Side Informations using a multi-hypothesis DVC decoder, which allows us to exploit the strengths of all the proposed methods at the same time....

  14. Accurate 3D maps from depth images and motion sensors via nonlinear Kalman filtering

    CERN Document Server

    Hervier, Thibault; Goulette, François

    2012-01-01

    This paper investigates the use of depth images as localisation sensors for 3D map building. The localisation information is derived from the 3D data thanks to the ICP (Iterative Closest Point) algorithm. The covariance of the ICP, and thus of the localization error, is analysed, and described by a Fisher Information Matrix. It is advocated this error can be much reduced if the data is fused with measurements from other motion sensors, or even with prior knowledge on the motion. The data fusion is performed by a recently introduced specific extended Kalman filter, the so-called Invariant EKF, and is directly based on the estimated covariance of the ICP. The resulting filter is very natural, and is proved to possess strong properties. Experiments with a Kinect sensor and a three-axis gyroscope prove clear improvement in the accuracy of the localization, and thus in the accuracy of the built 3D map.

  15. Mapping of landslides under dense vegetation cover using object - oriented analysis and LiDAR derivatives

    NARCIS (Netherlands)

    Van Den Eeckhout, Miet; Kerle, Norman; Hervas, Javier; Supper, Robert; Margottini, C.; Canuti, P.; Sassa, K.

    2013-01-01

    Light Detection and Ranging (LiDAR) and its wide range of derivative products have become a powerful tool in landslide research, particularly for landslide identification and landslide inventory mapping. In contrast to the many studies that use expert-based analysis of LiDAR derivatives to identify

  16. Fully polarimetric ALOS PALSAR data to aid geological mapping in densely vegetated areas

    CSIR Research Space (South Africa)

    Engelbrecht, J

    2016-08-01

    Full Text Available The analysis of image data from space-borne or airborne sensors has been widely used to aid geological mapping. The advantages of using remotely sensed data are numerous and include the fact that large areas can be observed in a single observation...

  17. Mapping of landslides under dense vegetation cover using object - oriented analysis and LiDAR derivatives

    NARCIS (Netherlands)

    Van Den Eeckhout, Miet; Kerle, N.; Hervas, Javier; Supper, Robert; Margottini, C.; Canuti, P.; Sassa, K.

    2013-01-01

    Light Detection and Ranging (LiDAR) and its wide range of derivative products have become a powerful tool in landslide research, particularly for landslide identification and landslide inventory mapping. In contrast to the many studies that use expert-based analysis of LiDAR derivatives to identify

  18. A robust algorithm for estimation of depth map for 3D shape recovery

    Science.gov (United States)

    Malik, Aamir Saeed; Choi, Tae-Sun

    2006-02-01

    Three-dimensional shape recovery from one or multiple observations is a challenging problem of computer vision. In this paper, we present a new focus measure for calculation of depth map. That depth map can further be used in techniques and algorithms leading to recovery of three dimensional structure of object which is required in many high level vision applications. The focus measure presented has shown robustness in presence of noise as compared to the earlier focus measures. This new focus measure is based on an optical transfer function using Discrete Cosine Transform and its results are compared with the earlier focus measures including Sum of Modified Laplacian (SML) and Tenenbaum focus measures. With this new focus measure, the results without any noise are almost similar in nature to the earlier focus measures however drastic improvement is observed with respect to others in the presence of noise. The proposed focus measure is applied on a test image, on a sequence of 97 simulated cone images and on a sequence of 97 real cone images. The images were added with the Gaussian noise which arises due to factors such as electronic circuit noise and sensor noise due to poor illumination and/or high temperature.

  19. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function.

    Directory of Open Access Journals (Sweden)

    Chong Chen

    Full Text Available Understanding spatial variation of soil organic carbon (SOC in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF, and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg(-1 respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer.

  20. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function.

    Science.gov (United States)

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01

    Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg(-1) respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer.

  1. Raster Maps of Craters Depths in Southern Hemisphere of Mars: Potential Proxy for Spatial Distribution of Ground Ice

    Science.gov (United States)

    Stepinski, T. F.; Urbach, E. R.

    2008-03-01

    Maps of crater depths for the southern hemisphere of Mars show a striking spatial pattern interpreted in terms of spatial variations of the depth to the upper boundary of the cryosphere. This indicates existence of shallower ground ice south of 40°S.

  2. Determining the Maximum Depth of Hydrothermal Circulation Using Geothermal Mapping and Seismicity to Delineate the Depth to Brittle-Plastic Transition in Northern Honshu, Japan

    Directory of Open Access Journals (Sweden)

    Yota Suzuki

    2014-05-01

    Full Text Available This paper defines the maximum possible vertical extent of hydrothermal circulation in granitic crust, and thus the maximum depth within which geothermal reservoirs can be encountered. To evaluate prospective geothermal fields we constructed a geothermal database in northern Honshu, Japan that includes 571 points of thermal data of existing wells and hot springs. Depth-temperature curves were normalized by the Activity Index for three-dimensional extrapolation and a depth contour map of the 380 °C isotherm was plotted as an assumed brittle-plastic transition for granitic crust. Shallower-depth anomalies of the brittle-plastic transition on this map are closely coincident with the Quaternary volcanoes and their prospective geothermal fields. It should be noted that the bottom of the spatial distribution of seismicity in the volcanic fields shows strong correlation to the 380 °C isotherm. This result indicates reliability of the subsurface three-dimensional thermal map and suggests that the 380 °C isotherm strongly constrains the bottom surface of seismicity, fracturing and hydrothermal convection in granitic crust.

  3. High Resolution Aerosol Optical Depth Mapping of Beijing Using LANSAT8 Imagery

    Science.gov (United States)

    Li, Yan; Liu, Yuanliang; Wu, Jianliang

    2016-06-01

    Aerosol Optical Depth (AOD) is one of the most important parameters in the atmospheric correction of remote sensing images. We present a new method of per pixel AOD retrieval using the imagery of Landsat8. It is based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S). General dark target method takes dense vegetation pixels as dark targets and derives their 550nm AODs directly from the LUT, and interpolates the AODs of other pixels according to spatial neighbourhood using those of dark target pixels. This method will down estimate the AOD levels for urban areas. We propose an innovative method to retrieval the AODs using multiple temporal data. For a pixel which has nothing change between the associated time, there must exists an intersection of surface albedo. When there are enough data to find the intersection it ought to be a value that meet the error tolerance. In this paper, we present an example of using three temporal Landsat ETM+ image to retrieve AOD taking Beijing as the testing area. The result is compared to the commonly employed dark target algorithm to show the effectiveness of the methods.

  4. Statistical aspect of trait mapping using a dense set of markers: A partial review

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, J. [Northwestern Univ., Evanston, IL (United States)

    1996-12-31

    This paper presents a review of statistical methods used to locate trait loci using maps of markers spanning the whole genome. Such maps are becoming readily available and can be especially useful in mapping traits that are non Mendelian. Genome-wide search for a trait locus is often called a {open_quotes}global search{close_quotes}. Global search methods include, but are not restricted to, identifying disease susceptibility genes using affected relative pairs, finding quantitative trait loci in experimental organisms and locating quantitative trait loci in humans. For human linkage, we concentrate on methods using pairs of affected relatives rather than pedigree analysis. We begin in the next section with a review of work on the use of affected pairs of relatives to identify gene loci that increase susceptibility to a particular disease. We first review Risch`s 1990 series of papers. Risch`s method can be used to search the entire genome for such susceptibility genes. Using Risch`s idea Elston explored the issue of how many pairs and markers are necessary to reach a certain probability of detecting a locus if there exists one. He proposed a more economical two stage design that uses few markers at the first stage but adds markers around the {open_quotes}promising{close_quotes} area of the genome at the second stage. However, Risch and Elston do not use multipoint linkage analysis, which takes into account all markers at once (rather than one at a time) in the calculation of the test statistic. Such multipoint methods for affected relatives have been developed by Feingold and Feingold et al. The last authors` multipoint method is based on a continuous specification of identity by descent between the affected relatives but can also be used for a set of linked markers spanning the genome. A brief description of their method and treatment of more complex issues such as combining relative pairs is included. 29 refs., 4 tabs.

  5. HCO mapping of the Horsehead: tracing the illuminated dense molecular cloud surfaces

    Science.gov (United States)

    Gerin, M.; Goicoechea, J. R.; Pety, J.; Hily-Blant, P.

    2009-02-01

    Context: Far-UV photons (FUV) strongly affect the physical and chemical state of molecular gas in the vicinity of young massive stars. Aims: Finding molecular tracers of the presence of FUV radiation fields in the millimeter wavelength domain is desirable because IR diagnostics (for instance PAHs) are not easily accessible along high extinction line-of-sights. Furthermore, gas phase diagnostics provide information on the velocity fields. Methods: We have obtained maps of the HCO and H13CO+ ground state lines towards the Horsehead edge at 5'' angular resolution with a combination of Plateau de Bure Interferometer (PdBI) and the IRAM-30 m telescope observations. These maps have been complemented with IRAM-30 m observations of several excited transitions at two different positions. Results: Bright formyl radical emission delineates the illuminated edge of the nebula, with a faint emission remaining towards the shielded molecular core. Viewed from the illuminated star, the HCO emission almost coincides with the PAH and CCH emission. HCO reaches a similar abundance to HCO+ in the photon dissociation region (PDR), ≃1-2×10-9 with respect to H2. To our knowledge, this is the highest HCO abundance ever measured. Pure gas-phase chemistry models fail to reproduce the observed HCO abundance by ~2 orders of magnitude, except if reactions of atomic oxygen with carbon radicals abundant in the PDR (i.e., CH2) play a significant role in the HCO formation. Alternatively, HCO could be produced in the PDR by non-thermal processes such as photo-processing of ice mantles and subsequent photo-desorption of either HCO or H2CO, and further gas phase photodissociation. Conclusions: The measured HCO/H13CO+ abundance ratio is large towards the PDR (≃50), and much lower toward the gas shielded from FUV radiation (≲1). We propose that high HCO abundances (≳10-10) together with large HCO/H13CO+ abundance ratios (≳1) are sensitive diagnostics of the presence of active photochemistry

  6. Optical gesture sensing and depth mapping technologies for head-mounted displays: an overview

    Science.gov (United States)

    Kress, Bernard; Lee, Johnny

    2013-05-01

    Head Mounted Displays (HMDs), and especially see-through HMDs have gained renewed interest in recent time, and for the first time outside the traditional military and defense realm, due to several high profile consumer electronics companies presenting their products to hit market. Consumer electronics HMDs have quite different requirements and constrains as their military counterparts. Voice comments are the de-facto interface for such devices, but when the voice recognition does not work (not connection to the cloud for example), trackpad and gesture sensing technologies have to be used to communicate information to the device. We review in this paper the various technologies developed today integrating optical gesture sensing in a small footprint, as well as the various related 3d depth mapping sensors.

  7. Depth-resolved nanoscale nuclear architecture mapping for early prediction of cancer progression

    Science.gov (United States)

    Uttam, Shikhar; Pham, Hoa V.; LaFace, Justin; Hartman, Douglas J.; Liu, Yang

    2016-03-01

    Effective management of patients who are at risk of developing invasive cancer is a primary challenge in early cancer detection. Techniques that can help establish clear-cut protocols for successful triaging of at-risk patients have the potential of providing critical help in improving patient care while simultaneously reducing patient cost. We have developed such a technique for early prediction of cancer progression that uses unstained tissue sections to provide depth-resolved nanoscale nuclear architecture mapping (nanoNAM) of heterogeneity in optical density alterations manifested in precancerous lesions during cancer progression. We present nanoNAM and its application to predicting cancer progression in a well-established mouse model of spontaneous carcinogenesis: ApcMin/+ mice.

  8. Real time moving object detection using motor signal and depth map for robot car

    Science.gov (United States)

    Wu, Hao; Siu, Wan-Chi

    2013-12-01

    Moving object detection from a moving camera is a fundamental task in many applications. For the moving robot car vision, the background movement is 3D motion structure in nature. In this situation, the conventional moving object detection algorithm cannot be use to handle the 3D background modeling effectively and efficiently. In this paper, a novel scheme is proposed by utilizing the motor control signal and depth map obtained from a stereo camera to model the perspective transform matrix between different frames under a moving camera. In our approach, the coordinate relationship between frames during camera moving is modeled by a perspective transform matrix which is obtained by using current motor control signals and the pixel depth value. Hence, the relationship between a static background pixel and the moving foreground corresponding to the camera motion can be related by a perspective matrix. To enhance the robustness of classification, we allowed a tolerance range during the perspective transform matrix prediction and used multi-reference frames to classify the pixel on current frame. The proposed scheme has been found to be able to detect moving objects for our moving robot car efficiently. Different from conventional approaches, our method can model the moving background in 3D structure, without online model training. More importantly, the computational complexity and memory requirement are low making it possible to implement this scheme in real-time, which is even valuable for a robot vision system.

  9. Discovery and refinement of genetic loci associated with cardiometabolic risk using dense imputation maps.

    Science.gov (United States)

    Iotchkova, Valentina; Huang, Jie; Morris, John A; Jain, Deepti; Barbieri, Caterina; Walter, Klaudia; Min, Josine L; Chen, Lu; Astle, William; Cocca, Massimilian; Deelen, Patrick; Elding, Heather; Farmaki, Aliki-Eleni; Franklin, Christopher S; Franberg, Mattias; Gaunt, Tom R; Hofman, Albert; Jiang, Tao; Kleber, Marcus E; Lachance, Genevieve; Luan, Jian'an; Malerba, Giovanni; Matchan, Angela; Mead, Daniel; Memari, Yasin; Ntalla, Ioanna; Panoutsopoulou, Kalliope; Pazoki, Raha; Perry, John R B; Rivadeneira, Fernando; Sabater-Lleal, Maria; Sennblad, Bengt; Shin, So-Youn; Southam, Lorraine; Traglia, Michela; van Dijk, Freerk; van Leeuwen, Elisabeth M; Zaza, Gianluigi; Zhang, Weihua; Amin, Najaf; Butterworth, Adam; Chambers, John C; Dedoussis, George; Dehghan, Abbas; Franco, Oscar H; Franke, Lude; Frontini, Mattia; Gambaro, Giovanni; Gasparini, Paolo; Hamsten, Anders; Issacs, Aaron; Kooner, Jaspal S; Kooperberg, Charles; Langenberg, Claudia; Marz, Winfried; Scott, Robert A; Swertz, Morris A; Toniolo, Daniela; Uitterlinden, Andre G; van Duijn, Cornelia M; Watkins, Hugh; Zeggini, Eleftheria; Maurano, Mathew T; Timpson, Nicholas J; Reiner, Alexander P; Auer, Paul L; Soranzo, Nicole

    2016-11-01

    Large-scale whole-genome sequence data sets offer novel opportunities to identify genetic variation underlying human traits. Here we apply genotype imputation based on whole-genome sequence data from the UK10K and 1000 Genomes Project into 35,981 study participants of European ancestry, followed by association analysis with 20 quantitative cardiometabolic and hematological traits. We describe 17 new associations, including 6 rare (minor allele frequency (MAF) < 1%) or low-frequency (1% < MAF < 5%) variants with platelet count (PLT), red blood cell indices (MCH and MCV) and HDL cholesterol. Applying fine-mapping analysis to 233 known and new loci associated with the 20 traits, we resolve the associations of 59 loci to credible sets of 20 or fewer variants and describe trait enrichments within regions of predicted regulatory function. These findings improve understanding of the allelic architecture of risk factors for cardiometabolic and hematological diseases and provide additional functional insights with the identification of potentially novel biological targets.

  10. Regional evaluation of three day snow depth for avalanche hazard mapping in Switzerland

    Directory of Open Access Journals (Sweden)

    D. Bocchiola

    2008-07-01

    Full Text Available The distribution of the maximum annual three day snow fall depth H72, used for avalanche hazard mapping according to the Swiss procedure (Sp, is investigated for a network of 124 stations in the Alpine part of Switzerland, using a data set dating back to 1931. Stationarity in time is investigated, showing in practice no significant trend for the considered period. Building on previous studies about climatology of Switzerland and using an iterative approach based on statistical tests for regional homogeneity and scaling of H72 with altitude, seven homogenous regions are identified. A regional approach based on the index value is then developed to estimate the T-years return period quantiles of H72 at each single site i, H72i(T. The index value is the single site sample average μH72i. The dimensionless values of H*72i=H72i / μH72i are grouped in one sample for each region and their frequency of occurrence is accommodated by a General Extreme Value, GEV, probability distribution, including Gumbel. The proposed distributions, valid in each site of the homogeneous regions, can be used to assess the T-years return period quantiles of H*72i. It is shown that the value of H72i(T estimated with the regional approach is more accurate than that calculated by single site distribution fitting, particularly for high return periods. A sampling strategy based on accuracy is also suggested to estimate the single site index value, i.e. the sample average μH72i, critical for the evaluation of the distribution of H72i. The proposed regional approach is valuable because it gives more accurate snow depth input to dynamics models than the present procedure based on single site analysis

  11. Modeling interchannel four-wave mixing for 8-Ary modulated dense wavelength division multiplexing systems over dispersion map

    Science.gov (United States)

    Du, Jianxin; Shen, Ninghang; Xu, Yue

    2016-08-01

    Semianalytic models are developed to deterministically calculate the variances of degenerate and nondegenerate four-wave mixing (FWM) noises for dispersion-managed dense wavelength division multiplexing (DWDM) systems with 8-Ary modulations [i.e., 8-level amplitude- and differential phase-shift keying (8APSK) and constant-amplitude optical differential 8-level phase-shift keying (D8PSK)]. The semianalytic models include various important propagation effects for exact numerical results. A 5.28-Tb/s (40-Gs/s/ch) 100-GHz-spaced 33-channel DWDM system with a dispersion map is then numerically analyzed by using the newly derived semianalytic models. It is numerically validated that FWM impacts coming from 8APSK pump channels are more severe than those coming from D8PSK ones, where pump channels denote the channels whose energies are transferred to a probe channel through the FWM process. The numerical results show that although FWM tolerance of a central channel with 8APSK is worse than that with D8PSK, a central channel with 8APSK is still superior to that with D8PSK when some linear noises and FWM noise are simultaneously taken into account for our given system conditions, which is mainly attributed to a relatively larger minimum Euclidean distance for the 8APSK constellation than the D8PSK one.

  12. Endometriosis and its global research architecture: an in-depth density-equalizing mapping analysis.

    Science.gov (United States)

    Brüggmann, Dörthe; Elizabeth-Martinez, Alexandra; Klingelhöfer, Doris; Quarcoo, David; Jaque, Jenny M; Groneberg, David A

    2016-09-21

    Endometriosis is one of the most common gynecological diseases. It is still a chameleon in many aspects and urges intense research activities in the fields of diagnosis, therapy and prevention. Despite the need to foster research in this area, no in-depth analysis of the global architecture of endometriosis research exists yet. We here used the NewQIS platform to conduct a density equalizing mapping study, using the Web of Science as database with endometriosis related entries between 1900 and 2009. Density equalizing maps of global endometriosis research encompassing country-specific publication activities, and semi-qualitative indices such as country specific citations, citation rates, h-Indices were created. In total, 11,056 entries related to endometriosis were found. The USA was leading the field with 3705 publications followed by the United Kingdom (952) and Japan (846). Concerning overall citations and country-specific h-Indices, the USA again was the leading nation with 74,592 citations and a modified h-Index of 103, followed by the UK with 15,175 citations (h-Index 57). Regarding the citation rate, Sweden and Belgium were at top positions with rates of 22.46 and 22.26, respectively. Concerning collaborative studies, there was a steep increase in numbers present; analysis of the chronological evolution indicated a strong increase in international collaborations in the past 10 years. This study is the first analysis that illustrates the global endometriosis research architecture. It shows that endometriosis research is constantly gaining importance but also underlines the need for further efforts and investments to foster research and ultimately improve endometriosis management on a global scale.

  13. How is kinematic structure connected to the core scale from filament scale?; Mopra mapping observations with multi-lines of dense cores in Lupus I

    Science.gov (United States)

    Kiyokane, Kazuhiro; Saito, Masao; Tachihara, Kengo; Saigo, Kazuya; van Kempen, Tim; Cortes, Paulo; Hill, Tracey; Knee, Lewis; Kurono, Yasutaka; Takahashi, Satoko; Aya, Higuchi; Nyman, Lars-Ake

    2014-06-01

    Recently, high sensitivity mappings of nearby molecular clouds in far-infrared and submillimeter wavelengths with Hershel and AzTEC/ASTE show ubiquitous existence of the filamentary structures with 0.1-pc uniform width. It is important to investigate dense core formation from large scale structure via fragmentation. We have conducted MOPRA multi-line mapping observations covered on 0.02 - 0.2 pc scales of 8 dense cores in a filamentary cloud of nearby Lupus I at 140 pc. A class 0/I protostellar core IRAS 15398-3359 is included as a sample, which has an adjacent prestellar core with the separation of 0.13pc in the west. The maps of N2H+, HNC, HC3N show well associated with each core. The velocity field of C18O shows 1.4 km/s/pc from north to south over the region containing two dense cores, which is consistent with past observation of NANTEN. In contrast to C18O results, the velocity field of HC3N shows different structures, which suggest counter rotation of two dense cores; 1.2 km/s/pc from north-west to south-east around a protostellar core and 0.8 km/s/pc from east to west around a presteller core. The filament will be fragmentized and collapsed to dense cores when the line density is over 2Cs/G (where Cs is sound speed and G is gravitational constant). If that velocity gradient was caused by such situation, it should be red-blue-red-blue across two dense cores but the observed kinematics is not consistent with this scenario, which requires that the filament structure would be extremely curved with a skew angle. Although we cannot reject the collapsing interruption, those results suggest the spin-up rotating picture separated from large-scale structure.

  14. Shading correction of camera captured document image with depth map information

    Science.gov (United States)

    Wu, Chyuan-Tyng; Allebach, Jan P.

    2015-01-01

    Camera modules have become more popular in consumer electronics and office products. As a consequence, people have many opportunities to use a camera-based device to record a hardcopy document in their daily lives. However, it is easy to let undesired shading into the captured document image through the camera. Sometimes, this non-uniformity may degrade the readability of the contents. In order to mitigate this artifact, some solutions have been developed. But most of them are only suitable for particular types of documents. In this paper, we introduce a content-independent and shape-independent method that will lessen the shading effects in captured document images. We want to reconstruct the image such that the result will look like a document image captured under a uniform lighting source. Our method utilizes the 3D depth map of the document surface and a look-up table strategy. We will first discuss the model and the assumptions that we used for the approach. Then, the process of creating and utilizing the look-up table will be described in the paper. We implement this algorithm with our prototype 3D scanner, which also uses a camera module to capture a 2D image of the object. Some experimental results will be presented to show the effectiveness of our method. Both flat and curved surface document examples will be included.

  15. Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth

    Science.gov (United States)

    Broxton, Patrick D.; Dawson, Nicholas; Zeng, Xubin

    2016-06-01

    It is critically important but challenging to estimate the amount of snow on the ground over large areas due to its strong spatial variability. Point snow data are used to generate or improve (i.e., blend with) gridded estimates of snow water equivalent (SWE) by using various forms of interpolation; however, the interpolation methodologies often overlook the physical mechanisms for the snow being there in the first place. Using data from the Snow Telemetry and Cooperative Observer networks in the western United States, we show that four methods for the spatial interpolation of peak of winter snow water equivalent (SWE) and snow depth based on distance and elevation can result in large errors. These errors are reduced substantially by our new method, i.e., the spatial interpolation of these quantities normalized by accumulated snowfall from the current or previous water years. Our method results in significant improvement in SWE estimates over interpolation techniques that do not consider snowfall, regardless of the number of stations used for the interpolation. Furthermore, it can be used along with gridded precipitation and temperature data to produce daily maps of SWE over the western United States that are comparable to existing estimates (which are based on the assimilation of much more data). Our results also show that not honoring the constraint between SWE and snowfall when blending in situ data with gridded data can lead to the development and propagation of unrealistic errors.

  16. Soil depth map definition on a terraced slope for a following distributed, high resolution, numerical modelling analysis

    Science.gov (United States)

    Camera, C.; Apuani, T.; Mele, M.; Kuriakose, S. L.; Giudici, M.

    2012-04-01

    The soil thickness represents a key data for every environmental analysis involving soil, but its determination is not always simple. In this particular case, the study area is represented by a small terraced slope (0.6 km2) of Valtellina (Northern Italy), and the soil depth map is necessary for a coupled hydrogeological-stability analysis in a raster environment. During this work geometrical/morphological and geostatistical interpolation techniques were tested to obtain a satisfying soil depth map. At the end, the final product has been validated with geo-electrical resistivity inverse models. In this particular context, the presence of dry-stone retaining walls is of primary importance, since they have an influence on the morphology of the entire area as well as on the physical processes of water infiltration and slope stability. In order to consider the dry-stone walls in the analysis, it is necessary to have base maps with an adequate resolution (cells 1 m x 1 m). Assuming that the walls might be founded on bedrock or in its proximity, it was decided to use the heights of walls and the distribution of rock outcrops as soil depth input data. It was impossible to obtain direct measures with the knocking pole method, being pebbles frequently presents in the backfill soil . Except zero depth values, 682 measures were performed. The initial data set was divided into two subsets in order to use one as training points (76 % of the total) and the second as test points (24 %). Various techniques were tested, from linear multiple regressions with environmental predictors, to ordinary kriging, regression kriging with the same environmental variables, and Gaussian stochastic simulations. At the end, the best result was obtained with co-kriging, using a soil depth class map drawn from the field measures as co-variable. The result is a little bit guided but it was the only solution to obtain a map that partially takes into account the morphology of the slope. To verify the

  17. Weekly LiDAR snow depth mapping for operational snow hydrology - the NASA JPL Airborne Snow Observatory (Invited)

    Science.gov (United States)

    Deems, J. S.; Painter, T. H.; McGurk, B. J.

    2013-12-01

    Operational hydrologic simulation and forecasting in snowmelt-dominated watersheds currently relies on indices of snow accumulation and melt from measurements at a small number of point locations or geographically-limited manual surveys. These data sources cannot adequately characterize the spatial distribution of snow depth/water equivalent, which is the primary determinant of snowpack volume and runoff rates. The NASA JPL Airborne Snow Observatory's airborne laser scanning system maps snow depth at high spatial and temporal resolutions, providing an unprecedented snowpack monitoring capability and enabling a new operational paradigm. In the Spring of 2013, the ASO mapped snow depth in the Tuolumne River Basin in California's Yosemite National Park on a nominally weekly basis, and provided fast-turnaround spatial snow depth and water equivalent maps to the operators of Hetch Hetchy Reservoir, the water supply for 2.5 million people on the San Francisco peninsula. These products enabled more accurate runoff simulation and optimal reservoir management in a year of very low snow accumulation. We present the initial results from this new application of multi-temporal LiDAR mapping in operational snow hydrology.

  18. Refinement of falsified depth maps for the SwissRanger time-of-flight 3D camera on autonomous robots

    CSIR Research Space (South Africa)

    Osunmakinde, IO

    2010-11-01

    Full Text Available Robot navigation depends on accurate scene analysis by a camera using its data. This paper investigates a refinement of the inherent falsified depth maps generated from a 3D SwissRanger camera in the emission of beams of rays through a modulated...

  19. Using Commercial Digital Cameras and Structure-for-Motion Software to Map Snow Cover Depth from Small Aircraft

    Science.gov (United States)

    Sturm, M.; Nolan, M.; Larsen, C. F.

    2014-12-01

    A long-standing goal in snow hydrology has been to map snow cover in detail, either mapping snow depth or snow water equivalent (SWE) with sub-meter resolution. Airborne LiDAR and air photogrammetry have been used successfully for this purpose, but both require significant investments in equipment and substantial processing effort. Here we detail a relatively inexpensive and simple airborne photogrammetric technique that can be used to measure snow depth. The main airborne hardware consists of a consumer-grade digital camera attached to a survey-quality, dual-frequency GPS. Photogrammetric processing is done using commercially available Structure from Motion (SfM) software that does not require ground control points. Digital elevation models (DEMs) are made from snow-free acquisitions in the summer and snow-covered acquisitions in winter, and the maps are then differenced to arrive at snow thickness. We tested the accuracy and precision of snow depths measured using this system through 1) a comparison with airborne scanning LiDAR, 2) a comparison of results from two independent and slightly different photogrameteric systems, and 3) comparison to extensive on-the-ground measured snow depths. Vertical accuracy and precision are on the order of +/-30 cm and +/- 8 cm, respectively. The accuracy can be made to approach that of the precision if suitable snow-free ground control points exists and are used to co-register summer to winter DEM maps. Final snow depth accuracy from our series of tests was on the order of ±15 cm. This photogrammetric method substantially lowers the economic and expertise barriers to entry for mapping snow.

  20. Dense with Sense

    Science.gov (United States)

    Aletras, Anthony H.; Ingkanisorn, W. Patricia; Mancini, Christine; Arai, Andrew E.

    2005-09-01

    Displacement encoding with stimulated echoes (DENSE) with a low encoding strength phase-cycled meta-DENSE readout and a two fold SENSE acceleration ( R = 2) is described. This combination reduces total breath-hold times for increased patient comfort during cardiac regional myocardial contractility studies. Images from phantoms, normal volunteers, and a patient are provided to demonstrate the SENSE-DENSE combination of methods. The overall breath-hold time is halved while preserving strain map quality.

  1. Edge-preserving Intra mode for efficient depth map coding based on H.264/AVC

    DEFF Research Database (Denmark)

    Zamarin, Marco; Forchhammer, Søren

    2014-01-01

    Depth-image-based-rendering (DIBR) algorithms for 3D video communication systems based on the “multi-view video plus depth” format are very sensitive to the accuracy of depth information. Specifically, edge regions in the depth data should be preserved in the coding/decoding process to ensure good...... targeted to depth macroblocks with arbitrarily shaped edges, which are typically not predicted well by the standard Intra modes of H.264/AVC and result in high rate–distortion costs. The proposed algorithm segments edge macroblocks into two regions each approximated by a flat surface. A binary mask...... texture plus depth rate–distortion performance....

  2. Expading fluvial remote sensing to the riverscape: Mapping depth and grain size on the Merced River, California

    Science.gov (United States)

    Richardson, Ryan T.

    This study builds upon recent research in the field of fluvial remote sensing by applying techniques for mapping physical attributes of rivers. Depth, velocity, and grain size are primary controls on the types of habitat present in fluvial ecosystems. This thesis focuses on expanding fluvial remote sensing to larger spatial extents and sub-meter resolutions, which will increase our ability to capture the spatial heterogeneity of habitat at a resolution relevant to individual salmonids and an extent relevant to species. This thesis consists of two chapters, one focusing on expanding the spatial extent over which depth can be mapped using Optimal Band Ratio Analysis (OBRA) and the other developing general relations for mapping grain size from three-dimensional topographic point clouds. The two chapters are independent but connected by the overarching goal of providing scientists and managers more useful tools for quantifying the amount and quality of salmonid habitat via remote sensing. The OBRA chapter highlights the true power of remote sensing to map depths from hyperspectral images as a central component of watershed scale analysis, while also acknowledging the great challenges involved with increasing spatial extent. The grain size mapping chapter establishes the first general relations for mapping grain size from roughness using point clouds. These relations will significantly reduce the time needed in the field by eliminating the need for independent measurements of grain size for calibrating the roughness-grain size relationship and thus making grain size mapping with SFM more cost effective for river restoration and monitoring. More data from future studies are needed to refine these relations and establish their validity and generality. In conclusion, this study adds to the rapidly growing field of fluvial remote sensing and could facilitate river research and restoration.

  3. Reciprocal space XRD mapping with varied incident angle as a probe of structure variation within surface depth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qiguang [Norfolk State University; Williams, Frances [Norfolk State University; Zhao, Xin [JLAB; Reece, Charles E. [JLAB; Krishnan, Mahadevan [AASC, San Leandro, California

    2013-09-01

    In this study, we used a differential-depth X-Ray diffraction Reciprocal Spacing Mapping (XRD RSM) technique to investigate the crystal quality of a variety of SRF-relevant Nb film and bulk materials. By choosing different X-ray probing depths, the RSM study successfully revealed evolution the of materials microstructure after different materials processes, such as energetic condensation or surface polishing. The RSM data clearly measured the materials crystal quality at different thickness. Through a novel differential-depth RSM technique, this study found: I. for a heteroepitaxy Nb film Nb(100)/MgO(100), the film thickening process, via a cathodic arc-discharge Nb ion deposition, created a near-perfect single crystal Nb on the surfaces top-layer; II. for a mechanically polished single-crystal bulk Nb material, the microstructure on the top surface layer is more disordered than that in-grain.

  4. Mapping snow-depth from manned-aircraft on landscape scales at centimeter resolution using Structure-from-Motion photogrammetry

    Science.gov (United States)

    Nolan, M.; Larsen, C. F.; Sturm, M.

    2015-01-01

    Airborne photogrammetry is undergoing a renaissance: lower-cost equipment, more powerful software, and simplified methods have significantly lowered the barriers-to-entry and now allow repeat-mapping of cryospheric dynamics at spatial resolutions and temporal frequencies that were previously too expensive to consider. Here we apply these techniques to the measurement of snow depth from manned aircraft. The main airborne hardware consists of a consumer-grade digital camera coupled to a dual-frequency GPS. The photogrammetric processing is done using a commercially-available implementation of the Structure from Motion (SfM) algorithm. The system hardware and software, exclusive of aircraft, costs less than USD 30 000. The technique creates directly-georeferenced maps without ground control, further reducing costs. To map snow depth, we made digital elevation models (DEMs) during snow-free and snow-covered conditions, then subtracted these to create difference DEMs (dDEMs). We assessed the accuracy (geolocation) and precision (repeatability) of our DEMs through comparisons to ground control points and to time-series of our own DEMs. We validated these assessments through comparisons to DEMs made by airborne lidar and by another photogrammetric system. We empirically determined an accuracy of ± 30 cm and a precision of ± 8 cm (both 95% confidence) for our methods. We then validated our dDEMs against more than 6000 hand-probed snow depth measurements at 3 test areas in Alaska covering a wide-variety of terrain and snow types. These areas ranged from 5 to 40 km2 and had ground sample distances of 6 to 20 cm. We found that depths produced from the dDEMs matched probe depths with a 10 cm standard deviation, and these depth distributions were statistically identical at 95% confidence. Due to the precision of this technique, other real changes on the ground such as frost heave, vegetative compaction by snow, and even footprints become sources of error in the measurement of

  5. Mapping snow-depth from manned-aircraft on landscape scales at centimeter resolution using Structure-from-Motion photogrammetry

    Directory of Open Access Journals (Sweden)

    M. Nolan

    2015-01-01

    Full Text Available Airborne photogrammetry is undergoing a renaissance: lower-cost equipment, more powerful software, and simplified methods have significantly lowered the barriers-to-entry and now allow repeat-mapping of cryospheric dynamics at spatial resolutions and temporal frequencies that were previously too expensive to consider. Here we apply these techniques to the measurement of snow depth from manned aircraft. The main airborne hardware consists of a consumer-grade digital camera coupled to a dual-frequency GPS. The photogrammetric processing is done using a commercially-available implementation of the Structure from Motion (SfM algorithm. The system hardware and software, exclusive of aircraft, costs less than USD 30 000. The technique creates directly-georeferenced maps without ground control, further reducing costs. To map snow depth, we made digital elevation models (DEMs during snow-free and snow-covered conditions, then subtracted these to create difference DEMs (dDEMs. We assessed the accuracy (geolocation and precision (repeatability of our DEMs through comparisons to ground control points and to time-series of our own DEMs. We validated these assessments through comparisons to DEMs made by airborne lidar and by another photogrammetric system. We empirically determined an accuracy of ± 30 cm and a precision of ± 8 cm (both 95% confidence for our methods. We then validated our dDEMs against more than 6000 hand-probed snow depth measurements at 3 test areas in Alaska covering a wide-variety of terrain and snow types. These areas ranged from 5 to 40 km2 and had ground sample distances of 6 to 20 cm. We found that depths produced from the dDEMs matched probe depths with a 10 cm standard deviation, and these depth distributions were statistically identical at 95% confidence. Due to the precision of this technique, other real changes on the ground such as frost heave, vegetative compaction by snow, and even footprints become sources of error in the

  6. Evaluating the value of ENVISAT ASAR Data for the mapping and monitoring of peatland water table depths

    Science.gov (United States)

    Bechtold, Michel; Schlaffer, Stefan

    2015-04-01

    The Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT collected C-Band microwave backscatter data from 2005 to 2012. Backscatter in the C-Band depends to a large degree on the roughness and the moisture status of vegetation and soil surface with a penetration depth of ca. 3 cm. In wetlands with stable high water levels, the annual soil surface moisture dynamics are very distinct compared to the surrounding areas, which allows the monitoring of such environments with ASAR data (Reschke et al. 2012). Also in drained peatlands, moisture status of vegetation and soil surface strongly depends on water table depth due to high hydraulic conductivities of many peat soils in the low suction range (Dettmann et al. 2014). We hypothesize that this allows the characterization of water table depths with ASAR data. Here we analyze whether ASAR data can be used for the spatial and temporal estimation of water table depths in different peatlands (natural, near-natural, agriculturally-used and rewetted). Mapping and monitoring of water table depths is of crucial importance, e.g. for upscaling greenhouse gas emissions and evaluating the success of peatland rewetting projects. Here, ASAR data is analyzed with a new map of water table depths for the organic soils in Germany (Bechtold et al. 2014) as well as with a comprehensive data set of monitored peatland water levels from 1100 dip wells and 54 peatlands. ASAR time series from the years 2005-2012 with irregular temporal sampling intervals of 3-14 days were processed. Areas covered by snow were masked. Primary results about the accuracy of spatial estimates show significant correlations between long-term backscatter statistics and spatially-averaged water table depths extracted from the map at the resolution of the ASAR data. Backscatter also correlates with long-term averages of point-scale water table depth data of the monitoring wells. For the latter, correlation is highest between the dry reference backscatter values and

  7. Ultrashallow seismic imaging of the causative fault of the 1980, M6.9, southern Italy earthquake by pre-stack depth migration of dense wide-aperture data

    Science.gov (United States)

    Bruno, Pier Paolo; Castiello, Antonio; Improta, Luigi

    2010-10-01

    A two-step imaging procedure, including pre-stack depth migration (PSDM) and non-linear multiscale refraction tomography, was applied to dense wide-aperture data with the aim of imaging the causative fault of the 1980, M6.9, Irpinia normal faulting earthquake in a very complex geologic environment. PSDM is often ineffective for ultrashallow imaging (100 m of depth and less) of laterally heterogeneous media because of the difficulty in estimating a correct velocity model for migration. Dense wide-aperture profiling allowed us to build accurate velocity models across the fault zone by multiscale tomography and to record wide-angle reflections from steep reflectors. PSDM provided better imaging with respect to conventional post-stack depth migration, and improved definition of fault geometry and apparent cumulative displacement. Results indicate that this imaging strategy can be very effective for near-surface fault detection and characterization. Fault location and geometry are in agreement with paleoseismic data from two nearby trenches. The estimated vertical fault throw is only 29-38 m. This value, combined with the vertical slip rate determined by trench data, suggests a young age (97-127 kyr) of fault inception.

  8. Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure-from-motion photogrammetry

    Science.gov (United States)

    Nolan, M.; Larsen, C.; Sturm, M.

    2015-08-01

    Airborne photogrammetry is undergoing a renaissance: lower-cost equipment, more powerful software, and simplified methods have significantly lowered the barriers to entry and now allow repeat mapping of cryospheric dynamics at spatial resolutions and temporal frequencies that were previously too expensive to consider. Here we apply these advancements to the measurement of snow depth from manned aircraft. Our main airborne hardware consists of a consumer-grade digital camera directly coupled to a dual-frequency GPS; no inertial motion unit (IMU) or on-board computer is required, such that system hardware and software costs less than USD 30 000, exclusive of aircraft. The photogrammetric processing is done using a commercially available implementation of the structure from motion (SfM) algorithm. The system is simple enough that it can be operated by the pilot without additional assistance and the technique creates directly georeferenced maps without ground control, further reducing overall costs. To map snow depth, we made digital elevation models (DEMs) during snow-free and snow-covered conditions, then subtracted these to create difference DEMs (dDEMs). We assessed the accuracy (real-world geolocation) and precision (repeatability) of our DEMs through comparisons to ground control points and to time series of our own DEMs. We validated these assessments through comparisons to DEMs made by airborne lidar and by a similar photogrammetric system. We empirically determined that our DEMs have a geolocation accuracy of ±30 cm and a repeatability of ±8 cm (both 95 % confidence). We then validated our dDEMs against more than 6000 hand-probed snow depth measurements at 3 separate test areas in Alaska covering a wide-variety of terrain and snow types. These areas ranged from 5 to 40 km2 and had ground sample distances of 6 to 20 cm. We found that depths produced from the dDEMs matched probe depths with a 10 cm standard deviation, and were statistically identical at 95

  9. Extended depth from focus reconstruction using NIH ImageJ plugins: quality and resolution of elevation maps.

    Science.gov (United States)

    Hein, Luis Rogerio De Oliveira; De Oliveira, José Alberto; De Campos, Kamila Amato; Caltabiano, Pietro Carelli Reis De Oliveira

    2012-11-01

    In this work, NIH ImageJ plugins for extended depth-from-focus reconstructions (EDFR) based on spatial domain operations were compared and tested for usage optimization. Also, some preprocessing solutions for light microscopy image stacks were evaluated, suggesting a general routine for the ImageJ user to get reliable elevation maps from grayscale image stacks. Two reflected light microscope image stacks were used to test the EDFR plugins: one bright-field image stack for the fracture of carbon-epoxy composite and its darkfield corresponding stack at same (x,y,z) spatial coordinates. Image quality analysis consisted of the comparison of signal-to-noise ratio and resolution parameters with the consistence of elevation maps, based on roughness and fractal measurements. Darkfield illumination contributed to enhance the homogeneity of images in stack and resulting height maps, reducing the influence of digital image processing choices on the dispersion of topographic measurements. The subtract background filter, as a preprocessing tool, contributed to produce sharper focused images. In general, the increasing of kernel size for EDFR spatial domain-based solutions will produce smooth height maps. Finally, this work has the main objective to establish suitable guidelines to generate elevation maps by light microscopy.

  10. Depth map calculation for a variable number of moving objects using Markov sequential object processes

    NARCIS (Netherlands)

    Lieshout, M.N.M. van

    2008-01-01

    We advocate the use of Markov sequential object processes for tracking a variable number of moving objects through video frames with a view towards depth calculation. A regression model based on a sequential object process quantifies goodness of fit; regularization terms are incorporated to control

  11. Comparison of Digital Surface Models for Snow Depth Mapping with Uav and Aerial Cameras

    Science.gov (United States)

    Boesch, R.; Bühler, Y.; Marty, M.; Ginzler, C.

    2016-06-01

    Photogrammetric workflows for aerial images have improved over the last years in a typically black-box fashion. Most parameters for building dense point cloud are either excessive or not explained and often the progress between software releases is poorly documented. On the other hand, development of better camera sensors and positional accuracy of image acquisition is significant by comparing product specifications. This study shows, that hardware evolutions over the last years have a much stronger impact on height measurements than photogrammetric software releases. Snow height measurements with airborne sensors like the ADS100 and UAV-based DSLR cameras can achieve accuracies close to GSD * 2 in comparison with ground-based GNSS reference measurements. Using a custom notch filter on the UAV camera sensor during image acquisition does not yield better height accuracies. UAV based digital surface models are very robust. Different workflow parameter variations for ADS100 and UAV camera workflows seem to have only random effects.

  12. The Galactic Census of High- and Medium-mass Protostars. III $^{12}$CO Maps and Physical Properties of Dense Clump Envelopes and their Embedding GMCs

    CERN Document Server

    Barnes, Peter J; O'Dougherty, Stefan N; Schap, William J; Muller, Erik

    2016-01-01

    We report the second complete molecular line data release from the {\\em Census of High- and Medium-mass Protostars} (CHaMP), a large-scale, unbiased, uniform mapping survey at sub-parsec resolution, of mm-wave line emission from 303 massive, dense molecular clumps in the Milky Way. This release is for all $^{12}$CO $J$=1$\\rightarrow$0 emission associated with the dense gas, the first from Phase II of the survey, which includes $^{12}$CO, $^{13}$CO, and C$^{18}$O. The observed clump emission traced by both $^{12}$CO and HCO$^+$ (from Phase I) shows very similar morphology, indicating that, for dense molecular clouds and complexes of all sizes, parsec-scale clumps contain $\\Xi$ ~ 75% of the mass, while only 25% of the mass lies in extended (>~ 10 pc) or "low density" components in these same areas. The mass fraction of all gas above a density 10$^9$ m$^{-3}$ is $\\xi_9$ >~ 50%. This suggests that parsec-scale clumps may be the basic building blocks of the molecular ISM, rather than the standard GMC concept. Usin...

  13. Maps showing ground-water levels, springs, and depth to ground water, Basin and Range Province, Texas

    Science.gov (United States)

    Brady, B.T.; Bedinger, M.S.; Mulvihill, D.A.; Mikels, John; Langer, W.H.

    1984-01-01

    This report on ground-water levels, springs, and depth to ground water in the Basin and Range province of Texas (see index map) was prepared as part of a program of the U.S. Geological Survey to identify prospective regions for further study relative to isolation of high-level nuclear waste (Bedinger, Sargent, and Reed, 1984), utilizing program guidelines defined in Sargent and Bedinger (1984). Also included in this report are selected references on pertinent geologic and hydrologic studies of the region. Other map reports in this series contain detailed data on ground-water quality, surface distribution of selected rock types, tectonic conditions, areal geophysics, Pleistocene lakes and marshes, and mineral and energy resources.

  14. Hyperscale Analysis of River Morphology Though Optical Remote Mapping of Water Depths

    Science.gov (United States)

    Fonstad, M. A.

    2007-12-01

    The science of in-channel river processes and forms has profited enormously from the introduction of specialized remote sensing tools such as LiDAR and hyperspectral imaging during the past decade. However, the cost and lack of historical data make them a less than ideal choice for many geomorphic questions. As an alternative to high-performance technology, a new analytical technique applied to older color aerial imagery allows extraction of the three-dimensional river environment over enormous distances. In clearwater rivers, some light often reaches the riverbed and returns to the surface, providing optical information about different components of the physical habitat structure. The HAB-2 transform combines the Beer-Lambert law of light absorption with hydrodynamic rules to allow the estimation of river depth at each image pixel, and it allows separation of the depth effect from the remaining image information. The widespread availability of CIR digital orthophotoquads across much of the United States allows the use of HAB approaches to extract three dimensional data for large area riverscapes at scales from about a meter to that of the entire watershed. The rapid and widespread utility of image-based river DTMs allows hitherto unparalleled investigation of geomorphic structures. As one example of this utility, HAB- calibrated high-resolution imagery of the Nueces River watershed, Texas, shows systematic deviations from the classic theory of the downstream hydraulic geometry as well as an unprecedented level of randomness at most scales.

  15. A Mapping Survey of Dense Clumps Associated with Embedded Clusters II : Can Clump-Clump Collisions Induce Stellar Clusters?

    CERN Document Server

    HIGUCHI, Aya E; SAITO, Masao; KAWABE, Ryohei

    2010-01-01

    We report the H13CO+(1-0) survey observations toward embedded clusters obtained using the Nobeyama 45m telescope, which were performed to follow up our previous study in the C18O survey with a dense gas tracer. Our aim is to address the evolution of cluster-forming clumps. We observed the same 14 clusters in C18O, which are located at distances from 0.3-2.1kpc with 27" resolution in H13CO+. We detected the 13 clumps in H13CO+ line emission and obtained the physical parameters of the clumps with radii of 0.24-0.75pc, masses of 100-1400Msun, and velocity widths in FWHM of 1.5-4.0kms^-1. The mean density is 3.9x10^4cm^-3 and the equivalent Jeans length is 0.13pc at 20K. We classified the H13CO+ clumps into three types, Type A, B, and C according to the relative locations of the H13CO+ clumps and the clusters. Our classification represents an evolutionary trend of cluster-forming clumps because dense clumps are expected to be converted into stellar constituents, or dispersed by stellar activities. We found a simi...

  16. Mapping science communication scholarship in China: Content analysis on breadth, depth and agenda of published research.

    Science.gov (United States)

    Xu, Linjia; Huang, Biaowen; Wu, Guosheng

    2015-11-01

    This study attempted to illuminate the cause and relation between government, scholars, disciplines, and societal aspects, presenting data from a content analysis of published research with the key word "science communication" (Symbol: see text) in the title or in the key words, including academic papers published in journals and dissertations from the China National Knowledge Infrastructure database. Of these, 572 articles were coded using categories that identified science topics, theory, authorship, and methods used in each study to examine the breadth and depth that Science Communication has achieved since its inception in China. This study explored the dominance of History and Philosophy of Science scholars rather than Communication scholars. We also explored how science communication research began from theories and concepts instead of science report analysis and the difficulties of the shift from public understanding of science to public engagement in China.

  17. MALATANG: MApping the dense moLecular gAs in the sTrongest stAr-formiNg Galaxies

    Science.gov (United States)

    Gao, Yu; Zhang, Zhiyu; Greve, Thomas; MALATANG Team

    2017-01-01

    The MALATANG Large Program is a 390 hr campaign, using the heterodyne array HARP on the JCMT to map theHCN and HCO+ J = 4 - 3 line emission in 23 of the nearest IR-brightest galaxies beyond the Local Group. Theobservations will reach a sensitivity of 0.3 K km/s (~ 4.5 x 10^6 Msun) at linear resolutions of 0.2-2.8kpc. It is thefirst survey to systematically map the distribution of dense molecular gas out to large galactocentric distances in a statisticallysignificant sample of nearby galaxies. MALATANG will bridge the gap, in terms of physical scale and luminosity,between extragalactic (i.e., galaxy-integrated) and Galactic (i.e., single molecular clouds) observations. A primarygoal of the survey is to delineate for the first time the distributed dense gas star-formation relations, as traced by theHCN and HCO+ J = 4-3, on scales of ~1kpc across our targets. Exploring the behaviour of these star-formationrelations in low surface density regions found in the disks as well as in the nuclear regions where surface densitiesare high, will shed new light on whether such environments are host to fundamentally different star-formation modes.The MALATANG data products of resolved HCN and HCO+ J = 4-3 maps of 23 IR-bright local galaxies, will beof great value to the extragalactic community and, in and of themselves, carry significant legacy value. At the moment,about 50% (~195hrs) of the 390hrs of time allocated to MALATANG has been observed. We here show somevery preliminary results as well after introducing our project.

  18. Combining Dense Structure From Motion and Visual SLAM in a Behavior-Based Robot Control Architecture

    OpenAIRE

    Geert De Cubber; Sid Ahmed Berrabah; Daniela Doroftei; Yvan Baudoin; Hichem Sahli

    2010-01-01

    In this paper, we present a control architecture for an intelligent outdoor mobile robot. This enables the robot to navigate in a complex, natural outdoor environment, relying on only a single on-board camera as sensory input. This is achieved through a twofold analysis of the visual data stream: a dense structure from motion algorithm calculates a depth map of the environment and a visual simultaneous localization and mapping algorithm builds a map of the surroundings using image features. T...

  19. The Galactic Census of High- and Medium-mass Protostars. III. 12CO Maps and Physical Properties of Dense Clump Envelopes and Their Embedding GMCs

    Science.gov (United States)

    Barnes, Peter J.; Hernandez, Audra K.; O'Dougherty, Stefan N.; Schap, William J., III; Muller, Erik

    2016-11-01

    We report the second complete molecular line data release from the Census of High- and Medium-mass Protostars (CHaMP), a large-scale, unbiased, uniform mapping survey at sub-parsec resolution, of millimeter-wave line emission from 303 massive, dense molecular clumps in the Milky Way. This release is for all 12CO J = 1 \\to 0 emission associated with the dense gas, the first from Phase II of the survey, which includes 12CO, 13CO, and C18O. The observed clump emission traced by both 12CO and HCO+ (from Phase I) shows very similar morphology, indicating that, for dense molecular clouds and complexes of all sizes, parsec-scale clumps contain Ξ ˜ 75% of the mass, while only 25% of the mass lies in extended (≳10 pc) or “low density” components in these same areas. The mass fraction of all gas above a density of 109 m-3 is {ξ }9 ≳ 50%. This suggests that parsec-scale clumps may be the basic building blocks of the molecular interstellar medium, rather than the standard GMC concept. Using 12CO emission, we derive physical properties of these clumps in their entirety, and compare them to properties from HCO+, tracing their denser interiors. We compare the standard X-factor converting {I}{12{CO}} to {N}{{{H}}2} with alternative conversions, and show that only the latter give whole-clump properties that are physically consistent with those of their interiors. We infer that the clump population is systematically closer to virial equilibrium than when considering only their interiors, with perhaps half being long-lived (10s of Myr), pressure-confined entities that only terminally engage in vigorous massive star formation, supporting other evidence along these lines that was previously published.

  20. Dense Breasts

    Science.gov (United States)

    ... also appear white on mammography, they can be hidden by or within dense breast tissue. Other imaging ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  1. Forest Disturbance Mapping Using Dense Synthetic Landsat/MODIS Time-Series and Permutation-Based Disturbance Index Detection

    Directory of Open Access Journals (Sweden)

    David Frantz

    2016-03-01

    Full Text Available Spatio-temporal information on process-based forest loss is essential for a wide range of applications. Despite remote sensing being the only feasible means of monitoring forest change at regional or greater scales, there is no retrospectively available remote sensor that meets the demand of monitoring forests with the required spatial detail and guaranteed high temporal frequency. As an alternative, we employed the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM to produce a dense synthetic time series by fusing Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS nadir Bidirectional Reflectance Distribution Function (BRDF adjusted reflectance. Forest loss was detected by applying a multi-temporal disturbance detection approach implementing a Disturbance Index-based detection strategy. The detection thresholds were permutated with random numbers for the normal distribution in order to generate a multi-dimensional threshold confidence area. As a result, a more robust parameterization and a spatially more coherent detection could be achieved. (i The original Landsat time series; (ii synthetic time series; and a (iii combined hybrid approach were used to identify the timing and extent of disturbances. The identified clearings in the Landsat detection were verified using an annual woodland clearing dataset from Queensland’s Statewide Landcover and Trees Study. Disturbances caused by stand-replacing events were successfully identified. The increased temporal resolution of the synthetic time series indicated promising additional information on disturbance timing. The results of the hybrid detection unified the benefits of both approaches, i.e., the spatial quality and general accuracy of the Landsat detection and the increased temporal information of synthetic time series. Results indicated that a temporal improvement in the detection of the disturbance date could be achieved relative to the irregularly spaced Landsat

  2. Genetic mapping of horizontal stripes in Lake Victoria cichlid fishes: benefits and pitfalls of using RAD markers for dense linkage mapping.

    Science.gov (United States)

    Henning, Frederico; Lee, Hyuk Je; Franchini, Paolo; Meyer, Axel

    2014-11-01

    The genetic dissection of naturally occurring phenotypes sheds light on many fundamental and longstanding questions in speciation and adaptation and is a central research topic in evolutionary biology. Until recently, forward-genetic approaches were virtually impossible to apply to nonmodel organisms, but the development of next-generation sequencing techniques eases this difficulty. Here, we use the ddRAD-seq method to map a colour trait with a known adaptive function in cichlid fishes, well-known textbook examples for rapid rates of speciation and astonishing phenotypic diversification. A suite of phenotypic key innovations is related to speciation and adaptation in cichlids, among which body coloration features prominently. The focal trait of this study, horizontal stripes, evolved in parallel in several cichlid radiations and is associated with piscivorous foraging behaviour. We conducted interspecific crosses between Haplochromis sauvagei and H. nyererei and constructed a linkage map with 867 SNP markers distributed on 22 linkage groups and total size of 1130.63 cM. Lateral stripes are inherited as a Mendelian trait and map to a single genomic interval that harbours a paralog of a gene with known function in stripe patterning. Dorsolateral and mid-lateral stripes were always coinherited and are thus under the same genetic control. Additionally, we directly quantify the genotyping error rates in RAD markers and offer guidelines for identifying and dealing with errors. Uncritical marker selection was found to severely impact linkage map construction. Fortunately, by applying appropriate quality control steps, a genotyping accuracy of >99.9% can be reached, thus allowing for efficient linkage mapping of evolutionarily relevant traits.

  3. Bayesian depth estimation from monocular natural images.

    Science.gov (United States)

    Su, Che-Chun; Cormack, Lawrence K; Bovik, Alan C

    2017-05-01

    Estimating an accurate and naturalistic dense depth map from a single monocular photographic image is a difficult problem. Nevertheless, human observers have little difficulty understanding the depth structure implied by photographs. Two-dimensional (2D) images of the real-world environment contain significant statistical information regarding the three-dimensional (3D) structure of the world that the vision system likely exploits to compute perceived depth, monocularly as well as binocularly. Toward understanding how this might be accomplished, we propose a Bayesian model of monocular depth computation that recovers detailed 3D scene structures by extracting reliable, robust, depth-sensitive statistical features from single natural images. These features are derived using well-accepted univariate natural scene statistics (NSS) models and recent bivariate/correlation NSS models that describe the relationships between 2D photographic images and their associated depth maps. This is accomplished by building a dictionary of canonical local depth patterns from which NSS features are extracted as prior information. The dictionary is used to create a multivariate Gaussian mixture (MGM) likelihood model that associates local image features with depth patterns. A simple Bayesian predictor is then used to form spatial depth estimates. The depth results produced by the model, despite its simplicity, correlate well with ground-truth depths measured by a current-generation terrestrial light detection and ranging (LIDAR) scanner. Such a strong form of statistical depth information could be used by the visual system when creating overall estimated depth maps incorporating stereopsis, accommodation, and other conditions. Indeed, even in isolation, the Bayesian predictor delivers depth estimates that are competitive with state-of-the-art "computer vision" methods that utilize highly engineered image features and sophisticated machine learning algorithms.

  4. USING GIS TO MAP THE DEPTH TO SEDIMENT OF A POND USING A SONIC DEPTH METER AND A TRIMBLE GPS SYSTEM

    Science.gov (United States)

    During a research project to identify the source of Arsenic in a watershed, it became necessary to characterize the subsurface sediments in a pond associated with the watershed. This paper describes the process that we used to measure the depth and identify the location of the d...

  5. USING GIS TO MAP THE DEPTH TO SEDIMENT OF A POND USING A SONIC DEPTH METER AND A TRIMBLE GPS SYSTEM

    Science.gov (United States)

    During a research project to identify the source of Arsenic in a watershed, it became necessary to characterize the subsurface sediments in a pond associated with the watershed. This paper describes the process that we used to measure the depth and identify the location of the d...

  6. Visualizing the Subsurface of Soft Matter: Simultaneous Topographical Imaging, Depth Modulation, and Compositional Mapping with Triple Frequency Atomic Force Microscopy

    Science.gov (United States)

    Solares, Santiago; Ebeling, Daniel; Eslami, Babak

    2014-03-01

    Characterization of subsurface morphology and mechanical properties with nanoscale resolution and depth control is of significant interest in soft matter fields like biology and polymer science, where buried structural and compositional features can be important. However, controllably ``feeling'' the subsurface is a challenging task for which the available imaging tools are relatively limited. This presentation describes a trimodal atomic force microscopy (AFM) imaging scheme, whereby three eigenmodes of the microcantilever probe are used as separate control ``knobs'' to simultaneously measure the topography, modulate sample indentation by the tip during tip-sample impact, and map compositional contrast, respectively. This method is illustrated through computational simulation and experiments conducted on ultrathin polymer films with embedded glass nanoparticles. By actively increasing the tip-sample indentation using a higher eigenmode of the cantilever, one is able to gradually and controllably reveal glass nanoparticles that are buried tens of nanometers deep under the surface, while still being able to refocus on the surface. The authors gratefully acknowledge support from the U.S. Department of Energy (conceptual method development and experimental work, award DESC-0008115) and the U.S. National Science Foundation (computational work, award CMMI-0841840).

  7. Depth Map Generation Method of Two-dimensional Image Sequence%一种二维图像序列的深度图像生成方法

    Institute of Scientific and Technical Information of China (English)

    罗莎莎; 郭太良

    2012-01-01

    This paper proposes a depth map generation method based on motion object. First, the paper uses improved cumulative mean square deviation algorithm to extract background model, then background subtraction method is used to obtain motion object figure. After artificially drawing the depth map of the background model, with motion object figure of each frame, the depth maps of the image sequence are automatically synthesized, which can be directly used in two-dimensional (2D) to three-dimensional (3D) conversion. Experimental results show that compared with conventional depth map generation methods, depth map obtained by this method is true and reliable, thus more comfortable for 3D visualization.%针对二维图像序列提出一种基于运动对象的深度图像生成方法.采用改进的均方差累加算法提取背景模型,并利用背景差分法提取运动对象图形,将人工绘制的背景模型的深度图像,结合每帧运动对象图形深度赋值,自动合成用于二维视频到三维视频转换的图像序列的深度图像.实验结果证明,相对于传统的仅仅依靠计算机视觉获取深度图像的方法,它获得的深度图像,不仅画面的深度信息真实、可靠,而且转换后的三维场景更立体化.

  8. Properties of Dense Cores Embedded in Musca Derived from Extinction Maps and 13CO, C18O, and NH3 Emission Lines

    Science.gov (United States)

    Machaieie, Dinelsa A.; Vilas-Boas, José W.; Wuensche, Carlos A.; Racca, Germán A.; Myers, Philip C.; Hickel, Gabriel R.

    2017-02-01

    Using near-infrared data from the Two Micron All Sky Survey catalog and the Near Infrared Color Excess method, we studied the extinction distribution in five dense cores of Musca, which show visual extinction greater than 10 mag and are potential sites of star formation. We analyzed the stability in four of them, fitting their radial extinction profiles with Bonnor–Ebert isothermal spheres, and explored their properties using the J = 1–0 transition of 13CO and C18O and the J = K = 1 transition of NH3. One core is not well described by the model. The stability parameter of the fitted cores ranges from 4.5 to 5.7 and suggests that all cores are stable, including Mu13, which harbors one young stellar object (YSO), the IRAS 12322-7023 source. However, the analysis of the physical parameters shows that Mu13 tends to have larger A V, n c, and P ext than the remaining starless cores. The other physical parameters do not show any trend. It is possible that those are the main parameters to explore in active star-forming cores. Mu13 also shows the most intense emission of NH3. Its 13CO and C18O lines have double peaks, whose integrated intensity maps suggest that they are due to the superposition of clouds with different radial velocities seen in the line of sight. It is not possible to state whether these clouds are colliding and inducing star formation or are related to a physical process associated with the formation of the YSO.

  9. Voltage mapping for delineating inexcitable dense scar in patients undergoing atrial fibrillation ablation: a new end point for enhancing pulmonary vein isolation.

    Science.gov (United States)

    Squara, Fabien; Frankel, David S; Schaller, Robert; Kapa, Suraj; Chik, William W; Callans, David J; Marchlinski, Francis E; Dixit, Sanjay

    2014-11-01

    Characterization of left atrial scar using bipolar voltage (BiV) mapping is not well defined. We have previously shown that the BiV range of 0.2-0.45 mV can identify chronic scar from prior pulmonary vein isolation (PVI). This study sought to determine a BiV range that can identify atrial inexcitable dense scar (IDS) in patients acutely and chronically after PVI. Thirty consecutive patients undergoing first time (n = 15) or redo (n = 15) PVI were included. A left atrial shell was created using electroanatomic mapping, and IDS was defined by inability to capture at an output of 10 mA and a pulse width of 2 ms in sinus rhythm, circumferentially at the edge of PVI-related scar (≤5 mm). At each pacing site, BiV amplitude and atrial capture were recorded. Overall, 837 pacing sites were assessed. BiV predicted IDS (receiver operating characteristic curve area 0.93 for first time PVI and 0.90 for redo PVI). In first time PVI, the best BiV value to predict IDS was 0.45 mV for the left pulmonary vein-left atrial appendage (LAA-LPV) ridge (sensitivity 0.98; specificity 1.0) and 0.2 mV for other localizations (sensitivity 0.91; specificity 0.86). In redo PVI, the best BiV value to predict IDS was 0.2 mV for the LAA-LPV ridge (sensitivity 0.77; specificity 1.0) and 0.15 mV for other localizations (sensitivity 0.81; specificity 0.82). BiV reproducibly identifies acute and chronic IDS using a cutoff value of 0.2 mV (0.45 mV for the LAA-LPV ridge) in patients undergoing first time PVI and 0.15 mV (0.2 mV for the LAA-LPV ridge) in patients undergoing redo PVI. IDS thus identified may be a rigorous tool for validating PVI. Published by Elsevier Inc.

  10. Airborne LiDAR and hyperspectral mapping of snow depth and albedo in the Upper Colorado River Basin, Colorado, USA by the NASA JPL Airborne Snow Observatory

    Science.gov (United States)

    Deems, J. S.; Painter, T. H.

    2014-12-01

    Operational hydrologic simulation and forecasting in snowmelt-dominated watersheds currently relies on indices of snow accumulation and melt from measurements at a small number of point locations or geographically-limited manual surveys. These data sources cannot adequately characterize the spatial distribution of snow depth/water equivalent, which is the primary determinant of snowpack volume and runoff rates. The NASA JPL Airborne Snow Observatory's airborne laser scanning system maps snow depth at high spatial and temporal resolutions, and is paired with a hyperspectral imager to provide an unprecedented snowpack monitoring capability and enabling a new operational paradigm. We present the initial results from this new application of multi-temporal LiDAR and hyperspectral mapping. During the snowmelt seasons of 2013 and 2014, the ASO mapped snow depth and albedo in the Uncompahgre River Basin in Colorado's Upper Colorado River Basin on a nominally monthly basis. These products enable an assessment and comparison of spatial snow accumulation and melt processes in two years with very different snowmelt hydrographs.

  11. Mapping for Depth and Variety: Using a "Six W's" Scaffold to Facilitate Concept Mapping for Different History Concepts with Different Degrees of Freedom

    Science.gov (United States)

    Tzeng, Jeng-Yi

    2014-01-01

    This study examines how 98 students in Taiwan taking a typical high-school history class composed concept maps related to both an everyday concept and an academic-oriented unique concept with various degrees of freedom in concept mapping. In order to reveal the multidimensionality of history concepts, this study provided participants a 6W scaffold…

  12. Map showing the thickness of loosely packed sediments and the depth to bedrock in the Sugar House quadrangle, Salt Lake County, Utah

    Science.gov (United States)

    McGregor, Edward E.; Van Horn, Richard; Arnow, Ted

    1974-01-01

    This map provides information on the location and distribution of three general types of geologic materials in part of Salt Lake County, including the southeastern part of Salt Lake City, Utah. These materials have different physical properties that are pertinent to comprehensive planning and zoning, land-use studies, and engineering usage. The map should be of use in preliminary studies to determine the depth to different  general types of foundation material and to determine the potential for settlement of the ground surface during major earthquakes, which could result in damage to waterlines, gaslines, large buildings, and other major engineering structures.The lines on the map are generalized. Lines showing the thickness of loosely packed sediments are based on drillers’ logs of 27 water wells in and near the 35-square-mile part of the quadrangle west of the mountains – less than one data point for each square mile. Lines showing the depth to bedrock are based on indirect geophysical data, and the data points are more widely scattered. The map may be useful as a general guide in planning, but investigations by qualified specialists should be made for detailed evaluations of specific areas.references to other reports of possible interest to the reader are included at the end of this text.

  13. The Penetration Depth Derived from the Synthesis of ALOS/PALSAR InSAR Data and ASTER GDEM for the Mapping of Forest Biomass

    Directory of Open Access Journals (Sweden)

    Wenjian Ni

    2014-08-01

    Full Text Available The Global Digital Elevation Model produced from stereo images of Advanced Spaceborne Thermal Emission and Reflection Radiometer data (ASTER GDEM covers land surfaces between latitudes of 83°N and 83°S. The Phased Array type L-band Synthetic Aperture Radar (PALSAR onboard Advanced Land Observing Satellite (ALOS collected many SAR images since it was launched on 24 January 2006. The combination of ALOS/PALSAR interferometric data and ASTER GDEM should provide the penetration depth of SAR data assuming ASTER GDEM was the elevation of vegetation canopy top. It would be correlated with forest biomass because penetration depth could be affected by forest density and forest canopy height. Their combination held great promises for the forest biomass mapping over large area. The feasibility of forest biomass mapping through the data synthesis of ALOS/PALSAR InSAR data and ASTER GDEM was investigated in this study. A procedure for the extraction of penetration depth was firstly proposed. Then three models were built for biomass estimation: (I model only using backscattering coefficients of ALOS/PALSAR data; (II model only using penetration depth; (III model using both of them. The biomass estimated from Lidar data was taken as reference data to evaluate the three different models. The results showed that the combination of backscattering coefficients and penetration depth gave the best accuracy. The forest disturbance has to be considered in forest biomass estimation because of the long time span of ASTER data for generating ASTER GDEM. The spatial homogeneity could be used to improve estimation accuracy.

  14. Planck 2016 intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth

    CERN Document Server

    Aghanim, N; Aumont, J; Baccigalupi, C; Ballardini, M; Banday, A J; Barreiro, R B; Bartolo, N; Basak, S; Battye, R; Benabed, K; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Carron, J; Challinor, A; Chiang, H C; Colombo, L P L; Combet, C; Comis, B; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Di Valentino, E; Dickinson, C; Diego, J M; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Fantaye, Y; Finelli, F; Forastieri, F; Frailis, M; Fraisse, A A; Franceschi, E; Frolov, A; Galeotta, S; Galli, S; Ganga, K; Génova-Santos, R T; Gerbino, M; Ghosh, T; González-Nuevo, J; Górski, K M; Gratton, S; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Helou, G; Henrot-Versillé, S; Herranz, D; Hivon, E; Huang, Z; Ilic, S; Jaffe, A H; Jones, W C; Keihänen, E; Keskitalo, R; Kisner, T S; Knox, L; Krachmalnicoff, N; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Langer, M; Lasenby, A; Lattanzi, M; Lawrence, C R; Jeune, M Le; Leahy, J P; Levrier, F; Liguori, M; Lilje, P B; López-Caniego, M; Ma, Y -Z; Macías-Pérez, J F; Maggio, G; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Matarrese, S; Mauri, N; McEwen, J D; Meinhold, P R; Melchiorri, A; Mennella, A; Migliaccio, M; Miville-Deschênes, M -A; Molinari, D; Moneti, A; Montier, L; Morgante, G; Moss, A; Mottet, S; Naselsky, P; Natoli, P; Oxborrow, C A; Pagano, L; Paoletti, D; Partridge, B; Patanchon, G; Patrizii, L; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Plaszczynski, S; Polastri, L; Polenta, G; Puget, J -L; Rachen, J P; Racine, B; Reinecke, M; Remazeilles, M; Renzi, A; Rocha, G; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Ruiz-Granados, B; Salvati, L; Sandri, M; Savelainen, M; Scott, D; Sirri, G; Sunyaev, R; Suur-Uski, A -S; Tauber, J A; Tenti, M; Toffolatti, L; Tomasi, M; Tristram, M; Trombetti, T; Valiviita, J; Van Tent, F; Vibert, L; Vielva, P; Villa, F; Vittorio, N; Wandelt, B D; Watson, R; Wehus, I K; White, M; Zacchei, A; Zonca, A

    2016-01-01

    This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth $\\tau$ using, for the first time, the low-multipole $EE$ data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain $\\tau$ from two estimators of the CMB $E$- and $B$-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistenc...

  15. The utilization of Depth Invariant Index and Principle Component Analysis for mapping seagrass ecosystem of Kotok Island and Karang Bongkok, Indonesia

    Science.gov (United States)

    Manuputty, Agnestesya; Lumban Gaol, Jonson; Bahri Agus, Syamsul; Wayan Nurjaya, I.

    2017-01-01

    Seagrass perform a variety of functions within ecosystems, and have both economic and ecological values, therefore it has to be kept sustainable. One of the stages to preserve seagrass ecosystems is monitoring by utilizing thespatial data accurately. The purpose of the study was to assess and compare the accuracy of DII and PCA transformationsfor mapping of seagrass ecosystems. Fieldstudy was carried out in Karang Bongkok and Kotok Island waters, in Agustus 2014 and in March 2015. A WorldView-2 image acquisition date of 5 October 2013 was used in the study. The transformations for image processing data were Depth Invariant Index (DII) and Principle Component Analysis (PCA) using Support Vector Machine (SVM) classification. The result shows that benthic habitat mapping of Karang Bongkok using DII and PCA transformations were 72%and 81% overall’s accuracy respectively, whereas of Kotok Island were 83% and 84% overall’s accuracy respectively. There were seven benthic habitat types found in karang Bongkok waters and in Kotok Island namely seagrass, sand, rubble, coral, logoon, sand mix seagrass, and sand mix rubble. PCA transformation was effectively to improve mapping accuracy of sea grass mapping in Kotok Island and Karang Bongkok.

  16. Passenger flow statistics across the field of view based on the depth map of the double Xtion sensors

    Science.gov (United States)

    Yin, Zhang-qin; Gu, Guo-hua; Bai, Xiao-feng; Zhao, Tie-kun; Chen, Hai-xin

    2013-08-01

    It introduces a new method to achieve the passenger flow statistics in stereo vision according to the original depth image output by the monocular Xtion sensor, aiming at the problem of algorithm with large amounts of data and realization of single field with dual camera on the basis of stereo vision. Double Xtion sensors are used to expand the range of view angle because of the monocular Xtion sensor's limitations, whose view range is 45°*58° with small transverse view range and can't meet the passenger flow statistics. Due to the characteristics of constant physical space dimensions, use the improved SIFT (Scale Invariant Features Transform) feature algorithm to realize the auto - stereoscopic splice of binocular original depth images. Firstly, the feature points of the reference image (the image to be matched) and the subsequent image (the image to be matched with the reference image) are obtained by SIFT algorithm, getting the location, scale and direction of the feature points and the feature points are described by means of the 128-dimensional vector .Secondly, complete the match of the feature points of the two images to calculate overlapping area, using the nearest neighbor method. Finally, image stitching is completed based on multi-resolution wavelet transform, which contains three-dimensional spatial information of the human body, thus use a method to analysis comprehensively the depth image for field detection and tracking based on the features such as the head shape, the head area the spatial position relation of the human head and shoulder and so on. The experimental results show that this method not only improve the detection accuracy and efficiency, reduce the amount of operation data, so that the system is simple in structure, but also solve many problems of passenger flow statistics based on video stream in the system, accuracy up to 93%, having high and practical application value.

  17. Multiple candidates and multiple constraints based accurate depth estimation for multi-view stereo

    Science.gov (United States)

    Zhang, Chao; Zhou, Fugen; Xue, Bindang

    2017-02-01

    In this paper, we propose a depth estimation method for multi-view image sequence. To enhance the accuracy of dense matching and reduce the inaccurate matching which is produced by inaccurate feature description, we select multiple matching points to build candidate matching sets. Then we compute an optimal depth from a candidate matching set which satisfies multiple constraints (epipolar constraint, similarity constraint and depth consistency constraint). To further increase the accuracy of depth estimation, depth consistency constraint of neighbor pixels is used to filter the inaccurate matching. On this basis, in order to get more complete depth map, depth diffusion is performed by neighbor pixels' depth consistency constraint. Through experiments on the benchmark datasets for multiple view stereo, we demonstrate the superiority of proposed method over the state-of-the-art method in terms of accuracy.

  18. Fusion of Appearance Image and Passive Stereo Depth Map for Face Recognition Based on the Bilateral 2DLDA

    Directory of Open Access Journals (Sweden)

    Jian-Gang Wang

    2007-08-01

    Full Text Available This paper presents a novel approach for face recognition based on the fusion of the appearance and depth information at the match score level. We apply passive stereoscopy instead of active range scanning as popularly used by others. We show that present-day passive stereoscopy, though less robust and accurate, does make positive contribution to face recognition. By combining the appearance and disparity in a linear fashion, we verified experimentally that the combined results are noticeably better than those for each individual modality. We also propose an original learning method, the bilateral two-dimensional linear discriminant analysis (B2DLDA, to extract facial features of the appearance and disparity images. We compare B2DLDA with some existing 2DLDA methods on both XM2VTS database and our database. The results show that the B2DLDA can achieve better results than others.

  19. Map showing depth to bedrock of the Tacoma and part of the Centralia 30' x 60' quadrangles, Washington

    Science.gov (United States)

    Buchanan-Banks, Jane M.; Collins, Donley S.

    1994-01-01

    The heavily populated Puget Sound region in the State of Washington has experienced moderate to large earthquakes in the recent past (Nuttli, 1952; Mullineaux and others, 1967). Maps showing thickness of unconsolidated sedimentary deposits are useful aids in delineating areas where damage to engineered structures can result from increased shaking resulting from these earthquakes. Basins containing thick deposits of unconsolidated materials can amplify earthquakes waves and cause far more damage to structures than the same waves passing through bedrock (Singh and others, 1988; Algermissen and others, 1985). Configurations of deep sedimentary basins can also cause reflection and magnification of earthquake waves in ways still not fully understood and presently under investigation (Frankel and Vidale, 1992).

  20. Urban-scale mapping of PM2.5 distribution via data fusion between high-density sensor network and MODIS Aerosol Optical Depth

    Science.gov (United States)

    Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei

    2017-04-01

    High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.

  1. A Dense Brown Trout (Salmo trutta) Linkage Map Reveals Recent Chromosomal Rearrangements in the Salmo Genus and the Impact of Selection on Linked Neutral Diversity

    Science.gov (United States)

    Leitwein, Maeva; Guinand, Bruno; Pouzadoux, Juliette; Desmarais, Erick; Berrebi, Patrick; Gagnaire, Pierre-Alexandre

    2017-01-01

    High-density linkage maps are valuable tools for conservation and eco-evolutionary issues. In salmonids, a complex rediploidization process consecutive to an ancient whole genome duplication event makes linkage maps of prime importance for investigating the evolutionary history of chromosome rearrangements. Here, we developed a high-density consensus linkage map for the brown trout (Salmo trutta), a socioeconomically important species heavily impacted by human activities. A total of 3977 ddRAD markers were mapped and ordered in 40 linkage groups using sex- and lineage-averaged recombination distances obtained from two family crosses. Performing map comparison between S. trutta and its sister species, S. salar, revealed extensive chromosomal rearrangements. Strikingly, all of the fusion and fission events that occurred after the S. salar/S. trutta speciation happened in the Atlantic salmon branch, whereas the brown trout remained closer to the ancestral chromosome structure. Using the strongly conserved synteny within chromosome arms, we aligned the brown trout linkage map to the Atlantic salmon genome sequence to estimate the local recombination rate in S. trutta at 3721 loci. A significant positive correlation between recombination rate and within-population nucleotide diversity (π) was found, indicating that selection constrains variation at linked neutral sites in brown trout. This new high-density linkage map provides a useful genomic resource for future aquaculture, conservation, and eco-evolutionary studies in brown trout. PMID:28235829

  2. MODIS-Based Mapping of Secchi Disk Depth Using a Qualitative Algorithm in the Shallow Arabian Gulf

    Directory of Open Access Journals (Sweden)

    Muna. R. Al Kaabi

    2016-05-01

    Full Text Available Regionally calibrated algorithms for water quality are strongly needed, especially for optically complex waters such as coastal areas in the Arabian Gulf. In this study, a regional qualitative algorithm was proposed to retrieve seawater transparency, with Secchi disk depth (SDD as a surrogate, in the Arabian Gulf. A two-step process was carried out, first estimating the diffuse attenuation coefficient of downwelling irradiance at 490 nm (Kd_490 from MODIS/Aqua imagery and then SDD based on empirical correlations with Kd_490. Three satellite derived Kd products were tested and assessed against a set of in situ measurements, and one from a semi-analytical algorithm based on inherent optical properties gave the best performance with a R2 of 0.62. Comparisons between the performances of SDD models developed in this study and those established in other regions indicated higher accuracy of our proposed model for the Gulf region. The potential factors causing uncertainties of the proposed algorithm were also discussed. Seasonal and inter-annual variations of SDD over the entire Gulf were demonstrated using a 14-year time series of MODIS/Aqua data from 2002 to 2015. High SDD values were generally observed in summer while low values were found in winter. Inter-annual variations of SDD did not shown any significant trend with exceptions during algal bloom outbreaks that resulted in low SDD.

  3. Mapping snow depth in alpine terrain with remotely piloted aerial systems and structure-from-motion photogrammetry - first results from a pilot study

    Science.gov (United States)

    Adams, Marc; Fromm, Reinhard; Bühler, Yves; Bösch, Ruedi; Ginzler, Christian

    2016-04-01

    Detailed information on the spatio-temporal distribution of seasonal snow in the alpine terrain plays a major role for the hydrological cycle, natural hazard management, flora and fauna, as well as tourism. Current methods are mostly only valid on a regional scale or require a trade-off between the data's availability, cost and resolution. During a one-year pilot study, we investigated the potential of remotely piloted aerial systems (RPAS) and structure-from-motion photogrammetry for snow depth mapping. We employed multi-copter and fixed-wing RPAS, equipped with different low-cost, off-the shelf sensors, at four test sites in Austria and Switzerland. Over 30 flights were performed during the winter 2014/15, where different camera settings, filters and lenses, as well as data collection routines were tested. Orthophotos and digital surface models (DSM) where calculated from the imagery using structure-from-motion photogrammetry software. Snow height was derived by subtracting snow-free from snow-covered DSMs. The RPAS-results were validated against data collected using a variety of well-established remote sensing (i.e. terrestrial laser scanning, large frame aerial sensors) and in-situ measurement techniques. The results show, that RPAS i) are able to map snow depth within accuracies of 0.07-0.15 m root mean square error (RMSE), when compared to traditional in-situ data; ii) can be operated at lower cost, easier repeatability, less operational constraints and higher GSD than large frame aerial sensors on-board manned aircraft, while achieving significantly higher accuracies; iii) are able to acquire meaningful data even under harsh environmental conditions above 2000 m a.s.l. (turbulence, low temperature and high irradiance, low air density). While providing a first prove-of-concept, the study also showed future challenges and limitations of RPAS-based snow depth mapping, including a high dependency on correct co-registration of snow-free and snow-covered height

  4. The structure of molecular cloud W51 and dense cores--CO(J=1-0) and HCO+(J=1-0) spectral line mapping

    Institute of Scientific and Technical Information of China (English)

    MA; Hongjun; PEI; Chunchuan; ZENG; Qin

    2005-01-01

    We present a large scale map of about 15′×15′of CO(J=1-0) toward W51 giant molecular cloud (GMC), which covers the most active star-forming region of W51 GMC, and an interferometry HCO+(J=1-0) map of a high spatial resolution (I.e. 8″.7×6″.1) with a field of view (2′×2′) centered at W51IRS1. A structure model of W51GMC is obtained according to the results of the observations and analyses. The observations demonstrate that some small molecular cores generated by the collision between the W51GMC and the 60-73 km·s-1 foreground cloud are collapsing toward their own centers. In addition, 16 new molecular cores are discovered from the HCO+(J=1-0) map.

  5. An in situ method for the high resolution mapping of (137)Cs and estimation of vertical depth penetration in a highly contaminated environment.

    Science.gov (United States)

    Varley, Adam; Tyler, Andrew; Dowdall, Mark; Bondar, Yuri; Zabrotski, Viachaslau

    2017-12-15

    The Chernobyl nuclear power plant meltdown has to date been the single largest release of radioactivity into the environment. As a result, radioactive contamination that poses a significant threat to human health still persists across much of Europe with the highest concentrations associated with Belarus, Ukraine, and western Russia. Of the radionuclides still prevalent with these territories (137)Cs presents one of the most problematic remediation challenges. Principally, this is due to the localised spatial and vertical heterogeneity of contamination within the soil (~10's of meters), thus making it difficult to accurately characterise through conventional measurement techniques such as static in situ gamma-ray spectrometry or soil cores. Here, a practical solution has been explored, which utilises a large number of short-count time spectral measurements made using relatively inexpensive, lightweight, scintillators (sodium iodide and lanthanum bromide). This approach offers the added advantage of being able to estimate activity and burial depth of (137)Cs contamination in much higher spatial resolution compared to traditional approaches. During the course of this work, detectors were calibrated using the Monte Carlo Simulations and depth distribution was estimated using the peak-to-valley ratio. Activity and depth estimates were then compared to five reference sites characterised using soil cores. Estimates were in good agreement with the reference sites, differences of ~25% and ~50% in total inventory were found for the three higher and two lower activity sites, respectively. It was concluded that slightly longer count times would be required for the lower activity (<1MBqm(-2)) sites. Modelling and reference site results suggest little advantage would be gained through the use of the substantially more expensive lanthanum bromide detector over the sodium iodide detector. Finally, the potential of the approach was demonstrated by mapping one of the sites and its

  6. A comparison of conventional maximum intensity projection with a new depth-specific topographic mapping technique in the CT analysis of proximal tibial subchondral bone density

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, James D. [University of Saskatchewan, Department of Mechanical Engineering, Saskatoon, SK (Canada); University of British Columbia, Department of Mechanical Engineering, Vancouver, BC (Canada); Kontulainen, Saija A. [University of Saskatchewan, College of Kinesiology, Saskatoon, SK (Canada); Masri, Bassam A.; Wilson, David R. [University of British Columbia, Department of Orthopaedics, Vancouver, BC (Canada)

    2010-09-15

    The objective was to identify subchondral bone density differences between normal and osteoarthritic (OA) proximal tibiae using computed tomography osteoabsorptiometry (CT-OAM) and computed tomography topographic mapping of subchondral density (CT-TOMASD). Sixteen intact cadaver knees from ten donors (8 male:2 female; mean age:77.8, SD:7.4 years) were categorized as normal (n = 10) or OA (n = 6) based upon CT reconstructions. CT-OAM assessed maximum subchondral bone mineral density (BMD). CT-TOMASD assessed average subchondral BMD across three layers (0-2.5, 2.5-5 and 5-10 mm) measured in relation to depth from the subchondral surface. Regional analyses of CT-OAM and CT-TOMASD included: medial BMD, lateral BMD, and average BMD of a 10-mm diameter area that searched each medial and lateral plateau for the highest ''focal'' density present within each knee. Compared with normal knees, both CT-OAM and CT-TOMASD demonstrated an average of 17% greater whole medial compartment density in OA knees (p < 0.016). CT-OAM did not distinguish focal density differences between OA and normal knees (p > 0.05). CT-TOMASD focal region analyses revealed an average of 24% greater density in the 0- to 2.5-mm layer (p = 0.003) and 36% greater density in the 2.5- to 5-mm layer (p = 0.034) in OA knees. Both CT-OAM and TOMASD identified higher medial compartment density in OA tibiae compared with normal tibiae. In addition, CT-TOMASD indicated greater focal density differences between normal and OA knees with increased depth from the subchondral surface. Depth-specific density analyses may help identify and quantify small changes in subchondral BMD associated with OA disease onset and progression. (orig.)

  7. Mapping snow depth in complex alpine terrain with close range aerial imagery - estimating the spatial uncertainties of repeat autonomous aerial surveys over an active rock glacier

    Science.gov (United States)

    Goetz, Jason; Marcer, Marco; Bodin, Xavier; Brenning, Alexander

    2017-04-01

    Snow depth mapping in open areas using close range aerial imagery is just one of the many cases where developments in structure-from-motion and multi-view-stereo (SfM-MVS) 3D reconstruction techniques have been applied for geosciences - and with good reason. Our ability to increase the spatial resolution and frequency of observations may allow us to improve our understanding of how snow depth distribution varies through space and time. However, to ensure accurate snow depth observations from close range sensing we must adequately characterize the uncertainty related to our measurement techniques. In this study, we explore the spatial uncertainties of snow elevation models for estimation of snow depth in a complex alpine terrain from close range aerial imagery. We accomplish this by conducting repeat autonomous aerial surveys over a snow-covered active-rock glacier located in the French Alps. The imagery obtained from each flight of an unmanned aerial vehicle (UAV) is used to create an individual digital elevation model (DEM) of the snow surface. As result, we obtain multiple DEMs of the snow surface for the same site. These DEMs are obtained from processing the imagery with the photogrammetry software Agisoft Photoscan. The elevation models are also georeferenced within Photoscan using the geotagged imagery from an onboard GNSS in combination with ground targets placed around the rock glacier, which have been surveyed with highly accurate RTK-GNSS equipment. The random error associated with multi-temporal DEMs of the snow surface is estimated from the repeat aerial survey data. The multiple flights are designed to follow the same flight path and altitude above the ground to simulate the optimal conditions of repeat survey of the site, and thus try to estimate the maximum precision associated with our snow-elevation measurement technique. The bias of the DEMs is assessed with RTK-GNSS survey observations of the snow surface elevation of the area on and surrounding

  8. Dense topological spaces and dense continuity

    Science.gov (United States)

    Aldwoah, Khaled A.

    2013-09-01

    There are several attempts to generalize (or "widen") the concept of topological space. This paper uses equivalence relations to generalize the concept of topological space via the concept of equivalence relations. By the generalization, we can introduce from particular topology on a nonempty set X many new topologies, we call anyone of these new topologies a dense topology. In addition, we formulate some simple properties of dense topologies and study suitable generalizations of the concepts of limit points, closeness and continuity, as well as Jackson, Nörlund and Hahn dense topologies.

  9. Multi-Frequency Optical-Depth Maps and the Case for Free-Free Absorption in Two Compact Symmetric Radio Sources: the CSO candidate J1324+4048 and the CSO J0029+3457

    CERN Document Server

    Marr, Jonathan M; Read, James; Taylor, Gregory B; Morris, Aaron O

    2013-01-01

    We obtained dual-polarization VLBI observations at six frequencies of the compact symmetric object J0029+3457 and the CSO candidate J1324+4048. By comparing the three lower-frequency maps with extrapolations of the high frequency maps we produced maps of the optical depth as a function of frequency. The morphology of the optical-depth maps of J1324+4048 is strikingly smooth, suggestive of a foreground screen of absorbing gas. The spectra at the intensity peaks fit a simple free-free absorption model, with a reduced chi square ~ 2, better than a simple synchrotron self-absorption model, in which the reduced chi square ~ 3.5 - 5.5. We conclude that the case for free-free absorption in J1324+4048 is strong. The optical-depth maps of J0029+3457 exhibit structure, but the morphology does not correlate with that in the intensity maps. The fit of the spectra at the peaks to a simple free-free absorption model yields a reduced chi square ~ 1, but since the turnover is gradual the fit is relatively insensitive to the ...

  10. Holographic Renormalization in Dense Medium

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2014-01-01

    describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space.

  11. An Ammonia Spectral Map of the L1495-B218 Filaments in the Taurus Molecular Cloud : I. Physical Properties of Filaments and Dense cores

    CERN Document Server

    Seo, Young Min; Goldsmith, Paul; Ward-Thompson, Derek; Kirk, Jason M; Schmalzl, Markus; Lee, Jeong-Eun; Friesen, Rachel; Langston, Glen; Masters, Joe; Garwood, Robert W

    2015-01-01

    We present deep NH$_3$ observations of the L1495-B218 filaments in the Taurus molecular cloud covering over a 3 degree angular range using the K-band focal plane array on the 100m Green Bank Telescope. The L1495-B218 filaments form an interconnected, nearby, large complex extending over 8 pc. We observed NH$_3$ (1,1) and (2,2) with a spectral resolution of 0.038 km/s and a spatial resolution of 31$"$. Most of the ammonia peaks coincide with intensity peaks in dust continuum maps at 350 $\\mu$m and 500 $\\mu$m. We deduced physical properties by fitting a model to the observed spectra. We find gas kinetic temperatures of 8 $-$ 15 K, velocity dispersions of 0.05 $-$ 0.25 km/s, and NH$_3$ column densities of 5$\\times$10$^{12}$ $-$ 1$\\times$10$^{14}$ cm$^{-2}$. The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithms, identifies a total of 55 NH$_3$ structures including 39 leaves and 16 branches. The masses of the NH$_3$ sources range from 0.05 M$_\\odot$ to 9.5 M$_\\odot$. The masses...

  12. Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs)

    DEFF Research Database (Denmark)

    Darabi, Hatef; Beesley, Jonathan; Droit, Arnaud

    2016-01-01

    Genome-wide association studies have found SNPs at 17q22 to be associated with breast cancer risk. To identify potential causal variants related to breast cancer risk, we performed a high resolution fine-mapping analysis that involved genotyping 517 SNPs using a custom Illumina iSelect array (i......COGS) followed by imputation of genotypes for 3,134 SNPs in more than 89,000 participants of European ancestry from the Breast Cancer Association Consortium (BCAC). We identified 28 highly correlated common variants, in a 53 Kb region spanning two introns of the STXBP4 gene, that are strong candidates...... for driving breast cancer risk (lead SNP rs2787486 (OR = 0.92; CI 0.90-0.94; P = 8.96 × 10(-15))) and are correlated with two previously reported risk-associated variants at this locus, SNPs rs6504950 (OR = 0.94, P = 2.04 × 10(-09), r(2) = 0.73 with lead SNP) and rs1156287 (OR = 0.93, P = 3.41 × 10(-11), r(2...

  13. Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs)

    Science.gov (United States)

    Darabi, Hatef; Beesley, Jonathan; Droit, Arnaud; Kar, Siddhartha; Nord, Silje; Moradi Marjaneh, Mahdi; Soucy, Penny; Michailidou, Kyriaki; Ghoussaini, Maya; Fues Wahl, Hanna; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Alonso, M. Rosario; Andrulis, Irene L.; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W.; Benitez, Javier; Bogdanova, Natalia V.; Bojesen, Stig E.; Brauch, Hiltrud; Brenner, Hermann; Broeks, Annegien; Brüning, Thomas; Burwinkel, Barbara; Chang-Claude, Jenny; Choi, Ji-Yeob; Conroy, Don M.; Couch, Fergus J.; Cox, Angela; Cross, Simon S.; Czene, Kamila; Devilee, Peter; Dörk, Thilo; Easton, Douglas F.; Fasching, Peter A.; Figueroa, Jonine; Fletcher, Olivia; Flyger, Henrik; Galle, Eva; García-Closas, Montserrat; Giles, Graham G.; Goldberg, Mark S.; González-Neira, Anna; Guénel, Pascal; Haiman, Christopher A.; Hallberg, Emily; Hamann, Ute; Hartman, Mikael; Hollestelle, Antoinette; Hopper, John L.; Ito, Hidemi; Jakubowska, Anna; Johnson, Nichola; Kang, Daehee; Khan, Sofia; Kosma, Veli-Matti; Kriege, Mieke; Kristensen, Vessela; Lambrechts, Diether; Le Marchand, Loic; Lee, Soo Chin; Lindblom, Annika; Lophatananon, Artitaya; Lubinski, Jan; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Matsuo, Keitaro; Mayes, Rebecca; McKay, James; Meindl, Alfons; Milne, Roger L.; Muir, Kenneth; Neuhausen, Susan L.; Nevanlinna, Heli; Olswold, Curtis; Orr, Nick; Peterlongo, Paolo; Pita, Guillermo; Pylkäs, Katri; Rudolph, Anja; Sangrajrang, Suleeporn; Sawyer, Elinor J.; Schmidt, Marjanka K.; Schmutzler, Rita K.; Seynaeve, Caroline; Shah, Mitul; Shen, Chen-Yang; Shu, Xiao-Ou; Southey, Melissa C.; Stram, Daniel O.; Surowy, Harald; Swerdlow, Anthony; Teo, Soo H.; Tessier, Daniel C.; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Vachon, Celine M.; Vincent, Daniel; Winqvist, Robert; Wu, Anna H.; Wu, Pei-Ei; Yip, Cheng Har; Zheng, Wei; Pharoah, Paul D. P.; Hall, Per; Edwards, Stacey L.; Simard, Jacques; French, Juliet D.; Chenevix-Trench, Georgia; Dunning, Alison M.

    2016-01-01

    Genome-wide association studies have found SNPs at 17q22 to be associated with breast cancer risk. To identify potential causal variants related to breast cancer risk, we performed a high resolution fine-mapping analysis that involved genotyping 517 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of genotypes for 3,134 SNPs in more than 89,000 participants of European ancestry from the Breast Cancer Association Consortium (BCAC). We identified 28 highly correlated common variants, in a 53 Kb region spanning two introns of the STXBP4 gene, that are strong candidates for driving breast cancer risk (lead SNP rs2787486 (OR = 0.92; CI 0.90–0.94; P = 8.96 × 10−15)) and are correlated with two previously reported risk-associated variants at this locus, SNPs rs6504950 (OR = 0.94, P = 2.04 × 10−09, r2 = 0.73 with lead SNP) and rs1156287 (OR = 0.93, P = 3.41 × 10−11, r2 = 0.83 with lead SNP). Analyses indicate only one causal SNP in the region and several enhancer elements targeting STXBP4 are located within the 53 kb association signal. Expression studies in breast tumor tissues found SNP rs2787486 to be associated with increased STXBP4 expression, suggesting this may be a target gene of this locus. PMID:27600471

  14. Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs).

    Science.gov (United States)

    Darabi, Hatef; Beesley, Jonathan; Droit, Arnaud; Kar, Siddhartha; Nord, Silje; Moradi Marjaneh, Mahdi; Soucy, Penny; Michailidou, Kyriaki; Ghoussaini, Maya; Fues Wahl, Hanna; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Alonso, M Rosario; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W; Benitez, Javier; Bogdanova, Natalia V; Bojesen, Stig E; Brauch, Hiltrud; Brenner, Hermann; Broeks, Annegien; Brüning, Thomas; Burwinkel, Barbara; Chang-Claude, Jenny; Choi, Ji-Yeob; Conroy, Don M; Couch, Fergus J; Cox, Angela; Cross, Simon S; Czene, Kamila; Devilee, Peter; Dörk, Thilo; Easton, Douglas F; Fasching, Peter A; Figueroa, Jonine; Fletcher, Olivia; Flyger, Henrik; Galle, Eva; García-Closas, Montserrat; Giles, Graham G; Goldberg, Mark S; González-Neira, Anna; Guénel, Pascal; Haiman, Christopher A; Hallberg, Emily; Hamann, Ute; Hartman, Mikael; Hollestelle, Antoinette; Hopper, John L; Ito, Hidemi; Jakubowska, Anna; Johnson, Nichola; Kang, Daehee; Khan, Sofia; Kosma, Veli-Matti; Kriege, Mieke; Kristensen, Vessela; Lambrechts, Diether; Le Marchand, Loic; Lee, Soo Chin; Lindblom, Annika; Lophatananon, Artitaya; Lubinski, Jan; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Matsuo, Keitaro; Mayes, Rebecca; McKay, James; Meindl, Alfons; Milne, Roger L; Muir, Kenneth; Neuhausen, Susan L; Nevanlinna, Heli; Olswold, Curtis; Orr, Nick; Peterlongo, Paolo; Pita, Guillermo; Pylkäs, Katri; Rudolph, Anja; Sangrajrang, Suleeporn; Sawyer, Elinor J; Schmidt, Marjanka K; Schmutzler, Rita K; Seynaeve, Caroline; Shah, Mitul; Shen, Chen-Yang; Shu, Xiao-Ou; Southey, Melissa C; Stram, Daniel O; Surowy, Harald; Swerdlow, Anthony; Teo, Soo H; Tessier, Daniel C; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Vachon, Celine M; Vincent, Daniel; Winqvist, Robert; Wu, Anna H; Wu, Pei-Ei; Yip, Cheng Har; Zheng, Wei; Pharoah, Paul D P; Hall, Per; Edwards, Stacey L; Simard, Jacques; French, Juliet D; Chenevix-Trench, Georgia; Dunning, Alison M

    2016-09-07

    Genome-wide association studies have found SNPs at 17q22 to be associated with breast cancer risk. To identify potential causal variants related to breast cancer risk, we performed a high resolution fine-mapping analysis that involved genotyping 517 SNPs using a custom Illumina iSelect array (iCOGS) followed by imputation of genotypes for 3,134 SNPs in more than 89,000 participants of European ancestry from the Breast Cancer Association Consortium (BCAC). We identified 28 highly correlated common variants, in a 53 Kb region spanning two introns of the STXBP4 gene, that are strong candidates for driving breast cancer risk (lead SNP rs2787486 (OR = 0.92; CI 0.90-0.94; P = 8.96 × 10(-15))) and are correlated with two previously reported risk-associated variants at this locus, SNPs rs6504950 (OR = 0.94, P = 2.04 × 10(-09), r(2) = 0.73 with lead SNP) and rs1156287 (OR = 0.93, P = 3.41 × 10(-11), r(2) = 0.83 with lead SNP). Analyses indicate only one causal SNP in the region and several enhancer elements targeting STXBP4 are located within the 53 kb association signal. Expression studies in breast tumor tissues found SNP rs2787486 to be associated with increased STXBP4 expression, suggesting this may be a target gene of this locus.

  15. Improved mapping of flood extent and flood depth using space based SAR data in combination with very high resolution digital elevation data

    Science.gov (United States)

    Zwenzner, H.

    2009-04-01

    Due to their capability to present a synoptic view of the spatial extent of floods, remote sensing technology, and especially synthetic aperture radar (SAR) systems, have been successfully applied for flood mapping and monitoring applications during the past decades. However, the quality and accuracy of the flood masks and derived flood parameters highly depend on the geometric precision of the satellite data as well as on the classification accuracy of the derived water mask. The incorporation of high resolution elevation data from LiDAR measurements for example can help to improve the plausibility and reliability of the flood masks. On the basis of the improved flood masks more sophisticated parameters such as inundation depth can be derived. A cross section approach is presented that allows the dynamic fitting of the position of the flood mask profiles according to the underlying terrain information from the DEM. The method was tested on the River Severn (UK), for which TerraSAR-X stripmap data with 3 meters pixel spacing acquired during the 2007 summer flood are used in combination with a LiDAR DEM of 2 meters pixel size. Initially, the cross sections were established perpendicularly to the major flow direction along the 7 km reach of the River Severn. The profile spacing was set to 50 meters. For each cross section profile the water level was extracted at the position of the left and the right border of the flood. On the basis of the longitudinal profile, which contains the sequence of all cross section profiles, a moving average was applied on the water levels in order to get a smooth water surface and to reduce single outliers. However, in case of obvious irregularities in the water levels illustrated in the longitudinal profile and caused by misclassification the respective cross-sections had to be excluded from further analysis. It must be taken into account, that the approach is mainly affected by possible classification errors in the dimension of more

  16. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  17. Quantum dense key distribution

    CERN Document Server

    Degiovanni, I P; Castelletto, S; Rastello, M L; Bovino, F A; Colla, A M; Castagnoli, G C

    2004-01-01

    This paper proposes a new protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than BB84 one. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  18. Depth statistics

    OpenAIRE

    2012-01-01

    In 1975 John Tukey proposed a multivariate median which is the 'deepest' point in a given data cloud in R^d. Later, in measuring the depth of an arbitrary point z with respect to the data, David Donoho and Miriam Gasko considered hyperplanes through z and determined its 'depth' by the smallest portion of data that are separated by such a hyperplane. Since then, these ideas has proved extremely fruitful. A rich statistical methodology has developed that is based on data depth and, more general...

  19. Combining Dense Structure From Motion and Visual SLAM in a Behavior-Based Robot Control Architecture

    Directory of Open Access Journals (Sweden)

    Geert De Cubber

    2010-02-01

    Full Text Available In this paper, we present a control architecture for an intelligent outdoor mobile robot. This enables the robot to navigate in a complex, natural outdoor environment, relying on only a single on-board camera as sensory input. This is achieved through a twofold analysis of the visual data stream: a dense structure from motion algorithm calculates a depth map of the environment and a visual simultaneous localization and mapping algorithm builds a map of the surroundings using image features. This information enables a behavior-based robot motion and path planner to navigate the robot through the environment. In this paper, we show the theoretical aspects of setting up this architecture.

  20. Efficient active depth sensing by laser speckle projection system

    Science.gov (United States)

    Yin, Xuanwu; Wang, Guijin; Shi, Chenbo; Liao, Qingmin

    2014-01-01

    An active depth sensing approach by laser speckle projection system is proposed. After capturing the speckle pattern with an infrared digital camera, we extract the pure speckle pattern using a direct-global separation method. Then the pure speckles are represented by Census binary features. By evaluating the matching cost and uniqueness between the real-time image and the reference image, robust correspondences are selected as support points. After that, we build a disparity grid and propose a generative graphical model to compute disparities. An iterative approach is designed to propagate the messages between blocks and update the model. Finally, a dense depth map can be obtained by subpixel interpolation and transformation. The experimental evaluations demonstrate the effectiveness and efficiency of our approach.

  1. Depth Map Super-Resolution Based on the Local Structural Features of Color Image%基于彩色图像局部结构特征的深度图超分辨率算法

    Institute of Scientific and Technical Information of China (English)

    杨宇翔; 汪增福

    2013-01-01

      运用飞行时间相机来获取场景深度图像非常方便,但由于硬件的限制,得到的深度图像分辨率非常低,无法满足实际的需要。文中结合同场景的高分辨率彩色图像来制定优化框架,将深度图超分辨率问题转化为最优化问题来求解。具体来说,将彩色图像和深度图像在局部小窗口内具有的近似线性关系通过拉普拉斯矩阵的方式融合到目标函数的正则约束项中,运用彩色图像的局部结构参数模型,将该参数模型融入到正则约束项中对深度图的局部边缘结构提供更进一步的约束,再通过最速下降法有效地求解该优化问题。实验表明文中算法较其它算法无论在视觉效果还是客观评价指标下都可得到更好的结果。%  It is convenient for time of flight camera to get the scene depth image, the resolution of depth image is very low due to limitations of the hardware, which can not meet the actual needs. In this paper, a method is proposed for solving depth map super-resolution problem. With a low resolution depth image as input, a high resolution depth map is recovered by using a registered and potentially high resolution camera image of the same scene. The depth map super-resolution problem is solved by developing an optimization framework. Specifically, the reconstruction constraint is applied to get the data term, and based on the fact that discontinuities in range and coloring tend to co-align, laplacian matrix and local structural features of high resolution camera images are used to construct the regularization term. The experimental results demonstrate that the proposed approach gets high resolution range image in terms of both its spatial resolution and depth precision.

  2. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;

    2012-01-01

    Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  3. Depth relief

    NARCIS (Netherlands)

    Kappers, A.M.L.; Koenderink, J.J.; Doorn, A.J. van

    1995-01-01

    A study is reported of the depth relief in a simple three-dimensional scene consisting of a white, rough sphere on a planar support, illuminated in a natural manner. Viewing conditions included monocular and binocular as well as 'synoptical' viewing. In the synoptical condition the eyes are

  4. meta-DENSE complex acquisition for reduced intravoxel dephasing

    Science.gov (United States)

    Aletras, Anthony H.; Arai, Andrew E.

    2004-08-01

    Displacement encoding with stimulated echoes (DENSE) with a meta-DENSE readout and RF phase cycling to suppress the STEAM anti-echo is described for reducing intravoxel dephasing signal loss. This RF phase cycling scheme, when combined with existing meta-DENSE suppression of the T1 recovering signal, yields higher quality DENSE myocardial strain maps. Phantom and human images are provided to demonstrate the technique, which is capable of acquiring phase contrast displacement encoded images at low encoding gradient strengths providing better spatial resolution and less signal loss due to intravoxel dephasing than prior methods.

  5. Mapping the depth of base of magnetisation and its uncertainty for Australia, and integrating with potential-field, magnetotelluric and seismic data to further the knowledge of the Australian crustal architecture

    Science.gov (United States)

    Chopping, R. G.; Czarnota, K.; Doublier, M.; Duan, J.

    2016-12-01

    Geoscience Australia and its partners have acquired high resolution national-scale geophysical coverages for gravity, magnetics and gamma radiometrics. These high-quality geophysical coverages of Australia, together with over 15 000 line km of deep crustal seismic reflection data, and newly acquired long-period magnetotelluric data, provide new opportunities to understand the crustal architecture of the continent. As Australia's landscape is dominated by significant weather material or younger sedimentary basins, this is crucial to understanding this buried basement geology. Using the magnetic anomaly coverage for Australia to map the depth to the base of magnetisation, which can be interpreted as reflecting a Curie isotherm, provides a new view of the crustal architecture of the Australian continent. As mapping the base of magnetisation produces a result with a high degree of uncertainty, we undertook a Monte Carlo approach to sample the entire search space of an inversion for this parameter. Results indicate that the maximum depth of magnetisation can be mapped to an uncertainty in depth of between +/- 7 and 15 km across the continent. In the older, colder western terranes, there is evidence for magnetisation into the upper mantle. The method utilised to map the base of magnetisation also produces a parameter relating to the spectral distribution of magnetic material. This parameter corresponds well with many known geological provinces and maps `magnetic character' that is often qualitatively used for interpretation of potential-field data. It also is a method that can map the multiple buried provinces beneath the Nullarbor Plain separating the Yilgarn and Gawler cratons. Continent-scale potential-field coverages have allowed the extrapolation of major crustal boundaries away from seismic reflection lines LPMT results from the state of Victoria indicate that the 3D coverage of LPMT data can refine these boundaries further, as well as mapping the interpreted

  6. Benthic Photo Survey: Software for Geotagging, Depth-tagging, and Classifying Photos from Survey Data and Producing Shapefiles for Habitat Mapping in GIS

    Directory of Open Access Journals (Sweden)

    Jared Kibele

    2016-03-01

    Full Text Available Photo survey techniques are common for resource management, ecological research, and ground truthing for remote sensing but current data processing methods are cumbersome and inefficient. The Benthic Photo Survey (BPS software described here was created to simplify the data processing and management tasks associated with photo surveys of underwater habitats. BPS is free and open source software written in Python with a QT graphical user interface. BPS takes a GPS log and jpeg images acquired by a diver or drop camera and assigns the GPS position to each photo based on time-stamps (i.e. geotagging. Depth and temperature can be assigned in a similar fashion (i.e. depth-tagging using log files from an inexpensive consumer grade depth / temperature logger that can be attached to the camera. BPS provides the user with a simple interface to assign quantitative habitat and substrate classifications to each photo. Location, depth, temperature, habitat, and substrate data are all stored with the jpeg metadata in Exchangeable image file format (Exif. BPS can then export all of these data in a spatially explicit point shapefile format for use in GIS. BPS greatly reduces the time and skill required to turn photos into usable data thereby making photo survey methods more efficient and cost effective. BPS can also be used, as is, for other photo sampling techniques in terrestrial and aquatic environments and the open source code base offers numerous opportunities for expansion and customization.

  7. Directional Joint Bilateral Filter for Depth Images

    Directory of Open Access Journals (Sweden)

    Anh Vu Le

    2014-06-01

    Full Text Available Depth maps taken by the low cost Kinect sensor are often noisy and incomplete. Thus, post-processing for obtaining reliable depth maps is necessary for advanced image and video applications such as object recognition and multi-view rendering. In this paper, we propose adaptive directional filters that fill the holes and suppress the noise in depth maps. Specifically, novel filters whose window shapes are adaptively adjusted based on the edge direction of the color image are presented. Experimental results show that our method yields higher quality filtered depth maps than other existing methods, especially at the edge boundaries.

  8. A Comparison of Electromagnetic Induction Mapping to Measurements of Maximum Effluent Flow Depth for Assessing Flow Paths in Vegetative Treatment Areas

    Science.gov (United States)

    Vegetative treatment systems (VTSs) are one type of control structure that has shown potential to control runoff from open feedlots. To achieve maximum performance, sheet-flow over the width of the vegetative treatment area (VTA) is required. Tools, such as maps of flow paths through the VTA, are ne...

  9. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  10. The Shoreline Management Tool, an ArcMap Tool for Analyzing Water Depth, Inundated Area, Volume, and Selected Habitats, with an Example for the Lower Wood River Valley, Oregon

    Science.gov (United States)

    Snyder, D. T.; Haluska, T. L.; Respini-Irwin, D.

    2012-12-01

    The Shoreline Management Tool is a GIS-based program developed to assist water- and land-resource managers in assessing the benefits and impacts of changes in surface-water stage on water depth, inundated area, and water volume. In addition, the tool can be used to identify aquatic or terrestrial habitat areas where conditions may be suitable for specific plants or animals as defined by user-specified criteria, including water depth, land-surface slope, and land-surface aspect or to delineate areas for use in determining a variety of hydrologic budget components such as surface-water storage, precipitation, runoff, or evapotranspiration. The Shoreline Management Tool consists of two parts, a graphical user interface for use with ArcMap GIS software to interact with the user to define scenarios and map results, and a spreadsheet in Microsoft Excel® developed to display tables and graphs of the results. The graphical user interface allows the user to define a scenario consisting of an inundation level (stage), land areas (parcels), and habitats (areas meeting user-specified conditions) based on water depth, slope, and aspect criteria. The tool uses data consisting of land-surface elevation, tables of stage/volume and stage/area, and delineated parcel boundaries to produce maps (data layers) of inundated areas and areas that meet the habitat criteria. The tool can be run in a Single-Time Scenario mode or in a Time-Series Scenario mode which uses an input file of dates and associated stages. The spreadsheet portion of the tool uses a macro to process the results from the graphical user interface to create tables and graphs of inundated water volume, inundated area, dry area, and mean water depth for each land parcel based on the user-specified stage. The macro also creates tables and graphs of the area, perimeter, and number of polygons comprising the user-specified habitat areas within each parcel. The Shoreline Management Tool is designed to be highly transferable

  11. Depth keying

    Science.gov (United States)

    Gvili, Ronen; Kaplan, Amir; Ofek, Eyal; Yahav, Giora

    2003-05-01

    We present a new solution to the known problem of video keying in a natural environment. We segment foreground objects from background objects using their relative distance from the camera, which makes it possible to do away with the use of color for keying. To do so, we developed and built a novel depth video camera, capable of producing RGB and D signals, where D stands for the distance to each pixel. The new RGBD camera enables the creation of a whole new gallery of effects and applications such as multi-layer background substitutions. This new modality makes the production of real time mixed reality video possible, as well as post-production manipulation of recorded video. We address the problem of color spill -- in which the color of the foreground object is mixed, along its boundary, with the background color. This problem prevents an accurate separation of the foreground object from its background, and it is most visible when compositing the foreground objects to a new background. Most existing techniques are limited to the use of a constant background color. We offer a novel general approach to the problem with enabling the use of the natural background, based upon the D channel generated by the camera.

  12. Warm dense crystallography

    Science.gov (United States)

    Valenza, Ryan A.; Seidler, Gerald T.

    2016-03-01

    The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.

  13. Dense Suspension Splash

    Science.gov (United States)

    Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.

    2014-03-01

    Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).

  14. Dense Axion Stars

    CERN Document Server

    Braaten, Eric; Zhang, Hong

    2015-01-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure.If the axion mass energy is $mc^2= 10^{-4}$ eV, these dilute axion stars have a maximum mass of about $10^{-14} M_\\odot$. We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If $mc^2 = 10^{-4}$ eV, the first branch of these dense axion stars has mas...

  15. Dense Axion Stars

    Science.gov (United States)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-01

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10-14M⊙ if the axion mass is 10-4 eV . We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10-20M⊙ to about M⊙ . If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  16. Dense Axion Stars

    Science.gov (United States)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2016-03-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. If the axion mass energy is mc2 =10-4 eV, these dilute axion stars have a maximum mass of about 10-14M⊙ . We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If mc2 =10-4 4 eV, the first branch of these dense axion stars has mass ranging from about 10-11M⊙ toabout M⊙.

  17. DENSE MEDIUM CYCLONE OPTIMIZATON

    Energy Technology Data Exchange (ETDEWEB)

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  18. MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones.

    Science.gov (United States)

    Ondrúška, Peter; Kohli, Pushmeet; Izadi, Shahram

    2015-11-01

    We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models.

  19. Hybrid-Based Dense Stereo Matching

    Science.gov (United States)

    Chuang, T. Y.; Ting, H. W.; Jaw, J. J.

    2016-06-01

    Stereo matching generating accurate and dense disparity maps is an indispensable technique for 3D exploitation of imagery in the fields of Computer vision and Photogrammetry. Although numerous solutions and advances have been proposed in the literature, occlusions, disparity discontinuities, sparse texture, image distortion, and illumination changes still lead to problematic issues and await better treatment. In this paper, a hybrid-based method based on semi-global matching is presented to tackle the challenges on dense stereo matching. To ease the sensitiveness of SGM cost aggregation towards penalty parameters, a formal way to provide proper penalty estimates is proposed. To this end, the study manipulates a shape-adaptive cross-based matching with an edge constraint to generate an initial disparity map for penalty estimation. Image edges, indicating the potential locations of occlusions as well as disparity discontinuities, are approved by the edge drawing algorithm to ensure the local support regions not to cover significant disparity changes. Besides, an additional penalty parameter 𝑃𝑒 is imposed onto the energy function of SGM cost aggregation to specifically handle edge pixels. Furthermore, the final disparities of edge pixels are found by weighting both values derived from the SGM cost aggregation and the U-SURF matching, providing more reliable estimates at disparity discontinuity areas. Evaluations on Middlebury stereo benchmarks demonstrate satisfactory performance and reveal the potency of the hybrid-based dense stereo matching method.

  20. Geographical Distribution of Crater Depths on Mars

    Science.gov (United States)

    Stepinski, T. F.

    2010-03-01

    Global maps of crater depths on Mars are constructed using a new dataset that lists depths of >75,000 craters. Distribution of crater depths is interpreted in terms of cryosphere extent, and the locations of deepest craters on Mars are identified.

  1. The Shoreline Management Tool - an ArcMap tool for analyzing water depth, inundated area, volume, and selected habitats, with an example for the lower Wood River Valley, Oregon

    Science.gov (United States)

    Snyder, Daniel T.; Haluska, Tana L.; Respini-Irwin, Darius

    2013-01-01

    The Shoreline Management Tool is a geographic information system (GIS) based program developed to assist water- and land-resource managers in assessing the benefits and effects of changes in surface-water stage on water depth, inundated area, and water volume. Additionally, the Shoreline Management Tool can be used to identify aquatic or terrestrial habitat areas where conditions may be suitable for specific plants or animals as defined by user-specified criteria including water depth, land-surface slope, and land-surface aspect. The tool can also be used to delineate areas for use in determining a variety of hydrologic budget components such as surface-water storage, precipitation, runoff, or evapotranspiration. The Shoreline Management Tool consists of two parts, a graphical user interface for use with Esri™ ArcMap™ GIS software to interact with the user to define scenarios and map results, and a spreadsheet in Microsoft® Excel® developed to display tables and graphs of the results. The graphical user interface allows the user to define a scenario consisting of an inundation level (stage), land areas (parcels), and habitats (areas meeting user-specified conditions) based on water depth, slope, and aspect criteria. The tool uses data consisting of land-surface elevation, tables of stage/volume and stage/area, and delineated parcel boundaries to produce maps (data layers) of inundated areas and areas that meet the habitat criteria. The tool can be run in a Single-Time Scenario mode or in a Time-Series Scenario mode, which uses an input file of dates and associated stages. The spreadsheet part of the tool uses a macro to process the results from the graphical user interface to create tables and graphs of inundated water volume, inundated area, dry area, and mean water depth for each land parcel based on the user-specified stage. The macro also creates tables and graphs of the area, perimeter, and number of polygons comprising the user-specified habitat areas

  2. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  3. DENSE: Displacement Encoding with Stimulated Echoes in Cardiac Functional MRI

    Science.gov (United States)

    Aletras, Anthony H.; Ding, Shujun; Balaban, Robert S.; Wen, Han

    1999-03-01

    Displacement encoding with stimulated echoes (DENSE) was developed for high-resolution myocardial displacement mapping. Pixel phase is modulated by myocardial displacement and data spatial resolution is limited only by pixel size. 2D displacement vector maps were generated for the systolic action in canines with 0.94 × 1.9 mm nominal in-plane resolution and 2.3 mm/π displacement encoding. A radial strain of 0.208 was measured across the free left ventricular wall over 105 ms during systole. DENSE displacement maps require small first-order gradient moments for encoding. DENSE magnitude images exhibit black-blood contrast which allows for better myocardial definition and reduced motion-related artifacts.

  4. Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies.

    Science.gov (United States)

    Michael, Todd P; Bryant, Douglas; Gutierrez, Ryan; Borisjuk, Nikolai; Chu, Philomena; Zhang, Hanzhong; Xia, Jing; Zhou, Junfei; Peng, Hai; El Baidouri, Moaine; Ten Hallers, Boudewijn; Hastie, Alex R; Liang, Tiffany; Acosta, Kenneth; Gilbert, Sarah; McEntee, Connor; Jackson, Scott A; Mockler, Todd C; Zhang, Weixiong; Lam, Eric

    2017-02-01

    Spirodela polyrhiza is a fast-growing aquatic monocot with highly reduced morphology, genome size and number of protein-coding genes. Considering these biological features of Spirodela and its basal position in the monocot lineage, understanding its genome architecture could shed light on plant adaptation and genome evolution. Like many draft genomes, however, the 158-Mb Spirodela genome sequence has not been resolved to chromosomes, and important genome characteristics have not been defined. Here we deployed rapid genome-wide physical maps combined with high-coverage short-read sequencing to resolve the 20 chromosomes of Spirodela and to empirically delineate its genome features. Our data revealed a dramatic reduction in the number of the rDNA repeat units in Spirodela to fewer than 100, which is even fewer than that reported for yeast. Consistent with its unique phylogenetic position, small RNA sequencing revealed 29 Spirodela-specific microRNA, with only two being shared with Elaeis guineensis (oil palm) and Musa balbisiana (banana). Combining DNA methylation data and small RNA sequencing enabled the accurate prediction of 20.5% long terminal repeats (LTRs) that doubled the previous estimate, and revealed a high Solo:Intact LTR ratio of 8.2. Interestingly, we found that Spirodela has the lowest global DNA methylation levels (9%) of any plant species tested. Taken together our results reveal a genome that has undergone reduction, likely through eliminating non-essential protein coding genes, rDNA and LTRs. In addition to delineating the genome features of this unique plant, the methodologies described and large-scale genome resources from this work will enable future evolutionary and functional studies of this basal monocot family. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  5. Motion-Adaptive Depth Superresolution.

    Science.gov (United States)

    Kamilov, Ulugbek S; Boufounos, Petros T

    2017-04-01

    Multi-modal sensing is increasingly becoming important in a number of applications, providing new capabilities and processing challenges. In this paper, we explore the benefit of combining a low-resolution depth sensor with a high-resolution optical video sensor, in order to provide a high-resolution depth map of the scene. We propose a new formulation that is able to incorporate temporal information and exploit the motion of objects in the video to significantly improve the results over existing methods. In particular, our approach exploits the space-time redundancy in the depth and intensity using motion-adaptive low-rank regularization. We provide experiments to validate our approach and confirm that the quality of the estimated high-resolution depth is improved substantially. Our approach can be a first component in systems using vision techniques that rely on high-resolution depth information.

  6. Extracting and mapping of soil depth distribution rules in complex landscape environment%复杂景观环境下土壤厚度分布规则提取与制图

    Institute of Scientific and Technical Information of China (English)

    芦园园; 张甘霖; 赵玉国; 李德成; 杨金玲; 刘峰

    2014-01-01

    复杂景观环境下,土壤-环境关系知识的获取是预测性土壤制图的基础。为了探究复杂景观下土壤厚度分布与环境条件的关系,该文以黑河上游祁连山区典型小流域为研究区,应用模糊c均值聚类(fuzzy C-means cluster,FCM)和决策树(decision Tree,DT)方法,建立了一套获取土壤厚度分布与环境间关系知识的方法。利用2种方法结合获得流域内土壤厚度各分布等级的环境要素关键阈值与土壤-环境关系知识集,将所得环境阈值和知识集进行预测性制图,并通过野外独立样点对制图结果进行精度评价。结果表明:土壤厚度图的总体精度为74.2%,Kappa系数为0.659。该研究将2种方法结合获得了土壤厚度分布对应的土壤环境关键阈值和土壤-环境关系知识集,为复杂景观环境下土壤厚度的预测性制图提供了一种有效的解决方案。%Soil depth is one of the most important input parameters for hydroecological models in arid and semiarid regions. However, soil depth is highly variable spatially and traditional measures of soil depth are laborious, time consuming and even difficult to practically perform, especially in the complex landscape areas. In these areas, the mapping based on the relationships between soil properties and environmental factors may be useful. However, the approach used to establish their relationships is limited. Therefore, this study proposed an efficient method for obtaining and establishing the soil-environment relationships in complex landscape environments. The method was based on an fuzzy clustering method (fuzzy C-means, FCM) and decision tree (DT). Using this method, the relationships between soil depth distribution and environmental factors in a typical alpine watershed in the Qilian Mountains, northwestern China with easy-to-obtain environmental covariates data was established. The method was based on the assumption that soil was the

  7. Conductive dense hydrogen

    Science.gov (United States)

    Eremets, M.; Troyan, I.

    2012-12-01

    Hydrogen at ambient pressures and low temperatures forms a molecular crystal which is expected to display metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature Tc of 200-400 K. The superconductor may potentially be recovered metastably at ambient pressures, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. Recent experiments performed at low temperatures T 220 GPa, new Raman modes arose, providing evidence for the transformation to a new opaque and electrically conductive phase IV. Above 260 GPa, in the next phase V, hydrogen reflected light well. Its resistance was nearly temperature-independent over a wide temperature range, down to 30 K, indicating that the hydrogen was metallic. Releasing the pressure induced the metallic phase to transform directly into molecular hydrogen with significant hysteresis at 200 GPa and 295 K. These data were published in our paper: M. I. Eremets and I. A. Troyan "Conductive dense hydrogen." Nature Materials 10: 927-931. We will present also new results on hydrogen: phase diagram with phases IV and V determined in P,T domain up to 300 GPa and 350 K. We will also discuss possible structures of phase IV based on our Raman and infrared measurements up to 300 GPa.

  8. Dense Hypervelocity Plasma Jets

    Science.gov (United States)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  9. Heavy mesons in dense matter

    NARCIS (Netherlands)

    Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; LlanesEstrada, FJ; Pelaez,

    2011-01-01

    Charmed mesons in dense matter are studied within a unitary coupled-channel approach which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense medium, and discuss their implications on hidden c

  10. A new combination of monocular and stereo cues for dense disparity estimation

    Science.gov (United States)

    Mao, Miao; Qin, Kaihuai

    2013-07-01

    Disparity estimation is a popular and important topic in computer vision and robotics. Stereo vision is commonly done to complete the task, but most existing methods fail in textureless regions and utilize numerical methods to interpolate into these regions. Monocular features are usually ignored, which may contain helpful depth information. We proposed a novel method combining monocular and stereo cues to compute dense disparities from a pair of images. The whole image regions are categorized into reliable regions (textured and unoccluded) and unreliable regions (textureless or occluded). Stable and accurate disparities can be gained at reliable regions. Then for unreliable regions, we utilize k-means to find the most similar reliable regions in terms of monocular cues. Our method is simple and effective. Experiments show that our method can generate a more accurate disparity map than existing methods from images with large textureless regions, e.g. snow, icebergs.

  11. Densely crosslinked polycarbosiloxanes .1. Synthesis

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    Novel densely crosslinked polycarbosiloxanes were obtained by using functional branched prepolymers. Two types of soluble prepolymers were prepared from di- and trifunctional alkoxysilane monomers via cohydrolysis/condensation and for both final crosslinking occurred via hydrosilylation. The prepoly

  12. Titanite petrochronology of ultrahigh-temperature (UHT) calc-silicates from southern Madagascar: laser-ablation split-stream ICP-MS spot analyses, depth profiles, and quantified trace-element x-ray maps

    Science.gov (United States)

    Holder, Robert; Hacker, Bradley

    2017-04-01

    Calc-silicate rocks are often overlooked as sources of pressure-temperature-time data in granulite-UHT metamorphic terranes due to the strong dependence of calc-silicate mineral assemblages on complex fluid compositions, as well as a lack of thermodynamic data on common high-temperature calc-silicate minerals such as scapolite. In the Ediacaran-Cambrian UHT rocks of southern Madagascar, clinopyroxene-scapolite-feldspar-quartz-titanite calc-silicate rocks are wide-spread. U-Pb dates of c. 540-520 Ma from unaltered portions of titanite correspond to cooling of the rocks through upper-amphibolite facies and indicate UHT metamorphism occurred before 540 Ma. Zr concentrations in these domains preserve growth temperatures of 900-950 C, consistent with peak temperatures calculated by pseudosection modeling of nearby pelitic rocks. Younger U-Pb dates (c. 510-490 Ma) correspond to fluid-mediated Pb loss from titanite grains, which occurred below their diffusive Pb-closure temperature, along fractures. The extent of fluid alteration is seen clearly in back-scattered electron images as well as Zr-, Al-, Fe-, Ce-, and Nb-concentration maps. Laser-ablation depth profiling of idioblastic titanite grains shows preserved Pb diffusion profiles at grain rims, but there is no evidence for Zr diffusion, indicating that it was effectively immobile even at UHT.

  13. Parametric dense stereovision implementation on a system-on chip (SoC).

    Science.gov (United States)

    Gardel, Alfredo; Montejo, Pablo; García, Jorge; Bravo, Ignacio; Lázaro, José L

    2012-01-01

    This paper proposes a novel hardware implementation of a dense recovery of stereovision 3D measurements. Traditionally 3D stereo systems have imposed the maximum number of stereo correspondences, introducing a large restriction on artificial vision algorithms. The proposed system-on-chip (SoC) provides great performance and efficiency, with a scalable architecture available for many different situations, addressing real time processing of stereo image flow. Using double buffering techniques properly combined with pipelined processing, the use of reconfigurable hardware achieves a parametrisable SoC which gives the designer the opportunity to decide its right dimension and features. The proposed architecture does not need any external memory because the processing is done as image flow arrives. Our SoC provides 3D data directly without the storage of whole stereo images. Our goal is to obtain high processing speed while maintaining the accuracy of 3D data using minimum resources. Configurable parameters may be controlled by later/parallel stages of the vision algorithm executed on an embedded processor. Considering hardware FPGA clock of 100 MHz, image flows up to 50 frames per second (fps) of dense stereo maps of more than 30,000 depth points could be obtained considering 2 Mpix images, with a minimum initial latency. The implementation of computer vision algorithms on reconfigurable hardware, explicitly low level processing, opens up the prospect of its use in autonomous systems, and they can act as a coprocessor to reconstruct 3D images with high density information in real time.

  14. Method for dense packing discovery.

    Science.gov (United States)

    Kallus, Yoav; Elser, Veit; Gravel, Simon

    2010-11-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit-cell parameters with the other packing variables in the definition of the configuration space. The method we present led to previously reported improvements in the densest-known tetrahedron packing. Here, we use the method to reproduce the densest-known lattice sphere packings and the best-known lattice kissing arrangements in up to 14 and 11 dimensions, respectively, providing numerical evidence for their optimality. For nonspherical particles, we report a dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845 and with a similar structure to the densest-known tetrahedron packing.

  15. Unconditional Continuous Variable Dense Coding

    CERN Document Server

    Ralph, T C

    2002-01-01

    We investigate the conditions under which unconditional dense coding can be achieved using continuous variable entanglement. We consider the effect of entanglement impurity and detector efficiency and discuss experimental verification. We conclude that the requirements for a strong demonstration are not as stringent as previously thought and are within the reach of present technology.

  16. Depth Transfer: Depth Extraction from Video Using Non-Parametric Sampling.

    Science.gov (United States)

    Karsch, Kevin; Liu, Ce; Kang, Sing Bing

    2014-11-01

    We describe a technique that automatically generates plausible depth maps from videos using non-parametric depth sampling. We demonstrate our technique in cases where past methods fail (non-translating cameras and dynamic scenes). Our technique is applicable to single images as well as videos. For videos, we use local motion cues to improve the inferred depth maps, while optical flow is used to ensure temporal depth consistency. For training and evaluation, we use a Kinect-based system to collect a large data set containing stereoscopic videos with known depths. We show that our depth estimation technique outperforms the state-of-the-art on benchmark databases. Our technique can be used to automatically convert a monoscopic video into stereo for 3D visualization, and we demonstrate this through a variety of visually pleasing results for indoor and outdoor scenes, including results from the feature film Charade.

  17. Evaluating methods for controlling depth perception in stereoscopic cinematography

    Science.gov (United States)

    Sun, Geng; Holliman, Nick

    2009-02-01

    Existing stereoscopic imaging algorithms can create static stereoscopic images with perceived depth control function to ensure a compelling 3D viewing experience without visual discomfort. However, current algorithms do not normally support standard Cinematic Storytelling techniques. These techniques, such as object movement, camera motion, and zooming, can result in dynamic scene depth change within and between a series of frames (shots) in stereoscopic cinematography. In this study, we empirically evaluate the following three types of stereoscopic imaging approaches that aim to address this problem. (1) Real-Eye Configuration: set camera separation equal to the nominal human eye interpupillary distance. The perceived depth on the display is identical to the scene depth without any distortion. (2) Mapping Algorithm: map the scene depth to a predefined range on the display to avoid excessive perceived depth. A new method that dynamically adjusts the depth mapping from scene space to display space is presented in addition to an existing fixed depth mapping method. (3) Depth of Field Simulation: apply Depth of Field (DOF) blur effect to stereoscopic images. Only objects that are inside the DOF are viewed in full sharpness. Objects that are far away from the focus plane are blurred. We performed a human-based trial using the ITU-R BT.500-11 Recommendation to compare the depth quality of stereoscopic video sequences generated by the above-mentioned imaging methods. Our results indicate that viewers' practical 3D viewing volumes are different for individual stereoscopic displays and viewers can cope with much larger perceived depth range in viewing stereoscopic cinematography in comparison to static stereoscopic images. Our new dynamic depth mapping method does have an advantage over the fixed depth mapping method in controlling stereo depth perception. The DOF blur effect does not provide the expected improvement for perceived depth quality control in 3D cinematography

  18. A novel approach for automatic snow depth estimation using UAV-taken images without ground control points

    Science.gov (United States)

    Mizinski, Bartlomiej; Niedzielski, Tomasz

    2017-04-01

    Recent developments in snow depth reconstruction based on remote sensing techniques include the use of photographs of snow-covered terrain taken by unmanned aerial vehicles (UAVs). There are several approaches that utilize visible-light photos (RGB) or near infrared images (NIR). The majority of the methods in question are based on reconstructing the digital surface model (DSM) of the snow-covered area with the use of the Structure-from-Motion (SfM) algorithm and the stereo-vision software. Having reconstructed the above-mentioned DSM it is straightforward to calculate the snow depth map which may be produced as a difference between the DSM of snow-covered terrain and the snow-free DSM, known as the reference surface. In order to use the aforementioned procedure, the high spatial accuracy of the two DSMs must be ensured. Traditionally, this is done using the ground control points (GCPs), either artificial or natural terrain features that are visible on aerial images, the coordinates of which are measured in the field using the Global Navigation Satellite System (GNSS) receiver by qualified personnel. The field measurements may be time-taking (GCPs must be well distributed in the study area, therefore the field experts should travel over long distances) and dangerous (the field experts may be exposed to avalanche risk or cold). Thus, there is a need to elaborate methods that enable the above-mentioned automatic snow depth map production without the use of GCPs. One of such attempts is shown in this paper which aims to present the novel method which is based on real-time processing of snow-covered and snow-free dense point clouds produced by SfM. The two stage georeferencing is proposed. The initial (low accuracy) one assigns true geographic, and subsequently projected, coordinates to the two dense point clouds, while the said initially-registered dense point clouds are matched using the iterative closest point (ICP) algorithm in the final (high accuracy) stage. The

  19. Warm Dense Matter: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities

  20. Ambient noise tomography across Mount St. Helens using a dense seismic array

    Science.gov (United States)

    Wang, Yadong; Lin, Fan-Chi; Schmandt, Brandon; Farrell, Jamie

    2017-06-01

    We investigated upper crustal structure with data from a dense seismic array deployed around Mount St. Helens for 2 weeks in the summer of 2014. Interstation cross correlations of ambient seismic noise data from the array were obtained, and clear fundamental mode Rayleigh waves were observed between 2.5 and 5 s periods. In addition, higher-mode signals were observed around 2 s period. Frequency-time analysis was applied to measure fundamental mode Rayleigh wave phase velocities, which were used to invert for 2-D phase velocity maps. An azimuth-dependent traveltime correction was implemented to mitigate potential biases introduced due to an inhomogeneous noise source distribution. Reliable phase velocity maps were only obtained between 3 and 4 s periods due to limitations imposed by the array aperture and higher-mode contamination. The phase velocity tomography results, which are sensitive to structure shallower than 6 km depth, reveal an 10-15% low-velocity anomaly centered beneath the volcanic edifice and peripheral high-velocity anomalies that likely correspond to cooled igneous intrusions. We suggest that the low-velocity anomaly reflects the high-porosity mixture of lava and ash deposits near the surface of the edifice, a highly fractured magmatic conduit and hydrothermal system beneath the volcano, and possibly a small contribution from silicate melt.

  1. Estimating snow depth in real time using unmanned aerial vehicles

    Science.gov (United States)

    Niedzielski, Tomasz; Mizinski, Bartlomiej; Witek, Matylda; Spallek, Waldemar; Szymanowski, Mariusz

    2016-04-01

    In frame of the project no. LIDER/012/223/L-5/13/NCBR/2014, financed by the National Centre for Research and Development of Poland, we elaborated a fully automated approach for estimating snow depth in real time in the field. The procedure uses oblique aerial photographs taken by the unmanned aerial vehicle (UAV). The geotagged images of snow-covered terrain are processed by the Structure-from-Motion (SfM) method which is used to produce a non-georeferenced dense point cloud. The workflow includes the enhanced RunSFM procedure (keypoint detection using the scale-invariant feature transform known as SIFT, image matching, bundling using the Bundler, executing the multi-view stereo PMVS and CMVS2 software) which is preceded by multicore image resizing. The dense point cloud is subsequently automatically georeferenced using the GRASS software, and the ground control points are borrowed from positions of image centres acquired from the UAV-mounted GPS receiver. Finally, the digital surface model (DSM) is produced which - to improve the accuracy of georeferencing - is shifted using a vector obtained through precise geodetic GPS observation of a single ground control point (GCP) placed on the Laboratory for Unmanned Observations of Earth (mobile lab established at the University of Wroclaw, Poland). The DSM includes snow cover and its difference with the corresponding snow-free DSM or digital terrain model (DTM), following the concept of the digital elevation model of differences (DOD), produces a map of snow depth. Since the final result depends on the snow-free model, two experiments are carried out. Firstly, we show the performance of the entire procedure when the snow-free model reveals a very high resolution (3 cm/px) and is produced using the UAV-taken photographs and the precise GCPs measured by the geodetic GPS receiver. Secondly, we perform a similar exercise but the 1-metre resolution light detection and ranging (LIDAR) DSM or DTM serves as the snow-free model

  2. 一种融合激光和深度视觉传感器的S LAM地图创建方法%Map-building approach based on laser and depth visual sensor fusion SLAM

    Institute of Scientific and Technical Information of China (English)

    张毅; 杜凡宇; 罗元; 熊艳

    2016-01-01

    When robots locate themselves in complex and uncertainty environments,the simultaneous localization and mapping (SLAM)system with a single sensor is poor in accuracy and reliability,and susceptible to the interference.This paper presen-ted a method of data fusion for laser and depth visual based on Bayesian estimation SLAM,which were interpreted by a probabi-listic heuristic model that abstracted the beam into a ray casting to an occupied grid cell and take full advantage of redundance, features information of consistency proposed and fusion.In order to update the occupancy grid,it applied the Bayesian estima-tion method to both sensor data arrays.Experiment based on ROS study shows that multi-sensor based on Beyesian yields a sig-nificant improvement between accuracy and robustness about SLAM.%针对移动机器人的不确定复杂环境,一般采用单一传感器进行同时定位和地图创建(SLAM)存在精度较低,并且易受干扰、可靠性不足等问题,提出一种基于Bayes方法的激光传感器和RGB-D传感器的信息融合SLAM方法。利用Bayes方法通过概率启发式模型提取光束投影到栅格地图单元,充分利用激光与视觉信息中的冗余信息,提取一致性特征信息,并进行特征级的信息融合;在地图更新阶段,提出一种融合激光传感器和视觉传感器的贝叶斯估计方法,对栅格地图进行更新。在使用ROS (移动机器人操作系统)的实验平台上的实验表明,多传感器信息融合可以有效提高SLAM的准确度和鲁棒性。

  3. Dense Molecular Cores Being Externally Heated

    CERN Document Server

    Kim, Gwanjeong; Gopinathan, Maheswar; Jeong, Woong-Seob; Kim, Mi-Ryang

    2016-01-01

    We present results of our study on eight dense cores, previously classified as starless, using infrared (3-160 {\\micron}) imaging observations with \\textit{AKARI} telescope and molecular line (HCN and N$_2$H$^+$) mapping observations with \\textit{KVN} telescope. Combining our results with the archival IR to mm continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosity of $\\sim0.3-4.4$ L$_{\\odot}$. The other six cores are found to remain as starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3-6 K towards the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an over-dominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory mot...

  4. Structural Transitions in Dense Networks

    CERN Document Server

    Lambiotte, R; Bhat, U; Redner, S

    2016-01-01

    We introduce an evolving network model in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability $p$. The resulting network is sparse for $p<\\frac{1}{2}$ and dense (average degree increasing with number of nodes $N$) for $p\\geq \\frac{1}{2}$. In the dense regime, individual networks realizations built by this copying mechanism are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at $p=\\frac{2}{3}$, $\\frac{3}{4}$, $\\frac{4}{5}$, etc., where the dependences on $N$ of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete---where all nodes are connected---is non-zero as $N\\to\\infty$.

  5. Radiative properties of dense nanofluids.

    Science.gov (United States)

    Wei, Wei; Fedorov, Andrei G; Luo, Zhongyang; Ni, Mingjiang

    2012-09-01

    The radiative properties of dense nanofluids are investigated. For nanofluids, scattering and absorbing of electromagnetic waves by nanoparticles, as well as light absorption by the matrix/fluid in which the nanoparticles are suspended, should be considered. We compare five models for predicting apparent radiative properties of nanoparticulate media and evaluate their applicability. Using spectral absorption and scattering coefficients predicted by different models, we compute the apparent transmittance of a nanofluid layer, including multiple reflecting interfaces bounding the layer, and compare the model predictions with experimental results from the literature. Finally, we propose a new method to calculate the spectral radiative properties of dense nanofluids that shows quantitatively good agreement with the experimental results.

  6. Dilatons for Dense Hadronic Matter

    CERN Document Server

    Lee, Hyun Kyu

    2009-01-01

    The idea that the explicit breaking of scale invariance by the trace anomaly of QCD can be rephrased as a spontaneous breaking has been recently exploited to capture the low-energy strong interaction dynamics of dense (and also hot) matter in terms of two dilaton fields, the "soft" (chi_s) and the "hard" (chi_h) fields, in the frame work of the hidden local gauge symmetry. In the Freund-Nambu model, the spontaneous symmetry breaking of scale symmetry is induced by an explicitly breaking term, while the spontaneous symmetry breaking is possible in the flat potential model which is scale symmetric. We discuss the interplay of the soft and hard dilatons using the spontaneously broken scale symmetry schemes and uncover a novel structure of dense matter hitherto unexplored.

  7. Structured IR illumination for relative depth sensing in virtual interfaces

    Science.gov (United States)

    Kress, Bernard; Raulot, Victorien; Grossman, Michel

    2012-06-01

    Depth mapping or depth sensing has become a popular field, applied not only to automotive sensing for collision avoidance (radar) but also to gesture sensing for gaming and virtual interfaces (optical). Popular gesture sensing devices such as the Kinect from Microsoft's Xbox gaming device produce a full absolute depth map, which is in most cases not adapted to the task on hand (relative gesture sensing). We propose in this paper a new gesture sensing technique through structured IR illumination to provide a relative depth mapping rather than an absolute one, and this reducing the requirements on computing power and therefore enabling this technology for wearable computing such as see through display.

  8. The Dense Gas in the Central Kiloparsec of NGC 6946

    CERN Document Server

    Levine, E S; Meijerink, R; Blitz, Leo

    2007-01-01

    We present observations of the HCN and HCO+ J=1-0 transitions in the center of the nearby spiral galaxy NGC 6946 made with the BIMA and CARMA interferometers. Using the BIMA SONG CO map, we investigate the change in the I_HCN/I_CO and I_ HCO/I_CO integrated intensity ratios as a function of radius in the central kiloparsec of the galaxy, and find that they are strongly concentrated at the center. We use the 2MASS K_S band image to find the stellar surface density, and then construct a map of the hydrostatic midplane pressure. We apply a PDR model to the observed I_HCN/I_HCO+ integrated intensity ratio to calculate the number density of molecular hydrogen in the dense gas tracer emitting region, and find that it is roughly constant at 10^5 cm^-3 across our map. We explore two hypotheses for the distribution of the dense gas. If the HCN and HCO+ emission comes from self-gravitating density peaks inside of a less dense gas distribution, there is a linear proportionality between the internal velocity dispersion o...

  9. Fast depth extraction from a single image

    Directory of Open Access Journals (Sweden)

    Lei He

    2016-11-01

    Full Text Available Predicting depth from a single image is an important problem for understanding the 3-D geometry of a scene. Recently, the nonparametric depth sampling (DepthTransfer has shown great potential in solving this problem, and its two key components are a Scale Invariant Feature Transform (SIFT flow–based depth warping between the input image and its retrieved similar images and a pixel-wise depth fusion from all warped depth maps. In addition to the inherent heavy computational load in the SIFT flow computation even under a coarse-to-fine scheme, the fusion reliability is also low due to the low discriminativeness of pixel-wise description nature. This article aims at solving these two problems. First, a novel sparse SIFT flow algorithm is proposed to reduce the complexity from subquadratic to sublinear. Then, a reweighting technique is introduced where the variance of the SIFT flow descriptor is computed at every pixel and used for reweighting the data term in the conditional Markov random fields. Our proposed depth transfer method is tested on the Make3D Range Image Data and NYU Depth Dataset V2. It is shown that, with comparable depth estimation accuracy, our method is 2–3 times faster than the DepthTransfer.

  10. A METHOD OF GENERATING PANORAMIC STREET STRIP IMAGE MAP WITH MOBILE MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    C. Tianen

    2016-06-01

    Full Text Available This paper explores a method of generating panoramic street strip image map which is called as “Pano-Street” here and contains both sides, ground surface and overhead part of a street with a sequence of 360° panoramic images captured with Point Grey’s Ladybug3 mounted on the top of Mitsubishi MMS-X 220 at 2m intervals along the streets in urban environment. On-board GPS/IMU, speedometer and post sequence image analysis technology such as bundle adjustment provided much more accuracy level position and attitude data for these panoramic images, and laser data. The principle for generating panoramic street strip image map is similar to that of the traditional aero ortho-images. A special 3D DEM(3D-Mesh called here was firstly generated with laser data, the depth map generated from dense image matching with the sequence of 360° panoramic images, or the existing GIS spatial data along the MMS trajectory, then all 360° panoramic images were projected and stitched on the 3D-Mesh with the position and attitude data. This makes it possible to make large scale panoramic street strip image maps for most types of cities, and provides another kind of street view way to view the 360° scene along the street by avoiding the switch of image bubbles like Google Street View and Bing Maps Streetside.

  11. a Method of Generating Panoramic Street Strip Image Map with Mobile Mapping System

    Science.gov (United States)

    Tianen, Chen; Yamamoto, Kohei; Tachibana, Kikuo

    2016-06-01

    This paper explores a method of generating panoramic street strip image map which is called as "Pano-Street" here and contains both sides, ground surface and overhead part of a street with a sequence of 360° panoramic images captured with Point Grey's Ladybug3 mounted on the top of Mitsubishi MMS-X 220 at 2m intervals along the streets in urban environment. On-board GPS/IMU, speedometer and post sequence image analysis technology such as bundle adjustment provided much more accuracy level position and attitude data for these panoramic images, and laser data. The principle for generating panoramic street strip image map is similar to that of the traditional aero ortho-images. A special 3D DEM(3D-Mesh called here) was firstly generated with laser data, the depth map generated from dense image matching with the sequence of 360° panoramic images, or the existing GIS spatial data along the MMS trajectory, then all 360° panoramic images were projected and stitched on the 3D-Mesh with the position and attitude data. This makes it possible to make large scale panoramic street strip image maps for most types of cities, and provides another kind of street view way to view the 360° scene along the street by avoiding the switch of image bubbles like Google Street View and Bing Maps Streetside.

  12. Parallel Access of Out-Of-Core Dense Extendible Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Otoo, Ekow J; Rotem, Doron

    2007-07-26

    Datasets used in scientific and engineering applications are often modeled as dense multi-dimensional arrays. For very large datasets, the corresponding array models are typically stored out-of-core as array files. The array elements are mapped onto linear consecutive locations that correspond to the linear ordering of the multi-dimensional indices. Two conventional mappings used are the row-major order and the column-major order of multi-dimensional arrays. Such conventional mappings of dense array files highly limit the performance of applications and the extendibility of the dataset. Firstly, an array file that is organized in say row-major order causes applications that subsequently access the data in column-major order, to have abysmal performance. Secondly, any subsequent expansion of the array file is limited to only one dimension. Expansions of such out-of-core conventional arrays along arbitrary dimensions, require storage reorganization that can be very expensive. Wepresent a solution for storing out-of-core dense extendible arrays that resolve the two limitations. The method uses a mapping function F*(), together with information maintained in axial vectors, to compute the linear address of an extendible array element when passed its k-dimensional index. We also give the inverse function, F-1*() for deriving the k-dimensional index when given the linear address. We show how the mapping function, in combination with MPI-IO and a parallel file system, allows for the growth of the extendible array without reorganization and no significant performance degradation of applications accessing elements in any desired order. We give methods for reading and writing sub-arrays into and out of parallel applications that run on a cluster of workstations. The axial-vectors are replicated and maintained in each node that accesses sub-array elements.

  13. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  14. Mapping Contaminant Remediation with Electrical Resistivity Tomography

    Science.gov (United States)

    Gerhard, J.; Power, C.; Tsourlos, P.; Karaoulis, M.; Giannopoulos, A.; Soupios, P. M.; Simyrdanis, K.

    2014-12-01

    The remediation of sites contaminated with industrial chemicals - specifically dense non-aqueous phase liquids (DNAPLs) like coal tar and chlorinated solvents - represents a major geoenvironmental challenge. Remediation activities would benefit from a non-destructive technique to map the evolution of DNAPL mass in space and time. Electrical resistivity tomography (ERT) has long-standing potential in this context but has not yet become a common tool at DNAPL sites. This work evaluated the potential of time-lapse ERT for mapping DNAPL mass reduction in real time during remediation. Initially, a coupled DNAPL-ERT numerical model was developed for exploring this potential at the field scale, generating realistic DNAPL scenarios and predicting the response of an ERT survey. Also, new four-dimensional (4D) inversion algorithms were integrated for tracking DNAPL removal over time. 4D ERT applied at the surface for mapping an evolving DNAPL distribution was first demonstrated in a laboratory experiment. Independent simulation of the experiment demonstrated the reliability of the DNAPL-ERT model for simulating real systems. The model was then used to explore the 4D ERT approach at the field scale for a range of realistic DNAPL remediation scenarios. The approach showed excellent potential for mapping shallow DNAPL changes. However, remediation at depth was not as well resolved. To overcome this limitation, a new surface-to-horizontal borehole (S2HB) ERT configuration is proposed. A second laboratory experiment was conducted that demonstrated that S2HB ERT does better resolve changes in DNAPL distribution relative to surface ERT, particularly at depth. The DNAPL-ERT model was also used to demonstrate the improved mapping of S2HB ERT for field scale DNAPL scenarios. Overall, this work demonstrates that, with these innovations, ERT exhibits significant potential as a real time, non-destructive geoenvironmental remediation site monitoring tool.

  15. Probing Cold Dense Nuclear Matter

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  16. Probing Cold Dense Nuclear Matter

    CERN Document Server

    Subedi, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Bertozzi, W; Boeglin, W; Chen, J -P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J -O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; De Jager, C W; Jans, E; Jiang, X; Kaufman, L; Kelleher, A; Kolarkar, A; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Širca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X -C; Zhu, L; 10.1126/science.1156675

    2009-01-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  17. Dilatons in Dense Baryonic Matter

    CERN Document Server

    Lee, Hyun Kyu

    2013-01-01

    We discuss the role of dilaton, which is supposed to be representing a special feature of scale symmetry of QCD, trace anomaly, in dense baryonic matter. The idea that the scale symmetry breaking of QCD is responsible for the spontaneous breaking of chiral symmetry is presented along the similar spirit of Freund-Nambu model. The incorporation of dilaton field in the hidden local symmetric parity doublet model is briefly sketched with the possible role of dilaton at high density baryonic matter, the emergence of linear sigma model in dilaton limit.

  18. Improved tilt-depth method for fast estimation of top and bottom depths of magnetic bodies

    Science.gov (United States)

    Wang, Yan-Guo; Zhang, Jin; Ge, Kun-Peng; Chen, Xiao; Nie, Feng-Jun

    2016-06-01

    The tilt-depth method can be used to make fast estimation of the top depth of magnetic bodies. However, it is unable to estimate bottom depths and its every inversion point only has a single solution. In order to resolve such weaknesses, this paper presents an improved tilt-depth method based on the magnetic anomaly expression of vertical contact with a finite depth extent, which can simultaneously estimate top and bottom depths of magnetic bodies. In addition, multiple characteristic points are selected on the tilt angle map for joint computation to improve reliability of inversion solutions. Two- and threedimensional model tests show that this improved tilt-depth method is effective in inverting buried depths of top and bottom bodies, and has a higher inversion precision for top depths than the conventional method. The improved method is then used to process aeromagnetic data over the Changling Fault Depression in the Songliao Basin, and inversion results of top depths are found to be more accurate for actual top depths of volcanic rocks in two nearby drilled wells than those using the conventional tilt-depth method.

  19. Depth-Based Selective Blurring in Stereo Images Using Accelerated Framework

    Science.gov (United States)

    Mukherjee, Subhayan; Guddeti, Ram Mohana Reddy

    2014-09-01

    We propose a hybrid method for stereo disparity estimation by combining block and region-based stereo matching approaches. It generates dense depth maps from disparity measurements of only 18 % image pixels (left or right). The methodology involves segmenting pixel lightness values using fast K-Means implementation, refining segment boundaries using morphological filtering and connected components analysis; then determining boundaries' disparities using sum of absolute differences (SAD) cost function. Complete disparity maps are reconstructed from boundaries' disparities. We consider an application of our method for depth-based selective blurring of non-interest regions of stereo images, using Gaussian blur to de-focus users' non-interest regions. Experiments on Middlebury dataset demonstrate that our method outperforms traditional disparity estimation approaches using SAD and normalized cross correlation by up to 33.6 % and some recent methods by up to 6.1 %. Further, our method is highly parallelizable using CPU-GPU framework based on Java Thread Pool and APARAPI with speed-up of 5.8 for 250 stereo video frames (4,096 × 2,304).

  20. Oxygen depth profiling with subnanometre depth resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kosmata, Marcel [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Munnik, Frans, E-mail: f.munnik@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Hanf, Daniel; Grötzschel, Rainer [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Crocoll, Sonja [X-FAB Dresden GmbH and Co. KG, Grenzstraße 28, D-01109 Dresden (Germany); Möller, Wolfhard [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany)

    2014-10-15

    A High-depth Resolution Elastic Recoil Detection (HR-ERD) set-up using a magnetic spectrometer has been taken into operation at the Helmholtz-Zentrum Dresden-Rossendorf for the first time. This instrument allows the investigation of light elements in ultra-thin layers and their interfaces with a depth resolution of less than 1 nm near the surface. As the depth resolution is highly influenced by the experimental measurement parameters, sophisticated optimisation procedures have been implemented. Effects of surface roughness and sample damage caused by high fluences need to be quantified for each kind of material. Also corrections are essential for non-equilibrium charge state distributions that exist very close to the surface. Using the example of a high-k multilayer SiO{sub 2}/Si{sub 3}N{sub 4}O{sub x}/SiO{sub 2}/Si it is demonstrated that oxygen in ultra-thin films of a few nanometres thickness can be investigated by HR-ERD.

  1. Dense surface reconstruction with shadows in MIS.

    Science.gov (United States)

    Lin, Bingxiong; Sun, Yu; Qian, Xiaoning

    2013-09-01

    Three-dimensional reconstruction of internal organ surfaces provides useful information for better control and guidance of the operations of surgical tools for minimally invasive surgery (MIS). The current reconstruction techniques using stereo cameras are still challenging due to the difficulties in correspondence matching in MIS, since there is very limited texture but significant specular reflection on organ surfaces. This paper proposes a new approach to overcome the problem by introducing weakly structured light actively casting surgical tool shadows on organ surfaces. The contribution of this paper is twofold: first, we propose a robust approach to extract shadow edges from a sequence of shadowed images; second, we develop a novel field surface interpolation (FSI) approach to obtain an accurate and dense disparity map. Our approach does not rely on texture information and is able to reconstruct accurate 3-D information by exploiting shadows from surgical tools. One advantage is that the point correspondences are directly calculated and no explicit stereo matching is required, which ensures the efficiency of the method. Another advantage is the minimum hardware requirement because only stereo cameras and a separated single-point light source are required. We evaluated the proposed approach using both phantom models and ex vivo images. Based on the experimental results, we achieved the precision of the recovered 3-D surfaces within 0.7 mm for phantom models and 1.2 mm for ex vivo images. The comparison of disparity maps indicates that with the addition of shadows, the proposed method significantly outperforms the state-of-the-art stereo algorithms for MIS.

  2. DENSE GAS FRACTION AND STAR FORMATION EFFICIENCY VARIATIONS IN THE ANTENNAE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Bigiel, F. [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Strasse 2, D-69120 Heidelberg (Germany); Leroy, A. K. [Department of Astronomy, The Ohio State University, 140 W 18th Street, Columbus, OH 43210 (United States); Blitz, L. [Department of Astronomy, Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 (United States); Bolatto, A. D. [Department of Astronomy and Laboratory for Millimeter-Wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Da Cunha, E. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Rosolowsky, E. [Department of Physics, University of Alberta, Edmonton, AB (Canada); Sandstrom, K. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Usero, A., E-mail: bigiel@uni-heidelberg.de [Observatorio Astronomico Nacional, Alfonso XII 3, E-28014, Madrid (Spain)

    2015-12-20

    We use the Combined Array for Research in Millimeter-wave Astronomy (CARMA) millimeter interferometer to map the Antennae Galaxies (NGC 4038/39), tracing the bulk of the molecular gas via the {sup 12}CO(1–0) line and denser molecular gas via the high density transitions HCN(1–0), HCO{sup +}(1–0), CS(2–1), and HNC(1–0). We detect bright emission from all tracers in both the two nuclei and three locales in the overlap region between the two nuclei. These three overlap region peaks correspond to previously identified “supergiant molecular clouds.” We combine the CARMA data with Herschel infrared (IR) data to compare observational indicators of the star formation efficiency (star formation rate/H{sub 2} ∝ IR/CO), dense gas fraction (HCN/CO), and dense gas star formation efficiency (IR/HCN). Regions within the Antennae show ratios consistent with those seen for entire galaxies, but these ratios vary by up to a factor of six within the galaxy. The five detected regions vary strongly in both their integrated intensities and these ratios. The northern nucleus is the brightest region in millimeter-wave line emission, while the overlap region is the brightest part of the system in the IR. We combine the CARMA and Herschel data with ALMA CO data to report line ratio patterns for each bright point. CO shows a declining spectral line energy distribution, consistent with previous studies. HCO{sup +} (1–0) emission is stronger than HCN (1–0) emission, perhaps indicating either more gas at moderate densities or higher optical depth than is commonly seen in more advanced mergers.

  3. Efficient streaming of stereoscopic depth-based 3D videos

    Science.gov (United States)

    Temel, Dogancan; Aabed, Mohammed; Solh, Mashhour; AlRegib, Ghaassan

    2013-02-01

    In this paper, we propose a method to extract depth from motion, texture and intensity. We first analyze the depth map to extract a set of depth cues. Then, based on these depth cues, we process the colored reference video, using texture, motion, luminance and chrominance content, to extract the depth map. The processing of each channel in the YCRCB-color space is conducted separately. We tested this approach on different video sequences with different monocular properties. The results of our simulations show that the extracted depth maps generate a 3D video with quality close to the video rendered using the ground truth depth map. We report objective results using 3VQM and subjective analysis via comparison of rendered images. Furthermore, we analyze the savings in bitrate as a consequence of eliminating the need for two video codecs, one for the reference color video and one for the depth map. In this case, only the depth cues are sent as a side information to the color video.

  4. Viscoelastic behavior of dense microemulsions

    Science.gov (United States)

    Cametti, C.; Codastefano, P.; D'arrigo, G.; Tartaglia, P.; Rouch, J.; Chen, S. H.

    1990-09-01

    We have performed extensive measurements of shear viscosity, ultrasonic absorption, and sound velocity in a ternary system consisting of water-decane-sodium di(2-ethylhexyl)sulfo- succinate(AOT), in the one-phase region where it forms a water-in-oil microemulsion. We observe a rapid increase of the static shear viscosity in the dense microemulsion region. Correspondingly the sound absorption shows unambiguous evidence of a viscoelastic behavior. The absorption data for various volume fractions and temperatures can be reduced to a universal curve by scaling both the absorption and the frequency by the measured static shear viscosity. The sound absorption can be interpreted as coming from the high-frequency tail of the viscoelastic relaxation, describable by a Cole-Cole relaxation formula with unusually small elastic moduli.

  5. Neutrino Oscillations in Dense Matter

    Science.gov (United States)

    Lobanov, A. E.

    2017-03-01

    A modification of the electroweak theory, where the fermions with the same electroweak quantum numbers are combined in multiplets and are treated as different quantum states of a single particle, is proposed. In this model, mixing and oscillations of particles arise as a direct consequence of the general principles of quantum field theory. The developed approach enables one to calculate the probabilities of the processes taking place in the detector at long distances from the particle source. Calculations of higher-order processes, including computation of the contributions due to radiative corrections, can be performed in the framework of the perturbation theory using the regular diagram technique. As a result, the analog to the Dirac-Schwinger equation of quantum electrodynamics describing neutrino oscillations and its spin rotation in dense matter can be obtained.

  6. DPIS for warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, K.; Kanesue, T.; Horioka, K.; Okamura, M.

    2010-05-23

    Warm Dense Matter (WDM) offers an challenging problem because WDM, which is beyond ideal plasma, is in a low temperature and high density state with partially degenerate electrons and coupled ions. WDM is a common state of matter in astrophysical objects such as cores of giant planets and white dwarfs. The WDM studies require large energy deposition into a small target volume in a shorter time than the hydrodynamical time and need uniformity across the full thickness of the target. Since moderate energy ion beams ({approx} 0.3 MeV/u) can be useful tool for WDM physics, we propose WDM generation using Direct Plasma Injection Scheme (DPIS). In the DPIS, laser ion source is connected to the Radio Frequency Quadrupole (RFQ) linear accelerator directly without the beam transport line. DPIS with a realistic final focus and a linear accelerator can produce WDM.

  7. Complexity and Dynamical Depth

    Directory of Open Access Journals (Sweden)

    Terrence Deacon

    2014-07-01

    Full Text Available We argue that a critical difference distinguishing machines from organisms and computers from brains is not complexity in a structural sense, but a difference in dynamical organization that is not well accounted for by current complexity measures. We propose a measure of the complexity of a system that is largely orthogonal to computational, information theoretic, or thermodynamic conceptions of structural complexity. What we call a system’s dynamical depth is a separate dimension of system complexity that measures the degree to which it exhibits discrete levels of nonlinear dynamical organization in which successive levels are distinguished by local entropy reduction and constraint generation. A system with greater dynamical depth than another consists of a greater number of such nested dynamical levels. Thus, a mechanical or linear thermodynamic system has less dynamical depth than an inorganic self-organized system, which has less dynamical depth than a living system. Including an assessment of dynamical depth can provide a more precise and systematic account of the fundamental difference between inorganic systems (low dynamical depth and living systems (high dynamical depth, irrespective of the number of their parts and the causal relations between them.

  8. Automated Mosaicking of Multiple 3d Point Clouds Generated from a Depth Camera

    Science.gov (United States)

    Kim, H.; Yoon, W.; Kim, T.

    2016-06-01

    In this paper, we propose a method for automated mosaicking of multiple 3D point clouds generated from a depth camera. A depth camera generates depth data by using ToF (Time of Flight) method and intensity data by using intensity of returned signal. The depth camera used in this paper was a SR4000 from MESA Imaging. This camera generates a depth map and intensity map of 176 x 44 pixels. Generated depth map saves physical depth data with mm of precision. Generated intensity map contains texture data with many noises. We used texture maps for extracting tiepoints and depth maps for assigning z coordinates to tiepoints and point cloud mosaicking. There are four steps in the proposed mosaicking method. In the first step, we acquired multiple 3D point clouds by rotating depth camera and capturing data per rotation. In the second step, we estimated 3D-3D transformation relationships between subsequent point clouds. For this, 2D tiepoints were extracted automatically from the corresponding two intensity maps. They were converted into 3D tiepoints using depth maps. We used a 3D similarity transformation model for estimating the 3D-3D transformation relationships. In the third step, we converted local 3D-3D transformations into a global transformation for all point clouds with respect to a reference one. In the last step, the extent of single depth map mosaic was calculated and depth values per mosaic pixel were determined by a ray tracing method. For experiments, 8 depth maps and intensity maps were used. After the four steps, an output mosaicked depth map of 454x144 was generated. It is expected that the proposed method would be useful for developing an effective 3D indoor mapping method in future.

  9. 5G Ultra-Dense Cellular Networks

    OpenAIRE

    Ge, Xiaohu; Tu, Song; Mao, Guoqiang; Wang, Cheng-xiang; Han, Tao

    2015-01-01

    Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output (MIMO) antennas and the millimeter wavecommunication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul ...

  10. Interference Coordination for Dense Wireless Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.; Jørgensen, Niels T.K.

    2015-01-01

    The promise of ubiquitous and super-fast connectivity for the upcoming years will be in large part fulfilled by the addition of base stations and spectral aggregation. The resulting very dense networks (DenseNets) will face a number of technical challenges. Among others, the interference emerges ...... simply react to an identified interference problem. As an example, we propose two algorithms to apply time domain and frequency domain small cell interference coordination in a DenseNet....

  11. HOW GOOD IS A DENSE SHOP SCHEDULE?

    Institute of Scientific and Technical Information of China (English)

    陈礴; 俞文(鱼此)

    2001-01-01

    In this paper, we study a class of simple and easy-to-construct shop schedules, known as dense schedules. We present tight bounds on the maximum deviation in makespan of dense flow-shop and job-shop schedules from their optimal ones. For dense open-shop schedules, we do the same for the special case of four machines and thus add a stronger supporting case for proving a standing conjecture.

  12. Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Eike Möhlmann

    2015-06-01

    Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.

  13. A novel 2D-to-3D conversion technique based on relative height-depth cue

    Science.gov (United States)

    Jung, Yong Ju; Baik, Aron; Kim, Jiwon; Park, Dusik

    2009-02-01

    We present a simple depth estimation framework for 2D-to-3D media conversion. The perceptual depth information from monocular image is estimated by the optimal use of relative height cue, which is one of well-known depth recovery cues. The height depth cue is very common in photographic images. We propose a novel line tracing method and depth refinement filter as core of our depth estimation framework. The line tracing algorithm traces strong edge positions to generate an initial staircase depth map. The initial depth map is further improved by a recursive depth refinement filter. We present visual results from depth estimation and stereo image generation.

  14. Optimal probabilistic dense coding schemes

    Science.gov (United States)

    Kögler, Roger A.; Neves, Leonardo

    2017-04-01

    Dense coding with non-maximally entangled states has been investigated in many different scenarios. We revisit this problem for protocols adopting the standard encoding scheme. In this case, the set of possible classical messages cannot be perfectly distinguished due to the non-orthogonality of the quantum states carrying them. So far, the decoding process has been approached in two ways: (i) The message is always inferred, but with an associated (minimum) error; (ii) the message is inferred without error, but only sometimes; in case of failure, nothing else is done. Here, we generalize on these approaches and propose novel optimal probabilistic decoding schemes. The first uses quantum-state separation to increase the distinguishability of the messages with an optimal success probability. This scheme is shown to include (i) and (ii) as special cases and continuously interpolate between them, which enables the decoder to trade-off between the level of confidence desired to identify the received messages and the success probability for doing so. The second scheme, called multistage decoding, applies only for qudits ( d-level quantum systems with d>2) and consists of further attempts in the state identification process in case of failure in the first one. We show that this scheme is advantageous over (ii) as it increases the mutual information between the sender and receiver.

  15. STAR FORMATION IN DENSE CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2011-12-10

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically {approx}1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of {approx}2, consistent with models of episodic disk accretion.

  16. Star formation in dense clusters

    CERN Document Server

    Myers, Philip C

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion, and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star IMF from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosi...

  17. Isotopologues of dense gas tracers in NGC 1068

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junzhi; Qiu, Jianjie [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, 200030, Shanghai (China); Zhang, Zhi-Yu [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Shi, Yong [School of Astronomy and Space Science, Nanjing University, Nanjing, 210093 (China); Zhang, Jiangshui [Center For Astrophysics, GuangZhou University, 510006, GuangZhou (China); Fang, Min, E-mail: jzwang@shao.ac.cn [ESO, Karl Schwarzschild Strasse 2, D-85748 Garching bei Munich (Germany)

    2014-11-20

    We present observations of isotopic lines of dense gas tracers toward the nuclear region of nearby Seyfert 2 galaxy NGC 1068 with the IRAM 30 m telescope and the Atacama Pathfinder Experiment (APEX) 12 m telescope. We detected four isotopic lines (H{sup 13}CN 1-0, H{sup 13}CO{sup +} 1-0, HN{sup 13}C 1-0, and HC{sup 18}O{sup +} 1-0) at the 3 mm band with the IRAM 30 m telescope and obtained upper limits of other lines. We calculated optical depths of dense gas tracers with the detected isotopic lines of HCN 1-0, HCO{sup +} 1-0, and HNC 1-0. We find that the {sup 14}N/{sup 15}N abundance ratio is greater than 420 if we adopt the upper limit of HC{sup 15}N(1-0) emission. Combining this with fluxes of 1-0 lines from IRAM 30 m observations and the upper limit of 3-2 lines from APEX 12 m observations, we also estimated the excitation condition of molecular gas in the nuclear region of NGC 1068, which is less dense than that in the extreme starburst regions of galaxies.

  18. Depth to Transition--Bolinas to Pescadero, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the depth-to-transition map of the Bolinas to Pescadero, California, region. The raster data file is included in...

  19. Depth to Transition--Bolinas to Pescadero, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the depth-to-transition map of the Bolinas to Pescadero, California, region. The raster data file is included in...

  20. Depth to Transition--Salt Point to Drakes Bay, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the depth-to-transition map of the Salt Point to Drakes Bay, California, region. The raster data file is included in...

  1. Thermophysical properties of warm dense hydrogen

    CERN Document Server

    Holst, Bastian; Desjarlais, Michael P

    2007-01-01

    We study the thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. New results are presented for the pair distribution functions, the equation of state, the Hugoniot curve, and the reflectivity. We compare with available experimental data and predictions of the chemical picture. Especially, we discuss the nonmetal-to-metal transition which occurs at about 40 GPa in the dense fluid.

  2. Heavy meson production in hot dense matter

    NARCIS (Netherlands)

    Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Nieves, JM; Oset, E; Vacas, MJV

    2010-01-01

    The properties of charmed mesons in dense matter are studied using a unitary coupled-channel approach in the nuclear medium which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense nuclear env

  3. Finding dense locations in indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2014-01-01

    Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based mode...

  4. Extreme skin depth waveguides

    CERN Document Server

    Jahani, Saman

    2014-01-01

    Recently, we introduced a paradigm shift in light confinement strategy and introduced a class of extreme skin depth (e-skid) photonic structures (S. Jahani and Z. Jacob, "Transparent sub-diffraction optics: nanoscale light confinement without metal," Optica 1, 96-100 (2014)). Here, we analytically establish that figures of merit related to light confinement in dielectric waveguides are fundamentally tied to the skin depth of waves in the cladding. We contrast the propagation characteristics of the fundamental mode of e-skid waveguides and conventional waveguides to show that the decay constant in the cladding is dramatically larger in e-skid waveguides, which is the origin of sub-diffraction confinement. Finally, we propose an approach to verify the reduced skin depth in experiment using the decrease in the Goos-H\\"anchen phase shift.

  5. Dense image correspondences for computer vision

    CERN Document Server

    Liu, Ce

    2016-01-01

    This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems.   ·         Provides i...

  6. Enhancements to MPEG4 MVC for depth compression

    Science.gov (United States)

    Iyer, Kiran Nanjunda; Maiti, Kausik; Navathe, Bilva Bhalchandra; Sharma, Anshul; Bopardikar, Ajit

    2010-07-01

    Depth map is expected to be an essential component of upcoming 3D video formats. In a multiview scenario, along with color (texture), amount of depth information will also increase linearly with the number of views. Therefore various techniques are being explored in the research community to efficiently compress the depth data. In this paper, we propose novel methods of depth compression based on MPEG4 Multiview Video Coding standard (MVC) without any substantial increase in computational complexity. Our aim is to improve depth coding gain with minimal modification to the standard. We present experimental results which indicate a considerable coding gain when compared with MVC.

  7. The Chasm Green Machine: A Rapid Data Acquisition and Mapping System For Direct Observation of Shallow Hydrological Processes.

    Science.gov (United States)

    Quinn, P.; Merrett, S.

    CHASM (Catchment Hydrology and Sustainable Management) is a major UK funded project investigating all aspects of hydrological observation from point to basin scale. The project includes a mobile instrumentation component, which is now referred to as the 'Green Machine'. This research facility includes an All Terrain Vehicle, an on board high resolution GPS mapping and navigation system, an EM31, an EM38 and a Seistronix seismic kit. The goal of the project is to observe and map unsaturated and saturated zone hydrological processes within soils and drift through repeated map- ping campaigns. The hydrogeophysics kit will be validated against a dense series of ground based observations of soil moisture deficit, suction and peizometric logging instruments. The Green Machine also includes a portable drilling and coring kit that can reach 10m in depth. Thus, the EM31 will attempt to map macroscale fluxes in the water table position, the EM38 will attempt to map the soil moisture deficit, and the seismic profile will show the depth of soil and drift. This 'go anywhere', rapid mapping facility will attempt to map hydrological processes in 4 dimensions in a non- intrusive and extensive manner. Whilst this paper will reflect only the experimental design and some early results, it is hoped that the Green Machine will play an active role in the future of hydrogeophysical research.

  8. Depth as randomness deficiency

    NARCIS (Netherlands)

    Antunes, L.; Matos, A.; Souto, A.; Vitányi, P.

    2008-01-01

    Depth of an object concerns a tradeoff between computation time and excess of program length over the shortest program length required to obtain the object. It gives an unconditional lower bound on the computation time from a given program in absence of auxiliary information. Variants known as

  9. Depth as Randomness Deficiency

    NARCIS (Netherlands)

    L.F. Antunes (Luis); A. Matos; A. Souto (Andre); P.M.B. Vitányi (Paul)

    2009-01-01

    htmlabstractDepth of an object concerns a tradeoff between computation time and excess of program length over the shortest program length required to obtain the object. It gives an unconditional lower bound on the computation time from a given program in absence of auxiliary information. Variants

  10. Depth as randomness deficiency

    NARCIS (Netherlands)

    Antunes, L.; Matos, A.; Souto, A.; Vitányi, P.

    2009-01-01

    Depth of an object concerns a tradeoff between computation time and excess of program length over the shortest program length required to obtain the object. It gives an unconditional lower bound on the computation time from a given program in absence of auxiliary information. Variants known as

  11. The JCMT Gould Belt Survey: Dense Core Clusters in Orion A

    CERN Document Server

    Lane, J; Johnstone, D; Mairs, S; Di Francesco, J; Sadavoy, S; Hatchell, J; Berry, D S; Jenness, T; Hogerheijde, M R; Ward-Thompson, D

    2016-01-01

    The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 {\\mu}m and 450 {\\mu}m SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregation already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.

  12. The JCMT Gould Belt Survey: Dense Core Clusters in Orion A

    Science.gov (United States)

    Lane, J.; Kirk, H.; Johnstone, D.; Mairs, S.; Di Francesco, J.; Sadavoy, S.; Hatchell, J.; Berry, D. S.; Jenness, T.; Hogerheijde, M. R.; Ward-Thompson, D.; The JCMT Gould Belt Survey Team

    2016-12-01

    The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 and 450 μm SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregation already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.

  13. Memory-efficient analysis of dense functional connectomes

    Directory of Open Access Journals (Sweden)

    Kristian Loewe

    2016-11-01

    Full Text Available The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software are compared with regard to their computational efficiency in terms of memory requirements and computation time. The matrix implementation based on on-demand computations has very low memory requirements thus enabling

  14. Dense circum-nuclear molecular gas in starburst galaxies

    CERN Document Server

    Green, Claire-Elise; Green, James A; Dawson, Joanne R; Jones, Paul A; López-Sánchez, Ángel R; Verdes-Montenegro, Lourdes; Henkel, Christian; Baan, Willem A; Martín, Sergio

    2016-01-01

    We present results from a study of the dense circum-nuclear molecular gas of starburst galaxies. The study aims to investigate the interplay between starbursts, active galactic nuclei and molecular gas. We characterise the dense gas traced by HCN, HCO$^{+}$ and HNC and examine its kinematics in the circum-nuclear regions of nine starburst galaxies observed with the Australia Telescope Compact Array. We detect HCN (1$-$0) and HCO$^{+}$ (1$-$0) in seven of the nine galaxies and HNC (1$-$0) in four. Approximately 7 arcsec resolution maps of the circum-nuclear molecular gas are presented. The velocity integrated intensity ratios, HCO$^{+}$ (1$-$0)/HCN (1$-$0) and HNC (1$-$0)/HCN (1$-$0), are calculated. Using these integrated intensity ratios and spatial intensity ratio maps we identify photon dominated regions (PDRs) in NGC 1097, NGC 1365 and NGC 1808. We find no galaxy which shows the PDR signature in only one part of the observed nuclear region. We also observe unusually strong HNC emission in NGC 5236, but it...

  15. Ningaloo reef: shallow marine habitats mapped using a hyperspectral sensor.

    Directory of Open Access Journals (Sweden)

    Halina T Kobryn

    Full Text Available Research, monitoring and management of large marine protected areas require detailed and up-to-date habitat maps. Ningaloo Marine Park (including the Muiron Islands in north-western Australia (stretching across three degrees of latitude was mapped to 20 m depth using HyMap airborne hyperspectral imagery (125 bands at 3.5 m resolution across the 762 km(2 of reef environment between the shoreline and reef slope. The imagery was corrected for atmospheric, air-water interface and water column influences to retrieve bottom reflectance and bathymetry using the physics-based Modular Inversion and Processing System. Using field-validated, image-derived spectra from a representative range of cover types, the classification combined a semi-automated, pixel-based approach with fuzzy logic and derivative techniques. Five thematic classification levels for benthic cover (with probability maps were generated with varying degrees of detail, ranging from a basic one with three classes (biotic, abiotic and mixed to the most detailed with 46 classes. The latter consisted of all abiotic and biotic seabed components and hard coral growth forms in dominant or mixed states. The overall accuracy of mapping for the most detailed maps was 70% for the highest classification level. Macro-algal communities formed most of the benthic cover, while hard and soft corals represented only about 7% of the mapped area (58.6 km(2. Dense tabulate coral was the largest coral mosaic type (37% of all corals and the rest of the corals were a mix of tabulate, digitate, massive and soft corals. Our results show that for this shallow, fringing reef environment situated in the arid tropics, hyperspectral remote sensing techniques can offer an efficient and cost-effective approach to mapping and monitoring reef habitats over large, remote and inaccessible areas.

  16. Harmonic analysis of dense time series of landsat imagery for modeling change in forest conditions

    Science.gov (United States)

    Barry Tyler. Wilson

    2015-01-01

    This study examined the utility of dense time series of Landsat imagery for small area estimation and mapping of change in forest conditions over time. The study area was a region in north central Wisconsin for which Landsat 7 ETM+ imagery and field measurements from the Forest Inventory and Analysis program are available for the decade of 2003 to 2012. For the periods...

  17. A unified SNP map of sunflower (Helianthus annuus L.) derived from current genomic resources

    Science.gov (United States)

    Dense genetic maps are critical tools for plant breeders and geneticists. While many maps have been developed for sunflower in the last few decades, most have been based on low-throughput technologies and include markers numbers in the hundreds. However, two maps with reasonably dense coverage of a...

  18. Monocular transparency generates quantitative depth.

    Science.gov (United States)

    Howard, Ian P; Duke, Philip A

    2003-11-01

    Monocular zones adjacent to depth steps can create an impression of depth in the absence of binocular disparity. However, the magnitude of depth is not specified. We designed a stereogram that provides information about depth magnitude but which has no disparity. The effect depends on transparency rather than occlusion. For most subjects, depth magnitude produced by monocular transparency was similar to that created by a disparity-defined depth probe. Addition of disparity to monocular transparency did not improve the accuracy of depth settings. The magnitude of depth created by monocular occlusion fell short of that created by monocular transparency.

  19. MANIFEST OF DEPTH SOCIOPSYCHOLOGY

    OpenAIRE

    ZELITCHENKO ALEXANDER

    2013-01-01

    The observations of motives of activity of big groups (nations, confessions etc.) as a whole result in discovery of the part of unconscious mind that is common for all members of big group a collective unconscious. Two parts of collective unconscious may be determined: the collective superconscious known first as a group archetype and the collective subconscious, which manifest itself for example in phenomenon of collective trauma. Depth sociopsychology is a science about the collective uncon...

  20. Wavefield extrapolation in pseudo-depth domain

    KAUST Repository

    Ma, Xuxin

    2012-01-01

    Extrapolating seismic waves in Cartesian coordinate is prone to uneven spatial sampling, because the seismic wavelength tends to grow with depth, as velocity increase. We transform the vertical depth axis to a pseudo one using a velocity weighted mapping, which can effectively mitigate this wavelength variation. We derive acoustic wave equations in this new domain based on the direct transformation of the Laplacian derivatives, which admits solutions that are more accurate and stable than those derived from the kinematic transformation. The anisotropic versions of these equations allow us to isolate the vertical velocity influence and reduce its impact on modeling and imaging. The major benefit of extrapolating wavefields in pseudo-depth space is its near uniform wavelength as opposed to the normally dramatic change of wavelength with the conventional approach. Time wavefield extrapolation on a complex velocity shows some of the features of this approach.

  1. Kinetic chemistry of dense interstellar clouds

    Energy Technology Data Exchange (ETDEWEB)

    Graedel, T.E.; Langer, W.D.; Frerking, M.A.

    1982-03-01

    A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded.

  2. Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling

    Directory of Open Access Journals (Sweden)

    Shengjun Tang

    2016-09-01

    Full Text Available RGB-D sensors (sensors with RGB camera and Depth camera are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks including limited measurement ranges (e.g., within 3 m and errors in depth measurement increase with distance from the sensor with respect to 3D dense mapping. In this paper, we present a novel approach to geometrically integrate the depth scene and RGB scene to enlarge the measurement distance of RGB-D sensors and enrich the details of model generated from depth images. First, precise calibration for RGB-D Sensors is introduced. In addition to the calibration of internal and external parameters for both, IR camera and RGB camera, the relative pose between RGB camera and IR camera is also calibrated. Second, to ensure poses accuracy of RGB images, a refined false features matches rejection method is introduced by combining the depth information and initial camera poses between frames of the RGB-D sensor. Then, a global optimization model is used to improve the accuracy of the camera pose, decreasing the inconsistencies between the depth frames in advance. In order to eliminate the geometric inconsistencies between RGB scene and depth scene, the scale ambiguity problem encountered during the pose estimation with RGB image sequences can be resolved by integrating the depth and visual information and a robust rigid-transformation recovery method is developed to register RGB scene to depth scene. The benefit of the proposed joint optimization method is firstly evaluated with the publicly available benchmark datasets collected with Kinect. Then, the proposed method is examined by tests with two sets of datasets collected in both outside and inside environments. The experimental results demonstrate the feasibility and robustness of the proposed method.

  3. HNCO in massive galactic dense cores

    Science.gov (United States)

    Zinchenko, I.; Henkel, C.; Mao, R. Q.

    2000-09-01

    We surveyed 81 dense molecular cores associated with regions of massive star formation and Sgr A in the JK-1K-1 = 505-404 and 10010-909 lines of HNCO. Line emission was detected towards 57 objects. Selected subsamples were also observed in the 101-000, 404-303, 707-606, 15015-14014, 16016-15015 and 21021-20020 lines, covering a frequency range from 22 to 461 GHz. HNCO lines from the K-1 = 2,3 ladders were detected in several sources. Towards Orion-KL, K-1 = 5 transitions with upper state energies Eu/k ~ 1100 and 1300 K could be observed. Five HNCO cores were mapped. The sources remain spatially unresolved at 220 and 461 GHz (10010-909 and 21010-20020 transitions) with beam sizes of 24'' and 18\\arcsec, respectively. The detection of hyperfine structure in the 101-000 transition is consistent with optically thin emission under conditions of Local Thermodynamic Equilibrium (LTE). This is corroborated by a rotational diagram analysis of Orion-KL that indicates optically thin line emission also for transitions between higher excited states. At the same time a tentative detection of interstellar HN13CO (the 100,10-90,9 line at 220 GHz toward G 310.12-0.20) suggests optically thick emission from some rotational transitions. Typical HNCO abundances relative to H2 as derived from a population diagram analysis are ~ 10-9. The rotational temperatures reach ~ 500 K. The gas densities in regions of HNCO K-1=0 emission should be n>~ 106 cm-3 and in regions of K-1>0 emission about an order of magnitude higher even for radiative excitation. HNCO abundances are found to be enhanced in high-velocity gas. HNCO integrated line intensities correlate well with those of thermal SiO emission. This indicates a spatial coexistence of the two species and may hint at a common production mechanism, presumably based on shock chemistry. Based on the observations collected at the European Southern Observatory, La Silla, Chile and on observations with the Heinrich-Hertz-Telescope (HHT). The HHT

  4. Implications for the crustal Architecture in West Antarctica revealed by the means of depth-to-the-bottom of the magnetic source (DBMS) mapping and 3D FEM geothermal heat flux models

    Science.gov (United States)

    Dziadek, Ricarda; Gohl, Karsten; Kaul, Norbert

    2017-04-01

    The West Antarctic Rift System (WARS) is one of the largest rift systems in the world, which displays unique coupled relationships between tectonic processes and ice sheet dynamics. Palaeo-ice streams have eroded troughs across the Amundsen Sea Embayment (ASE) that today route warm ocean deep water to the West Antarctic Ice Sheet (WAIS) grounding zone and reinforce dynamic ice sheet thinning. Rift basins, which cut across West Antarctica's landward-sloping shelves, promote ice sheet instability. Young, continental rift systems are regions with significantly elevated geothermal heat flux (GHF), because the transient thermal perturbation to the lithosphere caused by rifting requires 100 m.y. to reach long-term thermal equilibrium. The GHF in this region is, especially on small scales, poorly constrained and suspected to be heterogeneous as a reflection of the distribution of tectonic and volcanic activity along the complex branching geometry of the WARS, which reflects its multi-stage history and structural inheritance. We investigate the crustal architecture and the possible effects of rifting history from the WARS on the ASE ice sheet dynamics, by the use of depth-to-the-bottom of the magnetic source (DBMS) estimates. These are based on airborne-magnetic anomaly data and provide an additional insight into the deeper crustal properties. With the DBMS estimates we reveal spatial changes at the bottom of the igneous crust and the thickness of the magnetic layer, which can be further incorporated into tectonic interpretations. The DBMS also marks an important temperature transition zone of approximately 580°C and therefore serves as a boundary condition for our numerical FEM models in 2D and 3D. On balance, and by comparison to global values, we find average GHF of 90 mWm-2 with spatial variations due to crustal heterogeneities and volcanic activities. This estimate is 30% more than commonly used in ice sheet models in the ASE region.

  5. Wavefield Extrapolation in Pseudo-depth Domain

    KAUST Repository

    Ma, Xuxin

    2011-12-11

    Wave-equation based seismic migration and inversion tools are widely used by the energy industry to explore hydrocarbon and mineral resources. By design, most of these techniques simulate wave propagation in a space domain with the vertical axis being depth measured from the surface. Vertical depth is popular because it is a straightforward mapping of the subsurface space. It is, however, not computationally cost-effective because the wavelength changes with local elastic wave velocity, which in general increases with depth in the Earth. As a result, the sampling per wavelength also increases with depth. To avoid spatial aliasing in deep fast media, the seismic wave is oversampled in shallow slow media and therefore increase the total computation cost. This issue is effectively tackled by using the vertical time axis instead of vertical depth. This is because in a vertical time representation, the "wavelength" is essentially time period for vertical rays. This thesis extends the vertical time axis to the pseudo-depth axis, which features distance unit while preserving the properties of the vertical time representation. To explore the potentials of doing wave-equation based imaging in the pseudo-depth domain, a Partial Differential Equation (PDE) is derived to describe acoustic wave in this new domain. This new PDE is inherently anisotropic because the use of a constant vertical velocity to convert between depth and vertical time. Such anisotropy results in lower reflection coefficients compared with conventional space domain modeling results. This feature is helpful to suppress the low wavenumber artifacts in reverse-time migration images, which are caused by the widely used cross-correlation imaging condition. This thesis illustrates modeling acoustic waves in both conventional space domain and pseudo-depth domain. The numerical tool used to model acoustic waves is built based on the lowrank approximation of Fourier integral operators. To investigate the potential

  6. Two-dimensional Model of Ciliwung River Flood in DKI Jakarta for Development of the Regional Flood Index Map

    Directory of Open Access Journals (Sweden)

    Adam Formánek

    2013-12-01

    Full Text Available The objective of this study was to present a sophisticated method of developing supporting material for flood control implementation in DKI Jakarta. High flow rates in the Ciliwung River flowing through Jakarta regularly causes extensive flooding in the rainy season. The affected area comprises highly densely populated villages. For developing an efficient early warning system in view of decreasing the vulnerability of the locations a flood index map has to be available. This study analyses the development of a flood risk map of the inundation area based on a two-dimensional modeling using FESWMS. The reference event used for the model was the most recent significant flood in 2007. The resulting solution represents flood characteristics such as inundation area, inundation depth and flow velocity. Model verification was performed by confrontation of the results with survey data. The model solution was overlaid with a street map of Jakarta. Finally, alternatives for flood mitigation measures are discussed.

  7. Depth Cameras on UAVs: a First Approach

    Science.gov (United States)

    Deris, A.; Trigonis, I.; Aravanis, A.; Stathopoulou, E. K.

    2017-02-01

    Accurate depth information retrieval of a scene is a field under investigation in the research areas of photogrammetry, computer vision and robotics. Various technologies, active, as well as passive, are used to serve this purpose such as laser scanning, photogrammetry and depth sensors, with the latter being a promising innovative approach for fast and accurate 3D object reconstruction using a broad variety of measuring principles including stereo vision, infrared light or laser beams. In this study we investigate the use of the newly designed Stereolab's ZED depth camera based on passive stereo depth calculation, mounted on an Unmanned Aerial Vehicle with an ad-hoc setup, specially designed for outdoor scene applications. Towards this direction, the results of its depth calculations and scene reconstruction generated by Simultaneous Localization and Mapping (SLAM) algorithms are compared and evaluated based on qualitative and quantitative criteria with respect to the ones derived by a typical Structure from Motion (SfM) and Multiple View Stereo (MVS) pipeline for a challenging cultural heritage application.

  8. VERTICAL VEGETATION STRUCTURE ANALYSIS AND HYDRAULIC ROUGHNESS DETERMINATION USING DENSE ALS POINT CLOUD DATA - A VOXEL BASED APPROACH

    Directory of Open Access Journals (Sweden)

    M. Vetter

    2012-09-01

    Full Text Available In this contribution the complexity of the vertical vegetation structure, based on dense airborne laser scanning (ALS point cloud data (25 echoes/m2 , is analyzed to calculate vegetation roughness for hydraulic applications. Using the original 3D ALS point cloud, three levels of abstractions are derived (cells, voxels and connections to analyze ALS data based on a 1×1 m2 raster over the whole data set. A voxel structure is used to count the echoes in predefined detrended height levels within each cell. In general, it is assumed that the number of voxels containing echoes is an indicator for elevated objects and consequently for increased roughness. Neighboring voxels containing at least one data point are merged together to connections. An additional height threshold is applied to connect vertical neighboring voxels with a certain distance in between. Thus, the connections indicate continuous vegetation structures. The height of the surface near or lowest connection is an indicator for hydrodynamic roughness coefficients. For cells, voxels and connections the laser echoes are counted within the structure and various statistical measures are calculated. Based on these derived statistical parameters a rule-based classification is developed by applying a decision tree to assess vegetation types. Roughness coefficient values such as Manning's n are estimated, which are used as input for 2D hydrodynamic-numerical modeling. The estimated Manning’s values from the ALS point cloud are compared with a traditional Manning's map. Finally, the effect of these two different Manning's n maps as input on the 2D hydraulics are quantified by calculating a height difference model of the inundated depth maps. The results show the large potential of using the entire vertical vegetation structure for hydraulic roughness estimation.

  9. Mesh Generation from Dense 3D Scattered Data Using Neural Network

    Institute of Scientific and Technical Information of China (English)

    ZHANGWei; JIANGXian-feng; CHENLi-neng; MAYa-liang

    2004-01-01

    An improved self-organizing feature map (SOFM) neural network is presented to generate rectangular and hexagonal lattic with normal vector attached to each vertex. After the neural network was trained, the whole scattered data were divided into sub-regions where classified core were represented by the weight vectors of neurons at the output layer of neural network. The weight vectors of the neurons were used to approximate the dense 3-D scattered points, so the dense scattered points could be reduced to a reasonable scale, while the topological feature of the whole scattered points were remained.

  10. THE ENERGETIC ENVIRONMENT AND THE DENSE INTERSTELLAR MEDIUM IN ULIRGS

    Directory of Open Access Journals (Sweden)

    O. Vega

    2009-01-01

    Full Text Available We t the near-infrared to radio spectral energy distributions of a sample of 30 luminous and ultra-luminous infrared galaxies with models that include both starburst and AGN components. The aim of the work was to determine important physical parameters for this kind of objects such as the optical depth towards the luminosity source, the star formation rate, the star formation efficiency and the AGN fraction. We found that although about half of our sample have best- t models that include an AGN component, only 30% have an AGN which accounts for more than 10% of the infrared luminosity whereas all have an energetically dominant starburst. Our models also determine the mass of dense molecular gas. Assuming that this mass is that traced by the HCN molecule, we reproduce the observed linear relation between HCN luminosity and infrared luminosity found by Gao & Solomon (2004. However, our derived conversion factor between HCN luminosity and the mass of dense molecular gas is a factor of 2 smaller than that assumed by these authors. Finally, we nd that the star formation efficiency falls as the starburst ages.

  11. The energetic environment and the dense interstellar medium in ULIRGs

    CERN Document Server

    Vega, O; Bressan, A; Granato, G L; Silva, L; Panuzzo, P

    2009-01-01

    We fit the near-infrared to radio spectral energy distributions of a sample of 30 luminous and ultra-luminous infrared galaxies with models that include both starburst and AGN components. The aim of the work was to determine important physical parameters for this kind of objects such as the optical depth towards the luminosity source, the star formation rate, the star formation efficiency and the AGN fraction. We found that although about half of our sample have best-fit models that include an AGN component, only 30 % have an AGN which accounts for more than 10 % of the infrared luminosity whereas all have an energetically dominant starburst. Our models also determine the mass of dense molecular gas. Assuming that this mass is that traced by the HCN molecule, we reproduce the observed linear relation between HCN luminosity and infrared luminosity found by Gao and Solomon (2004). However, our derived conversion factor between HCN luminosity and the mass of dense molecular gas is a factor of 2 smaller than that...

  12. Direct observation of dynamic shear jamming in dense suspensions

    Science.gov (United States)

    Peters, Ivo R.; Majumdar, Sayantan; Jaeger, Heinrich M.

    2016-04-01

    Liquid-like at rest, dense suspensions of hard particles can undergo striking transformations in behaviour when agitated or sheared. These phenomena include solidification during rapid impact, as well as strong shear thickening characterized by discontinuous, orders-of-magnitude increases in suspension viscosity. Much of this highly non-Newtonian behaviour has recently been interpreted within the framework of a jamming transition. However, although jamming indeed induces solid-like rigidity, even a strongly shear-thickened state still flows and thus cannot be fully jammed. Furthermore, although suspensions are incompressible, the onset of rigidity in the standard jamming scenario requires an increase in particle density. Finally, whereas shear thickening occurs in the steady state, impact-induced solidification is transient. As a result, it has remained unclear how these dense suspension phenomena are related and how they are connected to jamming. Here we resolve this by systematically exploring both the steady-state and transient regimes with the same experimental system. We demonstrate that a fully jammed, solid-like state can be reached without compression and instead purely with shear, as recently proposed for dry granular systems. This state is created by transient shear-jamming fronts, which we track directly. We also show that shear stress, rather than shear rate, is the key control parameter. From these findings we map out a state diagram with particle density and shear stress as variables. We identify discontinuous shear thickening with a marginally jammed regime just below the onset of full, solid-like jamming. This state diagram provides a unifying framework, compatible with prior experimental and simulation results on dense suspensions, that connects steady-state and transient behaviour in terms of a dynamic shear-jamming process.

  13. Dense Gas in the Outer Spiral Arm of M51

    Science.gov (United States)

    Chen, Hao; Braine, Jonathan; Gao, Yu; Koda, Jin; Gu, Qiusheng

    2017-02-01

    There is a linear relation between the mass of dense gas traced by the HCN(1–0) luminosity and the star formation rate (SFR) traced by the far-infrared luminosity. Recent observations of galactic disks have shown some systematic variations. In order to explore the SFR–dense gas link at high resolution (∼4″, ∼150 pc) in the outer disk of an external galaxy, we have mapped a region about 5 kpc from the center along the northern spiral arm of M51 in the HCN(1–0), HCO+(1–0), and HNC(1–0) emission lines using the Northern Extended Millimeter Array interferometer. The HCN and HCO+ lines were detected in six giant molecular associations (GMAs), while HNC emission was only detected in the two brightest GMAs. One of the GMAs hosts a powerful H ii region, and HCN is stronger than HCO+ there. Comparing observations of GMAs in the disks of M31 and M33 at similar angular resolution (∼100 pc), we find that GMAs in the outer disk of M51 are brighter in both the HCN and the HCO+ lines by a factor of 3, on average. However, the {I}{HCN}/{I}{CO} and {I}{{HCO}+}/{I}{CO} ratios are similar to the ratios in nearby galactic disks and the Galactic plane. Using the Herschel 70 μm data to trace the total IR luminosity at the resolution of the GMAs, we find that both the {L}{IR}–{L}{HCN} and {L}{IR}–{L}{{HCO}+} relations in the outer disk GMAs are consistent with the proportionality between the {L}{IR} and the dense gas mass established globally in galaxies within the scatter. The IR/HCN and IR/HCO+ ratios of the GMAs vary by a factor of 3, probably depending on whether massive stars are forming.

  14. Mapping the deep sea floor

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    By the early 20th century, oceanographers intensified their efforts to map the deep sea. The great depth of the Philippine Trench was first observed by the German Planet Expedition in 1912. During World War II, the US naval vessel Cape Johnson used directional echo-sounding to obtain a depth of 10......,497 m. In 1951, the Danish Galathea Deep Sea Expedition from 1950 to 1952 verified the result of the Cape Johnson sounding. Today, the greatest depth in the Philippine Trench is the Galathea Depth of 10,540 m. The Galathea Expedition produced several echograms of the deepest parts of the Philippine...... Trench in order to map its bathymetric features. The resulting maps are presented in this poster. Unlike many other contemporary developments in deep sea topography and cartography that were shaped by the Cold War, the Galathea maps of the Philippine Trench were intimately connected with the expedition...

  15. Injection of photoelectrons into dense argon gas

    CERN Document Server

    Borghesani, A F

    2010-01-01

    The injection of photoelectrons in a gaseous or liquid sample is a widespread technique to produce a cold plasma in a weakly--ionized system in order to study the transport properties of electrons in a dense gas or liquid. We report here the experimental results of photoelectron injection into dense argon gas at the temperatureT=142.6 K as a function of the externally applied electric field and gas density. We show that the experimental data can be interpreted in terms of the so called Young-Bradbury model only if multiple scattering effects due to the dense environment are taken into account when computing the scattering properties and the energetics of the electrons.

  16. Dense, Parsec-Scale Clumps near the Great Annihilator

    CERN Document Server

    Hodges-Kluck, E J; Harris, A I; Lamb, J W; Hodges, M W

    2009-01-01

    We report on Combined Array for Research in Millimeter-Wave Astronomy (CARMA) and James Clerk Maxwell Telescope (JCMT) observations toward the Einstein source 1E 1740.7-2942, a LMXB commonly known as the "Great Annihilator." The Great Annihilator is known to be near a small, bright molecular cloud on the sky in a region largely devoid of emission in 12-CO surveys of the Galactic Center. The region is of interest because it is interior to the dust lanes which may be the shock zones where atomic gas from HI nuclear disk is converted into molecular gas. We find that the region is populated with a number of dense (n ~ 10^5 cm^-3) regions of excited gas with small filling factors, and estimate that up to 1-3 x 10^5 solar masses of gas can be seen in our maps. The detection suggests that a significant amount of mass is transported from the shock zones to the GC star-forming regions in the form of small, dense bundles.

  17. Offshore Wind Technology Depth Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coastal bathymetric depth, measured in meters at depth values of: -30, -60, -900 Shallow Zone (0-30m): Technology has been demonstrated on a commercial scale at...

  18. Dynamic shear jamming in dense granular suspensions under extension

    Science.gov (United States)

    Majumdar, Sayantan; Peters, Ivo R.; Han, Endao; Jaeger, Heinrich M.

    2017-01-01

    Unlike dry granular materials, a dense granular suspension like cornstarch in water can strongly resist extensional flows. At low extension rates, such a suspension behaves like a viscous fluid, but rapid extension results in a response where stresses far exceed the predictions of lubrication hydrodynamics and capillarity. To understand this remarkable mechanical response, we experimentally measure the normal force imparted by a large bulk of the suspension on a plate moving vertically upward at a controlled velocity. We observe that, above a velocity threshold, the peak force increases by orders of magnitude. Using fast ultrasound imaging we map out the local velocity profiles inside the suspension, which reveal the formation of a growing jammed region under rapid extension. This region interacts with the rigid boundaries of the container through strong velocity gradients, suggesting a direct connection to the recently proposed shear-jamming mechanism.

  19. Stability of superfluid vortices in dense quark matter

    CERN Document Server

    Alford, Mark G; Vachaspati, Tanmay; Windisch, Andreas

    2016-01-01

    Superfluid vortices in the color-flavor-locked (CFL) phase of dense quark matter are known to be energetically disfavored relative to well-separated triplets of "semi-superfluid" color flux tubes. However, the short-range interaction (metastable versus unstable) has not been established. In this paper we perform numerical calculations using the effective theory of the condensate field, mapping the regions in the parameter space of coupling constants where the vortices are metastable versus unstable. For the case of zero gauge coupling we analytically identify a candidate for the unstable mode, and show that it agrees well with the results of the numerical calculations. We find that in the region of the parameter space that seems likely to correspond to real-world CFL quark matter the vortices are unstable, indicating that if such matter exists in neutron star cores it is very likely to contain semi-superfluid color flux tubes rather than superfluid vortices.

  20. A joint multi-view plus depth image coding scheme based on 3D-warping

    DEFF Research Database (Denmark)

    Zamarin, Marco; Zanuttigh, Pietro; Milani, Simone

    2011-01-01

    Free viewpoint video applications and autostereoscopic displays require the transmission of multiple views of a scene together with depth maps. Current compression and transmission solutions just handle these two data streams as separate entities. However, depth maps contain key information on th...

  1. Ubiquitous Creation of Bas-Relief Surfaces with Depth-of-Field Effects Using Smartphones.

    Science.gov (United States)

    Sohn, Bong-Soo

    2017-03-11

    This paper describes a new method to automatically generate digital bas-reliefs with depth-of-field effects from general scenes. Most previous methods for bas-relief generation take input in the form of 3D models. However, obtaining 3D models of real scenes or objects is often difficult, inaccurate, and time-consuming. From this motivation, we developed a method that takes as input a set of photographs that can be quickly and ubiquitously captured by ordinary smartphone cameras. A depth map is computed from the input photographs. The value range of the depth map is compressed and used as a base map representing the overall shape of the bas-relief. However, the resulting base map contains little information on details of the scene. Thus, we construct a detail map using pixel values of the input image to express the details. The base and detail maps are blended to generate a new depth map that reflects both overall depth and scene detail information. This map is selectively blurred to simulate the depth-of-field effects. The final depth map is converted to a bas-relief surface mesh. Experimental results show that our method generates a realistic bas-relief surface of general scenes with no expensive manual processing.

  2. Ubiquitous Creation of Bas-Relief Surfaces with Depth-of-Field Effects Using Smartphones

    Directory of Open Access Journals (Sweden)

    Bong-Soo Sohn

    2017-03-01

    Full Text Available This paper describes a new method to automatically generate digital bas-reliefs with depth-of-field effects from general scenes. Most previous methods for bas-relief generation take input in the form of 3D models. However, obtaining 3D models of real scenes or objects is often difficult, inaccurate, and time-consuming. From this motivation, we developed a method that takes as input a set of photographs that can be quickly and ubiquitously captured by ordinary smartphone cameras. A depth map is computed from the input photographs. The value range of the depth map is compressed and used as a base map representing the overall shape of the bas-relief. However, the resulting base map contains little information on details of the scene. Thus, we construct a detail map using pixel values of the input image to express the details. The base and detail maps are blended to generate a new depth map that reflects both overall depth and scene detail information. This map is selectively blurred to simulate the depth-of-field effects. The final depth map is converted to a bas-relief surface mesh. Experimental results show that our method generates a realistic bas-relief surface of general scenes with no expensive manual processing.

  3. Ubiquitous Creation of Bas-Relief Surfaces with Depth-of-Field Effects Using Smartphones

    Science.gov (United States)

    Sohn, Bong-Soo

    2017-01-01

    This paper describes a new method to automatically generate digital bas-reliefs with depth-of-field effects from general scenes. Most previous methods for bas-relief generation take input in the form of 3D models. However, obtaining 3D models of real scenes or objects is often difficult, inaccurate, and time-consuming. From this motivation, we developed a method that takes as input a set of photographs that can be quickly and ubiquitously captured by ordinary smartphone cameras. A depth map is computed from the input photographs. The value range of the depth map is compressed and used as a base map representing the overall shape of the bas-relief. However, the resulting base map contains little information on details of the scene. Thus, we construct a detail map using pixel values of the input image to express the details. The base and detail maps are blended to generate a new depth map that reflects both overall depth and scene detail information. This map is selectively blurred to simulate the depth-of-field effects. The final depth map is converted to a bas-relief surface mesh. Experimental results show that our method generates a realistic bas-relief surface of general scenes with no expensive manual processing. PMID:28287487

  4. Dense Cloud Cores revealed by ALMA CO observations in the low metallicity dwarf galaxy WLM

    Science.gov (United States)

    Rubio, M.; Elmegreen, B.; Hunter, D.; Cortes, J.; Brinks, E.; Cigan, P.

    2017-03-01

    Understanding stellar birth requires observations of the clouds in which they form. These clouds are dense and self-gravitating, and in all existing observations, they are molecular with H2 the dominant species and CO the best available. When the abundances of carbon and oxygen are low compared to hydrogen, and the opacity from dust is also low, as in primeval galaxies and local dwarf irregular galaxies CO forms slowly and is easily destroyed, so it cannot accumulate inside dense clouds. Then we lose our ability to trace the gas in regions of star formation and we lose critical information on the temperatures, densities, and velocities of the material that collapses. I will report on high resolution observations with ALMA of CO clouds in the local group dwarf irregular galaxy WLM, which has a metallicity that is 13% of the solar value and 50% lower than the previous CO detection threshold and the properties derived of very small dense CO clouds mapped..

  5. Dense gas in high-latitude molecular clouds

    Energy Technology Data Exchange (ETDEWEB)

    Reach, W.R.; Pound, M.W.; Wilner, D.J. (Univ. of California, Berkeley (United States)); Lee, Y.

    1992-01-01

    The authors have surveyed high-latitude molecular clouds (MBM 12, 7, 55, 40) in spectral lines that are believed to be dense-gas' tracers due to the high H[sub 2] volume density required for collisional excitation. An extensive CS (2-1) line map of MBM 12 revealed emission that is not confined to clumps. Less than 20% of the integrated line emission from the cloud originates in clearly identified clumps with size between 0.2 pc and 0.02 pc in the integrated line map. The bulk of the emission originates from a relatively smooth horseshoe' structure about 0.1 pc wide and 1 pc long. The CS (2-1) map correlates with the published Bell Labs [sup 13] CO map, with significant [sup 13] CO emission even where the CS emission is undetectable. Within the central core, the C[sup 18]O(1-0) and CS(2-1) lines are positively correlated with significant scatter. There is some indication of higher CS/[sup 13]CO in the cores than the horseshoe'. The observed correlations suggest that both the diffuse CS and [sup 13]CO originate from either numerous, unresolved clumps, or the diffuse parts of the cloud. High-spatial-resolution observations of HCO[sup +] from MBM 12 obtained with the BIMA Hat Creek array demonstrated that the main core emission is primarily on spatial scales greater than 0.004 pc. It appears that the authors have resolved most of the spatial structure of the dense-gas' tracers and have found that the emission is primarily diffuse. To understand the excitation mechanism of the CS rotational levels, a multitransitional study of the 1-0, 2-1, and 3-2 lines is being performed. The CS excitation may be governed by electron collisions in regions with H[sub 2] column densities an order of magnitude lower than the critical density' of [approx gt] 2 [times] 10[sup 4] cm[sup -3]. If electron collisions are populating the CS levels, then the CS and [sup 13]CO lines can both be produced in the outer parts of the cloud, explaining their positive correlation

  6. Tensor-based projection depth

    CERN Document Server

    Hu, Yonggang; Wu, Yi; 10.3150/10-BEJ317

    2012-01-01

    The conventional definition of a depth function is vector-based. In this paper, a novel projection depth (PD) technique directly based on tensors, such as matrices, is instead proposed. Tensor projection depth (TPD) is still an ideal depth function and its computation can be achieved through the iteration of PD. Furthermore, we also discuss the cases for sparse samples and higher order tensors. Experimental results in data classification with the two projection depths show that TPD performs much better than PD for data with a natural tensor form, and even when the data have a natural vector form, TPD appears to perform no worse than PD.

  7. DNS of turbulent flows of dense gases

    Science.gov (United States)

    Sciacovelli, L.; Cinnella, P.; Gloerfelt, X.; Grasso, F.

    2017-03-01

    The influence of dense gas effects on compressible turbulence is investigated by means of numerical simulations of the decay of compressible homogeneous isotropic turbulence (CHIT) and of supersonic turbulent flows through a plane channel (TCF). For both configurations, a parametric study on the Mach and Reynolds numbers is carried out. The dense gas considered in these parametric studies is PP11, a heavy fluorocarbon. The results are systematically compared to those obtained for a diatomic perfect gas (air). In our computations, the thermodynamic behaviour of the dense gases is modelled by means of the Martin-Hou equation of state. For CHIT cases, initial turbulent Mach numbers up to 1 are analyzed using mesh resolutions up to 5123. For TCF, bulk Mach numbers up to 3 and bulk Reynolds numbers up to 12000 are investigated. Average profiles of the thermodynamic quantities exhibit significant differences with respect to perfect-gas solutions for both of the configurations. For high-Mach CHIT, compressible structures are modified with respect to air, with weaker eddy shocklets and stronger expansions. In TCF, the velocity profiles of dense gas flows are much less sensitive to the Mach number and collapse reasonably well in the logarithmic region without any special need for compressible scalings, unlike the case of air, and the overall flow behaviour is midway between that of a variable-property liquid and that of a gas.

  8. Dense matter at RAON: Challenges and possibilities

    Science.gov (United States)

    Lee, Yujeong; Lee, Chang-Hwan; Gaitanos, T.; Kim, Youngman

    2016-11-01

    Dense nuclear matter is ubiquitous in modern nuclear physics because it is related to many interesting microscopic and macroscopic phenomena such as heavy ion collisions, nuclear structure, and neutron stars. The on-going rare isotope science project in Korea will build up a rare isotope accelerator complex called RAON. One of the main goals of RAON is to investigate rare isotope physics including dense nuclear matter. Using the relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) transport code, we estimate the properties of nuclear matter that can be created from low-energy heavyion collisions at RAON.We give predictions for the maximum baryon density, the isospin asymmetry and the temperature of nuclear matter that would be formed during 197Au+197Au and 132Sn+64Ni reactions. With a large isospin asymmetry, various theoretical studies indicate that the critical densities or temperatures of phase transitions to exotic states decrease. Because a large isospin asymmetry is expected in the dense matter created at RAON, we discuss possibilities of observing exotic states of dense nuclear matter at RAON for large isospin asymmetry.

  9. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  10. Denseness of Numerical Radius Attaining Holomorphic Functions

    Directory of Open Access Journals (Sweden)

    Lee HanJu

    2009-01-01

    Full Text Available We study the density of numerical radius attaining holomorphic functions on certain Banach spaces using the Lindenstrauss method. In particular, it is shown that if a complex Banach space is locally uniformly convex, then the set of all numerical attaining elements of is dense in .

  11. Denseness of Numerical Radius Attaining Holomorphic Functions

    Directory of Open Access Journals (Sweden)

    Han Ju Lee

    2009-01-01

    Full Text Available We study the density of numerical radius attaining holomorphic functions on certain Banach spaces using the Lindenstrauss method. In particular, it is shown that if a complex Banach space X is locally uniformly convex, then the set of all numerical attaining elements of A(BX:X is dense in A(BX:X.

  12. Coalescence preference in dense packing of bubbles

    Science.gov (United States)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  13. APT: Action localization Proposals from dense Trajectories

    NARCIS (Netherlands)

    van Gemert, J.C.; Jain, M.; Gati, E.; Snoek, C.G.M.; Xie, X.; Jones, M.W.; Tam, G.K.L.

    2015-01-01

    This paper is on action localization in video with the aid of spatio-temporal proposals. To alleviate the computational expensive video segmentation step of existing proposals, we propose bypassing the segmentations completely by generating proposals directly from the dense trajectories used to repr

  14. Dense ceramic membranes for methane conversion

    NARCIS (Netherlands)

    Bouwmeester, Henny J.M.

    2003-01-01

    Dense ceramic membranes made from mixed oxygen-ionic and electronic conducting perovskite-related oxides allow separation of oxygen from an air supply at elevated temperatures (>700 °C). By combining air separation and catalytic partial oxidation of methane to syngas into a ceramic membrane reactor,

  15. Improvements in accuracy of dense OPC models

    Science.gov (United States)

    Kallingal, Chidam; Oberschmidt, James; Viswanathan, Ramya; Abdo, Amr; Park, OSeo

    2008-10-01

    Performing model-based optical proximity correction (MBOPC) on layouts has become an integral part of patterning advanced integrated circuits. Earlier technologies used sparse OPC, the run times of which explode when the density of layouts increases. With the move to 45 nm technology node, this increase in run time has resulted in a shift to dense simulation OPC, which is pixel-based. The dense approach becomes more efficient at 45nm technology node and beyond. New OPC model forms can be used with the dense simulation OPC engine, providing the greater accuracy required by smaller technology nodes. Parameters in the optical model have to be optimized to achieve the required accuracy. Dense OPC uses a resist model with a different set of parameters than sparse OPC. The default search ranges used in the optimization of these resist parameters do not always result in the best accuracy. However, it is possible to improve the accuracy of the resist models by understanding the restrictions placed on the search ranges of the physical parameters during optimization. This paper will present results showing the correlation between accuracy of the models and some of these optical and resist parameters. The results will show that better optimization can improve the model fitness of features in both the calibration and verification set.

  16. Application of Microtremor Array Analysis to Estimate the Bedrock Depth in the Beijing Plain area

    Science.gov (United States)

    Xu, P.; Ling, S.; Liu, J.; Su, W.

    2013-12-01

    With the rapid expansion of large cities around the world, urban geological survey provides key information regarding resource development and urban construction. Among the major cities of the world, China's capital city Beijing is among the largest cities possessing complex geological structures. The urban geological survey and study in Beijing involves the following aspects: (1) estimating the thickness of the Cenozoic deposit; (2) mapping the three-dimensional structure of the underlying bedrock, as well as its relations to faults and tectonic settings; and (3) assessing the capacity of the city's geological resources in order to support its urban development and operation safety. The geological study of Beijing in general was also intended to provide basic data regarding the urban development and appraisal of engineering and environment geological conditions, as well as underground space resources. In this work, we utilized the microtremor exploration method to estimate the thickness of the bedrock depth, in order to delineate the geological interfaces and improve the accuracy of the bedrock depth map. The microtremor observation sites were located in the Beijing Plain area. Traditional geophysical or geological survey methods were not effective in these areas due to the heavy traffic and dense buildings in the highly-populated urban area. The microtremor exploration method is a Rayleigh-wave inversion technique which extracts its phase velocity dispersion curve from the vertical component of the microtremor array records using the spatial autocorrelation (SPAC) method, then inverts the shear-wave velocity structure. A triple-circular array was adopted for acquiring microtremor data, with the observation radius in ranging from 40 to 300 m, properly adjusted depending on the geological conditions (depth of the bedrock). The collected microtremor data are used to: (1) estimation of phase velocities of Rayleigh-wave from the vertical components of the microtremor

  17. DEPTH: a web server to compute depth and predict small-molecule binding cavities in proteins.

    Science.gov (United States)

    Tan, Kuan Pern; Varadarajan, Raghavan; Madhusudhan, M S

    2011-07-01

    Depth measures the extent of atom/residue burial within a protein. It correlates with properties such as protein stability, hydrogen exchange rate, protein-protein interaction hot spots, post-translational modification sites and sequence variability. Our server, DEPTH, accurately computes depth and solvent-accessible surface area (SASA) values. We show that depth can be used to predict small molecule ligand binding cavities in proteins. Often, some of the residues lining a ligand binding cavity are both deep and solvent exposed. Using the depth-SASA pair values for a residue, its likelihood to form part of a small molecule binding cavity is estimated. The parameters of the method were calibrated over a training set of 900 high-resolution X-ray crystal structures of single-domain proteins bound to small molecules (molecular weight structures. Users have the option of tuning several parameters to detect cavities of different sizes, for example, geometrically flat binding sites. The input to the server is a protein 3D structure in PDB format. The users have the option of tuning the values of four parameters associated with the computation of residue depth and the prediction of binding cavities. The computed depths, SASA and binding cavity predictions are displayed in 2D plots and mapped onto 3D representations of the protein structure using Jmol. Links are provided to download the outputs. Our server is useful for all structural analysis based on residue depth and SASA, such as guiding site-directed mutagenesis experiments and small molecule docking exercises, in the context of protein functional annotation and drug discovery.

  18. Real-time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow

    Science.gov (United States)

    Talukder, Ashit; Matthies, Larry

    2004-01-01

    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time. dense stereo system to include realtime. dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop. computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.

  19. Jupiter Clouds in Depth

    Science.gov (United States)

    2000-01-01

    [figure removed for brevity, see original site] 619 nm [figure removed for brevity, see original site] 727 nm [figure removed for brevity, see original site] 890 nmImages from NASA's Cassini spacecraft using three different filters reveal cloud structures and movements at different depths in the atmosphere around Jupiter's south pole.Cassini's cameras come equipped with filters that sample three wavelengths where methane gas absorbs light. These are in the red at 619 nanometer (nm) wavelength and in the near-infrared at 727 nm and 890 nm. Absorption in the 619 nm filter is weak. It is stronger in the 727 nm band and very strong in the 890 nm band where 90 percent of the light is absorbed by methane gas. Light in the weakest band can penetrate the deepest into Jupiter's atmosphere. It is sensitive to the amount of cloud and haze down to the pressure of the water cloud, which lies at a depth where pressure is about 6 times the atmospheric pressure at sea level on the Earth). Light in the strongest methane band is absorbed at high altitude and is sensitive only to the ammonia cloud level and higher (pressures less than about one-half of Earth's atmospheric pressure) and the middle methane band is sensitive to the ammonia and ammonium hydrosulfide cloud layers as deep as two times Earth's atmospheric pressure.The images shown here demonstrate the power of these filters in studies of cloud stratigraphy. The images cover latitudes from about 15 degrees north at the top down to the southern polar region at the bottom. The left and middle images are ratios, the image in the methane filter divided by the image at a nearby wavelength outside the methane band. Using ratios emphasizes where contrast is due to methane absorption and not to other factors, such as the absorptive properties of the cloud particles, which influence contrast at all wavelengths.The most prominent feature seen in all three filters is the polar stratospheric haze that makes Jupiter bright near the pole

  20. Joint inpainting of depth and reflectance with visibility estimation

    Science.gov (United States)

    Bevilacqua, Marco; Aujol, Jean-François; Biasutti, Pierre; Brédif, Mathieu; Bugeau, Aurélie

    2017-03-01

    This paper presents a novel strategy to generate, from 3-D lidar measures, dense depth and reflectance images coherent with given color images. It also estimates for each pixel of the input images a visibility attribute. 3-D lidar measures carry multiple information, e.g. relative distances to the sensor (from which we can compute depths) and reflectances. When projecting a lidar point cloud onto a reference image plane, we generally obtain sparse images, due to undersampling. Moreover, lidar and image sensor positions typically differ during acquisition; therefore points belonging to objects that are hidden from the image view point might appear in the lidar images. The proposed algorithm estimates the complete depth and reflectance images, while concurrently excluding those hidden points. It consists in solving a joint (depth and reflectance) variational image inpainting problem, with an extra variable to concurrently estimate handling the selection of visible points. As regularizers, two coupled total variation terms are included to match, two by two, the depth, reflectance, and color image gradients. We compare our algorithm with other image-guided depth upsampling methods, and show that, when dealing with real data, it produces better inpainted images, by solving the visibility issue.

  1. Novel Color Depth Mapping Imaging Sensor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous and semi-autonomous robotic systems require information about their surroundings in order to navigate properly. A video camera machine vision system can...

  2. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2016-12-10

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.

  3. Evaluation of Depth of Field for depth perception in DVR

    KAUST Repository

    Grosset, A.V.Pascal

    2013-02-01

    In this paper we present a user study on the use of Depth of Field for depth perception in Direct Volume Rendering. Direct Volume Rendering with Phong shading and perspective projection is used as the baseline. Depth of Field is then added to see its impact on the correct perception of ordinal depth. Accuracy and response time are used as the metrics to evaluate the usefulness of Depth of Field. The onsite user study has two parts: static and dynamic. Eye tracking is used to monitor the gaze of the subjects. From our results we see that though Depth of Field does not act as a proper depth cue in all conditions, it can be used to reinforce the perception of which feature is in front of the other. The best results (high accuracy & fast response time) for correct perception of ordinal depth occurs when the front feature (out of the two features users were to choose from) is in focus and perspective projection is used. © 2013 IEEE.

  4. Colloquium: Nonlinear Collective Interactions in Dense Plasmas

    CERN Document Server

    Shukla, P K

    2010-01-01

    The current understanding of some important collective processes in dense quantum plasmas is presented. After reviewing the basic properties of dense quantum plasmas with degenerate electrons, we present model equations (e.g. the quantum hydrodynamic and effective nonlinear Schr\\"odinger-Poisson equations) that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wave functions that result in a nonlinear quantum electron pressure and tunneling/diffusion of electrons through a nonlinear quantum Bohm potential. Since degenerate electrons have $1/2-$spin due to their Fermionic nature, there also appear a spin electron current and a spin force acting on the electrons due to the Bohr magnetization. The present nonlinear equations do not include strong electron correlations and electron-exchange interactions. The quantum effects caused by the electron degeneracy produce n...

  5. Active fluidization in dense glassy systems.

    Science.gov (United States)

    Mandal, Rituparno; Bhuyan, Pranab Jyoti; Rao, Madan; Dasgupta, Chandan

    2016-07-20

    Dense soft glasses show strong collective caging behavior at sufficiently low temperatures. Using molecular dynamics simulations of a model glass former, we show that the incorporation of activity or self-propulsion, f0, can induce cage breaking and fluidization, resulting in the disappearance of the glassy phase beyond a critical f0. The diffusion coefficient crosses over from being strongly to weakly temperature dependent as f0 is increased. In addition, we demonstrate that activity induces a crossover from a fragile to a strong glass and a tendency of active particles to cluster. Our results are of direct relevance to the collective dynamics of dense active colloidal glasses and to recent experiments on tagged particle diffusion in living cells.

  6. Strategies for Dense Optical CDMA Communication Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-bao; LIN Jin-tong

    2005-01-01

    In this paper,we have formulated a strategy that the limited available code sequences in pure Direct-Sequence(DS)or Frequency-Hopping(FH)system can be reused to realize dense optical CDMA:the strategy of novel hybrid DS/FH system.In which,the case that there are n users employing the same FH pattern but different DS code patterns is considered.On the condition that the impact of channel noises is neglected,the upper bound probability of error is evaluated based on the stationary random process theory.The results show that the hybrid system is suitable for Dense Optical CDMA(DOCDMA)communication.Moreover,the problems such as the link-impairment,dispersion of group velocity,etc.in the pure(DS or FH)system can be solved effectively.

  7. The kinetic chemistry of dense interstellar clouds

    Science.gov (United States)

    Graedel, T. E.; Langer, W. D.; Frerking, M. A.

    1982-01-01

    A model of the time-dependent chemistry of dense interstellar clouds is formulated to study the dominant chemical processes in carbon and oxygen isotope fractionation, the formation of nitrogen-containing molecules, and the evolution of product molecules as a function of cloud density and temperature. The abundances of the dominant isotopes of the carbon- and oxygen-bearing molecules are calculated. The chemical abundances are found to be quite sensitive to electron concentration since the electron concentration determines the ratio of H3(+) to He(+), and the electron density is strongly influenced by the metals abundance. For typical metal abundances and for H2 cloud density not less than 10,000 molecules/cu cm, nearly all carbon exists as CO at late cloud ages. At high cloud density, many aspects of the chemistry are strongly time dependent. Finally, model calculations agree well with abundances deduced from observations of molecular line emission in cold dense clouds.

  8. Topological Surface States in Dense Solid Hydrogen.

    Science.gov (United States)

    Naumov, Ivan I; Hemley, Russell J

    2016-11-11

    Metallization of dense hydrogen and associated possible high-temperature superconductivity represents one of the key problems of physics. Recent theoretical studies indicate that before becoming a good metal, compressed solid hydrogen passes through a semimetallic stage. We show that such semimetallic phases predicted to be the most stable at multimegabar (∼300  GPa) pressures are not conventional semimetals: they exhibit topological metallic surface states inside the bulk "direct" gap in the two-dimensional surface Brillouin zone; that is, metallic surfaces may appear even when the bulk of the material remains insulating. Examples include hydrogen in the Cmca-12 and Cmca-4 structures; Pbcn hydrogen also has metallic surface states but they are of a nontopological nature. The results provide predictions for future measurements, including probes of possible surface superconductivity in dense hydrogen.

  9. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X......-ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation...

  10. Optimization of the depth resolution for deuterium depth profiling up to large depths

    Science.gov (United States)

    Wielunska, B.; Mayer, M.; Schwarz-Selinger, T.

    2016-11-01

    The depth resolution of deuterium depth profiling by the nuclear reaction D(3He,p)α is studied theoretically and experimentally. General kinematic considerations are presented which show that the depth resolution for deuterium depth profiling using the nuclear reaction D(3He,p)α is best at reaction angles of 0° and 180° at all incident energies below 9 MeV and for all depths and materials. In order to confirm this theoretical prediction the depth resolution was determined experimentally with a conventional detector at 135° and an annular detector at 175.9°. Deuterium containing thin films buried under different metal cover layers of aluminum, molybdenum and tungsten with thicknesses in the range of 0.5-11 μm served as samples. For all materials and depths an improvement of the depth resolution with the detector at 175.9° is achieved. For tungsten as cover layer a better depth resolution up to a factor of 18 was determined. Good agreement between the experimental results and the simulations for the depth resolution is demonstrated.

  11. Variations in the Star Formation Efficiency of the Dense Molecular Gas across the Disks of Star-Forming Galaxies

    CERN Document Server

    Usero, Antonio; Walter, Fabian; Schruba, Andreas; García-Burillo, Santiago; Sandstrom, Karin; Bigiel, Frank; Brinks, Elias; Kramer, Carsten; Rosolowsky, Erik; Schuster, Karl-Friedrich; de Blok, W J G

    2015-01-01

    We present a new survey of HCN(1-0) emission, a tracer of dense molecular gas, focused on the little-explored regime of normal star-forming galaxy disks. Combining HCN, CO, and infrared (IR) emission, we investigate the role of dense gas in Star Formation (SF), finding systematic variations in both the apparent dense gas fraction and the apparent SF efficiency (SFE) of dense gas. The latter may be unexpected, given the popularity of gas density threshold models to explain SF scaling relations. We used the IRAM 30-m telescope to observe HCN(1-0) across 29 nearby disk galaxies whose CO(2-1) emission has previously been mapped by the HERACLES survey. Because our observations span a range of galactocentric radii, we are able to investigate the properties of the dense gas as a function of local conditions. We focus on how the IR/CO, HCN/CO, and IR/HCN ratios (observational cognates of the SFE, dense gas fraction, and dense gas SFE) depend on the stellar surface density and the molecular/atomic ratio. The HCN/CO ra...

  12. Improved Stratigraphic Interpretation of Dense Lacustrine Carbonates from Lake Bonneville, UT

    Science.gov (United States)

    Steponaitis, E.; McGee, D.; Quade, J.

    2014-12-01

    Recent work on the past hydroclimate of the Bonneville Basin has utilized dense, laminated carbonate deposits that formed beneath the surface of Lake Bonneville starting around 26 ka (McGee et al. 2012). These calcite and aragonite deposits form in calm, protected spaces that have been submerged by the lake, including hillside caves, cracks in bedrock, and interstitial spaces in tufa and abandoned beach gravel deposits. Dense lacustrine carbonates are very useful for paleoclimate studies because they can be used to develop continuous records of lake chemistry anchored by precise U-Th dates. However, many questions remain about the conditions in which these dense carbonates form: at what depth range do these carbonates form, and can basal and top ages help constrain the lake level curve? Do coeval carbonates formed at different depths in the lake preserve information about vertical gradients in lake water properties like δ18O and 87Sr/86Sr? To address these questions and others, this study examines a sequence of dense lacustrine carbonates deposited within bedrock, tufa, and abandoned shoreline gravels from Stansbury Island, UT. We use U-Th dating, local stratigraphic interpretations, and previously established lake level constraints to draw insights into the formation and context of these deposits. Improved understanding of dense lacustrine carbonates will facilitate more detailed and accurate interpretations of their stratigraphic significance, and ultimately, aid the development of improved paleoclimate records from Lake Bonneville and beyond. McGee, D., et al. 2012. Lacustrine Cave Carbonates : Novel Archives of Paleohydrologic Change in the Bonneville Basin (Utah , USA). Earth and Planetary Science Letters (351-352): 182-194.

  13. M3: Matrix Multiplication on MapReduce

    DEFF Research Database (Denmark)

    Silvestri, Francesco; Ceccarello, Matteo

    2015-01-01

    M3 is an Hadoop library for performing dense and sparse matrix multiplication in MapReduce. The library is based on multi-round algorithms exploiting the 3D decomposition of the problem.......M3 is an Hadoop library for performing dense and sparse matrix multiplication in MapReduce. The library is based on multi-round algorithms exploiting the 3D decomposition of the problem....

  14. Accelerating Dense Linear Algebra on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    and matrix-vector operations on GPUs. Such operations form the backbone of level 1 and level 2 routines in the Basic Linear Algebra Subroutines (BLAS) library and are therefore of great importance in many scientific applications. The target hardware is the most recent NVIDIA Tesla 20-series (Fermi...... architecture). Most of the techniques I discuss for accelerating dense linear algebra are applicable to memory-bound GPU algorithms in general....

  15. Observations of Plasmons in Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S H; Landen, O L; Neumayer, P; Lee, R W; Widmann, K; Pollaine, S W; Wallace, R J; Gregori, G; Holl, A; Bornath, T; Thiele, R; Schwarz, V; Kraeft, W; Redmer, R

    2006-09-05

    We present the first collective x-ray scattering measurements of plasmons in solid-density plasmas. The forward scattering spectra of a laser-produced narrow-band x-ray line from isochorically heated beryllium show that the plasmon frequency is a sensitive measure of the electron density. Dynamic structure calculations that include collisions and detailed balance match the measured plasmon spectrum indicating that this technique will enable new applications to determine the equation of state and compressibility of dense matter.

  16. Splashing onset in dense suspension droplets

    OpenAIRE

    Peters, Ivo; Xu, Qin; Jaeger, Heinrich M.

    2013-01-01

    We investigate the impact of droplets of dense suspensions onto a solid substrate. We show that a global hydrodynamic balance is unable to predict the splash onset and propose to replace it by an energy balance at the level of the particles in the suspension. We experimentally verify that the resulting, particle-based Weber number gives a reliable, particle size and density dependent splash onset criterion. We further show that the same argument also explains why, in bimodal systems, smaller ...

  17. A method for dense packing discovery

    CERN Document Server

    Kallus, Yoav; Gravel, Simon

    2010-01-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and ...

  18. Dense Correspondences across Scenes and Scales.

    Science.gov (United States)

    Tau, Moria; Hassner, Tal

    2016-05-01

    We seek a practical method for establishing dense correspondences between two images with similar content, but possibly different 3D scenes. One of the challenges in designing such a system is the local scale differences of objects appearing in the two images. Previous methods often considered only few image pixels; matching only pixels for which stable scales may be reliably estimated. Recently, others have considered dense correspondences, but with substantial costs associated with generating, storing and matching scale invariant descriptors. Our work is motivated by the observation that pixels in the image have contexts-the pixels around them-which may be exploited in order to reliably estimate local scales. We make the following contributions. (i) We show that scales estimated in sparse interest points may be propagated to neighboring pixels where this information cannot be reliably determined. Doing so allows scale invariant descriptors to be extracted anywhere in the image. (ii) We explore three means for propagating this information: using the scales at detected interest points, using the underlying image information to guide scale propagation in each image separately, and using both images together. Finally, (iii), we provide extensive qualitative and quantitative results, demonstrating that scale propagation allows for accurate dense correspondences to be obtained even between very different images, with little computational costs beyond those required by existing methods.

  19. Numerical modeling for dilute and dense sprays

    Science.gov (United States)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.

  20. Tracing the Spiral Structure of the Outer Milky Way with Dense Atomic Hydrogen Gas

    Science.gov (United States)

    Koo, Bon-Chul; Park, Geumsook; Kim, Woong-Tae; Lee, Myung Gyoon; Balser, Dana S.; Wenger, Trey V.

    2017-09-01

    We present a new face-on map of dense neutral atomic hydrogen ({{H}} i) gas in the outer Galaxy. Our map has been produced from the Leiden/Argentine/Bonn {{H}} i 21 cm line all-sky survey by finding intensity maxima along every line of sight and then by projecting them on the Galactic plane. The resulting face-on map strikingly reveals the complex spiral structure beyond the solar circle, which is characterized by a mixture of distinct long arcs of {{H}} i concentrations and numerous “interarm” features. The comparison with more conventional spiral tracers confirms the nature of those long arc structures as spiral arms. Our map shows that the {{H}} i spiral structure in the outer Galaxy is well described by a four-arm spiral model (pitch angle of 12^\\circ ) with some deviations, and gives a new insight into identifying {{H}} i features associated with individual arms.

  1. Metal detector depth estimation algorithms

    Science.gov (United States)

    Marble, Jay; McMichael, Ian

    2009-05-01

    This paper looks at depth estimation techniques using electromagnetic induction (EMI) metal detectors. Four algorithms are considered. The first utilizes a vertical gradient sensor configuration. The second is a dual frequency approach. The third makes use of dipole and quadrapole receiver configurations. The fourth looks at coils of different sizes. Each algorithm is described along with its associated sensor. Two figures of merit ultimately define algorithm/sensor performance. The first is the depth of penetration obtainable. (That is, the maximum detection depth obtainable.) This describes the performance of the method to achieve detection of deep targets. The second is the achievable statistical depth resolution. This resolution describes the precision with which depth can be estimated. In this paper depth of penetration and statistical depth resolution are qualitatively determined for each sensor/algorithm. A scientific method is used to make these assessments. A field test was conducted using 2 lanes with emplaced UXO. The first lane contains 155 shells at increasing depths from 0" to 48". The second is more realistic containing objects of varying size. The first lane is used for algorithm training purposes, while the second is used for testing. The metal detectors used in this study are the: Geonics EM61, Geophex GEM5, Minelab STMR II, and the Vallon VMV16.

  2. Indexing Depth and Retrieval Effectiveness

    Science.gov (United States)

    Seely, Barbara J.

    1972-01-01

    There are six major studies of the effect of indexing depth on retrieval performance. They differ in purpose, methodology, measures, indexing language, field of study, and data base--nevertheless, all have found depth of indexing to have the same effect upon information retrieval. (13 references) (Author/NH)

  3. Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellin, Colombia

    Science.gov (United States)

    A combination of culture-dependent and culture-independent methods was used to assess bacterial diversity at different depths within a former solid waste dump in Medellín, Colombia. Sampling sites included a densely populated area, which is built upon 40 m of solid waste (domestic, industrial, agric...

  4. Remote sensing of water depths in shallow waters via artificial neural networks

    Science.gov (United States)

    Ceyhun, Özçelik; Yalçın, Arısoy

    2010-09-01

    Determination of the water depths in coastal zones is a common requirement for the majority of coastal engineering and coastal science applications. However, production of high quality bathymetric maps requires expensive field survey, high technology equipment and expert personnel. Remotely sensed images can be conveniently used to reduce the cost and labor needed for bathymetric measurements and to overcome the difficulties in spatial and temporal depth provision. An Artificial Neural Network (ANN) methodology is introduced in this study to derive bathymetric maps in shallow waters via remote sensing images and sample depth measurements. This methodology provides fast and practical solution for depth estimation in shallow waters, coupling temporal and spatial capabilities of remote sensing imagery with modeling flexibility of ANN. Its main advantage in practice is that it enables to directly use image reflectance values in depth estimations, without refining depth-caused scatterings from other environmental factors (e.g. bottom material and vegetation). Its function-free structure allows evaluating nonlinear relationships between multi-band images and in-situ depth measurements, therefore leads more reliable depth estimations than classical regressive approaches. The west coast of the Foca, Izmir/Turkey was used as a test bed. Aster first three band images and Quickbird pan-sharpened images were used to derive ANN based bathymetric maps of this study area. In-situ depth measurements were supplied from the General Command of Mapping, Turkey (HGK). Two models were set, one for Aster and one for Quickbird image inputs. Bathymetric maps relying solely on in-situ depth measurements were used to evaluate resultant derived bathymetric maps. The efficiency of the methodology was discussed at the end of the paper. It is concluded that the proposed methodology could decrease spatial and repetitive depth measurement requirements in bathymetric mapping especially for

  5. THE JCMT GOULD BELT SURVEY: A FIRST LOOK AT DENSE CORES IN ORION B

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, H.; Francesco, J. Di; Johnstone, D. [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Rd, Victoria, BC, V9E 2E7 (Canada); Duarte-Cabral, A.; Hatchell, J. [Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Sadavoy, S.; Mottram, J. C. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Buckle, J.; Salji, C. [Astrophysics Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Berry, D. S.; Currie, M. J.; Jenness, T. [Joint Astronomy Centre, 660 N. A‘ohōkū Place, University Park, Hilo, Hawaii 96720 (United States); Broekhoven-Fiene, H. [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Fich, M.; Tisi, S. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Nutter, D.; Quinn, C. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA (United Kingdom); Pattle, K. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancashire, PR1 2HE (United Kingdom); Pineda, J. E. [European Southern Observatory (ESO), Garching (Germany); Hogerheijde, M. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); and others

    2016-02-01

    We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 μm map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 μm peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1–2 × 10{sup 23} cm{sup −2}, most of the mass is found within dense cores, while at lower cloud column densities, below 1 × 10{sup 23} cm{sup −2}, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023/2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.

  6. The JCMT Gould Belt Survey: A First Look at Dense Cores in Orion B

    Science.gov (United States)

    Kirk, H.; Di Francesco, J.; Johnstone, D.; Duarte-Cabral, A.; Sadavoy, S.; Hatchell, J.; Mottram, J. C.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Jenness, T.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coude, S.; Davis, C. J.; Drabek-Maunder, E.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Rumble, D.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2016-02-01

    We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 μm map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 μm peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1-2 × 1023 cm-2, most of the mass is found within dense cores, while at lower cloud column densities, below 1 × 1023 cm-2, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023/2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.

  7. Depth-tunable three-dimensional display with interactive light field control

    Science.gov (United States)

    Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chenyu; Dou, Wenhua; Xiao, Liquan

    2016-07-01

    A software-defined depth-tunable three-dimensional (3D) display with interactive 3D depth control is presented. With the proposed post-processing system, the disparity of the multi-view media can be freely adjusted. Benefiting from a wealth of information inherently contains in dense multi-view images captured with parallel arrangement camera array, the 3D light field is built and the light field structure is controlled to adjust the disparity without additional acquired depth information since the light field structure itself contains depth information. A statistical analysis based on the least square is carried out to extract the depth information inherently exists in the light field structure and the accurate depth information can be used to re-parameterize light fields for the autostereoscopic display, and a smooth motion parallax can be guaranteed. Experimental results show that the system is convenient and effective to adjust the 3D scene performance in the 3D display.

  8. Compression behavior and structure of dense helium at high temperatures by molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this work,the isotherm and energy distribution at T=304 K of dense helium are studied by molecular dynamic (MD) simulations with exp-6 potential r*=2.9673 ? (the position of the well minimum) and ε/kB=10.8 K (ε is the well-depth and kB is the Boltzmann constant) given by Peter et al.,and different values of stiffness parameter α.The optimized value of α=12.7 is deduced that can describe the atomic interactions for dense helium satisfactorily.This optimized α in exp-6 potential is used to conduct MD simulations of two isotherms of dense helium at T=300 K and T=298K.The calculations are in good agreement with the experimental.We further employed this method to investigate the equation-of-state and structure of dense helium at higher temperatures and found that when the density remained 1.6 g/cm3,the second peak of the radial distribution function would disappear in the temperature range from 2000 to 3040 K,demonstrating that a solid-liquid transition or decrystallization had occurred.

  9. Compression behavior and structure of dense helium at high temperatures by molecular dynamics simulation

    Institute of Scientific and Technical Information of China (English)

    蔡灵仓; 陈其峰; 经福谦; 陈栋泉

    2000-01-01

    In this work, the isotherm and energy distribution at 7= 304 K of dense helium are studied by molecular dynamic (MD) simulations with exp-6 potential r* = 2.967 3 ε(the position of the well minimum) and ε/kb = 10.8 K (e is the well-depth and kB is the Boltzmann constant) given by Peter et al., and different values of stiffness parameter a. The optimized value of a = 12.7 is deduced that can de-scribe the atomic interactions for dense helium satisfactorily. This optimized a in exp-6 potential is used to conduct MD simulations of two isotherms of dense helium at T= 300 K and T= 298 K. The calcula-tions are in good agreement with the experimental. We further employed this method to investigate the equation-of-state and structure of dense helium at higher temperatures and found that when the density remained l .6 g/cm3, the second peak of the radial distribution function would disappear in the tempera-ture range from 2 000 to 3 040 K, demonstrating that a solid-liquid transition or decrystallization had o

  10. On evaluation of depth accuracy in consumer depth sensors

    Science.gov (United States)

    Abd Aziz, Azim Zaliha; Wei, Hong; Ferryman, James

    2015-12-01

    This paper presents an experimental study of different depth sensors. The aim is to answer the question, whether these sensors give accurate data for general depth image analysis. The study examines the depth accuracy between three popularly used depth sensors; ASUS Xtion Prolive, Kinect Xbox 360 and Kinect for Windows v2. The main attention is to study on the stability of pixels in the depth image captured at several different sensor-object distances by measuring the depth returned by the sensors within specified time intervals. The experimental results show that the fluctuation (mm) of the random selected pixels within the target area, increases with increasing distance to the sensor, especially on the Kinect for Xbox 360 and the Asus Xtion Prolive. Both of these sensors provide pixels fluctuation between 20mm and 30mm at a sensor-object distance beyond 1500mm. However, the pixel's stability of the Kinect for Windows v2 not affected much with the distance between the sensor and the object. The maximum fluctuation for all the selected pixels of Kinect for Windows v2 is approximately 5mm at sensor-object distance of between 800mm and 3000mm. Therefore, in the optimal distance, the best stability achieved.

  11. Depth estimation from multiple coded apertures for 3D interaction

    Science.gov (United States)

    Suh, Sungjoo; Choi, Changkyu; Park, Dusik

    2013-09-01

    In this paper, we propose a novel depth estimation method from multiple coded apertures for 3D interaction. A flat panel display is transformed into lens-less multi-view cameras which consist of multiple coded apertures. The sensor panel behind the display captures the scene in front of the display through the imaging pattern of the modified uniformly redundant arrays (MURA) on the display panel. To estimate the depth of an object in the scene, we first generate a stack of synthetically refocused images at various distances by using the shifting and averaging approach for the captured coded images. And then, an initial depth map is obtained by applying a focus operator to a stack of the refocused images for each pixel. Finally, the depth is refined by fitting a parametric focus model to the response curves near the initial depth estimates. To demonstrate the effectiveness of the proposed algorithm, we construct an imaging system to capture the scene in front of the display. The system consists of a display screen and an x-ray detector without a scintillator layer so as to act as a visible sensor panel. Experimental results confirm that the proposed method accurately determines the depth of an object including a human hand in front of the display by capturing multiple MURA coded images, generating refocused images at different depth levels, and refining the initial depth estimates.

  12. Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment

    NARCIS (Netherlands)

    Razak, Khamarrul Azahari; Santangelo, Michele; Westen, van Cees J.; Straatsma, Menno W.; Jong, de Steven M.

    2013-01-01

    Landslide inventory maps are fundamental for assessing landslide susceptibility, hazard, and risk. In tropical mountainous environments, mapping landslides is difficult as rapid and dense vegetation growth obscures landslides soon after their occurrence. Airborne laser scanning (ALS) data have been

  13. Temperature relaxation in dense plasma mixtures

    Science.gov (United States)

    Faussurier, Gérald; Blancard, Christophe

    2016-09-01

    We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.

  14. Leeuwpan fine coal dense medium plant

    CSIR Research Space (South Africa)

    Lundt, M

    2010-11-01

    Full Text Available availability to treat the higher grade coal (the bottom layer of coal) from the no. 2 Seam for a local and export metallurgical market. Following the path of evolution, in 2007, Leeuwpan commissioned the first double stage ultra-fines dense medium cyclone... plant in the coal industry, to form part of its overall DMS plant. It replaced the spirals to treat the -1 mm material. Spirals are still the most commonly and accepted method used by the industry, but it seems as if the pioneering cyclone process...

  15. Resolving Ultrafast Heating of Dense Cryogenic Hydrogen

    Science.gov (United States)

    Zastrau, U.; Sperling, P.; Harmand, M.; Becker, A.; Bornath, T.; Bredow, R.; Dziarzhytski, S.; Fennel, T.; Fletcher, L. B.; Förster, E.; Göde, S.; Gregori, G.; Hilbert, V.; Hochhaus, D.; Holst, B.; Laarmann, T.; Lee, H. J.; Ma, T.; Mithen, J. P.; Mitzner, R.; Murphy, C. D.; Nakatsutsumi, M.; Neumayer, P.; Przystawik, A.; Roling, S.; Schulz, M.; Siemer, B.; Skruszewicz, S.; Tiggesbäumker, J.; Toleikis, S.; Tschentscher, T.; White, T.; Wöstmann, M.; Zacharias, H.; Döppner, T.; Glenzer, S. H.; Redmer, R.

    2014-03-01

    We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300 fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ˜0.9 ps. The rise time agrees with radiation hydrodynamics simulations based on a conductivity model for partially ionized plasma that is validated by two-temperature density-functional theory.

  16. Oscillating propagators in heavy-dense QCD

    CERN Document Server

    Akerlund, Oscar; Rindlisbacher, Tobias

    2016-10-11

    Using Monte Carlo simulations and extended mean field theory calculations we show that the $3$-dimensional $\\mathbb{Z}_3$ spin model with complex external fields has non-monotonic correlators in some regions of its parameter space. This model serves as a proxy for heavy-dense QCD in $(3+1)$ dimensions. Non-monotonic correlators are intrinsically related to a complex mass spectrum and a liquid-like (or crystalline) behavior. A liquid phase could have implications for heavy-ion experiments, where it could leave detectable signals in the spatial correlations of baryons.

  17. Interference Alignment in Dense Wireless Networks

    CERN Document Server

    Niesen, Urs

    2009-01-01

    We consider arbitrary dense wireless networks, in which $n$ nodes are placed in an arbitrary (deterministic) manner on a square region of unit area and communicate with each other over Gaussian fading channels. We provide inner and outer bounds for the $n\\times n$-dimensional unicast and the $n\\times 2^n$-dimensional multicast capacity regions of such a wireless network. These inner and outer bounds differ only by a factor $O(\\log(n))$, yielding a fairly tight scaling characterization of the entire regions. The communication schemes achieving the inner bounds use interference alignment as a central technique and are surprisingly simple.

  18. Phase transitions in dense 2-colour QCD

    CERN Document Server

    Boz, Tamer; Fister, Leonard; Skullerud, Jon-Ivar

    2013-01-01

    We investigate 2-colour QCD with 2 flavours of Wilson fermion at nonzero temperature T and quark chemical potential mu, with a pion mass of 700 MeV (m_pi/m_rho=0.8). From temperature scans at fixed mu we find that the critical temperature for the superfluid to normal transition depends only very weakly on mu above the onset chemical potential, while the deconfinement crossover temperature is clearly decreasing with mu. We also present results for the Landau-gauge gluon propagator in the hot and dense medium.

  19. Flavour Oscillations in Dense Baryonic Matter

    Science.gov (United States)

    Filip, Peter

    2017-01-01

    We suggest that fast neutral meson oscillations may occur in a dense baryonic matter, which can influence the balance of s/¯s quarks in the nucleus-nucleus and proton-nucleus interactions, if primordial multiplicities of neutral K 0, mesons are sufficiently asymmetrical. The phenomenon can occur even if CP symmetry is fully conserved, and it may be responsible for the enhanced sub-threshold production of multi-strange hyperons observed in the low-energy A+A and p+A interactions.

  20. Gravity-driven dense granular flows

    Energy Technology Data Exchange (ETDEWEB)

    ERTAS,DENIZ; GREST,GARY S.; HALSEY,THOMAS C.; DEVINE,DOV; SILBERT,LEONARDO E.

    2000-03-29

    The authors report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type for force law has little impact on the behavior of the system. Failure is not initiated at the surface, consistent with the absence of surface flows and different principal stress directions at vs. below the surface.

  1. Archetypal Depth Criticism and Melville.

    Science.gov (United States)

    Maud, Ralph

    1983-01-01

    Applies psychologist James Hillman's idea of soul-making to literary studies. Uses the works of Melville to discuss the terms (1) depth, (2) image, and (3) archetype as they relate to the concept of soul-making. (MM)

  2. Formation depths of Fraunhofer lines

    CERN Document Server

    Gurtovenko, E A

    2015-01-01

    We have summed up our investigations performed in 1970--1993. The main task of this paper is clearly to show processes of formation of spectral lines as well as their distinction by validity and by location. For 503 photospheric lines of various chemical elements in the wavelength range 300--1000 nm we list in Table the average formation depths of the line depression and the line emission for the line centre and on the half-width of the line, the average formation depths of the continuum emission as well as the effective widths of the layer of the line depression formation. Dependence of average depths of line depression formation on excitation potential, equivalent widths, and central line depth are demonstrated by iron lines.

  3. Archetypal Depth Criticism and Melville.

    Science.gov (United States)

    Maud, Ralph

    1983-01-01

    Applies psychologist James Hillman's idea of soul-making to literary studies. Uses the works of Melville to discuss the terms (1) depth, (2) image, and (3) archetype as they relate to the concept of soul-making. (MM)

  4. Genetic Mapping

    Science.gov (United States)

    ... Fact Sheets Fact Sheets En Español: Mapeo Genético Genetic Mapping What is genetic mapping? How do researchers create ... genetic map? What are genetic markers? What is genetic mapping? Among the main goals of the Human Genome ...

  5. Automatic 2D-to-3D video conversion by monocular depth cues fusion and utilizing human face landmarks

    Science.gov (United States)

    Fard, Mani B.; Bayazit, Ulug

    2013-12-01

    In this paper, we propose a hybrid 2D-to-3D video conversion system to recover the 3D structure of the scene. Depending on the scene characteristics, geometric or height depth information is adopted to form the initial depth map. This depth map is fused with color-based depth cues to construct the nal depth map of the scene background. The depths of the foreground objects are estimated after their classi cation into human and non-human regions. Speci cally, the depth of a non-human foreground object is directly calculated from the depth of the region behind it in the background. To acquire more accurate depth for the regions containing a human, the estimation of the distance between face landmarks is also taken into account. Finally, the computed depth information of the foreground regions is superimposed on the background depth map to generate the complete depth map of the scene which is the main goal in the process of converting 2D video to 3D.

  6. The Arecibo Fast Radio Burst: Dense Circum-burst Medium

    CERN Document Server

    Kulkarni, S R; Neill, J D

    2015-01-01

    The nature of fast radio bursts (FRB) has been extensively debated. Here we investigate FRB121102, detected at Arecibo telescope and remarkable for its unusually large spectral index. After extensive study we conclude that the spectral index is caused by a nebula with free-free absorption. We find that putative nebula must lie beyond the Milky Way. We conclude that FRBs are of extra-galactic origin and that they arise in dense star-forming regions. The challenge with extra-galactic models is the the high volumetric rate of FRBs. This high rate allows us to eliminate all models of catastrophic stellar deaths. Hyper-giant flares from young magnetars emerge as the most likely progenitors. Some of the consequences are: (i) Intergalactic FRB models can be safely ignored. (ii) The rich ISM environment of young magnetars can result in significant contribution to DM, Rotation Measure (RM) and in some cases to significant free-free optical depth. (iii) The star-forming regions in the host galaxies can contribute signi...

  7. Performance evaluation of similarity measures for dense multimodal stereovision

    Science.gov (United States)

    Yaman, Mustafa; Kalkan, Sinan

    2016-05-01

    Multimodal imaging systems have recently been drawing attention in fields such as medical imaging, remote sensing, and video surveillance systems. In such systems, estimating depth has become possible due to the promising progress of multimodal matching techniques. We perform a systematic performance evaluation of similarity measures frequently used in the literature for dense multimodal stereovision. The evaluated measures include mutual information (MI), sum of squared distances, normalized cross-correlation, census transform, local self-similarity (LSS) as well as descriptors adopted to multimodal settings, like scale invariant feature transform (SIFT), speeded-up robust features (SURF), histogram of oriented gradients (HOG), binary robust independent elementary features, and fast retina keypoint (FREAK). We evaluate the measures over datasets we generated, compiled, and provided as a benchmark and compare the performances using the Winner Takes All method. The datasets are (1) synthetically modified four popular pairs from the Middlebury Stereo Dataset (namely, Tsukuba, Venus, Cones, and Teddy) and (2) our own multimodal image pairs acquired using the infrared and the electro-optical cameras of a Kinect device. The results show that MI and HOG provide promising results for multimodal imagery, and FREAK, SURF, SIFT, and LSS can be considered as alternatives depending on the multimodality level and the computational complexity requirements of the intended application.

  8. Predicting diffusivities in dense fluid mixtures

    Directory of Open Access Journals (Sweden)

    C. DARIVA

    1999-09-01

    Full Text Available In this work the Enskog solution of the Boltzmann equation, as corrected by Speedy, together with the Weeks-Chandler-Andersen (WCA perturbation theory of liquids is employed in correlating and predicting self-diffusivities of dense fluids. Afterwards this theory is used to estimate mutual diffusion coefficients of solutes at infinite dilution in sub and supercritical solvents. We have also investigated the behavior of Fick diffusion coefficients in the proximity of a binary vapor-liquid critical point since this subject is of great interest for extraction purposes. The approach presented here, which makes use of a density and temperature dependent hard-sphere diameter, is shown to be excellent for predicting diffusivities in dense pure fluids and fluid mixtures. The calculations involved highly nonideal mixtures as well as systems with high molecular asymmetry. The predicted diffusivities are in good agreement with the experimental data for the pure and binary systems. The methodology proposed here makes only use of pure component information and density of mixtures. The simple algebraic relations are proposed without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent mixtures.

  9. The symmetry energy in cold dense matter

    CERN Document Server

    Jeong, Kie Sang

    2015-01-01

    We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction to the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case ...

  10. Symmetry energy in cold dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kie Sang, E-mail: k.s.jeong@yonsei.ac.kr; Lee, Su Houng, E-mail: suhoung@yonsei.ac.kr

    2016-01-15

    We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.

  11. Ion Beam Driven Warm Dense Matter Experiments

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Leitner, M. A.; Lidia, S. M.; Logan, B. G.; More, R. M.; Ni, P. A.; Seidl, P. A.; Waldron, W. L.; Barnard, J. J.

    2008-11-01

    We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments use a 0.3 MeV K+ beam from the NDCX-I accelerator. The WDM conditions are to be achieved by longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a 1-mm beam spot size, and 2-ns pulse length. As a technique for heating matter to high energy density, intense ion beams can deliver precise and uniform beam energy deposition, in a relatively large sample size, and can heat any solid-phase target material. The range of the beams in solid targets is less than 1 micron, which can be lengthened by using reduced density porous targets. We have developed a WDM target chamber and target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial experiments will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  12. Redesigning Triangular Dense Matrix Computations on GPUs

    KAUST Repository

    Charara, Ali

    2016-08-09

    A new implementation of the triangular matrix-matrix multiplication (TRMM) and the triangular solve (TRSM) kernels are described on GPU hardware accelerators. Although part of the Level 3 BLAS family, these highly computationally intensive kernels fail to achieve the percentage of the theoretical peak performance on GPUs that one would expect when running kernels with similar surface-to-volume ratio on hardware accelerators, i.e., the standard matrix-matrix multiplication (GEMM). The authors propose adopting a recursive formulation, which enriches the TRMM and TRSM inner structures with GEMM calls and, therefore, reduces memory traffic while increasing the level of concurrency. The new implementation enables efficient use of the GPU memory hierarchy and mitigates the latency overhead, to run at the speed of the higher cache levels. Performance comparisons show up to eightfold and twofold speedups for large dense matrix sizes, against the existing state-of-the-art TRMM and TRSM implementations from NVIDIA cuBLAS, respectively, across various GPU generations. Once integrated into high-level Cholesky-based dense linear algebra algorithms, the performance impact on the overall applications demonstrates up to fourfold and twofold speedups, against the equivalent native implementations, linked with cuBLAS TRMM and TRSM kernels, respectively. The new TRMM/TRSM kernel implementations are part of the open-source KBLAS software library (http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx) and are lined up for integration into the NVIDIA cuBLAS library in the upcoming v8.0 release.

  13. Nucleosynthesis in Hot and Dense Media

    CERN Document Server

    Masood, Samina S

    2014-01-01

    We study the finite temperature and density effects on beta decay rates to compute their contributions to nucleosynthesis. QED type corrections to beta decay from the hot and dense background are estimated in terms of the statistical corrections to the self-mass of an electron. For this purpose, we re-examine the hot and dense background contributions to the electron mass and compute its effect to the beta decay rate, helium yield, energy density of the universe as well as the change in neutrino temperature from the first order contribution to the self-mass of electrons during these processes. We explicitly show that the thermal contribution to the helium abundance at T = m of a cooling universe 0.045 % is higher than the corresponding contribution to helium abundance of a heating universe 0.031% due to the existence of hot fermions before the beginning of nucleosynthesis and their absence after the nucleosynthesis, in the early universe. Thermal contribution to helium abundance was a simple quadratic functio...

  14. Compton scattering measurements from dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S H; Neumayer, P; Doeppner, T; Landen, L; Lee, R W; Wallace, R; Weber, S; Lee, H J; Kritcher, A L; Falcone, R; Regan, S P; Sawada, H; Meyerhofer, D D; Gregori, G; Fortmann, C; Schwarz, V; Redmer, R

    2007-10-02

    Compton scattering has been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, while in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.

  15. Compton scattering measurements from dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Glenzer, S H; Neumayer, P; Doeppner, T; Landen, O L; Lee, R W; Wallace, R J; Weber, S [Lawrence Livermore National Laboratory, Livermore, CA (United States); Lee, H J; Kritcher, A L; Falcone, R [University of California Berkeley, Berkeley, CA 94709 (United States); Regan, S P; Sawada, H; Meyerhofer, D D [Laboratory for Laser Energetics, Rochester, NY (United States); Gregori, G [Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Fortmann, C; Schwarz, V; Redmer, R [Institut fuer Physik, Universitaet Rostock, D-18051 Rostock (Germany)], E-mail: glenzer1@llnl.gov

    2008-05-15

    Compton scattering techniques have been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, while in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.

  16. Probing the Physical Structures of Dense Filaments

    Science.gov (United States)

    Li, Di

    2015-08-01

    Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.

  17. Wireless Fractal Ultra-Dense Cellular Networks.

    Science.gov (United States)

    Hao, Yixue; Chen, Min; Hu, Long; Song, Jeungeun; Volk, Mojca; Humar, Iztok

    2017-04-12

    With the ever-growing number of mobile devices, there is an explosive expansion in mobile data services. This represents a challenge for the traditional cellular network architecture to cope with the massive wireless traffic generated by mobile media applications. To meet this challenge, research is currently focused on the introduction of a small cell base station (BS) due to its low transmit power consumption and flexibility of deployment. However, due to a complex deployment environment and low transmit power of small cell BSs, the coverage boundary of small cell BSs will not have a traditional regular shape. Therefore, in this paper, we discuss the coverage boundary of an ultra-dense small cell network and give its main features: aeolotropy of path loss fading and fractal coverage boundary. Simple performance analysis is given, including coverage probability and transmission rate, etc., based on stochastic geometry theory and fractal theory. Finally, we present an application scene and discuss challenges in the ultra-dense small cell network.

  18. Quantum molecular dynamics simulations of dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I. [Los Alamos National Lab., Albuquerque, NM (United States)

    1997-12-31

    The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.

  19. Solids flow rate measurement in dense slurries

    Energy Technology Data Exchange (ETDEWEB)

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  20. Direct Observation of a Sharp Transition to Coherence in Dense Cores

    Science.gov (United States)

    Pineda, Jaime E.; Goodman, Alyssa A.; Arce, Héctor G.; Caselli, Paola; Foster, Jonathan B.; Myers, Philip C.; Rosolowsky, Erik W.

    2010-03-01

    We present NH3 observations of the B5 region in Perseus obtained with the Green Bank Telescope. The map covers a region large enough (~11'×14') that it contains the entire dense core observed in previous dust continuum surveys. The dense gas traced by NH3(1,1) covers a much larger area than the dust continuum features found in bolometer observations. The velocity dispersion in the central region of the core is small, presenting subsonic non-thermal motions which are independent of scale. However, it is because of the coverage and high sensitivity of the observations that we present the detection, for the first time, of the transition between the coherent core and the dense but more turbulent gas surrounding it. This transition is sharp, increasing the velocity dispersion by a factor of 2 in less than 0.04 pc (the 31'' beam size at the distance of Perseus, ~250 pc). The change in velocity dispersion at the transition is ≈3 km s-1 pc-1. The existence of the transition provides a natural definition of dense core: the region with nearly constant subsonic non-thermal velocity dispersion. From the analysis presented here, we can neither confirm nor rule out a corresponding sharp density transition.

  1. DETERMINING PLANE-SWEEP SAMPLING POINTS IN IMAGE SPACE USING THE CROSS-RATIO FOR IMAGE-BASED DEPTH ESTIMATION

    Directory of Open Access Journals (Sweden)

    B. Ruf

    2017-08-01

    Full Text Available With the emergence of small consumer Unmanned Aerial Vehicles (UAVs, the importance and interest of image-based depth estimation and model generation from aerial images has greatly increased in the photogrammetric society. In our work, we focus on algorithms that allow an online image-based dense depth estimation from video sequences, which enables the direct and live structural analysis of the depicted scene. Therefore, we use a multi-view plane-sweep algorithm with a semi-global matching (SGM optimization which is parallelized for general purpose computation on a GPU (GPGPU, reaching sufficient performance to keep up with the key-frames of input sequences. One important aspect to reach good performance is the way to sample the scene space, creating plane hypotheses. A small step size between consecutive planes, which is needed to reconstruct details in the near vicinity of the camera may lead to ambiguities in distant regions, due to the perspective projection of the camera. Furthermore, an equidistant sampling with a small step size produces a large number of plane hypotheses, leading to high computational effort. To overcome these problems, we present a novel methodology to directly determine the sampling points of plane-sweep algorithms in image space. The use of the perspective invariant cross-ratio allows us to derive the location of the sampling planes directly from the image data. With this, we efficiently sample the scene space, achieving higher sampling density in areas which are close to the camera and a lower density in distant regions. We evaluate our approach on a synthetic benchmark dataset for quantitative evaluation and on a real-image dataset consisting of aerial imagery. The experiments reveal that an inverse sampling achieves equal and better results than a linear sampling, with less sampling points and thus less runtime. Our algorithm allows an online computation of depth maps for subsequences of five frames, provided that

  2. Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma

    CERN Document Server

    Liu, Wei

    2010-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor) and NSTX (National Spherical Torus Experiment). Unmagnetized jet injection is similar to compact toroid injection but with higher possible injection density and total mass, as well as a potentially smaller footprint for the injector hardware. Our simulation results show that the unmagnetized dense jet is quickly magnetized upon injection. The penetration depth of the jet into the tokamak plasma is mostly dependent on the jet's initial kinetic energy while the jet's magnetic field determines its interior evolution. A key requirement for spatially precise fueling is for the jet's slowing-down time to be less than the time for the perturbed tokamak magnetic flux to relax due to magnetic reconnection. Thus ...

  3. Concept Maps

    OpenAIRE

    Schwendimann, Beat Adrian

    2014-01-01

    A concept map is a node-link diagram showing the semantic relationships among concepts. The technique for constructing concept maps is called "concept mapping". A concept map consists of nodes, arrows as linking lines, and linking phrases that describe the relationship between nodes. Two nodes connected with a labeled arrow are called a proposition. Concept maps are versatile graphic organizers that can represent many different forms of relationships between concepts. The relationship between...

  4. Dense gas in the Galactic central molecular zone is warm and heated by turbulence

    CERN Document Server

    Ginsburg, Adam; Ao, Yiping; Riquelme, Denise; Kauffmann, Jens; Pillai, Thushara; Mills, Elisabeth A C; Requena-Torres, Miguel A; Immer, Katharina; Testi, Leonardo; Ott, Juergen; Bally, John; Battersby, Cara; Darling, Jeremy; Aalto, Susanne; Stanke, Thomas; Kendrew, Sarah; Kruijssen, J M Diederik; Longmore, Steven; Dale, James; Guesten, Rolf; Menten, Karl M

    2016-01-01

    The Galactic center is the closest region in which we can study star formation under extreme physical conditions like those in high-redshift galaxies. We measure the temperature of the dense gas in the central molecular zone (CMZ) and examine what drives it. We mapped the inner 300 pc of the CMZ in the temperature-sensitive J = 3-2 para-formaldehyde (p-H$_2$CO) transitions. We used the $3_{2,1} - 2_{2,0} / 3_{0,3} - 2_{0,2}$ line ratio to determine the gas temperature in $n \\sim 10^4 - 10^5 $cm$^{-3}$ gas. We have produced temperature maps and cubes with 30" and 1 km/s resolution and published all data in FITS form. Dense gas temperatures in the Galactic center range from ~60 K to > 100 K in selected regions. The highest gas temperatures T_G > 100 K are observed around the Sgr B2 cores, in the extended Sgr B2 cloud, the 20 km/s and 50 km/s clouds, and in "The Brick" (G0.253+0.016). We infer an upper limit on the cosmic ray ionization rate ${\\zeta}_{CR} < 10^{-14}$ 1/s. The dense molecular gas temperature o...

  5. Preliminary isostatic gravity map of the Sonoma volcanic field and vicinity, Sonoma and Napa Counties, California

    Science.gov (United States)

    Langenheim, V.E.; Roberts, C.W.; McCabe, C.A.; McPhee, D.K.; Tilden, J.E.; Jachens, R.C.

    2006-01-01

    This isostatic residual gravity map is part of a three-dimensional mapping effort focused on the subsurface distribution of rocks of the Sonoma volcanic field in Napa and Sonoma counties, northern California. This map will serve as a basis for modeling the shapes of basins beneath the Santa Rosa Plain and Napa and Sonoma Valleys, and for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field (after accounting for variations caused by elevation, terrain, and deep crustal structure explained below) reflect the distribution of densities in the mid to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. High-density basement rocks exposed within the northern San Francisco Bay area include those of the Mesozoic Franciscan Complex and Great Valley Sequence present in the mountainous areas of the quadrangle. Alluvial sediment and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range in densities, but, on average, are less dense than the Mesozoic basement rocks. Isostatic residual gravity values within the map area range from about -41 mGal over San Pablo Bay to about 11 mGal near Greeg Mountain 10 km east of St. Helena. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the West Napa fault bounding the west side of Napa Valley, the projection of the Hayward fault in San Pablo Bay, the Maacama Fault, and the Rodgers Creek fault in the vicinity of Santa Rosa. These gradients result from juxtaposing dense basement rocks against thick Tertiary volcanic and sedimentary rocks.

  6. Decay of Langmuir wave in dense plasmas and warm dense matter

    CERN Document Server

    Son, S; Moon, Sung Joon

    2010-01-01

    The decays of the Langmuir waves in dense plasmas are computed using the dielectric function theory widely used in the solid state physics. Four cases are considered: a classical plasma, a Maxwellian plasma, a degenerate quantum plasma, and a partially degenerate plasma. The result is considerably different from the conventional Landau damping theory.

  7. A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits

    National Research Council Canada - National Science Library

    Raman, Harsh; Raman, Rosy; Kilian, Andrzej; Detering, Frank; Long, Yan; Edwards, David; Parkin, Isobel A P; Sharpe, Andrew G; Nelson, Matthew N; Larkan, Nick; Zou, Jun; Meng, Jinling; Aslam, M Naveed; Batley, Jacqueline; Cowling, Wallace A; Lydiate, Derek

    2013-01-01

    Dense consensus genetic maps based on high-throughput genotyping platforms are valuable for making genetic gains in Brassica napus through quantitative trait locus identification, efficient predictive...

  8. Dynamic edge warping - An experimental system for recovering disparity maps in weakly constrained systems

    Science.gov (United States)

    Boyer, K. L.; Wuescher, D. M.; Sarkar, S.

    1991-01-01

    Dynamic edge warping (DEW), a technique for recovering reasonably accurate disparity maps from uncalibrated stereo image pairs, is presented. No precise knowledge of the epipolar camera geometry is assumed. The technique is embedded in a system including structural stereopsis on the front end and robust estimation in digital photogrammetry on the other for the purpose of self-calibrating stereo image pairs. Once the relative camera orientation is known, the epipolar geometry is computed and the system can use this information to refine its representation of the object space. Such a system will find application in the autonomous extraction of terrain maps from stereo aerial photographs, for which camera position and orientation are unknown a priori, and for online autonomous calibration maintenance for robotic vision applications, in which the cameras are subject to vibration and other physical disturbances after calibration. This work thus forms a component of an intelligent system that begins with a pair of images and, having only vague knowledge of the conditions under which they were acquired, produces an accurate, dense, relative depth map. The resulting disparity map can also be used directly in some high-level applications involving qualitative scene analysis, spatial reasoning, and perceptual organization of the object space. The system as a whole substitutes high-level information and constraints for precise geometric knowledge in driving and constraining the early correspondence process.

  9. A methodological approach towards high-resolution surface wave imaging of the San Jacinto Fault Zone using ambient-noise recordings at a spatially dense array

    Science.gov (United States)

    Roux, Philippe; Moreau, Ludovic; Lecointre, Albanne; Hillers, Gregor; Campillo, Michel; Ben-Zion, Yehuda; Zigone, Dimitri; Vernon, Frank

    2016-08-01

    We present a new technique for deriving detailed information on seismic velocities of the subsurface material from continuous ambient noise recorded by spatially dense seismic arrays. This method uses iterative double beamforming between various subarrays to extract surface wave contributions from the ambient-noise data in complex environments with unfavourable noise-source distributions. The iterative double beamforming extraction makes it possible to retrieve large amounts of Rayleigh wave traveltime information in a wide frequency band. The method is applied to data recorded by a highly dense Nodal array with 1108 vertical geophones, centred on the damage zone of the Clark branch of the San Jacinto Fault Zone south of Anza, California. The array covers a region of ˜650 × 700 m2, with instrument spacing of 10-30 m, and continuous recording at 500 samples s-1 over 30 d in 2014. Using this iterative double beamforming on subarrays of 25 sensors and cross-correlations between all of the station pairs, we separate surface waves from body waves that are abundant in the raw cross-correlation data. Focusing solely on surface waves, maps of traveltimes are obtained at different frequencies with unprecedented accuracy at each point of a 15-m-spacing grid. Group velocity inversions at 2-4 Hz reveal depth and lateral variations in the structural properties within and around the San Jacinto Fault Zone in the study area. This method can be used over wider frequency ranges and can be combined with other imaging techniques, such as eikonal tomography, to provide unprecedented detailed structural images of the subsurface material.

  10. Real-time passenger counting in buses using dense stereovision

    Science.gov (United States)

    Yahiaoui, Tarek; Khoudour, Louahdi; Meurie, Cyril

    2010-07-01

    We are interested particularly in the estimation of passenger flows entering or exiting from buses. To achieve this measurement, we propose a counting system based on stereo vision. To extract three-dimensional information in a reliable way, we use a dense stereo-matching procedure in which the winner-takes-all technique minimizes a correlation score. This score is an improved version of the sum of absolute differences, including several similarity criteria determined on pixels or regions to be matched. After calculating disparity maps for each image, morphological operations and a binarization with multiple thresholds are used to localize the heads of people passing under the sensor. The markers describing the heads of the passengers getting on or off the bus are then tracked during the image sequence to reconstitute their trajectories. Finally, people are counted from these reconstituted trajectories. The technique suggested was validated by several realistic experiments. We showed that it is possible to obtain counting accuracy of 99% and 97% on two large realistic data sets of image sequences showing realistic scenarios.

  11. The ALMA View of Dense Molecular Gas in 30 Doradus

    Science.gov (United States)

    Bittle, Lauren E.; Indebetouw, Remy; Brogan, Crystal L.; Hunter, Todd R.; Leroy, Adam

    2017-01-01

    At a distance of 50 kpc, the 30 Doradus region within the Large Magellanic Cloud (LMC) hosts several sites of star formation including R136, a starburst region home to dozens of evolved O stars. The intense radiation from R136 creates an extreme environment for nearby star formation in such a low-metallicity, low mass galaxy. We have targeted a star-forming region ~15 pc away from R136 within 30 Doradus using the Atacama Large Millimeter/submillimeter Array (ALMA) to map the molecular gas to study the sites of star formation. We are conducting a clump-by-clump analysis of the intensities and line ratios of dense gas (HCO+, HCN, CS, H13CO+, H13CN) and diffuse gas (CO, 13CO, C18O) tracers at sub-parsec resolution. We identify and characterize ~100 molecular clumps within the region. With the observed molecular species, we aim to determine the physical conditions of each clump (e.g. size, internal turbulence, molecular abundance). We compare the intensities and line ratios to non-LTE Radex model grids of the excitation temperature, molecular column density, and volume density of the H2 collider to determine the physical excitation conditions within the clumps. We compare these properties of each clump to both associated and embedded star formation properties to quantify the relative importance of internal feedback from the star formation itself versus external feedback processes from R136 and determine which process dominates in this region.

  12. Dense Ionized and Neutral Gas Surrounding Sgr A*

    CERN Document Server

    Shukla, Hemant; Scoville, N Z

    2004-01-01

    We present high resolution H41a hydrogen recombination line observations of the 1.2' (3 pc) region surrounding Sgr A* at 92 GHz using the OVRO Millimeter Array with an angular resolution of 7" x 3" and velocity resolution of 13 km/s. New observations of H31a, H35a, H41a, and H44a lines were obtained using the NRAO 12-m telescope, and their relative line strengths are interpreted in terms of various emission mechanisms. These are the most extensive and most sensitive observations of recombination line to date. Observations of HCO+ (1 - 0) transition at 89 GHz are also obtained simultaneously with a 40% improved angular resolution and 4-15 times improved sensitivity over previous observations, and the distribution and kinematics of the dense molecular gas in the circumnuclear disk (CND) are mapped and compared with those of the ionized gas. The line brightness ratios of the hydrogen recombination lines are consistent with purely spontaneous emission from 7000 K gas with n_e = 20,000 cm$^{-3}$ near LTE condition...

  13. Generation and generalization of safe depth-contours for hydrographc charts using a surface-based approach

    NARCIS (Netherlands)

    Peters, R.Y.; Ledoux, H.; Meijers, B.M.

    2013-01-01

    Depth-contours are an essential part of any hydrographic chart|a map of a water-body intended for safe ship navigation. Traditionally these were manually drawn by skilled hydrographers from a limited set of surveyed depth measurements. Nowadays this process of map making is shifted towards the digit

  14. Sonic depth sounder for laboratory and field use

    Science.gov (United States)

    Richardson, E.V.; Simons, Daryl B.; Posakony, G.J.

    1961-01-01

    The laboratory investigation of roughness in alluvial channels has led to the development of a special electronic device capable of mapping the streambed configuration under dynamic conditions. This electronic device employs an ultrasonic pulse-echo principle, similar to that of a fathometer, that utilizes microsecond techniques to give high accuracy in shallow depths. This instrument is known as the sonic depth sounder and was designed to cover a depth range of 0 to 4 feet with an accuracy of ? 0.5 percent. The sonic depth sounder is capable of operation at frequencies of 500, 1,000 and 2,000 kilocycles. The ultrasonic beam generated at the transducer is designed to give a minimum-diameter interrogating signal over the extended depth range. The information obtained from a sonic depth sounder is recorded on a strip-chart recorder. This permanent record allows an analysis to be made of the streambed configuration under different dynamic conditions. The model 1024 sonic depth sounder was designed principally as a research instrument to meet laboratory needs. As such, it is somewhat limited in its application as a field instrument on large streams and rivers. The principles employed in this instrument, however, have many potentials for field applications such as the indirect measurement of bed load when the bed roughness is ripples and (or) dunes, depth measurement, determination of bed configuration, and determination of depth of scour around bridge piers and abutments. For field application a modification of the present system into a battery-operated lightweight instrument designed to operate at a depth range of 0 to 30 feet is possible and desirable.

  15. Anterior chamber depth during hemodialysis

    Directory of Open Access Journals (Sweden)

    Gracitelli CPB

    2013-08-01

    Full Text Available Carolina Pelegrini Barbosa Gracitelli,1 Francisco Rosa Stefanini,1 Fernando Penha,1 Miguel Ângelo Góes,2 Sérgio Antonio Draibe,2 Maria Eugênia Canziani,2 Augusto Paranhos Junior1 1Ophthalmology Department, 2Division of Nephrology, Federal University of São Paulo – UNIFESP, São Paulo, Brazil Background: Exacerbation of chronic glaucoma or acute glaucoma is occasionally observed in patients undergoing hemodialysis (HD because of anterior chamber depth changes during this therapy. Purpose: To evaluate anterior chamber depth and axial length in patients during HD sessions. Methods: A total of 67 eyes of 35 patients were prospectively enrolled. Axial length and anterior chamber depth were measured using ultrasonic biometry, and these measures were evaluated at three different times during HD sessions. Body weight and blood pressure pre- and post-HD were also measured. Results: There was no difference in the axial length between the three measurements (P = 0.241. We observed a significantly decreased anterior chamber depth (P = 0.002 during HD sessions. Conclusion: Our results support the idea that there is a change in anterior chamber depth in HD sessions. Keywords: anterior chamber, hemodialysis, axial length, acute angle-closure glaucoma

  16. CARMA Large Area Star Formation Survey: project overview with analysis of dense gas structure and kinematics in Barnard 1

    Energy Technology Data Exchange (ETDEWEB)

    Storm, Shaye; Mundy, Lee G.; Lee, Katherine I.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu; Gong, Hao [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fernández-López, Manuel; Looney, Leslie W.; Segura-Cox, Dominique M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Rosolowsky, Erik [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Arce, Héctor G.; Plunkett, Adele L. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Ostriker, Eve C. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Volgenau, Nikolaus H. [Owens Valley Radio Observatory, MC 105-24 OVRO, Pasadena, CA 91125 (United States); Shirley, Yancy L. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Kwon, Woojin [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); Isella, Andrea, E-mail: sstorm@astro.umd.edu [Astronomy Department, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125 (United States); and others

    2014-10-20

    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N{sub 2}H{sup +}, HCO{sup +}, and HCN (J = 1 → 0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7'' and spectral resolution near 0.16 km s{sup –1}. We imaged ∼150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N{sub 2}H{sup +} shows the strongest emission, with morphology similar to cool dust in the region, while HCO{sup +} and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N{sub 2}H{sup +} velocity dispersions ranging from ∼0.05 to 0.50 km s{sup –1} across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new, non-binary dendrogram algorithm is used to analyze dense gas structures in the N{sub 2}H{sup +} position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01 to 0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that overdense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.

  17. Refilming with depth-inferred videos.

    Science.gov (United States)

    Zhang, Guofeng; Dong, Zilong; Jia, Jiaya; Wan, Liang; Wong, Tien-Tsin; Bao, Hujun

    2009-01-01

    Compared to still image editing, content-based video editing faces the additional challenges of maintaining the spatiotemporal consistency with respect to geometry. This brings up difficulties of seamlessly modifying video content, for instance, inserting or removing an object. In this paper, we present a new video editing system for creating spatiotemporally consistent and visually appealing refilming effects. Unlike the typical filming practice, our system requires no labor-intensive construction of 3D models/surfaces mimicking the real scene. Instead, it is based on an unsupervised inference of view-dependent depth maps for all video frames. We provide interactive tools requiring only a small amount of user input to perform elementary video content editing, such as separating video layers, completing background scene, and extracting moving objects. These tools can be utilized to produce a variety of visual effects in our system, including but not limited to video composition, "predator" effect, bullet-time, depth-of-field, and fog synthesis. Some of the effects can be achieved in real time.

  18. Sound scattering in dense granular media

    Institute of Scientific and Technical Information of China (English)

    JIA XiaoPing; LAURENT J; KHIDAS Y; LANGLOIS V

    2009-01-01

    The sound propagation in a dense granular medium is basically characterized by the ratio of wave-length to the grain size. Two types of wave transport are distinguished: one corresponds to coherent waves in the long wavelength limit, the other to short-wavelength scattered waves by the inhomoge-neous contact force networks. These multiply scattered elastic waves are shown to exhibit a diffusive characteristics of transport over long distances of propagation. Determination of the transport mean free path l* and the inelastic absorption (Q~(-1)) allows the inference of the structural properties of the material such as the heterogeneity and internal dissipation. The relevance of our experiments for seismological applications is discussed. Moreover, we apply the correlation technique of the configu-ration-specific sound scattering to monitoring the dynamic behaviour of the granular medium (irre-versible rearrangements) under strong vibration, shearing and thermal cycling, respectively.

  19. Charmonium propagation through a dense medium

    Directory of Open Access Journals (Sweden)

    Kopeliovich B.Z.

    2015-01-01

    Full Text Available Attenuation of a colourless c̄c dipole propagating with a large momentum through a hot medium originates from two sources, Debye screening (melting, and inelastic collisions with surrounding scattering centres (absorption. The former never terminates completely production of a bound charmonium in heavy ion collisions, even at very high temperatures. The latter, is controlled my the magnitude of the dipole cross section, related to the transport coefficient, which is the rate of transverse momentum broadening in the medium. A novel procedure of Lorentz boosting of the Schrödinger equation is developed, which allows to calculate the charmonium survival probability employing the path-integral technique, incorporating both melting and absorption. A novel mechanism of charmonium regeneration in a dense medium is proposed.

  20. Intense, ultrashort light and dense, hot matter

    Indian Academy of Sciences (India)

    G Ravindra Kumar

    2009-07-01

    This article presents an overview of the physics and applications of the interaction of high intensity laser light with matter. It traces the crucial advances that have occurred over the past few decades in laser technology and nonlinear optics and then discusses physical phenomena that occur in intense laser fields and their modeling. After a description of the basic phenomena like multiphoton and tunneling ionization, the physics of plasma formed in dense matter is presented. Specific phenomena are chosen for illustration of the scientific and technological possibilities – simulation of astrophysical phenomena, relativistic nonlinear optics, laser wakefield acceleration, laser fusion, ultrafast real time X-ray diffraction, application of the particle beams produced from the plasma for medical therapies etc. A survey of the Indian activities in this research area appears at the end.

  1. Frontiers and challenges in warm dense matter

    CERN Document Server

    Desjarlais, Michael; Redmer, Ronald; Trickey, Samuel

    2014-01-01

    Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent...

  2. Evolution of Binaries in Dense Stellar Systems

    CERN Document Server

    Ivanova, Natalia

    2011-01-01

    In contrast to the field, the binaries in dense stellar systems are frequently not primordial, and could be either dynamically formed or significantly altered from their primordial states. Destruction and formation of binaries occur in parallel all the time. The destruction, which constantly removes soft binaries from a binary pool, works as an energy sink and could be a reason for cluster entering the binary-burning phase. The true binary fraction is greater than observed, as a result, the observable binary fraction evolves differently from the predictions. Combined measurements of binary fractions in globular clusters suggest that most of the clusters are still core-contracting. The formation, on other hand, affects most the more evolutionary advanced stars, which significantly enhances the population of X-ray sources in globular clusters. The formation of binaries with a compact objects proceeds mainly through physical collisions, binary-binary and single-binary encounters; however, it is the dynamical for...

  3. Carbon nitride frameworks and dense crystalline polymorphs

    Science.gov (United States)

    Pickard, Chris J.; Salamat, Ashkan; Bojdys, Michael J.; Needs, Richard J.; McMillan, Paul F.

    2016-09-01

    We used ab initio random structure searching (AIRSS) to investigate polymorphism in C3N4 carbon nitride as a function of pressure. Our calculations reveal new framework structures, including a particularly stable chiral polymorph of space group P 43212 containing mixed s p2 and s p3 bonding, that we have produced experimentally and recovered to ambient conditions. As pressure is increased a sequence of structures with fully s p3 -bonded C atoms and three-fold-coordinated N atoms is predicted, culminating in a dense P n m a phase above 250 GPa. Beyond 650 GPa we find that C3N4 becomes unstable to decomposition into diamond and pyrite-structured CN2.

  4. Plasmon resonance in warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, R; Bornath, T; Fortmann, C; Holl, A; Redmer, R; Reinholz, H; Ropke, G; Wierling, A; Glenzer, S H; Gregori, G

    2008-02-21

    Collective Thomson scattering with extreme ultraviolet light or x-rays is shown to allow for a robust measurement of the free electron density in dense plasmas. Collective excitations like plasmons appear as maxima in the scattering signal. Their frequency position can directly be related to the free electron density. The range of applicability of the standard Gross-Bohm dispersion relation and of an improved dispersion relation in comparison to calculations based on the dielectric function in random phase approximation is investigated. More important, this well-established treatment of Thomson scattering on free electrons is generalized in the Born-Mermin approximation by including collisions. We show that, in the transition region from collective to non-collective scattering, the consideration of collisions is important.

  5. Properties of industrial dense gas plumes

    Science.gov (United States)

    Shaver, E. M.; Forney, L. J.

    Hazardous gases and vapors are often discharged into the atmosphere from industrial plants during catastrophic events (e.g. Union Carbide incident in Bhopal, India). In many cases the discharged components are more dense than air and settle to the ground surface downstream from the stack exit. In the present paper, the buoyant plume model of Hoult, Fay and Forney (1969, J. Air Pollut. Control Ass. 19, 585-590.) has been altered to predict the properties of hazardous discharges. In particular, the plume impingement point, radius and concentration are predicted for typical stack exit conditions, wind speeds and temperature profiles. Asymptotic expressions for plume properties at the impingement point are also derived for a constant crosswind and neutral temperature profile. These formulae are shown to be useful for all conditions.

  6. Constitutive relations for steady, dense granular flows

    Science.gov (United States)

    Vescovi, D.; Berzi, D.; di Prisco, C. G.

    2011-12-01

    In the recent past, the flow of dense granular materials has been the subject of many scientific works; this is due to the large number of natural phenomena involving solid particles flowing at high concentration (e.g., debris flows and landslides). In contrast with the flow of dilute granular media, where the energy is essentially dissipated in binary collisions, the flow of dense granular materials is characterized by multiple, long-lasting and frictional contacts among the particles. The work focuses on the mechanical response of dry granular materials under steady, simple shear conditions. In particular, the goal is to obtain a complete rheology able to describe the material behavior within the entire range of concentrations for which the flow can be considered dense. The total stress is assumed to be the linear sum of a frictional and a kinetic component. The frictional and the kinetic contribution are modeled in the context of the critical state theory [8, 10] and the kinetic theory of dense granular gases [1, 3, 7], respectively. In the critical state theory, the granular material approaches a certain attractor state, independent on the initial arrangement, characterized by the capability of developing unlimited shear strains without any change in the concentration. Given that a disordered granular packing exists only for a range of concentration between the random loose and close packing [11], a form for the concentration dependence of the frictional normal stress that makes the latter vanish at the random loose packing is defined. In the kinetic theory, the particles are assumed to interact through instantaneous, binary and uncorrelated collisions. A new state variable of the problem is introduced, the granular temperature, which accounts for the velocity fluctuations. The model has been extended to account for the decrease in the energy dissipation due to the existence of correlated motion among the particles [5, 6] and to deal with non

  7. Dense QCD: a Holographic Dyonic Salt

    CERN Document Server

    Rho, Mannque; Zahed, Ismail

    2009-01-01

    Dense QCD at zero temperature with a large number of colors is a crystal. We show that in the holographic dual description, the crystal is made out of pairs of dyons with $e=g=\\pm 1$ charges in a salt-like arrangement. We argue that with increasing density the dyon masses and topological charges equalize, turning the salt-like configuration to a bcc of half-instantons. The latter is dual to a cubic crystal of half-skyrmions. We estimate the transition from an fcc crystal of instantons to a bcc crystal of dyons to about 3 times nuclear matter density with a dyon binding energy of about 180 MeV.

  8. Dynamic structure of dense krypton gas

    Science.gov (United States)

    Egelstaff, P. A.; Salacuse, J. J.; Schommers, W.; Ram, J.

    1984-07-01

    We have made molecular-dynamics computer simulations of dense krypton gas (10.6×1027 atoms/m3 and 296 K) using reasonably realistic pair potentials. Comparisons are made with the recent experimental data[P. A. Egelstaff et al., Phys. Rev. A 27, 1106 (1983)] for the dynamic structure factor S(q,ω) over the range 0.4

  9. Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition?

    Science.gov (United States)

    Packer, Adam M; Yuste, Rafael

    2011-09-14

    GABAergic interneurons play a major role in the function of the mammalian neocortex, but their circuit connectivity is still poorly understood. We used two-photon RuBi-Glutamate uncaging to optically map how the largest population of cortical interneurons, the parvalbumin-positive cells (PV+), are connected to pyramidal cells (PCs) in mouse neocortex. We found locally dense connectivity from PV+ interneurons onto PCs across cortical areas and layers. In many experiments, all nearby PV+ cells were connected to every local PC sampled. In agreement with this, we found no evidence for connection specificity, as PV+ interneurons contacted PC pairs similarly regardless of whether they were synaptically connected or not. We conclude that the microcircuit architecture for PV+ interneurons, and probably neocortical inhibition in general, is an unspecific, densely homogenous matrix covering all nearby pyramidal cells.

  10. X-ray scattering from dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    McSherry, D.J

    2000-09-01

    Dense plasmas were studied by probing them with kilovolt x-rays and measuring those scattered at various angles. The Laser-Produced x-ray source emitted Ti He alpha 4.75 keV x-rays. Two different plasma types were explored. The first was created by laser driven shocks on either side of a sample foil consisting of 2 micron Al layer, sandwiched between two 1 micron CH layers. We have observed a peak in the x-ray scattering cross section, indicating diffraction from the plasma. However, the experimentally inferred plasma density, broadly speaking, did not always agree with the hydrodynamic simulation MEDX (A modified version of MEDUSA). The second plasma type that we studied was created by soft x-ray heating on either side of a sample foil, this time consisting of 1 micron layer of Al, sandwiched between two 0.2 micron CH layers. Two foil targets, each consisting of a 0.1 micron thick Au foil mounted on 1 micron of CH, where placed 4 mm from the sample foil. The soft x-rays where produced by laser irradiating these two foil targets. We found that, 0.5 ns after the peak of the laser heating pulses, the measured cross sections more closely matched those simulated using the Thomas Fermi model than the Inferno model. Later in time, at 2 ns, the plasma is approaching a weakly coupled state. This is the first time x-ray scattering cross sections have been measured from dense plasmas generated by radiatively heating both sides of the sample. Moreover, these are absolute values typically within a factor of two of expectation for early x-ray probe times. (author)

  11. X-ray scattering from dense plasmas

    Science.gov (United States)

    McSherry, Declan Joseph

    Dense plasmas were studied by probing them with kilovolt x-rays and measuring those scattered at various angles. The laser produced x-ray source emitted Ti He alpha 4.75 keV x-rays. Two different plasma types were explored. The first was created by laser driven shocks on either side of a sample foil consisting of 2 micron thickness of Al, sandwiched between two 1 micron CH layers. We have observed a peak in the x-ray scattering cross section, indicating diffraction from the plasma. However, the experimentally inferred plasma density, did not always agree broadly with the hydrodynamic simulation MEDX (A modified version of MEDUSA). The second plasma type that we studied was created by soft x-ray heating on either side of a sample foil, this time consisting of 1 micron thickness of Al, sandwiched between two 0.2 micron CH layers. Two foil targets, each consisting of a 0.1 micron thick Au foil mounted on 1 micron of CH, were placed 4 mm from the sample foil. The soft x-rays were produced by laser irradiating these two foil targets. We found that, 0.5 ns after the peak of the laser heating pulses, that the measured cross sections more closely matched those simulated using the Thomas Fermi model than the Inferno model. Later in time, at 2 ns, the plasma is approaching a weakly coupled state. This is the first time x-ray scattering cross sections have been measured from dense plasmas generated by radiatively heating both sides of the sample. Moreover, these are absolute values typically within a factor of two of expectation for early x-ray probe times.

  12. Dense gas dispersion in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Morten

    1998-09-01

    Dense gas dispersion is characterized by buoyancy induced gravity currents and reduction of the vertical mixing. Liquefied gas releases from industrial accidents are cold because of the heat of evaporation which determines the density for a given concentration and physical properties. The temperature deficit is moderated by the heat flux from the ground, and this convection is an additional source of turbulence which affects the mixing. A simple model as the soil heat flux is used to estimate the ability of the ground to sustain the heat flux during release. The initial enthalpy, release rate, initial entrainment and momentum are discussed for generic source types and the interaction with obstacles is considered. In the MTH project BA experiments source with and without momentum were applied. The continuously released propane gas passed a two-dimensional removable obstacle perpendicular to the wind direction. Ground-level gas concentrations and vertical profiles of concentration, temperature, wind speed and turbulence were measured in front of and behind the obstacle. Ultrasonic anemometers providing fast velocity and concentration signals were mounted at three levels on the masts. The observed turbulence was influenced by the stability and the initial momentum of the jet releases. Additional information were taken from the `Dessert tortoise` ammonia jet releases, from the `Fladis` experiment with transition from dense to passive dispersion, and from the `Thorney Island` continuous releases of isothermal freon mixtures. The heat flux was found to moderate the negative buoyancy in both the propane and ammonia experiments. The heat flux measurements are compared to an estimate by analogy with surface layer theory. (au) 41 tabs., 146 ills., 189 refs.

  13. Sampling Depths, Depth Shifts, and Depth Resolutions for Bi(n)(+) Ion Analysis in Argon Gas Cluster Depth Profiles.

    Science.gov (United States)

    Havelund, R; Seah, M P; Gilmore, I S

    2016-03-10

    Gas cluster sputter depth profiling is increasingly used for the spatially resolved chemical analysis and imaging of organic materials. Here, a study is reported of the sampling depth in secondary ion mass spectrometry depth profiling. It is shown that effects of the sampling depth leads to apparent shifts in depth profiles of Irganox 3114 delta layers in Irganox 1010 sputtered, in the dual beam mode, using 5 keV Ar₂₀₀₀⁺ ions and analyzed with Bi(q+), Bi₃(q+) and Bi₅(q+) ions (q = 1 or 2) with energies between 13 and 50 keV. The profiles show sharp delta layers, broadened from their intrinsic 1 nm thickness to full widths at half-maxima (fwhm's) of 8-12 nm. For different secondary ions, the centroids of the measured delta layers are shifted deeper or shallower by up to 3 nm from the position measured for the large, 564.36 Da (C₃₃H₄₆N₃O₅⁻) characteristic ion for Irganox 3114 used to define a reference position. The shifts are linear with the Bi(n)(q+) beam energy and are greatest for Bi₃(q+), slightly less for Bi₅(q+) with its wider or less deep craters, and significantly less for Bi(q+) where the sputtering yield is very low and the primary ion penetrates more deeply. The shifts increase the fwhm’s of the delta layers in a manner consistent with a linearly falling generation and escape depth distribution function (GEDDF) for the emitted secondary ions, relevant for a paraboloid shaped crater. The total depth of this GEDDF is 3.7 times the delta layer shifts. The greatest effect is for the peaks with the greatest shifts, i.e. Bi₃(q+) at the highest energy, and for the smaller fragments. It is recommended that low energies be used for the analysis beam and that carefully selected, large, secondary ion fragments are used for measuring depth distributions, or that the analysis be made in the single beam mode using the sputtering Ar cluster ions also for analysis.

  14. Depth filtering for auto-stereoscopic mobile devices

    OpenAIRE

    Martín Gutiérrez, Virginia; Cabrera Quesada, Julian; García Santos, Narciso

    2014-01-01

    In this work we address a scenario where 3D content is transmitted to a mobile terminal with 3D display capabilities. We consider the use of 2D plus depth format to represent the 3D content and focus on the generation of synthetic views in the terminal. We evaluate different types of smoothing filters that are applied to depth maps with the aim of reducing the disoccluded regions. The evaluation takes into account the reduction of holes in the synthetic view as well as the presence of geometr...

  15. A 3-Component Inverse Depth Parameterization for Particle Filter SLAM

    Science.gov (United States)

    Imre, Evren; Berger, Marie-Odile

    The non-Gaussianity of the depth estimate uncertainty degrades the performance of monocular extended Kalman filter SLAM (EKF-SLAM) systems employing a 3-component Cartesian landmark parameterization, especially in low-parallax configurations. Even particle filter SLAM (PF-SLAM) approaches are affected, as they utilize EKF for estimating the map. The inverse depth parameterization (IDP) alleviates this problem through a redundant representation, but at the price of increased computational complexity. The authors show that such a redundancy does not exist in PF-SLAM, hence the performance advantage of the IDP comes almost without an increase in the computational cost.

  16. i-BRUSH: a gaze-contingent virtual paintbrush for dense 3D reconstruction in robotic assisted surgery.

    Science.gov (United States)

    Visentini-Scarzanella, Marco; Mylonas, George P; Stoyanov, Danail; Yang, Guang-Zhong

    2009-01-01

    With increasing demand on intra-operative navigation and motion compensation during robotic assisted minimally invasive surgery, real-time 3D deformation recovery remains a central problem. Currently the majority of existing methods rely on salient features, where the inherent paucity of distinctive landmarks implies either a semi-dense reconstruction or the use of strong geometrical constraints. In this study, we propose a gaze-contingent depth reconstruction scheme by integrating human perception with semi-dense stereo and p-q based shading information. Depth inference is carried out in real-time through a novel application of Bayesian chains without smoothness priors. The practical value of the scheme is highlighted by detailed validation using a beating heart phantom model with known geometry to verify the performance of gaze-contingent 3D surface reconstruction and deformation recovery.

  17. Depth estimation via stage classification

    NARCIS (Netherlands)

    Nedović, V.; Smeulders, A.W.M.; Redert, A.; Geusebroek, J.M.

    2008-01-01

    We identify scene categorization as the first step towards efficient and robust depth estimation from single images. Categorizing the scene into one of the geometric classes greatly reduces the possibilities in subsequent phases. To that end, we introduce 15 typical 3D scene geometries, called

  18. A variable depth search branching

    OpenAIRE

    Cornillier, Fabien; Pécora, José Eduardo; Charles, Vincent

    2017-01-01

    We introduce a variable depth search branching, an extension to the local branching for solving Mixed-Integer Programs. Two strategies are assessed, a best improvement strategy and a first improvement strategy. The extensive computational assessment evidences a significant improvement over the local branching for both strategies. This record was migrated from the OpenDepot repository service in June, 2017 before shutting down.

  19. Breast cancer screening in Korean woman with dense breast tissue

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Jung [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Ko, Eun Sook [Dept. of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Yi, Ann [Dept. of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-11-15

    Asian women, including Korean, have a relatively higher incidence of dense breast tissue, compared with western women. Dense breast tissue has a lower sensitivity for the detection of breast cancer and a higher relative risk for breast cancer, compared with fatty breast tissue. Thus, there were limitations in the mammographic screening for women with dense breast tissue, and many studies for the supplemental screening methods. This review included appropriate screening methods for Korean women with dense breasts. We also reviewed the application and limitation of supplemental screening methods, including breast ultrasound, digital breast tomosynthesis, and breast magnetic resonance imaging; and furthermore investigated the guidelines, as well as the study results.

  20. Disentangling the excitation conditions of the dense gas in M17 SW

    CERN Document Server

    Pérez-Beaupuits, J P; Spaans, M; Ossenkopf, V; Menten, K M; Requena-Torres, M A; Wiesemeyer, H; Stutzki, J; Guevara, C; Simon, R

    2015-01-01

    We probe the chemical and energetic conditions in dense gas created by radiative feedback through observations of multiple CO, HCN and HCO$^+$ transitions toward the dense core of M17 SW. We used the dual band receiver GREAT on board the SOFIA airborne telescope to obtain maps of the $J=16-15$, $J=12-11$, and $J=11-10$ transitions of $^{12}$CO. We compare these maps with corresponding APEX and IRAM 30m telescope data for low- and mid-$J$ CO, HCN and HCO$^+$ emission lines, including maps of the HCN $J=8-7$ and HCO$^+$ $J=9-8$ transitions. The excitation conditions of $^{12}$CO, HCO$^+$ and HCN are estimated with a two-phase non-LTE radiative transfer model of the line spectral energy distributions (LSEDs) at four selected positions. The energy balance at these positions is also studied. We obtained extensive LSEDs for the CO, HCN and HCO$^+$ molecules toward M17 SW. The LSED shape, particularly the high-$J$ tail of the CO lines observed with SOFIA/GREAT, is distinctive for the underlying excitation conditions...

  1. Map Projection

    CERN Document Server

    Ghaderpour, Ebrahim

    2014-01-01

    In this paper, we introduce some known map projections from a model of the Earth to a flat sheet of paper or map and derive the plotting equations for these projections. The first fundamental form and the Gaussian fundamental quantities are defined and applied to obtain the plotting equations and distortions in length, shape and size for some of these map projections.

  2. Snow Depth Retrieval with UAS Using Photogrammetric Techniques

    Directory of Open Access Journals (Sweden)

    Benjamin Vander Jagt

    2015-07-01

    Full Text Available Alpine areas pose challenges for many existing remote sensing methods for snow depth retrieval, thus leading to uncertainty in water forecasting and budgeting. Herein, we present the results of a field campaign conducted in Tasmania, Australia in 2013 from which estimates of snow depth were derived using a low-cost photogrammetric approach on-board a micro unmanned aircraft system (UAS. Using commercial off-the-shelf (COTS sensors mounted on a multi-rotor UAS and photogrammetric image processing techniques, the results demonstrate that snow depth can be accurately retrieved by differencing two surface models corresponding to the snow-free and snow-covered scenes, respectively. In addition to accurate snow depth retrieval, we show that high-resolution (50 cm spatially continuous snow depth maps can be created using this methodology. Two types of photogrammetric bundle adjustment (BA routines are implemented in this study to determine the optimal estimates of sensor position and orientation, in addition to 3D scene information; conventional BA (which relies on measured ground control points and direct BA (which does not require ground control points. Error sources that affect the accuracy of the BA and subsequent snow depth reconstruction are discussed. The results indicate the UAS is capable of providing high-resolution and high-accuracy (<10 cm estimates of snow depth over a small alpine area (~0.7 ha with significant snow accumulation (depths greater than one meter at a fraction of the cost of full-size aerial survey approaches. The RMSE of estimated snow depths using the conventional BA approach is 9.6 cm, whereas the direct BA is characterized by larger error, with an RMSE of 18.4 cm. If a simple affine transformation is applied to the point cloud derived from the direct BA, the overall RMSE is reduced to 8.8 cm RMSE.

  3. Joint Projection Filling method for occlusion handling in Depth-Image-Based Rendering

    OpenAIRE

    Jantet, Vincent; Guillemot, Christine; Morin, Luce

    2011-01-01

    International audience; This paper addresses the disocclusion problem which may occur when using Depth-Image-Based Rendering (DIBR) techniques in 3DTV and Free-Viewpoint TV applications. A new DIBR technique is proposed, which combines three methods: a Joint Projection Filling (JPF) method to handle disocclusions in synthesized depth maps; a backward projection to synthesize virtual views; and a full-Z depth-aided inpainting to fill in disoccluded areas in textures. The JPF method performs th...

  4. Depth-color fusion strategy for 3-D scene modeling with Kinect.

    Science.gov (United States)

    Camplani, Massimo; Mantecon, Tomas; Salgado, Luis

    2013-12-01

    Low-cost depth cameras, such as Microsoft Kinect, have completely changed the world of human-computer interaction through controller-free gaming applications. Depth data provided by the Kinect sensor presents several noise-related problems that have to be tackled to improve the accuracy of the depth data, thus obtaining more reliable game control platforms and broadening its applicability. In this paper, we present a depth-color fusion strategy for 3-D modeling of indoor scenes with Kinect. Accurate depth and color models of the background elements are iteratively built, and used to detect moving objects in the scene. Kinect depth data is processed with an innovative adaptive joint-bilateral filter that efficiently combines depth and color by analyzing an edge-uncertainty map and the detected foreground regions. Results show that the proposed approach efficiently tackles main Kinect data problems: distance-dependent depth maps, spatial noise, and temporal random fluctuations are dramatically reduced; objects depth boundaries are refined, and nonmeasured depth pixels are interpolated. Moreover, a robust depth and color background model and accurate moving objects silhouette are generated.

  5. Rainbow Particle Imaging Velocimetry for Dense 3D Fluid Velocity Imaging

    KAUST Repository

    Xiong, Jinhui

    2017-04-11

    Despite significant recent progress, dense, time-resolved imaging of complex, non-stationary 3D flow velocities remains an elusive goal. In this work we tackle this problem by extending an established 2D method, Particle Imaging Velocimetry, to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a “rainbow”), such that each depth corresponds to a specific wavelength of light. A diffractive component in the camera optics ensures that all planes are in focus simultaneously. For reconstruction, we derive an image formation model for recovering stationary 3D particle positions. 3D velocity estimation is achieved with a variant of 3D optical flow that accounts for both physical constraints as well as the rainbow image formation model. We evaluate our method with both simulations and an experimental prototype setup.

  6. Topographic mapping

    Science.gov (United States)

    ,

    2008-01-01

    The U.S. Geological Survey (USGS) produced its first topographic map in 1879, the same year it was established. Today, more than 100 years and millions of map copies later, topographic mapping is still a central activity for the USGS. The topographic map remains an indispensable tool for government, science, industry, and leisure. Much has changed since early topographers traveled the unsettled West and carefully plotted the first USGS maps by hand. Advances in survey techniques, instrumentation, and design and printing technologies, as well as the use of aerial photography and satellite data, have dramatically improved mapping coverage, accuracy, and efficiency. Yet cartography, the art and science of mapping, may never before have undergone change more profound than today.

  7. Self Configurable Intelligent Distributed Antenna System for Resource Management in Multilayered Dense-nets

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena Dimitrova; Prasad, Ramjee

    2016-01-01

    to their respective Base Stations (BS). Moreover, in earlier generations of MCC, antennas were deemed collocated with their respective BSs. Later, the concepts like Distributed Antenna Systems (DAS) and Cloud RAN (C-RAN) made it possible to place these antennas distant from their respective BSs. However, being mapped...... with their respective base stations, spectrum pooling and management at antenna end is not efficient. The situation worsens in Heterogeneous and Dense-net conditions in an Area of Interest (AoI). In this paper, we propose a DAS based intelligent architecture referred to as Self Configurable Intelligent Distributed...... Antenna System (SCIDAS) that can simultaneously accommodate multilayer communication environment over a common BS....

  8. Real-time study of fast-electron transport inside dense hot plasmas.

    Science.gov (United States)

    Sandhu, A S; Ravindra Kumar, G; Sengupta, S; Das, A; Kaw, P K

    2006-03-01

    We offer a method to study transport of fast electrons in dense hot media. The technique relies on temporal profiling of the laser induced magnetic fields and offers a unique capability to map the hot electron currents and their neutralization (or lack of it) by the return currents in the plasma. We report direct quantitative measurements of strong electric inhibition in insulators and turbulence induced anomalous stopping of hot electrons in conductors. The present technique can prove extremely important from the point of view of fast ignition scheme, which relies on the penetration of fast electrons into the fusion core.

  9. The ionization fraction in dense clouds

    CERN Document Server

    De Boisanger, C B; Van Dishoeck, E F

    1995-01-01

    We present submillimeter observations of various molecular ions toward two dense clouds, NGC 2264 IRS1 and W 3 IRS5, in order to investigate their ionization fraction. Analysis of the line intensity ratios by the way of statistical equilibrium calculations allows determination of the physical parameters: n(H2)~(1-2)e6 cm-3 and T(kin)~50-100 K. Column densities and abundances are also derived. Together, the abundances of the observed ions provide a lower limit to the ionization fraction, which is (2-3)e-9 in both clouds. In order to better constrain the electron abundance, a simple chemical model is built which calculates the steady state abundances of the major positive ions, using the observed abundances wherever available. With reasonable assumptions, good agreement within a factor of two with the observations can be achieved. The calculated electron fraction is x(e)= (1.0-3.3)e-8 in the case of NGC 2264 and x(e)=(0.5-1.1)e-8 for W 3 IRS5. In the first case, the high abundance of N2H+ requires a rather high...

  10. Elemental nitrogen partitioning in dense interstellar clouds

    CERN Document Server

    Daranlot, Julien; Bergeat, Astrid; Costes, Michel; Loison, Jean-Christophe; Wakelam, Valentine; Hickson, Kevin M

    2012-01-01

    Many chemical models of dense interstellar clouds predict that the majority of gas-phase elemental nitrogen should be present as N2, with an abundance approximately five orders of magnitude less than that of hydrogen. As a homonuclear diatomic molecule, N2 is difficult to detect spectroscopically through infrared or millimetre-wavelength transitions so its abundance is often inferred indirectly through its reaction product N2H+. Two main formation mechanisms each involving two radical-radical reactions are the source of N2 in such environments. Here we report measurements of the low temperature rate constants for one of these processes, the N + CN reaction down to 56 K. The effect of the measured rate constants for this reaction and those recently determined for two other reactions implicated in N2 formation are tested using a gas-grain model employing a critically evaluated chemical network. We show that the amount of interstellar nitrogen present as N2 depends on the competition between its gas-phase format...

  11. Kinetic Simulations of Dense Plasma Focus Breakdown

    Science.gov (United States)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Order and instabilities in dense bacterial colonies

    Science.gov (United States)

    Tsimring, Lev

    2012-02-01

    The structure of cell colonies is governed by the interplay of many physical and biological factors, ranging from properties of surrounding media to cell-cell communication and gene expression in individual cells. The biomechanical interactions arising from the growth and division of individual cells in confined environments are ubiquitous, yet little work has focused on this fundamental aspect of colony formation. By combining experimental observations of growing monolayers of non-motile strain of bacteria Escherichia coli in a shallow microfluidic chemostat with discrete-element simulations and continuous theory, we demonstrate that expansion of a dense colony leads to rapid orientational alignment of rod-like cells. However, in larger colonies, anisotropic compression may lead to buckling instability which breaks perfect nematic order. Furthermore, we found that in shallow cavities feedback between cell growth and mobility in a confined environment leads to a novel cell streaming instability. Joint work with W. Mather, D. Volfson, O. Mondrag'on-Palomino, T. Danino, S. Cookson, and J. Hasty (UCSD) and D. Boyer, S. Orozco-Fuentes (UNAM, Mexico).

  13. Real Time Collision Detection Using Depth Texturing Spheres

    Institute of Scientific and Technical Information of China (English)

    WANG Ji; ZHAI Zhengjun; CAI Xiaobin

    2006-01-01

    In this paper, we present a novel collision detection algorithm to real time detect the collisions of objects. We generate sphere textures of objects, and use programmable graphics hardware to mapping texture and check the depth of different objects to detect the collision. We have implemented the algorithm and compared it with CULLIDE. The result shows that our algorithm is more effective than CULLIDE and has fixed executive time to suit for real-time applications.

  14. Image-Guided Non-Local Dense Matching with Three-Steps Optimization

    Science.gov (United States)

    Huang, Xu; Zhang, Yongjun; Yue, Zhaoxi

    2016-06-01

    This paper introduces a new image-guided non-local dense matching algorithm that focuses on how to solve the following problems: 1) mitigating the influence of vertical parallax to the cost computation in stereo pairs; 2) guaranteeing the performance of dense matching in homogeneous intensity regions with significant disparity changes; 3) limiting the inaccurate cost propagated from depth discontinuity regions; 4) guaranteeing that the path between two pixels in the same region is connected; and 5) defining the cost propagation function between the reliable pixel and the unreliable pixel during disparity interpolation. This paper combines the Census histogram and an improved histogram of oriented gradient (HOG) feature together as the cost metrics, which are then aggregated based on a new iterative non-local matching method and the semi-global matching method. Finally, new rules of cost propagation between the valid pixels and the invalid pixels are defined to improve the disparity interpolation results. The results of our experiments using the benchmarks and the Toronto aerial images from the International Society for Photogrammetry and Remote Sensing (ISPRS) show that the proposed new method can outperform most of the current state-of-the-art stereo dense matching methods.

  15. Neutral atomic carbon in dense molecular clouds

    Science.gov (United States)

    Zmuidzinas, J.; Betz, A. L.; Boreiko, R. T.; Goldhaber, D. M.

    1988-01-01

    The 370 micron 3P2-3P1 fine-structure line of neutral carbon was detected in seven sources: OMC 1, NGC 2024, S140, W3, DR 21, M17, and W51. Simultaneous analysis of J = 2-1 data and available observations of the J = 1-0 line make it possible to deduce optical depths and excitation temperatures for these lines. These data indicate that both C I lines are likely to be optically thin, and that the ratio of C I to CO column densities in these clouds is typically about 0.1.

  16. Ultrasonic material hardness depth measurement

    Science.gov (United States)

    Good, Morris S.; Schuster, George J.; Skorpik, James R.

    1997-01-01

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part.

  17. Applications of positron depth profiling

    Energy Technology Data Exchange (ETDEWEB)

    Hakvoort, R.A.

    1993-12-23

    In this thesis some contributions of the positron-depth profiling technique to materials science have been described. Following studies are carried out: Positron-annihilation measurements on neon-implanted steel; Void creation in silicon by helium implantation; Density of vacancy-type defects present in amorphous silicon prepared by ion implantation; Measurements of other types of amorphous silicon; Epitaxial cobalt disilicide prepared by cobalt outdiffusion. Positron-annihilation experiments on low-pressure CVD silicon-nitride films. (orig./MM).

  18. Edge-preserving Intra Depth Coding based on Context-coding and H.264/AVC

    DEFF Research Database (Denmark)

    Zamarin, Marco; Salmistraro, Matteo; Forchhammer, Søren;

    2013-01-01

    Depth map coding plays a crucial role in 3D Video communication systems based on the “Multi-view Video plus Depth” representation as view synthesis performance is strongly affected by the accuracy of depth information, especially at edges in the depth map image. In this paper an efficient algorithm...... each approximated by a flat surface. Edge information is encoded by means of contextcoding with an adaptive template. As a novel element, the proposed method allows exploiting the edge structure of previously encoded edge macroblocks during the context-coding step to further increase compression...

  19. Star Forming Dense Cloud Cores in the TeV -ray SNR RX J1713.7-3946

    Energy Technology Data Exchange (ETDEWEB)

    Sano, H.; Sato, J.; Yamamoto, H.; Hayakawa, T.; Torii, K.; Moribe, N.; Kawamura, A.; Okuda, T.; Mizuno, N.; Onishi, T.; Maezawa, H.; Inoue, T.; Inutsuka, S.; Tanaka, T.; Mizuno, A.; Ogawa, H.; Stutzki, J.; Bertoldi, F.; Anderl, S.; Bronfman, L.; Koo, B.C.

    2010-10-27

    RX J1713.7-3946 is one of the TeV {gamma}-ray supernova remnants (SNRs) emitting synchrotron X rays. The SNR is associated with molecular gas located at {approx}1 kpc. We made new molecular observations toward the dense cloud cores, peaks A, C and D, in the SNR in the {sup 12}CO(J=2-1) and {sup 13}CO(J=2-1) transitions at angular resolution of 90 degrees. The most intense core in {sup 13}CO, peak C, was also mapped in the {sup 12}CO(J=4-3) transition at angular resolution of 38 degrees. Peak C shows strong signs of active star formation including bipolar outflow and a far-infrared protostellar source and has a steep gradient with a r{sup -2.2 {+-} 0.4} variation in the average density within radius r. Peak C and the other dense cloud cores are rim-brightened in synchrotron X rays, suggesting that the dense cloud cores are embedded within or on the outer boundary of the SNR shell. This confirms the earlier suggestion that the X rays are physically associated with the molecular gas (Fukui et al. 2003). We present a scenario where the densest molecular core, peak C, survived against the blast wave and is now embedded within the SNR. Numerical simulations of the shock-cloud interaction indicate that a dense clump can indeed survive shock erosion, since shock propagation speed is stalled in the dense clump. Additionally, the shock-cloud interaction induces turbulence and magnetic field amplification around the dense clump that may facilitate particle acceleration in the lower-density inter-clump space leading to the enhanced synchrotron X rays around dense cores.

  20. Depth estimation and camera calibration of a focused plenoptic camera for visual odometry

    Science.gov (United States)

    Zeller, Niclas; Quint, Franz; Stilla, Uwe

    2016-08-01

    This paper presents new and improved methods of depth estimation and camera calibration for visual odometry with a focused plenoptic camera. For depth estimation we adapt an algorithm previously used in structure-from-motion approaches to work with images of a focused plenoptic camera. In the raw image of a plenoptic camera, scene patches are recorded in several micro-images under slightly different angles. This leads to a multi-view stereo-problem. To reduce the complexity, we divide this into multiple binocular stereo problems. For each pixel with sufficient gradient we estimate a virtual (uncalibrated) depth based on local intensity error minimization. The estimated depth is characterized by the variance of the estimate and is subsequently updated with the estimates from other micro-images. Updating is performed in a Kalman-like fashion. The result of depth estimation in a single image of the plenoptic camera is a probabilistic depth map, where each depth pixel consists of an estimated virtual depth and a corresponding variance. Since the resulting image of the plenoptic camera contains two plains: the optical image and the depth map, camera calibration is divided into two separate sub-problems. The optical path is calibrated based on a traditional calibration method. For calibrating the depth map we introduce two novel model based methods, which define the relation of the virtual depth, which has been estimated based on the light-field image, and the metric object distance. These two methods are compared to a well known curve fitting approach. Both model based methods show significant advantages compared to the curve fitting method. For visual odometry we fuse the probabilistic depth map gained from one shot of the plenoptic camera with the depth data gained by finding stereo correspondences between subsequent synthesized intensity images of the plenoptic camera. These images can be synthesized totally focused and thus finding stereo correspondences is enhanced

  1. Underwater camera with depth measurement

    Science.gov (United States)

    Wang, Wei-Chih; Lin, Keng-Ren; Tsui, Chi L.; Schipf, David; Leang, Jonathan

    2016-04-01

    The objective of this study is to develop an RGB-D (video + depth) camera that provides three-dimensional image data for use in the haptic feedback of a robotic underwater ordnance recovery system. Two camera systems were developed and studied. The first depth camera relies on structured light (as used by the Microsoft Kinect), where the displacement of an object is determined by variations of the geometry of a projected pattern. The other camera system is based on a Time of Flight (ToF) depth camera. The results of the structural light camera system shows that the camera system requires a stronger light source with a similar operating wavelength and bandwidth to achieve a desirable working distance in water. This approach might not be robust enough for our proposed underwater RGB-D camera system, as it will require a complete re-design of the light source component. The ToF camera system instead, allows an arbitrary placement of light source and camera. The intensity output of the broadband LED light source in the ToF camera system can be increased by putting them into an array configuration and the LEDs can be modulated comfortably with any waveform and frequencies required by the ToF camera. In this paper, both camera were evaluated and experiments were conducted to demonstrate the versatility of the ToF camera.

  2. Permutation Matrix Method for Dense Coding Using GHZ States

    Institute of Scientific and Technical Information of China (English)

    JIN Rui-Bo; CHEN Li-Bing; WANG Fa-Qiang; SU Zhi-Kun

    2008-01-01

    We present a new method called the permutation matrix method to perform dense coding using Greenberger-Horne-Zeilinger (GHZ) states. We show that this method makes the study of dense coding systematically and regularly. It also has high potential to be realized physically.

  3. Mining connected global and local dense subgraphs for bigdata

    Science.gov (United States)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  4. Phase Structure and Transport Properties of Dense Quark Matter

    CERN Document Server

    Schaefer, Thomas

    2010-01-01

    We provide a summary of our current knowledge of the phase structure of very dense quark matter. We concentrate on the question how the ground state at asymptotically high density -- color-flavor-locked (CFL) matter -- is modified as the density is lowered. We discuss the nature of the quasi-particle excitations, and present work on the transport properties of dense QCD matter.

  5. Finding dense locations in symbolic indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2017-01-01

    Finding the dense locations in large indoor spaces is very useful for many applications such as overloaded area detection, security control, crowd management, indoor navigation, and so on. Indoor tracking data can be enormous and are not immediately ready for finding dense locations. This paper...

  6. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci

    NARCIS (Netherlands)

    Meuwissen, T.H.E.; Goddard, M.E.

    2000-01-01

    A multimarker linkage disequilibrium mapping method was developed for the fine mapping of quantitative trait loci (QTL) using a dense marker map. The method compares the expected covariances between haplotype effects given a postulated QTL position to the covariances that are found in the data. The

  7. Learning-based saliency model with depth information.

    Science.gov (United States)

    Ma, Chih-Yao; Hang, Hsueh-Ming

    2015-01-01

    Most previous studies on visual saliency focused on two-dimensional (2D) scenes. Due to the rapidly growing three-dimensional (3D) video applications, it is very desirable to know how depth information affects human visual attention. In this study, we first conducted eye-fixation experiments on 3D images. Our fixation data set comprises 475 3D images and 16 subjects. We used a Tobii TX300 eye tracker (Tobii, Stockholm, Sweden) to track the eye movement of each subject. In addition, this database contains 475 computed depth maps. Due to the scarcity of public-domain 3D fixation data, this data set should be useful to the 3D visual attention research community. Then, a learning-based visual attention model was designed to predict human attention. In addition to the popular 2D features, we included the depth map and its derived features. The results indicate that the extra depth information can enhance the saliency estimation accuracy specifically for close-up objects hidden in a complex-texture background. In addition, we examined the effectiveness of various low-, mid-, and high-level features on saliency prediction. Compared with both 2D and 3D state-of-the-art saliency estimation models, our methods show better performance on the 3D test images. The eye-tracking database and the MATLAB source codes for the proposed saliency model and evaluation methods are available on our website.

  8. The JCMT Gould Belt Survey: A First Look at Dense Cores in Orion B

    CERN Document Server

    Kirk, H; Johnstone, D; Duarte-Cabral, A; Sadavoy, S; Hatchell, J; Mottram, J C; Buckle, J; Berry, D S; Broekhoven-Fiene, H; Currie, M J; Fich, M; Jenness, T; Nutter, D; Pattle, K; Pineda, J E; Quinn, C; Salji, C; Tisi, S; Hogerheijde, M R; Ward-Thompson, D; Bastien, P; Bresnahan, D; Butner, H; Chen, M; Chrysostomou, A; Coude, S; Davis, C J; Drabek-Maunder, E; Fiege, J; Friberg, P; Friesen, R; Fuller, G A; Graves, S; Greaves, J; Gregson, J; Holland, W; Joncas, G; Kirk, J M; Knee, L B G; Mairs, S; Marsh, K; Matthews, B C; Moriarty-Schieven, G; Mowat, C; Rawlings, J; Richer, J; Robertson, D; Rosolowsky, E; Rumble, D; Thomas, H; Tothill, N; Viti, S; White, G J; Wouterloot, J; Yates, J; Zhu, M

    2015-01-01

    We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 micron map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 micron peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1-2 x 10^23 cm^-2, most of ...

  9. Graphle: Interactive exploration of large, dense graphs

    Directory of Open Access Journals (Sweden)

    Huttenhower Curtis

    2009-12-01

    Full Text Available Abstract Background A wide variety of biological data can be modeled as network structures, including experimental results (e.g. protein-protein interactions, computational predictions (e.g. functional interaction networks, or curated structures (e.g. the Gene Ontology. While several tools exist for visualizing large graphs at a global level or small graphs in detail, previous systems have generally not allowed interactive analysis of dense networks containing thousands of vertices at a level of detail useful for biologists. Investigators often wish to explore specific portions of such networks from a detailed, gene-specific perspective, and balancing this requirement with the networks' large size, complex structure, and rich metadata is a substantial computational challenge. Results Graphle is an online interface to large collections of arbitrary undirected, weighted graphs, each possibly containing tens of thousands of vertices (e.g. genes and hundreds of millions of edges (e.g. interactions. These are stored on a centralized server and accessed efficiently through an interactive Java applet. The Graphle applet allows a user to examine specific portions of a graph, retrieving the relevant neighborhood around a set of query vertices (genes. This neighborhood can then be refined and modified interactively, and the results can be saved either as publication-quality images or as raw data for further analysis. The Graphle web site currently includes several hundred biological networks representing predicted functional relationships from three heterogeneous data integration systems: S. cerevisiae data from bioPIXIE, E. coli data using MEFIT, and H. sapiens data from HEFalMp. Conclusions Graphle serves as a search and visualization engine for biological networks, which can be managed locally (simplifying collaborative data sharing and investigated remotely. The Graphle framework is freely downloadable and easily installed on new servers, allowing any

  10. Multiscale site-response mapping: A case study of Parkfield, California

    Science.gov (United States)

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.; Morgan, E.C.; Kaklamanos, J.

    2011-01-01

    The scale of previously proposed methods for mapping site-response ranges from global coverage down to individual urban regions. Typically, spatial coverage and accuracy are inversely related.We use the densely spaced strong-motion stations in Parkfield, California, to estimate the accuracy of different site-response mapping methods and demonstrate a method for integrating multiple site-response estimates from the site to the global scale. This method is simply a weighted mean of a suite of different estimates, where the weights are the inverse of the variance of the individual estimates. Thus, the dominant site-response model varies in space as a function of the accuracy of the different models. For mapping applications, site-response models should be judged in terms of both spatial coverage and the degree of correlation with observed amplifications. Performance varies with period, but in general the Parkfield data show that: (1) where a velocity profile is available, the square-rootof- impedance (SRI) method outperforms the measured VS30 (30 m divided by the S-wave travel time to 30 m depth) and (2) where velocity profiles are unavailable, the topographic slope method outperforms surficial geology for short periods, but geology outperforms slope at longer periods. We develop new equations to estimate site response from topographic slope, derived from the Next Generation Attenuation (NGA) database.

  11. Misleading reconstruction of seawater intrusion via integral depth sampling

    Science.gov (United States)

    Colombani, N.; Volta, G.; Osti, A.; Mastrocicco, M.

    2016-05-01

    Saltwater intrusion in coastal aquifers is an urgent issue for the actual and future groundwater supply and a detailed characterization of groundwater quality with depth is a fundamental prerequisite to correctly distinguish salinization processes. In this study, interpolated Cl- maps of the Po River delta coastal aquifer (Italy), gained with Integrated Depth Sampling (IDS) and Multi-Level Sampling (MLS) techniques, are compared. The data set used to build up the IDS and MLS interpolated Cl- maps come from numerous monitoring campaigns on surface and ground waters, covering the time frame from 2010 to 2014. The IDS interpolated Cl- map recalls the phenomenon of actual seawater intrusion, with Cl- concentration never exceeding that of seawater and the absence of hypersaline groundwater all over the study area. On the contrary, in the MLS interpolated Cl- maps the lower portion of the unconfined aquifer presents hypersaline groundwater making it necessary to consider salinization processes other than actual seawater intrusion, like upward flux from a saline aquitard. Results demonstrate the obligation of using MLS in reconstructing a reliable representation of the distribution of salinity, especially in areas where the density contrast between fresh and saline groundwater is large. Implications of the reported field case are not limited to the local situation but have a wider significance, since the IDS technique is often employed in saltwater intrusion monitoring even in recent works, with detrimental effect on the sustainable water resource management of coastal aquifers.

  12. Characterizing subsurface textural properties using electromagnetic induction mapping and geostatistics

    Science.gov (United States)

    Abdu, Hiruy

    Knowledge of the spatial distribution of soil textural properties at the watershed scale is important for understanding spatial patterns of water movement, and in determining soil moisture storage and soil hydraulic transport properties. Capturing the heterogeneous nature of the subsurface without exhaustive and costly sampling presents a significant challenge. Soil scientists and geologists have adapted geophysical methods that measure a surrogate property related to the vital underlying process. Apparent electrical conductivity (ECa) is such a proxy, providing a measure of charge mobility due to application of an electric field, and is highly correlated to the electrical conductivity of the soil solution, clay percentage, and water content. Electromagnetic induction (EMI) provides the possibility of obtaining high resolution images of ECa across a landscape to identify subtle changes in subsurface properties. The aim of this study was to better characterize subsurface textural properties using EMI mapping and geostatistical analysis techniques. The effect of variable temperature environments on EMI instrumental response, and EC a -- depth relationship were first determined. Then a procedure of repeated EMI mapping at varying soil water content was developed and integrated with temporal stability analysis to capture the time invariant properties of spatial soil texture on an agricultural field. In addition, an EMI imaging approach of densely sampling the subsurface of the Reynolds Mountain East watershed was presented using kriging to interpolate, and Sequential Gaussian Simulation to estimate the uncertainty in the maps. Due to the relative time-invariant characteristics of textural properties, it was possible to correlate clay samples collected over three seasons to ECa data of one mapping event. Kriging methods [ordinary kriging (OK), cokriging (CK), and regression kriging (RK)] were then used to integrate various levels of information (clay percentage, ECa

  13. Mapping Deeply

    OpenAIRE

    Denis Wood

    2015-01-01

    This is a description of an avant la lettre deep mapping project carried out by a geographer and a number of landscape architecture students in the early 1980s. Although humanists seem to take the “mapping” in deep mapping more metaphorically than cartographically, in this neighborhood mapping project, the mapmaking was taken literally, with the goal of producing an atlas of the neighborhood. In this, the neighborhood was construed as a transformer, turning the stuff of the world (gas, wate...

  14. Polynomial mappings

    CERN Document Server

    Narkiewicz, Wŀadysŀaw

    1995-01-01

    The book deals with certain algebraic and arithmetical questions concerning polynomial mappings in one or several variables. Algebraic properties of the ring Int(R) of polynomials mapping a given ring R into itself are presented in the first part, starting with classical results of Polya, Ostrowski and Skolem. The second part deals with fully invariant sets of polynomial mappings F in one or several variables, i.e. sets X satisfying F(X)=X . This includes in particular a study of cyclic points of such mappings in the case of rings of algebrai integers. The text contains several exercises and a list of open problems.

  15. Participatory Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    2016-01-01

    practice. In particular, mapping environmental damage, endangered species, and human-made disasters has become one focal point for environmental knowledge production. This type of digital map has been highlighted as a processual turn in critical cartography, whereas in related computational journalism...... of a geo-visualization within information mapping that enhances embodiment in the experience of the information. InfoAmazonia is defined as a digitally created map-space within which journalistic practice can be seen as dynamic, performative interactions between journalists, ecosystems, space, and species...

  16. OBLIQUE MULTI-CAMERA SYSTEMS – ORIENTATION AND DENSE MATCHING ISSUES

    Directory of Open Access Journals (Sweden)

    E. Rupnik

    2014-03-01

    Full Text Available The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.. The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported.

  17. Eight-year climatology of dust optical depth on Mars

    Science.gov (United States)

    Montabone, L.; Forget, F.; Millour, E.; Wilson, R. J.; Lewis, S. R.; Cantor, B.; Kass, D.; Kleinböhl, A.; Lemmon, M. T.; Smith, M. D.; Wolff, M. J.

    2015-05-01

    We have produced a multiannual climatology of airborne dust from martian year 24-31 using multiple datasets of retrieved or estimated column optical depths. The datasets are based on observations of the martian atmosphere from April 1999 to July 2013 made by different orbiting instruments: the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists of gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates averages and uncertainties on a regularly spaced spatio-temporal grid, using an iterative procedure that is weighted in space, time, and retrieval quality. The lack of observations at certain times and locations introduces missing grid points in the maps, which therefore may result in irregularly gridded (i.e. incomplete) fields. In order to evaluate the strengths and weaknesses of the resulting gridded maps, we compare with independent observations of CDOD by PanCam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. We have statistically analyzed the irregularly gridded maps to provide an overview of the dust climatology on Mars over eight years, specifically in relation to its interseasonal and interannual variability, in addition to provide a basis for instrument intercomparison. Finally, we have produced regularly gridded maps of CDOD by spatially interpolating the irregularly gridded maps using a kriging method. These complete maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modeling

  18. A Bayesian framework for human body pose tracking from depth image sequences.

    Science.gov (United States)

    Zhu, Youding; Fujimura, Kikuo

    2010-01-01

    This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach.

  19. Dense water cascading, bottom currents and sediment wave formation at the exit of the Bari canyon (Southern Adriatic Sea, Italy)

    Science.gov (United States)

    Langone, Leonardo; Miserocchi, Stefano; Boldrin, Alfredo; Turchetto, Margherita; Foglini, Federica; Trincardi, Fabio

    2010-05-01

    The dense water forming in the North Adriatic (NAdDW) spreading southward along the Italian continental shelf, sinks in the Southern Adriatic basin through particular cascading events. Such events are seasonal, occurring specially in April, with variable intensity. These phenomena control the water mass mixing, the deep ocean ventilation, the behaviour of deep ecosystems, the formation of complex erosive and depositional bedforms and the abyssal export and burial of nutrients and carbon. Because of the NadDW formation is linked to climate factors (frequency, duration and size of Bura winds), the temporal variations of the NadDW dispersion into the Southern Adriatic allow to make inferences of the impact of recent climate changes on the ecosystems of the deep Mediterranean Sea. Previous research projects (EuroStrataform, HERMES) acquired a large data set of bathymetric, side-scan sonar (TOBI) and Chirp sonar profiles, which were used to build detailed morpho-bathymetric maps of the Southern Adriatic margin. There, the seabed is extremely complex, characterized by a large variety of bedforms (sediment waves, erosive scours, longitudinal furrows and giant comet marks). A branch of the cascading NAdDW is confined and accelerated through the Bari canyon where it produces a strong current capable of reaching down-slope velocities greater than 60 cm s-1 near the bottom at ~600 m of water depth, eroding the canyon thalweg and entraining large amounts of fine-grained sediment. At the exit of the canyon, in water depth greater than 800 m, the current becomes less confined, spreads laterally and generates an 80-km2-wide field of mud waves; these bedforms migrate up current and show amplitudes up to 50 m and wavelengths of about 1 km. Cruise IMPACT-09 of RV Urania was carried out in the Southern Adriatic Sea from 17-30 March 2009 with main scope of studying the impact of NadDW cascading events on the deep ecosystems of the Southern Adriatic. Experiments planned in the cruise

  20. Depth-varying azimuthal anisotropy in the Tohoku subduction channel

    Science.gov (United States)

    Liu, Xin; Zhao, Dapeng

    2017-09-01

    We determine a detailed 3-D model of azimuthal anisotropy tomography of the Tohoku subduction zone from the Japan Trench outer-rise to the back-arc near the Japan Sea coast, using a large number of high-quality P and S wave arrival-time data of local earthquakes recorded by the dense seismic network on the Japan Islands. Depth-varying seismic azimuthal anisotropy is revealed in the Tohoku subduction channel. The shallow portion of the Tohoku megathrust zone (plate mainly exhibits trench-parallel FVDs, except for the top portion of the subducting Pacific slab where visible trench-normal FVDs are revealed. A qualitative tectonic model is proposed to interpret such anisotropic features, suggesting transposition of earlier fabrics in the oceanic lithosphere into subduction-induced new structures in the subduction channel.

  1. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Seshadhri, Comandur [The Ohio State Univ., Columbus, OH (United States); Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sariyuce, Ahmet Erdem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Catalyurek, Umit [The Ohio State Univ., Columbus, OH (United States)

    2014-11-01

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account for overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.

  2. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Timothy L. Ward

    2000-06-30

    . This successfully reduced cracking, however the films retained open porosity. The investigation of this concept will be continued in the final year of the project. Investigation of a metal organic chemical vapor deposition (MOCVD) method for defect mending in dense membranes was also initiated. An appropriate metal organic precursor (iron tetramethylheptanedionate) was identified whose deposition can be controlled by access to oxygen at temperatures in the 280-300 C range. Initial experiments have deposited iron oxide, but only on the membrane surface; thus refinement of this method will continue.

  3. Neutrino reactions in hot and dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lohs, Andreas

    2015-04-13

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  4. Inverse magnetic catalysis in dense holographic matter

    CERN Document Server

    Preis, Florian; Schmitt, Andreas

    2010-01-01

    We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N_c) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration - in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This "inverse magnetic catalysis" (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition ...

  5. END-TO-END DEPTH FROM MOTION WITH STABILIZED MONOCULAR VIDEOS

    Directory of Open Access Journals (Sweden)

    C. Pinard

    2017-08-01

    Full Text Available We propose a depth map inference system from monocular videos based on a novel dataset for navigation that mimics aerial footage from gimbal stabilized monocular camera in rigid scenes. Unlike most navigation datasets, the lack of rotation implies an easier structure from motion problem which can be leveraged for different kinds of tasks such as depth inference and obstacle avoidance. We also propose an architecture for end-to-end depth inference with a fully convolutional network. Results show that although tied to camera inner parameters, the problem is locally solvable and leads to good quality depth prediction.

  6. A computationally efficient denoising and hole-filling method for depth image enhancement

    Science.gov (United States)

    Liu, Soulan; Chen, Chen; Kehtarnavaz, Nasser

    2016-04-01

    Depth maps captured by Kinect depth cameras are being widely used for 3D action recognition. However, such images often appear noisy and contain missing pixels or black holes. This paper presents a computationally efficient method for both denoising and hole-filling in depth images. The denoising is achieved by utilizing a combination of Gaussian kernel filtering and anisotropic filtering. The hole-filling is achieved by utilizing a combination of morphological filtering and zero block filtering. Experimental results using the publicly available datasets are provided indicating the superiority of the developed method in terms of both depth error and computational efficiency compared to three existing methods.

  7. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  8. Collection Mapping.

    Science.gov (United States)

    Harbour, Denise

    2002-01-01

    Explains collection mapping for library media collections. Discusses purposes for creating collection maps, including helping with selection and weeding decisions, showing how the collection supports the curriculum, and making budget decisions; and methods of data collection, including evaluating a collaboratively taught unit with the classroom…

  9. Causal mapping

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2006-01-01

    The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method......The lecture note explains how to use the causal mapping method as well as the theoretical framework aoosciated to the method...

  10. Affective Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    of environmental knowledge production. It uses InfoAmazonia, the databased platform on Amazon rainforests, as an example of affective geo-visualization within information mapping that enhances embodiment in the experience of the information. Amazonia is defined as a digitally created affective (map)space within...

  11. The Key Technique of Manufacture of Dense Chromium Sesquioxide Refractories

    Institute of Scientific and Technical Information of China (English)

    LIMaoqiang; ZHANGShuying; 等

    1998-01-01

    Dense chromium sesquioxide refractories have widely been used in the kilns for making alkai-free and anti-alkali glass fibers due to their excellent re-sistance to molten glasses.Densifications of chromium sesquioxide during sintering can be blocked by evaporation of chromium trioxide derived from oxidation at high temperature,In this paper the mech-anism of sintering chromium oxide and the process-ing technique for making dense chromium sesquiox-ide refractories are discussed .A process in laboratory scale for making dense chromium sesquioxide bricks is demonstrated.

  12. Dense deposit disease in a child with febrile sore throat

    Directory of Open Access Journals (Sweden)

    Giovanni Conti

    2017-01-01

    Full Text Available Dense deposit disease or membranoproliferative glomerulonephritis type II is a rare glomerulopathy characterized on renal biopsy by deposition of abnormal electron-dense material in the glomerular basement membrane. The pathophysiologic basis is uncontrolled systemic activation of the alternate pathway of the complement cascade. C3 nephritic factor, an autoantibody directed against the C3 convertase of the alternate pathway, plays a key role. In some patients, complement gene mutations have been identified. We report the case of a child who had persistent microscopic hematuria, proteinuria, and hypocomplementemia C3 for over 2 months. Renal biopsy confirmed the diagnosis of dense deposit disease.

  13. A study on the effects of RGB-D database scale and quality on depth analogy performance

    Science.gov (United States)

    Kim, Sunok; Kim, Youngjung; Sohn, Kwanghoon

    2016-06-01

    In the past few years, depth estimation from a single image has received increased attentions due to its wide applicability in image and video understanding. For realizing these tasks, many approaches have been developed for estimating depth from a single image based on various depth cues such as shading, motion, etc. However, they failed to estimate plausible depth map when input color image is derived from different category in training images. To alleviate these problems, data-driven approaches have been popularly developed by leveraging the discriminative power of a large scale RGB-D database. These approaches assume that there exists appearance- depth correlation in natural scenes. However, this assumption is likely to be ambiguous when local image regions have similar appearance but different geometric placement within the scene. Recently, a depth analogy (DA) has been developed by using the correlation between color image and depth gradient. DA addresses depth ambiguity problem effectively and shows reliable performance. However, no experiments are conducted to investigate the relationship between database scale and the quality of the estimated depth map. In this paper, we extensively examine the effects of database scale and quality on the performance of DA method. In order to compare the quality of DA, we collect a large scale RGB-D database using Microsoft Kinect v1 and Kinect v2 on indoor and ZED stereo camera on outdoor environments. Since the depth map obtained by Kinect v2 has high quality compared to that of Kinect v1, the depth maps from the database from Kinect v2 are more reliable. It represents that the high quality and large scale RGB-D database guarantees the high quality of the depth estimation. The experimental results show that the high quality and large scale training database leads high quality estimated depth map in both indoor and outdoor scenes.

  14. Simplicial band depth for multivariate functional data

    KAUST Repository

    López-Pintado, Sara

    2014-03-05

    We propose notions of simplicial band depth for multivariate functional data that extend the univariate functional band depth. The proposed simplicial band depths provide simple and natural criteria to measure the centrality of a trajectory within a sample of curves. Based on these depths, a sample of multivariate curves can be ordered from the center outward and order statistics can be defined. Properties of the proposed depths, such as invariance and consistency, can be established. A simulation study shows the robustness of this new definition of depth and the advantages of using a multivariate depth versus the marginal depths for detecting outliers. Real data examples from growth curves and signature data are used to illustrate the performance and usefulness of the proposed depths. © 2014 Springer-Verlag Berlin Heidelberg.

  15. Conceptions of Transitive Maps in Topological Spaces

    Directory of Open Access Journals (Sweden)

    M. Nokhas Murad Kaki

    2014-01-01

    Full Text Available The concepts of topological γ-type transitive maps, α-transitive maps, γ-minimal and α-minimal mappings were introduced by Mohammed Nokhas Murad. . In this paper, the relationship between two different notions of transitive maps, namely topological γ-type transitive maps and topological α-type transitive maps has been studied and some of their properties in two topological spaces (X, τγ and (X, τα, τγ denotes the γ –topology(resp. τα denotes the α–topology of a given topological space (X, τ has been investigated.. Also, we have proved that there exists γ- dense orbit in X, where X is locally γ- compact Hausdorff space and τγ has a countable basis Also, I study the relationship between two types of minimal mappings, namely, γ-minimal mapping and α-minimal mapping, and I will prove that the properties of γ-type transitive, γ-mixing and γ-minimal maps are preserved under γr-conjugacy

  16. Supernova interaction with dense mass loss

    CERN Document Server

    Chevalier, Roger A

    2013-01-01

    Supernovae of Type IIn (narrow line) appear to be explosions that had strong mass loss before the event, so that the optical luminosity is powered by the circumstellar interaction. If the mass loss region has an optical depth $>c/v_s$, where $v_s$ is the shock velocity, the shock breakout occurs in the mass loss region and a significant fraction of the explosion energy can be radiated. The emission from the superluminous SN 2006gy and the normal luminosity SN 2011ht can plausibly be attributed to shock breakout in a wind, with SN 2011ht being a low energy event. Superluminous supernovae of Type I may derive their luminosity from interaction with a mass loss region of limited extent. However, the distinctive temperature increase to maximum luminosity has not been clearly observed in Type I events. Suggested mechanisms for the strong mass loss include pulsational pair instability, gravity-waves generated by instabilities in late burning phases, and binary effects.

  17. Hofer's metrics and boundary depth

    CERN Document Server

    Usher, Michael

    2011-01-01

    We show that if (M,\\omega) is a closed symplectic manifold which admits a nontrivial Hamiltonian vector field all of whose contractible closed orbits are constant, then Hofer's metric on the group of Hamiltonian diffeomorphisms of (M,\\omega) has infinite diameter, and indeed admits infinite-dimensional quasi-isometrically embedded normed vector spaces. A similar conclusion applies to Hofer's metric on various spaces of Lagrangian submanifolds, including those Hamiltonian-isotopic to the diagonal in M x M when M satisfies the above dynamical condition. To prove this, we use the properties of a Floer-theoretic quantity called the boundary depth, which measures the nontriviality of the boundary operator on the Floer complex in a way that encodes robust symplectic-topological information.

  18. Aeration equipment for small depths

    Science.gov (United States)

    Sluše, Jan; Pochylý, František

    2015-05-01

    Deficit of air in water causes complications with cyanobacteria mainly in the summer months. Cyanobacteria is a bacteria that produces poison called cyanotoxin. When the concentration of cyanobacteria increases, the phenomena "algal bloom" appears, which is very toxic and may kill all the organisms. This article describes new equipment for aeration of water in dams, ponds and reservoirs with small depth. This equipment is mobile and it is able to work without any human factor because its control is provided by a GPS module. The main part of this equipment consists of a floating pump which pumps water from the surface. Another important part of this equipment is an aerator where water and air are blended. Final aeration process runs in the nozzles which provide movement of all this equipment and aeration of the water. Simulations of the flow are solved by multiphase flow with diffusion in open source program called OpenFOAM. Results will be verified by an experiment.

  19. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Timothy L. Ward

    2002-07-01

    Mixed-conducting ceramics have the ability to conduct oxygen with perfect selectivity at elevated temperatures, making them extremely attractive as membrane materials for oxygen separation and membrane reactor applications. While the conductivity of these materials can be quite high at elevated temperatures (typically 800-1000 C), much higher oxygen fluxes, or, alternatively, equivalent fluxes at lower temperatures, could be provided by supported thin or thick film membrane layers. Based on that motivation, the objective of this project was to explore the use of ultrafine aerosol-derived powder of a mixed-conducting ceramic material for fabrication of supported thick-film dense membranes. The project focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} (SCFO) because of the desirable permeability and stability of that material, as reported in the literature. Appropriate conditions to produce the submicron SrCo{sub 0.5}FeO{sub x} powder using aerosol pyrolysis were determined. Porous supports of the same composition were produced by partial sintering of a commercially obtained powder that possessed significantly larger particle size than the aerosol-derived powder. The effects of sintering conditions (temperature, atmosphere) on the porosity and microstructure of the porous discs were studied, and a standard support fabrication procedure was adopted. Subsequently, a variety of paste and slurry formulations were explored utilizing the aerosol-derived SCFO powder. These formulations were applied to the porous SCFO support by a doctor blade or spin coating procedure. Sintering of the supported membrane layer was then conducted, and additional layers were deposited and sintered in some cases. The primary characterization methods were X-ray diffraction and scanning electron microscopy, and room-temperature nitrogen permeation was used to assess defect status of the membranes.We found that non-aqueous paste/slurry formulations incorporating

  20. Fermion mass and the pressure of dense matter

    CERN Document Server

    Fraga, Eduardo S; 10.1063/1.2714447

    2008-01-01

    We consider a simple toy model to study the effects of finite fermion masses on the pressure of cold and dense matter, with possible applications in the physics of condensates in the core of neutron stars and color superconductivity.

  1. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    Directory of Open Access Journals (Sweden)

    Mythili Prakasam

    2015-12-01

    Full Text Available In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes.

  2. Densely crosslinked polycarbosiloxanes .2. Thermal and mechanical properties

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Stenekes, R.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    The thermal and mechanical properties of two densely crosslinked polycarbosiloxane systems were investigated in relation to the molecular structure. The networks were prepared from functional branched prepolymers and crosslinked via a hydrosilylation curing reaction. The prepolymers having only viny

  3. RESEARCH ON DENSITY STABILITY OF AIR DENSE MEDIUM FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    骆振福; 陈清如

    1994-01-01

    In this papcr on thc basis of studying the distribution of fine coal in the dense medium fluidized bed, the optimal size range of fine coal, which constitutes a fluidized bed together with the dense medium, has been found. In the separating process the fine coal will continuously accumulate in fluidized bed, thus inevitably reducing the density of the bed. In order to keep bed density stable, the authors adopted such measures as split-flow of used medium and complement of fresh dense medium. The experiment results in both lab and pilot systems of the air-dense medium fluidized bed show that these measures are effective and satisfactory. Then authors also have established some relative dynamic mathematical models for it.

  4. Automated Motion Estimation for 2D Cine DENSE MRI

    Science.gov (United States)

    Gilliam, Andrew D.; Epstein, Frederick H.

    2013-01-01

    Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this article, we present the first fully automated solution for the estimation of tissue motion and strain from 2D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method. PMID:22575669

  5. A Green Method for Processing Polymers using Dense Gas Technology

    Directory of Open Access Journals (Sweden)

    Roshan B. Yoganathan

    2010-05-01

    Full Text Available Dense CO2 can be used as an environmentally-benign polymer processing medium because of its liquid-like densities and gas-like mass transfer properties.In this work, polymer bio-blends of polycarbonate (PC, a biocompatible polymer, and polycaprolactone (PCL, a biodegradable polymer were prepared. Dense CO2 was used as a reaction medium for the melt-phase PC polymerization in the presence of dense CO2-swollen PCL particles and this method was used to prepare porous PC/PCL blends. To extend the applicability of dense CO2 to the biomedical industry and polymer blend processing, the impregnation of ibuprofen into the blend was conducted and subsequent dissolution characteristics were observed.

  6. Complete multiple round quantum dense coding with quantum logical network

    Institute of Scientific and Technical Information of China (English)

    LI ChunYan; LI XiHan; DENG FuGuo; ZHOU Ping; ZHOU HongYu

    2007-01-01

    We present a complete multiple round quantum dense coding scheme for improving the source capacity of that introduced recently by Zhang et al. The receiver resorts to two qubits for storing the four local unitary operations in each round.

  7. Depth-Dependent Earthquake Properties Beneath Long-Beach, CA: Implications for the Rheology at the Brittle-Ductile Transition Zone

    Science.gov (United States)

    Inbal, A.; Clayton, R. W.; Ampuero, J. P.

    2015-12-01

    Except for a few localities, seismicity along faults in southern California is generally confined to depths shallower than 15 km. Among faults hosting deep seismicity, the Newport-Inglewood Fault (NIF), which traverses the Los-Angeles basin, has an exceptionally mild surface expression and low deformation rates. Moreover, the NIF structure is not as well resolved as other, less well instrumented faults because of poor signal-to-noise ratio. Here we use data from three temporary dense seismic arrays, which were deployed for exploration purposes and contain up to several thousands of vertical geophones, to investigate the properties of deep seismicity beneath Long-Beach (LB), Compton and Santa-Fe Springs (SFS). The latter is located 15 km northeast of the NIF, presumably above a major detachment fault underthrusting the basin.Event detection is carried out using a new approach for microseismic multi-channel picking, in which downward-continued data are back-projected onto the volume beneath the arrays, and locations are derived from statistical analysis of back-projection images. Our technique reveals numerous, previously undetected events along the NIF, and confirms the presence of an active shallow structure gently dipping to the north beneath SFS. Seismicity characteristics vary along the NIF strike and dip. While LB seismicity is uncorrelated with the mapped trace of the NIF, Compton seismicity illuminates a sub-vertical fault that extends down to about 20 km. This result, along with the reported high flux of mantle Helium along the NIF (Boles et al., 2015), suggests that the NIF is deeply rooted and acts as a major conduit for mantle fluids. We find that the LB size distribution obeys the typical power-law at shallow depths, but falls off exponentially for events occurring below 20 km. Because deep seismicity occurs uniformly beneath LB, this transition is attributed to a reduction in seismic asperity density with increasing depth, consistent with a transition

  8. CALS Mapping

    DEFF Research Database (Denmark)

    Collin, Ib; Nielsen, Povl Holm; Larsen, Michael Holm

    1998-01-01

    To enhance the industrial applications of CALS, CALS Center Danmark has developed a cost efficient and transparent assessment, CALS Mapping, to uncover the potential of CALS - primarily dedicated to small and medium sized enterprises. The idea behind CALS Mapping is that the CALS State...... enterprise is, when applied in a given organisation modified with respect to the industry regarded, hence irrelevant measure parameters are eliminated to avoid redundancy. This assessment of CALS Mapping, quantify the CALS potential of an organisation with the purpose of providing decision support to the top...

  9. Neutrinos and Nucleosynthesis in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, George [Univ. of California, San Diego, CA (United States)

    2016-01-14

    The Topical Collaboration for Neutrinos and Nucleosynthesis in Hot and Dense matter brought together researchers from a variety of nuclear science specialties and a number of institutions to address nuclear physics and neutrino physics problems associated with dense matter and the origin of the elements. See attached final technical reports for (1) the UCSD award and (2) a copy of the report for the whole TC

  10. MICROSPRAY SIMULATION OF DENSE GAS DISPERSION IN COMPLEX TERRAIN

    OpenAIRE

    Anfossi, D.; Tinarelli, G.; S. Trini Castelli; Commanay, J.; Nibart, M

    2008-01-01

    Abstract: An extended validation of the new Lagrangian particle model MicroSpray version for dense gas simulation is proposed. MicroSpray simulates the dense gas dispersion in situations characterized by the presence of buildings, other obstacles, complex terrain, and possible occurrence of low wind speed conditions. Its performances are compared to a chlorine railway accident (Macdona), to a field experiment (Kit Fox) and to an atmospheric CFD model.

  11. Measurement of Electron-Ion Relaxation in Warm Dense Copper

    Science.gov (United States)

    Cho, B. I.; Ogitsu, T.; Engelhorn, K.; Correa, A. A.; Ping, Y.; Lee, J. W.; Bae, L. J.; Prendergast, D.; Falcone, R. W.; Heimann, P. A.

    2016-01-01

    Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. Data are compared with various theoretical models.

  12. Relating quantum discord with the quantum dense coding capacity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Qiu, Liang, E-mail: lqiu@cumt.edu.cn; Li, Song; Zhang, Chi [China University of Mining and Technology, School of Sciences (China); Ye, Bin [China University of Mining and Technology, School of Information and Electrical Engineering (China)

    2015-01-15

    We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.

  13. EOP TDRs (Temperature-Depth-Recordings) Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature-depth-recorders (TDRs) were attached to commercial longline and research Cobb trawl gear to obtain absolute depth and temperature measurement during...

  14. A depth estimation method based on geometric transformation for stereo light microscope.

    Science.gov (United States)

    Fan, Shengli; Yu, Mei; Wang, Yigang; Jiang, Gangyi

    2014-01-01

    Stereo light microscopes (SLM) with narrow vision and shallow depth of field are widely used in micro-domain research. In this paper, we propose a depth estimation method of micro objects based on geometric transformation. By analyzing the optical imaging geometry, the definition of geometric transformation distance is given and the depth-distance relation express is obtained. The parameters of geometric transformation and express are calibrated with calibration board images captured in aid of precise motorized stage. The depth of micro object can be estimated by calculating the geometric transformation distance. The proposed depth-distance relation express is verified using an experiment in which the depth map of an Olanzapine tablet surface is reconstructed.

  15. Mapping VADEMECUM

    OpenAIRE

    1992-01-01

    The work plan for the implementation of the Convention on Long-Range Transboundary Air Pollution under the UN Economic Commission for Europe (UN ECE) includes the production of maps of critical loads, critical levels, and exceedances as a basis for developing potential abatement strategies for sulphur and nitrogen. This Vademecum is designed to provide guidance to those responsible for calculating and mapping critical loads, critical levels, and exceedances on a national or regional scale. Th...

  16. A proxy for variance in dense matching over homogeneous terrain

    Science.gov (United States)

    Altena, Bas; Cockx, Liesbet; Goedemé, Toon

    2014-05-01

    Automation in photogrammetry and avionics have brought highly autonomous UAV mapping solutions on the market. These systems have great potential for geophysical research, due to their mobility and simplicity of work. Flight planning can be done on site and orientation parameters are estimated automatically. However, one major drawback is still present: if contrast is lacking, stereoscopy fails. Consequently, topographic information cannot be obtained precisely through photogrammetry for areas with low contrast. Even though more robustness is added in the estimation through multi-view geometry, a precise product is still lacking. For the greater part, interpolation is applied over these regions, where the estimation is constrained by uniqueness, its epipolar line and smoothness. Consequently, digital surface models are generated with an estimate of the topography, without holes but also without an indication of its variance. Every dense matching algorithm is based on a similarity measure. Our methodology uses this property to support the idea that if only noise is present, no correspondence can be detected. Therefore, the noise level is estimated in respect to the intensity signal of the topography (SNR) and this ratio serves as a quality indicator for the automatically generated product. To demonstrate this variance indicator, two different case studies were elaborated. The first study is situated at an open sand mine near the village of Kiezegem, Belgium. Two different UAV systems flew over the site. One system had automatic intensity regulation, and resulted in low contrast over the sandy interior of the mine. That dataset was used to identify the weak estimations of the topography and was compared with the data from the other UAV flight. In the second study a flight campaign with the X100 system was conducted along the coast near Wenduine, Belgium. The obtained images were processed through structure-from-motion software. Although the beach had a very low

  17. Testing the universality of the star-formation efficiency in dense molecular gas

    Science.gov (United States)

    Shimajiri, Y.; André, Ph.; Braine, J.; Könyves, V.; Schneider, N.; Bontemps, S.; Ladjelate, B.; Roy, A.; Gao, Y.; Chen, H.

    2017-08-01

    Context. Recent studies with, for example, Spitzer and Herschel have suggested that star formation in dense molecular gas may be governed by essentially the same "law" in Galactic clouds and external galaxies. This conclusion remains controversial, however, in large part because different tracers have been used to probe the mass of dense molecular gas in Galactic and extragalactic studies. Aims: We aimed to calibrate the HCN and HCO+ lines commonly used as dense gas tracers in extragalactic studies and to test the possible universality of the star-formation efficiency in dense gas (≳104 cm-3), SFEdense. Methods: We conducted wide-field mapping of the Aquila, Ophiuchus, and Orion B clouds at 0.04 pc resolution in the J = 1 - 0 transition of HCN, HCO+, and their isotopomers. For each cloud, we derived a reference estimate of the dense gas mass MHerschelAV > 8, as well as the strength of the local far-ultraviolet (FUV) radiation field, using Herschel Gould Belt survey data products, and estimated the star-formation rate from direct counting of the number of Spitzer young stellar objects. Results: The H13CO+(1-0) and H13CN(1-0) lines were observed to be good tracers of the dense star-forming filaments detected with Herschel. Comparing the luminosities LHCN and LHCO+ measured in the HCN and HCO+ lines with the reference masses MHerschelAV > 8, the empirical conversion factors αHerschel - HCN (=MHerschelAV > 8/LHCN) and αHerschel - HCO+ (=MHerschelAV > 8/LHCO+) were found to be significantly anti-correlated with the local FUV strength. In agreement with a recent independent study of Orion B by Pety et al., the HCN and HCO+ lines were found to trace gas down to AV ≳ 2. As a result, published extragalactic HCN studies must be tracing all of the moderate density gas down to nH2 ≲ 103 cm-3. Estimating the contribution of this moderate density gas from the typical column density probability distribution functions in nearby clouds, we obtained the following G0

  18. Visual Discomfort and Depth-of-Field

    Directory of Open Access Journals (Sweden)

    Louise O'Hare

    2013-05-01

    Full Text Available Visual discomfort has been reported for certain visual stimuli and under particular viewing conditions, such as stereoscopic viewing. In stereoscopic viewing, visual discomfort can be caused by a conflict between accommodation and convergence cues that may specify different distances in depth. Earlier research has shown that depth-of-field, which is the distance range in depth in the scene that is perceived to be sharp, influences both the perception of egocentric distance to the focal plane, and the distance range in depth between objects in the scene. Because depth-of-field may also be in conflict with convergence and the accommodative state of the eyes, we raised the question of whether depth-of-field affects discomfort when viewing stereoscopic photographs. The first experiment assessed whether discomfort increases when depth-of-field is in conflict with coherent accommodation–convergence cues to distance in depth. The second experiment assessed whether depth-of-field influences discomfort from a pre-existing accommodation–convergence conflict. Results showed no effect of depth-of-field on visual discomfort. These results suggest therefore that depth-of-field can be used as a cue to depth without inducing discomfort in the viewer, even when cue conflicts are large.

  19. Rank order scaling of pictorial depth

    NARCIS (Netherlands)

    Van Doorn, A.; Koenderink, J.; Wagemans, J.

    2011-01-01

    We address the topic of “pictorial depth” in cases of pictures that are unlike photographic renderings. The most basic measure of “depth” is no doubt that of depth order. We establish depth order through the pairwise depth-comparison method, involving all pairs from a set of 49 fiducial points. The

  20. Cavola experiment site: geophysical investigations and deployment of a dense seismic array on a landslide

    Directory of Open Access Journals (Sweden)

    L. Martelli

    2007-06-01

    Full Text Available Geophysical site investigations have been performed in association with deployment of a dense array of 95 3-component seismometers on the Cavola landslide in the Northern Apennines. The aim of the array is to study propagation of seismic waves in the heterogeneous medium through comparison of observation and modelling. The small-aperture array (130 m×56 m operated continuously for three months in 2004. Cavola landslide consists of a clay body sliding over mudstone-shale basement, and has a record of historical activity, including destruction of a small village in 1960. The site investigations include down-hole logging of P- and S-wave travel times at a new borehole drilled within the array, two seismic refraction lines with both P-wave profiling and surface-wave analyses, geo-electrical profiles and seismic noise measurements. From the different approaches a consistent picture of the depths and seismic velocities for the landslide has emerged. Their estimates agree with resonance frequencies of seismic noise, and also with the logged depths to basement of 25 m at a new borehole and of 44 m at a pre-existing borehole. Velocities for S waves increase with depth, from 230 m/s at the surface to 625 m/s in basement immediately below the landslide.