WorldWideScience

Sample records for dense ceramic membrane

  1. Dense ceramic membranes for methane conversion

    NARCIS (Netherlands)

    Bouwmeester, Henny J.M.

    2003-01-01

    Dense ceramic membranes made from mixed oxygen-ionic and electronic conducting perovskite-related oxides allow separation of oxygen from an air supply at elevated temperatures (>700 °C). By combining air separation and catalytic partial oxidation of methane to syngas into a ceramic membrane reactor,

  2. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Timothy L. Ward

    2000-06-30

    Mixed-conducting membranes have the ability to conduct oxygen with perfect selectivity at elevated temperatures, which makes them an extremely attractive alternative for oxygen separation and membrane reactor applications. The ability to reliably fabricate these membranes in thin or thick films would enable solid-state divisional limitations to be minimized, thus providing higher oxygen flux. Based on that motivation, the overall objective for this project is to develop and demonstrate a strategy for the fabrication of supported Wick film ceramic mixed conducting membranes, and improve the understanding of the fundamental issues associated with reliable fabrication of these membranes. The project has focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} because of its superior permeability and stability in reducing atmospheres. The fabrication strategy employed involves the deposition of SrCo{sub 0.5}FeO{sub x} thick films onto porous supports of the same composition. In the second year of this project, we completed characterization of the sintering and phase behavior of the porous SrCo{sub 0.5}FeO{sub x} supports, leading to a standard support fabrication methodology. Using a doctor blade method, pastes made from aerosol-derived SrCo{sub 0.5}FeO{sub x} powder dispersed with polyethylene glycol were applied to the supports, and the sintering behavior of the thick film membranes was examined in air and nitrogen atmospheres. It has been demonstrated that the desired crystalline phase content can be produced in the membranes, and that the material in the membrane layer can be highly densified without densifying the underlying support. However, considerable cracking and opening of the film occurred when films densified to a high extent. The addition of MgO into the SrCo{sub 0.5}FeO{sub x} supports was shown to inhibit support sintering so that temperatures up to 1300 C, where significant liquid formation occurs, could be used for film sintering

  3. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Timothy L. Ward

    2002-07-01

    Mixed-conducting ceramics have the ability to conduct oxygen with perfect selectivity at elevated temperatures, making them extremely attractive as membrane materials for oxygen separation and membrane reactor applications. While the conductivity of these materials can be quite high at elevated temperatures (typically 800-1000 C), much higher oxygen fluxes, or, alternatively, equivalent fluxes at lower temperatures, could be provided by supported thin or thick film membrane layers. Based on that motivation, the objective of this project was to explore the use of ultrafine aerosol-derived powder of a mixed-conducting ceramic material for fabrication of supported thick-film dense membranes. The project focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} (SCFO) because of the desirable permeability and stability of that material, as reported in the literature. Appropriate conditions to produce the submicron SrCo{sub 0.5}FeO{sub x} powder using aerosol pyrolysis were determined. Porous supports of the same composition were produced by partial sintering of a commercially obtained powder that possessed significantly larger particle size than the aerosol-derived powder. The effects of sintering conditions (temperature, atmosphere) on the porosity and microstructure of the porous discs were studied, and a standard support fabrication procedure was adopted. Subsequently, a variety of paste and slurry formulations were explored utilizing the aerosol-derived SCFO powder. These formulations were applied to the porous SCFO support by a doctor blade or spin coating procedure. Sintering of the supported membrane layer was then conducted, and additional layers were deposited and sintered in some cases. The primary characterization methods were X-ray diffraction and scanning electron microscopy, and room-temperature nitrogen permeation was used to assess defect status of the membranes.We found that non-aqueous paste/slurry formulations incorporating

  4. Easy Fabrication of Dense Ceramic Membrane for Oxygen Separation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A combined EDTA-citrate complexing method was developed for the easy preparation of mixed oxygen-ionic and electronic conducting dense ceramic membrane for oxygen separation.The new method takes the advantage of lower calcination temperature for phase formation, lower membrane sintering temperature and higher relative density over the standard ceramic method.

  5. Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications.

    Science.gov (United States)

    Dong, Xueliang; Jin, Wanqin; Xu, Nanping; Li, Kang

    2011-10-21

    Catalytic membrane reactors which carry out separation and reaction in a single unit are expected to be a promising approach to achieve green and sustainable chemistry with less energy consumption and lower pollution. This article presents a review of the recent progress of dense ceramic catalytic membranes and membrane reactors, and their potential applications in energy and environmental areas. A basic knowledge of catalytic membranes and membrane reactors is first introduced briefly, followed by a short discussion on the membrane materials including their structures, composition and strategies for material development. The configuration of catalytic membranes, the design of membrane reaction processes and the high temperature sealing are also discussed. The performance of catalytic membrane reactors for energy and environmental applications are summarized and typical catalytic membrane reaction processes are presented and discussed. Finally, current challenges and difficulties related to the industrialization of dense ceramic membrane reactors are addressed and possible future research is also outlined.

  6. Dense ceramic membranes: A review of the state of the art

    Directory of Open Access Journals (Sweden)

    Kozhukharov, V.

    1999-02-01

    Full Text Available During the past several years the concepts of oxygen permeation through mixed valency ceramic membranes possess special interest. In this context, a classification and brief review of the major membrane ceramic materials will be presented. The focus will be on dense ceramic membranes as elements for advanced application. A discussion will be proposed for mixed conductor ceramics as perovskite ABO3 compounds. Dense membranes on perovskite base are the object of the present review and some details about processing and characterization of double (A- and B-site substituted La1-x Sr(BaxCo0.8Fe0.2O3-d perovskites will be presented.

    El concepto de permeación de oxígeno a través de membranas cerámicas de valencia mixta, ha venido adquiriendo especial relevancia a lo largo de los últimos años. En este contexto se hace se efectúa una clasificación y breve revisión de los materiales cerámicos más relevantes utilizados como membranas. En particular se orienta la descripción hacia las membranas cerámicas densas para aplicaciones avanzadas. Se propone un análisis de los conductores cerámicos mixtos, como los compuestos de tipo perovskita ABO3. Se realiza una revisión de los materiales de este tipo existentes, así como se describen algunos aspectos sobre el procesamiento y caracterización de las perovskitas tipo La1-x Sr(BaxCo0.8Fe0.2O3-d doblemente sustituidas (lugares A- y B-.

  7. Strength degradation and failure limits of dense and porous ceramic membrane materials

    DEFF Research Database (Denmark)

    Pećanac, G.; Foghmoes, Søren Preben Vagn; Lipińska-Chwałek, M.;

    2013-01-01

    Thin dense membrane layers, mechanically supported by porous substrates, are considered as the most efficient designs for oxygen supply units used in Oxy-fuel processes and membrane reactors. Based on the favorable permeation properties and chemical stability, several materials were suggested...... as promising membrane and substrate materials: Ba0.5Sr0.5Co0.8Fe0.2O3−δ, La0.6−xSr0.4Co0.2Fe0.8O3−δ (x=0, 0.02) and Ce0.9Gd0.1O1.95−δ. Although membranes operate at elevated temperatures, the ends of tubes in certain three-end concepts remain almost at room temperature. The current work concentrates...... on the failure potential of these membrane parts, where in a complex device also the highest residual stresses should arise due to differences in thermal expansion. In particular, sensitivity of the materials to subcritical crack growth was assessed since the long-term reliability of the component does not only...

  8. Preparation and oxygen permeation properties of SrFe(Cu)O3-δ dense ceramic membranes

    Institute of Scientific and Technical Information of China (English)

    Heng Zhang; Tingting Wang; Xinfa Dong; Weiming Lin

    2009-01-01

    Mixed oxygen-ionic and electronic conducting membranes of SrFe(Cu)O3-δ were prepared by solid-state reaction method.The crystal structure,oxygen nonstoichiometry,and phase stability of the materials were studied by TGA and XRD.Oxygen permeation fluxes through these membranes were studied at operating temperature ranging from 750 to 950 ℃.Results showed that doping Cu in SrFeO3-δ compound had a significant effect on the formation of single-phased perovskite structure.For SrFe1-xCuxO3-δ series materials,the oxygen nonstoichiometry and the oxygen permeation flux increased considerably with the increase of Cu-doping content (x = 0.1-0.3).The sintering property of the membrane decreased significantly when the Cu substitution amount reached 40%.SrFe0.7CU0.3O3-δ showed high oxygen permeation flux,but SrCuO2 and Sr2Fe2O5 phases formed in the compound after oxygen permeation test induced cracks in the membrane.

  9. Hydrogen Permeation Properties of Perovskite-type BaCe0.9Mn0.1O3-δDense Ceramic Membrane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The electrical conduction properties of dense BaCe0.9Mn0.1O3-δ (BCM10) membrane were investigated in the temperature range of 600-900℃. High ionic and electronic conductivities at elevated temperatures make BCM10 a potential ceramic material for hydrogen separation. Hydrogen permeation through BCM10 membranes was studied using a hightemperature permeation cell. Little hydrogen could be detected at the sweep side. However,appreciable hydrogen can permeate through BCM10 membrane coated with porous platinum black,which shows that the process of hydrogen permeation through BCM10 membranes was controlled by the catalytic decomposition and recomposition of hydrogen on the surfaces of BCM10 membranes.

  10. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  11. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  12. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  13. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  14. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients

  15. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-07-01

    This is the fourth quarterly report on a new study to develop a ceramic membrane/metal joint. The first experiments using the La-Sr-Fe-O ceramic are reported. Some of the analysis performed on the samples obtained are commented upon. A set of experiments to characterize the mechanical strength and thermal fatigue properties of the joints has been designed and begun. Finite element models of joints used to model residual stresses are described.

  16. Ordered ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.A.; Hill, C.G. Jr.; Zeltner, W.A.

    1991-10-01

    Ceramic membranes have been formed from colloidal sols coated on porous clay supports. These supported membranes have been characterized in terms of their permeabilities and permselectivities to various aqueous test solutions. The thermal stabilities and pore structures of these membranes have been characterized by preparing unsupported membranes of the correpsonding material and performing N{sub 2} adsorption-desorption and X-ray diffraction studies on these membranes. To date, membranes have been prepared from a variety of oxides, including TiO{sub 2}, SiO{sub 2}, ZrO{sub 2}, and Al{sub 2}O{sub 3}, as well as Zr-, Fe-, and Nb-doped TiO{sub 2}. In many of these membranes pore diameters are less than 2 nm, while in others the pore diameters are between 3 and 5 nm. Procedures for fabricating porous clay supports with reproducible permeabilities for pure water are also discussed. 30 refs., 59 figs., 22 tabs.

  17. Assessment of ceramic membrane filters

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.K.; Geyer, H.K.; Im, K.H. [and others

    1995-08-01

    The objectives of this project include the development of analytical models for evaluating the fluid mechanics of membrane coated, dead-end ceramic filters, and to determine the effects of thermal and thermo-chemical aging on the material properties of emerging ceramic hot gas filters. A honeycomb cordierite monolith with a thin ceramic coating and a rigid candle filter were evaluated.

  18. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  19. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  20. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  1. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report

  2. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  3. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  4. Gas Separations using Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  5. Planar ceramic membrane assembly and oxidation reactor system

    Science.gov (United States)

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  6. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2001-05-01

    The mechanical properties of model systems were analyzed. A reasonably accurate finite element model was implemented and a rational metric to predict the strength of ceramic/metal concentrical joints was developed. The mode of failure of the ceramic/metal joints was determined and the importance of the mechanical properties of the braze material was assessed. Thermal cycling experiments were performed on the model systems and the results were discussed. Additionally, experiments using the concept of placing diffusion barriers on the ceramic surface to limit the extent of the reaction with the braze were performed. It was also observed that the nature and morphology of the reaction zone depends greatly on the nature of the perovskite structure being used. From the experiments, it is observed that the presence of Cr in the Fe-occupied sites decreases the tendency of Fe to segregate and to precipitate out of the lattice. In these new experiments, Ni was observed to play a major role in the decomposition of the ceramic substrate.

  7. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  8. Salt splitting with ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  9. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing

    Science.gov (United States)

    Van Calcar, Pamela; Mackay, Richard; Sammells, Anthony F.

    2002-01-01

    The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.

  10. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  11. Newly Developed Ceramic Membranes for Dehydration and Separation of Organic Mixtures by Pervaporation

    NARCIS (Netherlands)

    Gemert, van R.W.; Cuperus, F.P.

    1995-01-01

    Polymeric pervaporation membranes sometimes show great variety in performance when they are alternately used for different solvent mixtures. In addition, membrane stability in time is a problem in case of some solvents. Therefore, newly developed ceramic silica membranes with a 'dense' top layer wer

  12. Effect of mechanical cycling on the flexural strength of densely sintered ceramics

    NARCIS (Netherlands)

    Itinoche, Koiti Marco; Ozcan, Mudu; Bottino, Marco Antonio; Oyafuso, Denise

    2006-01-01

    Objectives. The aim of this study was to evaluate the effect of mechanical cycling on the biaxial flexural strength of two densely sintered ceramic materials. Methods. Disc shaped zirconia (In-Ceram Zirconia) and high alumina (Procera AllCeram) ceramic specimens (diameter: 15 min and thickness: 1.2

  13. Proton conducting ceramic membranes for hydrogen separation

    Science.gov (United States)

    Elangovan, S [South Jordan, UT; Nair, Balakrishnan G [Sandy, UT; Small, Troy [Midvale, UT; Heck, Brian [Salt Lake City, UT

    2011-09-06

    A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

  14. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...

  15. Fabrication, characterization, and fluorine-plasma exposure behavior of dense yttrium oxyfluoride ceramics

    Science.gov (United States)

    Tsunoura, Toru; Yoshida, Katsumi; Yano, Toyohiko; Kishi, Yukio

    2017-06-01

    Yttrium oxyfluoride (YOF) ceramics are expected to be one of the attractive plasma-resistant materials for semiconductor production equipment. In this study, dense YOF ceramics were fabricated by hot pressing using YOF powder, and their physical, mechanical, and thermal properties were characterized. Moreover, behavior against fluorine-plasma exposure was investigated. The results suggest that the YOF ceramics showed excellent mechanical and thermal properties, and superior resistance for fluorine-plasma exposure to Y2O3 ceramics.

  16. Novel, Ceramic Membrane System For Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  17. Ceramic oxygen transport membrane array reactor and reforming method

    Science.gov (United States)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  18. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  19. Ceramic Ultrafiltration Membrane from Nanosilica Particles

    Science.gov (United States)

    Wahid, Zarina Abdul; Ramli, Rafindde; Muchtar, Andanastuti; Mohammad, Abd Wahab

    This study attempts to develop asymmetric ceramic membrane filter from nanosilica particles for ultrafiltration (UF) membrane. The alumina tube was used as a support and was coated with SiC which acted as an intermediate layer or microfiltration (MF) layer. The UF membrane was developed using the filtration technique through chemical suspension of the particles. Nanosilica was suspended in HCl acid, iso-propanol and acetone before it was deposited on the alumina tube using a special coating assembly. The membranes were characterised for pore size, thickness and microstructure. This study found that the use of nanoparticles for membrane development could easily control the pore size as well as the thickness of the membrane. The uniformity of the membrane thickness could also be achieved through this filtration technique.

  20. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  1. Dense, layered membranes for hydrogen separation

    Science.gov (United States)

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  2. Ceramic Membranes for Ammonia Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Camus, O.; Perera, S.; Crittenden, B. [Department of Chemical Engineering, University of Bath, Bath, BA2 7AY (United Kingdom); Van Delft, Y.C.; Meyer, D.F.; Pex, P.P.A.C. [ECN Solar Energy, Westerduinweg 3, P.O. Box 1, 1755 ZG Petten (Netherlands); Kumakiri, I.; Miachon, S.; Dalmon, J.A. [CNRS-Institut de Recherches sur la Catalyse 2, av. A. Einstein, 69626 Villeurbanne (France); Tennison, S. [MAST Carbon, Ltd., Henley Park, Guildford, Surrey, GU3 2AF (United Kingdom); Chanaud, P. [Pall-Exekia, BP1, Usine a Bazet (France); Groensmit, E. [Kemira GrowHow SA/NV, Avenue Einstein 11, B-1300 Wavre (Belgium); Nobel, W. [Continental Engineers BV, Rustenburg 114, 1506 AZ Zaandam (Netherlands)

    2008-12-15

    An extensive screening program has been performed to find a suitable membrane configuration and operating conditions for the effective recovery of ammonia from the syngas loop. All the experiments have been performed at steady state. MFI zeolite membranes in tubular and multi-channel fiber configurations have been tested along with tubular silica membranes. At 80C, a high ammonia permeance (2.1 x 10{sup -7} mol.m{sup -2}.s{sup -1}.Pa{sup -1}), and a selectivity of about 10 were found with the tubular zeolite membrane, whereas for the silica membrane an even higher ammonia permeance was measured (7.6 x 10{sup -7} mol.m{sup -2}.s{sup -1}.Pa{sup -1}) with a selectivity of about 7. For both silica and zeolite membranes, the selectivity was found to increase with increasing temperature up to 80C. This is a combined effect of weaker adsorption of ammonia and increased diffusion at higher temperature. The results have been modeled using both the well-mixed reactor and the log mean pressure difference approaches. To overcome their limitations in addressing changes in feed concentration along the membrane surface, a segmental model has been used to obtain suitable operating conditions and membrane areas required for an industrial application.

  3. Relaxation phenomena in dense gas separation membranes

    NARCIS (Netherlands)

    Wessling, Matthias

    1993-01-01

    Solution-diffusion membranes are widely used for the separation of gaseous and liquid mixtures. The separation of air (O2/N2), landfill gas (CH4/CO2) and purge gas streams (NH3/H2) in the ammonia synthesis are examples for state-of-the-art membrane gas separation processes. For the separation of liq

  4. Relaxation phenomena in dense gas separation membranes

    NARCIS (Netherlands)

    Wessling, Matthias

    1993-01-01

    Solution-diffusion membranes are widely used for the separation of gaseous and liquid mixtures. The separation of air (O2/N2), landfill gas (CH4/CO2) and purge gas streams (NH3/H2) in the ammonia synthesis are examples for state-of-the-art membrane gas separation processes. For the separation of

  5. Preparation and Chiral Selectivity of BSA-Modified Ceramic Membrane

    Institute of Scientific and Technical Information of China (English)

    Cai Lian SU; Rong Ji DAI; Bin TONG; Yu Lin DENG

    2006-01-01

    An affinity-transport system, containing porous ceramic membranes bound with bovine serum albumin (BSA) was used for chiral separation of racemic tryptophan. The preparation of BSA modified ceramic membrane included three steps. Firstly, the membrane was modified with amino group using silanization with an amino silane. Secondly, the amino group modified membrane was bound with aldehyde group using gluteraldehyde. Finally, BSA was covalently bound on the surface of the ceramic membrane. Efficient separation of racemic tryptophan was carried out by performing permeation cell experiments, with BSA modified, porous ceramic membranes.

  6. Refining of biodiesel by ceramic membrane separation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong; Ou, Shiyi; Tan, Yanlai; Tang, Shuze [Department of Food Science and Engineering, Jinan University, Guangzhou 510632 (China); Wang, Xingguo; Liu, Yuanfa [School of Food Science and Technology, Jiangnan University, Wuxi 214112 (China)

    2009-03-15

    A ceramic membrane separation process for biodiesel refining was developed to reduce the considerable usage of water needed in the conventional water washing process. Crude biodiesel produced by refined palm oil was micro-filtered by ceramic membranes of the pore size of 0.6, 0.2 and 0.1 {mu}m to remove the residual soap and free glycerol, at the transmembrane pressure of 0.15 MPa and temperature of 60 C. The flux through membrane maintained at 300 L m{sup -} {sup 2} h{sup -} {sup 1} when the volumetric concentrated ratio reached 4. The content of potassium, sodium, calcium and magnesium in the whole permeate was 1.40, 1.78, 0.81 and 0.20 mg/kg respectively, as determined by inductively coupled plasma-atomic emission spectroscopy. These values are lower than the EN 14538 specifications. The residual free glycerol in the permeate was estimated by water extraction, its value was 0.0108 wt.%. This ceramic membrane technology was a potential environmental process for the refining of biodiesel. (author)

  7. PERFORMANCE EVALUATION OF CERAMICS MICROFILTRATION MEMBRANE FOR WATER TREATMENT

    OpenAIRE

    F.T. Owoeye; A.P. Azodo; S.B. Udo

    2016-01-01

    Ceramic membranes are especially suitable for processes with high temperatures and harsh chemical environments or for processes where sterilizability of the membrane is important. The main objective of this work is to determine the evaluation of four different ceramic membranes with different material compositions. Ceramic disc type microfiltration membranes were fabricated by the mould and press method from different percentage compositions of clay, kaolin, sawdust and wood charcoal. The fab...

  8. Gas separations using ceramic membranes. Final report, September 1988--February 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.L.; Wu, J.C.S.; Gallaher, G.R.; Smith, G.W.; Flowers, D.L.; Gerdes, T.E.; Liu, P.K.T.

    1993-02-01

    This study covers a comprehensive evaluation of existing ceramic membranes for high temperature gas separations. Methodology has been established for microporous characterization stability and gas separation efficiency. A mathematical model was developed to predict gas separations with existing membranes. Silica and zeolitic modifications of existing membranes were pursued to enhance its separation efficiency. Some of which demonstrate unique separations properties. Use of the dense-silica membranes for hydrogen enrichment was identified as a promising candidate for future development. In addition, the decomposition of trace ammonia contaminant via a catalytic membrane reactor appears feasible. A further economic analysis is required to assess its commercial viability.

  9. Integrated Ceramic Membrane System for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to

  10. Prospects and problems of dense oxygen permeable membranes

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Larsen, P.H.; Mogensen, Mogens Bjerg

    2000-01-01

    The prospects of using mixed ionic/electronic conducting ceramics for syngas production in a catalytic membrane reactor are analysed. Problems relating to limited thermodynamic stability and poor dimensional stability of candidate materials are addressed, The consequences for these problems......, of flux improving measures like minimization of membrane thickness and minimization of the losses due to oxygen exchange over the membrane surfaces, are discussed. The analysis is conducted on two candidate materials: La0.6Sr0.4Co0.2Fe0.8O3-delta and SrFeCo0.5Ox. Finally. experimental investigations...

  11. Myoglobin entrapment in poly(vinyl alcohol dense membranes

    Directory of Open Access Journals (Sweden)

    K. C. S. Figueiredo

    2014-09-01

    Full Text Available Our goal in this study was the immobilization of myoglobin in poly(vinyl alcohol dense membranes. Glutaraldehyde was investigated both as the crosslinking agent, aiming to increase the membrane stability in aqueous medium, and as the vehicle to bind myoglobin and PVA. Reaction and membrane synthesis were carried simultaneously in mild operating conditions in order to maintain the native protein folding. Membrane characterization comprised the water swelling degree, DSC, TGA, UV-visible spectroscopy, FTIR analysis and oxygen transport in a dialysis cell. The incorporation of myoglobin in the film decreased the water swelling degree and improved the membrane thermal properties compared to unmodified PVA membrane. The reduction of ferric iron in the prosthetic group of the protein to the ferrous form was observed. The increased affinity between oxygen and the immobilized myoglobin did not favor the release of this solute from the biocarrier.

  12. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, K.D.; Fain, D.E.; James, D.L.; Powell, L.E.; Raj, T.; Roettger, G.E.; Sutton, T.G. [East Tennessee Technology Park, Oak Ridge, TN (United States)

    1997-12-01

    The separative performance of the authors` ceramic membranes has been determined in the past using a permeance test system that measured flows of pure gases through a membrane at temperatures up to 275 C. From these data, the separation factor was determined for a particular gas pair from the ratio of the pure gas specific flows. An important project goal this year has been to build a Mixed Gas Separation System (MGSS) for measuring the separation efficiencies of membranes at higher temperatures and using mixed gases. The MGSS test system has been built, and initial operation has been achieved. The MGSS is capable of measuring the separation efficiency of membranes at temperatures up to 600 C and pressures up to 100 psi using a binary gas mixture such as hydrogen/methane. The mixed gas is fed into a tubular membrane at pressures up to 100 psi, and the membrane separates the feed gas mixture into a permeate stream and a raffinate stream. The test membrane is sealed in a stainless steel holder that is mounted in a split tube furnace to permit membrane separations to be evaluated at temperatures up to 600 C. The compositions of the three gas streams are measured by a gas chromatograph equipped with thermal conductivity detectors. The test system also measures the temperatures and pressures of all three gas streams as well as the flow rate of the feed stream. These data taken over a range of flows and pressures permit the separation efficiency to be determined as a function of the operating conditions. A mathematical model of the separation has been developed that permits the data to be reduced and the separation factor for the membrane to be determined.

  13. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-09-27

    A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.

  14. Hydrogen production from methane using oxygen-permeable ceramic membranes

    Science.gov (United States)

    Faraji, Sedigheh

    Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest in membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like hydrogen. However, hydrogen generation by this method has not yet been commercialized and suffers from low membrane stability, low membrane oxygen flux, high membrane fabrication costs, and high reaction temperature requirements. In this dissertation, hydrogen production from methane on two different types of ceramic membranes (dense SFC and BSCF) has been investigated. The focus of this research was on the effects of different parameters to improve hydrogen production in a membrane reactor. These parameters included operating temperature, type of catalyst, membrane material, membrane thickness, membrane preparation pH, and feed ratio. The role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance. During thermogravimetric analysis, the onset temperature of oxygen release for BSCF was observed to be lower than that for SFC while the amount of oxygen release was significantly greater. Pulse injections of CO2 over crushed membranes at 800°C have shown more CO2 dissociation on the BSCF membrane than the SFC membrane, resulting in higher CO formation on the BSCF membrane. Similar to the CO2 pulses, when CO was injected on the samples at 800°C, CO2 production was higher on BSCF than SFC. It was found that hydrogen consumption on BSCF particles is 24 times higher than that on SFC particles. Furthermore, Raman spectroscopy and temperature programmed desorption studies of

  15. Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

    2011-03-14

    The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen using OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  16. Hydrogen production by water dissociation using ceramic membranes - annual report for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

    2009-03-25

    The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  17. Hydrogen production by water dissociation using ceramic membranes. Annual report for FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J.; Energy Systems

    2010-04-20

    The objective of this project is to develop dense ceramic membranes that can produce hydrogen via coal/coal gas-assisted water dissociation without using an external power supply or circuitry. This project grew from an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen production by two methods. In one method, a hydrogen transport membrane selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.

  18. Ceramic Electrolyte Membrane Technology: Enabling Revolutionary Electrochemical Energy Storage

    Science.gov (United States)

    2015-10-05

    Sakamoto group is one of the first groups to investigate a new ceramic electrolyte based on cubic garnet-structured lithium lanthanum zirconium oxide ( LLZO ...technology to fabricate larger LLZO ceramic membranes. The goal of this work is to develop ceramic processing technology to fabricate LLZO membranes that...zirconium oxide ( LLZO ) exhibiting the unprecedented combination of fast ion conductivity, stability against Li, air and moisture. While the initial

  19. Experimental study on ceramic membrane technology for onboard oxygen generation

    Institute of Scientific and Technical Information of China (English)

    Jiang Dongsheng; Bu Xueqin; Sun Bing; Lin Guiping; Zhao Hongtao; Cai Yan; Fang Ling

    2016-01-01

    The ceramic membrane oxygen generation technology has advantages of high concentra-tion of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT) and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT). Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  20. Experimental study on ceramic membrane technology for onboard oxygen generation

    Directory of Open Access Journals (Sweden)

    Jiang Dongsheng

    2016-08-01

    Full Text Available The ceramic membrane oxygen generation technology has advantages of high concentration of produced oxygen and potential nuclear and biochemical protection capability. The present paper studies the ceramic membrane technology for onboard oxygen generation. Comparisons are made to have knowledge of the effects of two kinds of ceramic membrane separation technologies on oxygen generation, namely electricity driven ceramic membrane separation oxygen generation technology (EDCMSOGT and pressure driven ceramic membrane separation oxygen generation technology (PDCMSOGT. Experiments were conducted under different temperatures, pressures of feed air and produced oxygen flow rates. On the basis of these experiments, the flow rate of feed air, electric power provided, oxygen recovery rate and concentration of produced oxygen are compared under each working condition. It is concluded that the EDCMSOGT is the oxygen generation means more suitable for onboard conditions.

  1. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    Science.gov (United States)

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology.

  2. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    In this project we well evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated. (VC)

  3. Sol-gel applications for ceramic membrane preparation

    Science.gov (United States)

    Erdem, I.

    2017-02-01

    Ceramic membranes possessing superior properties compared to polymeric membranes are more durable under severe working conditions and therefore their service life is longer. The ceramic membranes are composed of some layers. The support is the layer composed of coarser ceramic structure and responsible for mechanical durability under filtration pressure and it is prepared by consolidation of ceramic powders. The top layer is composed of a finer ceramic micro-structure mainly responsible for the separation of components present in the fluid to be filtered and sol-gel method is a versatile tool to prepare such a tailor-made ceramic filtration structure with finer pores. Depending on the type of filtration (e.g. micro-filtration, ultra-filtration, nano-filtration) aiming separation of components with different sizes, sols with different particulate sizes should be prepared and consolidated with varying precursors and preparation conditions. The coating of sol on the support layer and heat treatment application to have a stable ceramic micro-structure are also important steps determining the final properties of the top layer. Sol-gel method with various controllable parameters (e.g. precursor type, sol formation kinetics, heat treatment conditions) is a practical tool for the preparation of top layers of ceramic composite membranes with desired physicochemical properties.

  4. Nanocomposite Membranes based on Perlfuorosulfonic Acid/Ceramic for Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; WANG Guangjin; YE Hong; YAN Shilin

    2015-01-01

    Perlfuorosulfonic acid/ceramic nanocomposite membranes were investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. Different nanosized ceramics (SiO2, ZrO2, TiO2) with diameters in the range of 2-6 nm were synthesized in situ in Nafion solution through a sol-gel process and the formed nanosized ceramics were well-dispersed in the solution. The nanocomposite membranes were formed through a casting process. The nanocomposite membrane showes enhanced water retention ability and improved proton conductivity compared to those of pure Naifon membrane. The mechanical strength of the formed nanocomposite membranes is slightly less than that of pure Naifon membrane. The experimental results demonstrate that the polymer ceramic nanocompsite membranes are potential electrolyte for fuel cells operating at elevated temperature.

  5. Deposition and consolidation of porous ceramic films for membrane separation

    DEFF Research Database (Denmark)

    Elmøe, Tobias Dokkedal; Tricoli, Antonio; Johannessen, Tue

    The deposition of porous ceramic films for membrane separation can be done by several processes such as thermophoresis [1], dip-coating [2] and spray pyrolysis [3]. Here we present a high-speed method, in which ceramic nano-particles form a porous film by filtration on top of a porous ceramic...... substrate [4]. Ceramic nano-particles are generated in a flame, using either a premixed (gas) flame, in which a metal-oxide precursor is evaporated in an N2 stream, which is combusted with methane and air, or using a flame spray pyrolysis, in which a liquid metal-oxide precursor is sprayed through a nozzle...

  6. CERAMIC MEMBRANES FOR HYDROGEN PRODUCTION FROM COAL

    Energy Technology Data Exchange (ETDEWEB)

    George R. Gavalas

    2004-04-01

    The preparation and performance of membranes for application to hydrogen separation from coal-derived gas is described. The membrane material investigated was dense amorphous silica deposited on a suitable support by chemical vapor deposition (CVD). Two types of support materials were pursued. One type consisted of a two-layer composite, zeolite silicalite/{alpha}-Al{sub 2}O{sub 3}, in the form of tubes approximately 0.7 cm in diameter. The other type was porous glass tubes of diameter below 0.2 cm. The first type of support was prepared starting from {alpha}-Al{sub 2}O{sub 3} tubes of 1{micro}m mean pore diameter and growing by hydrothermal reaction a zeolite silicalite layer inside the pores of the alumina at the OD side. After calcination to remove the organic template used in the hydrothermal reaction, CVD was carried out to deposit the final silica layer. CVD was carried out by alternating exposure of the surface with silicon tetrachloride and water vapor. SEM and N2 adsorption measurements were employed to characterize the membranes at several stages during their preparation. Permeation measurements of several gases yielded H{sub 2}:N{sub 2} ideal selectivity of 150-200 at room temperature declining to 110 at 250 C. The second type of support pursued was porous glass tubes prepared by a novel extrusion technique. A thick suspension of borosilicate glass powder in a polyethersulfone solution was extruded through a spinneret and after gelation the glass-polymer tube was heat treated to obtain a gas-tight glass tube. Leaching of the glass tube in hot water yielded connected pores with diameter on the order of 100 nm. CVD of the final silica layer was not carried out on these tubes on account of their large pore size.

  7. Fabrication and characterization of dense zirconia and zirconia-silica ceramic nanofibers.

    Science.gov (United States)

    Xu, Xiaoming; Guo, Guangqing; Fan, Yuwei

    2010-09-01

    The objective of this study was to prepare dense zirconia-yttria (ZY), zirconia-silica (ZS) and zirconia-yttria-silica (ZYS) nanofibers as reinforcing elements for dental composites. Zirconium (IV) propoxide, yttrium nitrate hexahydrate, and tetraethyl orthosilicate (TEOS) were used as precursors for the preparation of zirconia, yttria, and silica sols. A small amount (1-1.5 wt%) of polyethylene oxide (PEO) was used as a carry polymer. The sols were preheated at 70 degrees C before electrospinning and their viscosity was measured with a viscometer at different heating time. The gel point was determined by viscosity-time (eta-t) curve. The ZY, ZS and ZYS gel nanofibers were prepared using a special reactive electrospinning device under the conditions near the gel point. The as-prepared gel nanofibers had diameters between 200 and 400 nm. Dense (nonporous) ceramic nanofibers of zirconia-yttria (96/4), zirconia-silica (80/20) and zirconia-yttria-silica (76.8/3.2/20) with diameter of 100-300 nm were obtained by subsequent calcinations at different temperatures. The gel and ceramic nanofibers obtained were characterized by scanning electron microscope (SEM), high-resolution field-emission scanning electron microscope (FE-SEM), thermogravimetric analyzer (TGA), differential scanning calorimeter (DSC), Fourier transform infrared spectrometer (FT-IR), and X-ray diffraction (XRD). SEM micrograph revealed that ceramic ZY nanofibers had grained structure, while ceramic ZS and ZYS nanofibers had smooth surfaces, both showing no visible porosity under FE-SEM. Complete removal of the polymer PEO was confirmed by TGA/DSC and FT-IR. The formation of tetragonal phase of zirconia and amorphous silica was proved by XRD. In conclusion, dense zirconia-based ceramic nanofibers can be fabricated using the new reactive sol-gel electrospinning technology with minimum organic polymer additives.

  8. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B.; Goldsmith, R. [CeraMem Corp., Waltham, MA (United States)

    1995-12-31

    Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent deashing (Rose{sup {reg_sign}} process from Kerr-McGee) and filtration (U.S. Filter leaf filter as used by British Coal). These methods produce ash reject streams containing up to 15% of the liquid hydrocarbon product. Consequently, CeraMem proposed the use of low cost, ceramic crossflow membranes for the filtration of coal liquids bottoms to remove mineral matter and subsequent diafiltration (analogous to cake washing in dead-ended filtration) for the removal of coal liquid from the solids stream. The use of these ceramic crossflow membranes overcomes the limitations of traditional polymeric crossflow membranes by having the ability to operate at elevated temperature and to withstand prolonged exposure to hydrocarbon and solvent media. In addition, CeraMem`s membrane filters are significantly less expensive than competitive ceramic membranes due to their unique construction. With these ceramic membrane filters, it may be possible to reduce the product losses associated with traditional deashing processes at an economically attractive cost. The performance of these ceramic membrane microfilters is discussed.

  9. Development of ceramic membranes for conversion of methane into syngas.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Ma, B.

    1999-09-23

    The abundantly available natural gas (mostly methane) discovered in remote areas has stimulated considerable research on upgrading this gas to high-value-added clean-burning fuels such as dimethyl ether and alcohols and to pollution-fighting fuel additives. Of the two routes to convert methane to valuable products, direct and indirect, the indirect route involving partial oxidation of methane to syngas (a mixture of CO and H{sub 2}) is preferred. Syngas is used as feedstock to produce a variety of petrochemicals and transportation fuels. A mixed-conducting dense ceramic membrane was developed from Sr-Fe-Co oxide. Extruded and sintered tubes of SrFeCoO{sub 0.5}O{sub x} have been evaluated in a reactor operating at {approx}850 C for conversion of methane into syngas in the presence of a reforming catalyst. Some of the reactor tubes have been run for more than 1000 h, and methane conversion efficiencies of {approx}98% and CO selectivities of >96% were observed.

  10. Dense Persistent Pupillary Membrane in an Adult Patient

    Directory of Open Access Journals (Sweden)

    Yesim Altay

    2014-06-01

    Full Text Available Persistent pupillary membranes (PPM are congenital abnormalities which results from an incomplete involution of tunica vasculosa lentis and are rarely seen in adults. A thirty-year old man applied to the hospital with the complaint of uncommon-looking pupils and progressive blurring of vision in the left eye. On examination, uncorrected visual acuity (Snellen were 20/100 in the right eye and 20/640 in the left eye with amblyopia. On biomicroscopic examination, there were bilateral dense PPM and cataract in the left eye. Visual field analysis of right and left eyes showed great narrowing of visual fields. We present our case in order to emphasize that analysis of visual field of patients with PPM is as important as central vision when planning its treatment. For planning treatment of patients with PPM, visual impairment, size of pupillary opening, and visual field analysis should be considered.

  11. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  12. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will also be investigated.

  13. PERFORMANCE EVALUATION OF CERAMICS MICROFILTRATION MEMBRANE FOR WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    F.T. Owoeye

    2016-05-01

    Full Text Available Ceramic membranes are especially suitable for processes with high temperatures and harsh chemical environments or for processes where sterilizability of the membrane is important. The main objective of this work is to determine the evaluation of four different ceramic membranes with different material compositions. Ceramic disc type microfiltration membranes were fabricated by the mould and press method from different percentage compositions of clay, kaolin, sawdust and wood charcoal. The fabricated membranes were sintered at a temperature of 1100°C and characterized by an X-ray diffractometer and optical scanner. Compressibility tests and physical properties of the membranes were also examined. It was observed that, as the percentage composition of kaolin increased from 0 to 80% and the percentage composition of clay decreased from 80 to 0% respectively, the compressive stress of all the sample membranes increased, with an increase in compressive strain from 1.8 to 2.4. Sample A had the highest value of compressive stress from 1.8 to 2.2 compressive strain, but sample B had the highest value of compressive stress of 150MPa at a compressive strain of 2.4. Optical micrographs of all membranes showed the presence of uniformly distributed pores and no cracks were seen around them. It was concluded that, with increasing percentage of kaolin and decreasing percentage of clay, there was a decrease in porosity and water absorption, as well as a decrease in the mechanical properties of the fabricated membranes.

  14. Silicalite-1 zeolite membranes on unmodified and modified surfaces of ceramic supports: A comparative study

    Indian Academy of Sciences (India)

    M K Naskar; D Kundu; M Chatterjee

    2009-10-01

    Silicalite-1 zeolite membranes were prepared hydrothermally on the porous ceramic supports, both unmodified and modified with 3-aminopropyl triethoxysilane (APTES) as a coupling agent following ex situ (secondary) crystal growth process. The microstructure of the membranes was examined by scanning electron microscopy (SEM). The permeation study with a single gas, nitrogen (N2) was performed through the membranes. For the surface modified support, a more surface coverage of the seed crystals on the porous support was observed resulting in a relatively higher dense packing of the crystals during secondary crystal growth process compared to that obtained from the unmodified support. The membrane developed on surface modified support rendered lower permeance value i.e. 9 × 10-7 mol m-2 s-1 Pa-1 of N2 compared to that formed on the unmodified support which gave permeance value of 20 × 10-7 mol m-2 s-1 Pa-1 of N2.

  15. Dense film polyimide membranes for aggressive sour gas feed separations

    KAUST Repository

    Kraftschik, Brian

    2013-02-01

    Dense film membranes of the copolyimide 6FDA-DAM:DABA (3:2) are studied for simultaneous removal of CO2 and H2S from sour natural gas streams. Pure and mixed gas permeation as well as pure gas sorption data are reported at 35°C and pressures up to 62bar. The H2S partial pressures used are representative of highly aggressive field operations. Penetrant-induced plasticization effects are evident at feed pressures below 1bar in pure H2S feeds; sub-Tg thermal annealing is used to effectively mitigate this effect, and these annealed films are used throughout the study. Surprisingly, H2S/CH4 selectivity nearly doubles for mixed gas testing in comparison to the pure component ideal selectivity values and approaches the level of a state-of-the-art glassy polymer, cellulose acetate (CA), at H2S partial pressures above 2bar. Furthermore, permeation experiments using a 9.95% H2S, 19.9% CO2, 70.15% CH4 mixture at low feed pressures give CO2/CH4 selectivity of up to 49-over 30% greater than the pure component selectivity for 6FDA-DAM:DABA (3:2). The overall sour gas separation performance of this polyimide is comparable to high-performance rubbery polymer membranes, which have been reported for only moderate H2S partial pressure feeds, and is superior to that for CA based on a practical combined acid gas separation efficiency metric that we introduce. Finally, methods for continued development of the current polyimide membrane material for aggressive sour gas separations are presented. © 2012 Elsevier B.V.

  16. Synthesis of Dense, Fine-Grained YIG Ceramics by Two-Step Sintering

    Science.gov (United States)

    Li, X. X.; Zhou, J. J.; Deng, J. X.; Zheng, H.; Zheng, L.; Zheng, P.; Qin, H. B.

    2016-10-01

    A two-step sintering (TSS) process has been used to fabricate yttrium iron garnet (YIG) ceramics with high density and fine grain size. The densification, microstructure, and magnetic properties were investigated. The sample prepared by the TSS process with first-step sintering temperature ( T 1) of 1350°C, second-step sintering temperature ( T 2) of 1300°C, and holding time of 18 h had density above 99% of theoretical and exhibited uniform microstructure with small average grain size (2.4 μm). The saturation magnetization ( M S) of this sample reached 27.4 emu/g. These results indicate that the TSS process can effectively suppress grain-boundary migration while maintaining active grain-boundary diffusion to obtain dense, fine-grained YIG ceramics with appropriate magnetic properties.

  17. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-01-01

    In this project we intend to study a novel process concept, i.e.,the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we wig evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  18. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-01-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  19. Dense inorganic membranes - studies on transport properties, defect chemistry and catalytic behaviour

    NARCIS (Netherlands)

    Elshof, ten Johan Evert

    1997-01-01

    Oxygen separation with dense oxide membranes may be an attractive method for the production of oxygen from air. Another possible application is the direct supply of oxygen in membrane reactors for the (partial) oxidation of hydrocarbons. The driving force for oxygen permeation through dense mixed io

  20. Investigations of hydrodynamic permeability ceramic membranes for microfiltration

    OpenAIRE

    Marković Tijana; Vukosavljević Predrag; Vladisavljević Goran; Bukvić Branka

    2006-01-01

    This paper introduces the results of experimental investigations on the influence of operating parameters, such as feed flow rate, temperature, pressure difference in the microfiltration through the ceramic Kerasep membrane. The results confirmed earlier work on the same laboratory device for microfiltration. and they are the main condition for determination of kinetics juice clarification. Apart from investigations on the influence of operating parameters, the influence of membrane moisture ...

  1. Investigations of hydrodynamic permeability ceramic membranes for microfiltration

    Directory of Open Access Journals (Sweden)

    Marković Tijana

    2006-01-01

    Full Text Available This paper introduces the results of experimental investigations on the influence of operating parameters, such as feed flow rate, temperature, pressure difference in the microfiltration through the ceramic Kerasep membrane. The results confirmed earlier work on the same laboratory device for microfiltration. and they are the main condition for determination of kinetics juice clarification. Apart from investigations on the influence of operating parameters, the influence of membrane moisture on microfiltration was observed.

  2. Multilayer Membranes Based on Ceramic Materials—Sol-gel Synthesis, Characterization and Membrane Performance

    Institute of Scientific and Technical Information of China (English)

    Sun Qianyao; Xu Chunming

    2007-01-01

    In nearly all chemical and petrochemical systems, separation of products generally accounts for more than 50% of the capital cost and the greatest part of the energy consumption. It is generally believed that membrane systems can offer benefits in both reducing the energy consumption of the separation stages and lowering the capital expenditure (CAPEX). Microporous ceramic membranes have the potential to overcome the limitation in polymer membranes operation, which has been the subject of a large amount of research worldwide in the last two decades. And most of the research has aimed at the production of the asymmetric multilayered membrane based on amorphous oxides by sol-gel techniques. The paper is to give an overview of publications on ceramic membranes, including less common materials of titania, zirconia, which can be used for pervaporation in corrosive media. Commercially available microporous membranes based on these membrane materials and the membrane economics are also summarized.

  3. Proton conducting ceramics in membrane separations

    Science.gov (United States)

    Brinkman, Kyle S; Korinko, Paul S; Fox, Elise B; Chen, Frank

    2015-04-14

    Perovskite materials of the general formula SrCeO.sub.3 and BaCeO.sub.3 are provided having improved conductivity while maintaining an original ratio of chemical constituents, by altering the microstructure of the material. A process of making Pervoskite materials is also provided in which wet chemical techniques are used to fabricate nanocrystalline ceramic materials which have improved grain size and allow lower temperature densification than is obtainable with conventional solid-state reaction processing.

  4. Proton conducting ceramics in membrane separations

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle S; Korinko, Paul S; Fox, Elise B; Chen, Frank

    2015-04-14

    Perovskite materials of the general formula SrCeO.sub.3 and BaCeO.sub.3 are provided having improved conductivity while maintaining an original ratio of chemical constituents, by altering the microstructure of the material. A process of making Pervoskite materials is also provided in which wet chemical techniques are used to fabricate nanocrystalline ceramic materials which have improved grain size and allow lower temperature densification than is obtainable with conventional solid-state reaction processing.

  5. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-01-01

    Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. Having the inherent capability for combining reaction and separation in a single step, they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, such as these typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. This project will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. Development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  6. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-03-17

    Oil/water (O/W) emulsion is daily produced and difficult to be treated effectively. Ceramic membrane ultrafiltration is one of reliable processes for the treatment of O/W emulsion, yet still hindered by membrane fouling. In this study, two types of Fe2O3 dynamic membranes (i.e., pre-coated dynamic membrane and self-forming dynamic membrane) were prepared to mitigate the fouling of support ceramic membrane in O/W emulsion treatment. Pre-coated dynamic membrane (DM) significantly reduced the fouling of ceramic membrane (i.e., 10% increase of flux recovery rate), while self-forming dynamic membrane aggravated ceramic membrane fouling (i.e., 8.6% decrease of flux recovery rate) after four filtration cycles. A possible fouling mechanism was proposed to explain this phenomenon, which was then confirmed by optical images of fouled membranes and the analysis of COD rejection. In addition, the cleaning efficiency of composite membranes (i.e., Fe2O3 dynamic membrane and support ceramic membrane) was enhanced by substitution of alkalescent water backwash for deionized water backwash. The possible reason for this enhancement was also explained. Our result suggests that pre-coated Fe2O3 dynamic membrane with alkalescent water backwash can be a promising technology to reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in the treatment of oily wastewater.

  7. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-01-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL's contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  8. Chemically stable ceramic-metal composite membrane for hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fanglin; Fang, Shumin; Brinkman, Kyle S.

    2017-06-27

    A hydrogen permeation membrane is provided that can include a metal and a ceramic material mixed together. The metal can be Ni, Zr, Nb, Ta, Y, Pd, Fe, Cr, Co, V, or combinations thereof, and the ceramic material can have the formula: BaZr.sub.1-x-yY.sub.xT.sub.yO.sub.3-.delta. where 0.ltoreq.x.ltoreq.0.5, 0.ltoreq.y.ltoreq.0.5, (x+y)>0; 0.ltoreq..delta..ltoreq.0.5, and T is Sc, Ti, Nb, Ta, Mo, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Sn, or combinations thereof. A method of forming such a membrane is also provided. A method is also provided for extracting hydrogen from a feed stream.

  9. Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts

    Institute of Scientific and Technical Information of China (English)

    JIANG Hong; MENG Lie; CHEN Rizhi; JIN Wanqin; XING Weihong; XU Nanping

    2013-01-01

    Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes,but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry.A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis.This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis,which covers classification of configurations of porous ceramic membrane reactor,major considerations and some important industrial applications.A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design,optimization of ceramic membrane reactor performance and membrane fouling mechanism.Finally,brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.

  10. Improved ferroelectric, piezoelectric and electrostrictive properties of dense BaTiO{sub 3} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Baraskar, Bharat G.; Kakade, S. G.; Kambale, R. C., E-mail: rckambale@gmail.com; Kolekar, Y. D., E-mail: ydk@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra, India 411 007 (India); James, A. R. [Defence Metallurgical Research Laboratory, Kanchanbagh P.O., Hyderabad, India - 500 058 (India)

    2016-05-23

    The ferroelectric, piezoelectric and electrostrictive properties of BaTiO{sub 3} (BT) dense ceramic synthesized by solid-state reaction were investigated. X-ray diffraction study confirmed tetragonal crystal structure having c/a ~1.0144. The dense microstructure was evidenced from morphological studies with an average grain size ~7.8 µm. Temperature dependent dielectric measurement showed the maximum values of dielectric constant, ε{sub r} = 5617 at Curie temperature, T{sub c} = 125 °C. The saturation and remnant polarization, P{sub sat.} = 24.13 µC/cm{sup 2} and P{sub r} =10.42 µC/cm{sup 2} achieved respectively for the first time with lower coercive field of E{sub c}=2.047 kV/cm. The polarization current density-electric field measurement exhibits the peaking characteristics, confirms the saturation state of polarization for BT. The strain-electric field measurements revealed the “sprout” shape nature instead of typical “butterfly loop”. This shows the excellent converse piezoelectric response with remnant strain ~ 0.212% and converse piezoelectric constant d*{sub 33} ~376.35 pm/V. The intrinsic electrostrictive coefficient was deduced from the variation of strain with polarization with electrostrictive coefficient Q{sub 33}~ 0.03493m{sup 4}/C{sup 2}.

  11. Ceramic Ultra Filtration Membrane Bioreactor for Domestic Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A long term domestic wastewater treatment experiment was conducted using a recirculating ceramic ultra filtration membrane bioreactor (CUFMB) system. Three experiments were run with a hydraulic retention time of 5h, sludge retention times of 5d, 15d, and 30d and a membrane surface flow rate of 4m/s. The experiment studied the membrane fouling mechanism and cleaning techniques. The results show that a CUFMB system can provide continuous good quality effluent which is completely acceptable for reuse. The system is also not affected by fluctuations of the inlet flow. The CUFMB sludge loading rate is similar to that of conventional biological treatment units. However, the volumetric loading rate of the CUFMB is 24 times that of conventional biological treatment units. Membrane fouling occurs due to channel clogging, which could be easily removed, and surface fouling, which can be effectively removed using the method described in this work which includes water rinsing, base cleaning, and acid washing.

  12. A Novel Dense Mixed-Conducting Membrane for Oxygen Permeation

    Institute of Scientific and Technical Information of China (English)

    徐南平; 李世光; 金万勤; 时钧

    2000-01-01

    Perovskite type SrCo0.4Fe0.6O3-δ(SCF) membrane and a novel perovskite-related ZrO2 doped SrCo0.4Fe0.6O3-δ(SCFZ) membrane were successfully prepared by isostatic pressing. The sintered membranes were characterized by high-temperature X-ray diffraction (HTXRD) and energy dispersive spectroscopy (EDS). The oxygen permeabilities of membranes have been measured in the temperature range of 923 K to 1243 K. The oxygen permeation flux at 1123K and activation energy of SCFZ membrane with the thickness of 2mm are respectively 2.68×10-7 mol·cm-2·min-1 and 97.76 kJ·mol-1. The results of HTXRD in argon atmosphere and the oxygen permeation experiment indicate that the SCFZ membrane is stable at elevated temperature and low oxygen partial pressure.

  13. Ceramic membranes for gas separation in advanced fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, W.A.; Baumann, S.; Ivanova, M.; Gestel, T. van; Bram, M.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF)

    2010-07-01

    The reduction or elimination of CO{sub 2} emissions from electricity generation power plants fuelled by coal or gas is a major target in the current socio-economic, environmental and political discussion to reduce green house gas emissions such as CO{sub 2}. This mission can be achieved by introducing gas separation techniques making use of membrane technology, which is, as a rule, associated with significantly lower efficiency losses compared with the conventional separation technologies. Depending on the kind of power plant process different membrane types (ceramic, polymer, metal) can be implemented. The possible technology routes are currently investigated to achieve the emission reduction. They rely on different separation tasks. The CO{sub 2}/N{sub 2} separation is the main target in the post-combustion process. Air separation (O{sub 2}/N{sub 2}) is the focus of the oxyfuel process. In the pre-combustion process an additional H{sub 2}/CO{sub 2} separation is included. Although all separation concepts imply different process requirements they have in common a need in membranes with high permeability, selectivity and stability. In each case CO{sub 2} is obtained in a readily condensable form. CO{sub 2}/N{sub 2} separation membranes like microporous membranes or polymer membranes are applicable in post-combustion stages. In processes with oxyfuel combustion, where the fuel is combusted with pure oxygen, oxygen transport membranes i.e. mixed ionic electronic conducting (MIEC) membranes with mainly perovskite or fluorite structure can be integrated. In the pre-combustion stages of the power plant process, H{sub 2}/CO{sub 2} separation membranes like microporous membranes e.g. doped silica or mixed protonic electronic conductors or metal membranes can be applied. The paper gives an overview about the considered ceramic materials for the different gas separation membranes. The manufacturing of bulk materials as well as supported thin films of these membranes along

  14. Linearly concatenated cyclobutane (ladderane) lipids form a dense bacterial membrane

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Strous, M.; Rijpstra, W.I.C.; Hopmans, E.C.; Geenevasen, J.A.J.; Duin, A.C.T. van; Niftrik, L.A.; Jetten, M.S.M.

    2002-01-01

    Lipid membranes are essential to the functioning of cells, enabling the existence of concentration gradients of ions and metabolites. Microbial membrane lipids can contain three-, five-, six- and even seven-membered aliphatic rings, but four-membered aliphatic cyclobutane rings have never been obser

  15. Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties

    Science.gov (United States)

    Mackay, Richard; Sammells, Anthony F.

    2000-01-01

    Ceramics of the composition: Ln.sub.x Sr.sub.2-x-y Ca.sub.y B.sub.z M.sub.2-z O.sub.5+.delta. where Ln is an element selected from the fblock lanthanide elements and yttrium or mixtures thereof; B is an element selected from Al, Ga, In or mixtures thereof; M is a d-block transition element of mixtures thereof; 0.01.ltoreq.x.ltoreq.1.0; 0.01.ltoreq.y.ltoreq.0.7; 0.01.ltoreq.z.ltoreq.1.0 and .delta. is a number that varies to maintain charge neutrality are provided. These ceramics are useful in ceramic membranes and exhibit high ionic conductivity, high chemical stability under catalytic membrane reactor conditions and low coefficients of expansion. The materials of the invention are particularly useful in producing synthesis gas.

  16. Separation of Hydrogen Using an Electroless Deposited Thin-Film Palladium-Ceramic Composite Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, S.; King, F.G.; Fan, Ting-Fang; Roy, S. [North Carolina Agricultural and Technical State Univ., Greensboro, NC (United States). Dept. of Chemical Engineering

    1996-12-31

    The primary objective of this project was to prepare and characterize a hydrogen permselective palladium-ceramic composite membrane for high temperature gas separations and catalytic membrane reactors. Electroless plating method was used to deposit a thin palladium film on microporous ceramic substrate. The objective of this paper is to discuss the preparation and characterization of a thin-film palladium-ceramic composite membrane for selective separation of hydrogen at elevated temperatures and pressures. In this paper, we also present a model to describe the hydrogen transport through the palladium-ceramic composite membrane in a cocurrent flow configuration.

  17. How To Functionalize Ceramics by Perfluoroalkylsilanes for Membrane Separation Process? Properties and Application of Hydrophobized Ceramic Membranes.

    Science.gov (United States)

    Kujawa, Joanna; Cerneaux, Sophie; Kujawski, Wojciech; Bryjak, Marek; Kujawski, Jan

    2016-03-23

    The combination of microscopic (atomic force microscopy and scanning electron microscopy) and goniometric (static and dynamic measurements) techniques, and surface characterization (surface free energy determination, critical surface tension, liquid entry pressure, hydraulic permeability) was implemented to discuss the influence of perfluoroalkylsilanes structure and grafting time on the physicochemistry of the created hydrophobic surfaces on the titania ceramic membranes of 5 kD and 300 kD. The impact of molecular structure of perfluoroalkylsilanes modifiers (possessing from 6 to 12 carbon atoms in the fluorinated part of the alkyl chain) and the time of the functionalization process in the range of 5 to 35 h was studied. Based on the scanning electron microscopy with energy-dispersive X-ray spectroscopy, it was found that the localization of grafting molecules depends on the membrane pore size (5 kD or 300 kD). In the case of 5 kD titania membranes, modifiers are attached mainly on the surface and only partially inside the membrane pores, whereas, for 300 kD membranes, the perfluoroalkylsilanes molecules are present within the whole porous structure of the membranes. The application of 4 various types of PFAS molecules enabled for interesting observations and remarks. It was explained how to obtain ceramic membrane surfaces with controlled material (contact angle, roughness, contact angle hysteresis) and separation properties. Highly hydrophobic surfaces with low values of contact angle hysteresis and low roughness were obtained. These surfaces possessed also low values of critical surface tension, which means that surfaces are highly resistant to wetting. This finding is crucial in membrane applicability in separation processes. The obtained and characterized hydrophobic membranes were subsequently applied in air-gap membrane distillation processes. All membranes were very efficient in MD processes, showing good transport and selective properties (∼99% of Na

  18. Simulation of a porous ceramic membrane reactor for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; Ohmori, T.; Yamamoto, T.; Endo, A.; Nakaiwa, M.; Hayakawa, T. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Itoh, N. [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan); Utsunomiya Univ. (Japan). Dept. of Applied Chemistry

    2005-08-01

    A systematic simulation study was performed to investigate the performance of a porous ceramic membrane reactor for hydrogen production by means of methane steam reforming. The results show that the methane conversions much higher than the corresponding equilibrium values can be achieved in the membrane reactor due to the selective removal of products from the reaction zone. The comparison of isothermal and non-isothermal model predictions was made. It was found that the isothermal assumption overestimates the reactor performance and the deviation of calculation results between the two models is subject to the operating conditions. The effects of various process parameters such as the reaction temperature, the reaction side pressure, the feed flow rate and the steam to methane molar feed ratio as well as the sweep gas flow rate and the operation modes, on the behavior of membrane reactor were analyzed and discussed. (author)

  19. Microstructure and Scratch Resistance of TaC Dense Ceramic Layer on an Iron Matrix

    Science.gov (United States)

    Zhao, Nana; Xu, Yunhua; Zhong, Lisheng; Yan, Honghua; Ovcharenko, Vladimir E.

    2016-06-01

    A tantalum carbide dense ceramic layer with a thickness of ~20 μm was produced on the surface of an iron matrix using an in situ technique. The morphology, microstructure, and phase composition of the layer were characterized by means of SEM, TEM, and XRD. The results show fairly agglomerated and uniformly sized (~200 nm) TaC particulates with a face-cantered cubic structure. The values of nano-hardness for the surface and cross section of reinforcing layer can be as high as 29.5 ± 0.6 and 26.7 ± 0.1 GPa, respectively, which were analyzed using a nano-indentation apparatus. Moreover, the scratch resistance of the layer was measured by scratch tests under a progressively increasing load of 0-100 N. A high critical load of 90.4 N is obtained. It is worthy to note that there are only cracking, slight splitting, and small flaking pits (even at the maximum load) all over the whole scratch process, namely the reinforcing layer can protect the iron matrix from serious abrasion effectively. In addition, the excellent scratch resistance and mechanism are discussed in detail.

  20. Homogeneous porous perovskite supports for thin dense oxygen separation membranes

    NARCIS (Netherlands)

    Haar, van der L.M.; Verweij, H.

    2000-01-01

    Porous La1−xSrxCoO3−δ substrates (x=0.7, 0.5 and 0.2) were prepared as supports for thin mixed ionic-electronic conducting perovskite membranes. The preparation method is based on pyrolythic powder preparation, followed by high temperature calcination to reduce the sinter activity of the powder. Sub

  1. An asymmetric tubular ceramic-carbonate dual phase membrane for high temperature CO2 separation.

    Science.gov (United States)

    Dong, Xueliang; Ortiz Landeros, José; Lin, Y S

    2013-10-25

    For the first time, a tubular asymmetric ceramic-carbonate dual phase membrane was prepared by a centrifugal casting technique and used for high temperature CO2 separation. This membrane shows high CO2 permeation flux and permeance.

  2. Ceramic Membrane Enabling Technology for Improved IGCC Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    John Sirman; Bart vanHassel

    2005-06-01

    This final report summarizes work accomplished in the program from October 1, 1999 through December 31,2004. While many of the key technical objectives for this program were achieved, after a thorough economic and OTM (Oxygen Transport Membrane) reliability analysis were completed, a decision was made to terminate the project prior to construction of a second pilot reactor. In the program, oxygen with purity greater than 99% was produced in both single tube tests and multi-tube pilot plant tests for over 1000 hours. This demonstrated the technical viability of using ceramic OTM devices for producing oxygen from a high pressure air stream. The oxygen fluxes that were achieved in single tube tests exceeded the original target flux for commercial operation. However, extended testing showed that the mean time to failure of the ceramics was insufficient to enable a commercially viable system. In addition, manufacturing and material strength constraints led to size limitations of the OTM tubes that could be tested. This has a severe impact on the cost of both the ceramic devices, but also the cost of assembling the OTM tubes in a large reactor. As such and combined with significant progress in cost reduction of large cryogenic oxygen separation devices, an economic gain that justifies continued development could not be derived.

  3. The Influence of Surface Morphology of Dense Ca-P Ceramics on Apatite Formation in Dynamic SBF

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study aimed at exploring the effect of surface morphology of dense phosphate calcium (Ca-P) ceramics upon the formation of bone-like apatite in static or dynamic simulated body fluid (SBF). Dense and sandblasted calcium phosphate ceramics were immersed into dynamic SBF flowing at normal physiological speed of body fluid of skeletal muscle.The changes were characterized using SEM, XPS, IR and XRD. Changes can be observed after the sandblasted surface of dense calcium phosphate ceramics had been immersed in SBF for 14 days. XPS analysis results showed that the flake-like structure was composed of Ca, P, C, O; IR analysis result of surface structure of samples showed that there were specific peaks for CO2-3; XRD results indicated the decrease in crystallinity and the increase in amorphous structure. The rough surface was advantageous for the formation of bone-like apatite. Increasing the Ca2+, HPO2-4 concentration of SBF could also enhance the bone like apatite formation. All the results demonstrated that local concentration is a key factor affecting nucleation.

  4. Dense pulmonary opacification in neonates treated with extracorporeal membrane oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, A.E.; Cornish, J.D.; Null, D.M.

    1986-09-01

    Chest radiographic findings in three neonates with respiratory failure secondary to meconium aspiration treated with extracorporeal membrane oxygenation (ECMO) are described. The degree of pulmonary opacification on the chest radiographs failed to correlate with the patients' clinical status as measured by the arterial oxygen levels but correlated well with the peak airway pressure (PAP) and continuous positive airway pressure (CPAP) settings on the mechanical ventilator. Because a variable portion of the arterial blood oxygenation is performed by the extracorporeal membrane oxygenator and unusually large fluctuations in airway pressure settings can occur in these patients while on ECMO, it is important to realize that the chest radiography may not be an accurate predictor of the patients' clinical status.

  5. Microfiltration of wheat starch suspensions using multichannel ceramic membrane

    Directory of Open Access Journals (Sweden)

    Ikonić Bojana B.

    2011-01-01

    Full Text Available This work investigates influence of different process parameters such as transmembrane pressure, flow rate and concentration of wheat starch suspension on the average permeate flux and permeate flux decline. Used membrane in all experiments was 19 channels ceramic membrane with 0.2 μm pore size. Experimental results were analyzed using response surface methodology. It is observed that the significant average permeate flux enhancement of 200% was achieved by the increase of the transmembrane pressure, while the increase of flow rate and concentration affected the increase in average permeate flux in the range of 40-100%. Permeate flux decline was almost independent of the transmembrane pressure, but the increase of the flow rate, as well as the decrease of the concentration led to decrease of permeate flux decline in the range of 20-50%.

  6. Controlled ceramic porosity and membrane fabrication via alumoxane nanoparticles

    Science.gov (United States)

    Jones, Christopher Daniel

    Carboxylate-alumoxanes, [Al(O)x(OH)y(O2CR) z]n, are organic substituted alumina nano-particles synthesized from boehmite in aqueous solution which are an inexpensive and environmentally-benign precursor for the fabrication of aluminum based ceramic bodies. The carboxylate-ligand on the alumoxane determines the morphology and the porosity of the derived alumina. Investigations of A-, MA-, MEA-, and MEEA-alumoxanes, were undertaken to determine the effects of these organic peripheries on the properties of the alumina at different sintering temperatures including the morphology, surface area, pore volume, pore size, pore size distribution, and crystal phase. The effects of physically or chemically mixing different carboxylate-alumoxanes were also investigated. The alumina derived from the thermolysis of the carboxylate-alumoxanes exhibits small pore diameters and narrow pore size distributions that are desirable for use in ceramic ultrafiltration membranes. In addition, it is possible to form alumina membranes with a range of pore sizes and porosity by changing the organic periphery. This lead to investigating the ability to produce asymmetric alumina filters with characteristics that at the lower end of the ultrafiltration range. The flux, permeability, molecular weight cut-off, roughness, and wettability of the asymmetric alumina membranes derived from carboxylate-alumoxanes are determined. Comparisons of these filters are made with commercially available filters. The ability to dope carboxylate-alumoxanes via a transmetallation reaction followed by thermolysis has previously shown to result in catalytically active alumina based materials. This lead to investigations into forming catalytically active membranes. Dip-coating aqueous solutions of the doped carboxylate-alumoxanes onto porous alumina supports, followed by thermolysis, resulted in the formation of doped-alumina asymmetric filters. In addition, a novel method to form surface-modified carboxylate

  7. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  8. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  9. Highly efficient hydrophobic titania ceramic membranes for water desalination.

    Science.gov (United States)

    Kujawa, Joanna; Cerneaux, Sophie; Koter, Stanisław; Kujawski, Wojciech

    2014-08-27

    Hydrophobic titania ceramic membranes (300 kD) were prepared by grafting of C6F13C2H4Si(OC2H5)3 and C12F25C2H4Si(OC2H5)3 molecules and thus applied in membrane distillation (MD) process of NaCl solutions. Grafting efficiency and hydrophobicity were evaluated by contact angle measurement, atomic force microscopy, scanning electron microscopy, nitrogen adsorption/desorption, and liquid entry pressure measurement of water. Desalination of NaCl solutions was performed using the modified hydrophobic membranes in air gap MD (AGMD) and direct contact MD (DCMD) processes in various operating conditions. High values of NaCl retention coefficient (>99%) were reached. The permeate fluxes were in the range 231-3692 g·h(-1)·m(-2), depending on applied experimental conditions. AGMD mode appeared to be more efficient showing higher fluxes and selectivity in desalination. Overall mass transfer coefficients (K) for membranes tested in AGMD were constant over the investigated temperature range. However, K values in DCMD increased at elevated temperature. The hydrophobic layer was also stable after 4 years of exposure to open air.

  10. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  11. Modification of tubular ceramic membranes with carbon nanotubes using catalytic chemical vapor deposition.

    Science.gov (United States)

    Tran, Duc Trung; Thieffry, Guillemette; Jacob, Matthieu; Batiot-Dupeyrat, Catherine; Teychene, Benoit

    2015-01-01

    In this study, carbon nanotubes (CNTs) were successfully grown on tubular ceramic membranes using the catalytic chemical vapor deposition (CCVD) method. CNTs were synthesized at 650°C for 3-6 h under a 120 mL min(-1) flow of C2H6 on ceramic membranes impregnated with iron salt. The synthesis procedure was beforehand optimized in terms of catalyst amount, impregnation duration and reaction temperature, using small pieces of tubular ceramic membranes. The yield, size and structure of the CNTs produced were characterized using thermogravimetric analysis and microscopic imaging techniques. Afterwards, preliminary filtration tests with alginate and phenol were performed on two modified tubular membranes. The results indicate that the addition of CNTs on the membrane material increased the permeability of ceramic membrane and its ability to reject alginate and adsorb phenol, yet decreased its fouling resistance.

  12. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T. (University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering); Liu, P.K.T. (Aluminum Co. of America, Pittsburgh, PA (United States)); Webster, I.A. (Unocal Corp., Los Angeles, CA (United States))

    1992-01-01

    Membrane reactors are today finding extensive applications for gas and vapor phase catalytic reactions (see discussion in the introduction and recent reviews by Armor [92], Hsieh [93] and Tsotsis et al. [941]). There have not been any published reports, however, of their use in high pressure and temperature liquid-phase applications. The idea to apply membrane reactor technology to coal liquid upgrading has resulted from a series of experimental investigations by our group of petroleum and coal asphaltene transport through model membranes. Coal liquids contain polycyclic aromatic compounds, which not only present potential difficulties in upgrading, storage and coprocessing, but are also bioactive. Direct coal liquefaction is perceived today as a two-stage process, which involves a first stage of thermal (or catalytic) dissolution of coal, followed by a second stage, in which the resulting products of the first stage are catalytically upgraded. Even in the presence of hydrogen, the oil products of the second stage are thought to equilibrate with the heavier (asphaltenic and preasphaltenic) components found in the feedstream. The possibility exists for this smaller molecular fraction to recondense with the unreacted heavy components and form even heavier undesirable components like char and coke. One way to diminish these regressive reactions is to selectively remove these smaller molecular weight fractions once they are formed and prior to recondensation. This can, at least in principle, be accomplished through the use of high temperature membrane reactors, using ceramic membranes which are permselective for the desired products of the coal liquid upgrading process. An additional incentive to do so is in order to eliminate the further hydrogenation and hydrocracking of liquid products to undesirable light gases.

  13. Flux recovery of ceramic tubular membranes fouled with whey proteins: Some aspects of membrane cleaning

    Directory of Open Access Journals (Sweden)

    Popović Svetlana S.

    2008-01-01

    Full Text Available Efficiency of membrane processes is greatly affected by the flux reduction due to the deposits formation at the surface and/or in the pores of the membrane. Efficiency of membrane processes is affected by cleaning procedure applied to regenerate flux. In this work, flux recovery of ceramic tubular membranes with 50 and 200 nm pore size was investigated. The membranes were fouled with reconstituted whey solution for 1 hour. After that, the membranes were rinsed with clean water and then cleaned with sodium hydroxide solutions or formulated detergents (combination of P3 Ultrasil 67 and P3 Ultrasil 69. Flux recovery after the rinsing step was not satisfactory although fouling resistance reduction was significant so that chemical cleaning was necessary. In the case of 50 nm membrane total flux recovery was achieved after cleaning with 1.0% (w/w sodium hydroxide solution. In the case of 200 nm membrane total flux recovery was not achieved irrespective of the cleaning agent choice and concentration. Cleaning with commercial detergent was less efficient than cleaning with the sodium hydroxide solution.

  14. Polymer/Ceramic Composite Membranes and Their Application in Pervaporation Process

    Institute of Scientific and Technical Information of China (English)

    刘公平; 卫旺; 金万勤; 徐南平

    2012-01-01

    Pervaporation (PV), as an environmental friendly and energy-saving separation technology, has been received increasing attention in recent years. This article reviews the preparation and application of macroporous ceramic-supported polymer composite pervaporation membranes. The separation materials of polymer/ceramic composite membranes presented here include hydrophobic polydimethylsiloxane (PDMS) and hydrophilic poly(vinyl alcohol) (PVA), chitosan (CS) and polyelectrolytes. The effects of ceramic support treatment, polymer solution properties, interfacial adhesion and incorporating or blending modification on the membrane structure and PV performance are discussed. Two in-situ characterization methods developed for polymer/ceramic composite membranes are also covered in the discussio.n. The.applications of these composite_membranesi_n_ pervaporation process are summarized as well, which contain the bio-fuels recovery, gasoline desulfuration and PV coupled process using PDMS/ceramic composite membrane, and dehydration of alcohols and esters using ceramic-supported PVA or PVA-CS composite membrane. Finally, a brief conclusion remark on polymer/ceramic composite mem- branes is given and possible future research is outlined.

  15. Dense and half-dense NiZnCo ferrite ceramics: Their respective relevance for antenna downsizing, according to their dielectric and magnetic properties at microwave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Mattei, J.-L., E-mail: mattei@univ-brest.fr; Chevalier, A. [Lab-STICC, Université de Bretagne Occidentale, CS 93837, 6 Avenue Le Gorgeu, 29238 Brest Cedex 3 (France); Le Guen, E. [Lab-STICC, Université de Bretagne Occidentale, CS 93837, 6 Avenue Le Gorgeu, 29238 Brest Cedex 3 (France); IETR, Université de Rennes 1, 263 Avenue General Leclerc, 35042 Rennes Cedex (France)

    2015-02-28

    Spinel ferrite Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 1.98}O{sub 4−x} nanoparticles were synthesized by co-precipitation method, and samples were realized by moulding and annealing at key temperatures (T{sub M} = 800 °C, 900 °C, 1050 °C, determined beforehand through shrinkage measurements) going with calcining and sintering processes. Annealing at 800 °C and 900 °C led to half-dense ceramics (porosity ∼50 vol. %), whereas bulky ferrite was obtained after annealing at 1050 °C. Elemental analysis, X-ray diffraction and ion chromatography analysis were performed. Complex dielectric permittivity (ε*) and magnetic permeability (μ*) were investigated up to 6 GHz. With increasing T{sub M}, a decreasing amount of Fe{sup 2+} was observed, going with increasing sample density. Coupled effects of the Fe{sup 2+} concentration and of the porosity, both on dielectric and magnetic properties, were chiefly investigated and discussed. The materials show almost constant permittivities (ε′ = 5.0, 6.0, and 14.8 for T{sub M} = 800 °C, 900 °C and 1050 °C, respectively). The bulk value at f = 1 GHz (ε′ = 14.8) can be interpreted well according to Shannon's theory. The permittivities of the half-dense ceramics are discussed on the basis of Bruggeman's Effective Medium Theory. The materials annealed at 800 °C and 900 °C show almost constant magnetic permeabilities in the frequency range from 0.2 to 1 GHz (μ′ = 3.4 and 6.0 for T{sub M} = 800 °C and 900 °C). The observed permeability behavior is typical of monodomain particles, except for the sample annealed at 1050 °C, for which domain wall contribution to μ* is suspected because of non-negligible losses at low frequency (μ″ = 1.3–1.8 at f < 0.3 GHz). This finding is supported by estimations of the upper and lower values for the critical grain size, on the basis of Brown–Van der Zaag's theory. Facing bulk ceramics

  16. Ozonation and/or Coagulation - Ceramic Membrane Hybrid for Filtration of Impaired-Quality Source Waters

    KAUST Repository

    Ha, Changwon

    2013-09-01

    When microfiltration (MF) and ultrafiltration (UF) membranes are applied for drinking water treatment/wastewater reuse, membrane fouling is an evitable problem, causing the loss of productivity over time. Polymeric membranes have been often reported to experience rapid and/or problematical fouling, restraining sustainable operation. Ceramic membranes can be effectively employed to treat impaired-quality source waters due to their inherent robustness in terms of physical and chemical stability. This research aimed to identify the effects of coagulation and/or ozonation on ceramic membrane filtration for seawater and wastewater (WW) effluent. Two different types of MF and UF ceramic membranes obtained by sintering (i.e., TAMI made of TiO2+ZrO2) and anodic oxidation process (i.e., AAO made of Al2O3) were employed for bench-scale tests. Precoagulation was shown to play an important role in both enhancing membrane filterability and natural organic matter (NOM) removal efficacy for treating a highorganic surface water. The most critical factors were found to be pH and coagulant dosage with the highest efficiency resulting under low pH and high coagulant dose. Due to the ozone-resistance nature of the ceramic membranes, preozonation allowed the ceramic membranes to be operated at higher flux, especially leading to significant flux improvement when treating seawater in the presence of calcium and magnesium. 4 Dissolved ozone in contact with the TAMI ceramic membrane surface accelerated the formation of hydroxyl (˙OH) radicals in WW effluent treatment. Flux restoration of both ceramic membranes, fouled with seawater and WW effluent, was efficiently achieved by high backwash (BW) pressure and ozone in chemically enhanced backwashing (CEB). Ceramic membranes exhibited a pH-dependent permeate flux while filtering WW effluent, showing reduced fouling with increased pH. On the other hand, for filtering seawater, differences in permeate flux between the two membranes was

  17. Rigid bonded glass ceramic seals for high temperature membrane reactors and solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Ove

    2009-05-15

    Solid Oxide Fuel cells (SOFC) and dense gas separation membranes based on mixed ionic and electronic conductors have gained increased interest the resent years due the search for new technologies for clean energy generation. These technologies can be utilized to produce electricity from fossil fuel with low CO{sub 2} emission compared to conventional gas or coal based energy plants. One crucial challenge with high temperature membrane reactors and SOFCs is the sealing of the active membranes/electrolytes to prevent leakage of air to fuel side or vice versa. Due to the high operating temperatures of typical 800-1000 degrees Celsius the selection of reliable sealing materials is limited. The seals have to remain gas tight during the life time of the reactor/SOFC, they need to be chemical compatible with the sealed materials and stable in reducing and oxidizing atmospheres containing water vapour and CO{sub 2}, and finally they should be cheap, readily available and easy to process. The main purpose of the present work was to evaluate rigid bonded glass ceramic seals for dense oxygen ion and proton conducting membranes and electrolytes for SOFCs and high temperature (HT) membrane reactors. First, a review of sealing technologies has been carried out with emphasis on SOFC and ceramic membranes technologies applicable for zero emission power plants. Regarding sealing, the best and cheapest materials at the present time are based on silicate glass and glass ceramics. In the present work aluminate glass without silica is introduced as a new class of seals expanding the material selection for HT membrane sealing technologies. The main reason for studying silica free systems is that silica is known to be unstable in humid atmospheres and/or reducing conditions at elevated temperatures. Two glass systems have been evaluated. The first was based on aluminate glasses in the system RO-CaO-Al{sub 2}O{sub 3} (R=Mg, Ba, Sr) with special focus on the CaO-MgO-Al{sub 2}O{sub 3

  18. Review on Development of Ceramic Membrane From Sol-Gel Route: Parameters Affecting Characteristics of the Membrane

    OpenAIRE

    M. R. Othman and H. Mukhtar

    2012-01-01

    The importance of laboratory scale ceramic membrane preparation using sol-gel technique with pore sizes in the range of 1-10nm is reviewed. Parameters affecting the characteristics of membrane during membrane development are highlighted and discussed in detail. Experimental results from literatures have shown that the correct amount of acid, water, PVA, appropriate membrane thickness, proper control of drying rate, and appropriate temperature profile selection during sintering process are nec...

  19. Effects of chitosan solution concentration and incorporation of chitin and glycerol on dense chitosan membrane properties.

    Science.gov (United States)

    Dallan, Paula Rulf Marreco; Moreira, Patrícia da Luz; Petinari, Leandro; Malmonge, Sônia Maria; Beppu, Marisa Masumi; Genari, Selma Candelária; Moraes, Angela Maria

    2007-02-01

    The aim of this work was to perform a systematic study about the effects induced by chitosan solution concentration and by chitin or glycerol incorporation on dense chitosan membranes with potential use as burn dressings. The membrane properties analyzed were total raw material cost, thickness, morphology, swelling ratio, tensile strength, percentage of strain at break, crystallinity, in vitro enzymatic degradation with lysozyme, and in vitro Vero cells adhesion. While the use of the most concentrated chitosan solution (2.5% w/w) increased membrane cost, it also improved the biomaterial mechanical resistance and ductility, as well as reduced membrane degradation when exposed for 2 months to lysozyme. The remaining evaluated properties were not affected by initial chitosan solution concentration. Chitin incorporation, on the other hand, reduced the membranes cost, swelling ratio, mechanical properties, and crystallinity, resulting in thicker biomaterials with irregular surface more easily degradable when exposed to lysozyme. Glycerol incorporation also reduced the membranes cost and crystallinity and increased membranes degradability after exposure to lysozyme. Strong Vero cells adhesion was not observed in any of the tested membrane formulations. The overall results indicate that the majority of the prepared membranes meet the performance requirements of temporary nonbiodegradable burn dressings (e.g. adequate values of mechanical resistance and ductility, low values of in vitro cellular adhesion on their surfaces, low extent of degradation when exposed to lysozyme solution, and high stability in aqueous solutions).

  20. Preconceptual design of a salt splitting process using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R. [Pacific Northwest National Lab., Richland, WA (United States); Balagopal, S.; Landro, T.; Sutija, D.P. [Ceramatec, Inc., Salt Lake City, UT (United States)

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  1. Comparison of porosity assessment techniques for low-cost ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lorente-Ayza, M.M.; Perez-Fernandez, O.; Alcala, R.; Sanchez, A.; Mestre, S.; Coronas, J.; Menendez, M.

    2017-07-01

    Several characterization methods were applied to low cost ceramic membranes developed for wastewater treatment in membrane bioreactors (MBRs) and/or tertiary treatments. The membranes were prepared by four different procedures (uniaxial pressing and extrusion, both with and without starch addition to generate pores). The pore size of these symmetric ceramic membranes was measured by two different methods: bubble point and intrusion mercury porosimetry. A good agreement between both methods was achieved, confirming the validity of the bubble point method for the measurement of the mean pore size of membranes. Air and water permeations of these ceramic membranes were also studied. The relationship between the permeation of both fluids is consistent with the ratio of viscosities, according to the Hagen–Poiseuille equation. (Author)

  2. Comparison of porosity assessment techniques for low-cost ceramic membranes

    Directory of Open Access Journals (Sweden)

    Maria-Magdalena Lorente-Ayza

    2017-01-01

    Full Text Available Several characterization methods were applied to low cost ceramic membranes developed for wastewater treatment in membrane bioreactors (MBRs and/or tertiary treatments. The membranes were prepared by four different procedures (uniaxial pressing and extrusion, both with and without starch addition to generate pores. The pore size of these symmetric ceramic membranes was measured by two different methods: bubble point and intrusion mercury porosimetry. A good agreement between both methods was achieved, confirming the validity of the bubble point method for the measurement of the mean pore size of membranes. Air and water permeations of these ceramic membranes were also studied. The relationship between the permeation of both fluids is consistent with the ratio of viscosities, according to the Hagen–Poiseuille equation.

  3. Ceramic membrane in production of recycled water; Keraamikalvo uusioveden valmistuksessa - EKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, N.; Luonsi, A.; Levaenen, E.; Maentylae, T.; Vilen, J. [Haemeen ympaeristoekeskus, Tampere (Finland)

    1998-12-31

    Applicability of ceramic ultrafiltration membrane modifications were studied with laboratory units to purify clear filtrate and biologically treated combined wastewater from high quality board manufacturing process for reuse. Also performance of polymeric membrane and ceramic membrane was compared. The performance of the membrane filtration cell, developed according to requirements of the fixed dimensions of ceramic membrane was compared with the performance of the cross-rotational commercial test unit (CR-filter) of polymeric membranes. The quality of ultrafiltration permeate, namely suspended solids, turbidity and colour, was better than the quality of lake water used in the mill. The permeate fluxes were in the range of 60-75 l/m{sup 2}h. The fouling layer primarily controlled the flux and the retention, leaving the effects of surface modifications as the secondary function. The flux was slightly higher with the biologically treated wastewater. Differences in membrane material and pore size had an effect on the cleaning ability of the membranes. The polymeric membrane and the membrane with smaller pore size were easier to clean. Tests with the CR-filter showed that the rotor increases shear forces, reduces the filtration resistance and thus increases the flux compared to the cell for ceramic membranes where the increase of shear forces can be done by increasing the flow velocities. (orig.)

  4. Separation of hydrogen using thin film palladium-ceramic composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, S.; King, F.G.; Su, N.; Udo-Aka, U.I.

    1995-11-01

    The primary objective of this study was to prepare and characterize a hydrogen permselective palladium-ceramic composite membrane for high temperature gas separations and catalytic membrane reactors. Electroless plating method was used as a potential route to deposit a thin palladium film on microporous ceramic substrate. The objectives of the work presented here were to characterize the new Pd-ceramic composite membrane by SEM and EDX analysis and to carry out fundamental permeability measurements of the membrane at elevated temperatures and pressures. The potential application of membranes in high temperature gas separation and reactor technology have been recognized by many investigators. In the coal gasification process, the exit gases are normally hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, and water vapor. The objective is to obtain hydrogen from this gas mixture.

  5. Development of Pd Alloy Hydrogen Separation Membranes with Dense/Porous Hybrid Structure for High Hydrogen Perm-Selectivity

    Directory of Open Access Journals (Sweden)

    Jae-Yun Han

    2014-01-01

    Full Text Available For the commercial applications of hydrogen separation membranes, both high hydrogen selectivity and permeability (i.e., perm-selectivity are required. However, it has been difficult to fabricate thin, dense Pd alloy composite membranes on porous metal support that have a pore-free surface and an open structure at the interface between the Pd alloy films and the metal support in order to obtain the required properties simultaneously. In this study, we fabricated Pd alloy hydrogen separation membranes with dense/porous hybrid structure for high hydrogen perm-selectivity. The hydrogen selectivity of this membrane increased owing to the dense and pore-free microstructure of the membrane surface. The hydrogen permeation flux also was remarkably improved by the formation of an open microstructure with numerous open voids at the interface and by an effective reduction in the membrane thickness as a result of the porous structure formed within the Pd alloy films.

  6. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could

  7. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  8. Ceramic membranes applied in separation of hot gases; Membranas Ceramicas para Separacion de Gases en Caliente

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The aim of this project is to develop and evaluate inorganic membranes of a ceramic type, with nanometric pore size, applied in separation of contaminants and fuel enrichment, gas mixture in coal gasification . etc. Using ceramic materials have the advantage of being highly physical and chemical resistance, which makes these membranes more adequate then metal equivalent for these applications. A support manufacture and the development of natricum membranes technology to estimate the potential fields of applications and industrial viability of ceramic membranes are the intermediate goals so that the project could be considered successful one. The project has been carried out jointly by the following entities: TGI, S. A. (Tecnologia y Gestion de la Innovacion, Spain). CIEMAT (Centro de Investigaciones energeticas, Medioambientales y Tecnologicas, Spain) and CSIC-UAM (Centro mixto Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid. Instituto de Ciencias de Materiales, Spain). The range of activities proposed in this project is to get the sufficient knowledge of preparation and behaviour of separation membranes to be able to procede to the desing and manufacture of an industrial filter. The project phases include; the ameiloration of ceramic support processing methods, the fluid dynamic evaluation, technology for membrane desing and manufacturing, the mounting (setting up) of an experimental installation for testing and evaluation. As a previous step a state of the art review about the following topics was made: high temperature inorganic membranes, technology separation mechanisms, gasifications process and its previous experience applications of membranes and determination of membranes specifications and characteristics of testing conditions. At the end a new inorganic ceramic membrane, with nanometric pore size and useful in several industrial processes (filtration, separation of contaminants, fuel enrichment, purification of gas mixtures

  9. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Mehrdad Ebrahimi

    2015-12-01

    Full Text Available Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  10. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    Science.gov (United States)

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  11. Water and vapor permeability at different temperatures of poly (3-Hydroxybutyrate dense membranes

    Directory of Open Access Journals (Sweden)

    Luiz H. Poley

    2005-03-01

    Full Text Available Polyhydroxyalkanoates (PHAs are polymers produced from renewable resources with biodegradability and biocompatibility, being therefore attractive for medical and pharmaceutical purposes. Poly (3-hydroxybutyrate (PHB is the most important polymer of this family by considering the biotechnology process of its synthesis. In the present study, dense films of PHB were prepared by casting from chloroform solutions (1% m/m. Permeability studies with water, methanol, ethanol and n-propanol were performed using the gravimetric method at different temperatures (from 50 ºC to 65 ºC. Results provide new data on permeability coefficients of PHB membranes.

  12. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.

    Science.gov (United States)

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-12-01

    Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes.

  13. Alternative movement : collaborative project has researchers looking to ceramic membranes to improve produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wells, P.

    2009-10-15

    Ceramic membranes have high chemical and thermal stability coupled with mechanical strength and are therefore used in a range of microfiltration, ultrafiltration and nanofiltration applications. This article described a new technology that involves the use of ceramic membranes in the treatment of produced water in thermal heavy oil recovery operations. The efficacy of advanced ceramic nano-membrane technology (CMT) is being examined in bench-scale experiments at the Southern Alberta Institute of Technology (SAIT) in collaboration with the department of chemical and petroleum engineering at the University of Calgary. In one project, next-generation ceramic membrane technology is being used as part of the overall treatment process of produced water. The project is funded through a Canadian Association of Petroleum Producers fund and the Alberta Department of Energy. It is facilitated by the Petroleum Technology Alliance Canada in an effort to find cost-effective treatment solutions for recycling produced water for the conventional oil and gas industry. The key objective is to increase the amount of produced water that can be reused rather than disposed into deep saline aquifers. The research focuses on the pre-treatment of produced water and related salt impacted water by using ceramic membranes for the removal of organic compounds for beneficial reuse downstream. Ceramic membranes consist of a multilayer system and their performance depends on the separation and permeation properties of the membrane as well as its mechanical integrity. It was concluded that the CMT findings will be beneficial to the oil and gas industry in providing practical solutions for the challenging issues associated with de-oiling and produced water treatment. 2 figs.

  14. 新型中空纤维陶瓷膜的制备方法%PREPARATION METHODS OF HOLLOW FIBER CERAMIC MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    张小珍; 周健儿; 江瑜华

    2011-01-01

    Ceramic hollow fiber membranes have recently attracted considerable attention, due to the high active area/volume ratio provided by its high packing density, thin wall, high permeability and less material consumption. With the application of ceramic membranes in hollow fiber configuration, the separation equipment can be miniaturized. Ceramic hollow fiber membranes have potential applications in various fields, such as porous and dense ceramic membranes for separation, solid oxide fuel cells, microchannel-reactor, and supports of catalysts. This paper summarized the characteristics and progress in preparation methods of hollow fiber ceramic membranes. The emphasis was put on the comparison of different preparation methods. The phase inversion method was cost-effective, since the derived ceramic hollow fiber membranes with selfsupported asymmetric structure and thus high permeability can be obtained in one step. The application of phase inversion method could simplify the fabrication process of ceramic membranes and greatly reduce the production cost.%新型中空纤维陶瓷膜由于具有装填密度大、单位体积膜有效分离面积大、膜壁薄、渗透通量高和节省原料、易于实现分离设备小型化等独特优点而受到广泛关注,在用于多孔和致密陶瓷分离膜、固体氧化物燃料电池、微通道反应器、催化剂载体等方面都有着潜在的应用前景.本文在概括中空纤维陶瓷膜特点的基础上,综述了中空纤维陶瓷膜的制备方法及研究进展,着重分析比较了不同制备方法的优缺点.将相转化法应用于中空纤维陶瓷膜的制备,可实现通过一步成型制造具有自支撑非对称结构的复合陶瓷膜,有利于提高膜的渗透通量,简化膜制备工艺和显著降低制造成本.

  15. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: Roles played by stabilization surfactants of oil droplets

    KAUST Repository

    Lu, Dongwei

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater. © 2015 American Chemical Society.

  16. Use of nanofiltration membrane technology for ceramic industry wastewater treatment

    Directory of Open Access Journals (Sweden)

    Moliner-Salvador, R.

    2012-04-01

    Full Text Available A study has been undertaken of an advanced wastewater treatment approach using polymer nanofiltration membranes, in an attempt to obtain water of sufficient quality to allow it to be reused in the same production process or, alternatively, to be discharged without any problems. The study has initially focused on the removal of organic matter (reduction of COD and the most representative ions present in the wastewater, such as Na+, Mg2+, Cl- y SO42-. In a first part of the study, with a view to optimising the experimental phase, a simulation has been performed of the nanofiltration process using the NanoFlux software. Among other things, the simulation allows the most suitable membranes to be selected as a function of the permeate flow rate and desired level of retention in the substances to be removed. The subsequent experimentation was carried out in a laboratory tangential filtration system that works with flat membranes. It was found that retention values of about 90% were obtained for the studied substances, with a good permeate flow rate, using low operating pressures. These results demonstrate the feasibility of the studied technology and its potential as a treatment for improving ceramic industry wastewater quality.

    Este estudio ha sido emprendido con el fin de acercar la nanofiltración a través de membranas poliméricas al tratamiento de las aguas residuales industriales de la industria cerámica, esperando obtener un agua con la suficiente calidad como para ser reutilizada en el propio proceso productivo o, alternativamente, poder verterla. El estudio se ha centrado en la eliminación de materia orgánica (reducción de D.Q.O y algunos iones presentes en las aguas residuales, tales como Na+, Mg2+, Cl- y SO42-. En primer lugar, se ha realizado una simulación del proceso de nanofiltración usando el software Nano

  17. Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoram Cohen

    2001-12-01

    The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study was the first to demonstrate that pervaporation can be achieved with ceramic support membranes modified with an essentially molecular layer of terminally anchored polymer chains. The main advantage of the above approach, relative to other proposed membranes, is that the separating polymer layer is covalently attached to the ceramic support. Therefore, such membranes have a potential use in organic-organic separations where the polymer can swell significantly yet membrane robustness is maintained due to the chemical linkage of the chains to be inorganic support. The above membrane technology was also useful in developing fouling resistant ultrafiltration membranes. The prototype membrane developed in the project was evaluated for the treatment of oil-in-water microemulsions, demonstrating lack of irreversible fouling common with commercial membranes.

  18. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2015-04-21

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  19. Complexation-induced phase separation: preparation of composite membranes with a nanometer-thin dense skin loaded with metal ions.

    Science.gov (United States)

    Villalobos, Luis Francisco; Karunakaran, Madhavan; Peinemann, Klaus-Viktor

    2015-05-13

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  20. Obtaining of ceramics biphasic dense and porous; Obtencao de ceramicas bifasicas densas e porosas

    Energy Technology Data Exchange (ETDEWEB)

    Pallone, E.M.J.A.; Rigo, E.C.S., E-mail: eliria@usp.b [Universidade de Sao Paulo (FZEA/USP), Pirassununga, SP (Brazil). Dept. de Ciencias Basicas; Silva, K.L. [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica; Rezende, M.E. [Universidade Sao Francisco, Itatiba, SP (Brazil); Fraga, A.F. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Marques, R.F.C. [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil)

    2010-07-01

    Among the bioceramic hydroxyapatite (HAP) and beta-tricalcium phosphate (beta-TCP) are materials commonly used in biomedical field. Their combined properties result in a material with absorbable and at the same time with bioactive surface. Called biphasic ceramics such materials respond more quickly when exposed to physiological environment. In this work, powders of HAP/beta-TCP were obtained by chemical precipitation. After obtaining the post-phase was added at a ratio of 0, 15% and 30w% aqueous solutions of corn starch in order to obtain porous bodies. After mixing the resulting solutions were dried, resigned in tablet form and sintered at 1300 deg C. The initial powder was characterized by X-ray diffraction with Rietveld refinement to quantify the phases present. Bodies-of-evidence has been characterized by calculating the bulk density, X-ray diffraction (XRD), scanning electron microscopy and diametral compression. (author)

  1. Preparation of Zeolite X Membranes on Porous Ceramic Substrates with Zeolite Seeds

    Institute of Scientific and Technical Information of China (English)

    Zhongqiang Xu; Qingling Chen; Guanzhong Lu

    2002-01-01

    Zeolite X membranes were investigated by in-situ hydrothermal synthesis on porous ceramic tubes precoated with zeolite X seeds or precursor amorphous aluminosilicate, and porous α-Al2O3 ceramic tubes with a pore size of 50 200 nm were employed as supports. Zeolite X crystals were synthesized by the classic method and mixed into deionized water as a slurry with a concentration of 0.2 0.5wt%, having a range of crystal sizes from 0.2 to 2μm. Crystal seeds were pressed into the pores near the inner surface of the ceramic tubes, and crystallization took place at 95℃ for 24-96 h. It was also investigated that Boehmite sol added with zeolite X seeds was precoated on ceramic supports to form a layer of γ-Al2O3 by heating, and hydrothermal crystallization could then take place to prepare the zeolite membranes on the composite ceramic tubes. The crystal species were characterized by XRD, and the morphology of the supports subjected to crystallization was characterized by SEM. The composite zeolite membranes have zeolitic top-layers with a thickness of 10-25 μm, and zeolite crystals can be intruded into pores of the supports as deeply as 100μm. The experimental results indicate that the precoating of zeolitic seeds on supports is beneficial to crystallization by shortening the synthesis time and improving the membrane strength. The resulting zeolite X membrane shows permselectivity to tri-n-butylamine((C4H9)3N) over perfluro-tributyl-amine ((C4Fg)3N), and a permeance ratio of 57 for ((C4Hg)3N to (C4F9)3N could be reached at 350℃. Permeances of BZ, EB and TIPB through the zeolite membrane were also measured and were found to slightly increase with temperature.

  2. A POLYMER-CERAMIC COMPOSITE MEMBRANE FOR RECOVERING VOLATILE ORGANIC COMPOUNDS FROM WASTEWATERS BY PERVAPORATION

    Science.gov (United States)

    A composite membrane was constructed on a porous ceramic support from a block copolymer of styrene and butadiene (SBS). It was tested in a laboratory pervaporation apparatus for recovering volatile organic compounds (VOCs) such a 1,1,1-trichloroethane (TCA) and trichloroethylene ...

  3. High flux ceramic membrane for hydrogen separation. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    K. Durai-Swamy

    1999-05-04

    Fuel cells that convert hydrogen to electricity will play an increasingly important role in the generation of future electric power for stationary and transportation sector applications. However, more economic methods to produce hydrogen from fossil fuels are needed. This project addresses the need to develop low cost ceramic membranes for hydrogen separation from reformed fuels.

  4. Development of ceramic membrane reactors for high temperature gas cleanup. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, D.L.; Abraham, I.C.; Blum, Y.; Gottschlich, D.E.; Hirschon, A.; Way, J.D.; Collins, J.

    1993-06-01

    The objective of this project was to develop high temperature, high pressure catalytic ceramic membrane reactors and to demonstrate the feasibility of using these membrane reactors to control gaseous contaminants (hydrogen sulfide and ammonia) in integrated gasification combined cycle (IGCC) systems. Our strategy was to first develop catalysts and membranes suitable for the IGCC application and then combine these two components as a complete membrane reactor system. We also developed a computer model of the membrane reactor and used it, along with experimental data, to perform an economic analysis of the IGCC application. Our results have demonstrated the concept of using a membrane reactor to remove trace contaminants from an IGCC process. Experiments showed that NH{sub 3} decomposition efficiencies of 95% can be achieved. Our economic evaluation predicts ammonia decomposition costs of less than 1% of the total cost of electricity; improved membranes would give even higher conversions and lower costs.

  5. ORGANIC PERMSELECTIVE PERVAPORATION CHARACTERISTICS OF POLY(SILYLPROPYNE) AND COPOLYMER DENSE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    WANG Xinwei; SHI Yanqiao; CHEN Guanwen

    1997-01-01

    An investigation into the organic permselective separation through poly [1-trimethylsilyl1-propyne] (PTMSP) and (1-trimethylsily1)-1-(1-penta-methyl-disilyl)-l-propyne copolymer (TMSP-PMDSP) dense membranes was made to gain an insight into the effect of the chemical structure of membrane materials on pervaporation (PV) characteristics. The results show that the copolymer has a higher separation factor αorg/water but with a relatively Lower value of flux Jt(g/m2·h)than pure PTMSP.This phenomenon may be attributed to the introduction of side chain with large bulk volume in copolymer, which brought about a decrease of excess free volume and the improvement of diffusion selectivity to some extent. With the same molar concentration of organic liquids in feed, THF/water solutions have the highest value of αorg/water as well as Jt in comparison with ethanol/water,iso-propanol/water and THF/water mixtures.

  6. Synthesis and characterization of gallium-based perovskitetype dense membrane with oxygen semipermeability

    Institute of Scientific and Technical Information of China (English)

    丛铀; 邵宗平; 杨维慎; 熊国兴; 林励吾

    2001-01-01

    La0.15Sr0.85Ga0.3Fe0.7O3-δ(LSGFO) and La0.15Sr0.85Co0.3Fe0.7O3-δ(LSCFO) mixed oxygen-ion and electron conducting oxides were synthesized by using a combined EDTA and citrate complexing method, and the corresponding dense membranes were fabricated. The properties of the oxide powders and membranes were characterized with combined SEM, XRD, H2-TPR, O2-TPD techniques, mechanical strength and oxygen permeation measurement. The results showed that LSGFO had much higher thermochemical stability than LSCFO due to the higher valence stability of Ga3+. After the temperature-programmed reduction by 5% H2 in Ar from 20℃to 1020℃, the basic perovskite structure of LSGFO was successfully preserved. LSGFO also favors the oxygen vacancy formation better than LSCFO. Oxygen permeation measurement demonstrated that LSGFO had higher oxygen permeation flux than LSCFO, but they had similar activation energy for oxygen transportation, with a value of 110 and 117 kJ ?mol-1, respectively. The difference in oxygen permeation f

  7. Synthesis and characterization of gallium-based perovskite- type dense membrane with oxygen semipermeability

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    La0.15Sr0.85Ga0.3Fe0.7O3-d (LSGFO) and La0.15Sr0.85Co0.3Fe0.7O3-d (LSCFO) mixed oxygen-ion and electron conducting oxides were synthesized by using a combined EDTA and citrate complexing method, and the corresponding dense membranes were fabricated. The properties of the oxide powders and membranes were characterized with combined SEM, XRD, H2-TPR, O2-TPD techniques, mechanical strength and oxygen permeation measurement. The results showed that LSGFO had much higher thermochemical stability than LSCFO due to the higher valence stability of Ga3+. After the temperature-programmed reduction by 5% H2 in Ar from 20℃ to 1020℃, the basic perovskite structure of LSGFO was successfully preserved. LSGFO also favors the oxygen vacancy formation better than LSCFO. Oxygen permeation measurement demonstrated that LSGFO had higher oxygen permeation flux than LSCFO, but they had similar activation energy for oxygen transportation, with a value of 110 and 117 kJ omol-1, respectively. The difference in oxygen permeation fluxes was correlated with the difference in oxygen vacancy concentrations for the two materials.

  8. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process.

    Science.gov (United States)

    Park, Hosik; Kim, Yohan; An, Byungryul; Choi, Heechul

    2012-11-15

    In this study, changes in the physical and structural properties of natural organic matter (NOM) were observed during hybrid ceramic membrane processes that combined ozonation with ultrafiltration ceramic membrane (CM) or with a reactive ceramic membrane (RM), namely, an iron oxide nanoparticles (IONs) incorporated-CM. NOM from feed water and NOM from permeate treated with hybrid ceramic membrane processes were analyzed by employing several NOM characterization techniques. Specific ultraviolet absorbance (SUVA), high-performance size exclusion chromatography (HPSEC) and fractionation analyses showed that the hybrid ceramic membrane process effectively removed and transformed relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions. Fourier transform infrared spectroscopy (FTIR) and 3-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy revealed that this process caused a significant decrease of the aromaticity of humic-like structures and an increase in electron withdrawing groups. The highest removal efficiency (46%) of hydroxyl radical probe compound (i.e., para-Chlorobenzoic acid (pCBA)) in RM-ozonation process compared with that in CM without ozonation process (8%) revealed the hydroxyl radical formation by the surface-catalyzed reaction between ozone and IONs on the surface of RM. In addition, experimental results on flux decline showed that fouling of RM-ozonation process (15%) was reduced compared with that of CM without ozonation process (30%). These results indicated that the RM-ozonation process enhanced the destruction of NOM and reduced the fouling by generating hydroxyl radicals from the catalytic ozonation in the RM-ozonation process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. River Water Purification via a Coagulation-Porous Ceramic Membrane Hybrid Process

    Institute of Scientific and Technical Information of China (English)

    张荟钦; 仲兆祥; 李卫星; 邢卫红; 金万勤

    2014-01-01

    Membrane filtration technology combined with coagulation is widely used to purify river water. In this study, microfiltration (MF) and ultrafiltration (UF) ceramic membranes were combined with coagulation to treat local river water located at Xinghua, Jiangsu province, China. The operation parameters, fouling mechanism and pilot-scale tests were investigated. The results show that the pore size of membrane has small effect on the pseudo-steady flux for dead-end filtration, and the increase of flux in MF process is more than that in UF process for cross-flow filtration with the same increase of cross-flow velocity. The membrane pore size has little influence on the water quality. The analysis on membrane fouling mechanism shows that the cake filtration has significant in-fluence on the pseudo-steady flux and water quality for the membrane with pore size of 50, 200 and 500 nm. For the membrane with pore size of 200 nm and backwashing employed in our pilot study, a constant flux of 150 L·m-2·h-1 was reached during stable operation, with the removal efficiency of turbidity, total organic carbon (TOC) and UV254 higher than 99%, 45%and 48%, respectively. The study demonstrates that coagulation-porous ceramic membrane hybrid process is a reliable method for river water purification.

  10. Comprehensive Study on Ceramic Membranes for Low-Cost Microbial Fuel Cells.

    Science.gov (United States)

    Pasternak, Grzegorz; Greenman, John; Ieropoulos, Ioannis

    2016-01-08

    Microbial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low-cost alternative to commercially available proton exchange membranes. The MFCs operated with fresh human urine as the fuel. Pyrophyllite and earthenware produced the best performance to reach power densities of 6.93 and 6.85 W m(-3), respectively, whereas mullite and alumina achieved power densities of 4.98 and 2.60 W m(-3), respectively. The results indicate the dependence of bio-film growth and activity on the type of ceramic membrane applied. The most favourable conditions were created in earthenware MFCs. The performance of the ceramic membranes was related to their physical and chemical properties determined by environmental scanning electron microscopy and energy dispersive X-ray spectroscopy. The cost of mullite, earthenware, pyrophyllite and alumina was estimated to be 13.61, 4.14, 387.96 and 177.03 GBP m(-2), respectively. The results indicate that earthenware and mullite are good substitutes for commercially available proton exchange membranes, which makes the MFC technology accessible in developing countries.

  11. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  12. Application of ceramic membranes for seawater reverse osmosis (SWRO) pre-treatment

    KAUST Repository

    Hamad, Juma

    2013-05-30

    Low-pressure (microfiltration/ultrafiltration (MF/UF)) membranes are being increasingly used as pre-treatment, prior to seawater reverse osmosis (SWRO). The objective of pre-treatment before reverse osmosis (RO) membranes is to remove undesirable and particulate fouling materials (algae, suspended and colloidal particles). Also, a pre-treatment barrier reduces organics and provides better feed water quality for RO membranes. MF and UF pre-treatment prior to SWRO provides Low Silt Density Index (SDI) values recommended for RO operation. Ceramic membranes are more attractive as they made of more chemically resistant materials, which allow for more stable operation and aggressive backwashing (BW) and cleaning. A pilot plant with a monolith ceramic MF membrane (0.1 μm pore size) from METAWATER was used to carry out the study. Red Sea water pumped from a distance of 700 m offshore from Thuwal (Kingdom of Saudi Arabia) was used as feed water. The pilot plant was operated automatically at constant flux of 150 LMH that involved BW, air flushing and forward flushing at the end of filtration cycle. Seawater permeates were used for hydraulic BW, while sodium hypochlorite, citric acid and sodium hydroxide were used for chemical cleaning (CIP) to restore the membrane permeability after use. Filtration cycles of 2.5 h were adopted for initial experiments. Aggressive BW flux of 1,800 LMH for 15 s, air flushing of 4 bars for 10 s and forward flushing of 300 LMH for 40 s were applied for regular membrane hydraulic cleaning. The increase of membrane resistances over time was monitored. Further studies were also performed by using Anopore ceramic membranes AAO100 (pore sizes of 0.1 μm) using a constant pressure bench-scale set-up. The feed water and permeate were analysed using an SDI unit, flow cytometre (FCM) and liquid chromatography with organic carbon detection (LC-OCD). The results showed that ceramic membrane filtration reduced the SDI15 of seawater from 6.1 to 2.1 which

  13. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal.

    Science.gov (United States)

    Meng, Xian; Liu, Zhimeng; Deng, Cheng; Zhu, Mengfu; Wang, Deyin; Li, Kui; Deng, Yu; Jiang, Mingming

    2016-12-15

    A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Joining of ceramic Ba0.5Sr0.5Co0.8Fe0.2O3 membranes for oxygen production to high temperature alloys

    DEFF Research Database (Denmark)

    Kiebach, Wolff-Ragnar; Engelbrecht, Kurt; Kwok, Kawai

    2016-01-01

    The possibility of joining dense ceramic BCSF tubular membranes to metal alloys using a silver braze was investigated. Four different alloys (Crofer 22 APU (R), Kanthal APM (R), Haynes 214 (R) and EN 1.4841) were considered and the influence of their oxide scale stability/reactivity and their the...

  15. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 1, September 21, 1989--December 20, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    In this project we well evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated. (VC)

  16. Application of a low cost ceramic filter to a membrane bioreactor for greywater treatment.

    Science.gov (United States)

    Hasan, Md Mahmudul; Shafiquzzaman, Md; Nakajima, Jun; Ahmed, Abdel Kader T; Azam, Mohammad Shafiul

    2015-03-01

    The performance of a low cost and simple ceramic filter to a membrane bioreactor (MBR) process was evaluated for greywater treatment. The ceramic filter was submerged in an acrylic cylindrical column bioreactor. Synthetic greywater (prepared by shampoo, dish cleaner and laundry detergent) was fed continuously into the reactor. The filter effluent was obtained by gravitational pressure. The average flux performance was observed to be 11.5 LMH with an average hydraulic retention time of 1.7 days. Complete biodegradation of surfactant (methylene blue active substance removal: 99-100%) as well as high organic removal performance (biochemical oxygen demand: 97-100% and total organic carbon: >88%) was obtained. The consistency of flux (11.5 LMH) indicated that the filter can be operated for a long time without fouling. The application of this simple ceramic filter would make MBR technology cost-effective in developing countries for greywater reclamation and reuse.

  17. Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation

    KAUST Repository

    Rungta, Meha

    2012-04-01

    Development of dense film carbon molecular sieve (CMS) membranes for ethylene/ethane (C 2H 4/C 2H 6) separation is reported. A commercial polyimide, Matrimid®, was pyrolyzed under vacuum and inert argon atmosphere, and the resultant CMS films were characterized using pure C 2H 4 and C 2H 6 permeation at 35 °C, 50 psia feed pressure. The effects on C 2H 4/C 2H 6 separation caused by different final vacuum pyrolysis temperatures from 500 to 800 °C are reported. For all pyrolysis temperatures separation surpassed the estimated \\'upper bound\\' solution processable polymer line for C 2H 4 permeability vs. C 2H 4/C 2H 6 selectivity. C 2H 4 permeability decreased and selectivity increased with increasing pyrolysis temperature until 650-675 °C where an optimum combination of C 2H 4 permeability ∼14-15 Barrer with C 2H 4/C 2H 6 selectivity ∼12 was observed. A modified heating rate protocol for 675 °C showed further increase in permeability with no selectivity loss. CMS films produced from argon pyrolysis showed results comparable to vacuum pyrolysis. Further, mixed gas (63.2 mol% C 2H 4 + 36.8 mol% C 2H 6) permeation showed a slightly lower C 2H 4 permeability with C 2H 4/C 2H 6 selectivity increase rather than a decrease that is often seen with polymers. The high selectivity of these membranes was shown to arise from a high \\'entropic selection\\' indicating that the \\'slimmer\\' ethylene molecule has significant advantage over ethane in passing through the rigid \\'slit-shaped\\' CMS pore structure. © 2011 Elsevier Ltd. All rights reserved.

  18. Microstructure and low–temperature relaxor behavior of dense K{sub 2}Nb{sub 4}O{sub 11} ceramics derived from sol–gel route

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lina; Hou, Yudong, E-mail: ydhou@bjut.edu.cn; Zheng, Mupeng; Zhu, Mankang; Yan, Hui

    2015-01-15

    High purity tetragonal tungsten-bronze type K{sub 2}Nb{sub 4}O{sub 11} fine powders were synthesized via an economical sol–gel route and the crystal structure was solved by Rietveld refinement of X–ray powder diffraction. Structural evolution during calcination was found to occur via translation of the edge shared octahedra into a corner sharing coordination. Using nano-structured powder as precursor, dense K{sub 2}Nb{sub 4}O{sub 11} ceramics were successfully fabricated by pressure-less sintering. This maiden achievement allowed for primary dielectric characterization of this ceramic compound. The quantitative analysis based on empirical parameters, ΔT{sub m} and γ, reveals a relaxor nature in the temperature region below 200 K. More remarkably, the dielectric constant and loss are almost frequency independent in the wide range of 1 Hz–1 MHz at room temperature and a high dielectric constant and low loss (ε{sub r} = 200 and tan δ = 0.007) makes them good materials for dielectric components for embedded capacitors and multilayer ceramic capacitors. - Highlights: • Pure K{sub 2}Nb{sub 4}O{sub 11} fine powders were synthesized via an economical sol-gel route. • Dense K{sub 2}Nb{sub 4}O{sub 11} ceramics were fabricated by conventional sintering methods. • Relaxor behavior of K{sub 2}Nb{sub 4}O{sub 11} ceramics exists at low temperature around 160 K.

  19. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    Science.gov (United States)

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Hong, Mei; Wu, Jingshen

    2016-12-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes.

  20. Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes

    Science.gov (United States)

    Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Wu, Jingshen

    2016-01-01

    Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes. PMID:28083098

  1. Membranes ceramic by PDMS/SLC containing groups phosphotungstic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.O.; Guimaraes, D.H.; Santa Rosa, L.O.; Silva da, L.T.F.; Fiuza, J.R.A.; Boaventura, F.J.S.; Jose, N.M. [Univ. Federal da Bahia, Salvador (Brazil). Dept. of Physical Chemistry

    2009-07-01

    This study investigated the use of a hybrid material developed for proton exchange membrane fuel cell (PEMFC) applications. The materials were comprised of polydimethylsiloxane reticulated with tetrathylorthosilicate and reinforced with silicon carbide (SiC) and phosphotungstic acid. PDMS and TEOS were reacted in a 70-30 mass proportion. Al203 and PWA were then incorporated in mass proportions of 5, 10, 15, 20, and 25 per cent. The membranes were then analyzed using X-ray diffraction (XRD), thermogravimetric (TG), direct scanning calorimetry (DSC) and Fourier Transform Infrared (FTIR) techniques. The study showed that the addition of SiC and PWA altered both the organization of the material as well as its crystallinity. Load incorporation increased the thermal stability of the material in relation to the pure matrix. The membranes did not exhibit any phase separation. It was concluded that the materials are suitable for PEMFC applications.

  2. Reactive sintering of ceramic lithium ion electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Badding, Michael Edward; Dutta, Indrajit; Iyer, Sriram Rangarajan; Kent, Brian Alan; Lonnroth, Nadja Teresia

    2017-06-06

    Disclosed herein are methods for making a solid lithium ion electrolyte membrane, the methods comprising combining a first reactant chosen from amorphous, glassy, or low melting temperature solid reactants with a second reactant chosen from refractory oxides to form a mixture; heating the mixture to a first temperature to form a homogenized composite, wherein the first temperature is between a glass transition temperature of the first reactant and a crystallization onset temperature of the mixture; milling the homogenized composite to form homogenized particles; casting the homogenized particles to form a green body; and sintering the green body at a second temperature to form a solid membrane. Solid lithium ion electrolyte membranes manufactured according to these methods are also disclosed herein.

  3. Effect of ceramic membrane channel diameter on limiting retentate protein concentration during skim milk microfiltration.

    Science.gov (United States)

    Adams, Michael C; Barbano, David M

    2016-01-01

    Our objective was to determine the effect of retentate flow channel diameter (4 or 6mm) of nongraded permeability 100-nm pore size ceramic membranes operated in nonuniform transmembrane pressure mode on the limiting retentate protein concentration (LRPC) while microfiltering (MF) skim milk at a temperature of 50°C, a flux of 55 kg · m(-2) · h(-1), and an average cross-flow velocity of 7 m · s(-1). At the above conditions, the retentate true protein concentration was incrementally increased from 7 to 11.5%. When temperature, flux, and average cross-flow velocity were controlled, ceramic membrane retentate flow channel diameter did not affect the LRPC. This indicates that LRPC is not a function of the Reynolds number. Computational fluid dynamics data, which indicated that both membranes had similar radial velocity profiles within their retentate flow channels, supported this finding. Membranes with 6-mm flow channels can be operated at a lower pressure decrease from membrane inlet to membrane outlet (ΔP) or at a higher cross-flow velocity, depending on which is controlled, than membranes with 4-mm flow channels. This implies that 6-mm membranes could achieve a higher LRPC than 4-mm membranes at the same ΔP due to an increase in cross-flow velocity. In theory, the higher LRPC of the 6-mm membranes could facilitate 95% serum protein removal in 2 MF stages with diafiltration between stages if no serum protein were rejected by the membrane. At the same flux, retentate protein concentration, and average cross-flow velocity, 4-mm membranes require 21% more energy to remove a given amount of permeate than 6-mm membranes, despite the lower surface area of the 6-mm membranes. Equations to predict skim milk MF retentate viscosity as a function of protein concentration and temperature are provided. Retentate viscosity, retentate recirculation pump frequency required to maintain a given cross-flow velocity at a given retentate viscosity, and retentate protein

  4. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear sw...

  5. Phase-inversion tape casting and oxygen permeation properties of supported ceramic membranes

    NARCIS (Netherlands)

    He, Wei; Huang, Hua; Gao, Jianfeng; Winnubst, A.J.A.; Chen, Chusheng

    2014-01-01

    A variant of tape casting, involving phase inversion, was explored for the preparation of supported ceramic oxygen separation membranes in one step. A slurry of Zr0.84Y0.16O1.92 (YSZ) andLa0.8Sr0.2MnO3 δ (LSM) powders in a N-methyl-2-pyrrolidone solution of polyethersulfone was tape cast, and immers

  6. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    Directory of Open Access Journals (Sweden)

    Lili Song

    2016-03-01

    Full Text Available This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC, and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  7. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-03-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  8. Characterization of Ceramic Composite-Membranes Prepared by ORMOSIL Coating Sol

    Institute of Scientific and Technical Information of China (English)

    Goo-Dae Kim; Tae-Bong Kim

    2004-01-01

    Sol-gel methods offer many advantages over conventional slip-casting, including the ability to produce ceramic membranes. They are purer, more homogeneous, more reactive and contain a wider variety of compositions. We produced ormosil sol using sol-gel process under different molecular weight of polymer species [polyethylene glycol (PEG) ] in total system [Tetraethyl ortho silicate(TEOS)-polyethylene glycol (PEG)]. The properties of as-prepared ormosil sol such as,viscosity, gelation time were characterized. Also, the ceramic membrane was prepared by dip-coating with synthetic sol and its micro-structure was observed by scanning electron microscopy. The permeability and rejection efficiency of membrane for oil/water emulsion were evaluated as cross-flow apparatus. The ormosil sol coated Membrane is easily formed by steric effect of polymer and it improves flux efficiency because infiltration into porous support decreased. Its flux efficiency is elevated about 200(1/m2·h) compared with colloidal sol coated membrane at point of five minutes from starting test.

  9. Performance and Selectivity of Ceramic Membranes in the Ultrafiltration of Model Emulsion in Saline

    Science.gov (United States)

    Ćwirko, Konrad; Kalbarczyk-Jedynak, Agnieszka

    2017-06-01

    Oily wastewaters from different onshore and offshore installations and from maritime transport pose a serious threat to the environment so they must be treated by multistage separation also including membrane processes. The main advantages of such membranes are high performance and selectivity, high resistance for temperature and pressure, resistance for acids, bases and solvents, long service life and for application - significant reduction of industries and transport environmental impact. This work presents the results of the process of separation of oil from the emulsion with NaCl addition. Research was performed with a use of laboratory installation with ceramic 300 kDa membrane. The analysis concerned performance and selectivity of a membrane in the function of time and test results have been subsequently compared with the requirements of the IMO.

  10. Ceramic membrane by tape casting and sol-gel coating for microfiltration and ultrafiltration application

    Science.gov (United States)

    Das, Nandini; Maiti, H. S.

    2009-11-01

    Alumina membrane filters in the form of thin (0.3-0.8 mm) discs of 25-30 mm diameter suitable for microfiltration application have been fabricated by tape-casting technique. Further using this microfiltration membrane as substrate, boehmite sol coating was applied on it and ultrafiltration membrane with very small thickness was formed. The pore size of the microfiltration membrane could be varied in the range of 0.1-0.7 μm through optimisation of experimental parameter. In addition, each membrane shows a very narrow pore size distribution. The most important factor, which determines the pore size of the membrane, is the initial particle size and its distribution of the ceramic powder. The top thin ultrafiltration, boehmite layer was prepared by sol-gel method, with a thickness of 0.5 μm. Particle size of the sol was approximately 30-40 nm. The structure and formation of the layer was analysed through TEM. At 550 °C formation of the top layer was completed. The pore size of the ultrafiltration membrane measured from TEM micrograph was almost 10 nm. Results of microbial (Escherichia coli—smallest-sized water-borne bacteria) test confirm the possibility of separation through this membrane

  11. PROCESSING AND CHARACTERIZATION OF TUBULAR CERAMIC SUPPORT FOR MICROFILTRATION MEMBRANE PREPARED FROM PYROPHYLLITE CLAY

    Directory of Open Access Journals (Sweden)

    Abedallah Talidi

    2011-09-01

    Full Text Available Tubular macroporous support for ceramic microfiltration membranes were prepared by extrusion followed by sintering of the low cost pyrophyllite clay. Clay powders mixed with some organic additives can be extruded to form a porous tubular support. The average pore size of the membrane is observed to increase from 5 µm to 10.8 µm when sintering temperature increase from 900 °C to 1200 °C. However, with the increase in temperature from 900 °C to 1200 °C, the support porosity is reduced from 47% to 30% and flexural strength is increased from 4 MPa to 17 MPa. The fabricated macro-porous supports are expected to have potential applications in the pre-treatment and also can be used like support for membranes of ultra-filtration.

  12. Research results on productivity stabilization by ultrasonic camera (plant with membrane ceramic elements during vine processing

    Directory of Open Access Journals (Sweden)

    V. T. Antufyev

    2016-01-01

    Full Text Available The article describes solutions to the problems of declining productivity of ceramic membrane elements for wine processing on the final manufacturing phase. A relative stabilization of filtration velocity, venting efficiency and wine lightening were experimentally confirmed during contacts with oscillation waves of ultrasonic transmitter on the ceramic filter. Which significantly reduced the cost of various preservatives to increase periods storage. To study the processes of wine processing by the proposed method it was made an experimental installation on the basis of pilot machine MRp-1/2 for bottling of quiet liquids and an ultrasonic device "Volna– M" UZTA-1/22-OM with a firmly, waveguide which transmits sound, fixed filter frame on the ultrasound emitter. To stabilize the performance of ultrasonic units with ceramic membrane elements without quality deterioration of wines it was empirically determined rational parameters of power of ultrasound input and pressure in the system. The given derived dependencies and graphs allow to define the time of relatively stable operating filter regime. It was revealed a significant cost reduction on filtration, as it allows escape from the contamination of the product by various preservatives, and increasing of storage duration in a sealed container during aseptic filling without a thermal sterilization. Ultrasonic emitter contact by superposition wave vibrations on the ceramic filter increases not only the efficiency of gas removal, but also improves the organoleptic characteristics, stabilizes the filters, improves their productivity. Gas removal creates unfavorable conditions for development of the yeast, which in turn increases the shelf life of semisweet wine.

  13. PREPARATION MICRO-FILTRATION CERAMIC MEMBRANE FROM NATURAL ZEOLITE FOR PROCION RED MX8B AND METHYLENE BLUE FILTRATION

    Directory of Open Access Journals (Sweden)

    Dyah Choiriyah

    2015-12-01

    Full Text Available The study of ceramic membrane fabrication from natural zeolite and its utilization for filtration of procion red MX8B and methylene blue has been investigated. The purposes of this study are to determine the effect of pressure on membrane permeability and selectivity and utilize natural zeolite as ceramic membranes procion red MX8B and methylene blue filtration. The membrane was prepared by metide press pellets and then calcined at 850 oC. The membranes were characterized by mechanical test, flux and rejection of dye. The compression test of the membrane found the values of 1369.178 psi in dry conditions to 1388.933 psi in wet conditions. The flux test found that the higher the pressure applied, the flux was increase. However, the high pressure also decreased the selectivity. Rejection test found that the rejection of methylene blue filtration up to 70 %. Meanwhile, procion red MX8B filtration has rejectivity less than 20 %.

  14. New ceramic membranes from calcinated clay; Nouveaux supports membranaires a base de chamotte d'argile

    Energy Technology Data Exchange (ETDEWEB)

    El Moudden, N.; El Ghazouali, A.; Rakib, S.; Sghyar, M.; Rafiq, M. [Faculte des Sciences, Lab. des Materiaux et Protection de L' environnement, Fes Atlas (Morocco); Larbot, A.; Cot, L. [Laboratoire des Materiaux et Procedes Membranaires, UMR 5635-CNRS, ENSCM UM, 34 - Montpellier (France)

    2001-04-01

    The aim of the present work is to obtain porous tubular ceramic membranes from natural material. The clay powders were calcinated in air at 900 deg C for two hours. The resulting powders mixed with certain organic additives could be extruded to fabricate a porous tubular configuration with highly uniform porous structures. The mean pore diameter, measured by mercury porosimetry, is equal to 9 {mu}m and the porosity is 38% (heat treatment at 1130 deg C for two hours). Many ceramic membrane manufactures have used this type of large-pore membrane as supports for finer-pore membranes (micro-filtration or ultrafiltration). Porous membranes possess very good mechanical strength and negligible flow resistance for the membrane/support, while containing pores which allow a high degree of permeation. (authors)

  15. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 2, December 21, 1989--March 20, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  16. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 8, June 21, 1991--September 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will also be investigated.

  17. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 7, March 21, 1991--June 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  18. Pretreatment with ceramic membrane microfiltration in the clarification process of sugarcane juice by ultrafiltration

    Directory of Open Access Journals (Sweden)

    Priscilla dos Santos Gaschi

    2014-04-01

    Full Text Available In the present study, the sugar cane juice from COCAFE Mill, was clarified using tubular ceramic membranes (α-Al2O3/TiO2 with pore size of 0.1 and 0.3 µm, and membrane area of 0.005 m2. Experiments were performed in batch with sugar cane juice, in a pilot unit of micro and ultrafiltration using the principle of tangential filtration. The sugar cane juice was settled for one hour and the supernatant was treated by microfiltration. After that, the MF permeate was ultrafiltered. The experiments of micro and ultrafiltration were carried out at 65ºC and 1 bar. The ceramic membranes were able to remove the colloidal particles, producing a limpid permeated juice with color reduction. The clarification process with micro- followed by ultrafiltration produced a good result with an average purity rise of 2.74 units, 99.4% lower turbidity and 44.8% lighter color in the permeate.

  19. Preparation of Micro-Porous Alumina Sheet Support for Ceramic Membrane by Extrusion

    Science.gov (United States)

    Hemra, Khanthima; Atong, Duangduen; Aungkavattana, Pavadee

    Among several types of ceramic membrane developed for a half of century, alumina is the most extensive advantage. In this study, many types of alumina with different particle size distributions were used as a starting material for fabrication of support sheet ceramic membrane using extrusion process. The investigation focused on the alumina dough components composed of some organic binders and water. The organic binder of about 12 wt. % was required in order for dough to be easily extruded, while the amount of water added to the dough depended on the particle size of alumina powder. The particle size and size distribution of starting powder showed strong effects on pore size of sintered alumina support. The pore size decreased when smaller particle size of starting powder was used. In addition, the pore volume of the sintered alumina decreased with increasing the sintering temperature due to improvement in densification, while pore size remained the same. The mechanical strength of alumina supports was also influenced by the particle size of starting powder; the finer particle size resulted in the higher mechanical strength. However, in order to obtain a good flux for the membrane, a high mechanical strength of the support along with its effective porosity is critical concerns. In this work, the support sintered at 1450°C provided a proper porosity of approximately 40% with an acceptable mechanical strength of 30-45MPa.

  20. Synthesis and characterization of dense membranes of silk fibroin with glycerin;Sintese e caracterizacao de membranas densas de fibroina de seda com glicerina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mariana F.; Moraes, Mariana A. de; Weska, Raquel F.; Nogueira, Grinia M.; Beppu, Marisa M., E-mail: beppu@feq.unicamp.b [Universidade Estadual de Campinas (FEQ/UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica

    2009-07-01

    The addition of plasticizers seeks improvements in mechanical properties of dense membranes of silk fibroin with possible interactions by hydrogen bonds. The aim of the present study was to produce and characterize dense membranes of silk fibroin containing glycerin in two different concentrations. The characterization of the membranes was performed from scanning electron microscopy (SEM), mechanical traction tests, infrared spectroscopy (FTIR-ATR) and X-ray diffraction (XRD). The results indicated that the addition of glycerin allowed obtaining homogeneous and more crystalline membranes and improved their properties of elongation. (author)

  1. Suppression effects of dental glass-ceramics with polarization-induced highly dense surface charges against bacterial adhesion.

    Science.gov (United States)

    Nozaki, Kosuke; Koizumi, Hiroki; Horiuchi, Naohiro; Nakamura, Miho; Okura, Toshinori; Yamashita, Kimihiro; Nagai, Akiko

    2015-01-01

    This study investigated the surface characteristics and antibacterial ability capacity of surface-improved dental glass-ceramics by an electrical polarization process. Commercially available dental glass-ceramic materials were electrically polarized to induce surface charges in a direct current field by heating. The surface morphology, chemical composition, crystal structure, and surface free energy (SFE) were evaluated using scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, and water droplet methods, respectively. The antibacterial capacity was assessed by a bacterial adhesion test using Streptococcus mutans. Although the surface morphology, chemical composition, and crystal structure were not affected by electrical polarization, the polar component and total SFE were enhanced. After 24 h incubation at 37ºC, bacterial adhesion to the polarized samples was inhibited. The electrical polarization method may confer antibacterial properties on prosthetic devices, such as porcelain fused to metal crowns or all ceramic restorations, without any additional bactericidal agents.

  2. Crack-free cutting of thick and dense ceramics with CO 2 laser by single-pass process

    Science.gov (United States)

    Ji, Lingfei; Yan, Yinzhou; Bao, Yong; Jiang, Yijian

    2008-10-01

    This paper presents a laser crack-free cutting method of Al 2O 3 ceramics by single-pass process in internal straight and curve profiles. The thickness and theoretical density of the ceramics are up to 10 mm and about 99%, respectively. The effective cutting speed is about 0.23-0.42 mm/s corresponding to the laser head moving speed of 3 mm/s. The cutting process based on close-piercing lapping of piercing time of 0.1-0.5 s and piercing pitch of 0.03-0.05 mm is divided into two continuous stages. Appropriate time slot for each piercing, high peak power of 3500 W and low cycle duty (laser crack-free cutting method is a promising method to achieve complex profiles of ceramic cuts.

  3. Structural, chemical surface and transport modifications of regenerated cellulose dense membranes due to low-dose {gamma}-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.I. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Heredia-Guerrero, J.A., E-mail: jose.alejandro@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Galan, P. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Benitez, J.J. [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Benavente, J. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain)

    2011-04-15

    Research highlights: {yields} Low dose {gamma}-radiation causes slight structural, chemical and morphological changes on regenerated cellulose films. {yields} Induced structural changes increase the fragility of irradiated films. {yields} Structural modifications reduce ion permeability of films. - Abstract: Modifications caused in commercial dense regenerated cellulose (RC) flat membranes by low-dose {gamma}-irradiation (average photons energy of 1.23 MeV) are studied. Slight structural, chemical and morphological surface changes due to irradiation in three films with different RC content were determined by ATR-FTIR, XRD, XPS and AFM. Also, the alteration of their mechanical elasticity has been studied. Modification of membrane performance was determined from solute diffusion coefficient and effective membrane fixed charge concentration obtained from NaCl diffusion measurements. Induced structural changes defining new and effective fracture propagation directions are considered to be responsible for the increase of fragility of irradiated RC membranes. The same structural changes are proposed to explain the reduction of the membrane ion permeability through a mechanism involving either ion pathways elongation and/or blocking.

  4. Effect of operating conditions on the performances of multichannel ceramic UF membranes for textile mercerization wastewater treatment.

    Science.gov (United States)

    Zebić Avdičević, Maja; Košutić, Krešimir; Dobrović, Slaven

    2017-01-01

    Textile wastewaters are rated as one of the most polluting in all industrial sectors, and membrane separation is the most promising technology for their treatment and reuse of auxiliary chemicals. This study evaluates the performance of three types of tubular ceramic ultrafiltration membranes differing by mean pore size (1, 2 and 500 kDa) treating textile mercerization wastewater from a textile mill at different operating conditions: cross-flow velocity (CFV) and temperature. Acceptable results were obtained with 1 kDa ceramic membrane, with rejection efficiencies 92% for suspended solids, 98% for turbidity, 98% for color and 53% for total organic carbon at 20°C and 3 m s(-1) CFV. Highest fouling effect was observed for 500 kDa membrane and lowest CFV. According to the observed results, 1 kDa membrane could be used for the treatment of wastewater from the textile mercerization process in terms of permeate quality.

  5. Cross-flow filtration with different ceramic membranes for polishing wastewater treatment plant effluent

    DEFF Research Database (Denmark)

    Farsi, Ali; Hammer Jensen, Sofie; Roslev, Peter

    are harmful for aquatic organism. A possible strategy to avoid this is to polish the effluent by membrane processes. Different ceramic membranes were studied to test their ability to remove inorganic and organic compounds from the effluent. Hence, various active layers such as mesoporous TiO2 (average nominal...... pore size is 15 nm), mesoporous γ-alumina (5 nm), microporous TiO2 (1nm) and microporous hybrid silica (... spectroscopy, respectively. The type and the molecular size of removed organic compounds were determined using pH, full spectrum UV and size exclusion HPLC. Inorganic N-compound rejections were calculated by N-autoanalyzer. The retention of humic like substances measured by UV254 (Fig.1) decreased almost...

  6. Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process

    Energy Technology Data Exchange (ETDEWEB)

    Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

    2009-02-20

    A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

  7. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 12, June 21, 1992--September 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-12-31

    In this project we intend to study a novel process concept, i.e.,the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we wig evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  8. High temperature ceramic membrane reactors for coal liquid upgrading. Quarter report No. 9, September 21, 1991--December 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-07-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  9. Preparation and performance of thin-layered PdAu/ceramic composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Lei; Goldbach, Andreas; Zeng, Gaofeng; Xu, Hengyong [Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023 (China)

    2010-05-15

    Preparation of 3-5 {mu}m thick, hydrogen-selective PdAu layers via sequential electroless plating of Pd and Au onto ceramic microfiltration membranes was investigated employing a cyanide-free Au plating bath. The Au deposition rate was strongly dependent on bath temperature and alkalinity reaching an optimum at 333 K and pH 10. Homogenous alloying of the separate metal layers under atmospheric H{sub 2} proved to be a protracted process and required approximately a week at 873 K for a PdAu layer as thin as 3 {mu}m. After 300 h annealing at 823 K the 5 {mu}m thick PdAu layer of a composite membrane still exhibited a Au gradient declining from 7.4 at.% at the top surface to 5.5 at.% at the support interface despite that the H{sub 2} permeation rate had become stable. Nonetheless, the membrane exhibited a very high H{sub 2} permeability of e.g. 1.3 x 10{sup -8} mol m m{sup -2} s{sup -1} Pa{sup -0.5} at 673 K, but it decreased much faster with temperature below 573 K than above, likely due to a change from bulk H diffusion-controlled to H{sub 2} adsorption or desorption-limited transport. The composite membrane withstood cycling between 523 and 723 K in H{sub 2} well showing that differing thermal expansion of the joined metallic and ceramic materials stayed within the tolerance range up to 723 K. (author)

  10. Mechanisms and stability of oxide-ion transport in homogenous and heterogeneous ceramic membranes

    Science.gov (United States)

    Tichy, Robin Sarah

    Solid oxide-ion conductors are basic components of several modern technologies. Oxide-ion electrolytes are oxide-ion conductors and electronic insulators; they are used in oxygen sensors and solid oxide fuel cells. The required oxide-ion conductivity is only achieved at higher temperatures. Commercialization of this technology demands the development of a better oxide-ion electrolyte and/or the ability to fabricate a large area ceramic membrane with a thickness of L membranes and methane conversion reactors that produce syn-gas. Structural and chemical stability of mixed conductors are a major problem for ceramic-membrane reactors because the material must exhibit good mixed conduction in both high and very low oxygen partial pressures and at operating temperatures, 600°C ≤ Top. ≤ 900°C. The material SrMnO3 is a high-temperature, oxygen-deficient, perovskite that may be preserved at room temperature. Although this material exhibits good mixed conduction, it reverts to its stable stoichiometric phase under oxidizing operating conditions. La2NiO4+delta has a tetragonal crystal structure that is closely related to the cubic perovskite structure. The ionic conduction occurs via the migration of interstitial oxygen, which is lost in reducing atmospheres. The stability of mixed conduction within one material proved difficult to achieve in both reducing and oxidizing conditions at high temperatures. Several oxides are known to exhibit stable ionic conduction in membrane operating conditions. A noble metal can provide a pathway for electronic conduction while the oxide phase conducts the oxygen ions. This heterogeneous composite configuration improves stability, but the exact nature of the conduction processes has not been determined. The performance of two composite materials, Ce 0.8Sm0.2O1.9/Pd and (Bi1.75Y0.25 O3)0.95(CeO2)0.05/Ag, was assessed through permeation studies.

  11. The application of ceramic membranes for treating effluent water from closed-circuit fish farming

    Directory of Open Access Journals (Sweden)

    Bonisławska Małgorzata

    2016-06-01

    Full Text Available The aim of the study was to analyze and assess the possibility of using a two-stage filtration system with ceramic membranes: a 3-tube module with 1.0 kDa cut-off (1st stage and a one-tube module with 0.45 kDa cut-off (2nd stage for treating effluent water from a juvenile African catfish aquaculture. The study revealed that during the 1st filtration stage of the effluent water, the highest degrees of retention were obtained with respect to: suspended solids SS (rejection coefficient RI=100%, turbidity (RI=99.40%, total iron (RI=89.20%, BOD5 (RI=76.0%, nitrite nitrogen (RI=62.30%, and CODCr (RI=41.74%. The 2nd filtration stage resulted in a lower reduction degree of the tested indicators in comparison to the 1st filtration stage. At the 2nd stage, the highest values of the rejection coefficient were noted in for the total iron content (RIV=100%, CODCr (RIV=59.52%; RV=64.28%, RVI=63.49% and turbidity (RIV and RV = 45.0%, RVI=50.0%. The obtained results indicate that ceramic membranes (with 1.0 and 0.45 kDa cut-offs may be used in recirculation aquaculture systems as one of the stages of effluent water treatment.

  12. Asymmetric polymeric membranes containing a metal-rich dense layer with a controlled thickness and method of making same

    KAUST Repository

    Peinemann, Klaus-Viktor

    2016-01-21

    A structure, and methods of making the structure are provided in which the structure can include: a membrane having a first layer and a second layer, the first layer comprising polymer chains formed with coordination complexes with metal ions, and the second layer consisting of a porous support layer formed of polymer chains substantially, if not completely, lacking the presence of metal ions. The structure can be an asymmetric polymeric membrane containing a metal-rich layer as the first layer. In various embodiments the first layer can be a metal-rich dense layer. The first layer can include pores. The polymer chains of the first layer can be closely packed. The second layer can include a plurality of macro voids and can have an absence of the metal ions of the first layer.

  13. Pro-apoptotic Bax molecules densely populate the edges of membrane pores.

    Science.gov (United States)

    Kuwana, Tomomi; Olson, Norman H; Kiosses, William B; Peters, Bjoern; Newmeyer, Donald D

    2016-06-03

    How the pro-apoptotic Bax protein permeabilizes the mitochondrial outer membrane is not fully understood. Previously, using cryo-electron microscopy (cryo-EM), we showed that activated Bax forms large, growing pores. Whether formed in liposomes or in mitochondrial outer membranes, Bax-induced pores exhibit the same morphology, with negative curvature flanking the edges and with no visible protein structure protruding from the membranes. Here we used cryo-EM to show that gold-labeled Bax molecules, after activation by Bid, became localized strictly at pore edges. This argues that Bax acts at short range to deform the membrane. Also, Bax molecules populated the walls of both small and large pores at the same density, implying that Bax is continuously recruited to the pores as they widen. Moreover, because all Bax molecules became oligomerized after membrane insertion, we infer that Bax oligomers are present at pore edges. We suggest that oligomerization may promote pore enlargement.

  14. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites

    Science.gov (United States)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; GuillonPresent Address: Forschungszentrum Jülich, Institut Für Energie-Und Klimaforschung 1: Werkstoffsynthese Und Herstellungsverfahren, Wilhelm-Johnen-Straße, D.-52425 Jülich., Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-10-01

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido

  15. Ceramic membrane as a pretreatment for reverse osmosis: Interaction between marine organic matter and metal oxides

    KAUST Repository

    Dramas, Laure

    2013-02-01

    Scaling and (bio)fouling phenomena can severely alter the performance of the reverse osmosis process during desalination of seawater. Pretreatments must be applied to efficiently remove particles, colloids, and also precursors of the organic fouling and biofouling. Ceramic membranes offer a lot of advantages for micro and ultrafiltration pretreatments because their initial properties can be recovered using more severe cleaning procedure. The study focuses on the interaction between metal oxides and marine organic matter. Experiments were performed at laboratory scale. The first series of experiments focus on the filtration of different fractions of natural organic matter and model compounds solutions on flat disk ceramic membranes (47 mm of diameter) characterized with different pore size and composition. Direct filtration experiments were conducted at 0.7 bar or 2 bars and at room temperature (20 ± 0.5 °C). The efficiency of backflush and alkaline cleaning were eval, and titanium oxides. Each metal oxide corresponds to a specific pore size for the disk ceramic membranes: 80, 60, and 30 nm. Different sizes of metal oxide particles are used to measure the impact of the surface area on the adsorption of the organic matter. Seawaters from the Arabian Gulf and from the Red Sea were collected during algal blooms. Cultures of algae were also performed in the laboratory and in cooperation with woods hole oceanographic institute. Solutions of algal exudates were obtained after a couple of weeks of cultivation followed by sonication. Solutions were successively filtered through GFF (0.7 lm) and 0.45 lm membrane filters before use. The dissolved organic carbon (DOC) concentration of final solution was between 1 and 4 mg/L and showed strong hydrophilic character. These various solutions were prepared with the objective to mimic the dissolved organic matter composition of seawater subjected to algal bloom. Characterization of the solutions of filtration experiments (feed

  16. Performance assessment of MCM-48 ceramic composite membrane by separation of AlCl3 from aqueous solution.

    Science.gov (United States)

    Kumar Basumatary, Ashim; Kumar Ghoshal, Aloke; Pugazhenthi, G

    2016-12-01

    Three dimensional ordered mesoporous MCM-48 membrane was fabricated on a circular shaped ceramic support by in-situ hydrothermal method. The synthesized MCM-48 powder and MCM-48 ceramic composite membrane were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM). The porosity and pore size of the composite membrane are reduced considerably by the deposition of MCM-48 on the support. The formation of MCM-48 is verified by the XRD analysis. Three stepwise mechanisms for surfactant removal are observed by TGA analysis. FESEM images clearly signify the deposition of MCM-48 on the ceramic support. The pure water flux of the support and MCM-48 composite membrane is found to be 3.63×10(-6) and 4.18×10(-8)m(3)/m(2)skPa, respectively. The above prepared MCM-48 ceramic composite membrane is employed for the removal of AlCl3 from aqueous solution and the highest rejection of 81% is obtained at an applied pressure of 276kPa with salt concentration of 250ppm.

  17. Electrochemical promotion of propane oxidation on Pt deposited on a dense β"-Al2O3 ceramic Ag+ conductor

    Directory of Open Access Journals (Sweden)

    Michail eTsampas

    2013-08-01

    Full Text Available A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a β"-Al2O3 ceramic Ag+ conductor was developed and evaluated during propane oxidation. It was observed that upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation.

  18. Electrochemical promotion of propane oxidation on Pt deposited on a dense β"-Al2O3 ceramic Ag+ conductor

    Science.gov (United States)

    Tsampas, Michail; Kambolis, Anastasios; Obeid, Emil; Lizarraga, Leonardo; Sapountzi, Foteini; Vernoux, Philippe

    2013-08-01

    A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a β"-Al2O3 ceramic Ag+ conductor was developed and evaluated during propane oxidation. It was observed that upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation.

  19. Hydraulically irreversible fouling on ceramic MF/UF membranes: comparison of fouling indices, foulant composition and irreversible pore narrowing

    KAUST Repository

    Shang, Ran

    2015-05-06

    The application of ceramic membranes in water treatment is becoming increasing attractive because of their long life time and excellent chemical, mechanical and thermal stability. However, fouling of ceramic membranes, especially hydraulically irreversible fouling, is still a critical aspect affecting the operational cost and energy consumption in water treatment plants. In this study, four ceramic membranes with pore sizes or molecular weight cut-off (MWCO) of 0.20 μm, 0.14 μm, 300 kDa and 50 kDa were compared during natural surface water filtration with respect to hydraulically irreversible fouling index (HIFI), foulant composition and narrowing of pore size due to the irreversible fouling. Our results showed that the hydraulically irreversible fouling index (HIFI) was proportional to the membrane pore size (r2=0.89) when the same feed water was filtrated. The UF membranes showed lower HIFI values than the MF membranes. Pore narrowing (internal fouling) was found to be a main fouling pattern of the hydraulically irreversible fouling. The internal fouling was caused by monolayer adsorption of foulants with different sizes that is dependent on the size of the membrane pore.

  20. Perovskite-type ceramic membranes ; partial oxidation of methane in a catalytic membrane reactor

    NARCIS (Netherlands)

    Mertins, Frédéric Henri Bertrand

    2005-01-01

    The application of mixed ionic and electronic conductors as oxygen separating membranes o®er an attractive alternative for the production of synthesis gas from methane when compared with traditional reforming. Materials with the perovskite structure are the most promising candidates thanks to the ea

  1. Waste-to-resource preparation of a porous ceramic membrane support featuring elongated mullite whiskers with enhanced porosity and permeance

    NARCIS (Netherlands)

    Zhu, Li; Dong, Yingchao; Hampshire, Stuart; Cerneaux, Sophie; Winnubst, Aloysius J.A.

    2015-01-01

    Different from traditional particle packing structure, a porous structure of ceramic membrane support was fabricated, featuring elongated mullitewhiskers with enhanced porosity, permeance and sufficient mechanical strength. The effect of additives (MoO3and AlF3) and sintering procedureon open porosi

  2. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Laurent Oligny

    2016-07-01

    Full Text Available This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP due to the export of powdered activated carbon (PAC fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW, chemically enhanced backwashing (CEB and Clean-in-Place (CIP. The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants.

  3. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment

    Science.gov (United States)

    Oligny, Laurent; Bérubé, Pierre R.; Barbeau, Benoit

    2016-01-01

    This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP) due to the export of powdered activated carbon (PAC) fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW), chemically enhanced backwashing (CEB) and Clean-in-Place (CIP). The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC) content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants. PMID:27399788

  4. Novel ceramic-polymer composite membranes for the separation of hazardous liquid waste. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Y.

    1998-06-01

    'This report summarizes the work progress over the last 1.75 years of a 3 year project. The objectives of the project have been to develop a new class of ceramic-supported polymeric membranes that could be tailored-designed for a wide-range of applications in remediation and pollution prevention. To date, a new class of chemically-modified ceramic membranes was developed for the treatment of oil-in-water emulsions and for the pervaporation removal of volatile organics from aqueous systems. These new ceramic-supported polymer (CSP) membranes are fabricated by modifying the pore surface of a ceramic membrane support by a graft polymerization process (Chaimberg and Cohen, 1994). The graft polymerization process consists of activating the membrane surface with alkoxy vinyl silanes onto which vinyl monomers are added via free-radical graft polymerization resulting in a thin surface layer of terminally anchored polymer chains. Reaction conditions are selected based on knowledge of the graft polymerization kinetics for the specific polymer/substrate system. The resultant ceramic-supported polymer (CSP) membrane is a composite structure in which mechanical strength is provided by the ceramic support and the selectivity is determined by the covalently bonded polymer brush layer. Thus, one of the unique attributes of the CSP membrane is that it can be used in environments where the polymer layer is swollen (or even completely miscible) in the mixture to be separated (Castro et al., 1993). It is important to note that the above modification process is carried out under mild conditions (e.g., temperature of about 70 C) and is well suited for large scale commercial application. In a series of studies, the applicability of a polyvinylpyrrolidone CSP membrane was demonstrated for the treatment of oil-in-water emulsion under a variety of flow conditions (Castro et al.,1996). Improved membrane performance was achieved due to minimization of surface adsorption of the oil

  5. Ceramic membrane filters for fine particulate removal in coal-fired industrial boilers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Wincek, R.T.; Glick, D.C.; Scaroni, A.W.; Makris, P.; Krecker, J.; Jung, G.; Stubblefield, D.J.

    1998-07-01

    Strategies are being developed at Penn Sate to produce ultralow emissions when firing coal-based fuel, i.e., micronized coal and coal-water slurry fuel (CWSF), in industrial boilers. The research is being conducted at the bench, pilot, and demonstration scale, and the emissions being addressed are SO{sub 2}, NO{sub x}, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Specific activities are identifying/developing a low-temperature NO{sub x} reduction catalyst, studying the occurrence of nitrogen in coal and the fundamental mechanisms of NO{sub x} production, characterizing air toxic emissions, investigating the use of BioLime{trademark} for simultaneous SO{sub 2}/NO{sub x} reduction, and evaluating a ceramic filter for fine particulate control. Results from trace element and polynuclear aromatic hydrocarbon emissions testing when firing coal-based fuels are reported elsewhere in these proceedings. This paper discusses the preliminary results obtained using ceramic membrane filters for fine particulate removal when firing micronized coal in a package boiler.

  6. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  7. Characterization of Pores in Dense Nanopapers and Nanofibrillated Cellulose Membranes: A Critical Assessment of Established Methods.

    Science.gov (United States)

    Orsolini, Paola; Michen, Benjamin; Huch, Anja; Tingaut, Philippe; Caseri, Walter R; Zimmermann, Tanja

    2015-11-25

    Nanofibrillated cellulose (NFC) is a natural fibrous material that can be readily processed into membranes. NFC membranes for fluid separation work in aqueous medium, thus in their swollen state. The present study is devoted to a critical investigation of porosity, pore volume, specific surface area, and pore size distribution of dry and wet NFC nanopapers, also known as membranes, with various established techniques, such as electron microscopy, helium pycnometry, mercury intrusion, gas adsorption (N2 and Kr), and thermoporometry. Although these techniques can be successfully applied to inorganic materials (e.g., mesoporous silica), it is necessary to appraise them for organic and hydrophilic products such as NFC membranes. This is due to different phenomena occurring at the materials interfaces with the probing fluids. Mercury intrusion and gas adsorption are often used for the characterization of porosity-related properties; nevertheless, both techniques characterize materials in the dry state. In parallel, thermoporometry was employed to monitor the structure changes upon swelling, and a water permeance test was run to show the accessibility of the membranes to fluids. For the first time, the methods were systematically screened, and we highlighted the need of uniform sample treatments prior to the measurements (i.e., sample cutting and outgassing protocols) in order to harmonize results from the literature. The need for revising the applicability range of mercury intrusion and the inappropriateness of nitrogen adsorption were pointed out. We finally present a table for selecting the most appropriate method to determine a desired property and propose guidelines for results interpretation from which future users could profit.

  8. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    Science.gov (United States)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  9. Electrical properties and flux performance of composite ceramic hydrogen separation membranes

    DEFF Research Database (Denmark)

    Fish, J.S.; Ricote, Sandrine; O'Hayre, R.

    2015-01-01

    The electrical properties and hydrogen permeation flux behavior of the all-ceramic protonic/electronic conductor composite BaCe0.2Zr0.7Y0.1O3-δ/Sr0.95Ti0.9Nb0.1O3-δ (BCZY27/STN95: BS27) are evaluated. Conductivity and hydrogen permeability are examined as a function of phase volume ratios. Total...... with an effective medium approach incorporating a term for the heterojunctions between the two phases. Hydrogen fluxes of 0.004-0.008 μmol cm-2 s-1 are obtained for a 50 volume% STN95 membrane sample (1 mm thickness) at 600-800 °C using dry argon as a sweep gas. Upon adding palladium layers as catalysts more than...

  10. Optimization of the flux values in multichannel ceramic membrane microfiltration of Baker`s yeast suspension

    Directory of Open Access Journals (Sweden)

    Milović Nemanja R.

    2016-01-01

    Full Text Available The objective of this work was to estimate the effects of the operating parameters on the baker's yeast microfiltration through multichannel ceramic membrane. The selected parameters were transmembrane pressure, suspension feed flow, and initial suspension concentration. In order to investigate the influence and interaction effects of these parameters on the microfiltration operation, two responses have been chosen: average permeate flux and flux decline. The Box-Behnken experimental design and response surface methodology was used for result processing and process optimization. According to the obtained results, the most important parameter influencing permeate flux during microfiltration is the initial suspension concentration. The maximum average flux value was achieved at an initial concentration of 0.1 g/L, pressure around 1.25 bars and a flow rate at 16 L/h. [Projekat Ministarstva nauke Republike Srbije, br. TR 31002

  11. A process efficiency assessment of serum protein removal from milk using ceramic graded permeability microfiltration membrane.

    Science.gov (United States)

    Tremblay-Marchand, D; Doyen, A; Britten, M; Pouliot, Y

    2016-07-01

    Microfiltration (MF) is a well-known process that can be used in the dairy industry to separate caseins from serum proteins (SP) in skim milk using membranes with a pore diameter of 0.1μm. Graded permeability ceramic membranes have been studied widely as means of improving milk fractionation by overcoming problems encountered with other MF membranes. The ideal operating parameters for process efficiency in terms of membrane selectivity, permeate flux, casein loss, SP transmission, energy consumption, and dilution with water remain to be determined for this membrane. Our objective was to evaluate the effects of transmembrane pressure (TMP), volumetric concentration factor (VCF), and diafiltration on overall process efficiency. Skim milk was processed using a pilot-scale MF system equipped with 0.72-m(2) graded permeability membranes with a pore size of 0.1μm. In the first experiment, in full recycle mode, TMP was set at 124, 152, 179, or 207 kPa by adjusting the permeate pressure at the outlet. Whereas TMP had no significant effect on permeate and retentate composition, 152 kPa was found to be optimal for SP removal during concentration and concentration or diafiltration experiments. When VCF was increased to 3×, SP rejection coefficient increased along with energy consumption and total casein loss, whereas SP removal rate decreased. Diafiltering twice allowed an increase in total SP removal but resulted in a substantial increase in energy consumption and casein loss. It also reduced the SP removal rate by diluting permeate. The membrane surface area required for producing cheese milk by blending whole milk, cream, and MF retentate (at different VCF) was estimated for different cheese milk casein concentrations. For a given casein concentration, the same quantity of permeate and SP would be produced, but less membrane surface area would be needed at a lower retentate VCF. Microfiltration has great potential as a process of adding value to conventional

  12. Cross flow ultrafiltration of Cr (VI) using MCM-41, MCM-48 and Faujasite (FAU) zeolite-ceramic composite membranes.

    Science.gov (United States)

    Basumatary, Ashim Kumar; Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2016-06-01

    This work describes the removal of Cr (VI) from aqueous solution in cross flow mode using MCM-41, MCM-48 and FAU zeolite membranes prepared on circular shaped porous ceramic support. Ceramic support was manufactured using locally available clay materials via a facile uni-axial compaction method followed by sintering process. A hydrothermal technique was employed for the deposition of zeolites on the ceramic support. The porosity of ceramic support (47%) is reduced by the formation of MCM-41 (23%), MCM-48 (22%) and FAU (33%) zeolite layers. The pore size of the MCM-41, MCM-48 and FAU membrane is found to be 0.173, 0.142, and 0.153 μm, respectively, which is lower than that of the support (1.0 μm). Cross flow ultrafiltration experiments of Cr (VI) were conducted at five different applied pressures (69-345 kPa) and three cross flow rates (1.11 × 10(-7) - 2.22 × 10(-7) m(3)/s). The filtration studies inferred that the performance of the fabricated zeolite composite membranes is optimum at the maximum applied pressure (345 kPa) and the highest rejection is obtained with the lowest cross flow rate (1.11 × 10(-7) m(3)/s) for all three zeolite membrane. The permeate flux of MCM-41, MCM-48 and FAU zeolite composite membranes are almost remained constant in the entire duration of the separation process. The highest removal of 82% is shown by FAU membrane, while MCM-41 and MCM-48 display 75% and 77% of Cr (VI) removal, respectively for the initial feed concentration of 1000 ppm with natural pH of the solution at an applied pressure of 345 kPa.

  13. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 11, March 21, 1992--June 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-12-31

    Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. Having the inherent capability for combining reaction and separation in a single step, they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, such as these typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. This project will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. Development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  14. Proton Content and Nature in Perovskite Ceramic Membranes for Medium Temperature Fuel Cells and Electrolysers

    Directory of Open Access Journals (Sweden)

    Aneta Slodczyk

    2012-07-01

    Full Text Available Recent interest in environmentally friendly technology has promoted research on green house gas-free devices such as water steam electrolyzers, fuel cells and CO2/syngas converters. In such applications, proton conducting perovskite ceramics appear especially promising as electrolyte membranes. Prior to a successful industrial application, it is necessary to determine/understand their complex physical and chemical behavior, especially that related to proton incorporation mechanism, content and nature of bulk protonic species. Based on the results of quasi-elastic neutron scattering (QNS, thermogravimetric analysis (TGA, Raman and IR measurements we will show the complexity of the protonation process and the importance of differentiation between the protonic species adsorbed on a membrane surface and the bulk protons. The bulk proton content is very low, with a doping limit (~1–5 × 10−3 mole/mole, but sufficient to guarantee proton conduction below 600 °C. The bulk protons posses an ionic, covalent bond free nature and may occupy an interstitial site in the host perovskite structure.

  15. Proton content and nature in perovskite ceramic membranes for medium temperature fuel cells and electrolysers.

    Science.gov (United States)

    Colomban, Philippe; Zaafrani, Oumaya; Slodczyk, Aneta

    2012-07-25

    Recent interest in environmentally friendly technology has promoted research on green house gas-free devices such as water steam electrolyzers, fuel cells and CO2/syngas converters. In such applications, proton conducting perovskite ceramics appear especially promising as electrolyte membranes. Prior to a successful industrial application, it is necessary to determine/understand their complex physical and chemical behavior, especially that related to proton incorporation mechanism, content and nature of bulk protonic species. Based on the results of quasi-elastic neutron scattering (QNS), thermogravimetric analysis (TGA), Raman and IR measurements we will show the complexity of the protonation process and the importance of differentiation between the protonic species adsorbed on a membrane surface and the bulk protons. The bulk proton content is very low, with a doping limit (~1-5 × 10-3 mole/mole), but sufficient to guarantee proton conduction below 600 °C. The bulk protons posses an ionic, covalent bond free nature and may occupy an interstitial site in the host perovskite structure.

  16. Cordierite containing ceramic membranes from smectetic clay using natural organic wastes as pore-forming agents

    Directory of Open Access Journals (Sweden)

    W. Misrar

    2017-06-01

    Full Text Available Cordierite ceramic membranes were manufactured from natural clay, oxides and organic wastes as pore forming agents. Mixtures aforementioned materials with the pore-forming agents (up to 10 wt.% were investigated in the range 1000–1200 °C using thermal analysis, X-ray diffraction, scanning electron microscopy, mercury porosimetry and filtration tests. Physical properties (density, water absorption and bending strength were correlated to the processing factors (pore-forming agent addition, firing temperature and soaking time. The results showed that cordierite together with spinel, diopside and clinoenstatite neoformed. SEM analysis revealed heterogeneous aspects. The results of the response surface methodology showed that the variations of physical properties versus processing parameters were well described by the used polynomial model. The addition of pore forming agent and temperature were the most influential factors. Filtration tests were performed on the best performing sample. The results allowed to testify that these membranes could be used in waste water treatment.

  17. An accurate way to determine the ionic conductivity of mixed ionic-electronic conducting (MIEC) ceramics

    NARCIS (Netherlands)

    Chen, W.; Nauels, N.; Bouwmeester, H.J.M.; Nijmeijer, A.; Winnubst, A.J.A.

    2015-01-01

    Measuring oxygen transport through dense, mixed ion–electron conducting, ceramic membranes is usually performed in a lab-scale permeationset-up where feed and sweep gas are directly flushed to the membrane surface. Due to concentration gradients, the oxygen partial pressure PO2 measured at the outle

  18. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 10, December 21, 1991--March 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-07-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL`s contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  19. Ceramic Membrane combined with Powdered Activated Carbon (PAC) or Coagulation for Treatment of Impaired Quality Waters

    KAUST Repository

    Hamad, Juma Z.

    2013-08-29

    Ceramic membranes (CM) are robust membranes attributed with high production, long life span and stability against critical conditions. While capital costs are high, these are partially offset by lower operation and maintenance costs compared to polymeric membranes. Like any other low-pressure membrane (LPM), CM faces problems of fouling, low removal of organic matter and poor removal of trace organic compounds (TOrCs). Current pretreatment approaches that are mainly based on coagulation and adsorption can remove some organic matter but with a low removal of the biopolymers component which is responsible for fouling. Powdered activated carbon (PAC) accompanied with a LPM maintains good removal of TOrCs. However, enhanced removal of TOrCs to higher level is required. Submicron powdered activated carbon (SPAC), obtained after crushing commercial activated carbon into very fine particle, and novel activated carbon (KCU 6) which is characterized with larger pores and high surface area were employed. A pre-coating approach, which provides intimated contact between PAC and contaminants, was adopted for wastewater and (high DOC) surface water treatment. For seawater, in-line coagulation with iron III chloride was adopted. Both SPAC and KCU 6 showed good removal of biopolymers at a dose of 30 mg/L with > 85 % and 90 %, respectively. A dose of 40 mg/L of SPAC and 30 mg/L KCU 6 pre-coats were successful used in controlling membrane fouling. SPAC is suggested to remove biopolymers by physical means and adsorption while KCU 6 removed biopolymers through adsorption. Both KCU 6 and SPAC attained high removal of TOrCs whereas KCU 6 showed outstanding performance. Out of 29 TOrCs investigated, KCU 6 showed > 87 % TOrCs rejection for 28 compounds. In seawater pretreatment, transparent exopolymer particles (TEP) were found to be an important foulant. TEP promoted both reversible and irreversible fouling. TEP are highly electronegative while alumina CM is positively charged which

  20. Application of Pre-coated Microfiltration Ceramic Membrane with Powdered Activated Carbon for Natural Organic Matter Removal from Secondary Wastewater Effluent

    KAUST Repository

    Kurniasari, Novita

    2012-12-01

    Ceramic membranes offer more advantageous performances than conventional polymeric membranes. However, membrane fouling caused by Natural Organic Matters (NOM) contained in the feed water is still become a major problem for operational efficiency. A new method of ceramic membrane pre-coating with Powdered Activated Carbon (PAC), which allows extremely contact time for adsorbing aquatic contaminants, has been studied as a pre-treatment prior to ceramic microfiltration membrane. This bench scale study evaluated five different types of PAC (SA Super, G 60, KCU 6, KCU 8 and KCU 12,). The results showed that KCU 6 with larger pore size was performed better compared to other PAC when pre-coated on membrane surface. PAC pre-coating on the ceramic membrane with KCU 6 was significantly enhance NOM removal, reduced membrane fouling and improved membrane performance. Increase of total membrane resistance was suppressed to 96%. The removal of NOM components up to 92%, 58% and 56% for biopolymers, humic substances and building blocks, respectively was achieved at pre-coating dose of 30 mg/l. Adsorption was found to be the major removal mechanism of NOM. Results obtained showed that biopolymers removal are potentially correlated with enhanced membrane performance.

  1. Development of a mixed-conductive ceramic membrane for syngas production; Developpement d'une membrane ceramique conductrice mixte pour la production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Etchegoyen, G

    2005-10-15

    Natural gas conversion into syngas (H{sub 2}+CO) is very attractive for hydrogen and clean fuel production via GTL technology by providing an alternative to oil products and reducing greenhouse gas emission. Syngas production, using a mixed ionic-electronic conducting ceramic membrane, is thought to be particularly promising. The purpose of this PhD thesis was to develop this type of membrane. Mixed-conducting oxide was synthesized, characterized and then, shaped via tape casting and co-sintered in order to obtain multilayer membranes with controlled architectures and microstructures. Oxygen permeation fluxes were measured with a specific device to evaluate membrane performances. As a result, the optimisation of architecture and microstructure made it possible to increase oxygen permeation flux by a factor 30. Additional researches were focused on the oxide composition in order to achieve higher dimensional stability. (author)

  2. Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells.

    Science.gov (United States)

    Winfield, Jonathan; Chambers, Lily D; Rossiter, Jonathan; Ieropoulos, Ioannis

    2013-11-01

    The long and short-term stability of two porous dependent ion exchange materials; starch-based compostable bags (BioBag) and ceramic, were compared to commercially available cation exchange membrane (CEM) in microbial fuel cells. Using bi-directional polarisation methods, CEM exhibited power overshoot during the forward sweep followed by significant power decline over the reverse sweep (38%). The porous membranes displayed no power overshoot with comparably smaller drops in power during the reverse sweep (ceramic 8%, BioBag 5.5%). The total internal resistance at maximum power increased by 64% for CEM compared to 4% (ceramic) and 6% (BioBag). Under fixed external resistive loads, CEM exhibited steeper pH reductions than the porous membranes. Despite its limited lifetime, the BioBag proved an efficient material for a stable microbial environment until failing after 8 months, due to natural degradation. These findings highlight porous separators as ideal candidates for advancing MFC technology in terms of cost and operation stability.

  3. A density functional theory study of hydrogen occupation in VNiTi alloys used for dense metal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Evtimova, Jenny, E-mail: j.evtimova@itm.cnr.it [Institute on Membrane Technology (CNR-ITM), Italian National Research Council, Rende, CS 87030 (Italy); Department of Environmental and Chemical Engineering (DIATIC), University of Calabria, Rende, CS 87030 (Italy); Drioli, Enrico; De Luca, Giorgio [Institute on Membrane Technology (CNR-ITM), Italian National Research Council, Rende, CS 87030 (Italy)

    2016-04-25

    Attempting to further the development of non-noble dense metal membranes for H{sub 2} separation we conduct a density functional theory study of hydrogen occupancy in V-based alloys with Ni and Ti substitutional solutes. Clusters consisting of 19 quasi-randomly coordinated metal atoms are built to model body-centred cubic VNi and VNiTi alloys with different stoichiometry. The total energy of the target systems is calculated using spatially localised functions. The disposition of a pair of hydrogen atoms within the metal lattice is explored and the binding energy in both tetrahedral and octahedral interstices is evaluated. Large spatial distance between absorbed H atoms is favoured for each of the interstitial sites, rejecting the idea of H clustering in the investigated solid solutions. Moreover, simultaneous occupation of both tetrahedral and octahedral interstices is found to be energetically feasible despite the common believe for solely tetrahedral occupancy in metals with body-centred cubic structure. Nonetheless, the most favourable absorption site depends on the solute concentration in the V-based alloys. Calculations of the binding energy using cluster models with different metal atomic ratio provide information on the hydrogen absorption affinity as a function of alloy composition. Enhancement of the absorption affinity with added Ti until certain limit is found, while Ni solutes influence this property in the opposite direction. The applied methodology can be used further in high-throughput calculations to screen various metal alloys for hydrogen separation membranes. - Highlights: • Large distance between H atoms in VNiTi is favoured for sites of the same symmetry. • Simultaneous occupation of T and O sites in VNiTi alloys is energetically feasible. • Variation of alloy composition influences the site preference for H occupation. • Increase of the Ti:Ni ratio by V = const increases the hydrogen absorption affinity.

  4. Development of mixed-conducting ceramic membranes for converting methane to syngas

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Maiya, P.S.; Ma, B.; Dusek, J.T.; Mieville, R.L.; Picciolo, J.J.

    1997-04-01

    The abundantly available natural gas (mostly methane) discovered in remote areas has stimulated considerable research on upgrading this gas to high-value-added clean-burning fuels such as dimethyl ether and alcohols and to pollution-fighting additives. Of the two routes to convert methane to valuable products direct and indirect, the direct route involving partial oxidation of methane to syngas (CO + H{sub 2}) by air is preferred. Syngas is the key intermediate product used to form a variety of petrochemicals and transportation fuels. This paper is concerned with the selective transport of oxygen from air for converting methane to syngas by means of a mixed-conducting ceramic oxide membrane prepared from Sr-Fe-Co-O oxide. While both perovskite and nonperovskite type Sr-Fe-Co-O oxides permeate large amounts of oxygen when the membrane tube is subjected to oxygen pressure gradients, the work shows that the nonperovskite SrFeCo{sub 0.5}O{sub x} exhibits remarkable stability during oxygen permeation. More particularly, extruded and sintered tubes from SrFeCo{sub 0.5}O{sub x} have been evaluated in a reactor operating at {approx} 850 C for conversion of methane into syngas in the presence of a reforming catalyst. Methane conversion efficiencies of {approx} 99% were observed. In addition, oxygen permeability of SrFeCo{sub 0.5}O{sub x} was measured as a function of oxygen partial pressure gradient and temperature in a gas-tight electrochemical cell. Oxygen permeability has also been calculated from conductivity data and the results are compared and discussed.

  5. Investigation of wetting characteristics of liquid iron on dense MgAION-based ceramics by X-ray sessile drop technique

    Science.gov (United States)

    Zhang, Z. T.; Matsushita, T.; Seetharaman, S.; Li, W. C.

    2006-06-01

    The wetting characteristics of liquid iron on dense MgAION-based composite ceramics were investigated using X-ray sessile drop technique. The contact angles were measured on substrates of different composites as functions of temperature and varying partial pressures of oxygen. The results with pure argon gas showed that contact angles kept almost constant in the temperature range 1823 to 1873 K. The contact angle was found to show a slight increase with increasing boron nitride (BN) content in MgAION-BN composites. These are attributed to the higher contact angle between BN substrate and liquid iron drop compared with that obtained for MgAION substrate. When the CO-CO2-Ar gas mixtures were introduced into the system, the contact angle showed an initial quick decrease followed by a slow decrease and then a period of nearly constant contact angle at a given temperature corresponding to the steady-state condition. Even in this case, BN seemed to cause an increase in the equilibrium contact angle. The equilibrium contact angle was found to decrease with increasing temperature. XRD results indicated that the substrate was oxidized and the oxidation products combined with FeO formed by the oxidation of the iron drop to from FeAl2O4 and Mg1-xFex) These were likely to form a ternary FeO-Al2O3-MgO slag or a quaternary slag by combining with B2O3. An interesting observation is that the iron drop moved away from the original site, probably due to the Marangoni effect.

  6. Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents.

    Science.gov (United States)

    Arca-Ramos, A; Eibes, G; Feijoo, G; Lema, J M; Moreira, M T

    2015-11-01

    In this study, the removal of bisphenol A (BPA) by laccase in a continuous enzymatic membrane reactor (EMR) was investigated. The effects of key parameters, namely, type of laccase, pH, and enzyme activity, were initially evaluated. Once optimal conditions were determined, the continuous removal of the pollutant in an EMR was assessed in synthetic and real biologically treated wastewaters. The reactor configuration consisted of a stirred tank reactor coupled to a ceramic membrane, which prevented the sorption of the pollutant and allowed the recovery and recycling of laccase. Nearly complete removal of BPA was attained under both operation regimes with removal yields above 94.5 %. In experiments with real wastewater, the removal of BPA remained high while the presence of colloids and certain ions and the formation of precipitates on the membrane potentially affected enzyme stability and made necessary the periodic addition of laccase. Polymerization and degradation were observed as probable mechanisms of BPA transformation by laccase.

  7. [Study of pretreatment on microfiltration of huanglian jiedu decoction with ceramic membranes based on solution environment regulation theory].

    Science.gov (United States)

    Li, Bo; Zhang, Lian-Jun; Guo, Li-Wei; Fu, Ting-Ming; Zhu, Hua-Xu

    2014-01-01

    To optimize the pretreatment of Huanglian Jiedu decoction before ceramic membranes and verify the effect of different pretreatments in multiple model system existed in Chinese herb aqueous extract. The solution environment of Huanglian Jiedu decoction was adjusted by different pretreatments. The flux of microfiltration, transmittance of the ingredients and removal rate of common polymers were as indicators to study the effect of different solution environment It was found that flocculation had higher stable permeate flux, followed by vacuuming filtration and adjusting pH to 9. The removal rate of common polymers was comparatively high. The removal rate of protein was slightly lower than the simulated solution. The transmittance of index components were higher when adjust pH and flocculation. Membrane blocking resistance was the major factor in membrane fouling. Based on the above indicators, the effect of flocculation was comparatively significant, followed by adjusting pH to 9.

  8. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers.

    Science.gov (United States)

    Allabashi, Roza; Arkas, Michael; Hörmann, Gerold; Tsiourvas, Dimitris

    2007-01-01

    Triethoxysilylated derivatives of poly(propylene imine) dendrimer, polyethylene imine and polyglycerol hyperbranched polymers and beta-cyclodextrin have been synthesized and characterized. These compounds impregnated ceramic membranes made from Al(2)O(3), SiC and TiO(2) and subsequently sol-gel reaction led to their polymerization and chemical bond formation with the ceramic substrates. The resulting organic-inorganic filters were tested for the removal of a variety of organic pollutants from water. They were found to remove of polycyclic aromatic hydrocarbons (up to 99%), of monocyclic aromatic hydrocarbons (up to 93%), trihalogen methanes (up to 81%), pesticides (up to 43%) and methyl-tert-butyl ether (up to 46%).

  9. Tight ceramic UF membrane as RO pre-treatment: the role of electrostatic interactions on phosphate rejection.

    Science.gov (United States)

    Shang, Ran; Verliefde, Arne R D; Hu, Jingyi; Zeng, Zheyi; Lu, Jie; Kemperman, Antoine J B; Deng, Huiping; Nijmeijer, Kitty; Heijman, Sebastiaan G J; Rietveld, Luuk C

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can potentially be adopted as an effective process for RO pre-treatment in order to constrain biofouling by phosphate limitation. This paper focuses on electrostatic interactions during tight UF filtration. Despite the larger pore size, the 3 kDa ceramic membrane exhibited greater phosphate rejection than the 1 kDa membrane, because the 3 kDa membrane has a greater negative surface charge and thus greater electrostatic repulsion against phosphate. The increase of pH from 6 to 8.5 led to a substantial increase in phosphate rejection by both membranes due to increased electrostatic repulsion. At pH 8.5, the maximum phosphate rejections achieved by the 1 kDa and 3 kDa membrane were 75% and 86%, respectively. A Debye ratio (ratio of the Debye length to the pore radius) is introduced in order to evaluate double layer overlapping in tight UF membranes. Threshold Debye ratios were determined as 2 and 1 for the 1 kDa and 3 kDa membranes, respectively. A Debye ratio below the threshold Debye ratio leads to dramatically decreased phosphate rejection by tight UF membranes. The phosphate rejection by the tight UF, in combination with chemical phosphate removal by coagulation, might accomplish phosphate-limited conditions for biological growth and thus prevent biofouling in the RO systems.

  10. Study on permeability of asymmetric ceramic membrane tubes with CFD simulation%非对称陶瓷膜管渗透性能的CFD模拟研究

    Institute of Scientific and Technical Information of China (English)

    杨钊; 程景才; 杨超; 梁斌

    2015-01-01

    Ceramic membranes have been widely used in chemical industry on account of their inherently superior physical integrity, chemical resistance and separation performance. Rapid development of computational fluid dynamics (CFD) has made numerical simulation an effective mean of researching and optimizing the structure and permeability of ceramic membrane tubes. In this paper the permeability of asymmetric ceramic membrane tubes was simulated with CFD in order to optimize the ceramic membrane tube structure and operating parameters. The thickness of ceramic top-layer and intermediate-layer of an asymmetrically-structured membrane is about tens of micron, so an effective simplified calculation model is put forward in this work. A porous media model was applied to the porous support of the ceramic membrane tube. The ceramic top-layer and intermediate-layer of the ceramic membrane tube were described with porous jump boundary conditions. The permeability of ceramic membrane was effectively evaluated by the classic Konzey-Carmen (KC) equation. The CFD results showed a good agreement with the experimental data. This quick and easy calculation method provides an effective tool to optimize the structure of membrane tubes.%陶瓷膜因其化学稳定性好、机械强度大等优点得到广泛应用。计算流体力学(CFD)的快速发展使得计算模拟成为研究和优化陶瓷膜管结构性能的有效手段。为了优化非对称结构陶瓷膜管的结构和操作参数,对其渗透性能进行了CFD计算模拟。针对非对称结构陶瓷膜管的膜层和过渡层的厚度在10μm级的特点,采用Navier-Stokes方程和Darcy定律来分别描述膜管内和膜多孔介质内的纯水流动,利用多孔介质模型描述膜管的主体支撑层,用多孔跳跃边界简化膜管的膜层和过渡层,利用Konzey-Carmen方程对膜元件各层的渗透率进行估算。计算结果与实验值吻合较好,为优化陶瓷膜管的通道结构提供了便捷的工具。

  11. Carbon-coated ceramic membrane reactor for the production of hydrogen by aqueous-phase reforming of sorbitol.

    Science.gov (United States)

    Neira D'Angelo, M F; Ordomsky, V; Schouten, J C; van der Schaaf, J; Nijhuis, T A

    2014-07-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of the membrane serves to avoid water loss and to minimize the interaction between the ceramic support and water, thus reducing the risks of membrane degradation upon operation. The permeation of hydrogen is dominated by the diffusivity of the hydrogen in water. Thus, higher operation temperatures result in an increase of the flux of hydrogen. The differential pressure has a negative effect on the flux of hydrogen due to the presence of liquid in the larger pores. The membrane was suitable for use in APR, and yielded 2.5 times more hydrogen than a reference reactor (with no membrane). Removal of hydrogen through the membrane assists in the reaction by preventing its consumption in undesired reactions.

  12. Field testing of polymeric mesh and ash-based ceramic membranes ...

    African Journals Online (AJOL)

    The results indicated that the ceramic filter was able to operate for longer periods without cleaning; however, there is a limit to the transmembrane ... The suspended solids retention was high with both filters (average of 96%). ... Article Metrics.

  13. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  14. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF Membranes

    Directory of Open Access Journals (Sweden)

    Kanji Matsumoto

    2013-06-01

    Full Text Available Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  15. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF) Membranes.

    Science.gov (United States)

    Nakamura, Kazuho; Matsumoto, Kanji

    2013-06-21

    Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  16. Oxygen permeation in thin, dense Ce0.9Gd0.1O 1.95- membranes II. experimental determination

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Søgaard, Martin; Glasscock, Julie

    2011-01-01

    Thin (∼30 m), dense Ce0.9Gd0.1O1.95- (CGO10) membranes (5 5 cm2+) supported on a porous NiO/YSZ substrate were fabricated by tape casting, wet powder spraying and lamination. A La 0.58Sr0.4Co0.2Fe0.8O 3-δ/Ce0.9Gd0.1O1.95- (LSCF/CGO10) composite cathode was applied by screen printing. Oxygen...... compartment. The performance of the membrane was also investigated under varying CH 4 and H2O gas mixtures at 1106 K. The oxygen flux increased with decreasing steam to carbon ratio and was found to exceed 10 N mL min-1 cm-2 of O2 for steam to carbon ratios below 4:3. Post-test analysis of the tested membrane...

  17. In situ synthesis and characterization of Ca-Mg-Al hydrotalcite on ceramic membrane for biodiesel production☆

    Institute of Scientific and Technical Information of China (English)

    Wei Xu; Lijing Gao; Feng Jiang; Guomin Xiao

    2015-01-01

    In situ surface synthesis of Ca–Mg–Al hydrotalcite (HT) on inorganic ceramic membrane (CM) was investigated with urea as precipitator. The effects of molar ratio of raw materials, crystallization time, and temperature on surface synthesis of HT were examined. The as-prepared HT/CM samples were characterized by XRD and SEM and an in situ growth mechanism of HT on CM was proposed. KF/HT/CM obtained by loading potassium fluoride (KF) on the HT layer by impregnation and calcination method was used as catalyst for transesterification between palm oil and methanol. The comparison of KF/HT/CM and pure KF/HT powder under identical reaction conditions shows that the production of fatty acid methyl ester is equivalent, which means that the use of inorganic catalytic membrane in the transesterification is a viable alternative.

  18. CO2 SELECTIVE CERAMIC MEMBRANE FOR WATER-GAS-SHIFT REACTION WITH CONCOMITANT RECOVERY OF CO2

    Energy Technology Data Exchange (ETDEWEB)

    Paul K.T. Liu

    2005-07-15

    A high temperature membrane reactor (MR) has been developed to enhance the water-gas-shift (WGS) reaction efficiency with concomitant CO{sub 2} removal for sequestration. This improved WGS-MR with CO{sub 2} recovery capability is ideally suitable for integration into the Integrated Gasification Combined-Cycle (IGCC) power generation system. Two different CO{sub 2}-affinity materials were selected in this study. The Mg-Al-CO{sub 3}-layered double hydroxide (LDH) was investigated as an adsorbent or a membrane for CO{sub 2} separation. The adsorption isotherm and intraparticle diffusivity for the LDH-based adsorbent were experimentally determined, and suitable for low temperature shift (LTS) of WGS. The LDH-based membranes were synthesized using our commercial ceramic membranes as substrate. These experimental membranes were characterized comprehensively in terms of their morphology, and CO{sub 2} permeance and selectivity to demonstrate the technical feasibility. In parallel, an alternative material-base membrane, carbonaceous membrane developed by us, was characterized, which also demonstrated enhanced CO{sub 2} selectivity at the LTS-WGS condition. With optimization on membrane defect reduction, these two types of membrane could be used commercially as CO{sub 2}-affinity membranes for the proposed application. Based upon the unique CO{sub 2} affinity of the LDHs at the LTS/WGS environment, we developed an innovative membrane reactor, Hybrid Adsorption and Membrane Reactor (HAMR), to achieve {approx}100% CO conversion, produce a high purity hydrogen product and deliver a concentrated CO{sub 2} stream for disposal. A mathematical model was developed to simulate this unique one -step process. Finally a benchtop reactor was employed to generate experimental data, which were consistent with the prediction from the HAMR mathematical model. In summary, the project objective, enhancing WGS efficiency for hydrogen production with concomitant CO{sub 2} removal for

  19. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  20. CO{sub 2} separation from biogas with ceramic membranes; CO{sub 2}-Abtrennung aus Biogas mit keramischen Membranen

    Energy Technology Data Exchange (ETDEWEB)

    Fassauer, Burkhardt; Richter, Hannes; Schwarz, Bjoern; Reger-Wagner, Norman; Kaemnitz, Susanne [Fraunhofer-Institut fuer Keramische Technologien und Systeme IKTS, Dresden (Germany); Lubenau, Udo; Mothes, Raimund [DBI Gas- und Umwelttechnik GmbH, Leipzig (Germany)

    2015-07-01

    Biogas contains after the production of up to 55% CO{sub 2}. In order to use biogas as a fuel or to feed it into the natural gas network, it must be purified before. Adsorption and scrubbing processes are primarily used technically. Membrane processes offer the advantage of continuous operation and a simple modular and flexible system design, which imply relatively low investment costs and low energy needs. Moreover, membrane systems can be started up and shut down quickly without any problems. Ceramic membranes are characterised by high stability (thermal, chemical, mechanical) and very high flows in comparison to polymeric membranes. [German] Biogas enthaelt nach der Erzeugung bis zu 55 % CO{sub 2}. Um Biogas als Kraftstoff zu nutzen oder in das Erdgasnetz einspeisen zu koennen, muss es zuvor gereinigt werden. Technisch genutzt werden vor allem Adsorptions- und Waschverfahren. Membranverfahren bieten den Vorteil eines kontinuierlichen Betriebes sowie einer einfachen, modularen und flexiblen Anlagenkonzeption, die vergleichsweise niedrige Investitionskosten und einen geringen Energiebedarf bedeuten. Darueber hinaus koennen Membrananlagen schnell an- und abgefahren werden und voellig ohne Probleme abgeschaltet werden. Keramische Membranen zeichnen sich gegenueber Polymermembranen durch hohe Stabilitaet (thermisch, chemisch, mechanisch) und sehr hohe Fluesse aus.

  1. CVD of solid oxides in porous substrates for ceramic membrane modification

    NARCIS (Netherlands)

    Lin, Y.S.; Burggraaf, A.J.

    1992-01-01

    The deposition of yttria-doped zirconia has been experimented systematically in various types of porous ceramic substrates by a modified chemical vapor deposition (CVD) process operating in an opposing reactant geometry using water vapor and corresponding metal chloride vapors as reactants. The effe

  2. Experimental studies on pore size change of porous ceramic membranes after modification

    NARCIS (Netherlands)

    Lin, Y.S.; Lin, Y.S.; Burggraaf, A.J.; Burggraaf, Anthonie

    1993-01-01

    Experimental results on pore size change of a microfiltration (MF) -alumina membrane and an ultrafiltration (UF) γ-alumina membrane after modification by chemical vapor deposition (CVD) of solid oxides in the membrane pores are presented and explained using the results of a theoretical analysis. Wit

  3. Research of ceramic membrane filtration characteristics in continuous reaction system%连续反应系统中陶瓷膜过滤特性研究

    Institute of Scientific and Technical Information of China (English)

    张凤莉; 孙亚峰; 杨阿三

    2014-01-01

    Ceramic membrane module has high separation efficiency and good stability. In this thesis, we make multiphase reactor and ceramic membrane filtration components a continuous device, in order to realize the solid-liquid separation and continuous operation, we used three phases system including air, water and activated carbon as our study medium, studying its filtration characteristics, investigating the stability of the ceramic mem-brane filter components and membrane filtrating pressure and the effect of circulation pump frequency conversion on the components of ceramic membrane filtration flux. The results showed that the ceramic membrane components can ensure the stability to filter in the longer term;Filtration flux are greatly affected by the filtration pressure pro-portionally, the greater the filtrating pressure, the larger the filtration flux will be; In addition to this, the filtration flux increases with the growth of circulation flow rate.%陶瓷膜组件具有较高的分离效率且稳定性好,本文是将多相反应器与陶瓷膜过滤组件组成连续装置,以期实现液固分离和操作的连续化,以空气-水-活性炭三相为研究介质,对其过滤特性进行研究,结果表明:陶瓷膜组件能够确保在较长时间内过滤的稳定性;过滤通量受过滤压力的影响较大,过滤压力越大过滤通量越大;过滤通量随着循环流量的增大而增大。

  4. Treatment of oil sands process-affected water (OSPW) using a membrane bioreactor with a submerged flat-sheet ceramic microfiltration membrane.

    Science.gov (United States)

    Xue, Jinkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2016-01-01

    The release of oil sands process-affected water (OSPW) into the environment is a concern because it contains persistent organic pollutants that are toxic to aquatic life. A modified Ludzack-Ettinger membrane bioreactor (MLE-MBR) with a submerged ceramic membrane was continuously operated for 425 days to evaluate its feasibility on OSPW treatment. A stabilized biomass concentration of 3730 mg mixed liquor volatile suspended solids per litre and a naphthenic acid (NA) removal of 24.7% were observed in the reactor after 361 days of operation. Ultra Performance Liquid Chromatography/High Resolution Mass Spectrometry analysis revealed that the removal of individual NA species declined with increased ring numbers. Pyrosequencing analysis revealed that Betaproteobacteria were dominant in sludge samples from the MLE-MBR, with microorganisms such as Rhodocyclales and Sphingobacteriales capable of degrading hydrocarbon and aromatic compounds. During 425 days of continuous operation, no severe membrane fouling was observed as the transmembrane pressure (TMP) of the MLE-MBR never exceeded -20 kPa given that the manufacturer's suggested critical TMP for chemical cleaning is -35 kPa. Our results indicated that the proposed MLE-MBR has a good potential for removing recalcitrant organics in OSPW.

  5. Co-current and counter-current configurations for ethanol steam reforming in a dense Pd–Ag membrane reactor

    NARCIS (Netherlands)

    Gallucci, F.; De Falco, M.; Tosti, S.; Marrelli, L.; Basile, A.

    2008-01-01

    The ethanol steam-reforming reaction to produce pure hydrogen has been studied theoretically. A mathematical model has been formulated for a traditional system and a palladium membrane reactor packed with a Co-based catalyst and the simulation results related to the membrane reactor for both co-curr

  6. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-04-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  7. The effect of linear velocity and flux on performance of ceramic graded permeability membranes when processing skim milk at 50°C.

    Science.gov (United States)

    Zulewska, Justyna; Barbano, David M

    2014-05-01

    Raw milk (about 500 kg) was cold (4°C) separated and then the skim milk was pasteurized at 72°C and a holding time of 16s. The milk was cooled to 4°C and stored at ≤ 4°C until processing. The skim milk was microfiltered using a pilot-scale ceramic graded permeability (GP) microfilter system equipped with 0.1-µm nominal pore diameter ceramic Membralox membranes. First, about 155 kg of pasteurized skim milk was flushed through the system to push the water out of the system. Then, additional pasteurized skim milk (about 320 kg) was microfiltered (stage 1) in a continuous feed-and-bleed 3× process using the same membranes. The retentate from stage 1 was diluted with pasteurized reverse osmosis water in a 1:2 ratio and microfiltered (stage 2) with a GP system. This was repeated 3 times, with total of 3 stages in the process (stage 1 = microfiltration; stages 2 and 3 = diafiltration). The results from first 3 stages of the experiment were compared with previous data when processing skim milk at 50°C using ceramic uniform transmembrane pressure (UTP) membranes. Microfiltration of skim milk using ceramic UTP and GP membranes resulted in similar final retentate in terms of serum proteins (SP) removed. The SP removal rate (expressed by kilogram of SP removed per meter-squared of membrane area) was higher for GP membranes for each stage compared with UTP membranes. A higher passage of SP and SP removal rate for GP than UTP membranes was achieved by using a higher cross-flow velocity when processing skim milk. Increasing flux in subsequent stages did not affect membrane permeability and fouling. We operated under conditions that produced partial membrane fouling, due to using a flux that was less than limiting flux but higher than critical flux. Because the critical flux is a function of the cross-flow velocity, the difference in critical flux between UTP and GP membranes resulted only from operating under different cross-flow velocities (6.6 vs 7.12 for UTP and GP

  8. High temperature ceramic membrane reactors for coal liquid upgrading. Final report, September 21, 1989--November 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Liu, P.K.T. [Aluminum Co. of America, Pittsburgh, PA (United States); Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1992-12-31

    Membrane reactors are today finding extensive applications for gas and vapor phase catalytic reactions (see discussion in the introduction and recent reviews by Armor [92], Hsieh [93] and Tsotsis et al. [941]). There have not been any published reports, however, of their use in high pressure and temperature liquid-phase applications. The idea to apply membrane reactor technology to coal liquid upgrading has resulted from a series of experimental investigations by our group of petroleum and coal asphaltene transport through model membranes. Coal liquids contain polycyclic aromatic compounds, which not only present potential difficulties in upgrading, storage and coprocessing, but are also bioactive. Direct coal liquefaction is perceived today as a two-stage process, which involves a first stage of thermal (or catalytic) dissolution of coal, followed by a second stage, in which the resulting products of the first stage are catalytically upgraded. Even in the presence of hydrogen, the oil products of the second stage are thought to equilibrate with the heavier (asphaltenic and preasphaltenic) components found in the feedstream. The possibility exists for this smaller molecular fraction to recondense with the unreacted heavy components and form even heavier undesirable components like char and coke. One way to diminish these regressive reactions is to selectively remove these smaller molecular weight fractions once they are formed and prior to recondensation. This can, at least in principle, be accomplished through the use of high temperature membrane reactors, using ceramic membranes which are permselective for the desired products of the coal liquid upgrading process. An additional incentive to do so is in order to eliminate the further hydrogenation and hydrocracking of liquid products to undesirable light gases.

  9. Fabrication of cost effective iron ore slime ceramic membrane for the recovery of organic solvent used in coke production

    Institute of Scientific and Technical Information of China (English)

    V.Singh; N.K.Meena; A.K.Golder; C.Das

    2016-01-01

    Improvement of coking properties of sub-bituminous coal (A) and bituminous coal (B) was done using blended organic solvents,namely,n-methyl-2-pyrrolidinone (NMP) and ethylenediamine (EDA).Various solvent blends were employed for the coal extraction under the total reflux condition.A low-cost ceramic membrane was fabricated using industrial waste iron ore slime of M/s TATA steel R&D,Jamshedpur (India) to separate out the dissolved coking fraction from the solvent-coal mixture.Membrane separations were carried out in a batch cell,and around 75 % recovered NMP was reused.The fractionated coal properties were determined using proximate and ultimate analyses.In the case of bituminous coal,the ash and sulfur contents were decreased by 99.3 % and 79.2 %,respectively,whereas,the carbon content was increased by 23.9 % in the separated coal fraction.Three different cleaning agents,namely deionized water,sodium dodecyl sulphate and NMP were used to regain the original membrane permeability for the reusing.

  10. Environment-oriented low-cost porous mullite ceramic membrane supports fabricated from coal gangue and bauxite

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Qikai [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo (China); School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Dong, Xinfa [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Zhu, Zhiwen [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo (China); Dong, Yingchao, E-mail: ycdong@iue.ac.cn [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Ningbo Urban Environment Observation and Research Station-NUEORS, Chinese Academy of Sciences, Ningbo (China)

    2014-05-01

    Highlights: • Coal gangue was recycled to fabricate low-cost porous mullite membrane supports. • A unique volume-expansion occurred due to a mullitization-crystal-growth process. • A porous structure consists of glassy particles and embedded mullite crystals. - Abstract: Porous mullite ceramic supports for filtration membrane were successfully fabricated via recycling of coal gangue and bauxite at sintering temperatures from 1100 to 1500 °C with corn starch as pore-forming agent. The dynamic sintering behaviors, phase evolution, shrinkage, porosity and pore size, gas permeation flux, microstructure and mechanical property were systematically studied. A unique volume-expansion stage was observed at increased temperatures from 1276 to 1481 °C caused by a mullitization-crystal-growth process. During this stage, open porosity increases and pore size distributions broaden, which result in a maximum of nitrogen gas flux at 1400 °C. The X-ray diffraction results reveal that secondary mullitization took place from 1100 °C and the major phase is mullite with a content of ∼84.7 wt.% at 1400 °C. SEM images show that the as-fabricated mullite supports have a porous microstructure composed of sintered glassy particles embedded with inter-locked mullite crystals, which grew gradually with increasing temperature from rod-like into blocky-like morphologies. To obtain mullite membrane supports with sufficient porosity and acceptable mechanical strength, the relationship between porosity and mechanical strength was investigated, which was fitted using a parabolic equation.

  11. Recovery of biomolecules from marinated herring (Clupea harengus) brine using ultrafiltration through ceramic membranes

    DEFF Research Database (Denmark)

    Gringer, Nina; Hosseini, Seyed Vali; Svendsen, Tore;

    2015-01-01

    on recovery of high value biomolecules such as proteins, fatty acids, minerals, and phenolic compounds. Chemical and biological oxygen demand (COD, BOD5) as well as total suspended solids (TSS) were also measured to follow the performance of the ultrafiltration. The retentates contained 75-82% (95% TSS...... that ceramic ultrafiltration can recover biomolecules from marinated herring brines although pre-filtration optimization is still needed....

  12. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.

    Science.gov (United States)

    Jørgensen, Camilla Elise; Abrahamsen, Roger K; Rukke, Elling-Olav; Johansen, Anne-Grethe; Schüller, Reidar B; Skeie, Siv B

    2016-08-01

    The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: β-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C.

  13. Imidazolium-Functionalized Poly(arylene ether sulfone) Anion-Exchange Membranes Densely Grafted with Flexible Side Chains for Fuel Cells.

    Science.gov (United States)

    Guo, Dong; Lai, Ao Nan; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Liu, Qing Lin

    2016-09-28

    With the intention of optimizing the performance of anion-exchange membranes (AEMs), a set of imidazolium-functionalized poly(arylene ether sulfone)s with densely distributed long flexible aliphatic side chains were synthesized. The membranes made from the as-synthesized polymers are robust, transparent, and endowed with microphase segregation capability. The ionic exchange capacity (IEC), hydroxide conductivity, water uptake, thermal stability, and alkaline resistance of the AEMs were evaluated in detail for fuel cell applications. Morphological observation with the use of atomic force microscopy and small-angle X-ray scattering reveals that the combination of high-local-density-type and side-chain-type architectures induces distinguished nanophase separation in the AEMs. The as-prepared membranes have advantages in effective water management and ionic conductivity over traditional main-chain polymers. Typically, the conductivity and IEC were in the ranges of 57.3-112.5 mS cm(-1) and 1.35-1.84 mequiv g(-1) at 80 °C, respectively. Furthermore, the membranes exhibit good thermal and alkaline stability and achieve a peak power density of 114.5 mW cm(-2) at a current density of 250.1 mA cm(-2). Therefore, the present polymers containing clustered flexible pendent aliphatic imidazolium promise to be attractive AEM materials for fuel cells.

  14. Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane.

    Science.gov (United States)

    Zhang, Xiaolei; Devanadera, Ma Catriona E; Roddick, Felicity A; Fan, Linhua; Dalida, Maria Lourdes P

    2016-10-15

    Algal blooms lead to the secretion of algal organic matter (AOM) from different algal species into water treatment systems, and there is very limited information regarding the impact of AOM from different species on the fouling of ceramic microfiltration (MF) membranes. The impact of soluble AOM released from Microcystis aeruginosa and Chlorella sp. separately and together in feedwater on the fouling of a tubular ceramic microfiltration membrane (alumina, 0.1 μm) was studied at lab scale. Multi-cycle MF tests operated in constant pressure mode showed that the AOM (3 mg DOC L(-1)) extracted from the cultures of the two algae in early log phase of growth (12 days) resulted in less flux decline compared with the AOM from stationary phase (35 days), due to the latter containing significantly greater amounts of high fouling potential components (protein and humic-like substances). The AOM released from Chlorella sp. at stationary phase led to considerably greater flux decline and irreversible fouling resistance compared with that from M. aeruginosa. The mixture of the AOM (1:1, 3 mg DOC L(-1)) from the two algal species showed more similar flux decline and irreversible fouling resistance to the AOM from M. aeruginosa than Chlorella sp. This was due to the characteristics of the AOM mixture being more similar to those for M. aeruginosa than Chlorella sp. The extent of the flux decline for the AOM mixture after conventional coagulation with aluminium chlorohydrate or alum was reduced by 70%.

  15. Preparation of a surface-grafted imprinted ceramic membrane for selective separation of molybdate anion from water solutions.

    Science.gov (United States)

    Zeng, Jianxian; Dong, Zhihui; Zhang, Zhe; Liu, Yuan

    2017-07-05

    A surface-grafted imprinted ceramic membrane (IIP-PVI/CM) for recognizing molybdate (Mo(VI)) anion was prepared by surface-initiated graft-polymerization. Firstly, raw alumina ceramic membrane (CM) was deposited with SiO2 active layer by situ hydrolysis deposition method. Subsequently, γ-methacryloxy propyl trimethoxyl silane (MPS) was used as a coupling agent to introduce double bonds onto the SiO2 layer (MPS-CM). Then, 1-vinylimidazole (VI) was employed as a functional monomer to graft-polymerization onto the MPS-CM (PVI-CM). During the graft-polymerization, the influence factors of grafting degree of PVI were investigated in detail. Under optimum conditions (monomer concentration 20wt%, temperature 70°C, initiator amount 1.1wt% and reaction time 8h), the grafting degree of 20.39g/100g was obtained. Further, Mo(VI) anion was used as a template to imprint in the PVI-CM by employing 1,6-dibromohexane as a cross-linking agent, and then Mo(VI) was removed, obtaining the IIP-PVI/CM with many imprinted cavities for Mo(VI). Thereafter, static adsorption and dynamic separation properties of IIP-PVI/CM for Mo(VI) were studied. Results indicate that IIP-PVI/CM shows a specific selectivity for Mo(VI) with the adsorption capacity of 0.69mmol/100g, and the selectivity coefficient of IIP-PVI/CM is 7.48 for molybdate to tungstate anions. During the dynamic separation, IIP-PVI/CM has also good selectivity for separation of Mo(VI) and W(VI) anions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. One-step Continuous Phenol Synthesis Technology via Selective Hydroxylation of Benzene over Ultrafine TS-1 in a Submerged Ceramic Membrane Reactor☆

    Institute of Scientific and Technical Information of China (English)

    Hong Jiang; Fei She; Yan Du; Rizhi Chen; Weihong Xing

    2014-01-01

    A new route towards phenol production by one-step selective hydroxylation of benzene with hydrogen peroxide over ultrafine titanium silicalites-1 (TS-1) in a submerged ceramic membrane reactor was developed, which can maintain the in situ removal of ultrafine catalyst particles from the reaction slurry and keep the process continuous. The effects of key operating parameters on the benzene conversion and phenol selectivity, as wel as the membrane filtration resistance were examined by single factor experiments. A continuous reaction process was carried out under the obtained optimum operation conditions. Results showed that the system can be continuously and stably operated over 20 h, and the benzene conversion and phenol selectivity kept at about 4%and 91%, respectively. The ceramic membrane exhibits excel ent thermal and chemical stability in the continuous reaction process.

  17. EFFECTS OF OZONATION ON THE PERMEATE FLUX OF NANOCRYSTALLINE CERAMIC MEMBRANES. (R830908)

    Science.gov (United States)

    Titania membranes, with a molecular weight cut-off of 15 kD were used in an ozonation/membrane system that was fed with water from Lake Lansing, which had been pre-filtered through a 0.45 �m glass fiber filter. The application of ozone gas prior to filtration resulted in signi...

  18. EFFECTS OF OZONATION ON THE PERMEATE FLUX OF NANOCRYSTALLINE CERAMIC MEMBRANES. (R830908)

    Science.gov (United States)

    Titania membranes, with a molecular weight cut-off of 15 kD were used in an ozonation/membrane system that was fed with water from Lake Lansing, which had been pre-filtered through a 0.45 �m glass fiber filter. The application of ozone gas prior to filtration resulted in signi...

  19. Porous ceramic membranes: suspension processing, mechanical and transport properties, and application in the osmotic tensiometer

    NARCIS (Netherlands)

    Biesheuvel, Pieter Maarten

    2000-01-01

    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined

  20. Effect of ceramic membrane channel geometry and uniform transmembrane pressure on limiting flux and serum protein removal during skim milk microfiltration.

    Science.gov (United States)

    Adams, Michael C; Hurt, Emily E; Barbano, David M

    2015-11-01

    Our objectives were to determine the effects of a ceramic microfiltration (MF) membrane's retentate flow channel geometry (round or diamond-shaped) and uniform transmembrane pressure (UTP) on limiting flux (LF) and serum protein (SP) removal during skim milk MF at a temperature of 50°C, a retentate protein concentration of 8.5%, and an average cross-flow velocity of 7 m·s(-1). Performance of membranes with round and diamond flow channels was compared in UTP mode. Performance of the membrane with round flow channels was compared with and without UTP. Using UTP with round flow channel MF membranes increased the LF by 5% when compared with not using UTP, but SP removal was not affected by the use of UTP. Using membranes with round channels instead of diamond-shaped channels in UTP mode increased the LF by 24%. This increase was associated with a 25% increase in Reynolds number and can be explained by lower shear at the vertices of the diamond-shaped channel's surface. The SP removal factor of the diamond channel system was higher than the SP removal factor of the round channel system below the LF. However, the diamond channel system passed more casein into the MF permeate than the round channel system. Because only one batch of each membrane was tested in our study, it was not possible to determine if the differences in protein rejection between channel geometries were due to the membrane design or random manufacturing variation. Despite the lower LF of the diamond channel system, the 47% increase in membrane module surface area of the diamond channel system produced a modular permeate removal rate that was at least 19% higher than the round channel system. Consequently, using diamond channel membranes instead of round channel membranes could reduce some of the costs associated with ceramic MF of skim milk if fewer membrane modules could be used to attain the required membrane area.

  1. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jedidi, I.; Saidi, S.; Khemakhem, S.; Larbot, A.; Elloumi-Ammar, N.; Fourati, A.; Charfi, A.; Salah, A.B.; Amar, R.B. [Science Faculty of Sfax, Sfax (Tunisia)

    2009-12-15

    This work aims to develop a new mineral porous tubular membrane based on mineral coal fly ash. Finely ground mineral coal powder was calcinated at 700{sup o}C for about 3 h. The elaboration of the mesoporous layer was performed by the slip-casting method using a suspension made of the mixture of fly-ash powder, water and polyvinyl alcohol (PVA). The obtained membrane was submitted to a thermal treatment which consists in drying at room temperature for 24h then a sintering at 800{sup o}C. SEM photographs indicated that the membrane surface was homogeneous and did not present any macrodefects (cracks, etc...). The average pore diameter of the active layer was 0.25 {mu} m and the thickness was around 20 {mu} m. The membrane permeability was 475 l/h m{sup 2} bar. This membrane was applied to the treatment of the dying effluents generated by the washing baths in the textile industry. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 1001 h{sup -1} m{sup -2}). The quality of permeate was almost the same with the two membranes: the COD and color removal was 75% and 90% respectively.

  2. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment.

    Science.gov (United States)

    Jedidi, Ilyes; Saïdi, Sami; Khemakhem, Sabeur; Larbot, André; Elloumi-Ammar, Najwa; Fourati, Amine; Charfi, Aboulhassan; Salah, Abdelhamid Ben; Amar, Raja Ben

    2009-12-15

    This work aims to develop a new mineral porous tubular membrane based on mineral coal fly ash. Finely ground mineral coal powder was calcinated at 700 degrees C for about 3 h. The elaboration of the mesoporous layer was performed by the slip-casting method using a suspension made of the mixture of fly-ash powder, water and polyvinyl alcohol (PVA). The obtained membrane was submitted to a thermal treatment which consists in drying at room temperature for 24 h then a sintering at 800 degrees C. SEM photographs indicated that the membrane surface was homogeneous and did not present any macrodefects (cracks, etc...). The average pore diameter of the active layer was 0.25 microm and the thickness was around 20 microm. The membrane permeability was 475 l/h m(2) bar. This membrane was applied to the treatment of the dying effluents generated by the washing baths in the textile industry. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 100 l h(-1)m(-2)). The quality of permeate was almost the same with the two membranes: the COD and color removal was 75% and 90% respectively.

  3. Evaluation of clayey masses compositions starting from the residue incorporation of the red ceramic industry to obtain tubular ceramic membranes; Avaliacao das composicoes de massas argilosas a partir da incorporacao de residuo da industria de ceramica vermelha na obtencao de membranas ceramicas tubulares

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adriano Lima da; Chaves, Alexsandra Cristina; Luna, Carlos Bruno Barreto; Neves, Gelmires de Araujo; Lira, Helio de Lucena, E-mail: adrianolimadasilva@hotmail.com, E-mail: alexsandra.chaves@ifap.edu.br, E-mail: brunobarretodemaufcg@hotmail.com, E-mail: gelmires@ufcg.edu.br, E-mail: helio@ufcg.edu.br [Universidade Federal de Campina Grande (UAEMa/CCT/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2017-01-15

    The inappropriate residue disposal of red ceramic industry is very high. Nowadays, one of the major challenges is the investigation of processes to obtain alternative materials, enabling the use of these residues to manufacture new materials. This work's objective is to study clayey masses' compositions starting from the residue incorporation of the red ceramic industry to be used in tubular ceramic membranes. Two compositions of ceramic masses were established, composition A (50% of residue) and composition B (70% of residue). Granulometric analysis of the ceramic masses presented an average size of particles, what indicates membranes in the microfiltration scale. Another observed factor is related to the increase of residue amount, what favored a decrease in the ceramic mass' plasticity. A rise in the apparent porosity was also observed, probably because of a possible growing in the bigger pores numbers, due to the sintering high temperature and the elevation of residue quantity itself. (author)

  4. Electrochemical promotion of propane oxidation on Pt deposited on a dense β″-Al2O3 ceramic Ag+ conductor

    Science.gov (United States)

    Tsampas, Mihalis N.; Kambolis, Anastasios; Obeid, Emil; Lizarraga, Leonardo; Sapountzi, Foteini M.; Vernoux, Philippe

    2013-01-01

    A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a β″-Al2O3 ceramic Ag+ conductor was developed and evaluated during propane oxidation. It was observed that, upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation. PMID:24790942

  5. Electrochemical promotion of propane oxidation on Pt deposited on a dense β″-Al2O3 ceramic Ag(+) conductor.

    Science.gov (United States)

    Tsampas, Mihalis N; Kambolis, Anastasios; Obeid, Emil; Lizarraga, Leonardo; Sapountzi, Foteini M; Vernoux, Philippe

    2013-01-01

    A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a β″-Al2O3 ceramic Ag(+) conductor was developed and evaluated during propane oxidation. It was observed that, upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation.

  6. Deposition of Pd–Ag thin film membranes on ceramic supports for hydrogen purification/separation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.I. [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal); Pérez, P.; Rodrigues, S.C.; Mendes, A.; Madeira, L.M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Tavares, C.J., E-mail: ctavares@fisica.uminho.pt [Centre of Physics, University of Minho, Campus Azurém, 4800-058 (Portugal)

    2015-01-15

    Highlights: • Thin film Pd–Ag membranes have been produced for hydrogen selectivity. • Magnetron sputtering yields Pd–Ag compact films for atomic H diffusion. • The thin film Pd–Ag membranes yielded a selectivity of α (H{sub 2}/N{sub 2}) = 10. - Abstract: Pd–Ag based membranes supported on porous α-Al{sub 2}O{sub 3} (doped with yttria-stabilized zirconia) were studied for hydrogen selective separation. Magnetron sputtering technique was employed for the synthesis of thin film membranes. The hydrogen permeation flux is affected by the membrane columnar structure, which is formed during deposition. From scanning electron microscopy analysis, it was observed that different sputtering deposition pressures lead to distinct columnar structure growth. X-ray diffraction patterns provided evidence of a Pd–Ag solid solution with an average crystallite domain size of 21 nm, whose preferential growth can be altered by the deposition pressure. The gas-permeation results have shown that the Pd–Ag membrane supported on porous α-Al{sub 2}O{sub 3} is selective toward H{sub 2}. For optimized membrane synthesis conditions, the permeance toward N{sub 2} is 0.076 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1} at room temperature, whereas for a pressure difference of 300 kPa the H{sub 2}-flux is of the order of ca. 0.21 mol m{sup −2} s{sup −1}, which corresponds to a permeance of 0.71 × 10{sup −6} mol m{sup −2} s{sup −1} Pa{sup −1}, yielding a selectivity of α (H{sub 2}/N{sub 2}) = 10. These findings suggest that the membrane has a reasonable capacity to selectively permeate this gas.

  7. Grafting of alginates on UF/NF ceramic membranes for wastewater treatment.

    Science.gov (United States)

    Athanasekou, C P; Romanos, G E; Kordatos, K; Kasselouri-Rigopoulou, V; Kakizis, N K; Sapalidis, A A

    2010-10-15

    The mechanism of heavy metal ion removal in processes involving multi-layered tubular ultrafiltration and nanofiltration (UF/NF) membranes was investigated by conducting retention experiments in both flow-through and cross-flow modes. The prospect of the regeneration of the membranes through an acidic process was also examined and discussed. The UF/NF membranes were functionalised with alginates to develop hybrid inorganic/organic materials for continuous, single pass, wastewater treatment applications. The challenge laid in the induction of additional metal adsorption and improved regeneration capacity. This was accomplished by stabilizing alginates either into the pores or on the top-separating layer of the membrane. The preservation of efficient water fluxes at moderate trans-membrane pressures introduced an additional parameter that was pursued in parallel to the membrane modification process. The deposition and stabilization of alginates was carried out via physical (filtration/cross-linking) and chemical (grafting) procedures. The materials developed by means of the filtration process exhibited a 25-60% enhancement of their Cd(2+) binding capacity, depending on the amount of the filtered alginate solution. The grafting process led to the development of alginate layers with adequate stability under acidic regeneration conditions and metal retention enhancement of 25-180%, depending on the silane involved as grafting agent and the solvent of silanisation.

  8. Studies of the Methane Steam Reforming Reaction at High Pressure in a Ceramic Membrane Reactor

    Institute of Scientific and Technical Information of China (English)

    P.Hacarlioglu; Y.Gu; S.T.Oyama

    2006-01-01

    The effects of temperature and pressure on the steam reforming of methane (CH4+H2O(→)3H2+CO) were investigated in a membrane reactor (MR)with a hydrogen permeable membrane. The studies used a novel silica-based membrane prepared by using the chemical vapor deposition (CVD) techreactor (PBR) were compared to those of the membrane reactor at various temperatures (773-923 K)and pressures (1-20 atm, 101.3-2026.5 kPa) using a commercial Ni/MgAl2O4 catalyst. The conversion of methane was improved significantly in the MR by the countercurrent removal of hydrogen at all temperatures and allowed product yields higher than the equilibrium to be obtained. Pressure had a positive effect on the hydrogen yield because of the increase in driving force for the permeance of hydrogen. The yield. The results obtained with the silica-based membrane were similar to those obtained with various other membranes as reported in the literature.

  9. Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater.

    Science.gov (United States)

    Jeong, Yeongmi; Hermanowicz, Slawomir W; Park, Chanhyuk

    2017-10-15

    A bench-scale anaerobic membrane bioreactor (AnMBR) equipped with submerged flat-sheet ceramic membranes was operated at mesophilic conditions (30-35 °C) treating domestic wastewater (DWW) supplemented with food wasterecycling wastewater (FRW) to increase the organic loading rate (OLR) for better biogas production. Coupling ceramic membrane filtration with AnMBR treatment provides an alternative strategy for high organic wastewater treatment at short hydraulic retention times (HRTs) with the potential benefits of membrane fouling because they have a high hydrophilicity and more robust at extreme conditions. The anaerobic ceramic MBR (AnCMBR) treating mixture of actual FRW with DWW (with an influent chemical oxygen demand (COD) of 2,115 mg/L) was studied to evaluate the treatment performance in terms of organic matter removal and methane production. COD removal during actual FRW with DWW operation averaged 98.3 ± 1.0% corresponding to an average methane production of 0.21 ± 0.1 L CH4/g CODremoved. Biogas sparging, relaxation and permeate back-flushing were concurrently employed to manage membrane fouling. A flux greater than 9.2 L m(-2) h(-1) (LMH) was maintained at 13 h HRT for approximately 200 days without chemical cleaning at an OLR of 2.95 kg COD m(-3) d(-1). On day 100, polyvinyl alcohol (PVA)-gel beads were added into the AnCMBR to alleviate the membrane fouling, suggesting that their mechanical scouring effect contributed positively in reducing the fouling index (FI). Although these bio-carriers might accelerate the breaking up of bio-flocs, which released a higher amount of soluble microbial products (SMP), a 95.4% SMP rejection was achieved. Although the retention efficiency of dissolved organic carbons (DOC) was 91.4% across the ceramic membrane, a meaningful interpretation of organic carbon detection (OCD) fingerprints was conducted to better understand the ceramic membrane performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Preparation of alumina ceramic membranes by electrophoresis%电泳沉积法制备氧化铝陶瓷膜的研究

    Institute of Scientific and Technical Information of China (English)

    陈晓晓; 魏刚; 张元晶; 付国柱; 乔宁

    2011-01-01

    以工业级陶瓷片为支撑体,氧化铝溶胶为电泳液,采用电泳沉积的方法制备了氧化铝陶瓷膜.当在30 V的电压条件下电泳3 min,经沉积-干燥-烧结工艺,反复进行3次后,即可得到氧化铝纳滤膜.采用SEM和液-液排除法等手段对纳滤膜进行表征,结果表明,膜厚在50 μm左右,孔隙率为31.51%,平均孔径为3.1nm,孔径分布为2.88 - 5.76 nm.性能测试表明,氧化铝纳滤膜对无机污染物和有机污染物均有强的截留作用,且性能较稳定.%Alumina ceramic membranes have been prepared by electrophoresis using an industrial ceramic as the electrophoretic matrix and alumina sol as the electrophoretic liquid. A nanofiltration membrane was prepared using the electrophoretic process and a coating-drying-sintering process repeated three times. The optimum electrophoresis time was found to be 3 min with a voltage of 30 V. The Al2O3 ceramic membrane obtained under these experimental conditions was characterized by SEM and liquid-liquid displacement methods. A ceramic membrane with a thickness of 50 μm had a porosity ratio of 31. 51% , a pore size of 3. 1 nm and a pore size distribution of 2. 88 nm to 5. 76 nm. Performance tests showed that the membrane had strong interception effects on both inorganic pollutants and organic pollutants.

  11. Stress analysis and fail-safe design of bilayered tubular supported ceramic membranes

    DEFF Research Database (Denmark)

    Kwok, Kawai; Frandsen, Henrik Lund; Søgaard, Martin

    2014-01-01

    . Stress distributions in two membrane systems have been analyzed and routes to minimize stress are proposed. For a Ba0.5Sr0.5Co0.8Fe0.2O3−δBa0.5Sr0.5Co0.8Fe0.2O3−δ membrane supported on a porous substrate of the same material under pressure-vacuum operation, the optimal configuration in terms...... gradient. Tailoring the thermal expansion coefficient of the support is an effective method to alleviate the total stress. Failure criteria for membrane fracture under compression are thereafter presented. It is found that the tolerable flaw size for fracture in compression is in the millimeter range...

  12. 无机陶瓷膜在含油废水处理中的应用%Application of Inorganic Ceramic Membrane in Treatment of Oily Wastewater

    Institute of Scientific and Technical Information of China (English)

    张庆国

    2013-01-01

    The research and development of inorganic ceramic membrane were introduced, and preparation methods of inorganic ceramic membrane were discussed as well as their application in treatment of oily waste water,such as emulsion wastewater, oil field produced water, cleaning fluid, food industry oily wastewater and petrochemical oily wastewater.%  介绍无机陶瓷膜的研究发展概况,并简要介绍无机陶瓷膜的制备方法及其在含油废水(乳化液废水、油田采出水、清洗液、食品工业含油废水和石油化工含油废水)处理中的应用。

  13. Dense core secretory vesicles revealed as a dynamic Ca2+ store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera

    Science.gov (United States)

    Mitchell, Kathryn J.; Pinton, Paolo; Varadi, Aniko; Tacchetti, Carlo; Ainscow, Edward K.; Pozzan, Tullio; Rizzuto, Rosario; Rutter, Guy A.

    2001-01-01

    The role of dense core secretory vesicles in the control of cytosolic-free Ca2+ concentrations ([Ca2+]c) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2–synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet β-cells: (a) increases in [Ca2+]c cause a prompt increase in intravesicular-free Ca2+ concentration ([Ca2+]SV), which is mediated by a P-type Ca2+-ATPase distinct from the sarco(endo) plasmic reticulum Ca2+-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca2+ pumps; (b) steady state Ca2+ concentrations are 3–5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca2+; (c) inositol (1,4,5) trisphosphate has no impact on [Ca2+]SV in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca2+]SV. Thus, secretory vesicles represent a dynamic Ca2+ store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca2+-induced Ca2+ release from vesicles docked at the plasma membrane could participate in triggering exocytosis. PMID:11571310

  14. Dense core secretory vesicles revealed as a dynamic Ca(2+) store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera.

    Science.gov (United States)

    Mitchell, K J; Pinton, P; Varadi, A; Tacchetti, C; Ainscow, E K; Pozzan, T; Rizzuto, R; Rutter, G A

    2001-10-01

    The role of dense core secretory vesicles in the control of cytosolic-free Ca(2+) concentrations ([Ca(2+)](c)) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2-synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet beta-cells: (a) increases in [Ca(2+)](c) cause a prompt increase in intravesicular-free Ca(2+) concentration ([Ca(2+)]SV), which is mediated by a P-type Ca(2+)-ATPase distinct from the sarco(endo) plasmic reticulum Ca(2+)-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca(2+) pumps; (b) steady state Ca(2+) concentrations are 3-5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca(2+); (c) inositol (1,4,5) trisphosphate has no impact on [Ca(2+)](SV) in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca(2+)](SV). Thus, secretory vesicles represent a dynamic Ca(2+) store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca(2+)-induced Ca(2+) release from vesicles docked at the plasma membrane could participate in triggering exocytosis.

  15. Comparative Study on Performance and Organic Fouling of ZrO2 Ceramic Membranes in Ultrafiltration of Synthetic Water and Wastewater Treatment Plant Effluent

    KAUST Repository

    Li, Cen

    2011-07-01

    Adsorption of organic matter on ceramic membrane can lead to hydraulic-irreversible fouling, which decreases the permeate flux and the cost-efficiency of membrane devices. In order to optimize the filtration process, detailed information is necessary about the organic fouling mechanisms on ceramic membranes. In this study, dead-end filtration experiments of both synthetic water and secondary effluent from a wastewater treatment plant (WWTP) were conducted on a ZrO2 ceramic membrane. The experiment results of synthetic water showed that humic acid (HA) was able to be adsorbed by the ZrO2 membrane and cause permeate flux decline; and that HA-tryptophan mixture, at the same DOC level, promoted the filtration flux decline; DOC removal in the case of HA-tryptophan was lower than that of HA alone. It seems that hydrophilic organic matter with low molecular weight have some specific contribution to the organic fouling of the ZrO2 membrane. The results also suggest that tryptophan molecules were preferentially adsorbed on the membrane at the beginning, exposing their hydrophobic sides which might further adsorb HA from the feed water. During the filtration of WWTP effluent, protein-like substances (mainly tryptophan-like) were also preferentially adsorbed on the membrane compared with humic-like ones in the initial few cycles of filtration. More humic-like substances were adsorbed in the following filtration cycles due to the increase of membrane hydrophobicity. A significant rise in hydraulic-irreversible flux decline was obtained by decreasing pH from near pHpzc to below pHpzc of the membrane. It suggests that a positively charged surface is preferred for HA adsorption. Ionic strength increase did not affect the filtration of HA, but it lessened the hydraulic-irreversible flux decline of HA-tryptophan filtration. The adsorption of HA-tryptophan can be attributed to outersphere interaction while HA adsorption is mainly caused by inner-sphere interaction. The results of

  16. DLVO Approximation Methods for Predicting the Attachment of Silver Nanoparticles to Ceramic Membranes.

    Science.gov (United States)

    Mikelonis, Anne M; Youn, Sungmin; Lawler, Desmond F

    2016-02-23

    This article examines the influence of three common stabilizing agents (citrate, poly(vinylpyrrolidone) (PVP), and branched poly(ethylenimine) (BPEI)) on the attachment affinity of silver nanoparticles to ceramic water filters. Citrate-stabilized silver nanoparticles were found to have the highest attachment affinity (under conditions in which the surface potential was of opposite sign to the filter). This work demonstrates that the interaction between the electrical double layers plays a critical role in the attachment of nanoparticles to flat surfaces and, in particular, that predictions of double-layer interactions are sensitive to boundary condition assumptions (constant charge vs constant potential). The experimental deposition results can be explained when using different boundary condition assumptions for different stabilizing molecules but not when the same assumption was assumed for all three types of particles. The integration of steric interactions can also explain the experimental deposition results. Particle size was demonstrated to have an effect on the predicted deposition for BPEI-stabilized particles but not for PVP.

  17. Separation of BSA through FAU-Type Zeolite Ceramic-Composite Membrane Formed on Tubular Ceramic Support: Optimization of Process Parameters by Hybrid Response Surface Methodology and Bi-Objective Genetic Algorithm.

    Science.gov (United States)

    Kumar, R Vinoth; Moorthy, I Ganesh; Pugazhenthi, G

    2017-03-09

    In this study, Faujasite (FAU) zeolite was coated on low cost tubular ceramic support as a separating layer via hydrothermal route. The mixture of silicate and aluminate solutions was used to create a zeolitic separation layer on the support. The prepared zeolite ceramic-composite membrane was characterized by using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), particle size distribution (PSD), Field emission scanning electron microscopy (FESEM) and zeta potential measurements. The porosity of ceramic support (53%) was reduced by the deposition of FAU (43%) zeolite layer. The pore size and water permeability of the membrane were evaluated as 0.179 µm and 1.62 × 10(-7) m(3)/m(2)s.kPa, respectively, which are lower than that of the support (pore size of 0.309 µm and water permeability of 5.93 × 10(-7) m(3)/m(2)s.kPa). The permeate flux and rejection potential of the prepared membrane was evaluated by microfiltration of bovine serum albumin (BSA). To study the influences of three independent variables such as operating pressure (68.94 - 275.79 kPa), concentration of BSA (100 - 500 ppm) and solution pH (2 - 4) on permeate flux and percentage of rejection, the RSM (Response Surface Methodology) was employed. The predicted models for permeate flux and rejection were further subjected to bi-objective Genetic Algorithm (GA). The hybrid RSM-GA approach resulted a maximum permeate flux of 2.66 × 10(-5) m(3)/m(2)s and BSA rejection of 88.02%, at which the optimum conditions were attained as 100 ppm BSA concentration, 2 pH solution and 275.79 kPa applied pressure. In addition, the separation efficiency was compared with other membranes applied for BSA separation in order to know the potential of the fabricated FAU zeolite ceramic-composite membrane.

  18. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase.

    Science.gov (United States)

    Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch

    2016-12-01

    Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. COOH-terminal isoleucine of lysosome-associated membrane protein-1 is optimal for its efficient targeting to dense secondary lysosomes.

    Science.gov (United States)

    Akasaki, Kenji; Suenobu, Michihisa; Mukaida, Maki; Michihara, Akihiro; Wada, Ikuo

    2010-12-01

    Lysosome-associated membrane protein-1 (LAMP-1) consists of a highly glycosylated luminal domain, a single-transmembrane domain and a short cytoplasmic tail that possesses a lysosome-targeting signal (GYQTI(382)) at the COOH terminus. It is hypothesized that the COOH-terminal isoleucine, I(382), could be substituted with any other bulky hydrophobic amino acid residue for LAMP-1 to exclusively localize in lysosomes. In order to test this hypothesis, we compared subcellular distribution of four substitution mutants with phenylalanine, leucine, methionine and valine at the COOH-terminus (termed I382F, I382L, I382M and I382V, respectively) with that of wild-type (WT)-LAMP-1. Double-labelled immunofluorescence analyses showed that these substitution mutants were localized as significantly to late endocytic organelles as WT-LAMP-1. However, the quantitative subcellular fractionation study revealed different distribution of WT-LAMP-1 and these four COOH-terminal mutants in late endosomes and dense secondary lysosomes. WT-LAMP-1 was accumulated three to six times more in the dense lysosomal fraction than the four mutants. The level of WT-LAMP-1 in late endosomal fraction was comparable to those of I382F, I382M and I382V. Conversely, I382L in the late endosomal fraction was approximately three times more abundant than WT-LAMP-1. These findings define the presence of isoleucine residue at the COOH-terminus of LAMP-1 as critical in governing its efficient delivery to secondary lysosomes and its ratio of lysosomes to late endosomes.

  20. Design and optimization of porous ceramic supports for asymmetric ceria-based oxygen transport membranes

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Foghmoes, Søren Preben Vagn; Pećanac, G.

    2016-01-01

    content from 11 vol% to 16 vol%, the gas permeabilities increased by a factor of 5 when support tapes were sintered to comparable densities. The improved permeabilities were due to a more favourable microstructure with larger interconnected pores at a porosity of 45% and a fracture strength of 47±2 MPa (m......The microstructure, mechanical properties and gas permeability of porous supports of Ce0.9Gd0.1O1.95−δ (CGO) were investigated as a function of sintering temperature and volume fraction of pore former for use in planar asymmetric oxygen transport membranes (OTMs). With increasing the pore former......=7). The achieved gas permeability of 2.25×10−15 m2 for a 0.4 mm thick support will not limit the gas transport for oxygen production but in partial oxidation of methane to syngas at higher oxygen fluxes. For integration of the CGO support layer into a flat, asymmetric CGO membrane, the sintering...

  1. Interfacial interactions between Skeletonema costatum extracellular organic matter and metal oxides: Implications for ceramic membrane filtration

    KAUST Repository

    Zaouri, Noor

    2017-03-21

    In the current study, the interfacial interactions between the high molecular weight (HMW) compounds of Skeletonema costatum (SKC) extracellular organic matter (EOM) and ZrO2 or Al2O3, were investigated by atomic force microscopy (AFM). HMW SKC-EOM was rigorously characterized and described as a hydrophilic organic compound mainly comprised of polysaccharide-like structures. Lipids and proteins were also observed, although in lower abundance. HMW SKC-EOM displayed attractive forces during approaching (i.e., leading to jump-to-contact events) and adhesion forces during retracting regime to both metal oxides at all solution conditions tested, where electrostatics and hydrogen bonding were suggested as dominant interacting mechanisms. However, the magnitude of these forces was significantly higher on ZrO2 surfaces, irrespective of cation type (Na+ or Ca2+) or concentration. Interestingly, while HMW SKC-EOM interacting forces to Al2O3 were practically insensitive to solution chemistry, the interactions between ZrO2 and HMW SKC-EOM increased with increasing cation concentration in solution. The structure, and lower charge, hydrophilicity, and density of hydroxyl groups on ZrO2 surface would play a key role on favoring zirconia associations with HMW SKC-EOM. The current results contribute to advance our fundamental understanding of Algogenic Organic Matter (AOM) interfacial interactions with metal oxides (i.e., AOM membrane fouling), and would highly assist in the proper selection of membrane material during episodic algal blooms.

  2. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Farooq, Ariba [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna; Khan, Abdul Samad [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2016-07-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling properties • Controlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  3. Effect of Cross-flow Velocity on the Critical Flux of Ceramic Membrane Filtration as a Pre-treatment for Seawater Desalination

    Institute of Scientific and Technical Information of China (English)

    CUI Zhaoliang; PENG Wenbo; FAN Yiqun; XING Weihong; XU Nanping

    2013-01-01

    Pre-treatment,which supplies a stable,high-quality feed for reverse osmosis (RO) membranes,is a critical step for successful operation in a seawater reverse osmosis plant.In this study,ceramic membrane systems were employed as pre-treatment for seawater desalination.A laboratory experiment was performed to investigate the effect of the cross-flow velocity on the critical flux and consequently to optimize the permeate flux.Then a pilot test was performed to investigate the long-term performance.The result shows that there is no significant effect of the cross-flow velocity on the critical flux when the cross-flow velocity varies in laminar flow region only or in turbulent flow region only,but the effect is distinct when the cross-flow velocity varies in the transition region.The membrane fouling is slight at the permeate flux of 150 L·m-2·h-1 and the system is stable,producing a high-quality feed (the turbidity and silt density index are less than 0.1 NTU and 3.0,respectively) for RO to ran for 2922.4 h without chemical cleaning.Thus the ceramic membranes are suitable to filtrate seawater as the pre-treatment for RO.

  4. Dense Breasts

    Science.gov (United States)

    ... also appear white on mammography, they can be hidden by or within dense breast tissue. Other imaging ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  5. Effect Study on Performance of Ceramic Membrane in Ultrafiltration of MOFs Nanocrystals%陶瓷膜超滤MOFs纳米晶性能影响研究

    Institute of Scientific and Technical Information of China (English)

    殷娜; 王珂

    2015-01-01

    研究MOFs纳米晶对陶瓷膜超滤过程的具体影响,以探讨陶瓷超滤膜耦合MOFs纳米晶资源化处理重金属废水的可行性。通过陶瓷膜超滤MOFs纳米晶悬浮液,研究纳米晶浓度、温度、压力对陶瓷膜超滤性能的影响。研究结果表明:陶瓷膜对悬浮液中的MOFs纳米晶可近100%截留,渗透液澄清透明且浊度接近去离子水;当纳米晶浓度为0.1 g/L,温度为30oC,操作压力0.125 MPa,pH 为8时,陶瓷超滤膜的渗透通量最大(438 L/m2· h),截留效果最好(99.99%)。因此,陶瓷超滤膜可以很好地实现对MOFs纳米晶的截留。本研究确定陶瓷超滤膜耦合MOFs纳米晶工艺可行,该工艺可将重金属废水中有价值的重金属进行吸附与分离,创造经济价值,并实现水循环利用,为重金属废水的资源化处理提供了一条新工艺。%The specific effects of MOFs nanocrystals on ceramic membrane ultrafiltration process were studied in order to in⁃vestigate the feasibility of resourced treatment of heavy metal wastewater by coupling. MOFs nanocrystals suspension was ultrafil⁃trated by ceramic membrane, the effects of nanocrystals concentration, temperature, pressure, and pH on ceramic membrane ultra⁃filtration were investigated. The results showed that the MOFs nanocrystals in suspension can be rejected nearly 100%by the ce⁃ramic membrane, with a clarified permeate and a near-deionized water turbidity;When the nanocrystals concentration was 0.1 g/L, temperature 30℃, operating pressure 0.125 MPa, and pH 8, the permeate flux of the ceramic ultrafiltration membrane was the larg⁃est (about 438 L/m2·h) and the rejection was the best (99.99%). Therefore, ceramic ultrafiltration membrane can provide a good re⁃jection of MOFs nanocrystals. This study was to determine the feasibility of the technology of ceramic ultrafiltration membrane cou⁃pled with MOFs nanocrystals, and this technology can adsorb and

  6. Shape-dependent plasma-catalytic activity of ZnO nanomaterials coated on porous ceramic membrane for oxidation of butane.

    Science.gov (United States)

    Sanjeeva Gandhi, M; Mok, Young Sun

    2014-12-01

    In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A low-cost mullite-titania composite ceramic hollow fiber microfiltration membrane for highly efficient separation of oil-in-water emulsion.

    Science.gov (United States)

    Zhu, Li; Chen, Mingliang; Dong, Yingchao; Tang, Chuyang Y; Huang, Aisheng; Li, Lingling

    2016-03-01

    Oil-in-water (O/W) emulsion is considered to be difficult to treat. In this work, a low-cost multi-layer-structured mullite-titania composite ceramic hollow fiber microfiltration membrane was fabricated and utilized to efficiently remove fine oil droplets from (O/W) emulsion. In order to reduce membrane cost, coal fly ash was effectively recycled for the first time to fabricate mullite hollow fiber with finger-like and sponge-like structures, on which a much more hydrophilic TiO2 layer was further deposited. The morphology, crystalline phase, mechanical and surface properties were characterized in details. The filtration capability of the final composite membrane was assessed by the separation of a 200 mg·L(-1) synthetic (O/W) emulsion. Even with this microfiltration membrane, a TOC removal efficiency of 97% was achieved. Dilute NaOH solution backwashing was used to effectively accomplish membrane regeneration (∼96% flux recovery efficiency). This study is expected to guide an effective way to recycle waste coal fly ash not only to solve its environmental problems but also to produce a high-valued mullite hollow fiber membrane for highly efficient separation application of O/W emulsion with potential simultaneous functions of pure water production and oil resource recovery.

  8. 电絮凝强化陶瓷微滤膜出水水质研究%Enhanced Effluent Quality of Ceramic Microfiltration Membrane Combined with Electrocoagulation

    Institute of Scientific and Technical Information of China (English)

    周振; 姚吉伦; 庞治邦; 刘波

    2016-01-01

    In order to treat micro-polluted surface water more effective by using ceramic microfiltration mem-brane, electrocoagulation was employed to improve the effluent quality of ceramic membrane.Factors such as cur-rent density, influent flow and filtering mode that affected the effluent quality in hybrid process was studied.The optimized operating conditions were current density of 2.0 mA/cm2 , influent flow of 4 L/min and cross flow filtra-tion with 100%excretion rate.At the same time, the comparison of ceramic microfiltration membrane performance with chemical-coagulation and electrocoagulation pretreatment were conducted.The results indicated that conven-tional chemical coagulation was superior to electrocoagulation in organic matter removal and the gap in it raised with the increasing of Al3+concentration.%为提高陶瓷微滤膜净化微污染水的效果,采用电絮凝预处理工艺提高陶瓷膜的出水水质。研究了电流密度、进水流量以及过滤模式对组合工艺出水水质的影响,得到了最佳运行参数:电流密度2.0 mA/cm2,进水流量4 L/min,过滤模式为错流过滤浓水全排除。同时,对比了化学絮凝和电絮凝对陶瓷微滤膜出水水质的影响,结果表明:电絮凝对有机物的去除效果不及化学絮凝,两者的差距随着Al3+浓度的增加而增大。

  9. Technology of ceramic and polymeric membranes for oil/water separation; Tecnologia de membranas ceramicas e polimericas para separacao oleo/agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.A; Souto, K.M; Silva, Adriano A.; Lira, H.L.; Carvalho, L.H.; Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2004-07-01

    In last years, separation techniques by membranes and membranes grew of a laboratory simple tool for an industrial process with a considerable technical and commercial impact. Today, membranes have been being widely used in the treatment of the oily/water, because they offer chemical, thermal resistance and resistance the pressure for a wide variety of alimentation terms. Membrane can be defined as a barrier that separates two phases and that restricts, total or partially, the transportation of one or several present chemical species in the phases. The morphology of the membrane and nature of the material that constitutes are some characteristics that are going to define application kind. The ideal structure for these filters is the asymmetric, formed by one or more layers of different pores size, with gradual reduction of the pores size, when approaches the side filtrate. Having in mind that the environmental legislations more process with membranes offers a new option to face these challenges. The membranes typically used in the oil and water separation act as a barrier for the emulsified oil and solubilization. In the petroleum production and refined oil water mixed with oil is prosecuted in great volumes in lots of processes, this mixture should be treated to separate the oil of water before it can return to the environment or even to be reused in the process. This review aims relate studies done with ceramic and polymeric membranes using a separation oil/water system mounted in laboratory scale in UFCG/CCT/ANP/PHH25. The results show that filtration membranes, micro filtration and ultrafiltration were very effective in oil/water separation. (author)

  10. Technology of ceramic and polymeric membranes for oil/water separation; Tecnologia de membranas ceramicas e polimericas para separacao oleo/agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.A; Souto, K.M; Silva, Adriano A.; Lira, H.L.; Carvalho, L.H.; Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2004-07-01

    In last years, separation techniques by membranes and membranes grew of a laboratory simple tool for an industrial process with a considerable technical and commercial impact. Today, membranes have been being widely used in the treatment of the oily/water, because they offer chemical, thermal resistance and resistance the pressure for a wide variety of alimentation terms. Membrane can be defined as a barrier that separates two phases and that restricts, total or partially, the transportation of one or several present chemical species in the phases. The morphology of the membrane and nature of the material that constitutes are some characteristics that are going to define application kind. The ideal structure for these filters is the asymmetric, formed by one or more layers of different pores size, with gradual reduction of the pores size, when approaches the side filtrate. Having in mind that the environmental legislations more process with membranes offers a new option to face these challenges. The membranes typically used in the oil and water separation act as a barrier for the emulsified oil and solubilization. In the petroleum production and refined oil water mixed with oil is prosecuted in great volumes in lots of processes, this mixture should be treated to separate the oil of water before it can return to the environment or even to be reused in the process. This review aims relate studies done with ceramic and polymeric membranes using a separation oil/water system mounted in laboratory scale in UFCG/CCT/ANP/PHH25. The results show that filtration membranes, micro filtration and ultrafiltration were very effective in oil/water separation. (author)

  11. A comparison between ceramic membrane filters and conventional fabric filters for fine particulate removal from a coal-fired industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Wincek, R.T.; Glick, D.C.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States); Drury, K. [Corning Inc., Painted Post, NY (United States); Makris [Corning Inc., Acton, MA (United States); Stubblefield, D.J. [Corning Inc., Corning, NY (United States)

    1998-12-31

    Penn State is developing technologies for ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF) in industrial boilers. Emissions being addressed are SO{sub 2}, NOx, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Results from trace element and polynuclear aromatic hydrocarbon emissions testing, when firing coal-based fuels, are reported elsewhere in these proceedings. This paper discusses the evaluation of ceramic membrane filters for fine particulate removal in a package boiler when firing micronized coal and CWSF.

  12. Experimental and Modeling Studies of the Methane Steam Reforming Reaction at High Pressure in a Ceramic Membrane Reactor

    OpenAIRE

    Hacarlioglu, Pelin

    2007-01-01

    This dissertation describes the preparation of a novel inorganic membrane for hydrogen permeation and its application in a membrane reactor for the study of the methane steam reforming reaction. The investigations include both experimental studies of the membrane permeation mechanism and theoretical modeling of mass transfer through the membrane and simulation of the membrane reactor with 1-D and 2-D models. A hydrothermally stable and hydrogen selective membrane composed of silica and a...

  13. Filtration Performance of Porous Ceramic Membrane with Fan-shaped Flow Channel%扇形过流通道多孔陶瓷膜的过滤性能研究

    Institute of Scientific and Technical Information of China (English)

    方振东; 梁恒国; 师杰; 方涛; 吕玉正

    2012-01-01

    提出了一种新的多孔陶瓷膜水流组织方式,将常规多孔陶瓷膜过滤时水流从过流通道向外侧单向渗透的方式改变为双向渗透 ;分析了多孔陶瓷膜有效过滤面积计算方法的不足,并提出了一种新的计算方法 ;进行了扇形过流通道多孔陶瓷膜对纯水和池塘水的过滤试验,结果表明,扇形过流通道多孔陶瓷膜的有效过滤面积为同规格圆形过流通道多孔陶瓷膜的1.3倍,过滤通量是圆形过流通道多孔陶瓷膜的1.45倍,但两者对池塘水的净化效果基本相当.%A new water flow pattern in porous ceramic membrane was proposed. The infiltration direction of water flow from the flow channel to the outside of the conventional porous ceramic membrane was changed from unidirectional to bidirectional. The deficiency of the existing computation method for calculating effective filtering area of porous ceramic membrane was analyzed, and a new computation method was proposed. Tests were carried out on the filtration of pure water and pond water using porous ceramic membrane with fan-shaped flow channel. The results showed that the effective filtering area of the porous ceramic membrane with fan-shaped flow channel was 1. 3 times that of the porous ceramic membrane with circular flow channel. The filtration flux of flow channel porous ceramic membrane was 1.45 times that of the porous ceramic membrane with circular flow channel. However, the purification effect of pond water was the same in both kinds of membranes.

  14. Acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane.

    Science.gov (United States)

    Wu, Hao; Chen, Xiao-Peng; Liu, Gong-Ping; Jiang, Min; Guo, Ting; Jin, Wan-Qin; Wei, Ping; Zhu, Da-Wei

    2012-09-01

    PDMS/ceramic composite membrane was directly integrated with acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 at 37 °C and in situ removing ABE from fermentation broth. The membrane was integrated with batch fermentation, and approximately 46 % solvent was extracted. The solvent in permeates was 118 g/L, and solvent productivity was 0.303 g/(L/h), which was approximately 33 % higher compared with the batch fermentation without in situ recovery. The fed-batch fermentation with in situ recovery by pervaporation continued for more than 200 h, 61 % solvent was extracted, and the solvent in penetration was 96.2 g/L. The total flux ranged from 0.338 to 0.847 kg/(m(2)/h) and the separation factor of butanol ranged from 5.1 to 27.1 in this process. The membrane was fouled by the active fermentation broth, nevertheless the separation performances were partially recovered by offline membrane cleaning, and the solvent productivity was increased to 0.252 g/(L/h), which was 19 % higher compared with that in situ recovery process without membrane cleaning.

  15. Amperometric NOx-sensor for Combustion Exhaust Gas Control. Studies on transport properties and catalytic activity of oxygen permeable ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Romer, E.W.J.

    2001-04-27

    , the two materials must be co-firable and, hence, match in thermal, chemical and mechanical behaviour. A number of studies on different mixed oxygen ion/electron conducting materials is described in this thesis. Emphasis is put on the demands of the targeted sensor application, in which these materials are used as mixed conducting dense ceramic membranes. In Chapter 2, a series of perovskite materials is studied. The general composition is ABO{sub 3-{delta}} (A = Gd, Pr, Y; B = Mn, Cr, Fe), being partially doped with Ca{sup 2+} and Sr{sup 2+} on the A-site to create mobile oxygen vacancies. The main focus of the work presented is on the measurement of catalytic activities towards NOx and the ionic conductivities of the selected materials. In Chapter 3, the preparation and characterisation of a material with the overall composition of Gd{sub 0.7}Ca{sub 0.3}CoO{sub x} is described. Dual phase composite membranes are the subject of investigations presented in Chapters 4-7. The main advantage of these type of materials is that their properties can be tailored to meet the demands imposed by the sensor design. Emphasis is on the preparation of the materials, characterisation by SEM-EDX, XRD, catalytic activity and measurement of ionic/electronic conductivities. In Chapter 4, dual phase composites of composition Gd{sub 0.7}Ca{sub 0.3}CoO{sub x}/Ce{sub 0.8}Gd{sub 0.2}O{sub 2-} are studied. Composites ZrO{sub 2}/In{sub 2}O{sub 3} and ZrO{sub 2}/ITO are subject to the investigations reported in Chapters 5 and 6, respectively. Finally, in Chapter 7, composite Au/YSZ and Au/Ce{sub 0.8}Gd{sub 0.2}O{sub 2-} membranes are studied. Finally, in Chapter 8 a summary of the results is given together with recommendations for future research.

  16. Oxygen permeability of transition metal-containing La(Sr,PrGa(MgO3-δ ceramic membranes

    Directory of Open Access Journals (Sweden)

    Frade, J. R.

    2004-08-01

    Full Text Available Acceptor-type doping of perovskite-type La1-xSrxGa0.80-yMgyM0.20O3-δ (x = 0-0.20, y = 0.15-0.20, M = Fe, Co, Ni leads to significant enhancement of ionic conductivity and oxygen permeability due to increasing oxygen vacancy concentration. The increase in strontium and magnesium content is accompanied, however, with increasing role of surface exchange kinetics as permeation-limiting factor. At temperatures below 1223 K, the oxygen permeation fluxes through La(SrGa(Mg,MO3-δ membranes with thickness less than 1.5 mm are predominantly limited by the exchange rates at membrane surface. The oxygen transport in transition metal-containing La(SrGa(MgO3-δ ceramics increase in the sequence Co El dopado aceptor de cerámicas tipo perovskita La1-xSrxGa0.80-yMgyM0.20O3-δ (x = 0-0.20, y = 0.15-0.20, M = Fe, Co, Ni da lugar a una mejora significativa de la conductividad iónica y de la permeabilidad al oxígeno debido al aumento de la concentración de vacantes de oxígeno. Sin embargo, el aumento de la cantidad de estroncio y magnesio viene acompañado de un aumento de la participación de las cinéticas de intercambio superficial como factor limitante de la permeabilidad. A temperaturas por debajo de 1223 K la permeabilidad al flujo de oxígeno a través de las membranas de La(SrGa(Mg,MO3-δ con espesor menor de 1.5 mm está limitado principalmente por las velocidades de intercambio en la superficie de la membrana. El transporte de oxígeno en las cerámicas La(SrGa(MgO3-δ que contienen M aumenta en la secuencia Co < Fe < Ni. La conductividad iónica en estas fases es, sin embargo, menor que en la de los compuestos La1-xSrxGa1-yMgyO3-δ. El mayor nivel de permeabilidad de oxígeno, comparable a la de las fases basadas en La(SrFe(CoO3 y La2NiO4, se observa para las membranas de La0.90Sr0.10Ga0.65Mg0.15Ni0.20O3-δ. Los coeficientes de dilatación térmica medios de las cerámicas La(SrGa(Mg,MO3-δ en aire son del orden de (11.6–18.4 × 10-6 K-1 a 373

  17. Hydrogen Permeation Performance of Ni-BaZr0.1Ce0.7Y0.2O3-δ Metal-Ceramic Hollow Fiber Membrane

    Institute of Scientific and Technical Information of China (English)

    Chun-li Yang; Qi-ming Xu; Zhi-wen Zhu; Wei Liu

    2012-01-01

    A dense Ni-BaZr0.1Ce0.7Y0.2O3-δ (BZCY) cermet hollow fiber is fabricated by sintering NiOBZCY hollow fiber precursors prepared by phase inversion method in 5%H2/95%Ar and its hydrogen permeation performance is investigated. The Ni-BZCY hollow fiber membrane possesses a "sandwich" structure.Finger-like structures are observed near both the inner and outer surfaces,while a dense layer is present in the center part.With 200 mL/min wet 20%H2/80%N2 on the shell side and 150 mL/min high purity Ar on the core side,the hydrogen permeation flux through the Ni-BZCY hollow fiber membrane at 900 ℃ is 0.53 μmol/cm2s.Owing to a high packing density,the hydrogen permeation flux per unit volume is greatly improved and membrane components composed of an assembly of hollow fibers may be applied in industrial hydrogen separation.

  18. Analysis on the Bi-directional Filtration Resistances of Porous Ceramic Membrane%多孔陶瓷膜双向过滤阻力试验分析

    Institute of Scientific and Technical Information of China (English)

    吕玉正; 方涛; 师杰; 梁鹏; 梁恒国

    2013-01-01

    In order to explore the function&type of filtration resistances of porous ceramic membrane,the bi⁃directional filtering way is proposed,the effective filtration area and channel sectional area of 9⁃channel porous ceramic membrane are analyzed for the bi⁃directional filtering way,and the calculation formula for the bi⁃directional filtration resistances is established. The test results show that 1)the concentration polarization resistance Rp is the main filtration resistance under trans⁃membrane pressure 0.05-0.10 MPa and cross⁃flow velocity 1.8 m/s;2)the adsorption and deposit resistance Rd is the main one under trans⁃membrane pressure 0.10-0.25 MPa and cross⁃flow velocity 1.0-2.2 m/s;3)at trans⁃membrane pressure 0.15 MPa and cross⁃flow velocity 2.2-3.0 m/s,Rm of membrane itself is the main one;and 4)the increase of the cross⁃flow velocity can effectively delay the occurrence of concentration polarization and reduce the thickness of the sedimentary adsorption layer,thus easing the membrane pollution and extending the filtration cycle.%  为研究多孔陶瓷膜过滤阻力,提出了多孔陶瓷膜双向过滤方式,分析了9通道多孔陶瓷膜在双向过滤时的有效过滤面积和通道截面积,建立了过滤阻力关系式.试验结果表明,跨膜压差0.05~0.10 MPa、错流速度1.8 m/s时,浓差极化阻力Rp为主要过滤阻力;跨膜压差0.10~0.25 MPa、错流速度1.0~2.2 m/s时,吸附沉积阻力Rd为主要过滤阻力;跨膜压差0.15 MPa、错流速度2.2~3.0 m/s时,膜自身阻力Rm是主要过滤阻力;增大错流速度能够有效延缓浓差极化的发生,减小吸附沉积层的厚度,减轻膜污染,延长过滤周期.

  19. NOVEL INORGANIC MEMBRANES FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Y.S. Lin

    2003-02-01

    We studied feasibility of two types of dense inorganic membranes which are fundamentally different from those porous inorganic membranes reported in the literature for separation of carbon dioxide from gas streams at high temperatures. The first is a symmetric, dense membrane made of Li{sub 2}ZrO{sub 3} and the second is a dual-phase metal-carbonate membrane. We have identified a unique CO{sub 2} sorption/desorption mechanism on lithium zirconate. Considering the all obtained data, we proposed a double layer model to describe the CO{sub 2} sorption/desorption behavior of lithium zirconate. In the model, final product after CO{sub 2} sorption is a particle which consists of a ZrO{sub 2} core inside and a Li{sub 2}CO{sub 3} shell. The understanding of CO{sub 2} sorption mechanisms suggests a means to improve CO{sub 2} sorption rate on this group of oxides. It also leads to the conclusion that lithium zirconate is not a suitable material for the proposed dense ceramic membrane for CO{sub 2} separation. Following the second concept of dense membrane for CO{sub 2} separation, we succeeded in preparing the hermetic (gas-tight) dense inorganic membrane consisting of a porous metal phase and a molten carbonate phase. The metal phase not only provides the mechanical support but also is electronically conducting, reducing the overall mass transfer resistance for CO{sub 2} permeation through the membrane. Permeation data showed that nitrogen or helium is not permeable through these membranes (only CO{sub 2}, with O{sub 2}, can permeate through the membrane based on the transport mechanism). This dual-phase membrane may offer promising properties for applications in membrane processes for separation of CO{sub 2} from flue (or coal gasification gas) at high temperatures (350-550 C).

  20. Study of the effects of different sterilization methods on the properties of dense and porous silk fibroin membranes;Estudo dos efeitos de diferentes metodos de esterilizacao nas propriedades de membranas densas de fibroina de seda

    Energy Technology Data Exchange (ETDEWEB)

    Weska, Raquel F.; Moraes, Mariana A. de; Beppu, Marisa M., E-mail: raquelweska@terra.com.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Quimica

    2009-07-01

    Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing, and it must not alter in a negative way the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical and chemical characteristics of dense silk fibroin membranes. Dense fibroin membranes were sterilized by ultraviolet radiation, 70% ethanol, autoclave, ethylene oxide and gamma radiation, and were analyzed by SEM, FTIR-ATR and XRD. The results for sterilization indicated that the methods didn't cause degradation of the membranes, but the methods that used organic solvent, or increase of humidity and/or temperature (70% ethanol, autoclave and ethylene oxide) altered the molecular conformation of fibroin, increasing the proportion of beta-sheet structure, what indicates an increase of crystallinity. This effect may be positive when a slower degradation of the membranes is desired, depending on the application as a bio material. (author)

  1. Ceramic Filter for Small System Drinking Water Treatment: Evaluation of Membrane Pore Size and Importance of Integrity Monitoring

    Science.gov (United States)

    Ceramic filtration has recently been identified as a promising technology for drinking water treatment in households and small communities. This paper summarizes the results of a pilot-scale study conducted at the U.S. Environmental Protection Agency’s (EPA’s) Test & Evaluation ...

  2. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    Directory of Open Access Journals (Sweden)

    Mythili Prakasam

    2015-12-01

    Full Text Available In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes.

  3. CFD simulation for atomic layer deposition on large scale ceramic membranes%大尺寸陶瓷膜原子层沉积过程的CFD模拟

    Institute of Scientific and Technical Information of China (English)

    朱明; 汪勇

    2016-01-01

    Ceramic membranes are widely used in liquid filtration for their superior chemical resistance, temperature stability and mechanical robustness. Their performance can be further improved by surface modifications, such as liquid phase reactions, which are typically too complicated to control. Atomic layer deposition (ALD), a deposition technique of self-limiting gas/solid phase chemical reactions for growing atomic scale thin films, has been extremely useful for precisely regulating nanoscale pore structures, especially modification and functionalization of porous separation membranes. Most existing ALD equipment are designed for silicon wafer substrate in semiconductor industry, thus design optimization on ALD processes of both precursor flow and surface reactions are needed for application in large-scale ceramic membranes. Computerized fluid dynamics (CFD) modeling was used to investigate ALD process on 1-meter-long single-channeled ceramic membrane by considering both boundary conditions and surface chemical reactions of two precursors pulsed alternatively into the channel. The simulations fitted well with the experimental data at average difference of 1.69% and thus an ALD model for two-way alternatively pulsed rotation was proposed, which would be very helpful in equipment design and process optimization of ALD for large scale ceramic membranes.%陶瓷膜具有耐高温、耐酸碱、强度高等优点,在液体分离领域得到了广泛应用。对陶瓷膜进行表面改性,可进一步提升其性能,但基于表面化学反应的改性方法工艺过程复杂,难于控制。原子层沉积(atomic layer deposition,ALD)是基于表面自限制化学反应过程的气固相薄膜沉积技术,可以在纳米尺度精确调控孔道结构,特别适用于多孔分离膜的改性和功能化。目前尚无适用于大尺寸陶瓷膜的ALD设备,需要对ALD过程进行专门的优化设计。通过CFD模型对1 m长的单通道陶瓷膜的ALD

  4. 陶瓷膜在洗浴污水中的膜恢复条件研究%A Study on Ceramic Membrane in the Bathing Wastewater under Membrane Recovery Condition

    Institute of Scientific and Technical Information of China (English)

    黄春萍; 阿不都瓦依提·玉苏甫; 董双快; 杨平; 何伟

    2014-01-01

    采用0.05μm 陶瓷膜对洗浴污水进行分离效果试验,对比过滤前后洗浴污水常规指标的变化情况,分析膜通量的变化规律.探究膜污染后膜通量恢复的最佳条件,运用物理、化学及物理化学联合方法进行清洗,得出最佳的清洗方法.试验结果表明,0.05μm 的陶瓷膜对洗浴污水的浊度、悬浮物、COD、BOD、微生物去除效果较好,洗浴污水循环过滤后可就地直接回用于池水;膜通量恢复方法中,利用单步物理清洗和化学清洗正交试验得出物理-化学复合清洗的最佳条件,即先超声5 min,再用2%的柠檬酸反冲洗30 min,清洗后膜通量恢复率高达99%.%The changes of convetional indexes of bathing wastewater before and after filtration were com-paratively analyzed by the separating bathing wastewater with ceramic membrane of 0.05μm.To explore the best conditions for membrane flax recovery after membrane being polluted,the best cleaning method was obtained by using physical,chemical and physico-chemical joint cleaning method.The results showed that the ceramic membrane with a pore size of 0.05μm had better removal effect on turbidity of bathing wastewater,suspended solids,COD BOD and microbe indicators.In the method of membrane flux recovery, the optimum conditions of physico-chemical recombination cleaning were obtained by using single-step physical cleaning and orthogonal experiment of chemical cleaning,namely first ultrasound was used for 5 min,the 2% of citric acid was used to be recoiled for 30 min.The membrane flux recovery rate was 99%after cleaning.

  5. Effect of Porosity and Concentration Polarization on Electrolyte Diffusive Transport Parameters through Ceramic Membranes with Similar Nanopore Size

    Directory of Open Access Journals (Sweden)

    Virginia Romero

    2014-08-01

    Full Text Available Diffusive transport through nanoporous alumina membranes (NPAMs produced by the two-step anodization method, with similar pore size but different porosity, is studied by analyzing membrane potential measured with NaCl solutions at different concentrations. Donnan exclusion of co-ions at the solution/membrane interface seem to exert a certain control on the diffusive transport of ions through NPAMs with low porosity, which might be reduced by coating the membrane surface with appropriated materials, as it is the case of SiO2. Our results also show the effect of concentration polarization at the membrane surface on ionic transport numbers (or diffusion coefficients for low-porosity and high electrolyte affinity membranes, which could mask values of those characteristic electrochemical parameters.

  6. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  7. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  8. Preparação e caracterização de membranas cerâmicas de cordierita Preparation and characterization of cordierite ceramic membranes

    Directory of Open Access Journals (Sweden)

    F. A. Silva

    2006-12-01

    sinterizadas a 1280 ºC obtiveram maior permeabilidade, seguindo-se das de 1250 ºC, 1200 ºC e as de 1150 ºC. Os valores médios dos fluxos encontrados nas membranas sinterizadas nas temperaturas de 1150, 1200, 1250 e 1280 ºC foram de aproximadamente 68, 143, 378 e 587 kg/h.m², respectivamente.Membrane separation processes find large applications. Ceramic membranes are applied in several processes, mainly in application above 250 ºC, as well as in separation of solutions with pH extremely acid and even in systems with organic solvents. On the other hand, ceramic membranes show high cost of fabrication, mainly in relation to the raw synthetic materials (zirconia, alumina, titania and silica. Therefore, the main concern in the development of these membranes is to optimize the cost using natural non-expensive raw materials and more efficient ceramic processing, such as extrusion. The fabrication of ceramic membranes by extrusion gives the possibility to use cross flow system, which is very useful in microfiltration and ultrafiltration separation processes. The aim of this work is to prepare tubular cordierite membranes from raw materials such as clays and talc and by extrusion processing. Four sintering temperatures (1150, 1200, 1250 and 1280 ºC were used to show the effect on the morphological characteristics of the membranes. The membranes were characterized by X-ray diffraction, scanning electron microscopy and mercury intrusion porosimetry. The results showed the formation of cordierite phase at all sintering temperatures. The membranes presented pore size of 1.4, 2.2, 3.3 and 4.1 µm and porosity content of 28.7, 29.1, 27.7 and 24.3% for sintering temperaturesf 1150, 1200, 1250 and 1280 ºC, respectively. These values show that these membranes are suitable to be applied in microfiltration separation processes. The results of water flux, at steady state, show that the membrane sintered at 1280 ºC presented the highest value, 587.3 kg/m².h, followed by 377.7 kg

  9. Optimization of O3 as Pre-Treatment and Chemical Enhanced Backwashing in UF and MF Ceramic Membranes for the Treatment of Secondary Wastewater Effluent and Red Sea Water

    KAUST Repository

    Herrera, Catalina

    2011-12-12

    Ceramic membranes have proven to have many advantages over polymeric membranes. Some of these advantages are: resistance against extreme pH, higher permeate flux, less frequent chemical cleaning, excellent backwash efficiency and longer lifetime. Other main advantage is the use of strong chemical agent such as Ozone (O3), to perform membrane cleaning. Ozone has proven to be a good disinfection agent, deactivating bacteria and viruses. Ozone has high oxidation potential and high reactivity with natural organic matter (NOM). Several studies have shown that combining ozone to MF/UF systems could minimize membrane fouling and getting higher operational fluxes. This work focused on ozone – ceramic membrane filtration for treating wastewater effluent and seawater. Effects of ozone as a pre – treatment or chemical cleaning with ceramic membrane filtration were identified in terms of permeate flux and organic fouling. Ozonation tests were done by adjusting O3 dose with source water, monitoring flux decline and membrane fouling. Backwashing availability and membrane recovery rate were also analyzed. Two types of MF/UF ceramics membranes (AAO and TAMI) were used for this study. When ozone dosage was higher in the source water, membrane filtration improved in performance, resulting in a reduced flux decline. In secondary wastewater effluent, raw source water declined up to 77% of normalized flux, while with O3 as pre – treatment, source water at its higher O3 dose, flux decreased only 33% of normalized flux. For seawater, membrane performance increase from declining to 37% of its final normalized flux to 21%, when O3 as a pre – treatment was used. Membrane recovery rate also improved even with low O3 dose, as an example, with 8 mg/L irreversible fouling decreases from 58% with no ozone addition to 29% for secondary wastewater effluent treatment. For seawater treatment, irreversible fouling decreased from 37% with no ozone addition to 21% at 8 mg/L, proving ozone is a

  10. 多孔陶瓷分离膜支撑体的制备%Preparation of Porous Ceramic Separation Membrane Supports

    Institute of Scientific and Technical Information of China (English)

    刘亚会; 汪建根

    2012-01-01

    采用氧化铝为主要原料制备出多孔陶瓷分离膜支撑体,对原料粉体做了TG/DSC曲线分析.研究了支撑体的烧结温度对收缩率的影响;烧结温度、保温时间和原料粉体粒径对孔结构、孔径的影响;造孔剂用量对孔隙率的影响.结果表明:在烧结温度1 200℃,保温时间4h,造孔剂用量(即造孔剂质量占原料总质量的百分数,下同)大于20%的条件下,制备出孔径分布均匀,孔隙率大于50%,符合透水要求的多孔陶瓷分离膜支撑体.%Porous ceramic separation membrane supports are prepared using alumina fine as the main raw materials, and the TG/DSC curves of the powder of raw materials are analyzed. The effect of the supports' sintering temperature on the shrinkage rate is studied. The effects of different sintering temperature, holding time and materials powder particle size on pore structure and size of the supports are also studied. The effect of the pore former dosage on porosity is also within the scope of study. The results show that porous ceramics separation membrane supports of uniform pore size distribution and with porosity more than 50% and pervious to water can be prepared under the following optimum conditions:sintering temperature being 1 200 ℃, holding time being 4 h, and porous agent being more than 20%.

  11. Micellar casein concentrate production with a 3X, 3-stage, uniform transmembrane pressure ceramic membrane process at 50°C.

    Science.gov (United States)

    Hurt, E; Zulewska, J; Newbold, M; Barbano, D M

    2010-12-01

    The production of serum protein (SP) and micellar casein from skim milk can be accomplished using microfiltration (MF). Potential commercial applications exist for both SP and micellar casein. Our research objective was to determine the total SP removal and SP removal for each stage, and the composition of retentates and permeates, for a 3×, continuous bleed-and-feed, 3-stage, uniform transmembrane pressure (UTP) system with 0.1-μm ceramic membranes, when processing pasteurized skim milk at 50°C with 2 stages of water diafiltration. For each of 4 replicates, about 1,100 kg of skim milk was pasteurized (72°C, 16s) and processed at 3× through the UTP MF system. Retentate from stage 1 was cooled to Kjeldahl methods; sodium dodecyl sulfate-PAGE analysis was also performed on the retentates from each stage. Theoretically, a 3-stage, 3× MF process could remove 97% of the SP from skim milk, with a cumulative SP removal of 68 and 90% after the first and second stages, respectively. The cumulative SP removal using a 3-stage, 3× MF process with a UTP system with 0.01-μm ceramic membranes in this experiment was 64.8 ± 0.8, 87.8 ± 1.6, and 98.3 ± 2.3% for the first, second, and third stages, respectively, when calculated using the mass of SP removed in the permeate of each stage. Various methods of calculation of SP removal were evaluated. Given the analytical limitations in the various methods for measuring SP removal, calculation of SP removal based on the mass of SP in the skim milk (determined by Kjeldahl) and the mass SP present in all of the permeate produced by the process (determined by Kjeldahl) provided the best estimate of SP removal for an MF process.

  12. Oxygen permeation in thin, dense Ce0.9Gd0.1O 1.95- membranes I. Model study

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Søgaard, Martin; Hendriksen, Peter Vang

    2011-01-01

    at the feed and permeate side of the membrane, related to the gaseous oxygen reduction and fuel oxidation, respectively, as well as the gas conversion and gas diffusion resistances in the porous support structure at the permeate side. The temperature and oxygen activity dependence of the oxide ionic......A model of a supported planar Ce0.9Gd0.1O 1.95-δ oxygen membrane in a plug-flow setup was constructed and a sensitivity analysis of its performance under varying operating conditions and membrane parameters was performed. The model takes into account the driving force losses at the catalysts...... and electronic conductivity and the oxygen nonstoichiometry of Ce0.9Gd0.1O1.95-δ were described based on literature data. The performance of the membrane was characterised by the delivered oxygen flux and the membrane voltage. The dependence of the performance on the various membrane and operating parameters...

  13. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  14. Tight ceramic UF membrane as RO pre-treatment: The role of electrostatic interactions on phosphate rejection

    NARCIS (Netherlands)

    Shang, R.; Verliefde, A.R.D.; Hu, J.; Zeng, Z.; Lu, L.; Kemperman, A.J.B.; Deng, H.; Nijmeijer, K.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can poten

  15. Synthesis and sintering of ceramic nanocomposites with high mixed conductivity

    Directory of Open Access Journals (Sweden)

    Zyryanov V.V.

    2005-01-01

    Full Text Available Metastable solid solutions of complex oxides with fluorite and perovskite structures are obtained by mechanosynthesis. Dense ceramics on the base of these metastable phases was obtained by thermal sintering of nanopowders due to kinetic stabilization. Different degrees of a chemical interaction (interdiffusion are observed during sintering of "perovskite+fluorite" and "perovskite+perovskite" composites. It is shown, that optimization of the composition, mixing conditions of individual phases and their sintering, preparation of ceramic composites with mixed conductivity for use in catalytic membrane reactors is possible. Unusual behavior of complex perovskites and fluorites is discovered during sintering, enabling determination of an optimum sintering temperature and time for which a qualitative explanation is given. It is established that rearrangement of fine crystalline particles as a whole plays a key role in shrinkage.

  16. Research on Ceramic Membrane Cross-flow Deep Filtration of Heterogeneous Particle Size Suspension%非均粒悬浮液的陶瓷膜错流深滤速度研究

    Institute of Scientific and Technical Information of China (English)

    杨德武; 周庄

    2012-01-01

    根据使用陶瓷膜中存在的问题,并以非对称陶瓷膜结构特点为基础,提出了以陶瓷膜支撑层(深层)与膜层共同作为过滤介质的一种新的陶瓷膜错流深层过滤方式。用非均粒径高岭土悬浮液,经过自行设计的实验流程和错流过滤器,进行了陶瓷膜错流深层过滤等实验。对取得的实验数据进行分析对比,得到了在相同操作条件下新方式比传统错流膜过滤的过滤阻力增长减缓、过滤速度更快且更稳定等结论。%Based on the characteristic of the ceramic membrane,this thesis use the membrane layer and supporting layer together to filter suspension.this article develops a new way of ceramic membrane filtration,which is named ceramic membrane cross-flow deep filtration.Using the heterogeneous particle size suspension as the material,the experiment is finished in a self-design filter and process is also brand new.According to analysis the results which are acquired by the experiment,it is presented in this work that the rate of filtration which is obtained when the ceramic membrane filtration is applying the new way is faster and more stable than the traditional cross-flow membrane filtration.

  17. Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability

    KAUST Repository

    Pan, Yichang

    2012-12-01

    Purification and recovery of hydrogen from hydrocarbons in refinery streams in the petrochemical industry is an emerging research field in the study of membrane gas separation. Hollow fiber membrane modules can be easily implemented into separation processes at the industrial scale. In this report, hollow yttria-stabilized zirconia (YSZ) fiber-supported zeolitic imidazole framework-8 (ZIF-8) membranes were successfully prepared using a mild and environmentally friendly seeded growth method. Our single-component permeation studies demonstrated that the membrane had a very high hydrogen permeance (~15×10 -7mol/m 2sPa) and an ideal selectivity of H 2/C 3H 8 of more than 1000 at room temperature. This high membrane permeability and selectivity caused serious concentration polarization in the separation of H 2/C 3H 8 mixtures, which led to almost 50% drop in both the H 2 permeance and the separation factor. Enhanced mixing on the feed side could reduce the effect of the concentration polarization. Our experimental data also indicated that the membranes had excellent reproducibility and long-term stability, indicating that the hollow fiber-supported ZIF-8 membranes developed in this study have great potential in industry-scale separation of hydrogen. © 2012 Elsevier B.V.

  18. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  19. Ceramic membrane technology:30 years retrospect and prospect%陶瓷膜分离技术发展30年回顾与展望

    Institute of Scientific and Technical Information of China (English)

    孟广耀; 陈初升; 刘卫; 刘杏芹; 彭定坤

    2011-01-01

    值庆贺《膜科学与技术》杂志创刊三秩之年,陶瓷分离膜技术从核燃料浓缩分离转而民生应用至今也走过了大约30个春秋.现借机简要回顾其三个十年的历史性发展,阅历现状、展望未来,以期对促进无机膜在新工业革命中发挥关键创新作用有所助益.%On the 30th anniversary of the Journal "Membrane Science and Technology", it has also been a-bout 30 years since ceramic membrane separation technology was employed for the civil purpose though it had served for long time in the concentration and separation of nuclear bomb fuels. This article would briefly recall its historical development; introduce the present status and prospect for the future in order to promote its key and innovative functions in the new industrial revolution.

  20. Liquid-phase non-thermal plasma-prepared N-doped TiO(2) for azo dye degradation with the catalyst separation system by ceramic membranes.

    Science.gov (United States)

    Cheng, Hsu-Hui; Chen, Shiao-Shing; Cheng, Yi-Wen; Tseng, Wei-Lun; Wang, Yi-Hui

    2010-01-01

    This study strived to improve the photocatalytic activity by using liquid-phase non-thermal plasma (LPNTP) technology for preparing N-doping TiO(2) as well as to separate/recover the N-dope TiO(2) particles by using ceramic ultrafiltration membrane process. The yellow color N-doped TiO(2) photocatalysts, obtained through the LPNTP process, were characterized with UV-Vis spectroscopy, X-ray diffraction (XRD), and electron spectroscopy for chemical analysis (ESCA). The UV-Vis spectrum of N-doped TiO(2) showed that the absorption band was shifted to 439 nm and the band gap was reduced to 2.82 eV. The structure analysis of XRD spectra showed that the peak positions and the crystal structure remained unchanged as anatase after plasma-treating at 13.5 W for 40 min. The photocatalytic activity of N-doped TiO(2) was evaluated by azo dyes under visible light, and 63% of them was degraded after 16 hours in a continuous-flow photocatalytic system. For membrane separation/recover system, the recovery efficiency reached 99.5% after the ultrafiltration had been carried out for 90 min, and the result indicated that the photocatalyst was able to be separated/recovered completely.

  1. Hydrogen separation membranes annual report for FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Chen, L.; Ciocco, M.; Doctor, R. D.; Dorris, S.E.; Emerson, J. E.; Fisher, B.; Lee, T. H.; Killmeyer, R. P.; Morreale,B.; Picciolo, J. J.; Siriwardane, R. V.; Song, S. J.

    2007-02-05

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. This goal of this project is to develop two types of dense ceramic membrane for producing hydrogen nongalvanically, i.e., without electrodes or external power supply, at commercially significant fluxes under industrially relevant operating conditions. The first type of membrane, hydrogen transport membranes (HTMs), will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. The second type of membrane, oxygen transport membranes (OTMs), will produce hydrogen by nongalvanically removing oxygen that is generated when water dissociates at elevated temperatures. This report describes progress that was made during FY 2006 on the development of OTM and HTM materials.

  2. Hydrogen separation membranes annual report for FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

    2011-03-14

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

  3. PDMS/陶瓷复合膜用于正丁醇-水体系的渗透汽化分离%Pervaporation Separation of Butanol-Water Mixtures Using Polydimethylsiloxane/Ceramic Composite Membrane*

    Institute of Scientific and Technical Information of China (English)

    刘公平; 侯丹; 卫旺; 相里粉娟; 金万勤

    2011-01-01

    Pervaporation has attracted considerable interest owing to its potential application in recovering biobutanol from biomass acetone-butanol-ethanol (ABE) fermentation broth. In this study, butanol was recovered from its aqueous solution using a polydimethylsiloxane (PDMS)/ceramic composite pervaporation membrane. The effects of operating temperature, feed concentration, feed flow rate and operating time on the membrane pervaporation performance were investigated. It was found that with the increase of temperature or butanol concentration in the feed,the total flux through the membrane increased while the separation factor decreased slightly. As the feed flow rate increased, the total flux increased gradually while the separation factor changed little. At 40 ℃ and 1% (by mass) butanol in the feed, the total flux and separation factor of the membrane reached 457.4 g·m-2·h-1 and 26.1, respectively. The membrane with high flux is suitable for recovering butanol from ABE fermentation broth.

  4. Testing the Chemical/Structural Stability of Proton Conducting Perovskite Ceramic Membranes by in Situ/ex Situ Autoclave Raman Microscopy.

    Science.gov (United States)

    Slodczyk, Aneta; Zaafrani, Oumaya; Sharp, Matthew D; Kilner, John A; Dabrowski, Bogdan; Lacroix, Olivier; Colomban, Philippe

    2013-10-25

    Ceramics, which exhibit high proton conductivity at moderate temperatures, are studied as electrolyte membranes or electrode components of fuel cells, electrolysers or CO2 converters. In severe operating conditions (high gas pressure/high temperature), the chemical activity towards potentially reactive atmospheres (water, CO2, etc.) is enhanced. This can lead to mechanical, chemical, and structural instability of the membranes and premature efficiency loss. Since the lifetime duration of a device determines its economical interest, stability/aging tests are essential. Consequently, we have developed autoclaves equipped with a sapphire window, allowing in situ Raman study in the 25-620 °C temperature region under 1-50 bar of water vapor/gas pressure, both with and without the application of an electric field. Taking examples of four widely investigated perovskites (BaZr0.9Yb0.1O3-δ, SrZr0.9Yb0.1O3-δ, BaZr0.25In0.75O3-δ, BaCe0.5Zr0.3Y0.16Zn0.04O3-δ), we demonstrate the high potential of our unique set-up to discriminate between good/stable and instable electrolytes as well as the ability to detect and monitor in situ: (i) the sample surface reaction with surrounding atmospheres and the formation of crystalline or amorphous secondary phases (carbonates, hydroxides, hydrates, etc.); and (ii) the structural modifications as a function of operating conditions. The results of these studies allow us to compare quantitatively the chemical stability versus water (corrosion rate from ~150 µm/day to less than 0.25 µm/day under 200-500 °C/15-80 bar PH2O) and to go further in comprehension of the aging mechanism of the membrane.

  5. Purification Process of Lianhua Qingwen Capsule Water Extraction with Ceramic Membrane Filtration%陶瓷膜过滤对连花清瘟胶囊水提液纯化工艺的影响

    Institute of Scientific and Technical Information of China (English)

    刘敏彦; 张永锋; 史东霞; 许红辉; 李炳超; 李正杰; 范文成

    2013-01-01

    目的 研究不同孔径无机陶瓷膜对中药连花清瘟胶囊水提液除杂效果及主要有效成分转移率的影响.方法 以连花清瘟胶囊水提液为研究对象,采用8种不同孔径的无机陶瓷膜过滤,观察膜通量和主要有效成分的转移率.结果 经过8种不同孔径陶瓷膜过滤后,连花清瘟胶囊水提液均较过滤前明显透明澄清,出膏率也有一定程度的下降,综合考虑实际生产因素,孔径为0.2 μm的陶瓷膜管能保证在有效成分转移率和固形物去除率较高的条件下有较大的膜通量,适用于连花清瘟胶囊水提液除杂工艺.结论 陶瓷膜过滤技术可有效改善连花清瘟胶囊水提液除杂的效果,可用于中药提取液精制生产领域.%Objective To study the purification process and the retention rates of main active ingredients of Lianhua Qingwen Capsule water extraction with different pore size inorganic ceramic membrane. Methods Water extraction of Lianhua Qingwen Capsule was filtered by eight kinds of pore size inorganic ceramic membranes, the membrane flux and the retention rates of main active ingredients were observed. Results Water extraction liquid become clear and the cream rates decreased after filtered with ceramic membrane. Considering the actual production factors, the pore size of 0.2 μm ceramic membrane was selected to apply to purification process of Lianhua Qingwen Capsule water extraction, because of the higher retention rates of the active ingredients, the higher removal rates of impurities and the higher membrane flux. Conclusion Ceramic membrane filtration technology is effective to remove impurities of Lianhua Qingwen Capsule water extraction, and can be applied to the field of refining production of traditional Chinese medicine extraction.

  6. The Application of Ceramic Membrane Filtration Technology in the Process of Coal Ethylene Glycol%陶瓷膜过滤技术在煤制乙二醇工艺中的应用

    Institute of Scientific and Technical Information of China (English)

    谭秀迁

    2014-01-01

    介绍了陶瓷膜过滤技术在煤制乙二醇工艺中应用,通过试验和分析,采用微孔陶瓷膜过滤器较好的解决了煤制乙二醇过程中微细颗粒精密过滤技术难题,提升煤制乙二醇成品的品质。%The paper briefly introduces the ceramic membrane filtration technology in coal used in ethylene glycol process ,through experiment and analysis of the microporous ceramic membrane filter better solved in the process of coal glycol micro -sized particles precision filtration problem ,promote the quality of the coal glycol products .

  7. Phosphate Ca{sub 1/4}Sr{sub 1/4}Zr{sub 2}(PO{sub 4}){sub 3} of the NaZr{sub 2}(PO{sub 4}){sub 3} structure type: Synthesis of a dense ceramic material and its radiation testing

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, A.I., E-mail: albina.orlova@inbox.ru [N.I. Lobachevsky State University of Nizhny Novgorod, Gagarina Ave. 23, 603950 Nizhny Novgorod (Russian Federation); Volgutov, V.Yu.; Mikhailov, D.A.; Bykov, D.M. [N.I. Lobachevsky State University of Nizhny Novgorod, Gagarina Ave. 23, 603950 Nizhny Novgorod (Russian Federation); Skuratov, V.A. [Joint Institute for Nuclear Research, Joliot-Curie St. 6, 141980 Dubna (Russian Federation); Chuvil’deev, V.N.; Nokhrin, A.V.; Boldin, M.S.; Sakharov, N.V. [Physico-Technical Research Institute of the State University of Nizhny Novgorod, Gagarina Ave. 23, b. 3, 603950 Nizhny Novgorod (Russian Federation)

    2014-03-15

    Highlights: •High density ceramics with NZP structure were prepared by Spark Plasma Sintering. •Ceramic materials were irradiated in cyclotron by Xe ions with fluences 6 × 10{sup 10} to 1 × 10{sup 13} ions/cm{sup 2}. •The conditions of transformation from metamict to crystalline state have been found. -- Abstract: The powder of phosphate Ca{sub 1/4}Sr{sub 1/4}Zr{sub 2}(PO{sub 4}){sub 3} was synthesized by sol–gel processes in the presence of citric acid and ethylene glycol. Ceramic samples were prepared from this powder by Spark Plasma Sintering (SPS), their relative densities were found to be 99.5 ± 0.3% after the isothermal treatment at 860 °S for 3 min. Sintered disc-shaped ceramic samples (d = 10 mm, h = 4 mm) were bombarded at 300 K by 167 MeV Xe{sup 26+} ions with fluences ranging from 6 ⋅ 10{sup 10} to 1 ⋅ 10{sup 13} ions/cm{sup 2}. It was found that exposure to the highest fluence (10{sup 13} ion/cm{sup 2}) led to a complete amorphization of the irradiated layer. The observed phase transition is ascribed to the formation of amorphous latent tracks via dense electronic excitations. Postradiation heat treatment revealed that the transformation from metamict to crystalline form took place after annealing at T = 200, 300, 400, 500, 600 and 800 °S and t = 3, 13, 11, 5, 17 and 15 h, respectively.

  8. Auto-thermal reforming using mixed ion-electronic conducting ceramic membranes for a small-scale H₂ production plant.

    Science.gov (United States)

    Spallina, Vincenzo; Melchiori, Tommaso; Gallucci, Fausto; van Sint Annaland, Martin

    2015-03-18

    The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%). Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%-70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR) is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%-78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.

  9. Proton conducting cerate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, G.W.; Pederson, L.R.; Armstrong, T.R.; Bates, J.L.; Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    Cerate perovskites of the general formula AM{sub x}Ce{sub 1-x}O{sub 3-{delta}}, where A = Sr or Ba and where M = Gd, Nd, Y, Yb or other rare earth dopant, are known to conduct a protonic current. Such materials may be useful as the electrolyte in a solid oxide fuel cell operating at intermediate temperatures, as an electrochemical hydrogen separation membrane, or as a hydrogen sensor. Conduction mechanisms in these materials were evaluated using dc cyclic voltammetry and mass spectrometry, allowing currents and activation energies for proton, electron, and oxygen ion contributions to the total current to be determined. For SrYb{sub 0.05}Ce{sub 0.95}O{sub 3-{delta}}, one of the best and most environmentally stable compositions, proton conduction followed two different mechanisms: a low temperature process, characterized by an activation energy of 0.42{+-}0.04 eV, and a high temperature process, characterized by an activation energy of 1.38{+-}0.13 eV. It is believed that the low temperature process is dominated by grain boundary conduction while bulk conduction is responsible for the high temperature process. The activation energy for oxygen ion conduction (0.97{+-}0.10 eV) agrees well with other oxygen conductors, while that for electronic conduction, 0.90{+-}0.09 eV, is affected by a temperature-dependent electron carrier concentration. Evaluated by direct measurement of mass flux through a dense ceramic with an applied dc field, oxygen ions were determined to be the majority charge carrier except at the lowest temperatures, followed by electrons and then protons.

  10. Dense-cored vesicles, smooth endoplasmic reticulum, and mitochondria are closely associated with non-specialized parts of plasma membrane of nerve terminals: implications for exocytosis and calcium buffering by intraterminal organelles.

    Science.gov (United States)

    Lysakowski, A; Figueras, H; Price, S D; Peng, Y Y

    1999-01-18

    To determine whether there are anatomical correlates for intraterminal Ca2+ stores to regulate exocytosis of dense-cored vesicles (DCVs) and whether these stores can modulate exocytosis of synaptic vesicles, we studied the spatial distributions of DCVs, smooth endoplasmic reticulum (SER), and mitochondria in 19 serially reconstructed nerve terminals in bullfrog sympathetic ganglia. On average, each bouton had three active zones, 214 DCVs, 26 SER fragments (SERFs), and eight mitochondria. DCVs, SERFs and mitochondria were located, on average, 690, 624, and 526 nm, respectively, away from active zones. Virtually no DCVs were within "docking" (i.e., similar to those for exocytosis of synaptic vesicles. Because there were virtually no SERFs or mitochondria within 50 nm of any active zone, Ca2+ modulation by these organelles is unlikely to affect ACh release evoked by a single action potential. In contrast, 30% of DCVs and 40% of SERFs were located within 50 nm of the nonspecialized regions of the plasma membrane. Because each bouton had at least one SERF within 50 nm of the plasma membrane and most of these SERFs had DCVs, but not mitochondria, near them, it is possible for Ca2+ release from the SER to provide the Ca2+ necessary for DCV exocytosis. The fact that 60% of the mitochondria had some part within 50 nm of the plasma membrane means that it is possible for mitochondrial Ca2+ buffering to affect DCV exocytosis.

  11. 陶瓷膜在卤制品加工废弃液微滤中的应用%Application of Ceramic Membrane on Microfiltration Waste Liquid in Marinating

    Institute of Scientific and Technical Information of China (English)

    李燕; 郑晓杰; 黄雪飞; 徐静

    2012-01-01

    探讨了陶瓷膜用于卤制加工废弃液微滤的工艺条件。研究不同预处理方法、膜孔径、操作温度、操作压力等因素对膜通量的影响,并通过正交实验确定微滤的最佳工艺参数为:预处理网筛300目、陶瓷膜孔径0.22μm、操作温度50℃、操作压力0.075 MPa,通过质量分数0.75%NaOH和0.5%柠檬酸复合清洗后,陶瓷膜的通量恢复率可达到94.1%。%Technical parameters of ceramic membrane microfiltration of waste liquid in marinating were studied.The effect of pretreatment method,membrane pore size,operation pressure,operation temperature on membrane flux were studied.The best parameters were determined by orthogonal experiment: pretreatment by 300mesh screen,membrane pore size 0.22 um,operation tempreature 50℃,operation pressure 0.075 MPa.The recovery percent of ceramic membrane was 94.1% after wash by 0.75% NaOH and 0.5% citric acid.

  12. Novel SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) membrane for hydrogen separation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Dense ceramic membranes with protonic and electronic conductivity have attracted considerable interest in recent years.In this paper,the powders of SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) were synthesized via the liquid citrate method,and the membranes of SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) were prepared by pressing followed by sintering.X-ray diffraction(XRD) was used to characterize the phase structure of both the powder and sintered membrane.The microstructure of the sintered membranes was studied by sc...

  13. Effect of Sintering Temperature on Microstructure and Hydrogen Permeation Properties of Perovskite Membrane

    Institute of Scientific and Technical Information of China (English)

    Marzieh Heidari; Akbar Zamaniyan; Aliakbar SafeKordi; Ensieh Ganji Babakhani; Mahdi Amanipour

    2013-01-01

    The BaCe0.9Y0.1O3-δ (BCY) perovskite membrane was successfully synthesized by liquid citrate method.The phase structure of the powder was characterized by X-ray diffraction (XRD).Scanning electron microscopy (SEM) was used to characterize microstructures of the membrane sintered under various conditions.Sintering temperatures and dwell time during sintering influence the final microstructure of the ceramic.Results showed that increasing sintering temperature resulted in a dense membrane with clear grains.An increase of dwell time was favorable to produce membranes with larger grains in the sintered ceramics.A density of 5.87 g/cm3 was reached for the membrane after sintering at 1200 C with dwell time of 10 h.This resulted in the formation of dense membranes with clear structure and average grain size of 0.27 μm.The influence of microstructure on the hydrogen permeation flux through BCY was observed by measuring the hydrogen permeation flux,and the results showed that hydrogen permeation flux increases with increasing the average grain size of the membrane.From H2 permeation rates,it was found that bulk diffusion rather than surface reaction played the dominant role in H2 transport.

  14. On Ceramics.

    Science.gov (United States)

    School Arts, 1982

    1982-01-01

    Presents four ceramics activities for secondary-level art classes. Included are directions for primitive kiln construction and glaze making. Two ceramics design activities are described in which students make bizarrely-shaped lidded jars, feet, and footwear. (AM)

  15. Preparation of dense nanocrystalline Bi{sub 2}O{sub 3}-HfO{sub 2}-Y{sub 2}O{sub 3} ceramic by microwave plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Qiang [Nano-Science and Nano-Technology Research Center, School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China)]. E-mail: qzhen@staff.shu.edu.cn; Vannier, Rose Noelle [Laboratoire de Cristallochimie et Physicochimie du Solide, UPRESA-CNRS 8012 ENSCL-USTL, BP 108, 59652 Villeneuve d' Ascq Cedex (France); Kale, Girish M. [Institute for Materials Research, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2007-01-25

    Processing of nanocrystalline Bi{sub 2}O{sub 3}-HfO{sub 2}-Y{sub 2}O{sub 3} ceramic having high density has been investigated and reported in this paper. Nanopowders of mixed bismuth oxide, hafnia and yttrium oxide have been prepared by a reverse titration chemical coprecipitation from Bi{sup 3+}, Hf{sup 4+} and Y{sup 3+} containing aqueous solution. The high density, nanocrystalline Bi{sub 2}O{sub 3}-HfO{sub 2}-Y{sub 2}O{sub 3} ceramic has been synthesized by microwave plasma sintering. The XRD results of grain growth behavior indicates that growth of both {delta}-Bi{sub 2}O{sub 3} and c-HfO{sub 2} crystallites obeys the parabolic rate law, expressed as (D-D {sub 0}){sup 2} = Kt, during sintering process. After sintering at 700 deg. C for 60 min, the relative density of the samples sintered by microwave plasma has been found to be greater than 97%, and the samples exhibit considerably finer microstructure with an average size between 60 and 70 nm and equiaxed morphology and better density comparing with that of samples sintered by conventional pressureless sintering. In addition, mechanical properties of nanocrystalline Bi{sub 2}O{sub 3}-HfO{sub 2}-Y{sub 2}O{sub 3} ceramic has been improved greatly compareing with nanocrystalline Bi{sub 2}O{sub 3}-Y{sub 2}O{sub 3} ceramic.

  16. 针对污水处理的无机膜的制备与应用研究%PREPARATION OF INORGANIC CERAMIC MEMBRANE AND APPLICATION IN WATER WASTE TREATMENT

    Institute of Scientific and Technical Information of China (English)

    黄宾; 冯斌; 周耀

    2011-01-01

    无机膜分离技术是当今世界上发展较快的一门技术,采用膜分离技术对气相、液相进行分离过滤具有操作简单、能耗低的特点,应用日益广泛.本文研究了无机陶瓷膜管的制备过程中缺陷产生原因和解决办法,分析了无机膜的性能和在污水处理中的应用,并对无机膜技术的发展进行了展望.%Inorganic ceramic membrane was an advanced separation filter. It was very convenient for inorganic membrane to separate gases, liquids with simple operation and low energy consumption. Preparing process and properties of ceramic support and membrane were reported. Their defects were analysised. The inorganic membrane products were used in water waste treatment with good effect.

  17. Effect of ceramic fiber transition layer on the asymmetric filtration membrane of silicon carbide%陶瓷纤维过渡层对碳化硅非对称过滤膜的影响

    Institute of Scientific and Technical Information of China (English)

    孙扬善; 邓湘云; 王依山; 王传方; 张小龙; 杨学良; 刘佳; 邵健; 杨洁

    2014-01-01

    研究了由莫来石纤维和硅酸铝纤维组成的陶瓷纤维过渡层对高温气体过滤用碳化硅非对称过滤膜的成膜和过滤压降的影响。利用 SEM测试了陶瓷纤维过渡层的表面形貌以及非对称过滤膜侧面的形貌。厚度约为60μm 的陶瓷纤维过渡层介于支撑体和过滤膜之间,有效阻止了小粒径的过滤膜颗粒进入支撑体孔隙而减小了过滤膜的实际厚度,进而降低了过滤膜的过滤压降。同时陶瓷纤维过渡层还大大提高了成膜过程中过滤膜的均匀性和完整性。%The influence of ceramic fiber transition layer composed of mullite fibers and aluminosilicate fibers on the filter pressure drop and deposition of silicon carbide asymmetric filtration membrane used for high-tempera-ture gas filtration were investigated.The surface morphology of the transition layer of ceramic fiber and the side morphology of the asymmetric filter membrane were tested by SEM.The thickness of ceramic fiber transition layer about 60μm between the support and the filtration membrane,which effectively prevent the small particle size of the particles to enter the pores of the supporting body and the actual thickness of the filtration membrane was reduced,thereby reducing the filter pressure drop of the filtration membrane.Ceramic fiber transition layer also greatly improved the uniformity and integrity of the filtration membranes in the film-forming process.

  18. Methods Comparison of Ceramic Membrane Flux Recovering Ratio after Sugarcane Juice Filtration%陶瓷膜过滤蔗汁后膜通量恢复方法比较

    Institute of Scientific and Technical Information of China (English)

    胡瑞云; 沈石妍; 李艳芳; 李雪珍

    2016-01-01

    Fenestra of ceramic membrane built up after sugarcane juice filtration could significantly reduce the membrane flux and the efficiency of the film. Reasonable cleaning method was necessary for the flux recovering ratio and service life of film. Four cleaning methods of alkaline cleaner, cleaner containing enzyme, mixed oxidant and soaked by mixed oxidant were used in the experiment. The result showed that soaked by mixed oxidant was suitable for the cleaning of ceramic membrane, and the flux recovering ratio could reach 87%. This method had higher cleaning rate and can be used in the recovering of ceramic membrane.%陶瓷膜过滤蔗汁后,膜孔易被堵塞,造成膜通量大幅降低,影响膜的使用效率,需制定合理的清洗方法,有效恢复膜通量,延长膜的使用寿命.本实验对碱性清洗剂、含酶清洗剂、混合氧化剂和混合氧化剂浸泡一段时间后再清洗的4种清洗方法的清洗效果进行了对比,结果显示混合氧化剂浸泡后再清洗的方法较适合过滤蔗汁后陶瓷膜管的清洗,膜通量恢复率可达87%以上,清洗效率较高,达到有效恢复被污染陶瓷膜的水通量的目的.

  19. 超声在陶瓷膜处理乳化含油废水中的作用研究%Effect of Ultrasound on the Treatment of Emulsification Wastewater by Ceramic Membranes

    Institute of Scientific and Technical Information of China (English)

    舒莉; 邢卫红; 徐南平

    2007-01-01

    Ultrasonic field was applied in the treatment of oil emulsification wastewater by ZrO2 ceramic membrane. The permeate flux,rejection ratio in the filtration process and recovery ratio of flux in the membrane cleaning process were measured. Great improvement in the permeate flux and rejection ratio have been observed for the membrane process enhanced by the ultrasonic field. The permeate flux of water through the membrane was about were 8W of ultrasonic power,7cm of ultrasonic probe length introduced into the membrane channel and the same ultrasonic radiation direction as the wastewater flow. The resistance of the membrane process was compared between the cases with and without ultrasound,and the total resistance was reduced 68% by the use of ultrasound.Four methods including water cleaning,water cleaning under sonication,chemical cleaning and chemical cleaning under sonication were used to recover membrane flux. It was found that the flux recovery ratio increased with the increase of ultrasonic cleaning power. In addition,the use of chemical agents combining with ultrasonic irradiation showed a synergistic effect,which resulted in the highest cleaning efficiency and the shorter cleaning time.

  20. Inorganic membrane reactor technology CRADA {number_sign}1176; Final report and assessment of membrane technology

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, R.W.; Collins, J.P.; Ng, M.F. [and others

    1997-04-01

    This project focused on the fabrication and evaluation of supported inorganic membranes for hydrogen and oxygen separation in petrochemical processes. A variety of fabrication techniques, including CVD (Chemical Vapor Deposition), electroless plating, solution deposition and conventional ceramic processing methods were used for membrane fabrication. For the oxygen separation membrane materials studied, the high surface roughness of the commercially available (and chemically compatible) MgO supports for high flux oxygen materials (SrCo{sub 0.5}FeO{sub x} and SrCo{sub 0.8}Fe{sub 0.2}O{sub x}) hindered the development of supported membranes of these materials. More encouraging results were obtained for the supported hydrogen separation membranes. Both dense palladium (prepared by CVD and electroless plating) and ultramicroporous silica (prepared by solution deposition) membranes were fabricated onto porous alumina supports. Gas separation characteristics and reactor performance of the membranes were both studied. Of the two classes of membranes, when incorporated into a membrane reactor the silica membranes demonstrated the best performance. Propane and isobutane dehydrogenation processes were studied and the silica membrane reactors displayed modest improvements in performance compared to the conventional reactors. In propane dehydrogenation, an increase in propylene yield of 34% was obtained with the membrane reactor (compared to the conventional reactor); in isobutane dehydrogenation, an increase in isobutylene yield of 40% at 525 C was obtained. However, these performance gains decreased somewhat with time on stream, due to membrane instability. Further improvements in membrane stability and permselectivity, as well as catalyst stability are needed before membrane reactors can be considered as a realistic alternative to the existing conventional technology.

  1. Treatment of cosmetic effluent in different configurations of ceramic UF membrane based bioreactor: Toxicity evaluation of the untreated and treated wastewater using catfish (Heteropneustes fossilis).

    Science.gov (United States)

    Banerjee, Priya; Dey, Tanmoy Kumar; Sarkar, Sandeep; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja

    2016-03-01

    Extensive usage of pharmaceutical and personal care products (PPCPs) and their discharge through domestic sewage have been recently recognized as a new generation environmental concern which deserves more scientific attention over the classical environmental pollutants. The major issues of this type of effluent addressed in this study were its colour, triclosan and anionic surfactant (SDS) content. Samples of cosmetic effluent were collected from different beauty treatment salons and spas in and around Kolkata, India and treated in bioreactors containing a bacterial consortium isolated from activated sludge samples collected from a common effluent treatment plant. Members of the consortium were isolated and identified as Klebsiella sp., Pseudomonas sp., Salmonella sp. and Comamonas sp. The biotreated effluent was subjected to ultrafiltration (UF) involving indigenously prepared ceramic membranes in both side-stream and submerged mode. Analysis of the MBR treated effluent revealed 99.22%, 98.56% and 99.74% removal of colour, triclosan and surfactant respectively. Investigation of probable acute and chronic cyto-genotoxic potential of the untreated and treated effluents along with their possible participation in triggering oxidative stress was carried out with Heteropneustes fossilis (Bloch). Comet formation recorded in both liver and gill cells and micronucleus count in peripheral erythrocytes of individuals exposed to untreated effluent increased with duration of exposure and was significantly higher than those treated with UF permeates which in turn neared control levels. Results of this study revealed successful application of the isolated bacterial consortium in MBR process for efficient detoxification of cosmetic effluent thereby conferring the same suitable for discharge and/or reuse.

  2. Microfiltration: Effect of retentate protein concentration on limiting flux and serum protein removal with 4-mm-channel ceramic microfiltration membranes.

    Science.gov (United States)

    Hurt, E E; Adams, M C; Barbano, D M

    2015-04-01

    The objective of our study was to determine if the limiting flux and serum protein (SP) removal were different at 8, 9, or 10% true protein (TP) in the microfiltration (MF) retentate recirculation loop using 0.1-µm ceramic graded permeability membranes with 4-mm-channel diameters operated at 50 °C using a diluted milk protein concentrate with 85% protein on a total solids basis (MPC85) as the MF feed. The limiting flux for the MF of diluted MPC85 was determined at 3 TP concentrations in the recirculation loop (8, 9, and 10%). The experiment was replicated 3 times for a total of 9 runs. On the morning of each run, MPC85 was diluted with reverse osmosis water to an MF feed TP concentration of 5.4%. In all runs, the starting flux was 55 kg/m(2) per hour, the flux was increased in steps until the limiting flux was reached. The minimum flux increase was 10 kg/m(2) per hour. The limiting flux decreased as TP concentration in the recirculation loop increased. The limiting flux was 154 ± 0.3, 133 ± 0.7, and 117 ± 3.3 kg/m(2) per hour at recirculation loop TP concentrations of 8.2 ± 0.07, 9.2 ± 0.04, and 10.2 ± 0.09%, respectively. No effect of recirculation loop TP concentration on the SP removal factor was detected. However, the SP removal factor decreased from 0.80 ± 0.02 to 0.75 ± 0.02 as flux was increased from the starting flux of 55 kg/m(2) per hour to the limiting flux, with a similar decrease seen at all recirculation loop TP concentrations.

  3. Dense topological spaces and dense continuity

    Science.gov (United States)

    Aldwoah, Khaled A.

    2013-09-01

    There are several attempts to generalize (or "widen") the concept of topological space. This paper uses equivalence relations to generalize the concept of topological space via the concept of equivalence relations. By the generalization, we can introduce from particular topology on a nonempty set X many new topologies, we call anyone of these new topologies a dense topology. In addition, we formulate some simple properties of dense topologies and study suitable generalizations of the concepts of limit points, closeness and continuity, as well as Jackson, Nörlund and Hahn dense topologies.

  4. 不同电源模式下微弧氧化制备陶瓷膜的性能对比研究%The Performances of Ceramic Membrane Prepared by Micro Arc Oxidation Under Different Power Modes

    Institute of Scientific and Technical Information of China (English)

    韩勇; 王志义

    2012-01-01

    The ceramic coatings are prepared by micro arc oxidation on the ZL102 cast aluminum alloy,in the composite electrolyte of sodium silicate,tungsten,boric acid,sodium metaaluminate,and EDTA(Ethylene Diamine Tetraacetic Acid),using alternating current(AC) power and pulse power respectively.According to the observations with scanning electron microscopy(SEM),the pores on the surface of ceramic coating prepared by AC power are less than those prepared by pulse power,and with a better ceramic membrane morphology.The corrosion resistance of the ceramic layers is analyzed in the method of electrochemical,and the ceramic coating prepared by AC power supply has a better corrosion resistance.%在硅酸钠、钨酸钠、硼酸、偏铝酸钠和乙二胺四乙酸二钠的复合电解液中,分别采用交流电源和脉冲电源,利用微弧氧化方法,在ZL102铸造铝合金上制备了陶瓷膜层。通过扫描电镜(SEM)观察,交流电源模式制备的陶瓷膜层表面孔洞少,比用脉冲电源制备的陶瓷膜形貌好。利用电化学方法分析了陶瓷层的防腐蚀性能,交流电源制备的陶瓷膜层耐腐蚀性能好。

  5. Estudo reológico do vinho branco clarificado por membrana cerâmica = Rheological study of white wine clarified by ceramic membrane

    Directory of Open Access Journals (Sweden)

    Ricardo Cardoso de Oliveira

    2006-07-01

    Full Text Available Os processos de separação por membranas em fluxo tangencial têm se mostrado como uma alternativa em substituição as técnicas clássicas de filtração. Isso tem ocorrido pois esses processos eliminam os resíduos gerados pelo método convencional e combinam a clarificação, estabilização e a esterilização em uma operação contínua de filtração. Neste trabalho, teve-se como objetivo estudar o comportamento reológico do vinho branco submetido a uma clarificação com membrana cerâmica de diâmetro médio de poros de 0,05 μm a 2 bar e 20ºC nas amostras de alimentado, permeado e retido. Obteve-se uma considerável redução na turbidez e não foi constatada variação significativa nas demais análises físico-químicas realizadas a ponto de descaracterizar o vinho obtido. Notou-se nas amostras de alimentado, retido e permeado o comportamento reológico de fluído newtoniano.Membrane filtration is emerging as a rather promising technology for this purpose due to its ability to perform wine clarification/filtration/hygienization in one single step of continuous operation. This study aimed to evaluate the performance of a ceramic membrane with 0,05 mm at 2bar and 20ºC in the clarification of the white wine, and also to evaluate the rheology behavior ofwine in the samples of feed, permeated and retained. A great reduction in the turbidy was obtained and there was no significant variation in the other physical chemistry analyses accomplished to the point of affecting the features of the obtained wine. It was noticed that in the samples of feed, retained and permeated the rheological behavior of Newtonian fluid.

  6. 陶瓷膜的三步法清洗及效果分析%Study on three-step cleaning of ceramic membrane and analysis of its effects

    Institute of Scientific and Technical Information of China (English)

    黄有泉; 武云龙; 付馨; 王磊; 赵晓非

    2011-01-01

    采用超滤膜处理油田采出污水,通过陶瓷膜和篮式过滤器上无机垢的组成及陶瓷膜SEM形貌分析,研究了陶瓷膜清洗过程中药剂及离子浓度的变化、跨膜压差的变化等参数,考察了膜运行过程中的跨膜压差和产水量的变化情况.确定了具有针对性的碱洗-络合剂洗-氧化剂洗三步法清洗对污染的ZrO2陶瓷膜进行40℃低温清洗.中试试验结果表明清洗后,陶瓷膜高、低压端膜通量恢复率分别为97.1%和116.8%,膜运行时间68h.该方法重复性好,在成本控制、操作条件及清洗效果等方面具有显著优势.%Ultrafiltration membrane was used to treat oilfield produced water. According to the analysis of the composition of inorganic scales on ceramic membrane and basket strainer and the SEM photos of the ceramic membrane's cross section, the variation of parameters such as: reagent and ion concentration, transmembrane pressure and so on during the course of cermic membrane cleaning were studied; meanwhile, the variation of transmembrane pressure and water production during the membrane operation were also investigated. The alkali-complexing agent-oxidizer three-step washing was finally determined to be the proper process for fouled Z1O2 ceramic membrane cleaning at a temperature of 40 ℃. The results of the pilot scale test showed that, after the cleaning, the recovery rates of membrane flux at high and low pressure terminals were 97.1% and 116.8% respectively, the maximum operation time reached 68 h. The said process had a good repeatability, moreover, the advantages of it on aspects of cost control, operating condition, cleaning effect and so on were also obvious.

  7. Synthesis of ceramic powder of TiO{sub 2} doped with Zr by the Pechini Method applied in ceramic membranes for water treatment; Sintese de pos ceramicos de TiO{sub 2} dopado com Zr obtido pelo Metodo Pechini aplicados em membranas ceramicas para tramento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Farias, R.F.V.; Fernandes, M.S.M.; Silva, R.S.; Franca, K.B.; Lira, H.L.; Bonifacio, M.A.R., E-mail: raissavenuto@gmail.com, E-mail: maniza-f@hotmail.com, E-mail: raquel.ssb@hotmail.com, E-mail: kepler@labdes.ufcg.edu.br, E-mail: helio.lira@ufcg.edu.br, E-mail: m_aparecidaribeiro@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2016-07-01

    This paper describes the synthesis of ceramic powder of TiO2 doped with Zr by the polymeric precursor method, also known as Pechini method applied in ceramic membranes for water treatment. Three compositions were synthesized according to the molar ratio Ti{sub x}-1Zr{sub x}O{sub 2} (x = 0.25, 0.50 and 0.75 moles), calcined at 700° C/1h. The samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and microbiological analysis. The presence of the doping element was not decisive in the average size of crystallite, which ranged from 5.5 to 11.3 nm. The SEM images showed clusters with uniform surface and granular aspect, it is still possible to see a clearly porous structure formed by clusters of uniform size for all samples. The microbiological analyses of powders have revealed that they have bactericidal properties. (author)

  8. Fast, Dense Low Cost Scintillator for Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Woody, Craig

    2009-07-31

    We have studied the morphology, transparency, and optical properties of SrHfO{sub 3}:Ce ceramics. Ceramics can be made transparent by carefully controlling the stoichiometry of the precursor powders. When fully dense, transparent samples can be obtained. Ceramics with a composition close to stoichiometry (Sr:Hf ~ 1) appear to show good transparency and a reasonable light yield several times that of BGO. The contact and distance transparency of ceramics hot-pressed at about 1450ºC is very good, but deteriorates at increasingly higher hot-press temperatures. If these ceramics can be produced in large quantities and sizes, at low cost, they may be of considerable interest for PET and CT.

  9. 无机陶瓷膜在液体树脂浓缩过程中的性能分析%Performance of Inorganic Ceramic Membrane Used for Concentration of Liquid Resin

    Institute of Scientific and Technical Information of China (English)

    曾孟祥; 李元高; 严滨; 洪昱斌; 林丽华

    2012-01-01

    采用无机陶瓷膜处理液体树脂,考察分析了无机陶瓷膜过滤操作条件.结果表明无机陶瓷膜过滤操作条件为:平均进口压力400 kPa,平均出口压力200 kPa;操作温度小于50℃;浓缩倍数在40倍以上,膜通量在95~120 dm3/(m2·h)之间.用去离子水在45℃下清洗2次,膜通量可以恢复到实验前的水平.%The processing of disposing liquid inorganic ceramic membrane filtration operation resin with inorganic ceramic membrane was studied and the conditions were analyzed. The result indicated that the operation conditions were that the average inlet pressure was 4.0bar, outlet pressure was 2.0bar, the operation temperature was less than 50℃; and the average flux retained between 95 - 120 dm3/( mL h), the cycle of concentration was beyond 40times. After the experiment, the membrane flux was recovered to normal level when cleaned twice with deionized water in 45 ℃.

  10. Effect of surface roughness of ceramic membrane on the performance of filtrating oily wastewater%陶瓷膜表面粗糙度对含油废水过滤性能的影响

    Institute of Scientific and Technical Information of China (English)

    张兵兵; 仲兆祥; 邢卫红

    2011-01-01

    采用表面粗糙度仪、扫描电子显微镜(SEM)和三维非接触表面形貌仪(WLI)表征膜表面形貌,并考察了陶瓷膜表面粗糙度对过滤含油废水性能的影响.结果显示,具有不同表面粗糙度的相同孔径陶瓷膜,其纯水通量基本相同;粗糙度越大的膜,过滤含油废水的膜通量衰减越快,稳定通量也越低;陶瓷膜表面粗糙度对油截留率基本没有影响;废水中油滴粒径的变化对粗糙度大的膜的稳定通量影响显著,表明光滑膜更适合于处理含油废水.%The information of surface morphology was provided by surface roughness tester, scanning electron microscopy (SEM) and white light interferometer (WLI), and the effect of surface roughness of ceramic membrane on the performance of filtrating oily wastewater was investigated The ceramic membranes with the same pore size and different surface roughness had the same pure water flux. The results of filtrating oily wastewater indicated that the rougher membranes had larger flux decline and lower steady flux than that of smoother ones. With the change of droplet size in the wastewater, the rougher membrane had the larger change of the steady flux. Surface roughness had little effect on oil rejection. This study indicated that smoother membrane was suitable for treating oily wastewater.

  11. Effect of Different Pore Sizes of Ceramic Microfiltration Membrane on the Removing Rate of Bacteria of Pomegranate Juice%不同孔径陶瓷微滤膜对石榴汁除菌效果的影响

    Institute of Scientific and Technical Information of China (English)

    艾提亚古丽·买热甫; 热合满·艾拉; 张敬

    2012-01-01

    以新疆和田酸石榴为原料加工石榴汁,采用不同孔径的陶瓷微滤膜对石榴汁进行除菌过滤,对比不同孔径(0.10、0.22、0.45 μm)微滤膜的膜通量、石榴汁除菌率、营养成分含量及色值等指标的变化,确定适于石榴汁过滤除菌的陶瓷微滤膜的孔径与最佳工艺参数.结果表明,用于石榴汁过滤除菌的陶瓷微滤膜的适宜孔径为0.22 μm;最佳工艺参数为:过滤压力0.20 MPa,料液温度20℃.在此条件下,陶瓷微滤膜过滤的石榴汁可保持较高的膜通量,有效去除果汁中的悬浮物和有害微生物,较好地保留营养成分,石榴汁在120d储藏过程中的色泽变化轻微.陶瓷微滤膜过滤除菌可以作为一种除菌工艺代替石榴汁加工中的传统热杀菌工艺.%In this experiment, the Xinjiang Hetian acid pomegranate was used as raw materials, pomegranate juice was filtered for bacteria removing by using different pore sizes of ceramic microfiltration membrane, and comparing the changes of membrane flux, bacteria removing rate, nutritional contents and colour value of pomegranate juice with different pore sizes (0.10, 0.22, 0.45 μm) of ceramic microfiltration membrane, and the suitable pore size of ceramic microfiltration membrane and optimum technological parameter of bacteria removing of pomegranate juice were determined. The results indicated that, the suitable pore size of ceramic microfiltration membrane of bacteria removing of pomegranate juice was 0.22 μm. Optimum technological parameters were as follows: the filtering pressure was 0.20 MPa, the feed temperature was 20 ℃. Under these conditions, the pomegranate juice could keep high membrane flux, and the suspensions and harmful bacteria in juice could be removel effectively, the nutritional contents could be kept better, and the change of pomegranate juice colour during storage time (120 d) was not significant. The removing bacteria technology of ceramic microfiltration membrane

  12. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  13. Ceramic Processing

    Energy Technology Data Exchange (ETDEWEB)

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  14. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    Science.gov (United States)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as

  15. Preparation and characterization of a composite membrane based on the asphaltene component of coal

    Institute of Scientific and Technical Information of China (English)

    Zhang Liying; Qin Zhihong; Li Xinyan; Chen Juan; Liu Peng; Wang Xiaoyan

    2011-01-01

    Asphaltene-ceramic composite membranes were fabricated from ceramic supports and an asphaltene component,which was obtained from the separation of coal to give a kind of new carbonaceous precursor material.Using SEM and thermogravimetric analysis to measure the microstructure and properties of the asphaltene component allowed the porosity,permeability,and retention ratios to be determined.The results show that the asphaltene component can be regarded as a good carbon membrane precursor material because of its high carbon content and strong bonding capacity.When ceramic supports are impregnated with asphaltene colloid the asphaltene easily combines with the support surface and forms a good carbonaceous film after carbonization.Little of the asphaltene component permeates into the internal pores of the ceramic support.Although the number of coats applied to the substrate had little affect on the porosity of the asphaltene-ceramic composite membranes the permeability varied depending upon the number of times the substrate was treated.The way bubbles escape from the film.and the phenomenon of coalescence,as affected by different film thicknesses also seem closely related to the number of coats.A composite membrane carbonized at a final temperature of 600 ℃ is relatively dense and the permeability of Fe(OH)3 colloid through it is very low.A membrane fired at 800 ℃ is porous and its permeability and retention of Fe(OH)3 colloid are 88 L/(m2 h MPa) and 85.3%,respectively when the trans-membrane pressure is 0.22 MPa.

  16. Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous electrocoagulation and electrofiltration process.

    Science.gov (United States)

    Yang, Gordon C C; Chen, Ying-Chun; Yang, Hao-Xuan; Yen, Chia-Heng

    2016-07-01

    In this study, commonly detected emerging contaminants (ECs) in water, including di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), cephalexin (CLX), sulfamethoxazole (SMX) and caffeine (CAF), were selected as the target contaminants. A lab-prepared graphene-containing ceramic composite tubular membrane (TGCCM) coupled with the simultaneous electrocoagulation and electrofiltration process (EC/EF) in crossflow filtration mode was used to remove target contaminants in model solution. Meanwhile, a comparison of the removal efficiency was made among various tubular composite membranes reported, including carbon fibers/carbon/alumina composite tubular membrane (TCCACM), titania/alumina composite tubular membrane (TTACM) and alumina tubular membrane (TAM). The results of this study showed that the removal efficiencies for DnBP and DEHP were 99%, whereas 32-97% for cephalexin (CLX), sulfamethoxazole (SMX) and caffeine (CAF). In this work the mechanisms involved in removing target ECs were proposed and their roles in removing various ECs were also discussed. Further, two actual municipal wastewaters were treated to evaluate the applicability of the aforementioned treatment technology (i.e., TGCCM coupled with EC/EF) to various aqueous solutions in the real world.

  17. Dense with Sense

    Science.gov (United States)

    Aletras, Anthony H.; Ingkanisorn, W. Patricia; Mancini, Christine; Arai, Andrew E.

    2005-09-01

    Displacement encoding with stimulated echoes (DENSE) with a low encoding strength phase-cycled meta-DENSE readout and a two fold SENSE acceleration ( R = 2) is described. This combination reduces total breath-hold times for increased patient comfort during cardiac regional myocardial contractility studies. Images from phantoms, normal volunteers, and a patient are provided to demonstrate the SENSE-DENSE combination of methods. The overall breath-hold time is halved while preserving strain map quality.

  18. Asymmetry effects in membrane catalysis

    NARCIS (Netherlands)

    Teplyakov, V. V.; Pisarev, G. I.; Magsumov, M. I.; Tsodikov, M. V.; Zhu, W.; Kapteijn, F.

    2006-01-01

    Catalytic processes using porous ceramic where catalytic coatings on the microchannel walls are of current interest for the creation of high speed and compact membrane reactors, especially for the reactions of C-1-substrates. Nanoporous ceramic membranes with variation of pore size as a non-linear g

  19. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  20. High efficiency aqueous and hybrid lithium-air batteries enabled by Li1.5Al0.5Ge1.5(PO4)3 ceramic anode-protecting membranes

    Science.gov (United States)

    Safanama, Dorsasadat; Adams, Stefan

    2017-02-01

    Due to their extremely high specific energy, rechargeable Li-air batteries could meet the demand for large-scale storage systems to integrate renewable sources into the power grid. Li-air batteries with aqueous catholytes with high solubility of discharge products have a higher potential to reach their slightly lower theoretical limits in practical devices. In this work, we demonstrate aqueous and hybrid Li-air batteries with NASICON-type Li1+xAxGe2-x(PO4)3 ceramic as anode-protecting membrane. The LAGP ceramic pellets with room temperature conductivity >10-4 S cm-1 are synthesized by melt quenching and subsequently annealed based on our optimized heat treatment cycle. Hybrid Li-air batteries are assembled by sandwiching LAGP membranes between Li-anode chamber and catholyte solutions (of various pH values) with CNT/Pt as air-cathode. When the two electron reduction mechanism prevails, overpotentials below 0.2 V are achieved for currents up to 0.07 mA cm-2 leading to energy efficiencies exceeding 98%.

  1. Ceramic Methyltrioxorhenium

    CERN Document Server

    Herrmann, R; Eickerling, G; Helbig, C; Hauf, C; Miller, R; Mayr, F; Krug von Nidda, H A; Scheidt, E W; Scherer, W; Herrmann, Rudolf; Troester, Klaus; Eickerling, Georg; Helbig, Christian; Hauf, Christoph; Miller, Robert; Mayr, Franz; Nidda, Hans-Albrecht Krug von; Scheidt, Ernst-Wilhelm; Scherer, Wolfgang

    2006-01-01

    The metal oxide polymeric methyltrioxorhenium [(CH3)xReO3] is an unique epresentative of a layered inherent conducting organometallic polymer which adopts the structural motifs of classical perovskites in two dimensions (2D) in form of methyl-deficient, corner-sharing ReO5(CH3) octahedra. In order to improve the characteristics of polymeric methyltrioxorhenium with respect to its physical properties and potential usage as an inherentconducting polymer we tried to optimise the synthetic routes of polymeric modifications of 1 to obtain a sintered ceramic material, denoted ceramic MTO. Ceramic MTO formed in a solvent-free synthesis via auto-polymerisation and subsequent sintering processing displays clearly different mechanical and physical properties from polymeric MTO synthesised in aqueous solution. Ceramic MTO is shown to display activated Re-C and Re=O bonds relative to MTO. These electronic and structural characteristics of ceramic MTO are also reflected by a different chemical reactivity compared with its...

  2. 参松养心胶囊水提液陶瓷膜除杂工艺研究%Application of ceramic filter membrane in purification technology of water extract from Shensong Yangxin Capsule

    Institute of Scientific and Technical Information of China (English)

    王曙宾; 郭珊珊; 黄开毅

    2012-01-01

    Objective To observe the effect of different pore diameter membranes on technologies of water extract from Shensong Yangxin Capsule and optimize the parameters. Methods Three different membranes were tested to observe the changes in membrane flux and the retention of effective components. Results The membrane with 100 run diameter had the greater membrane flux, the transfer rates of paeoniflorin was the highest. The optimum conditions were that the operation differential pressure was 0.15-0.22 Mpa, the operation temperature was 20 °C. Conclusion A good result can be obtained by adopting the technology of ceramic membranes filtration to purify Shensong Yangxin Capsule, which provides the foundation for the application of ceramic membranes micro-filtration in the purification of water extract of other Chinese materia medica.%目的 考察不同规格陶瓷膜对中药大品种参松养心胶囊水提液除杂的效果,并优化工艺参数.方法 以参松养心胶囊水提液为研究对象,比较3种不同孔径的陶瓷膜在不同条件下,对膜通量衰减、药液有效成分保留率等方面的影响.结果 滤过孔径为100nm的陶瓷膜对参松养心胶囊水提液滤过效果较好,膜通量及芍药苷转移率均较高,最佳滤过条件为进液压力0.15~0.22 MPa,滤过温度20℃.结论 陶瓷膜滤过技术可较好地对参松养心胶囊水提液进行除杂,该技术可进一步推广到其他中药水提液的除杂工艺中.

  3. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  4. Quantum dense key distribution

    CERN Document Server

    Degiovanni, I P; Castelletto, S; Rastello, M L; Bovino, F A; Colla, A M; Castagnoli, G C

    2004-01-01

    This paper proposes a new protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than BB84 one. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  5. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics

    Science.gov (United States)

    Guo, Wen-Guang; Qiu, Zhi-Ye; Cui, Han; Wang, Chang-Ming; Zhang, Xiao-Jun; Lee, In-Seop; Dong, Yu-Qi; Cui, Fu-Zhai

    2013-06-01

    Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.

  6. Engineering ceramics

    CERN Document Server

    Bengisu, Murat

    2001-01-01

    This is a comprehensive book applying especially to junior and senior engineering students pursuing Materials Science/ Engineering, Ceramic Engineering and Mechanical Engineering degrees. It is also a reference book for other disciplines such as Chemical Engineering, Biomedical Engineering, Nuclear Engineering and Environmental Engineering. Important properties of most engineering ceramics are given in detailed tables. Many current and possible applications of engineering ceramics are described, which can be used as a guide for materials selection and for potential future research. While covering all relevant information regarding raw materials, processing properties, characterization and applications of engineering ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  7. Experiment on Application of Treatment for Raw Water From Dongjiang River with Immersion-Type Flat Ceramic Membrane%采用浸没式平板陶瓷膜处理东江原水的应用试验

    Institute of Scientific and Technical Information of China (English)

    范小江; 盛德洋; 张建国; 加藤秀生; 李泰日; 张锡辉

    2012-01-01

    采用过滤面积0.5712 m2,孔径为60~70 nm的平板陶瓷膜,对东江原水进行过滤试验,研究在不同渗透通量、原水浊度、原水有机物浓度下陶瓷膜对浊度和有机物的去除效果,以及陶瓷膜跨膜压差的变化.结果表明,渗透通量、原水浊度和有机物浓度的升高都会引起跨膜压差的升高,其中有机物浓度的影响大于浊度的影响;膜出水水质分析表明陶瓷膜出水浊度稳定在0.1 NTU以下,各项指标除氨氮外都满足新的国家饮用水水质标准;陶瓷膜过滤能将病原微生物有效去除,从而提高水体的微生物安全保障水平;陶瓷膜能显著去除水中分子量大于2 000 Da的有机物,但对小分子有机物和无机离子基本没有去除效果.膜清洗试验表明,使用单种化学清洗剂时NaOH的效果最好.%A comprehensive filtration experiment for Dongjiang raw water was conducted by adopting flat ceramic membrane with filtration area of 0.571 2 nr and aperture of 60-70 nm to analysis the water quality and transmembrane pressure (TMP) under various filtration flux, turbidity as well as organic matter concentration of raw water. Research results indicate that the TMP is increased with the increasing of filtration flux, turbidity and organic matter concentration of raw water. The influence of organic matter concentration of raw water is greater than that of turbidity. The analysis results of effluent water indicate that the turbidity is less than 0.1 NTU stably, every index except ammonia nitrogen meets the latest national drinking water quality standards. The results also show that the pathogenic microorganisms are removed effectively by ceramic membrane so that the biological safety of effluent is improved. The organic matter whose molecular weight is more than 2 000 Da can be marked removed by the ceramic membrane as well. However, organic matter with smaller molecular weight and inorganic ions can be hardly removed by the ceramic

  8. Structural Ceramics Database

    Science.gov (United States)

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  9. Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomov, R.I.; Hopkins, S.C. [Applied Superconductivity and Cryoscience Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB4 3QZ (United Kingdom); Krauz, M.; Kluczowski, J.R. [Institute of Power Engineering, Ceramic Department CEREL, 36-040 Boguchwala (Poland); Jewulski, J. [Institute of Power Engineering, Fuel Cells Department, 02-981 Warsaw (Poland); Glowacka, D.M. [Detector Physics Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Glowacki, B.A. [Applied Superconductivity and Cryoscience Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB4 3QZ (United Kingdom); Institute of Power Engineering, Fuel Cells Department, 02-981 Warsaw (Poland)

    2010-11-01

    Electromagnetic drop-on-demand direct ceramic inkjet printing (EM/DCIJP) was employed to fabricate dense yttria-stabilized zirconia (YSZ) electrolyte layers on a porous NiO-YSZ anode support from ceramic suspensions. Printing parameters including pressure, nozzle opening time and droplet overlapping were studied in order to optimize the surface quality of the YSZ coating. It was found that moderate overlapping and multiple coatings produce the desired membrane quality. A single fuel cell with a NiO-YSZ/YSZ ({proportional_to}6 {mu}m)/LSM + YSZ/LSM architecture was successfully prepared. The cell was tested using humidified hydrogen as the fuel and ambient air as the oxidant. The cell provided a power density of 170 mW cm{sup -2} at 800 C. Scanning electron microscopy (SEM) revealed a highly coherent dense YSZ electrolyte layer with no open porosity. These results suggest that the EM/DCIJP inkjet printing technique can be successfully implemented to fabricate electrolyte coatings for SOFC thinner than 10 {mu}m and comparable in quality to those fabricated by more conventional ceramic processing methods. (author)

  10. Carbon-Nanotube-Reinforced Polymer-Derived Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    An, Linan; Xu, Weixing; Rajagopalan, Sudhir; Wang, Chong M.; Wang, Hsin; Fan, Yi; Zhang, Ligong; Jiang, Dapeng; Kapat, Jay; Chow, Louis; Guo, Baohua; Liang, Ji; Vaidyanathan, Raj

    2004-12-09

    Carbon nanotube reinforced ceramic composites were synthesized by using recently developed polymer-derived ceramics as matrices. Multi-wall carbon nanotubes, treated with a surfactant, were first dispersed in a liquid polymer precursor by sonication and mechanical stirring. The solution was then converted to fully dense ceramic composites with pressure-assist pyrolysis technique. Microstructural observation revealed that nanotubes were homogeneously dispersed throughout the ceramic matrix. Significant increases in mechanical and thermal properties were observed by adding only {approx}6vol% nanotubes. Strong nanotube pullout revealed by SEM observation suggested that the composites could possess high fracture toughness.

  11. Preparation of nanocrystalline BaTiO3 ceramics

    Institute of Scientific and Technical Information of China (English)

    DENG XiangYun; LI DeJun; LI JianBao; WANG XiaoHui; LI LongTu

    2009-01-01

    The high-dense nanocrystalline BaTiO3 (BT) ceramics with grain size smaller than 100 nm have been successfully prepared by the two step sintering and the spark plasma sintering (SPS) process. The successive transitions in nanograin BT ceramics from rhombohedrel to orthorhombic, tetragonal and cubic transitions, similar to those in coarse BT ceramics, were revealed by in-situ temperature dependent Raman spectrum. The multiphase coexistence and the diffused phase transition character were demonstrated in the 8 nm nanocrystalline BT ceramics.

  12. Preparation of nanocrystalline BaTiO3 ceramics

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The high-dense nanocrystalline BaTiO3(BT)ceramics with grain size smaller than 100nm have been successfully prepared by the two step sintering and the spark plasma sintering(SPS)process.The successive transitions in nanograin BT ceramics from rhombohedral to orthorhombic,tetragonal and cubic transitions,similar to those in coarse BT ceramics,were revealed by in-situ temperature dependent Raman spectrum.The multiphase coexistence and the diffused phase transition character were demonstrated in the 8nm nanocrystalline BT ceramics.

  13. DEVELOPMENT AND TESTING OF A CERIA-ZIRCONIA TOUGHENED ALUMINA PROTOTYPE FILTER ELEMENT MADE OF RETICULATED CERAMIC FOAM COATED WITH A CERAMIC MEMBRANE ACTING AS BARRIER FILTER FOR FLY ASH

    Energy Technology Data Exchange (ETDEWEB)

    Guilio A. Rossi; Kenneth R. Butcher; Stacia M. Wagner

    1999-02-19

    The objective of this work was to fabricate subscale candle filters using a Ce-ZTA reticulated foam material. Specifically Selee fabricated 60mm diameter cylinders with one closed end and one flanged end. Selee Corporation developed a small pore size (5-10 {micro}m) filtration membrane which was applied to the reticulated foam surface to provide a barrier filter surface. The specific tasks to be performed were as follows: (Task 1) Filter Element Development--To fabricate subscale filter elements from zirconia toughened alumina using the reticulated foam manufacturing process. The filter elements were required to meet dimensional tolerances specified by an appropriate filter system supplier. The subscale filter elements were fabricated with integral flanges and end caps, that is, with no glued joints. (Task 2) Membrane Development--To develop a small pore filtration membrane that is to be applied to the reticulated foam material. This membrane was to provide filtration characteristics that meet gas turbine requirements and pressure drop or permeability requirements specified by the filter system supplier. (Task 3) Subscale Filter Element Fabrication--To fabricate six subscale filter elements with integral flanges and closed ends, as well as fine pore size filtration membranes. Three filters were to have a central clean gas channel, while three would have no central channel. The filters were to be provided to FETC for testing in laboratory systems or pilot scale exposure systems as appropriate. The candles were to meet dimensional tolerances as provided by filter system suppliers.

  14. Selection and Application of Evaluation Method for SiC Ceramic Membrane Materials%碳化硅质陶瓷膜材料评价方法的选择及材料评价

    Institute of Scientific and Technical Information of China (English)

    曹俊; 薛友祥; 赵世凯

    2014-01-01

    T he criterions and methodes for evaluation of SiC ceramic membrane filtration material are little in domestic .To satisfy the working condition ,the material must have good mechanical strength ,resistance to high temperature and pressure ,good pore structure and permeability .From this ,the criterions and methodes are proposed and the SiC ceramic membrane samples were tested in this manuscipt .The bending strength ,porosity ,support and seperation membrane pore size of SiC ce‐ramic membrane material can reach 18 MPa ,34% ,60microns and 17 microns ,respectively .The ther‐mal expansion coefficient of material is 5 × 10-6/k and thermal shock performance could satisfy 10 times at 1000℃ .At the space velocity of 1m/min ,the pressure difference of the material is 750 Pa . The material must have good mechanical strength ,resistance to high temperature and pressure ,good asymmetric pore structure .%国内评价高温下碳化硅质陶瓷膜材料的标准和方法较少,本文基于碳化硅陶瓷膜材料具体实际应用工况条件,就材料的强度,耐高温、高压性能,孔结构及透气性能等方面,提出了系列测试标准和方法,并进行了测试。实验测得山东工陶院生产的碳化硅质陶瓷膜材料的抗弯曲强度能够达到18M Pa ,支撑体气孔率和孔径分别为34%和60μm ,分离膜平均孔径为17μm ,材料的线胀系数在5×10-6/k ,热震性能能够满足1000℃下10次不裂,在1m/min风速下材料的初始压降为750Pa。碳化硅陶瓷膜材料具有良好强度、高温热性能和较好的孔梯度结构。

  15. Synthesis of a catalytic reactor membrane for synthesis gas production; Elaboration d'une membrane de reacteur catalytique pour la production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Juste, E.; Julian, A.; Chartier, T. [Limoges Univ., Lab. Science des Procedes Ceramiques et de Traitements de Surface (SPCTS, UMR 6638 CNRS), 87 (France); Juste, E.; Julian, A.; Del Gallo, P.; Richet, N. [Centre de Recherche Claude-Delorme, Air Liquide, 78 - Jouy en Josas (France)

    2007-07-01

    The conversion of natural gas to synthesis gas (mixture of H{sub 2} and CO) is a main challenge for the hydrogen and clean fuels production. Mixed (ionic O{sup 2-} and electronic) conducing ceramics membrane reactors seem particularly promising. The design considered for the membrane is a tri-layer system integrating a reforming catalyst and a dense membrane laying on a porous support. Among the materials considered for the dense membrane, perovskites La{sub 1-x}Sr{sub x}Fe{sub 1-y}Ga{sub y}O{sub 3-{delta}} seem to be interesting for their performances and stability. The oxygen flux through the membrane is measured in terms of temperature under different oxygen partial pressure gradients. In the industrial experimental conditions, the membrane is submitted to a strong oxygen (air/methane) partial pressure gradient of about 900 C which induces mechanical stresses, on account of the material expansion difference, in terms of p{sub O2}. In this framework, the evolutions of the performances and of the expansion coefficient have been followed in terms of the substitutions rates in La{sub (1-x)}Sr{sub x}Fe{sub (1-y)}Ga{sub y}O{sub 3-{delta}} with x{<=}0.5 and y{<=}0.5. (O.M.)

  16. Modelling dense relational data

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard;

    2012-01-01

    Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness they are no......Relational modelling classically consider sparse and discrete data. Measures of influence computed pairwise between temporal sources naturally give rise to dense continuous-valued matrices, for instance p-values from Granger causality. Due to asymmetry or lack of positive definiteness...... they are not naturally suited for kernel K-means. We propose a generative Bayesian model for dense matrices which generalize kernel K-means to consider off-diagonal interactions in matrices of interactions, and demonstrate its ability to detect structure on both artificial data and two real data sets....

  17. 陶瓷膜分离对氨基苯酚料液中催化剂微粒研究%Separation of p-Aminophenol From Raney Nickel Catalyst by Ceramic Membrane

    Institute of Scientific and Technical Information of China (English)

    金珊

    2011-01-01

    Clarification of p-aminophenol feed containing Raney nickel catalyst by micro-filtration (MF) of ceramic membrane has been investigated. The experiments in the lab confirmed filtration the p-aminophenol feed by the ceramic membrane with pore size of 0.2 μm. The component of the cake and fouled membrane in pilot tests were analyzed and found that the pollutants were mainly Raney nickel catalyst. In the industrial application, an effective cleaning method to recover the membrane flux was suggested as follows: firstly washing with circulate solution of alcohol-water for 10 minutes; then rinsing the rig with 1vol% NaOH solution for 20 minutes; and 3% nitric acid solution for 60 minutes; finally industrial soft water for 60 minutes. The above cleaning operations were all performed at 100 C. The average permeate flux of a long running in the plant was 400 L/(m2 · h). The nickel content in the permeate liquid could not be determined by an atomic absorption spectrometry. So that in industrial conditions the Microfiltration of PAP suspension by a ceramic membrane is a reliable and efficient technology of the clarification.%对陶瓷膜微滤分离净化含骨架镍催化剂的对氨基苯酚料液的工艺进行研究,通过小试实验确定采用孔径为0.2 μm的陶瓷膜过滤对氨基苯酚料液,对工业上用过的污染膜和滤饼层的组分分析表明,污染物主要是骨架镍催化剂.提出了工业应用中膜清洗的具体方案,在100 ℃下用酒精-水溶液清洗膜装置10 min,体积分数为1%的NaOH溶液清洗20 min,体积分数为3%的硝酸溶液清洗1 h,工业软水清洗1 h.经过工厂长期运行,膜的平均渗透通量是400 L/(m2·h),用原子吸收光谱仪在全部过滤运行的渗透液中没有检出镍,可见在工业环境中用陶瓷膜微滤对氨基苯酚料液是一种可靠和有效的净化技术.

  18. 陶瓷微滤膜改性技术及其含油废水处理应用%Ceramic Microifltration Membrane Modiifcation and Its Application to Oily Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    胡学兵; 周健儿; 汪永清; 张小珍; 常启兵

    2016-01-01

    当前含油废水对环境的污染非常严重,而膜法处理含油废水仍然存在诸如渗透通量较低、渗透液中油含量较大等缺陷。因此,迫切需要通过技术手段解决上述问题。而研发低成本高性能的基膜材料和采用膜改性技术提升膜性能,目前已成为解决上述问题的重要手段。由此,本文提出了采用纳米金属氧化物和氧化石墨烯对商业化陶瓷微滤膜进行改性,并将其应用于油水分离,实现膜油水分离效率显著提升。%Currently, oily wastewater pollution of the environment is very serious, and membrane treatment of oily wastewater is still in use, but with little permeate lfux, large permeate oil content and other defects. Therefore, technical methods are urgently needed to solve the above defects. The development of low-cost and high-performance support materials and the use of modiifcation to enhance membrane performance have become important solutions to these problems. Thus, we propose the use of nano metal oxides and graphene oxide in the modiifcation of the commercial ceramic microifltration membrane and the treatment of the oily wastewater, and the membrane with superior oil-water separation efifciency can be achieved.

  19. 陶瓷膜超滤技术浓缩乳清的工艺参数研究%Research of processing parameters of whey protein concentrate by inorganic ceramic membrane ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    高红艳; 刘振民; 莫蓓红

    2012-01-01

    The whey protein concentrate was ultrafiltrated by the inorganic ceramic membrane tubes whose aperture was 20nm to concentrate the by-product cheese whey. The optimal condition of pressure of membrane, temperature of material, and pH were studied.The results showed that the pressure of membrane at 0.25MPa, temperature of material at 51℃, and pH at 6.1, the flux of membrane was 169.37L/m2 · h under the optimal conditions.In addition,the whey protein could be concentrated to 5.4% in whey concentrate liquid, and the whey protein concentrate could reach 38.2% by spray drying.%采用孔径为20nm的无机陶瓷膜超滤干酪副产物乳清,浓缩乳清蛋白。通过对膜过滤压力、温度以及乳清pH三个因素进行单因素分析以及正交实验优化,得到最佳工艺条件:操作压力0.25MPa,温度51℃,pH6.1,此条件下超滤膜渗透通量达到169.37I/m2·h,乳清蛋白可浓缩至5.4%,经喷雾干燥制得WPC蛋白质含量为38.2%。

  20. Bioactivity of mica/apatite glass ceramics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The bioactivity of mica/apatite glass ceramic composites, including the in vitro behavior in simulated body fluid and the histological appearance of the interface between the mica/apatite glass ceramics and the rabbit mandible defect in vivo under a dynamic condition. The results show that biological apatite layer forms on the surface of the mica/apatite glass ceramics after 1 d of immersion in the simulated body fluid, and becomes dense after 14 d. In vivo tests indicate that bone formation occurs after implantation for 14 d, and strong bonding of bone to the implant occurs after 42 d. No aseptic loosening occurs during 42 d of implantation. The finding shows that mica/apatite glass ceramics have good bioactivity and osteoconductivity for constructing bone graft, and can be promising for biomedical application.

  1. A method for the densification of ceramic layers, especially ceramic layers within solid oxide cell (SOC) technology, and products obtained by the method

    DEFF Research Database (Denmark)

    2013-01-01

    A ceramic layer, especially for use in solid oxide cell (SOC) technology, is densified in a method comprising (a) providing a multilayer system by depositing the porous ceramic layer, which is to be densified, onto the selected system of ceramic layers on a support, (b) pre-sintering the resulting......(s) in the porous layer surface and (e) performing a thermal treatment at a temperature T2, where T2 > ?1, to obtain densification of and grain growth in the porous layer formed in step (b). The method makes it possible to obtain dense ceramic layers at temperatures, which are compatible with the other materials...... present in a ceramic multilayer system....

  2. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  3. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard; Taylor, Dale M.

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  4. Modelling of Tape Casting for Ceramic Applications

    DEFF Research Database (Denmark)

    Jabbari, Masoud

    Functional ceramics find use in many different applications of great interest, e.g. thermal barrier coatings, piezoactuators, capacitors, solid oxide fuel cells and electrolysis cells, membranes, and filters. It is often the case that the performance of a ceramic component can be increased markedly...... if it is possible to vary the relevant properties (e.g. electrical, electrochemical, or magnetic) in a controlled manner along the extent of the component. Such composites in which ceramic layers of different composition and/or microstructure are combined provide a new and intriguing dimension to the field...... of functional ceramics research. Advances in ceramic forming have enabled low cost shaping techniques such as tape casting and extrusion to be used in some of the most challenging technologies. These advances allow the design of complex components adapted to desired specific properties and applications. However...

  5. Transmission of Er:YAG laser through different dental ceramics.

    Science.gov (United States)

    Sari, Tugrul; Tuncel, Ilkin; Usumez, Aslihan; Gutknecht, Norbert

    2014-01-01

    The aim of this study was to determine the erbium-doped yttrium aluminum garnet (Er:YAG) laser transmission ratio through different dental ceramics with different thicknesses. Laser debonding procedure of adhesively luted all-ceramic restorations is based on the transmission of laser energy through the ceramic and the ablation of resin cement, because of the transmitted laser energy. Five different dental ceramics were evaluated in this study: sintered zirconium-oxide core ceramic, monolithic zirconium-oxide ceramic, feldspathic ceramic, leucite-reinforced glass ceramic, and lithium disilicate-reinforced glass ceramic. Two ceramic discs with different thicknesses (0.5 and 1 mm) were fabricated for each group. Ceramic discs were placed between the sensor membrane of the laser power meter and the tip of the contact handpiece of an Er:YAG laser device with the aid of a custom- made acrylic holder. The transmission ratio of Er:YAG laser energy (500 mJ, 2 Hz, 1 W, 1000 μs) through different ceramic discs was measured with the power meter. Ten measurements were made for each group and the results were analyzed with two way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The highest transmission ratio was determined for lithium disilicate-reinforced ceramic with 0.5 mm thickness (88%) and the lowest was determined for feldspathic ceramic with 1 mm thickness (44%). The differences among the different ceramics and between the different thicknesses were significant (pCeramic type and thickness should be taken into consideration to adjust the laser irradiation parameters during laser debonding of adhesively luted all-ceramic restorations.

  6. Mesoporous and microporous titania membranes

    NARCIS (Netherlands)

    Sekulic-Kuzmanovic, Jelena

    2004-01-01

    The research described in this thesis deals with the synthesis and properties of ceramic oxide membrane materials. Since most of the currently available inorganic membranes with required separation properties have limited reliability and long-term stability, membranes made of new oxide materials tha

  7. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  8. 陶瓷复合膜分离工艺生产新生牛血清的研究%Production of ceramic composite membrane separation process of newborn calf serum

    Institute of Scientific and Technical Information of China (English)

    庞观龙; 周贞兵

    2011-01-01

    [目的]探索一次性过滤截留新生牛血清中细菌、霉菌、支原体等微生物及免疫球蛋白的工艺技术,为新生牛血清规模生产提供技术支撑.[方法]采用陶瓷复合膜分离生产新生牛血清,经细菌、支原体、牛病毒性腹泻病毒( BVDV)抗体、细菌内毒素等微生物及免疫球蛋白检测,并进行新生牛血清产品细胞培养试验.[结果]陶瓷复合膜能一次性成功截留新生牛血清中的细菌、支原体、细菌内毒素、BVDV抗体,过滤后细菌内毒素含量低于0.1 EU/mL,免疫球蛋白去除率在97.00%以上;以其培养SP2/0细胞的细胞倍增时间、单克隆效率等指标接近于进口Hyclone胎血牛清水平.[结论]采用陶瓷复合膜分离工艺生产新生牛血清,实现了一次性有效过滤截留牛血清中细菌、霉菌、支原体等微生物及免疫球蛋白的目标,且能够满足细胞生长的营养需求,为大批量生产优质新生牛血清产品奠定了基础.%The present study was conducted to develop the techniques for disposable filtration and retention of bacteria, fungi, mycoplasma, etc., in newborn calf serum and the immunoglobulin to provide the support on production of newborn calf serum on large scale. [ Methods ]The ceramic composite membrane was used to produce the newborn calf serum, and the bacteria, mycoplasma, bovine viral diarrhea virus (BVDV) antibodies, bacterial endotoxin and other microbial and immunoglobulin in serum were detected. The newborn calf serum products were used for the cell culture experiment. [Results]The ceramic composite membrane successfully retained the bacteria, mycoplasma, bacterial endotoxin and BVDV antibodies in serum. After filtration, the bacterial endotoxin content in fetal calf serum was less than 0.1 Eu/mL, and the removal rate of immunoglobulin was over 97.00%. The doubling time of cell, monoclonal efficiency of SP2/0 cells in filter serum medium had no difference to that of import Hyclone

  9. Applications of sol gel ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, D. [Datec Coating Corp., Kingston, Ont. (Canada)

    1996-12-31

    The sol gel method is a chemical technique in which polycrystalline ceramic films are fabricated from a solution of organometallic precursors. The technique is attractive for many industrial applications because it is a simple (films are processed in air), flexible (can be used to coat complex geometries) and cost effective (does not require expensive equipment) process. In addition, dense, high quality coatings can be achieved at much lower temperatures than is generally required for sintering bulk ceramics. In this paper the conventional sol gel method and the new datec process are reviewed and potential applications of sol gel coatings in automotive, aerospace, petrochemical, nuclear and electronic industries are discussed. (orig.)

  10. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  11. Preparation and Characterization of PEO-LATP/LAGP Ceramic Composite Electrolyte Membrane for Lithium Batteries%锂离子电池PEO-LATP/LAGP陶瓷复合电解质膜的制备与性能表征

    Institute of Scientific and Technical Information of China (English)

    黄乐之; 温兆银; 靳俊; 刘宇

    2012-01-01

    设计并制备了PEO-LATP/LAGP陶瓷复合电解质.使用NASICON结构的Li1.4Al0.4Ti1.6(PO4)3 (LATP)或Li1.5Al0.5Ge1.5(PO4)3 (LAGP)作为陶瓷基体,以PEO为粘结剂,得到了均匀、厚度仅为20 μm的复合电解质膜.通过电化学性能表征发现当w(LATP/LAGP)∶w(PEO)=7∶3时,复合电解质膜具有最高的室温电导率,达到0.186 mS/cm(PEO-LATP)与0.111 mS/cm (PEO-LAGP).通过充放电循环实验表明,Li/复合电解质/LiCo1/3Ni1/3Mn1/3O2电池的首次放电容量达170 mAh/g.使用PEO-LATP复合电解质的电池在循环时有较大的容量衰减,而使用PEO-LAGP复合电解质则循环性能有明显的改善,在10次循环后仍保持在150 mAh/g.%A PEO-LATP/LAGP composite electrolyte for lithium batteries was designed and prepared. Uniformly composite electrolyte membrane with thickness of 20 μm was obtained by assembling Li1.4Al0.4Ti1.6(PO4)3 (LATP) or Li1.5Al0.5Ge1.5(PO4)3 (LAGP) as ceramic substrate and PEO as binder. Highest room-temperature conductivities were achieved for the sample prepared with w(ceramics):w(PEO)=7:3. Electrochemical analysis showed that the conductivity reached 0.186 mS/cm for PEO-LATP and 0.111 mS/cm for PEO-LAGP. Cycling performances of 170 mAh/g was obtained for the first discharge capacity of the Li/composite electrolyte/LiCo1/3Ni1/3Mn1/3O2 cell. Sharp decrease of cycling capacity was observed for the cell using PEO-LATP membrane. The cycling performance of the PEO-LAGP based cell was greatly improved with 150 mAh/g remained after 10 cycles.

  12. Auto-Thermal Reforming Using Mixed Ion-Electronic Conducting Ceramic Membranes for a Small-Scale H2 Production Plant

    Directory of Open Access Journals (Sweden)

    Vincenzo Spallina

    2015-03-01

    Full Text Available The integration of mixed ionic electronic conducting (MIEC membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650–850 Nm3/h via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%. Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%–70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%–78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.

  13. Robocasting of Ceramics and Composites Using Fine Particle Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    CESARANO III,JOSEPH

    1999-10-28

    Solid freeform fabrication is the near-net-shape manufacturing of components by sequentially stacking thin layers of material until complicated three dimensional shapes are produced. The operation is computer controlled and requires no molds. This exciting new field of technology provides engineers with the ability to rapidly produce prototype parts directly from CAD drawings and oftentimes little or no machining is necessary after fabrication. Techniques for freeform fabrication with several types of plastics and metals are already quite advanced and maybe reviewed in references 1 and 2. Very complicated plastic models can be fabricated by stereolithography, selective laser sintering, fused deposition modeling, or three-dimensional ink jet printing. Metals may be freeformed by the LENS{trademark} technique and porous ceramic bodies by three dimensional printing into a porous powder bed. However, methods for freeform fabrication that utilize particulate slurries to build dense ceramics and composites are not as well developed. The techniques that are being developed for the freeform fabrication of dense structural ceramics primarily revolve around the sequential layering of ceramic loaded polymers or waxes. Laminated Object Manufacturing and CAM-LEM processing use controlled stacking and laser cutting of ceramic tapes [2,3]. Similar to fused deposition modeling, ceramic loaded polymer/wax filaments are being used for the fused deposition of ceramics [2,4]. Extrusion freeform fabrication uses high pressure extrusion to deposit layers of ceramic loaded polymer/wax systems[1]. Modified stereolithographic techniques are also being developed using ceramic loaded ultraviolet curable resins [2]. Pre-sintered parts made with any of these techniques typically have 40-55 vol.% polymeric binder. In this regard, these techniques are analogous to powder injection molding of ceramics. Very long and complicated burnout heat treatments are necessary to produce a dense ceramic

  14. Ceramic films produced by a gel-dipping process

    Energy Technology Data Exchange (ETDEWEB)

    Santacruz, I.; Ferrari, B.; Nieto, M.I.; Moreno, R. [Instituto de Ceramica y Vidrio, CSIC, Camino de Valdelatas s/n, E-28049 Madrid (Spain)

    2003-09-01

    A novel method for manufacturing self-supporting ceramic films is based on the use of aqueous suspensions containing low concentrations of a biopolymer (carrageenan) and the formation of the film by immersion of a graphite substrate into the ceramic suspension heated at 60 C. A film is obtained by dipping after cooling at RT; burning out graphite during sintering leaves homogeneous, dense, and self-supported films (see Figure for an SEM image). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  15. Dense deposit disease in a child with febrile sore throat

    Directory of Open Access Journals (Sweden)

    Giovanni Conti

    2017-01-01

    Full Text Available Dense deposit disease or membranoproliferative glomerulonephritis type II is a rare glomerulopathy characterized on renal biopsy by deposition of abnormal electron-dense material in the glomerular basement membrane. The pathophysiologic basis is uncontrolled systemic activation of the alternate pathway of the complement cascade. C3 nephritic factor, an autoantibody directed against the C3 convertase of the alternate pathway, plays a key role. In some patients, complement gene mutations have been identified. We report the case of a child who had persistent microscopic hematuria, proteinuria, and hypocomplementemia C3 for over 2 months. Renal biopsy confirmed the diagnosis of dense deposit disease.

  16. Development of nanoporous TiO2 and SiC membranes for membrane filtration

    DEFF Research Database (Denmark)

    König, Katja; Vigna, Erika; Farsi, Ali

    reverse osmosis membranes by ceramic counterparts would provide higher fluxes and allow more efficient cleaning of the membranes. The aim of this work was to prepare defect-free nanoporous ceramic (TiO2 and SiC) layers on macroporous SiC supports by using electrophoretic deposition and dip...

  17. Synthesis of ceramics membranes using ZrO{sub 2} obtained by Pechini method aiming it application in oil/water separation; Sintese de membranas ceramicas utilizando ZrO{sub 2} obtido pelo metodo Pechini visando sua aplicacao na separacao oleo/agua

    Energy Technology Data Exchange (ETDEWEB)

    Maia, D.F.; Lira, H.L.; Vilar, M.A.; Costa, A.C.F.M.; Oliveira, J.B.L.; Kiminami, R.H.G.A.; Gama, L.

    2004-07-01

    The water produced in the oil production presents emulsified oil drops of difficult separation causing problems in the reinjection and the discarding. The conventional methods used in the separation oil/water don't clean all the water with efficiency and low cost. Thus, the ceramic membranes appear as a new option for being material very resistant chemistry and thermal, of high perm selective and high efficiency in use in processes of micro filtration and ultrafiltration separation. The zirconia is considered an adequate material to obtain of such membranes and the Pechini method is one promising technique in the attainment of after ultrafine with controlled characteristics. Thus the objective of this work was to prepare ceramic membranes from after synthesized by the Pechini method. The results had shown that the Pechini method was efficient in the attainment of ZrO{sub 2} powder, nanometric, with size of crystal of 7,2 nm and with average diameter of agglomerated 4,94{mu}, indicating that this material can be used in the attainment of membranes of micro filtration and ultrafiltration, adjusted to the separation oil/water The micrographs of the obtained membranes show a homogeneous surface where if it can visualize pores uniformly distributed. (author)

  18. CO{sub 2} SELECTIVE CERAMIC MEMBRANE FOR WATER-GAS-SHIFT REACTION WITH CONCOMITANT RECOVERY OF CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Paul K. T. Liu

    2005-01-31

    Our CO{sub 2}-affinity material synthesis activities thus far have offered two base materials suitable for hydrogen production via low temperature water gas shift reaction (LTS-WGS) with concomitant removal of CO{sub 2} for sequestration. They include (i) a nanoporous CO{sub 2}-affinity membrane and (ii) a hydrotalcite based CO-affinity adsorbent. These two materials offer a commercially viable opportunity for implementing an innovative process concept termed the hybrid adsorbent-membrane reactor (HAMR) for LTS-WGS, proposed by us in a previous quarterly report. A complete mathematical model has been developed in this quarter to describe the HAMR system, which offers process flexibility to incorporate both catalysts and adsorbents in the reactor as well as permeate sides. In comparison with the preliminary mathematical model we reported previously, this improved model incorporates ''time'' as an independent variable to realistically simulate the unsteady state nature of the adsorptive portion of the process. In the next quarterly report, we will complete the simulation to demonstrate the potential benefit of the proposed process based upon the performance parameters experimentally obtained from the CO{sub 2}-affinity adsorbent and membrane developed from this project.

  19. A Novel Seeding Method of Interfacial Polymerization-Assisted Dip Coating for the Preparation of Zeolite NaA Membranes on Ceramic Hollow Fiber Supports.

    Science.gov (United States)

    Cao, Yue; Wang, Ming; Xu, Zhen-Liang; Ma, Xiao-Hua; Xue, Shuang-Mei

    2016-09-28

    A novel seeding method combining interfacial polymerization (IP) technique with dip-coating operation was designed for directly coating nanosized NaA seed crystals (150 nm) onto the micrometer-sized α-Al2O3 hollow fiber support, in which the polyamide (PA) produced by IP acted as an effective medium to freeze and fix seed crystals at the proper position so that the controlled seed layer could be accomplished. While a coating suspension with only 0.5 wt % seed content was used, a very thin seed layer with high quality and good adhesion was achieved through dip coating twice without drying between, and the whole seeding process was operated at ambient conditions. The resulting zeolite NaA membranes not only exhibited high pervaporation (PV) performance with an average separation factor above 10000 and flux nearly 9.0 kg/m(2)·h in dehydration of 90 wt % ethanol aqueous solution at 348 K but also demonstrated great reproducibility by testing more than eight batches of zeolite membranes. In addition, this seeding strategy could be readily extended to the preparation of other supported zeolite membranes for a wide range of separation applications.

  20. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  1. Warm dense crystallography

    Science.gov (United States)

    Valenza, Ryan A.; Seidler, Gerald T.

    2016-03-01

    The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.

  2. Dense Suspension Splash

    Science.gov (United States)

    Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.

    2014-03-01

    Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).

  3. Dense Axion Stars

    CERN Document Server

    Braaten, Eric; Zhang, Hong

    2015-01-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure.If the axion mass energy is $mc^2= 10^{-4}$ eV, these dilute axion stars have a maximum mass of about $10^{-14} M_\\odot$. We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If $mc^2 = 10^{-4}$ eV, the first branch of these dense axion stars has mas...

  4. Dense Axion Stars

    Science.gov (United States)

    Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong

    2016-09-01

    If the dark matter particles are axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound systems of axions. In the previously known solutions for axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. The mass of these dilute axion stars cannot exceed a critical mass, which is about 10-14M⊙ if the axion mass is 10-4 eV . We study axion stars using a simple approximation to the effective potential of the nonrelativistic effective field theory for axions. We find a new branch of dense axion stars in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate. The mass on this branch ranges from about 10-20M⊙ to about M⊙ . If a dilute axion star with the critical mass accretes additional axions and collapses, it could produce a bosenova, leaving a dense axion star as the remnant.

  5. Dense Axion Stars

    Science.gov (United States)

    Mohapatra, Abhishek; Braaten, Eric; Zhang, Hong

    2016-03-01

    If the dark matter consists of axions, gravity can cause them to coalesce into axion stars, which are stable gravitationally bound Bose-Einstein condensates of axions. In the previously known axion stars, gravity and the attractive force between pairs of axions are balanced by the kinetic pressure. If the axion mass energy is mc2 =10-4 eV, these dilute axion stars have a maximum mass of about 10-14M⊙ . We point out that there are also dense axion stars in which gravity is balanced by the mean-field pressure of the axion condensate. We study axion stars using the leading term in a systematically improvable approximation to the effective potential of the nonrelativistic effective field theory for axions. Using the Thomas-Fermi approximation in which the kinetic pressure is neglected, we find a sequence of new branches of axion stars in which gravity is balanced by the mean-field interaction energy of the axion condensate. If mc2 =10-4 4 eV, the first branch of these dense axion stars has mass ranging from about 10-11M⊙ toabout M⊙.

  6. DENSE MEDIUM CYCLONE OPTIMIZATON

    Energy Technology Data Exchange (ETDEWEB)

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  7. Ceramic Ultra- and Nanofiltration for Municipal Wastewater Reuse

    OpenAIRE

    R. Shang

    2014-01-01

    During the last decade, water reuse has been widely recognized in many regions of the world. Fouling of ceramic membranes, especially hydraulically irreversible fouling, is a critical aspect affecting the operational cost and energy consumption in water treatment plants. In addition, the reverse osmosis (RO) membranes, that are often used for water reuse plant, frequently face the problem of bio-fouling. The main objective of this thesis is to develop innovative applications of the ceramic ul...

  8. Research on vacuum membrane distillation technique disposing of high concentration inorganic salt reverse osmosis dense dewatering%减压膜蒸馏技术处理无机高盐 RO 浓排水研究

    Institute of Scientific and Technical Information of China (English)

    郭建中; 路全忠; 杨才伟

    2012-01-01

      针对无机高盐 RO 浓排水具有含盐量高难处理的特点,本文研究了减压膜蒸馏技术处理无机高盐RO 浓排水试验阶段中不同料液温度、真空度、流速对膜通量的影响.结果表明:料液温度、真空度、流速与膜通量存在相关性.随着料液温度和真空度的提高,膜通量会相应增加;随着料液流速的增加膜通量也有增加,但流速小于0.2 m/s 时对膜通量的影响明显,当流速大于0.2m/s 时对膜通量影响小%  Aimed at the characteristic of high salinity and difficult dispose of high concentration inorganic salt reverse osmosis dewatering, this paper studies the vacuum membrane distillation technique dispose of high concentration inorganic salt reverse osmosis dewatering, and analyse the influence of different vacuum, material fluid temperature, flow velocity to membrane flux. The result shows that there is a correlation between membrane flux and vacuum, material fluid temperature and flow velocity. With increasing of vacuum and material fluid temperature, membrane flux increased accordingly; and when the velocity increased and membrane flux increased at the same time. With the velocity was less than 0.2 m/s, the influence to membrane flux came to be obvious, when the velocity was above 0.2 m/s, the influence to membrane flux went light.

  9. Stereolithography of SiOC Ceramic Microcomponents.

    Science.gov (United States)

    Zanchetta, Erika; Cattaldo, Marco; Franchin, Giorgia; Schwentenwein, Martin; Homa, Johannes; Brusatin, Giovanna; Colombo, Paolo

    2016-01-13

    The first example of the fabrication of complex 3D polymer-derived-ceramic structures is presented with micrometer-scale features by a 3D additive manufacturing (AM) technology, starting with a photosensitive preceramic precursor. Dense and crack-free silicon-oxycarbide-based microparts with features down to 200 μm are obtained after pyrolysis at 1000 °C in a nitrogen atmosphere.

  10. Corrosion Resistance of Ceramic Coating on Steel Substrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fe/Al2O3 ceramic coating was made by spraying and sol-gel. The corrosion resistance between Fe/Al2O3 ceramic coating and steel 45# was studied. By microscope and X-ray diffraction, the binding and the composition of the interface were also analyzed. The results showed that Fe/Al2O3 ceramic coating had dense structure, less porosity and better binding with the substrate which was effective to prevent erosive liquor immersing into the inside of ceramic coating. Some substances that distributed homogeneously in Fe/Al2O3 ceramic coating,such as α-Al2O3, FeAlO3 and Fe3Al, could improve the corrosion resistance of this material.

  11. Hyperons in dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Dapo, Haris

    2009-01-28

    The hyperon-nucleon YN low momentum effective interaction (V{sub low} {sub k}) allows for an extensive study of the behavior of hyperons in dense matter, together with an investigation of effects of the presence of hyperons on dense matter. The first step towards this goal is the construction of the matrix elements for the hyperon-nucleon low momentum potential. In order to assess the different properties of hyperons within these potentials we calculate the hyperon single-particle potentials in the Hartree-Fock approximation for all of the interactions. Their dependence on both momentum and density, is studied. The single-particle potentials are then used to determine the chemical potential of hyperons in neutron stars. For nucleonic properties, the nucleon-nucleon V{sub low} {sub k} can be used with the caveat that the calculation of the ground-state energy of symmetric nuclear matter does not correctly reproduce the properties of matter at saturation. With the nucleon-nucleon V{sub low} {sub k} one is unable to reach the densities needed for the calculation of neutron star masses. To circumvent this problem we use two approaches: in the first one, we parametrize the entire nucleonic sector. In the second one, we replace only the three-body force. The former will enable us to study neutron star masses, and the latter for studying the medium's response to the external probe. In this thesis we take the external probe to be the neutrino. By combining this parametrization with the YN V{sub low} {sub k} potential, we calculate the equation of state of equilibrated matter. Performing the calculation in the Hartree-Fock approximation at zero temperature, the concentrations of all particles are calculated. From these we can ascertain at which densities hyperons appear for a wide range of parameters. Finally, we calculate the masses of neutron stars with these concentrations. For the calculation of the medium's response to an external probe, we replace the three

  12. Treatment of Marble Processing Wastewaters by Ceramic Micro-Filtration Membrane%陶瓷微滤膜处理大理石加工废水的研究

    Institute of Scientific and Technical Information of China (English)

    金珊; 孙杰

    2011-01-01

    采用孔径为0.8μm的陶瓷膜处理大理石生产过程中产生的废水,研究了操作压差和膜面流速等对膜性能的影响,结果表明,合适的操作条件是操作压差0.07 MPa,膜面流速1.0 m/s,滤出液中固体颗粒的截留率在99.2%~99.8%,膜微滤过程对废水的pH值和COD值的影响不大,运行中膜通量稳定平均值为400L/(m2·h),料液的固体质量浓度大于55 g/L时,膜通量明显下降.对污染膜用清水清洗20 min和体积分数为1%的HNO3溶液清洗30 min,膜通量可以得到完全恢复.渗透液返回生产工序循环使用,截留液进入沉降池.%Treatment of marble processing wastewaters by ceramic micro-filtration membrane with pore size of 0.8 μm was performed.The effects of the transmembrane pressure and crossflow velocity on the MF performance were investigated.The experimental results show that the feasible transmembrane pressure is 0.07 MPa and crossflow velocity 1.0 m/s.The solid rejections of the permeate samples were from 99.2% to 99.8%.The MF process has no remarkable effect on the wastewater pH and COD, the membrane flux remained constant throughout the experiment, the average value is 400 L/(m2 · h).The flux was remarkable decline when the solid concentration of feed liquid is over 55 g/L.The membrane flux can be recovered completely after cleaned by the water with 20 minutes and nitric acid solution (volume fraction 1 %)with 30 minutes.The MF process allowed the treated water to be recycled into the process, whereas the concentrated stream (rich in particulate matter) turned into sedimentation pool.

  13. 重组毕赤酵母产华根霉脂肪酶的陶瓷膜微滤除菌工艺研究%Pilot scale ceramic membrane microfiltration for Pichia pastoris cells separation in production of Rhizopus chinensis lipase

    Institute of Scientific and Technical Information of China (English)

    谢甲有; 喻晓蔚; 徐岩

    2012-01-01

    在重组毕赤酵母生产脂肪酶的提取中,应用并优化了陶瓷膜微滤除菌工艺,确定了最佳条件为膜截留分子量500 kDa、膜操作压力0.3 MPa、温度20℃、湿菌体含量35%,先对发酵液稀释1.5倍后再进行洗滤.40L处理量的小试结果显示,在5h处理时间内,能获得高达92.70%的酶活回收率.560 L处理量的中试放大,酶活回收率为89.91%,耗时5.5h.在膜的清洗与再生中,采用2% NaClO和2%NaOH在60℃、0.3 MPa膜压力下进行清洗40 min,清水膜通量恢复率为98.14%.陶瓷膜与板框除菌的比较试验发现,两种方法都获得了微生物限量合格的产品和较高的酶活回收率,但陶瓷膜微滤的滤液微生物检出量更低,处理时间较短,动力能耗更低,易与超滤膜耦合提取,废水产生量更少,菌体废渣易于回收,是一种节能减排、清洁环保的新型除菌工艺.%In this research, ceramic rrEmbrane microfiltration was applied to separate Pichia pastoris cells in the process of production of Rhizopus chinensis lipase. The optimal conditions were 500 kDb MWCO with trans-membrane pressure of 0.3 MPa, ternpreture of 20 ℃ , wet cell content of 35% (w/v) and 1.5 times dilution of the fermentation broth before rricrcfiltration sterilization with ceramic membrane. In the 40 L broth microfiltrating treatment, the results showed that the lipase activity recovery of 92.70% was obtained after 5 h operation. Scaling up to 560 L, the lipase activity recovery of 89.91% was obtained after 5.5 h operation. On the industrial production scale, the total membrane area of ceramic membrane microfiltraticn could be increased to 115% -120%, based on the unit membrane area treatment capacity of 17017m2. After rinsing with 2% NaClO and 2% NaOH at 60 ℃ and 0.3 MPa for 40 minutes, the recovery of ceramic membrane could reach 98.14% of the water flux. Gmpared with frame filter, both methods could achieve high lipase activity recovery and qualified products

  14. Synthesis and characterization of ceramic-supported and metal-supported membrane layers for the separation of CO{sub 2} in fossil-fuel power plants; Herstellung und Charakterisierung von keramik- und metallgestuetzten Membranschichten fuer die CO{sub 2}-Abtrennung in fossilen Kraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Hauler, Felix

    2010-07-01

    The separation of CO{sub 2} in fossil fuel power plants has become a very important issue due to the contribution of this greenhouse gas to global warming. Thin microporous membranes are promising candidates for separating CO{sub 2} from gas flow before being exhausted into the atmosphere. The membrane demands are good permeation and separation properties and high stability under operation conditions. Novel sol-gel derived materials composed of TiO{sub 2}/ZrO{sub 2} and stabilized SiO{sub 2} seem to be promising due to their good chemical stability and microporous character, especially for the separation of H{sub 2} and CO{sub 2}. Metallic substrates should be preferred as membrane support because they exhibit practical advantages combining good mechanical stability and the benefit of facilitated joining. The present thesis deals with the development of sol-gel derived microporous membrane layers on ceramic and metallic supports for the separation of CO{sub 2}. In this context, the optimized preparation of high-quality membranes with TiO{sub 2}/ZrO{sub 2} and Ni, Co, Zr, Ti doped SiO{sub 2} top layers is presented. These multilayered membranes consist of a graded pore structure to provide a smooth transition of the pore size from the support to the functional layer. Due to the good surface properties, the ceramic substrates only need one interlayer, whereas the rough metallic substrates exhibiting larger pores require a total of three interlayers to obtain an enhanced surface quality. On both types of supports, crack-free functional layers with a thickness below 100 nm were deposited by dip-coating. The unsupported and supported sol-gel materials used for the top layers were investigated in terms of structural properties by thermal analysis, sorption measurements, X-ray diffraction and electron microscopy. Gas permeation tests with He, H{sub 2}, CO{sub 2} und N{sub 2} were carried out to determine the membrane performance with regard to permeation rates and

  15. Conductive dense hydrogen

    Science.gov (United States)

    Eremets, M.; Troyan, I.

    2012-12-01

    Hydrogen at ambient pressures and low temperatures forms a molecular crystal which is expected to display metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature Tc of 200-400 K. The superconductor may potentially be recovered metastably at ambient pressures, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. Recent experiments performed at low temperatures T 220 GPa, new Raman modes arose, providing evidence for the transformation to a new opaque and electrically conductive phase IV. Above 260 GPa, in the next phase V, hydrogen reflected light well. Its resistance was nearly temperature-independent over a wide temperature range, down to 30 K, indicating that the hydrogen was metallic. Releasing the pressure induced the metallic phase to transform directly into molecular hydrogen with significant hysteresis at 200 GPa and 295 K. These data were published in our paper: M. I. Eremets and I. A. Troyan "Conductive dense hydrogen." Nature Materials 10: 927-931. We will present also new results on hydrogen: phase diagram with phases IV and V determined in P,T domain up to 300 GPa and 350 K. We will also discuss possible structures of phase IV based on our Raman and infrared measurements up to 300 GPa.

  16. Dense Hypervelocity Plasma Jets

    Science.gov (United States)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  17. 气升式陶瓷膜过滤过程的气液两相流模拟%Simulation of gas-liquid two-phase flow for airlift ceramic membrane filtration process

    Institute of Scientific and Technical Information of China (English)

    林进; 沈浩; 景文珩

    2016-01-01

    采用VOF双流体模型对19通道气升式陶瓷膜过滤装置进行气液两相流的流体动力学模拟,研究了曝气孔直径和曝气量对气升式陶瓷膜过滤装置的气含率、环流液速、膜面剪切力及膜管内湍流强度的影响,模拟结果与实验结果的误差在5%~10%之间。结果表明,气升管与降液管的气含率都随曝气量增大而增大,随曝气孔直径减小而增大;环流液速、膜面剪切力及膜管内的湍流强度都随曝气量增大先增大,当曝气量达到400 L·h−1时其增大趋势变缓。通过实验和模拟比较了3种不同孔径的曝气头,环流液速与曝气孔的直径关系不大,仅与曝气量相关,但曝气孔直径越小,其膜面剪切力越大,越有利于过滤过程的进行。%The influences of aerator aperture size and aeration rate on the gas hold-up, liquid circulation velocity, wall shear stress and turbulence intensity in a novel airlift ceramic membrane filtration equipment containing a 19-channel ceramic membrane was investigated by the CFD simulation. Further, the VOF model was adopted to simulate the flow state of the gas-liquid two-phase fluid and the mean error between experiment date and simulation date was 5%—10%. The results demonstrated that the gas hold-up increased with increasing aeration rate and decreasing aerator aperture size. The liquid circulation velocity, wall shear stress and turbulence intensity increased with increasing aeration rate, and the increasing trend became slow after the aeration rate reached 400 L·h−1. For the three aperture aerator with different size, the comparison of experiment and simulation results have indicated that the liquid circulation velocity was only related to the aeration rate, and had little to do with aerator aperture size. Decreasing of the aerator aperture size was conductive to the increasing of the wall shear stress and the filtration process.

  18. Geologically-inspired strong bulk ceramics made with water at room temperature

    Science.gov (United States)

    Bouville, Florian; Studart, André R.

    2017-03-01

    Dense ceramic materials can form in nature under mild temperatures in water. By contrast, man-made ceramics often require sintering temperatures in excess of 1,400 °C for densification. Chemical strategies inspired by biomineralization processes have been demonstrated but remain limited to the fabrication of thin films and particles. Besides biomineralization, the formation of dense ceramic-like materials such as limestone also occurs in nature through large-scale geological processes. Inspired by the geological compaction of mineral sediments in nature, we report a room-temperature method to produce dense and strong ceramics within timescales comparable to those of conventional manufacturing processes. Using nanoscale powders and high compaction pressures, we show that such cold sintering process can be realized with water at room temperature to result in centimetre-sized bulk parts with specific strength that is comparable to, and occasionally even higher than, that of traditional structural materials like concrete.

  19. Geologically-inspired strong bulk ceramics made with water at room temperature

    Science.gov (United States)

    Bouville, Florian; Studart, André R.

    2017-01-01

    Dense ceramic materials can form in nature under mild temperatures in water. By contrast, man-made ceramics often require sintering temperatures in excess of 1,400 °C for densification. Chemical strategies inspired by biomineralization processes have been demonstrated but remain limited to the fabrication of thin films and particles. Besides biomineralization, the formation of dense ceramic-like materials such as limestone also occurs in nature through large-scale geological processes. Inspired by the geological compaction of mineral sediments in nature, we report a room-temperature method to produce dense and strong ceramics within timescales comparable to those of conventional manufacturing processes. Using nanoscale powders and high compaction pressures, we show that such cold sintering process can be realized with water at room temperature to result in centimetre-sized bulk parts with specific strength that is comparable to, and occasionally even higher than, that of traditional structural materials like concrete. PMID:28262760

  20. Experiment on Low Permeability Oilfield Produced Water Treatment by Com-bined Process of Intercept Membrane and Ceramic Membrane%阻截除油-陶瓷膜组合工艺处理低渗油田采出水试验

    Institute of Scientific and Technical Information of China (English)

    姚明修; 丁慧

    2016-01-01

    胜利低渗油田采出水精细处理通常采用钛金属膜工艺,钛金属膜存在易污染、堵塞等问题。针对处理水质无法长期稳定达到行业Ⅰ级注水指标,对钛金属膜污染机理进行了探究。研究结果表明,膜内污染成分主要是石油类污染物、SiO2、垢及胶体杂质等。因此,对油田采出水提出高效除油+精细过滤两段式处理思路,采用阻截除油-陶瓷膜组合工艺进行处理。现场试验结果表明,出水平均含油量1.1 mg/L,悬浮固体含量0.3 mg/L,悬浮颗粒直径中值181 nm,水质稳定达到行业Ⅰ级指标。%Titanium metal membrane process is commonly used on low permeability oilfield produced water fine treatment which is easy to cause pollution and blockage. Therefore the water quality cannot reach the grade I standard of long-term stability.This paper tries to ex-plored the titanium membrane fouling mechanism, and the research shows that membrane pollution composition is mainly composed of petroleum pollutants and SiO2,fouling and col-loidal impurities.Then aiming at oilfield prodncecl water,efficient oil removal combined with fine filtering concept is put forward and interception membrane-ceramic membrane combined process is adopted on low permeability oilfield sewage treatment.The indoor test results show that,the effluent oil content is 1.1 mg/L,floating suspended solid content is 0.3 mg/L and the particle diameter median is 181 nm,the water quality is stable and achieves gradeⅠindex.

  1. Study of aqueous pectin solutions microfiltration process by ceramic membrane - doi: 10.4025/actascitechnol.v33i2.7000

    Directory of Open Access Journals (Sweden)

    Vitor Renan da Silva

    2011-04-01

    Full Text Available In this work, pressure effects, separation efficiency and resistive effects of microfiltration of pectin solution were investigated. Stabilized permeate flux values were obtained for solutions concentrations of 1.0 and 2.0 g L-1 under different pressure conditions of 0.4, 0.8, 1.2 and 1.6 bar. A full factorial design with two levels was applied to evaluate the effects of the pressure, temperature and concentration in the process resistances. The experiments were performed in a crossflow microfiltration system with multitubular membrane with nominal pore size of 0.44 µm and feed flow of 1.0 m³ h-1. Pectin retention coefficients and process resistances were obtained following the resistances in series model. It was observed that the highest values of permeate flux for concentration solution of 1.0 and 2.0 g L-1 were at pressure of 1.2 and 0.8 bar, respectively, however, the lowest obtained permeate flux were at 1.6 bar. The permeate flux and the polarization resistance increased, respectively, with increasing temperature and concentration. The results showed that the lowest value of the retention coefficient was 93.4% and the most significant resistance was due to fouling. The highest value of resistance was 4.13 x 109 m² kg-1 at temperature of 30°C and concentration of 2.0 g L-1.

  2. 圆板型多孔α-Al2O3陶瓷膜支撑体的制备与表征%Preparation and characterization of circular plate-shaped porous alumina ceramic membrane support

    Institute of Scientific and Technical Information of China (English)

    李大川; 朱庆鹏; 崔双科; 同帜; 周乃然

    2012-01-01

    以α-Al2O3为骨料,羧甲基纤维素作为成孔剂,高岭土、TiO2作为高温粘结剂和烧结助剂,采用干压成型工艺和固态粒子烧结法制备出了圆板型多孔α-Al2O3陶瓷膜支撑体(=50 mm,厚度为2 mm)。研究了成孔剂用量、高温粘结剂和烧结助剂的用量、烧结温度因素对支撑体性能的影响。结果表明,制得的支撑体孔隙率在34%以上,孔径在2.23~6.75μm,耐酸碱度在98%以上,机械强度高。%Circular plate-shaped porous ceramic membrane support(diameter of 50 mm,thickness of 2 mm),with alumina as aggregate,carboxymethylcellulose as pore-fomring agent,kaolin and titanium dioxide as high temperature binder and sintering additive,was prepared by dry-pressing and solid sintering.The effects of the amount of pore-fomring agent,high temperature binder,sintering additive and sintering temperature on the properties of support were studied.The results indicate that support with porosity beyond 34%,pore size between 2.23 and 6.75 μm,acid/ alkali resistance beyond 98% and high mechanical strength was prepared.

  3. Heavy mesons in dense matter

    NARCIS (Netherlands)

    Tolos, Laura; Gamermann, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; LlanesEstrada, FJ; Pelaez,

    2011-01-01

    Charmed mesons in dense matter are studied within a unitary coupled-channel approach which takes into account Pauli-blocking effects and meson self-energies in a self-consistent manner. We obtain the open-charm meson spectral functions in this dense medium, and discuss their implications on hidden c

  4. Ceramic Matrix Composites .

    Directory of Open Access Journals (Sweden)

    J. Mukerji

    1993-10-01

    Full Text Available The present state of the knowledge of ceramic-matrix composites have been reviewed. The fracture toughness of present structural ceramics are not enough to permit design of high performance machines with ceramic parts. They also fail by catastrophic brittle fracture. It is generally believed that further improvement of fracture toughness is only possible by making composites of ceramics with ceramic fibre, particulate or platelets. Only ceramic-matrix composites capable of working above 1000 degree centigrade has been dealt with keeping reinforced plastics and metal-reinforced ceramics outside the purview. The author has discussed the basic mechanisms of toughening and fabrication of composites and the difficulties involved. Properties of available fibres and whiskers have been given. The best results obtained so far have been indicated. The limitations of improvement in properties of ceramic-matrix composites have been discussed.

  5. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos

    2012-02-01

    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  6. Ceramic Laser Materials

    Science.gov (United States)

    Sanghera, Jasbinder; Kim, Woohong; Villalobos, Guillermo; Shaw, Brandon; Baker, Colin; Frantz, Jesse; Sadowski, Bryan; Aggarwal, Ishwar

    2012-01-01

    Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG) ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements. PMID:28817044

  7. The application of plasma-sprayed ceramic coatings on lift roller in float glass

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Oxide ceramic was sprayed via high-energy plasma spray using MCrAlY manufactured with special technique as bond coating and oxide ceramic as top coating in this article. Investigation showed that the dense and highly adhesive coating could be obtained with optimized technique. After grinding and polishing, coating roughness was lower than 0. 2μm, which could meet the requirements of lift roller. After one year serv ice, molten Tin could not adhere to the ceramic coating,well it greatly alleviated its corrosion to the roller , kept the surface of oxide ceramic coating smooth and the improve the quality of glass due to the strengthened lift roll.

  8. Ceramic art in sculpture

    OpenAIRE

    Rokavec, Eva

    2014-01-01

    Diploma seminar speaks of ceramics as a field of artistic expression and not just as pottery craft. I presented short overview of developing ceramic sculpture and its changing role. Clay inspires design and touch more than other sculpture media. It starts as early as in prehistory. Although it sometimes seems that was sculptural ceramics neglected in art history overview, it was not so in actual praxis. There is a rich tradition of ceramics in the East and also in Europe during the renaissanc...

  9. Preparation of Thin Palladium Composite Membranes and Application to Hydrogen/Nitrogen Separation%钯复合膜的制备及其存氢气氮气分离中的应用

    Institute of Scientific and Technical Information of China (English)

    张科; 高会元; 芮泽宝; 林跃生; 李永丹

    2007-01-01

    Thin palladium composite membranes were prepared by modified electroless plating method on α-alumina supports and a dense Pd/α-Al2O3 composite membrane with high hydrogen flux, good selectivity for hydrogen was obtained. It was tested in a single gas permeation system for hydrogen permeance and hydrogen selectivity over nitrogen. The hydrogen permeance of the corresponding membrane was as high as 2.45×10-6 mol·m-2·s-1·Pa-1 and H2/N2 selectivity over 700 at 623K and a pressure difference of 0.1MPa. The main resistance of the composite membrane to H2 permeation lies in the aluminum ceramic support rather than the thin Pd layer.

  10. Niobia-silica and silica membranes for gas separation

    NARCIS (Netherlands)

    Boffa, Vittorio

    2008-01-01

    This thesis describes the development of ceramic membranes suitable for hydrogen separation and CO2 recovery from gaseous streams. The research work was focused on the three different parts of which gas selective ceramic membranes are composed, i.e., the microporous gas selective silica layer, the m

  11. High Strain Rate Compression Testing of Ceramics and Ceramic Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, W. R. (William R.)

    2005-01-01

    The compressive deformation and failure behavior of ceramics and ceramic-metal composites for armor applications has been studied as a function of strain rate at Los Alamos National Laboratory since the late 1980s. High strain rate ({approx}10{sup 3} s{sup -1}) uniaxial compression loading can be achieved using the Kolsky-split-Hopkinson pressure bar (SHPB) technique, but special methods must be used to obtain valid strength results. This paper reviews these methods and the limitations of the Kolsky-SHPB technique for this class of materials. The Kolsky-split-Hopkinson pressure bar (Kolsky-SHPB) technique was originally developed to characterize the mechanical behavior of ductile materials such as metals and polymers where the results can be used to develop strain-rate and temperature-dependent constitutive behavior models that empirically describe macroscopic plastic flow. The flow behavior of metals and polymers is generally controlled by thermally-activated and rate-dependent dislocation motion or polymer chain motion in response to shear stresses. Conversely, the macroscopic mechanical behavior of dense, brittle, ceramic-based materials is dominated by elastic deformation terminated by rapid failure associated with the propagation of defects in the material in response to resolved tensile stresses. This behavior is usually characterized by a distribution of macroscopically measured failure strengths and strains. The basis for any strain-rate dependence observed in the failure strength must originate from rate-dependence in the damage and fracture process, since uniform, uniaxial elastic behavior is rate-independent (e.g. inertial effects on crack growth). The study of microscopic damage and fracture processes and their rate-dependence under dynamic loading conditions is a difficult experimental challenge that is not addressed in this paper. The purpose of this paper is to review the methods that have been developed at the Los Alamos National Laboratory to

  12. Ceramic to metal seal

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Gary S. (Albuquerque, NM); Wilcox, Paul D. (Albuquerque, NM)

    1976-01-01

    Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

  13. Light element ceramics

    OpenAIRE

    Rao, KJ; Varma, KBR; Raju, AR

    1988-01-01

    An overview of a few structually important light element ceramics is presented. Included in the overview are silicon nitide, sialon, aluminium nitride, boron carbide and silicon carbide. Methods of preparation, characterization and industrial applications of these ceramics are summarized. Mechanical properties, industrial production techniques and principal uses of these ceramics are emphasized.

  14. Manufacturing of planar ceramic interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  15. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  16. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  17. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  18. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  19. Densely crosslinked polycarbosiloxanes .1. Synthesis

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    Novel densely crosslinked polycarbosiloxanes were obtained by using functional branched prepolymers. Two types of soluble prepolymers were prepared from di- and trifunctional alkoxysilane monomers via cohydrolysis/condensation and for both final crosslinking occurred via hydrosilylation. The prepoly

  20. Annual Conference on Composites and Advanced Ceramic Materials, 13th, Cocoa Beach, FL, Jan. 15-18, 1989, Collection of Papers. Parts 1 2

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    The present conference on advanced ceramics discusses topics in matrix-infiltration and processing techniques, the failure analysis of monolithic ceramics, the processing of polycrystalline oxide-matrix ceramic composites, the processing and properties of monolithic ceramics, ceramic composite interface phenomena, and ceramic NDE and characterization. Attention is given to chemical vapor infiltration for composites, dense ceramics via controlled melt oxidation, supertough silicon nitride, the properties of pressureless-sintered alumina-matrix/30 vol pct SiC composites, and toughening in metal particulate/glass-ceramic composites. Also discussed are the joining of silicon nitride for heat-engine applications, nitridation mechanisms in silicon powder compacts, the synthesis and properties of ceramic fibers, a technique for interfacial bond strength measurement, the degradation of SiC whiskers at elevated temperatures, and the correlation of NDE and fractography in Si3N4.

  1. 低成本大孔陶瓷膜支撑体的制备与表征%PREPARATION AND CHARACTERIZATION OF LOW COST MACROPOROUS SUPPORT FOR CERAMIC MEMBRANE

    Institute of Scientific and Technical Information of China (English)

    张小珍; 周健儿; 江瑜华; 刘志刚; LARBOT André

    2009-01-01

    以高岭土和白云石为主要原料,通过反应烧结法制备低成本大孔陶瓷膜支撑体,对制备的支撑体进行了结构和性能表征.结果表明:在高岭土中引入质量分数为20%的白云石,可显著抑制高岭土的高温烧结;加入白云石后制备的支撑体在1 150~1 300℃保温1h后,主晶相为莫来石、堇青石和钙长石,平均孔径和抗弯强度随烧成温度升高而增大,而水通量和孔隙率降低;加入20%白云石并在1 250℃保温1 h制各的大孔支撑体的孔隙率和平均孔径分别为44.6%和4.7μm,抗弯强度和纯净水通量分别达到47.6MPa和10.76m3/(m2·h·bar).%A low cost macroporous support for ceramic membranes was prepared by the in situ reaction sintering using kaolin and dolomite as the main raw materials. The prepared supports were characterized in terms of the structure and properties. The results show that the sintering of kaolin is clearly inhibited with the introduction of 20% dolomite in mass percentage. For the dolomite doped samples, the crystalline phases are mainly composed of mullite, cordierite and anorthite after sintering between 1 150 ℃ and 1 300 ℃. The mean pore size and mechanical strength of the support increase with increase of sintering temperature from 1 100 ℃ to 1 300 ℃, but the water permeability and porosity decrease. The 1 250 ℃ sintered macroporous support with 20% dolomite exhibits good performance such as porosity 44.6%, mean pore size 4.7 μm, bending strength 47.6 Mpa, and water permeability 10.76 m3/(m2·h·bar).

  2. Obtenção e caracterização de membranas cerâmicas tubulares a partir de massas incorporadas com argila, caulim e quartzo Preparation and characterization of tubular ceramic membranes using mass incorporated with clay, kaolin and quartz

    Directory of Open Access Journals (Sweden)

    A. C. Chaves

    2013-03-01

    Full Text Available A tecnologia que envolve a utilização de membranas cerâmicas tem nas ultimas décadas se transformado numa importante técnica de separação. Os principais motivos no avanço dessa tecnologia estão relacionados ao fato de que trabalham sem a adição de agentes químicos, baixo consumo de energia, facilidade de processamento e arranjos físicos compactos. Hoje a principal preocupação no desenvolvimento dessas membranas é minimização dos custos e a obtenção de processos de produção mais eficientes. Diante disto, a utilização de matérias-primas naturais vem como uma alternativa para obtenção de membranas cerâmicas, utilizando como método de produção a extrusão. Visando contribuir com a pesquisa tecnológica, o presente trabalho teve como objetivo a utilização de matérias-primas naturais, tais como argila, quartzo e caulim na confecção em escala laboratorial de membranas cerâmicas tubulares utilizando como processo de produção a extrusão. A massa cerâmica foi submetida às caracterizações: física e mineralógica através de ensaios de análise granulométrica, termogravimétrica, difração de raios X e análise química por fluorescência de raios X. As amostras foram sinterizadas a 800, 900, 1000 e 1100 ºC com o objetivo de verificar a influência nas características das membranas. As membranas cerâmicas obtidas foram caracterizadas por microscopia eletrônica de varredura e porosimetria por intrusão de mercúrio, sendo possível verificar a ausência de defeitos e trincas em sua estrutura. Com relação à análise de porosimetria, foram observados poros na faixa de ultrafiltração.The technology that involves the use of ceramic membranes has become in the last decades an important separation technique. The main reasons in the advance of this technology are related to the fact that work without addition of chemical reagents, low consumption of energy, ease to processing and compact physical arrangements

  3. Design of LTCC-based Ceramic Structure for Chemical Microreactor

    Directory of Open Access Journals (Sweden)

    D. Belavic

    2012-04-01

    Full Text Available The design of ceramic chemical microreactor for the production of hydrogen needed in portable polymer-electrolyte membrane (PEM fuel cells is presented. The microreactor was developed for the steam reforming of liquid fuels with water into hydrogen. The complex three-dimensional ceramic structure of the microreactor includes evaporator(s, mixer(s, reformer and combustor. Low-temperature co-fired ceramic (LTCC technology was used to fabricate the ceramic structures with buried cavities and channels, and thick-film technology was used to make electrical heaters, temperature sensors and pressure sensors. The final 3D ceramic structure consists of 45 LTCC tapes. The dimensions of the structure are 75 × 41 × 9 mm3 and the weight is about 73 g.

  4. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023

  5. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Directory of Open Access Journals (Sweden)

    Gabriela Mera

    2015-04-01

    Full Text Available The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs. Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  6. Electricity and catholyte production from ceramic MFCs treating urine.

    Science.gov (United States)

    Merino Jimenez, Irene; Greenman, John; Ieropoulos, Ioannis

    2017-01-19

    The use of ceramics as low cost membrane materials for Microbial Fuel Cells (MFCs) has gained increasing interest, due to improved performance levels in terms of power and catholyte production. The catholyte production in ceramic MFCs can be attributed to a combination of water or hydrogen peroxide formation from the oxygen reduction reaction in the cathode, water diffusion and electroosmotic drag through the ion exchange membrane. This study aims to evaluate, for the first time, the effect of ceramic wall/membrane thickness, in terms of power, as well as catholyte production from MFCs using urine as a feedstock. Cylindrical MFCs were assembled with fine fire clay of different thicknesses (2.5, 5 and 10 mm) as structural and membrane materials. The power generated increased when the membrane thickness decreased, reaching 2.1 ± 0.19 mW per single MFC (2.5 mm), which was 50% higher than that from the MFCs with the thickest membrane (10 mm). The amount of catholyte collected also decreased with the wall thickness, whereas the pH increased. Evidence shows that the catholyte composition varies with the wall thickness of the ceramic membrane. The possibility of producing different quality of catholyte from urine opens a new field of study in water reuse and resource recovery for practical implementation.

  7. GEL CASTING OF ALUMINA CERAMICS USING AN EGG WHITE PROTEIN BINDER SYSTEM

    Directory of Open Access Journals (Sweden)

    XING HE

    2011-02-01

    Full Text Available Egg white protein (EW is a food ingredient commonly used for its gelling properties and has been applied in ceramic fabrication. In this work, EW was used as an environmentally-friendly binder for gelcasting alumina ceramics at elevated temperature (80°C. The gelling behavior was compared with the ambient temperature drying-induced gelation processing. The processing conditions and mechanical properties of the ceramics processed from two different processing variants were compared. The results indicate that the ceramics from heat-induced gelation showed improved mechanical properties and more uniform microstructure after sintering in comparison to the drying-induced ones. Dense and complex-shaped ceramic parts via computer numerical controlled (CNC green machining have been produced from the EW gelcast ceramics.

  8. Advanced Metals and Ceramics for Armor and Anti-Armor Applications. High-Fidelity Design and Processing of Advanced Armor Ceramics

    Science.gov (United States)

    2007-06-01

    of TiO2 ceramics. ..................48 Figure 22. Effect of thickness of grain boundary on compressive yield stress of TiO2 ceramics...technology enables dense, nanograin-size materials to be fabricated without the difficulty of producing and processing nanoparticle -size powders. 2.5...were 300–500 μm in diameter. Pellets 3.8 cm in diameter and containing 10, 20, 30, 40, and 50 volume-percent WC-Co inclusions were pressed. The

  9. Development of a PDMS-grafted alumina membrane and its evaluation as solvent resistant nanofiltration membrane

    NARCIS (Netherlands)

    Pinheiro de Melo, A.F.; Hoogendoorn, D.; Nijmeijer, A.; Winnubst, A.J.A.

    2014-01-01

    A new solvent resistant nanofiltration (SRNF) membrane is developed by grafting a PDMS polymer into the pores of a 5 nm γ-alumina ceramic membrane. These PDMS-grafted γ-alumina membranes were attained through a two-step synthesis. The linking agent, 3-aminopropyltriethoxysilane (APTES), was first ap

  10. Hydrogen-selective membrane

    Science.gov (United States)

    Collins, J.P.; Way, J.D.

    1995-09-19

    A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 {micro}m but typically less than about 20 {micro}m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m{sup 2}s at a temperature of greater than about 500 C and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500 C and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400 C and less than about 1000 C before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia. The ammonia typically is decomposed to provide nitrogen and hydrogen using a catalyst such as nickel. The catalyst may be placed inside the tubular ceramic support. The mixture of gases may be supplied by an industrial process such as the mixture of exhaust gases from the IGCC process. 9 figs.

  11. Production of ceramics from coal fly ash

    Directory of Open Access Journals (Sweden)

    Angjusheva Biljana

    2012-01-01

    Full Text Available Dense ceramics are produced from fly ash from REK Bitola, Republic of Macedonia. Four types of fly ash from electro filters and one from the collected zone with particles < 0.063 mm were the subject of this research. Consolidation was achieved by pressing (P= 133 MPa and sintering (950, 1000, 1050 and 11000C and heating rates of 3 and 100/min. Densification was realized by liquid phase sintering and solid state reaction where diopside [Ca(Mg,Al(Si,Al2O6] was formed. Ceramics with optimal properties (porosity 2.96±0.5%, bending strength - 47.01±2 MPa, compressive strength - 170 ±5 MPa was produced at 1100ºC using the heating rate of 10ºC/min.

  12. The friction and wear of ceramic/ceramic and ceramic/metal combinations in sliding contact

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher

    1994-01-01

    The tribological characteristics of ceramics sliding on ceramics are compared to those of ceramics sliding on a nickel-based turbine alloy. The friction and wear of oxide ceramics and silicon-based ceramics in air at temperatures from room ambient to 900 C (in a few cases to 1200 C) were measured for a hemispherically-tipped pin on a flat sliding contact geometry. In general, especially at high temperature, friction and wear were lower for ceramic/metal combinations than for ceramic/ceramic combinations. The better tribological performance for ceramic/metal combinations is attributed primarily to the lubricious nature of the oxidized surface of the metal.

  13. Maintaining the mechanical strength of La-, Y-co-substituted zirconia porous ceramics through the superplastically foaming method

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Akira, E-mail: kishim-a@cc.okayama-u.ac.jp; Okada, Masanori; Teranishi, Takashi; Hayashi, Hidetaka

    2013-10-01

    The superplastically foaming method was adopted to make closed-pore inclusive zirconia-based ceramics. Lanthanum oxide was added to monoclinic or tetragonal yttria-stabilised zirconia to reduce the thermal conductivity of the matrix. Sintering and superplastic deformation led to a solid solution and transformation to the cubic phase. The resulting superplastically foamed porous ceramics having a porosity of 45% had only 40% of the thermal conductivity of the fully densified ceramics having the same composition. This value was comparable to that of conventionally fabricated porous ceramics with the same composition and porosity. The superplastically foamed ceramics had 60%, while conventionally fabricated ceramics had only 20%, of the mechanical strength of the fully dense ceramics.

  14. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  15. Ceramic laser materials

    Science.gov (United States)

    Ikesue, Akio; Aung, Yan Lin

    2008-12-01

    The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material - polycrystalline ceramic - can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

  16. Antibacterial ceramic for sandbox. Sunabayo kokin ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K. (Ishizuka Glass Co. Ltd. Nagoya (Japan))

    1993-10-01

    Sands in sandboxes in parks have been called into question of being contaminated by colon bacilli and spawns from ascarides. This paper introduces an antibacterial ceramic for sandbox developed as a new material effective to help reduce the contamination. The ceramic uses natural sand as the main raw material, which is added with borax and silver to contain silver ions that have bacteria and fungus resistance and deodorizing effect. The ceramic has an average grain size ranging from 0.5 mm to 0.7 mm, and is so devised as to match specific gravity, grain size and shape of the sand, hence no separation and segregation can occur. The result of weatherability and antibacterial strength tests on sand for a sandbox mixed with the ceramic at 1% suggests that its efficacy lasts for about three years. Its actual use is under observation. Its efficacy has been verified in a test that measures a survival factor of spawns from dog ascardides contacted with aqueous solution containing the ceramic at 1%. Safety and sanitation tests have proved the ceramic a highly safe product that conforms to the food sanitation law. 5 refs., 3 figs., 3 tabs.

  17. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  18. Aplicação de microfiltração com membranas cerâmicas no processo de separação de biodiesel e glicerina - doi: 10.4025/actascitechnol.v33i4.8252 Application of microfiltration with ceramic membranes in the separation process of biodiesel and glycerin

    Directory of Open Access Journals (Sweden)

    Sueli Teresa Devantel de Barros

    2011-09-01

    Full Text Available Neste trabalho foi avaliada a eficiência da microfiltração com membranas cerâmicas na separação de biodiesel e glicerina. Foram preparadas misturas sintéticas com composição mássica de 80% de biodiesel, 10% de glicerina e 10% de etanol anidro. Os experimentos em batelada foram realizados em uma unidade piloto de micro e ultrafiltração que utiliza o princípio de filtração tangencial com membranas. Foram utilizadas membranas tubulares cerâmicas de α-Al2O3/TiO2 com diâmetros médios de poro de 0,2; 0,4 e 0,8 µm e área de filtração de 0,005 m2, na temperatura de 60ºC e pressões aplicadas através da membrana de 1,0; 2,0 e 3,0 bar. O desempenho das membranas foi avaliado pela capacidade de retenção de glicerina e pelos valores de fluxos permeados após estabilização. O baixo teor de glicerina obtido no permeado demonstra forte perspectiva da utilização de membranas cerâmicas na etapa de separação de biodiesel.This study investigated the efficiency of microfiltration with ceramic membranes in separating biodiesel and glycerin. Synthetic blends (feed solution were prepared with mass composition of 80% biodiesel, 10% glycerin and 10% anhydrous ethanol. Runs were performed in the micro and ultrafiltration module, in batch mode, using tangential filtration. Experiments were carried out with Al2O3/TiO2 tubular ceramic membranes with average pore size of 0.2, 0.4 and 0.8 µm, filtration area of 0.005 m2, at 60ºC and transmembrane pressures of 1.0, 2.0 and 3.0 bar. Membrane performance was evaluated based on its capacity to retain glycerin and permeate flux values. The low content of glycerin in the permeate, 0.04-0.1 wt%, demonstrates a high potential with respect to the use of ceramic membranes in the separation stage of biodiesel.

  19. Defect production in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Kinoshita, C. [Kyushu Univ. (Japan)

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  20. Constructing dense genetic linkage maps

    NARCIS (Netherlands)

    Jansen, J.; Jong, de A.G.; Ooijen, van J.W.

    2001-01-01

    This paper describes a novel combination of techniques for the construction of dense genetic linkage maps. The construction of such maps is hampered by the occurrence of even small proportions of typing errors. Simulated annealing is used to obtain the best map according to the optimality criterion:

  1. Method for dense packing discovery.

    Science.gov (United States)

    Kallus, Yoav; Elser, Veit; Gravel, Simon

    2010-11-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit-cell parameters with the other packing variables in the definition of the configuration space. The method we present led to previously reported improvements in the densest-known tetrahedron packing. Here, we use the method to reproduce the densest-known lattice sphere packings and the best-known lattice kissing arrangements in up to 14 and 11 dimensions, respectively, providing numerical evidence for their optimality. For nonspherical particles, we report a dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845 and with a similar structure to the densest-known tetrahedron packing.

  2. Unconditional Continuous Variable Dense Coding

    CERN Document Server

    Ralph, T C

    2002-01-01

    We investigate the conditions under which unconditional dense coding can be achieved using continuous variable entanglement. We consider the effect of entanglement impurity and detector efficiency and discuss experimental verification. We conclude that the requirements for a strong demonstration are not as stringent as previously thought and are within the reach of present technology.

  3. IMPROVING ENERGY EFFICIENCY OF SILICON CARBIDE CERAMICS PRODUCTION BY BATCH REGULATION

    Directory of Open Access Journals (Sweden)

    Dmitriy Zhukov

    2015-09-01

    Full Text Available The article discusses an energy-efficient method for producing SiC-based composites via doping with oxide eutectic compositions and batch granulometry regulation. The influence of batch granulometry on physico-mechanical properties of ceramics is studied, and fractions ratio is determined allowing us to obtain a dense material with improved strength and fracture toughness. Such ceramics shows excellent mechanical behavior and holds much promise as a structural and armor material.

  4. Multiwalled carbon nanotube-reinforced ceramic matrix composites as a promising structural material

    Energy Technology Data Exchange (ETDEWEB)

    Estili, Mehdi, E-mail: mehdiestili@gmail.co [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Department of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Kwon, Hansang; Kawasaki, Akira; Cho, Seungchan; Takagi, Kenta; Kikuchi, Keiko [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Kawai, Masayoshi [Institute of Materials Structure Science, High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-03-15

    In this paper, we introduce fully dense, multiwalled carbon nanotube (MWCNT)-reinforced ceramic matrix composites recently processed by a novel powder technology in our laboratory to be considered as a promising potential structural materials for employment in severe working conditions. A strategy is also offered to investigate the effect of working condition on the mechanical properties of MWCNTs embedded in the ceramic matrix for a reliable material selection for the working conditions needed.

  5. Modelling and analysis of CVD processes in porous media for ceramic composite preparation

    NARCIS (Netherlands)

    Lin, Y.S.; Burggraaf, A.J.

    1991-01-01

    A continuum phenomenological model is presented to describe chemical vapour deposition (CVD) of solid product inside porous substrate media for the preparation of reinforced ceramic-matrix composites [by the chemical vapour infiltration (CVI) process] and ceramic membrane composites (by a modified C

  6. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  7. Ion transport membrane module and vessel system

    Science.gov (United States)

    Stein, VanEric Edward; Carolan, Michael Francis; Chen, Christopher M.; Armstrong, Phillip Andrew; Wahle, Harold W.; Ohrn, Theodore R.; Kneidel, Kurt E.; Rackers, Keith Gerard; Blake, James Erik; Nataraj, Shankar; van Doorn, Rene Hendrik Elias; Wilson, Merrill Anderson

    2008-02-26

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel.The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.

  8. Industrial Ceramics: Secondary Schools.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    The expanding use of ceramic products in today's world can be seen in the areas of communications, construction, aerospace, textiles, metallurgy, atomic energy, and electronics. The demands of science have brought ceramics from an art to an industry using mass production and automated processes which requires the services of great numbers as the…

  9. Verification of ceramic structures

    NARCIS (Netherlands)

    Behar-Lafenetre, S.; Cornillon, L.; Rancurel, M.; Graaf, D. de; Hartmann, P.; Coe, G.; Laine, B.

    2012-01-01

    In the framework of the "Mechanical Design and Verification Methodologies for Ceramic Structures" contract [1] awarded by ESA, Thales Alenia Space has investigated literature and practices in affiliated industries to propose a methodological guideline for verification of ceramic spacecraft and instr

  10. Dense and Cellular Zirconia Produced by Gel Casting with Agar: Preparation and High Temperature Characterization

    Directory of Open Access Journals (Sweden)

    Jean-Marc Tulliani

    2013-01-01

    Full Text Available A modified gel-casting process was developed to produce both dense and highly porous (40% volume yttria tetragonal zirconia polycrystal (Y-TZP using agar, a natural polysaccharide, as gelling agent. A fugitive phase, made of commercial polyethylene spheres, was added to the ceramic suspension before gelling to produce cellular ceramic structures. The characterization of the microstructural features of both dense and cellular ceramics was carried out by FEG SEM analysis of cross-sections produced by focused ion beam. The mechanical properties of the components were characterized at room temperature by nanoindentation tests in continuous stiffness measurement mode, by investigating the direct effect of the presence of residual microporosity. The presence of a diffuse residual microporosity from incomplete gel deaeration resulted in a decay of the bending strength and of the elastic modulus. The mechanical behavior of both dense and cellular zirconia (in terms of elastic modulus, flexural strength, and deformation at rupture was investigated by performing four-point bending tests at the temperature of 1500°C.

  11. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  12. Membranes in lithium ion batteries.

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-07-04

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  13. Warm Dense Matter: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kalantar, D H; Lee, R W; Molitoris, J D

    2004-04-21

    This document provides a summary of the ''LLNL Workshop on Extreme States of Materials: Warm Dense Matter to NIF'' which was held on 20, 21, and 22 February 2002 at the Wente Conference Center in Livermore, CA. The warm dense matter regime, the transitional phase space region between cold material and hot plasma, is presently poorly understood. The drive to understand the nature of matter in this regime is sparking scientific activity worldwide. In addition to pure scientific interest, finite temperature dense matter occurs in the regimes of interest to the SSMP (Stockpile Stewardship Materials Program). So that obtaining a better understanding of WDM is important to performing effective experiments at, e.g., NIF, a primary mission of LLNL. At this workshop we examined current experimental and theoretical work performed at, and in conjunction with, LLNL to focus future activities and define our role in this rapidly emerging research area. On the experimental front LLNL plays a leading role in three of the five relevant areas and has the opportunity to become a major player in the other two. Discussion at the workshop indicated that the path forward for the experimental efforts at LLNL were two fold: First, we are doing reasonable baseline work at SPLs, HE, and High Energy Lasers with more effort encouraged. Second, we need to plan effectively for the next evolution in large scale facilities, both laser (NIF) and Light/Beam sources (LCLS/TESLA and GSI) Theoretically, LLNL has major research advantages in areas as diverse as the thermochemical approach to warm dense matter equations of state to first principles molecular dynamics simulations. However, it was clear that there is much work to be done theoretically to understand warm dense matter. Further, there is a need for a close collaboration between the generation of verifiable experimental data that can provide benchmarks of both the experimental techniques and the theoretical capabilities

  14. Preparation of high performance ceramic tiles using waste tile granules and ceramic polishing powder

    Institute of Scientific and Technical Information of China (English)

    WANG Gong-xun; SU Da-gen

    2008-01-01

    This paper presents an innovative approach to reusing waste tile granules (TG) and ceramic polishing powder (PP) to produce high performance ceramic tiles. We studied formulations each with a TG mass fraction of 25.0% and a different PP mass fraction between 1.0% and 7.0%. The formulations included a small amount of borax additive of a mass fracton between 0.2%and 1.2%. The effects of these industrial by-products on compressive strength, water absorption and microstructure of the new ceramic tiles were investigated. The results indicate that the compressive strength decreases and water absorption increases when TG with a mass fraction of 25.0% are added. Improvement of the compressive strength may be achieved when TG (up to 25.0%)and PP (up to 2.0%) are both used at the same time. In particular, the compressive strength improvement can be maximized and water absorption reduced when a borax additive of up to 0.5% is used as a flux. Scanning electron microscopy reveals that a certain amount of fine PP granules and a high content of fluxing oxides from borax avail the formation of glassy phase that fills up the pores in the new ceramic tiles, resulting in a dense product with high compressive strength and low water absorption.

  15. Hydrogen transport membranes

    Science.gov (United States)

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  16. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  17. Ceramics As Materials Of Construction

    OpenAIRE

    Zaki, A.; Eteiba, M. B.; Abdelmonem, N.M.

    1988-01-01

    This paper attempts to review the limitations for using the important ceramics in contact with corrosive media. Different types of ceramics are included. Corrosion properties of ceramics and their electrical properties are mentioned. Recommendations are suggested for using ceramics in different media.

  18. Ceramic Ultrafiltration of Marine Algal Solutions: A Comprehensive Study

    KAUST Repository

    Dramas, Laure

    2014-09-01

    Algal bloom can significantly impact reverse osmosis desalination process and reduce the drinking water production. In 2008, a major bloom event forced several UAE reverse osmosis plants to stop their production, and in this context, a better understanding of UF membrane fouling caused by algal organic matter (AOM) is needed, in order to adjust the filtration conditions during algal bloom events. Polymeric MF/UF membranes are already widely used for RO pretreatment, but ceramic UF membranes can also be an alternative for the filtration of marine algal solutions. The fouling potential of the Red Sea and the Arabian Sea, sampled at different seasons, along with four algal monocultures grown in laboratory, and one mesocosm experiment in the Red Sea was investigated. Algal solutions induce a stronger and more irreversible fouling than terrestrial humic solution, toward ceramic membrane. During algal bloom events, this fouling is enhanced and becomes even more problematic at the decline phase of the bloom, for a similar initial DOC. Three main mechanisms are involved: the formation of a cake layer at the membrane surface; the penetration of the algal organic matter (AOM) in the pore network of the membrane; the strong adhesion of AOM with the membrane surface. The last mechanism is species-specific and metal-oxide specific. In order to understand the stronger ceramic UF fouling at the decline phase, AOM quality was analyzed every two days. During growth, AOM is getting enriched in High Molecular Weight (HMW) structures (> 200 kDa), which are mainly composed by proteins and polysaccharides, and these compounds seem to be responsible for the stronger fouling at decline phase. In order to prevent the fouling of ceramic membrane, coagulation-flocculation (CF) using ferric chloride was implemented prior to filtration. It permits a high removal of HMW compounds and greatly reduces the fouling potential of the algal solution. During brief algal bloom events, CF should be

  19. Structural Transitions in Dense Networks

    CERN Document Server

    Lambiotte, R; Bhat, U; Redner, S

    2016-01-01

    We introduce an evolving network model in which a new node attaches to a randomly selected target node and also to each of its neighbors with probability $p$. The resulting network is sparse for $p<\\frac{1}{2}$ and dense (average degree increasing with number of nodes $N$) for $p\\geq \\frac{1}{2}$. In the dense regime, individual networks realizations built by this copying mechanism are disparate and not self-averaging. Further, there is an infinite sequence of structural anomalies at $p=\\frac{2}{3}$, $\\frac{3}{4}$, $\\frac{4}{5}$, etc., where the dependences on $N$ of the number of triangles (3-cliques), 4-cliques, undergo phase transitions. When linking to second neighbors of the target can occur, the probability that the resulting graph is complete---where all nodes are connected---is non-zero as $N\\to\\infty$.

  20. Holographic Renormalization in Dense Medium

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2014-01-01

    describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space.

  1. Radiative properties of dense nanofluids.

    Science.gov (United States)

    Wei, Wei; Fedorov, Andrei G; Luo, Zhongyang; Ni, Mingjiang

    2012-09-01

    The radiative properties of dense nanofluids are investigated. For nanofluids, scattering and absorbing of electromagnetic waves by nanoparticles, as well as light absorption by the matrix/fluid in which the nanoparticles are suspended, should be considered. We compare five models for predicting apparent radiative properties of nanoparticulate media and evaluate their applicability. Using spectral absorption and scattering coefficients predicted by different models, we compute the apparent transmittance of a nanofluid layer, including multiple reflecting interfaces bounding the layer, and compare the model predictions with experimental results from the literature. Finally, we propose a new method to calculate the spectral radiative properties of dense nanofluids that shows quantitatively good agreement with the experimental results.

  2. Dilatons for Dense Hadronic Matter

    CERN Document Server

    Lee, Hyun Kyu

    2009-01-01

    The idea that the explicit breaking of scale invariance by the trace anomaly of QCD can be rephrased as a spontaneous breaking has been recently exploited to capture the low-energy strong interaction dynamics of dense (and also hot) matter in terms of two dilaton fields, the "soft" (chi_s) and the "hard" (chi_h) fields, in the frame work of the hidden local gauge symmetry. In the Freund-Nambu model, the spontaneous symmetry breaking of scale symmetry is induced by an explicitly breaking term, while the spontaneous symmetry breaking is possible in the flat potential model which is scale symmetric. We discuss the interplay of the soft and hard dilatons using the spontaneously broken scale symmetry schemes and uncover a novel structure of dense matter hitherto unexplored.

  3. Influence of Alumina Addition on the Optical Property of Zirconia/Alumina Composite Dental Ceramics

    Institute of Scientific and Technical Information of China (English)

    JIANG Li; LIAO Yunmao; LI Wei; WAN Qianbing; ZHAO Yongqi

    2011-01-01

    The influence of various alumina additions on the optical property of zirconia/alumina composite ceramics was investigated.The relative sintered densities,transmittances,color and the microstructure of the composite ceramics were studied.The experimental results showed that the relative sintered densities and transmittances decreased with alumina addition.The lightness increased obviously but the chroma change was small.Pure zirconia nanopowders sintered densely could obtain the relatively high transmittance,while the transmittance and the lightness of slight addition changed significantly.The zirconia/alumina composite ceramics with alumina addition less than 7.5wt% could achieve the relatively stable and reliable optical properties.

  4. Porous Y2SiO5 Ceramic with Low Thermal Conductivity

    Institute of Scientific and Technical Information of China (English)

    Duanyang Li; Meishuan Li

    2012-01-01

    Porous Y2Si05 ceramic was fabricated by freeze casting with tert-butyl alcohol as solvent. The porous Y2SiO5 ceramic possessed long straight pore structure. With decreasing solid loading from 20 to 10 vol.%, the porosity of the Y2SiO5 ceramic increased linearly from 45% to Y2%, while the compressive strength declined from 23.2 to 3.2 MPa. The thermal conductivity of Y2SiO5 decreased from 2.34 W/mK for the dense bulk to 0.05 W/mK for the porous body with a porosity of 57%.

  5. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Shane E. Roark

    2006-03-31

    The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

  6. ADVANCED CERAMIC MATERIALS FOR DENTAL APPLICATIONS SINTERED BY MICROWAVE HEATING

    OpenAIRE

    Presenda Barrera, Álvaro

    2016-01-01

    [EN] Zirconia has become a widely utilized structural ceramic material with important applications in dentistry due to its superb mechanical properties, biocompatibility, aesthetic characteristics and durability. Zirconia needs to be stabilized in the t-phase to obtain improved mechanical properties such as hardness and fracture toughness. Fully dense yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) materials are normally consolidated through the energy-intensive processing of po...

  7. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Directory of Open Access Journals (Sweden)

    Inès M. M. M. Ponsot

    2014-07-01

    Full Text Available Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C, whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C. The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  8. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Science.gov (United States)

    Ponsot, Inès M. M. M.; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K.; Detsch, Rainer; Boccaccini, Aldo R.; Bernardo, Enrico

    2014-01-01

    Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests. PMID:28788146

  9. Preparation and dielectric properties of porous silicon nitride ceramics

    Institute of Scientific and Technical Information of China (English)

    LI Jun-qi; LUO Fa; ZHU Dong-mei; ZHOU Wan-cheng

    2006-01-01

    Porous silicon nitride ceramics with difference volume fractions of porosity from 34.1% to 59.2% were produced by adding different amount of the pore-forming agent into initial silicon nitride powder. The microwave dielectric property of these ceramics at a frequency of 9.36 GHz was studied. The crystalline phases of the samples were determined by X-ray diffraction analysis. The influence of porosity on the dielectric properties was evaluated. The results show that α-Si3N4 crystalline phase exists in all the samples while the main crystalline phase of the samples is β-Si3N4,indicating that the a/b transformation happens during the preparation of samples and the transformation is incomplete. There is a dense matrix containing large pores and cavities with needle-shaped and flaky β-Si3N4 grains distributing. The dielectric constant of the ceramics reduces with the increase of porosity.

  10. Shape forming of ceramics via gelcasting of aqueous particulate slurries

    Indian Academy of Sciences (India)

    S Dhara; R K Kamboj; M Pradhan; P Bhargava

    2002-11-01

    Gelcasting is a promising technique for shape forming of bulk dense or porous ceramic, metal structures. The process offers a number of advantages over processes such as slip casting, injection molding in forming complex ceramic shapes. It is shown here that the optimization of slurry rheology, choice of mold material, mold design and the drying conditions have a significant role in the overall success of the process. In this process, components of simple or complex shapes can be produced to near net shape by direct casting. If required complex shapes can also be produced by machining the green gelcast bodies. The process of gelcasting also has a lot of potential in forming highly porous ceramic shapes.

  11. Aluminum- and boron-co-doped ZnO ceramics: structural, morphological and electrical characterization

    Science.gov (United States)

    Liu, Shimin; Liu, Jindong; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan

    2016-10-01

    Highly dense and electrically conductive aluminum- and boron-co-doped ZnO (ABZO) ceramics were prepared by traditional pressureless sintering process. Single aluminum-doped ZnO (AZO) ceramics were synthesized with similar process and characterized for comparison. The densification behavior, crystal structure, morphology, composition and electrical properties of the ceramics were studied. Results indicated that AZO ceramics with the maximum relative density of 99.01 % were obtained only at 1350 °C for 4 h, which, however, was accompanied by electrical conductivity deterioration because of the increased insulated ZnAl2O4 phase formed in ceramics. Interestingly, the ABZO ceramics reached the maximum relative density of 98.84 % at 1100 °C, which was 250 °C lower compared with that of AZO ceramics. Moreover, the electrical conductivity of ABZO ceramics improved significantly with the increased sintering temperature and increased insulated ZnAl2O4 phase, which should be ascribed to the decreased grain boundaries and the resultant reduced carrier scattering in ceramics overcoming the influence of increased ZnAl2O4 phase due to boron doping effect.

  12. Dense Membranes for Anode Supported all Perovskite IT-SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu Bobba

    2006-09-14

    During this first year of the project, a post doctoral fellow (Dr. Hrudananda Jena), and two graduate students (Mr. Vinay B. V. Sivareddy, Aswin Somuru), were supported through this project funds. Also, partial support was provided to three undergraduate students (Jonthan Dooley, India Snowden, Jeremy Gilmore) majoring in Chemistry, Physics, and Engineering disciplines. Various wet chemical methods of synthesis have been attempted to prepare perovskite oxide powders with a hope to improve and engineer its properties to meet the requirements of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCs) components. Various compounds were synthesized, characterized by XRD, TEM, SEM, XPS, electron microprobe and their electrical transport properties were measured by EIS at elevated temperatures and compared. Sonochemical technique (power of ultra sonic probe 750 watt) combined with hydrothermal treatment of precursors for the preparation of calcium hydroxy apatites (Ca-HAp) was used for the first time. Ca-HAp was substituted with Sr and Mg (50% replacement of Ca in Ca-HAp) to study the effect of substitution on Ca-HAp. Calcium hydroxy apatite is a bioceramic and has potential applications as artificial bone, enamel materials. In this study we tried to investigate its use as proton conductors in PC-SOFC. The properties like electrical conductivity, crystal structure, compositions of CaHAp were studied and compared with the natural bone material. The comparison found to be excellent indicating the efficiency of the preparation techniques. The typical value of conductivity measured is 0.091 x 10{sup -6} Scm{sup -1} at 25 C and 19.26 x 10{sup -6} Scm{sup -1} at 850 C with an applied frequency of 100 kHz. The conductivity increases on increasing frequency and temperature and reaches 0.05mS/cm at 500 C. The crystal structure and phase stability of perovskites as well as apatites were investigated with respect to substitution of various iso-valent and alivalent ions to determine the % of solubility in the crystal lattice of perovskite, apatites. Various electrode and electrolyte material compositions were prepared and characterized by XRD, SEM, XPS and electron microprobe. The material compositions were selected based on their thermo-physical properties to achieve compatibility with each other in ideal fuel cell operating conditions. The series of electrode materials investigated are LaGa{sub 1-x}M{sub x}O{sub 3} (M = Mn, Mg, x = 0.1), LaCr{sub 1-x}M{sub x}O{sub 3} (M = Mn, Mg, Co, x=0.1), LaNi{sub 1-x}Fe{sub x}O{sub 3} (0 < x < 0.6) and Gd{sub 1-x}M{sub x}CoO{sub 3} (M=Ca, x=0.1). Attempts were made to prepare proton-conducting perovskites of SrCe{sub 1-x} M{sub x}O{sub 3} (M= Dy, Eu, Er, Tb, x=0.1) by using sonochemical and hydrothermal technique followed by microwave sintering processes. These compositions were prepared characterized by XRD, TEM, SEM and electrical conductivity of the pellets was measured. The interest of low temperature proton conducting electrolyte is to replace the well known oxide ion conducting solid electrolyte in SOFCs, thereby reducing the operating temperature of SOFC to lower temperature (i.e 400-600 C) and named it as PC-SOFC (proton conducting-solid oxide fuel cell).

  13. Kaolin Geopolymer as Precursor to Ceramic Formation

    Directory of Open Access Journals (Sweden)

    Jaya Nur Ain

    2016-01-01

    Full Text Available This paper introduced the potential application of kaolin geopolymer as ceramic precursor. This is one of the alternatives to produce high strength ceramic at a slightly lower temperature. Upon sintering the conversion of geopolymer to ceramic occur. The kaolin used were characterized using XRF and has plate-like structure upon investigating through microstructural analysis. Geopolymer mixture is produced using 12 M NaOH molarity with the Na2SiO3/NaOH ratio of 0.24. The sintering temperature used were ranging from 900 °C to 1200 °C. The flexural strength showed the highest value of 88.47 MPa when sintered at 1200 °C. The combination of geopolymerization and sintering has attributed to the strength increment as temperature increased. The density is observed to increase with increasing sintering temperature due to the appearance of the close pores in the structure. Sintering of the geopolymer resulted in the formation of liquid phase, which enables the joining of particles to produce dense microstructure.

  14. High pressure ceramic joint

    Science.gov (United States)

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  15. Composite oxygen transport membrane

    Energy Technology Data Exchange (ETDEWEB)

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2016-11-15

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  16. Composite oxygen transport membrane

    Science.gov (United States)

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.