WorldWideScience

Sample records for denitrifier community composition

  1. Community size and composition of ammonia oxidizers and denitrifiers in an alluvial intertidal wetland ecosystem

    Directory of Open Access Journals (Sweden)

    Ziye eHu

    2014-07-01

    Full Text Available Global nitrogen cycling is mainly mediated by the activity of microorganisms. Nitrogen cycle processes are mediated by functional groups of microorganisms that are affected by constantly changing environmental conditions and substrate availability. In this study, we investigated the temporal and spatial patterns of nitrifier and denitrifier communities in an intertidal wetland. Soil samples were collected over four distinct seasons from three locations with different vegetative cover. Multiple environmental factors and process rates were measured and analyzed together with the community size and composition profiles. We observed that the community size and composition of the nitrifiers and denitrifiers are affected significantly by seasonal factors, while vegetative cover affected the community composition. The seasonal impacts on the community size of ammonia oxidizing archaea (AOA are much higher than that of ammonia oxidizing bacteria (AOB. The seasonal change was a more important indicator for AOA community composition patterns, while vegetation was more important for the AOB community patterns. The microbial process rates were correlated with both the community size and composition.

  2. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    Science.gov (United States)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  3. Warming-induced changes in denitrifier community structure modulate the ability of phototrophic river biofilms to denitrify

    Energy Technology Data Exchange (ETDEWEB)

    Boulêtreau, Stéphanie, E-mail: stephanie.bouletreau@univ-tlse3.fr [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Lyautey, Emilie [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Dubois, Sophie [Université de Bordeaux, EPOC - OASU, UMR 5805, Station Marine d' Arcachon, 2 rue du Professeur Jolyet, 33120 Arcachon (France); Compin, Arthur [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Delattre, Cécile; Touron-Bodilis, Aurélie [EDF Recherche et Développement, LNHE (Laboratoire National d' Hydraulique et Environnement), 6 quai Watier, F-78401 Chatou (France); Mastrorillo, Sylvain [Université de Toulouse, UPS, INP, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, EcoLab, F-31062 Toulouse (France); Garabetian, Frédéric [Université de Bordeaux, EPOC - OASU, UMR 5805, Station Marine d' Arcachon, 2 rue du Professeur Jolyet, 33120 Arcachon (France)

    2014-01-01

    Microbial denitrification is the main nitrogen removing process in freshwater ecosystems. The aim of this study was to show whether and how water warming (+ 2.5 °C) drives bacterial diversity and structuring and how bacterial diversity affects denitrification enzymatic activity in phototrophic river biofilms (PRB). We used water warming associated to the immediate thermal release of a nuclear power plant cooling circuit to produce natural PRB assemblages on glass slides while testing 2 temperatures (mean temperature of 17 °C versus 19.5 °C). PRB were sampled at 2 sampling times during PRB accretion (6 and 21 days) in both temperatures. Bacterial community composition was assessed using ARISA. Denitrifier community abundance and denitrification gene mRNA levels were estimated by q-PCR and qRT-PCR, respectively, of 5 genes encoding catalytic subunits of the denitrification key enzymes. Denitrification enzyme activity (DEA) was measured by the acetylene-block assay at 20 °C. A mean water warming of 2.5 °C was sufficient to produce contrasted total bacterial and denitrifier communities and, therefore, to affect DEA. Indirect temperature effect on DEA may have varied between sampling time, increasing by up to 10 the denitrification rate of 6-day-old PRB and decreasing by up to 5 the denitrification rate of 21-day-old PRB. The present results suggest that indirect effects of warming through changes in bacterial community composition, coupled to the strong direct effect of temperature on DEA already demonstrated in PRB, could modulate dissolved nitrogen removal by denitrification in rivers and streams. - Highlights: •We produced river biofilms in 2 mean temperature conditions: 17 vs 19.5 °C. •We compared their denitrifiers' structuring and functioning in 6d- and 21d-old biofilms. •A difference of 2.5 °C produced contrasted denitrifier communities. •The indirect temperature effect on denitrification activity shifted between biofilm age.

  4. Abundance, composition and activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from South China.

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    Full Text Available While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg-1. Copy numbers of amoA (AOA and AOB genes were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.

  5. Mapping the distribution of the denitrifier community at large scales (Invited)

    Science.gov (United States)

    Philippot, L.; Bru, D.; Ramette, A.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.

    2010-12-01

    Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 740 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.

  6. Deep nirS amplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition.

    Science.gov (United States)

    Lee, Jessica A; Francis, Christopher A

    2017-12-01

    Denitrification is a dominant nitrogen loss process in the sediments of San Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd 1 nitrite reductase), along the salinity gradient of San Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in San Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances.

    Science.gov (United States)

    Zhou, Xingang; Wang, Zhilin; Jia, Huiting; Li, Li; Wu, Fengzhi

    2018-01-01

    Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA) system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA , nirS , and nirK genes. Results showed that 1-2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity ( P < 0.05). Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile ( P < 0.001). At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria , Planctomycetes , and Cyanobacteria , the first cropping of JA with Actinobacteria , the second cropping of JA with Acidobacteria , Armatimonadetes , Gemmatimonadetes , and Proteobacteria . At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO terms

  8. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances

    Directory of Open Access Journals (Sweden)

    Xingang Zhou

    2018-04-01

    Full Text Available Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA, nirS, and nirK genes. Results showed that 1–2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity (P < 0.05. Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile (P < 0.001. At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria, Planctomycetes, and Cyanobacteria, the first cropping of JA with Actinobacteria, the second cropping of JA with Acidobacteria, Armatimonadetes, Gemmatimonadetes, and Proteobacteria. At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO

  9. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing.

    Science.gov (United States)

    Xing, Wei; Li, Jinlong; Cong, Yuan; Gao, Wei; Jia, Zhongjun; Li, Desheng

    2017-04-01

    Autotrophic denitrification has attracted increasing attention for wastewater with insufficient organic carbon sources. Nevertheless, in situ identification of autotrophic denitrifying communities in reactors remains challenging. Here, a process combining micro-electrolysis and autotrophic denitrification with high nitrate removal efficiency was presented. Two batch reactors were fed organic-free nitrate influent, with H 13 CO 3 - and H 12 CO 3 - as inorganic carbon sources. DNA-based stable-isotope probing (DNA-SIP) was used to obtain molecular evidence for autotrophic denitrifying communities. The results showed that the nirS gene was strongly labeled by H 13 CO 3 - , demonstrating that the inorganic carbon source was assimilated by autotrophic denitrifiers. High-throughput sequencing and clone library analysis identified Thiobacillus-like bacteria as the most dominant autotrophic denitrifiers. However, 88% of nirS genes cloned from the 13 C-labeled "heavy" DNA fraction showed low similarity with all culturable denitrifiers. These findings provided functional and taxonomical identification of autotrophic denitrifying communities, facilitating application of autotrophic denitrification process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Denitrifying Bioreactors Resist Disturbance from Fluctuating Water Levels

    Directory of Open Access Journals (Sweden)

    Sarah K. Hathaway

    2017-06-01

    Full Text Available Nitrate can be removed from wastewater streams, including subsurface agricultural drainage systems, using woodchip bioreactors to promote microbial denitrification. However, the variations in water flow in these systems could make reliable performance from this microbially-mediated process a challenge. In the current work, the effects of fluctuating water levels on nitrate removal, denitrifying activity, and microbial community composition in laboratory-scale bioreactors were investigated. The performance was sensitive to changing water level. An average of 31% nitrate was removed at high water level and 59% at low water level, despite flow adjustments to maintain a constant theoretical hydraulic retention time. The potential activity, as assessed through denitrifying enzyme assays, averaged 0.0008 mg N2O-N/h/dry g woodchip and did not show statistically significant differences between reactors, sampling depths, or operational conditions. In the denitrifying enzyme assays, nitrate removal consistently exceeded nitrous oxide production. The denitrifying bacterial communities were not significantly different from each other, regardless of water level, meaning that the denitrifying bacterial community did not change in response to disturbance. The overall bacterial communities, however, became more distinct between the two reactors when one reactor was operated with periodic disturbances of changing water height, and showed a stronger effect at the most severely disturbed location. The communities were not distinguishable, though, when comparing the same location under high and low water levels, indicating that the communities in the disturbed reactor were adapted to fluctuating conditions rather than to high or low water level. Overall, these results describe a biological treatment process and microbial community that is resistant to disturbance via water level fluctuations.

  11. Soil denitrifier community size changes with land use change to perennial bioenergy cropping systems

    Science.gov (United States)

    Thompson, Karen A.; Deen, Bill; Dunfield, Kari E.

    2016-10-01

    Dedicated biomass crops are required for future bioenergy production. However, the effects of large-scale land use change (LUC) from traditional annual crops, such as corn-soybean rotations to the perennial grasses (PGs) switchgrass and miscanthus, on soil microbial community functioning is largely unknown. Specifically, ecologically significant denitrifying communities, which regulate N2O production and consumption in soils, may respond differently to LUC due to differences in carbon (C) and nitrogen (N) inputs between crop types and management systems. Our objective was to quantify bacterial denitrifying gene abundances as influenced by corn-soybean crop production compared to PG biomass production. A field trial was established in 2008 at the Elora Research Station in Ontario, Canada (n  =  30), with miscanthus and switchgrass grown alongside corn-soybean rotations at different N rates (0 and 160 kg N ha-1) and biomass harvest dates within PG plots. Soil was collected on four dates from 2011 to 2012 and quantitative PCR was used to enumerate the total bacterial community (16S rRNA) and communities of bacterial denitrifiers by targeting nitrite reductase (nirS) and N2O reductase (nosZ) genes. Miscanthus produced significantly larger yields and supported larger nosZ denitrifying communities than corn-soybean rotations regardless of management, indicating large-scale LUC from corn-soybean to miscanthus may be suitable in variable Ontario climatic conditions and under varied management, while potentially mitigating soil N2O emissions. Harvesting switchgrass in the spring decreased yields in N-fertilized plots, but did not affect gene abundances. Standing miscanthus overwinter resulted in higher 16S rRNA and nirS gene copies than in fall-harvested crops. However, the size of the total (16S rRNA) and denitrifying bacterial communities changed differently over time and in response to LUC, indicating varying controls on these communities.

  12. [Influences of long-term application of organic and inorganic fertilizers on the composition and abundance of nirS-type denitrifiers in black soil].

    Science.gov (United States)

    Yin, Chang; Fan, Fen-Liang; Li, Zhao-Jun; Song, A-Lin; Zhu, Ping; Peng, Chang; Liang, Yong-Chao

    2012-11-01

    The objectives of this study were to explore the effects of long-term organic and inorganic fertilizations on the composition and abundance of nirS-type denitrifiers in black soil. Soil samples were collected from 4 treatments (i. e. no fertilizer treatment, CK; organic manure treatment, OM; chemical fertilizer treatment (NPK) and combination of organic and chemical fertilizers treatment (MNPK)) in Gongzhuling Long-term Fertilization Experiment Station. Composition and abundance of nirS-type denitrifiers were analyzed with terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR (Q-PCR), respectively. Denitrification enzyme activity (DEA) and soil properties were also measured. Application of organic fertilizers (OM and MNPK) significantly increased the DEAs of black soil, with the DEAs in OM and MNPK being 5.92 and 6.03 times higher than that in CK treatment, respectively, whereas there was no significant difference between NPK and CK. OM and MNPK treatments increased the abundances of nirS-type denitrifiers by 2.73 and 3.83 times relative to that of CK treatment, respectively. The abundance of nirS-type denitrifiers in NPK treatment was not significantly different from that of CK. The T-RFLP analysis of nirS genes showed significant differences in community composition between organic and inorganic treatments, with the emergence of a 79 bp T-RF, a significant decrease in relative abundance of the 84 bp T-RF and a loss of the 99 bp T-RF in all organic treatments. Phylogenetic analysis indicated that the airS-type denitrifiers in the black soil were mainly composed of alpha, beta and gamma-Proteobacteria. The 79 bp-type denitrifiers inhabiting exclusively in organic treatments (OM and MNPK) were affiliated to Pseudomonadaceae in gamma-Proteobacteria and Burkholderiales in beta-Proteobacteria. The 84 bp-types were related to Burkholderiales and Rhodocyclales. Correlation analysis indicated that pH, concentrations of total nitrogen

  13. Salinity shifts in marine sediment: Importance of number of fluctuation rather than their intensities on bacterial denitrifying community.

    Science.gov (United States)

    Zaghmouri, Imen; Michotey, Valerie D; Armougom, Fabrice; Guasco, Sophie; Bonin, Patricia C

    2018-05-01

    The sensitivity of denitrifying community to salinity fluctuations was studied in microcosms filled with marine coastal sediments subjected to different salinity disturbances over time (sediment under frequent salinity changes vs sediment with "stable" salinity pattern). Upon short-term salinity shift, denitrification rate and denitrifiers abundance showed high resistance whatever the sediment origin is. Denitrifying community adapted to frequent salinity changes showed high resistance when salinity increases, with a dynamic nosZ relative expression level. Marine sediment denitrifying community, characterized by more stable pattern, was less resistant when salinity decreases. However, after two successive variations of salinity, it shifted toward the characteristic community of fluctuating conditions, with larger proportion of Pseudomonas-nosZ, exhibiting an increase of nosZ relative expression level. The impact of long-term salinity variation upon bacterial community was confirmed at ribosomal level with a higher percentage of Pseudomonas and lower proportion of nosZII clade genera. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Diversity and activity of denitrifiers of Chilean arid soil ecosystems

    Directory of Open Access Journals (Sweden)

    Julieta eOrlando

    2012-04-01

    Full Text Available The Chilean sclerophyllous matorral is a Mediterranean semiarid ecosystem affected by erosion, with low soil fertility and limited by nitrogen. However, limitation of resources is even more severe for desert soils such as from the Atacama Desert, one of the most extreme arid deserts on Earth. Topsoil organic matter, nitrogen and moisture content were significantly higher in the semiarid soil compared to the desert soil. Although the most significant loss of biologically preferred nitrogen from terrestrial ecosystems occurs via denitrification, virtually nothing is known on the activity and composition of denitrifier communities thriving in arid soils. In this study, we explored denitrifier communities from two soils with profoundly distinct edaphic factors. While denitrification activity in the desert soil was below detection limit, the semiarid soil sustained denitrification activity. To elucidate the genetic potential of the soils to sustain denitrification processes we performed community analysis of denitrifiers based on nitrite reductase (nirK and nirS genes as functional marker genes for this physiological group. Presence of nirK-type denitrifiers in both soils was demonstrated but failure to amplify nirS from the desert soil suggests very low abundance of nirS-type denitrifiers shedding light on the lack of denitrification activity. Phylogenetic analysis showed a very low diversity of nirK with only three distinct genotypes in the desert soil which conditions presumably exert a high selection pressure. While nirK diversity was also limited to only few, albeit distinct genotypes, the semiarid matorral soil showed a surprisingly broad genetic variability of the nirS gene. The Chilean matorral is a shrub land plant community which form vegetational patches stabilizing the soil and increasing its nitrogen and carbon content. These islands of fertility may sustain the development and activity of the overall microbial community and of

  15. Diversity and activity of denitrifiers of chilean arid soil ecosystems.

    Science.gov (United States)

    Orlando, Julieta; Carú, Margarita; Pommerenke, Bianca; Braker, Gesche

    2012-01-01

    The Chilean sclerophyllous matorral is a Mediterranean semiarid ecosystem affected by erosion, with low soil fertility, and limited by nitrogen. However, limitation of resources is even more severe for desert soils such as from the Atacama Desert, one of the most extreme arid deserts on Earth. Topsoil organic matter, nitrogen and moisture content were significantly higher in the semiarid soil compared to the desert soil. Although the most significant loss of biologically preferred nitrogen from terrestrial ecosystems occurs via denitrification, virtually nothing is known on the activity and composition of denitrifier communities thriving in arid soils. In this study we explored denitrifier communities from two soils with profoundly distinct edaphic factors. While denitrification activity in the desert soil was below detection limit, the semiarid soil sustained denitrification activity. To elucidate the genetic potential of the soils to sustain denitrification processes we performed community analysis of denitrifiers based on nitrite reductase (nirK and nirS) genes as functional marker genes for this physiological group. Presence of nirK-type denitrifiers in both soils was demonstrated but failure to amplify nirS from the desert soil suggests very low abundance of nirS-type denitrifiers shedding light on the lack of denitrification activity. Phylogenetic analysis showed a very low diversity of nirK with only three distinct genotypes in the desert soil which conditions presumably exert a high selection pressure. While nirK diversity was also limited to only few, albeit distinct genotypes, the semiarid matorral soil showed a surprisingly broad genetic variability of the nirS gene. The Chilean matorral is a shrub land plant community which form vegetational patches stabilizing the soil and increasing its nitrogen and carbon content. These islands of fertility may sustain the development and activity of the overall microbial community and of denitrifiers in particular.

  16. Soil properties impacting denitrifier community size, structure, and activity in New Zealand dairy-grazed pasture

    Science.gov (United States)

    Jha, Neha; Saggar, Surinder; Giltrap, Donna; Tillman, Russ; Deslippe, Julie

    2017-09-01

    Denitrification is an anaerobic respiration process that is the primary contributor of the nitrous oxide (N2O) produced from grassland soils. Our objective was to gain insight into the relationships between denitrifier community size, structure, and activity for a range of pasture soils. We collected 10 dairy pasture soils with contrasting soil textures, drainage classes, management strategies (effluent irrigation or non-irrigation), and geographic locations in New Zealand, and measured their physicochemical characteristics. We measured denitrifier abundance by quantitative polymerase chain reaction (qPCR) and assessed denitrifier diversity and community structure by terminal restriction fragment length polymorphism (T-RFLP) of the nitrite reductase (nirS, nirK) and N2O reductase (nosZ) genes. We quantified denitrifier enzyme activity (DEA) using an acetylene inhibition technique. We investigated whether varied soil conditions lead to different denitrifier communities in soils, and if so, whether they are associated with different denitrification activities and are likely to generate different N2O emissions. Differences in the physicochemical characteristics of the soils were driven mainly by soil mineralogy and the management practices of the farms. We found that nirS and nirK communities were strongly structured along gradients of soil water and phosphorus (P) contents. By contrast, the size and structure of the nosZ community was unrelated to any of the measured soil characteristics. In soils with high water content, the richnesses and abundances of nirS, nirK, and nosZ genes were all significantly positively correlated with DEA. Our data suggest that management strategies to limit N2O emissions through denitrification are likely to be most important for dairy farms on fertile or allophanic soils during wetter periods. Finally, our data suggest that new techniques that would selectively target nirS denitrifiers may be the most effective for limiting N2O

  17. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers.

    Science.gov (United States)

    Tao, Rui; Wakelin, Steven A; Liang, Yongchao; Hu, Baowei; Chu, Guixin

    2018-01-15

    The effects of consecutive application of chemical fertilizer with or without organic fertilizer on soil N 2 O emissions and denitrifying community structure in a drip-irrigated field were determined. The four fertilizer treatments were (i) unfertilized, (ii) chemical fertilizer, (iii) 60% chemical fertilizer plus cattle manure, and (iv) 60% chemical fertilizer plus biofertilizer. The treatments with organic amendments (i.e. cattle manure and biofertilizer) reduced cumulative N 2 O emissions by 4.9-9.9%, reduced the N 2 O emission factor by 1.3-42%, and increased denitrifying enzyme activities by 14.3-56.2%. The nirK gene copy numbers were greatest in soil which received only chemical fertilizer. In contrast, nirS- and nosZ-copy numbers were greatest in soil amended with chemical fertilizer plus biofertilizer. Chemical fertilizer application with or without organic fertilizer significantly changed the community structure of nirK-type denitrifiers relative to the unfertilized soil. In comparison, the nirS- and nosZ-type denitrifier genotypes varied in treatments receiving organic fertilizer but not chemical fertilizer alone. The changes in the denitrifier communities were closely associated with soil organic carbon (SOC), NO 3 - , NH 4 + , water holding capacity, and soil pH. Modeling indicated that N 2 O emissions in this soil were primarily associated with the abundance of nirS type denitrifying bacteria, SOC, and NO 3 - . Overall, our findings indicate that (i) the organic fertilizers increased denitrifying enzyme activity, increased denitrifying-bacteria gene copy numbers, but reduced N 2 O emissions, and (ii) nirS- and nosZ-type denitrifiers were more sensitive than nirK-type denitrifiers to the organic fertilizers. Copyright © 2017. Published by Elsevier B.V.

  18. Analysis of denitrifier community in a bioaugmented sequencing batch reactor for the treatment of coking wastewater containing pyridine and quinoline

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yaohui; Xing, Rui; Wen, Donghui; Tang, Xiaoyan [Peking Univ., Beijing (CN). Key Lab. of Water and Sediment Sciences (Ministry of Education); Sun, Qinghua [Peking Univ., Beijing (CN). Key Lab. of Water and Sediment Sciences (Ministry of Education); Chinese Center for Disease Control and Prevention, Beijing (China). Inst. of Environmental Health and Related Product Safety

    2011-05-15

    The denitrifier community and associated nitrate and nitrite reduction in the bioaugmented and general sequencing batch reactors (SBRs) during the treatment of coking wastewater containing pyridine and quinoline were investigated. The efficiency and stability of nitrate and nitrite reduction in SBR was considerably improved after inoculation with four pyridine- or quinoline-degrading bacterial strains (including three denitrifying strains). Terminal restriction fragment length polymorphism (T-RFLP) based on the nosZ gene revealed that the structures of the denitrifier communities in bioaugmented and non-bioaugmented reactors were distinct and varied during the course of the experiment. Bioaugmentation protected indigenous denitrifiers from disruptions caused by pyridine and quinoline. Clone library analysis showed that one of the added denitrifiers comprised approximately 6% of the denitrifier population in the bioaugmented sludge. (orig.)

  19. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site

    Energy Technology Data Exchange (ETDEWEB)

    Green, Stefan [Florida State University; Prakash, Om [Florida State University; Jasrotia, Puja [Florida State University; Overholt, Will [Florida State University; Cardenas, Erick [Michigan State University, East Lansing; Hubbard, Daniela [Florida State University; Tiedje, James M. [Michigan State University, East Lansing; Watson, David B [ORNL; Schadt, Christopher Warren [ORNL; Brooks, Scott C [ORNL; Kostka, Joel [Florida State University

    2011-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of ribosomal RNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure, and denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as concentration of nitrogen species, oxygen and sampling season did not appear to strongly influence the distribution of Rhodanobacter. Results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  20. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site.

    Science.gov (United States)

    Green, Stefan J; Prakash, Om; Jasrotia, Puja; Overholt, Will A; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M; Watson, David B; Schadt, Christopher W; Brooks, Scott C; Kostka, Joel E

    2012-02-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  1. Mapping spatial patterns of denitrifiers at large scales (Invited)

    Science.gov (United States)

    Philippot, L.; Ramette, A.; Saby, N.; Bru, D.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.

    2010-12-01

    Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 739 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.

  2. Functional consortium for denitrifying sulfide removal process.

    Science.gov (United States)

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong

    2010-03-01

    Denitrifying sulfide removal (DSR) process simultaneously converts sulfide, nitrate, and chemical oxygen demand from industrial wastewaters to elemental sulfur, nitrogen gas, and carbon dioxide, respectively. This investigation utilizes a dilution-to-extinction approach at 10(-2) to 10(-6) dilutions to elucidate the correlation between the composition of the microbial community and the DSR performance. In the original suspension and in 10(-2) dilution, the strains Stenotrophomonas sp., Thauera sp., and Azoarcus sp. are the heterotrophic denitrifiers and the strains Paracoccus sp. and Pseudomonas sp. are the sulfide-oxidizing denitrifers. The 10(-4) dilution is identified as the functional consortium for the present DSR system, which comprises two functional strains, Stenotrophomonas sp. strain Paracoccus sp. At 10(-6) dilution, all DSR performance was lost. The functions of the constituent cells in the DSR granules were discussed based on data obtained using the dilution-to-extinction approach.

  3. Soil C and N statuses determine the effect of maize inoculation by plant growth-promoting rhizobacteria on nitrifying and denitrifying communities.

    Science.gov (United States)

    Florio, Alessandro; Pommier, Thomas; Gervaix, Jonathan; Bérard, Annette; Le Roux, Xavier

    2017-08-21

    Maize inoculation by Azospirillum stimulates root growth, along with soil nitrogen (N) uptake and root carbon (C) exudation, thus increasing N use efficiency. However, inoculation effects on soil N-cycling microbial communities have been overlooked. We hypothesized that inoculation would (i) increase roots-nitrifiers competition for ammonium, and thus decrease nitrifier abundance; and (ii) increase roots-denitrifiers competition for nitrate and C supply to denitrifiers by root exudation, and thus limit or benefit denitrifiers depending on the resource (N or C) mostly limiting these microorganisms. We quantified (de)nitrifiers abundance and activity in the rhizosphere of inoculated and non-inoculated maize on 4 sites over 2 years, and ancillary soil variables. Inoculation effects on nitrification and nitrifiers (AOA, AOB) were not consistent between the three sampling dates. Inoculation influenced denitrifiers abundance (nirK, nirS) differently among sites. In sites with high C limitation for denitrifiers (i.e. limitation of denitrification by C > 66%), inoculation increased nirS-denitrifier abundance (up to 56%) and gross N 2 O production (up to 84%), likely due to increased root C exudation. Conversely, in sites with low C limitation (<47%), inoculation decreased nirS-denitrifier abundance (down to -23%) and gross N 2 O production (down to -18%) likely due to an increased roots-denitrifiers competition for nitrate.

  4. Denitrifying sulfide removal process on high-salinity wastewaters.

    Science.gov (United States)

    Liu, Chunshuang; Zhao, Chaocheng; Wang, Aijie; Guo, Yadong; Lee, Duu-Jong

    2015-08-01

    Denitrifying sulfide removal (DSR) process comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide, and acetate into nitrogen gas, elemental sulfur (S(0)), and carbon dioxide, respectively. Sulfide- and nitrate-laden wastewaters at 2-35 g/L NaCl were treated by DSR process. A C/N ratio of 3:1 was proposed to maintain high S(0) conversion rate. The granular sludge with a compact structure and smooth outer surface was formed. The microbial communities of DSR consortium via high-throughput sequencing method suggested that salinity shifts the predominating heterotrophic denitrifiers at 10 g/L NaCl.

  5. Communities of nirS-type denitrifiers in the water column of the oxygen minimum zone in the eastern South Pacific.

    Science.gov (United States)

    Castro-González, Maribeb; Braker, Gesche; Farías, Laura; Ulloa, Osvaldo

    2005-09-01

    The major sites of water column denitrification in the ocean are oxygen minimum zones (OMZ), such as one in the eastern South Pacific (ESP). To understand the structure of denitrifying communities in the OMZ off Chile, denitrifier communities at two sites in the Chilean OMZ (Antofagasta and Iquique) and at different water depths were explored by terminal restriction fragment length polymorphism analysis and cloning of polymerase chain reaction (PCR)-amplified nirS genes. NirS is a functional marker gene for denitrification encoding cytochrome cd1-containing nitrite reductase, which catalyses the reduction of nitrite to nitric oxide, the key step in denitrification. Major differences were found between communities from the two geographic locations. Shifts in community structure occurred along a biogeochemical gradient at Antofagasta. Canonical correspondence analysis indicated that O2, NO3-, NO2- and depth were important environmental factors governing these communities along the biogeochemical gradient in the water column. Phylogenetic analysis grouped the majority of clones from the ESP in distinct clusters of genes from presumably novel and yet uncultivated denitrifers. These nirS clusters were distantly related to those found in the water column of the Arabian Sea but the phylogenetic distance was even higher compared with environmental sequences from marine sediments or any other habitat. This finding suggests similar environmental conditions trigger the development of denitrifiers with related nirS genotypes despite large geographic distances.

  6. IDENTIFICATION AND ECOPHYSIOLOGY OF ACTIVE DENITRIFIERS IN ACTIVATED SLUDGE

    DEFF Research Database (Denmark)

    Hansen, Aviaja Anna; Le-Quy, Vang; Nielsen, Kåre Lehmann

    reactor studies. To obtain better identification of active denitrifying communities in full-scale wastewater treatment plants (WWTPs) we applied DNA-SIP with 13C-labelled substrates, and RT-PCR of expressed denitrification genes (nirS, nirK and nosZ) upon various substrate-inductions. To come around...... were determined with quantitative FISH, while their active metabolic pathways were investigated directly in activated sludge with a tag-based metatranscriptomic approach under acetate-utilizing and denitrifying conditions. The different methods revealed a majority of denitrifiers in all WWTPs belonging...

  7. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates.

    Science.gov (United States)

    Henry, S; Texier, S; Hallet, S; Bru, D; Dambreville, C; Chèneby, D; Bizouard, F; Germon, J C; Philippot, L

    2008-11-01

    To determine to which extent root-derived carbon contributes to the effects of plants on nitrate reducers and denitrifiers, four solutions containing different proportions of sugar, organic acids and amino acids mimicking maize root exudates were added daily to soil microcosms at a concentration of 150 microg C g(-1) of soil. Water-amended soils were used as controls. After 1 month, the size and structure of the nitrate reducer and denitrifier communities were analysed using the narG and napA, and the nirK, nirS and nosZ genes as molecular markers respectively. Addition of artificial root exudates (ARE) did not strongly affect the structure or the density of nitrate reducer and denitrifier communities whereas potential nitrate reductase and denitrification activities were stimulated by the addition of root exudates. An effect of ARE composition was also observed on N(2)O production with an N(2)O:(N(2)O + N(2)) ratio of 0.3 in microcosms amended with ARE containing 80% of sugar and of 1 in microcosms amended with ARE containing 40% of sugar. Our study indicated that ARE stimulated nitrate reduction or denitrification activity with increases in the range of those observed with the whole plant. Furthermore, we demonstrated that the composition of the ARE affected the nature of the end-product of denitrification and could thus have a putative impact on greenhouse gas emissions.

  8. A doubling of microphytobenthos biomass coincides with a tenfold increase in denitrifier and total bacterial abundances in intertidal sediments of a temperate estuary.

    Directory of Open Access Journals (Sweden)

    Helen Decleyre

    Full Text Available Surface sediments are important systems for the removal of anthropogenically derived inorganic nitrogen in estuaries. They are often characterized by the presence of a microphytobenthos (MPB biofilm, which can impact bacterial communities in underlying sediments for example by secretion of extracellular polymeric substances (EPS and competition for nutrients (including nitrogen. Pyrosequencing and qPCR was performed on two intertidal surface sediments of the Westerschelde estuary characterized by a two-fold difference in MPB biomass but no difference in MPB composition. Doubling of MPB biomass was accompanied by a disproportionately (ten-fold increase in total bacterial abundances while, unexpectedly, no difference in general community structure was observed, despite significantly lower bacterial richness and distinct community membership, mostly for non-abundant taxa. Denitrifier abundances corresponded likewise while community structure, both for nirS and nirK denitrifiers, remained unchanged, suggesting that competition with diatoms for nitrate is negligible at concentrations in the investigated sediments (appr. 1 mg/l NO3-. This study indicates that MPB biomass increase has a general, significantly positive effect on total bacterial and denitrifier abundances, with stimulation or inhibition of specific bacterial groups that however do not result in a re-structured community.

  9. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.

    Science.gov (United States)

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.

  10. Responses of bacterial community structure and denitrifying bacteria in biofilm to submerged macrophytes and nitrate

    Science.gov (United States)

    Zhang, Songhe; Pang, Si; Wang, Peifang; Wang, Chao; Guo, Chuan; Addo, Felix Gyawu; Li, Yi

    2016-10-01

    Submerged macrophytes play important roles in constructed wetlands and natural water bodies, as these organisms remove nutrients and provide large surfaces for biofilms, which are beneficial for nitrogen removal, particularly from submerged macrophyte-dominated water columns. However, information on the responses of biofilms to submerged macrophytes and nitrogen molecules is limited. In the present study, bacterial community structure and denitrifiers were investigated in biofilms on the leaves of four submerged macrophytes and artificial plants exposed to two nitrate concentrations. The biofilm cells were evenly distributed on artificial plants but appeared in microcolonies on the surfaces of submerged macrophytes. Proteobacteria was the most abundant phylum in all samples, accounting for 27.3-64.8% of the high-quality bacterial reads, followed by Chloroflexi (3.7-25.4%), Firmicutes (3.0-20.1%), Acidobacteria (2.7-15.7%), Actinobacteria (2.2-8.7%), Bacteroidetes (0.5-9.7%), and Verrucomicrobia (2.4-5.2%). Cluster analysis showed that bacterial community structure can be significantly different on macrophytes versus from those on artificial plants. Redundancy analysis showed that electrical conductivity and nitrate concentration were positively correlated with Shannon index and operational taxonomic unit (OTU) richness (log10 transformed) but somewhat negatively correlated with microbial density. The relative abundances of five denitrifying genes were positively correlated with nitrate concentration and electrical conductivity but negatively correlated with dissolved oxygen.

  11. Denitrification in agriculturally impacted streams: seasonal changes in structure and function of the bacterial community.

    Directory of Open Access Journals (Sweden)

    Erin Manis

    Full Text Available Denitrifiers remove fixed nitrogen from aquatic environments and hydrologic conditions are one potential driver of denitrification rate and denitrifier community composition. In this study, two agriculturally impacted streams in the Sugar Creek watershed in Indiana, USA with different hydrologic regimes were examined; one stream is seasonally ephemeral because of its source (tile drainage, whereas the other stream has permanent flow. Additionally, a simulated flooding experiment was performed on the riparian benches of the ephemeral stream during a dry period. Denitrification activity was assayed using the chloramphenicol amended acetylene block method and bacterial communities were examined based on quantitative PCR and terminal restriction length polymorphisms of the nitrous oxide reductase (nosZ and 16S rRNA genes. In the stream channel, hydrology had a substantial impact on denitrification rates, likely by significantly lowering water potential in sediments. Clear patterns in denitrification rates were observed among pre-drying, dry, and post-drying dates; however, a less clear scenario was apparent when analyzing bacterial community structure suggesting that denitrifier community structure and denitrification rate were not strongly coupled. This implies that the nature of the response to short-term hydrologic changes was physiological rather than increases in abundance of denitrifiers or changes in composition of the denitrifier community. Flooding of riparian bench soils had a short-term, transient effect on denitrification rate. Our results imply that brief flooding of riparian zones is unlikely to contribute substantially to removal of nitrate (NO3- and that seasonal drying of stream channels has a negative impact on NO3- removal, particularly because of the time lag required for denitrification to rebound. This time lag is presumably attributable to the time required for the denitrifiers to respond physiologically rather than a change

  12. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems.

    Science.gov (United States)

    An, Y-J; Joo, Y-H; Hong, I-Y; Ryu, H-W; Cho, K-S

    2004-10-01

    The degradation characteristics of toluene coupled to nitrate reduction were investigated in enrichment culture and the microbial communities of toluene-degrading denitrifying consortia were characterized by denaturing gradient gel electrophoresis (DGGE) technique. Anaerobic nitrate-reducing bacteria were enriched from oil-contaminated soil samples collected from terrestrial (rice field) and marine (tidal flat) ecosystems. Enriched consortia degraded toluene in the presence of nitrate as a terminal electron acceptor. The degradation rate of toluene was affected by the initial substrate concentration and co-existence of other hydrocarbons. The types of toluene-degrading denitrifying consortia depended on the type of ecosystem. The clone RS-7 obtained from the enriched consortium of the rice field was most closely related to a toluene-degrading and denitrifying bacterium, Azoarcus denitrificians (A. tolulyticus sp. nov.). The clone TS-11 detected in the tidal flat enriched consortium was affiliated to Thauera sp. strain S2 (T. aminoaromatica sp. nov.) that was able to degrade toluene under denitrifying conditions. This indicates that environmental factors greatly influence microbial communities obtained from terrestrial (rice field) and marine (tidal flat) ecosystems.

  13. Effects of Selected Root Exudate Components on Nitrogen Removal and Development of Denitrifying Bacteria in Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Hailu Wu

    2017-06-01

    Full Text Available Root exudates, particularly low molecular weight carbon (LMWC substrates, are major drivers of bacterial diversity and activity in the rhizosphere environment. However, it is not well understood how specific LMWC compounds—such as organic acids, soluble sugars, and amino acids—influence the community structures of denitrifying bacteria or if there are specific functions of LMWC substrates that preferentially respond to nitrogen (N removal in constructed wetlands (CWs. To address these knowledge gaps, we added mixtures of artificial exudates to CW microcosms containing N pollutant. N removal efficiency was observed over a 48-h experimental period, and at the end of the experiment, DNA was extracted from microbial samples for assessment of the bacterial community. The removal efficiencies of TN for the exudates treatments were higher than for control groups by 47.1–58.67%. Organic acid and soluble sugar treatments increased N removal, while amino acids were negative to N removal. The microbial community was changed when artificial exudates were added, but there were no significant relationships between LMWC compounds and bacterial community composition. These results indicate that although the responses of community structures of denitrifying bacteria to LMWC additions are still uncertain, there is evidence for N removal in response to exudate additions across LMWC types.

  14. Changes in bacterial community structure correlate with initial operating conditions of a field-scale denitrifying fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, C. [Miami Univ., Oxford, OH (United States). Dept. of Microbiology; Wu, W.M. [Stanford Univ., CA (United States). Dept. of Civil and Environmental Engineering; Gentry, T.J. [Oak Ridge National Lab., TN (US). Environmental Sciences Div.] (and others)

    2006-08-15

    High levels of nitrate are present in groundwater migrating from the former waste disposal ponds at the Y-12 National Security Complex in Oak Ridge, TN. A field-scale denitrifying fluidized bed reactor (FBR) was designed, constructed, and operated with ethanol as an electron donor for the removal of nitrate. After inoculation, biofilms developed on the granular activated carbon particles. Changes in the bacterial community of the FBR were evaluated with clone libraries (n=500 partial sequences) of the small-subunit rRNA gene for samples taken over a 4-month start-up period. Early phases of start-up operation were characterized by a period of selection, followed by low diversity and predominance by Azoarcus-like sequences. Possible explanations were high pH and nutrient limitations. After amelioration of these conditions, diversification increased rapidly, with the appearance of Dechloromonas, Pseudomonas, and Hydrogenophaga sequences. Changes in NO{sub 3}, SO{sub 4}, and pH also likely contributed to shifts in community composition. The detection of sulfate-reducing-bacteria-like sequences closely related to Desulfovibrio and Desulfuromonas in the FBR have important implications for downstream applications at the field site. (orig.)

  15. nirS-type denitrifying bacterial assemblages respond to environmental conditions of a shallow estuary.

    Science.gov (United States)

    Lisa, Jessica A; Jayakumar, Amal; Ward, Bess B; Song, Bongkeun

    2017-12-01

    Molecular analysis of dissimilatory nitrite reductase genes (nirS) was conducted using a customized microarray containing 165 nirS probes (archetypes) to identify members of sedimentary denitrifying communities. The goal of this study was to examine denitrifying community responses to changing environmental variables over spatial and temporal scales in the New River Estuary (NRE), NC, USA. Multivariate statistical analyses revealed three denitrifier assemblages and uncovered 'generalist' and 'specialist' archetypes based on the distribution of archetypes within these assemblages. Generalists, archetypes detected in all samples during at least one season, were commonly world-wide found in estuarine and marine ecosystems, comprised 8%-29% of the abundant NRE archetypes. Archetypes found in a particular site, 'specialists', were found to co-vary based on site specific conditions. Archetypes specific to the lower estuary in winter were designated Cluster I and significantly correlated by sediment Chl a and porewater Fe 2+ . A combination of specialist and more widely distributed archetypes formed Clusters II and III, which separated based on salinity and porewater H 2 S respectively. The co-occurrence of archetypes correlated with different environmental conditions highlights the importance of habitat type and niche differentiation among nirS-type denitrifying communities and supports the essential role of individual community members in overall ecosystem function. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Denitrifying capability and community dynamics of glycogen accumulating organisms during sludge granulation in an anaerobic-aerobic sequencing batch reactor

    Science.gov (United States)

    Bin, Zhang; Bin, Xue; Zhigang, Qiu; Zhiqiang, Chen; Junwen, Li; Taishi, Gong; Wenci, Zou; Jingfeng, Wang

    2015-08-01

    Denitrifying capability of glycogen accumulating organisms (GAOs) has received great attention in environmental science and microbial ecology. Combining this ability with granule processes would be an interesting attempt. Here, a laboratory-scale sequencing batch reactor (SBR) was operated to enrich GAOs and enable sludge granulation. The results showed that the GAO granules were cultivated successfully and the granules had denitrifying capability. The batch experiments demonstrated that all NO3--N could be removed or reduced, some amount of NO2--N were accumulated in the reactor, and N2 was the main gaseous product. SEM analysis suggested that the granules were tightly packed with a large amount of tetrad-forming organisms (TFOs); filamentous bacteria served as the supporting structures for the granules. The microbial community structure of GAO granules was differed substantially from the inoculant conventional activated sludge. Most of the bacteria in the seed sludge grouped with members of Proteobacterium. FISH analysis confirmed that GAOs were the predominant members in the granules and were distributed evenly throughout the granular space. In contrast, PAOs were severely inhibited. Overall, cultivation of the GAO granules and utilizing their denitrifying capability can provide us with a new approach of nitrogen removal and saving more energy.

  17. Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands.

    Directory of Open Access Journals (Sweden)

    Xavier Le Roux

    Full Text Available Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number - namely richness, presence of particular plant functional groups, or particular combinations of these and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities including 1 to 16 plant species with a factorial separation of the effects of richness and functional group composition to analyze how plant diversity components influence soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively, the abundance of nitrifiers (bacterial and archaeal amoA gene number and denitrifiers (nirK, nirS and nosZ gene number, and key soil environmental conditions. Plant diversity effects were largely due to differences in functional group composition between communities of identical richness (number of sown species, though richness also had an effect per se. NEA was positively related to the percentage of legumes in terms of sown species number, the additional effect of richness at any given legume percentage being negative. DEA was higher in plots with legumes, decreased with increasing percentage of grasses, and increased with richness. No correlation was observed between DEA and denitrifier abundance. NEA increased with the abundance of ammonia oxidizing bacteria. The effect of richness on NEA was entirely due to the build-up of nitrifying organisms, while legume effect was partly linked to modified ammonium availability and nitrifier abundance. Richness effect on DEA was entirely due to changes in soil moisture, while the effects of legumes and grasses were partly due to modified nitrate availability, which influenced the specific activity of denitrifiers. These results suggest that plant diversity-induced changes in microbial specific activity are important for facultative activities such as denitrification

  18. Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics

    DEFF Research Database (Denmark)

    Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq

    2017-01-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures......, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion...

  19. Configuration of biological wastewater treatment line and influent composition as the main factors driving bacterial community structure of activated sludge.

    Science.gov (United States)

    Jaranowska, Paulina; Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2013-07-01

    The structure of microbial consortia in wastewater treatment facilities is a resultant of environmental conditions created by the operational parameters of the purification process. In the research, activated sludge from nine Polish wastewater treatment plants (WWTPs) was investigated at a molecular level to determine the impact of the complexity of biological treatment line and the influent composition on the species structure and the diversity of bacterial consortia. The community fingerprints and technological data were subjected to the canonical correspondence and correlation analyses. The number of separated biological processes realized in the treatment line and the presence of industrial wastewater in the influent were the key factors determining the species structure of total and ammonia-oxidizing bacteria in biomass. The N2O-reducers community composition depended significantly on the design of the facility; the highest species richness of denitrifiers was noted in the WWTPs with separated denitrification tanks. The contribution of industrial streams to the inflow affected the diversity of total and denitrifying bacterial consortia and diminished the diversity of ammonia oxidizers. The obtained data are valuable for engineers since they revealed the main factors, including the design of wastewater treatment plant, influencing the microbial groups critical for the stability of purification processes.

  20. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments

    DEFF Research Database (Denmark)

    Priemé, Anders; Wolsing, Martin

    2004-01-01

    Temporal and spatial variation of communities of soil denitrifying bacteria at sites receiving mineral fertilizer (60 and 120 kg N ha-1 year-1) and cattle manure (75 and 150 kg N ha-1 year-1) were explored using terminal restriction fragment length polymorphism (T-RFLP) analyses of PCR amplified...... nitrite reductase (nirK and nirS) gene fragments. The analyses were done three times during the year: in March, July and October. nirK gene fragments could be amplified in all three months, whereas nirS gene fragments could be amplified only in March. Analysis of similarities in T-RFLP patterns revealed...... a significant seasonal shift in the community structure of nirK-containing bacteria. Also, sites treated with mineral fertilizer or cattle manure showed different communities of nirK-containing denitrifying bacteria, since the T-RFLP patterns of soils treated with these fertilizers were significantly different...

  1. Reduction of produced elementary sulfur in denitrifying sulfide removal process.

    Science.gov (United States)

    Zhou, Xu; Liu, Lihong; Chen, Chuan; Ren, Nanqi; Wang, Aijie; Lee, Duu-Jong

    2011-05-01

    Denitrifying sulfide removal (DSR) processes simultaneously convert sulfide, nitrate, and chemical oxygen demand from industrial wastewater into elemental sulfur, dinitrogen gas, and carbon dioxide, respectively. The failure of a DSR process is signaled by high concentrations of sulfide in reactor effluent. Conventionally, DSR reactor failure is blamed for overcompetition for heterotroph to autotroph communities. This study indicates that the elementary sulfur produced by oxidizing sulfide that is a recoverable resource from sulfide-laden wastewaters can be reduced back to sulfide by sulfur-reducing Methanobacterium sp. The Methanobacterium sp. was stimulated with excess organic carbon (acetate) when nitrite was completely consumed by heterotrophic denitrifiers. Adjusting hydraulic retention time of a DSR reactor when nitrite is completely consumed provides an additional control variable for maximizing DSR performance.

  2. Effect of pH on the denitrifying enzyme activity in pasture soils in relation to the intrinsic differences in denitrifier communities

    Czech Academy of Sciences Publication Activity Database

    Čuhel, Jiří; Šimek, Miloslav

    2011-01-01

    Roč. 56, č. 3 (2011), s. 230-235 ISSN 0015-5632 R&D Projects: GA MŠk LC06066; GA AV ČR IAA600660605 Institutional research plan: CEZ:AV0Z60660521 Keywords : pH * denitrifying enzyme activity * pasture soils Subject RIV: EH - Ecology, Behaviour Impact factor: 0.677, year: 2011

  3. Relationships Between Denitrifier Abundance, Denitrifier Diversity and Denitrification in Gulf of Mexico Hypoxic Zone Sediments.

    Science.gov (United States)

    Proctor, L. M.; Childs, C.; MacAuley, S.

    2002-12-01

    The largest zone of anthropogenic bottom water hypoxia in the Western Hemisphere occurs seasonally in the northern Gulf of Mexico. This hypoxic zone reaches its greatest extent in the summer months and is a consequence of seasonal stratification of the water column combined with the decomposition of organic matter derived from accelerated rates of primary production. The enhanced primary production is driven by inorganic nitrogen input from the Mississippi River and these conditions would seem ideal for supporting high levels of denitrification. Yet sediment denitrification exhibited a wide range, even at the height of the seasonal hypoxia. Therefore, we compared benthic denitrifier abundances and denitrifier diversity at several stations over two seasons exhibiting extremes in denitrification to evaluate the relationship between abundances, diversity and denitrification levels. Sediment denitrification ranged from 20 to 100 umol m-2 h-1, with rates in July, 2000 approximately half that observed in July, 2001. The highest rates were generally observed at stations with bottom water DO concentrations between 1 and 3 mg l-1. Relative denitrifier abundances, using nirS and nirK as proxies for denitrifiers, suggested a direct relationship between abundances and denitrification while denitrifier diversity, measured by T-RFLPs of nirS and nirK, suggested an inverse relationship between diversity and denitrification. These results suggest that several factors are important in understanding what controls denitrification in Gulf of Mexico hypoxic zone sediments.

  4. Molecular approaches to understand the regulation of N2O emission from denitrifying bacteria - model strains and soil communities (Invited)

    Science.gov (United States)

    Frostegard, A.; Bakken, L. R.

    2010-12-01

    Emissions of N2O from agricultural soils are largely caused by denitrifying bacteria. Field measurements of N2O fluxes show large variations and depend on several environmental factors, and possibly also on the composition of the denitrifying microbial community. The temporal and spatial variation of fluxes are not adequately captured by biogeochemical models, and few options for mitigations have been invented, which underscores the need to understand the mechanisms underlying the emissions of N2O. Analyses of denitrification genes and transcripts extracted from soils are important for describing the system, but may have limited value for prediction of N2O emissions. In contrast, phenotypic analyses are direct measures of the organisms’ responses to changing environmental conditions. Our approach is to combine phenotypic characterizations using high-resolution gas kinetics, with gene transcription analyses to study denitrification regulatory phenotypes (DRP) of bacterial strains or complex microbial communities. The rich data sets obtained provide a basis for refinement of biochemical and physiological research on this key process in the nitrogen cycle. The strength of this combined approach is illustrated by a series of experiments investigating effects of soil pH on denitrification. Soil pH emerges as a master variable determining the microbial community composition as well as its denitrification product ratio (N2O/N2), with higher ratio in acid than in alkaline soil. It is therefore likely that emissions of N2O from agro-ecosystems will increase in large parts of the world where soil pH is decreasing due to intensified management and increased use of chemical fertilizers. Considering its immense implications, surprisingly few attempts have been made to unravel the mechanisms involved in the pH-control of the product stoichiometry of denitrification. We investigated the kinetics of gas transformations (O2, NO, N2O and N2) and transcription of functional genes

  5. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen

    Science.gov (United States)

    Lipsewers, Yvonne A.; Hopmans, Ellen C.; Meysman, Filip J. R.; Sinninghe Damsté, Jaap S.; Villanueva, Laura

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution) at three different locations before (March) and during summer hypoxia (August). The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers, and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen-, and sulfur cycling in Lake Grevelingen sediments. PMID:27812355

  6. Abundance and diversity of denitrifying and anammox bacteria in seasonally hypoxic and sulfidic sediments of the saline Lake Grevelingen

    Directory of Open Access Journals (Sweden)

    Yvonne A. Lipsewers

    2016-10-01

    Full Text Available Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution at three different locations before (March and during summer hypoxia (August. The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen- and sulfur cycling in Lake Grevelingen sediments.

  7. Site-specific variability in BTEX biodegradation under denitrifying conditions

    International Nuclear Information System (INIS)

    Kao, C.M.; Borden, R.C.

    1997-01-01

    Laboratory microcosm experiments were conducted to evaluate the feasibility of benzene, toluene, ethylbenzene, m-xylene, and o-xylene (BTEX) biodegradation under denitrifying conditions. Nine different sources of inocula, including contaminated and uncontaminated soil cores from four different sites and activated sludge, were used to establish microcosms. BTEX was not degraded under denitrifying conditions in microcosms inoculated with aquifer material from Rocky Point and Traverse City. However, rapid depletion of glucose under denitrifying conditions was observed in microcosms containing Rocky Point aquifer material. TEX degradation was observed in microcosms containing Rocky Point aquifer material. TEX degradation was observed in microcosms containing aquifer material from Fort Bragg and Sleeping Bear Dunes and sewage sludge. Benzene was recalcitrant in all microcosms tested. The degradation of o-xylene ceased after toluene, ethylbenzene, and m-xylene were depleted in the Fort Bragg and sludge microcosms, but o-xylene continued to degrade in microcosms with contaminated Sleeping Bear Dunes soil. The most probable number (MPN) of denitrifiers in these nine different inocula were measured using a microtiter technique. There was no correlation between the MPN of denitrifiers and the TEX degradation rate under denitrifying conditions. Experimental results indicate that the degradation sequence and TEX degradation rate under denitrifying conditions may differ among sites. Results also indicate that denitrification alone may not be a suitable bioremediation technology for gasoline-contaminated aquifers because of the inability of denitrifiers to degrade benzene

  8. Composition and variation of sediment bacterial and nirS-harboring bacterial communities at representative sites of the Bohai Gulf coastal zone, China.

    Science.gov (United States)

    Guan, Xiangyu; Zhu, Lingling; Li, Youxun; Xie, Yuxuan; Zhao, Mingzhang; Luo, Ximing

    2014-04-01

    With rapid urbanization, anthropogenic activities are increasingly influencing the natural environment of the Bohai Bay. In this study, the composition and variation of bacterial and nirS-harboring bacterial communities in the coastal zone sediments of the Bohai Gulf were analyzed using PCR-based clone libraries. A total of 95 genera were detected in the bacterial communities, with Proteobacteria (72.1 %), Acidobacteria (10.5 %), Firmicutes (1.7 %), Bacteroidetes (1.4 %), Chloroflexi (0.7 %) and Planctomycetes (0.7 %) being the dominated phyla. The NirS sequences were divided into nine Clusters (A-I). Canonical correlation analysis showed that the bacterial or denitrifying communities were correlated with different environmental factors, such as total organic carbon, total nitrogen, ammonium, sulfate, etc. Furthermore, bacterial communities' composition and diversity are influenced by oil exploration, sewage discharge and other anthropogenic activities in the coastal area of the Bohai Sea. Thus, this study provided useful information on further research on regional or global environmental control and restore.

  9. The activity and community structure of total bacteria and denitrifying bacteria across soil depths and biological gradients in estuary ecosystem.

    Science.gov (United States)

    Lee, Seung-Hoon; Kang, Hojeong

    2016-02-01

    The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to

  10. In situ detection of denitrifying bacteria by mRNA-targeted nucleic acid probes and catalyzed reporter deposition

    DEFF Research Database (Denmark)

    Kofoed, Michael Vedel; Stief, Peter; Poulsen, Morten

    can be designed to target a broader range of denitrifying bacteria; however, they require two-pass CARD-FISH, which may result in (too) high background fluorescence. In a first application example, habitat-specific polynucleotide probes were used to quantify bacteria expressing narG and nos...... reduction of nitrate to dinitrogen gas, is essential for the removal of fixed nitrogen from natural and engineered ecosystems. However, community structure and activity dynamics of denitrifying bacteria in most systems are poorly understood, partially due to difficulties in identifying and quantifying...... and catalyzed fluorescent reporter deposition (CARD-FISH). The general feasibility of the approach was first tested with pure cultures of Pseudomonas stutzeri and various denitrifying and nitrate-reducing isolates. Detailed studies of probe specificity and hybridization conditions using Clone-FISH of nar...

  11. [Identification and function test of an alkali-tolerant denitrifying bacterium].

    Science.gov (United States)

    Wang, Ru; Zheng, Ping; Li, Wei; Chen, Hui; Chen, Tingting; Ghulam, Abbas

    2013-04-04

    We obtained an alkali-tolerant denitrifying bacterium, and determined its denitrifying activity and alkali-tolerance. An alkali-tolerant denitrifying bacterial strain was obtained by isolation and purification. We identified the bacterial strain by morphological observation, physiological test and 16S rRNA analysis. We determined the denitrifying activity and alkali-tolerance by effects of initial nitrate concentration and initial pH on denitrification. An alkali-tolerant denitrifier strain R9 was isolated from the lab-scale high-rate denitrifying reactor, and it was identified as Diaphorobater nitroreducens. The strain R9 grew heterotrophically with methanol as the electron donor and nitrate as the electron acceptor. The nitrate conversion was 93.25% when strain R9 was cultivated for 288 h with initial nitrate concentration 50 mg/L and initial pH 9.0. The denitrification activity could be inhibited at high nitrate concentration with a half inhibition constant of 202.73 mg N/L. Strain R9 showed a good alkali tolerance with the nitrate removal rate at pH 11.0 remained 86% of that at pH 9.0. Strain R9 was identified as Diaphorobater nitroreducens, and it was an alkali-tolerant denitrifying bacterium with optimum pH value of 9.0.

  12. Insights into the effect of soil pH on N.sub.2./sub.O and N.sub.2./sub. emissions and denitrifier community size and activity

    Czech Academy of Sciences Publication Activity Database

    Čuhel, Jiří; Šimek, Miloslav; Laughlin, R.J.; Bru, D.; Chéneby, D.; Watson, C.J.; Philippot, L.

    2010-01-01

    Roč. 76, č. 6 (2010), s. 1870-1878 ISSN 0099-2240 R&D Projects: GA MŠk MEB020726; GA MŠk LC06066; GA AV ČR IAA600660605 Institutional research plan: CEZ:AV0Z60660521 Keywords : soil pH * N 2 O and N 2 emissions * denitrifier community Subject RIV: EH - Ecology, Behaviour Impact factor: 3.778, year: 2010

  13. Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture.

    Science.gov (United States)

    Conthe, Monica; Wittorf, Lea; Kuenen, J Gijs; Kleerebezem, Robbert; van Loosdrecht, Mark C M; Hallin, Sara

    2018-04-01

    Reduction of the greenhouse gas N 2 O to N 2 is a trait among denitrifying and non-denitrifying microorganisms having an N 2 O reductase, encoded by nosZ. The nosZ phylogeny has two major clades, I and II, and physiological differences among organisms within the clades may affect N 2 O emissions from ecosystems. To increase our understanding of the ecophysiology of N 2 O reducers, we determined the thermodynamic growth efficiency of N 2 O reduction and the selection of N 2 O reducers under N 2 O- or acetate-limiting conditions in a continuous culture enriched from a natural community with N 2 O as electron acceptor and acetate as electron donor. The biomass yields were higher during N 2 O limitation, irrespective of dilution rate and community composition. The former was corroborated in a continuous culture of Pseudomonas stutzeri and was potentially due to cytotoxic effects of surplus N 2 O. Denitrifiers were favored over non-denitrifying N 2 O reducers under all conditions and Proteobacteria harboring clade I nosZ dominated. The abundance of nosZ clade II increased when allowing for lower growth rates, but bacteria with nosZ clade I had a higher affinity for N 2 O, as defined by μ max /K s . Thus, the specific growth rate is likely a key factor determining the composition of communities living on N 2 O respiration under growth-limited conditions.

  14. Community structures and activity of denitrifying microbes in a forested catchment in central Japan: survey using nitrite reductase genes

    Science.gov (United States)

    Ohte, N.; Aoki, M.; Katsuyama, C.; Suwa, Y.; Tange, T.

    2012-12-01

    To elucidate the mechanisms of denitrification processes in the forested catchment, microbial ecological approaches have been applied in an experimental watershed that has previously investigated its hydrological processes. The study catchment is located in the Chiba prefecture in central Japan under the temperate Asian monsoon climate. Potential activities of denitrification of soil samples were measured by incubation experiments under anoxic condition associated with Na15NO3 addition. Existence and variety of microbes having nitrite reductase genes were investigated by PCR amplification, cloning and sequencings of nirK and nirS fragments after DNA extraction. Contrary to our early expectation that the potential denitrification activity was higher at deeper soil horizon with consistent groundwater residence than that in the surface soil, denitrification potential was higher in shallower soil horizons than deeper soils. This suggested that the deficiency of NO3- as a respiratory substrate for denitrifier occurred in deeper soils especially in the summer. However, high denitrification activity and presence of microbes having nirK and nirS in surface soils usually under aerobic condition was explainable by the fact that the majority of denitrifying bacteria have been recognized as a facultative anaerobic bacterium. This also suggests the possibility of that denitrification occurs even in the surface soils if the wet condition is provided by rainwater during and after a storm event. Community structures of microbes having nirK were different between near surface and deeper soil horizons, and ones having nirS was different between saturated zone (under groundwater table) and unsaturated soil horizons. These imply that microbial communities with nisK are sensitive to the concentration of soil organic matters and ones with nirS is sensitive to soil moisture contents.

  15. Submerged macrophytes shape the abundance and diversity of bacterial denitrifiers in bacterioplankton and epiphyton in the Shallow Fresh Lake Taihu, China.

    Science.gov (United States)

    Fan, Zhou; Han, Rui-Ming; Ma, Jie; Wang, Guo-Xiang

    2016-07-01

    nirK and nirS genes are important functional genes involved in the denitrification pathway. Recent studies about these two denitrifying genes are focusing on sediment and wastewater microbe. In this study, we conducted a comparative analysis of the abundance and diversity of denitrifiers in the epiphyton of submerged macrophytes Potamogeton malaianus and Ceratophyllum demersum as well as in bacterioplankton in the shallow fresh lake Taihu, China. Results showed that nirK and nirS genes had significant different niches in epiphyton and bacterioplankton. Bacterioplankton showed greater abundance of nirK gene in terms of copy numbers and lower abundance of nirS gene. Significant difference in the abundance of nirK and nirS genes also existed between the epiphyton from different submerged macrophytes. Similar community diversity yet different community abundance was observed between epiphytic bacteria and bacterioplankton. No apparent seasonal variation was found either in epiphytic bacteria or bacterioplankton; however, environmental parameters seemed to have direct relevancy with nirK and nirS genes. Our study suggested that submerged macrophytes have greater influence than seasonal parameters in shaping the presence and abundance of bacterial denitrifiers. Further investigation needs to focus on the potential contact and relative contribution between denitrifiers and environmental factors.

  16. Mathematical Modeling of Nitrous Oxide Production during Denitrifying Phosphorus Removal Process.

    Science.gov (United States)

    Liu, Yiwen; Peng, Lai; Chen, Xueming; Ni, Bing-Jie

    2015-07-21

    A denitrifying phosphorus removal process undergoes frequent alternating anaerobic/anoxic conditions to achieve phosphate release and uptake, during which microbial internal storage polymers (e.g., Polyhydroxyalkanoate (PHA)) could be produced and consumed dynamically. The PHA turnovers play important roles in nitrous oxide (N2O) accumulation during the denitrifying phosphorus removal process. In this work, a mathematical model is developed to describe N2O dynamics and the key role of PHA consumption on N2O accumulation during the denitrifying phosphorus removal process for the first time. In this model, the four-step anoxic storage of polyphosphate and four-step anoxic growth on PHA using nitrate, nitrite, nitric oxide (NO), and N2O consecutively by denitrifying polyphosphate accumulating organisms (DPAOs) are taken into account for describing all potential N2O accumulation steps in the denitrifying phosphorus removal process. The developed model is successfully applied to reproduce experimental data on N2O production obtained from four independent denitrifying phosphorus removal study reports with different experimental conditions. The model satisfactorily describes the N2O accumulation, nitrogen reduction, phosphate release and uptake, and PHA dynamics for all systems, suggesting the validity and applicability of the model. The results indicated a substantial role of PHA consumption in N2O accumulation due to the relatively low N2O reduction rate by using PHA during denitrifying phosphorus removal.

  17. Microbial Community Composition and Ultrastructure of Granules from a Full-Scale Anammox Reactor

    KAUST Repository

    Gonzalez-Gil, Graciela

    2014-12-11

    Granules in anammox reactors contain besides anammox bacteria other microbial communities whose identity and relationship with the anammox bacteria are not well understood. High calcium concentrations are often supplied to anammox reactors to obtain sufficient bacterial aggregation and biomass retention. The aim of this study was to provide the first characterization of bacterial and archaeal communities in anammox granules from a full-scale anammox reactor and to explore on the possible role of calcium in such aggregates. High magnification imaging using backscattered electrons revealed that anammox bacteria may be embedded in calcium phosphate precipitates. Pyrosequencing of 16S rRNA gene fragments showed, besides anammox bacteria (Brocadiacea, 32 %), substantial numbers of heterotrophic bacteria Ignavibacteriacea (18 %) and Anaerolinea (7 %) along with heterotrophic denitrifiers Rhodocyclacea (9 %), Comamonadacea (3 %), and Shewanellacea (3 %) in the granules. It is hypothesized that these bacteria may form a network in which heterotrophic denitrifiers cooperate to achieve a well-functioning denitrification system as they can utilize the nitrate intrinsically produced by the anammox reaction. This network may provide a niche for the proliferation of archaea. Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy. It is hypothesized that the anammox process in a full-scale reactor triggers various reactions overall leading to efficient denitrification and a sink of carbon as biomass in anammox granules.

  18. Microbial community composition and ultrastructure of granules from a full-scale anammox reactor.

    Science.gov (United States)

    Gonzalez-Gil, Graciela; Sougrat, Rachid; Behzad, Ali R; Lens, Piet N L; Saikaly, Pascal E

    2015-07-01

    Granules in anammox reactors contain besides anammox bacteria other microbial communities whose identity and relationship with the anammox bacteria are not well understood. High calcium concentrations are often supplied to anammox reactors to obtain sufficient bacterial aggregation and biomass retention. The aim of this study was to provide the first characterization of bacterial and archaeal communities in anammox granules from a full-scale anammox reactor and to explore on the possible role of calcium in such aggregates. High magnification imaging using backscattered electrons revealed that anammox bacteria may be embedded in calcium phosphate precipitates. Pyrosequencing of 16S rRNA gene fragments showed, besides anammox bacteria (Brocadiacea, 32%), substantial numbers of heterotrophic bacteria Ignavibacteriacea (18%) and Anaerolinea (7%) along with heterotrophic denitrifiers Rhodocyclacea (9%), Comamonadacea (3%), and Shewanellacea (3%) in the granules. It is hypothesized that these bacteria may form a network in which heterotrophic denitrifiers cooperate to achieve a well-functioning denitrification system as they can utilize the nitrate intrinsically produced by the anammox reaction. This network may provide a niche for the proliferation of archaea. Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy. It is hypothesized that the anammox process in a full-scale reactor triggers various reactions overall leading to efficient denitrification and a sink of carbon as biomass in anammox granules.

  19. Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination

    International Nuclear Information System (INIS)

    Green, Stefan; Prakash, Om; Gihring, Thomas; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M.; Watson, David B.; Brown, Steven David; Palumbo, Anthony Vito; Kostka, Joel

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available with which to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria) and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were confirmed as complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. Ribosomal RNA gene analyses reveal that bacteria from the genus Rhodanobacter comprise a diverse population of circumneutral to moderately acidophilic denitrifiers at the ORIFRC site, with a high relative abundance in areas of the acidic source zone. Rhodanobacter species do not contain a periplasmic nitrite reductase and have not been previously detected in functional gene surveys of denitrifying bacteria at the OR-IFRC site. Sequences of nitrite and nitrous oxide reductase genes were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation, genomic and metagenomic data are essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifying microorganisms. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  20. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2017-06-01

    Full Text Available The ozone-depleting and greenhouse gas, nitrous oxide (N2O, is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA and transcriptionally active (RNA nitrous oxide reductase (nosZ genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water.

  1. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific

    Science.gov (United States)

    Sun, Xin; Jayakumar, Amal; Ward, Bess B.

    2017-01-01

    The ozone-depleting and greenhouse gas, nitrous oxide (N2O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide reductase (nosZ) genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number) was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water. PMID:28702012

  2. Denitrification of groundwater using a sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: performance and bacterial community structure.

    Science.gov (United States)

    Zhang, Lili; Zhang, Chao; Hu, Chengzhi; Liu, Huijuan; Qu, Jiuhui

    2015-03-01

    This paper investigates a novel sulfur-oxidizing autotrophic denitrifying anaerobic fluidized bed membrane bioreactor (AnFB-MBR) that has the potential to overcome the limitations of conventional sulfur-oxidizing autotrophic denitrification systems. The AnFB-MBR produced consistent high-quality product water when fed by a synthetic groundwater with NO3 (-)-N ranging 25-80 mg/L and operated at hydraulic retention times of 0.5-5.0 h. A nitrate removal rate of up to 4.0 g NO3 (-)-N/Lreactord was attained by the bioreactor, which exceeded any reported removal capacity. The flux of AnFB-MBR was maintained in the range of 1.5-15 L m(-2) h(-1). Successful membrane cleaning was practiced with cleaning cycles of 35-81 days, which had no obvious effect on the AnFB-MBR performance. The (15) N-tracer analyses elucidated that nitrogen was converted into (15) N2-N and (15) N-biomass accounting for 88.1-93.1 % and 6.4-11.6 % of the total nitrogen produced, respectively. Only 0.3-0.5 % of removed nitrogen was in form of (15)N2O-N in sulfur-oxidizing autotrophic denitrification process, reducing potential risks of a significant amount of N2O emissions. The sulfur-oxidizing autotrophic denitrifying bacterial consortium was composed mainly of bacteria from Proteobacteria, Chlorobi, and Chloroflexi phyla, with genera Thiobacillus, Sulfurimonas, and Ignavibacteriales dominating the consortium. The pyrosequencing assays also suggested that the stable microbial communities corresponded to the elevated performance of the AnFB-MBR. Overall, this research described relatively high nitrate removal, acceptable flux, indicating future potential for the technology in practice.

  3. Bacterial community involved in the nitrogen cycle in a down-flow sponge-based trickling filter treating UASB effluent.

    Science.gov (United States)

    Mac Conell, E F A; Almeida, P G S; Martins, K E L; Araújo, J C; Chernicharo, C A L

    2015-01-01

    The bacterial community composition of a down-flow sponge-based trickling filter treating upflow anaerobic sludge blanket (UASB) effluent was investigated by pyrosequencing. Bacterial community composition considerably changed along the reactor and over the operational period. The dominant phyla detected were Proteobacteria, Verrucomicrobia, and Planctomycetes. The abundance of denitrifiers decreased from the top to the bottom and it was consistent with the organic matter concentration gradients. At lower loadings (organic and nitrogen loading rates), the abundance of anammox bacteria was higher than that of the ammonium-oxidizing bacteria in the upper portion of the reactor, suggesting that aerobic and anaerobic ammonium oxidation occurred. Nitrification occurred in all the compartments, while anammox bacteria prominently appeared even in the presence of high organic carbon to ammonia ratios (around 1.0-2.0 gCOD gN(-1)). The results suggest that denitrifiers, nitrifiers, and anammox bacteria coexisted in the reactor; thus, different metabolic pathways were involved in ammonium removal in the post-UASB reactor sponge-based.

  4. Co-effects of pyrene and nitrate on the activity and abundance of soil denitrifiers under anaerobic condition.

    Science.gov (United States)

    Zhou, Zhi-Feng; Yao, Yan-Hong; Wang, Ming-Xia; Zuo, Xiao-Hu

    2017-10-01

    It has previously been confirmed that polycyclic aromatic hydrocarbons (PAHs) could be degraded by soil microbes coupling with denitrification, but the relationships among soil denitrifiers, PAHs, and nitrate under obligate anaerobic condition are still unclear. Here, co-effects of pyrene and nitrate on the activity and abundance of soil denitrifiers were investigated through a 45-day incubation experiment. Two groups of soil treatments with (N 30 ) and without (N 0 ) nitrate (30 mg kg -1 dry soil) amendment were conducted, and each group contained three treatments with different pyrene concentrations (0, 30, and 60 mg kg -1 dry soil denoted as P 0 , P 30 , and P 60 , respectively). The pyrene content, abundances of denitrification concerning genes (narG, periplasmic nitrate reductase gene; nirS, cd 1 -nitrite reductase gene; nirK, copper-containing nitrite reductase gene), and productions of N 2 O and CO 2 were measured at day 3, 14, 28, and 45, and the bacterial community structures in four represented treatments (N 0 P 0 , N 0 P 60 , N 30 P 0 , and N 30 P 60 ) were analyzed at day 45. The results indicated that the treatments with higher pyrene concentration had higher final pyrene removal rates than the treatments with lower pyrene concentration. Additionally, intensive emission of N 2 O was detected in all treatments only at day 3, but a continuous production of CO 2 was measured in each treatment during the incubation. Nitrate amendment could enhance the activity of soil denitrifiers, and be helpful for soil microbes to sustain their activity. While pyrene seemed had no influence on the productions of N 2 O and CO 2 , and amendment with pyrene or nitrate both had no obvious effect on abundances of denitrification concerning genes. Furthermore, it was nitrate but not pyrene had an obvious influence on the community structure of soil bacteria. These results revealed that, under anaerobic condition, the activity and abundance of soil denitrifiers both were

  5. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition

    International Nuclear Information System (INIS)

    Chen Chuan; Ren Nanqi; Wang Aijie; Liu Lihong; Lee, Duu-Jong

    2010-01-01

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed.

  6. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition.

    Science.gov (United States)

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong

    2010-07-15

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed. 2010 Elsevier B.V. All rights reserved.

  7. Experimental investigation of activities and tolerance of denitrifying bacteria under alkaline and reducing condition

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao

    2000-07-01

    In the geological disposal system of TRU wastes, nitrogen generation by denitrifying bacteria could provide significant impact on the assessment of this system, because nitrate contained in process concentrated liquid waste might be electron acceptor for denitrifying bacteria. In this study, the activities and tolerance of denitrifying under disposal condition were investigated. Pseudomonas denitrificans as denitrifying bacteria was used. The results showed that Pseudomonas denitrificans had activity under reducing condition, but under high pH condition (pH>9.5), the activity of Pseudomonas denitrificans was not detected. It is possible that the activity of Pseudomonas denitrificans would be low under disposal condition. (author)

  8. Characterization of bacterial consortia capable of degrading 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions.

    Science.gov (United States)

    Song, Bongkeun; Kerkhof, Lee J; Häggblom, Max M

    2002-08-06

    4-Chlorobenzoate and 4-bromobenzoate were readily degraded in denitrifying enrichment cultures established with river sediment, estuarine sediment or agricultural soil as inoculum. Stable denitrifying consortia were obtained and maintained by serial dilution and repeated feeding of substrates. Microbial community analyses were performed to characterize the 4-chlorobenzoate and 4-bromobenzoate degrading consortia with terminal restriction fragment length polymorphism (T-RFLP) and cloning of 16S rRNA genes from the cultures. Interestingly, two major terminal restriction fragments (T-RFs) in the 4-chlorobenzoate degrading consortia and one T-RF in the 4-bromobenzoate utilizing consortium were observed from T-RFLP analysis regardless of their geographical and ecological origins. The two T-RFs (clones 4CB1 and 4CB2) in 4-chlorobenzoate degrading consortia were identified as members of the beta-subunit of the Proteobacteria on the basis of 16S rRNA sequencing analysis. Phylogenetic analysis of 16S rRNA genes showed that clone 4CB1 was closely related to Thauera aromatica while clone 4CB2 was distantly related to the genera Limnobacter and Ralstonia. The 4-bromobenzoate utilizing consortium mainly consisted of one T-RF, which was identical to clone 4CB2 in spite of different enrichment substrate. This suggests that degradation of 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions was mediated by bacteria belonging to the beta-subunit of the Proteobacteria.

  9. Co-existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteria in Sewage Sludge: Community Diversity and Seasonal Dynamics.

    Science.gov (United States)

    Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq; Caicedo, Luis Miguel; Guo, Hanwen; Fu, Xindi; Wang, Hongtao

    2017-11-01

    Anaerobic ammonium oxidation (ANAMMOX) and denitrifying anaerobic methane oxidation (DAMO) have been recently discovered as relevant processes in the carbon and nitrogen cycles of wastewater treatment plants. In this study, the seasonal dynamics of ANAMMOX and DAMO bacterial community structures and their abundance in sewage sludge collected from wastewater treatment plants were analysed. Results indicated that ANAMMOX and DAMO bacteria co-existed in sewage sludge in different seasons and their abundance was positively correlated (P bacteria in autumn and winter indicated that these seasons were the preferred time to favour the growth of ANAMMOX and DAMO bacteria. The community structure of ANNAMOX and DAMO bacteria could also shift with seasonal changes. The "Candidatus Brocadia" genus of ANAMMOX bacteria was mainly recovered in spring and summer, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion. The redundancy analysis revealed that pH and nitrate were the most significant factors affecting community structures of these two groups (P < 0.01). This study reported the diversity of ANAMMOX and DAMO in wastewater treatment plants that may be the basis for new nitrogen removal technologies.

  10. Are Isotopologue Signatures of N2O from Bacterial Denitrifiers Indicative of NOR Type?

    Science.gov (United States)

    Well, R.; Braker, G.; Giesemann, A.; Flessa, H.

    2010-12-01

    Nitrous oxide (N2O) fluxes from soils result from its production by nitrification and denitrification and reduction during denitrification. The structure of the denitrifying microbial community contributes to the control of net N2O fluxes. Although molecular techniques are promising for identifying the active community of N2O producers, there are few data until now because methods to explore gene expression of N2O production are laborious and disregard regulation of activity at the enzyme level. The isotopologue signatures of N2O including δ18O, average δ15N (δ15Nbulk) and 15N site preference (SP = difference in δ15N between the central and peripheral N positions of the asymmetric N2O molecule) have been used to estimate the contribution of partial processes to net N2O fluxes to the atmosphere. However, the use of this approach to study N2O dynamics in soils requires knowledge of isotopic signatures of N2O precursors and isotopologue fractionation factors (ɛ) of all processes of N2O production and consumption. In contrast to δ18O and δ15Nbulk, SP is independent of precursor signatures and hence is a promising parameter here. It is assumed that SP of produced N2O is almost exclusively controlled by the enzymatic isotope effects of NO reductases (NOR). These enzymes are known to be structurally different between certain classes of N2O producers with each class causing different isotope effects (Schmidt et al., 2004). The NH2OH-to-N2O step of nitrifiers and the NO3-to-N2O step of fungal denitrifiers are associated with large site-specific 15N effects with SP of 33 to 37 ‰ (Sutka et al., 2006, 2008) while the few tested species of gram-negative bacterial denitrifiers (cNOR group) exhibited low SP of -5 to 0‰ (Sutka et al., 2006; Toyoda et al., 2005). The aim of our study was to determine site-specific fractionation factors of the NO3-to-N2O step (ɛSP) for several species of denitrifiers representing each of the known NOR-types of bacteria, i.e. cNOR, q

  11. Isolation and Physiological Characterization of Psychrophilic Denitrifying Bacteria from Permanently Cold Arctic Fjord Sediments (Svalbard, Norway)

    Science.gov (United States)

    Canion, Andy; Prakash, Om; Green, Stefan J.; Jahnke, Linda; Kuypers, Marcel M. M.; Kostka, Joel E.

    2013-01-01

    A large proportion of reactive nitrogen loss from polar sediments is mediated by denitrification, but microorganisms mediating denitrification in polar environments remain poorly characterized. A combined approach of most-probable-number (MPN) enumeration, cultivation and physiological characterization was used to describe psychrophilic denitrifying bacterial communities in sediments of three Arctic fjords in Svalbard (Norway). A MPN assay showed the presence of 10(sup 3)-10(sup 6) cells of psychrophilic nitrate-respiring bacteria g(sup -1) of sediment. Fifteen strains within the Proteobacteria were isolated using a systematic enrichment approach with organic acids as electron donors and nitrate as an electron acceptor. Isolates belonged to five genera, including Shewanella, Pseudomonas, Psychromonas (Gammaproteobacteria), Arcobacter (Epsilonproteobacteria) and Herminiimonas (Betaproteobacteria). All isolates were denitrifiers, except Shewanella, which exhibited the capacity for dissimilatory nitrate reduction to ammonium (DNRA). Growth from 0 to 40 degC demonstrated that all genera except Shewanella were psychrophiles with optimal growth below 15 degC, and adaptation to low temperature was demonstrated as a shift from primarily C16:0 saturated fatty acids to C16:1 monounsaturated fatty acids at lower temperatures. This study provides the first targeted enrichment and characterization of psychrophilic denitrifying bacteria from polar sediments, and two genera, Arcobacter and Herminiimonas, are isolated for the first time from permanently cold marine sediments.

  12. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Biological nitrification/denitrification is frequently used to remove nitrogen from tannery wastewater containing high concentrations of ammonia. However, information is limited about the bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants (WWTPs due to the low-throughput of the previously used methods. In this study, 454 pyrosequencing and Illumina high-throughput sequencing, combined with molecular methods, were used to comprehensively characterize structures and functions of nitrification and denitrification bacterial communities in aerobic and anaerobic sludge of two full-scale tannery WWTPs. Pyrosequencing of 16S rRNA genes showed that Proteobacteria and Synergistetes dominated in the aerobic and anaerobic sludge, respectively. Ammonia-oxidizing bacteria (AOB amoA gene cloning revealed that Nitrosomonas europaea dominated the ammonia-oxidizing community in the WWTPs. Metagenomic analysis showed that the denitrifiers mainly included the genera of Thauera, Paracoccus, Hyphomicrobium, Comamonas and Azoarcus, which may greatly contribute to the nitrogen removal in the two WWTPs. It is interesting that AOB and ammonia-oxidizing archaea had low abundance although both WWTPs demonstrated high ammonium removal efficiency. Good correlation between the qPCR and metagenomic analysis is observed for the quantification of functional genes amoA, nirK, nirS and nosZ, indicating that the metagenomic approach may be a promising method used to comprehensively investigate the abundance of functional genes of nitrifiers and denitrifiers in the environment.

  13. Molecular characterization of diazotrophic and denitrifying bacteria associated with mangrove roots.

    Science.gov (United States)

    Flores-Mireles, Ana L; Winans, Stephen C; Holguin, Gina

    2007-11-01

    An analysis of the molecular diversity of N(2) fixers and denitrifiers associated with mangrove roots was performed using terminal restriction length polymorphism (T-RFLP) of nifH (N(2) fixation) and nirS and nirK (denitrification), and the compositions and structures of these communities among three sites were compared. The number of operational taxonomic units (OTU) for nifH was higher than that for nirK or nirS at all three sites. Site 3, which had the highest organic matter and sand content in the rhizosphere sediment, as well as the lowest pore water oxygen concentration, had the highest nifH diversity. Principal component analysis of biogeochemical parameters identified soil texture, organic matter content, pore water oxygen concentration, and salinity as the main variables that differentiated the sites. Nonmetric multidimensional scaling (MDS) analyses of the T-RFLP data using the Bray-Curtis coefficient, group analyses, and pairwise comparisons between the sites clearly separated the OTU of site 3 from those of sites 1 and 2. For nirS, there were statistically significant differences in the composition of OTU among the sites, but the variability was less than for nifH. OTU defined on the basis of nirK were highly similar, and the three sites were not clearly separated on the basis of these sequences. The phylogenetic trees of nifH, nirK, and nirS showed that most of the cloned sequences were more similar to sequences from the rhizosphere isolates than to those from known strains or from other environments.

  14. Molecular Characterization of Diazotrophic and Denitrifying Bacteria Associated with Mangrove Roots▿

    Science.gov (United States)

    Flores-Mireles, Ana L.; Winans, Stephen C.; Holguin, Gina

    2007-01-01

    An analysis of the molecular diversity of N2 fixers and denitrifiers associated with mangrove roots was performed using terminal restriction length polymorphism (T-RFLP) of nifH (N2 fixation) and nirS and nirK (denitrification), and the compositions and structures of these communities among three sites were compared. The number of operational taxonomic units (OTU) for nifH was higher than that for nirK or nirS at all three sites. Site 3, which had the highest organic matter and sand content in the rhizosphere sediment, as well as the lowest pore water oxygen concentration, had the highest nifH diversity. Principal component analysis of biogeochemical parameters identified soil texture, organic matter content, pore water oxygen concentration, and salinity as the main variables that differentiated the sites. Nonmetric multidimensional scaling (MDS) analyses of the T-RFLP data using the Bray-Curtis coefficient, group analyses, and pairwise comparisons between the sites clearly separated the OTU of site 3 from those of sites 1 and 2. For nirS, there were statistically significant differences in the composition of OTU among the sites, but the variability was less than for nifH. OTU defined on the basis of nirK were highly similar, and the three sites were not clearly separated on the basis of these sequences. The phylogenetic trees of nifH, nirK, and nirS showed that most of the cloned sequences were more similar to sequences from the rhizosphere isolates than to those from known strains or from other environments. PMID:17827324

  15. Structure of hydrocarbonoclastic nitrate-reducing bacterial communities in bioturbated coastal marine sediments.

    Science.gov (United States)

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Duran, Robert

    2014-09-01

    The organisation of denitrifying microorganisms in oil-polluted bioturbated sediments was investigated in mesocosms under conditions as closer as possible to that observed in the environment. Molecular and culture-dependent approaches revealed that denitrifying Gammaproteobacteria were abundant in oil-polluted and bioturbated sediments suggesting that they may play a key role in hydrocarbon degradation in the environment. T-RFLP and gene libraries analyses targeting nirS gene showed that denitrifying microbial communities structure was slightly affected by either the addition of Hediste diversicolor or crude oil revealing the metabolic versatility of denitrifying microorganisms. From oil-polluted sediments, distinct denitrifying hydrocarbonoclastic bacterial consortia were obtained by enrichment cultures on high molecular weight polyaromatic hydrocarbons (PAHs) (dibenzothiophene, fluoranthene, pyrene and chrysene) under nitrate-reducing conditions. Interestingly, molecular characterisation of the consortia showed that the denitrifying communities obtained from oiled microcosms with addition of H. diversicolor were different to that observed without H. diversicolor addition, especially with fluoranthene and chrysene revealing the bacterial diversity involved in the degradation of these PAHs. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Denitrification and Biodiversity of Denitrifiers in a High-Mountain Mediterranean Lake

    Directory of Open Access Journals (Sweden)

    Antonio Castellano-Hinojosa

    2017-10-01

    Full Text Available Wet deposition of reactive nitrogen (Nr species is considered a main factor contributing to N inputs, of which nitrate (NO3− is usually the major component in high-mountain lakes. The microbial group of denitrifiers are largely responsible for reduction of nitrate to molecular dinitrogen (N2 in terrestrial and aquatic ecosystems, but the role of denitrification in removal of contaminant nitrates in high-mountain lakes is not well understood. We have used the oligotrophic, high-altitude La Caldera lake in the Sierra Nevada range (Spain as a model to study the role of denitrification in nitrate removal. Dissolved inorganic Nr concentration in the water column of la Caldera, mainly nitrate, decreased over the ice-free season which was not associated with growth of microbial plankton or variations in the ultraviolet radiation. Denitrification activity, estimated as nitrous oxide (N2O production, was measured in the water column and in sediments of the lake, and had maximal values in the month of August. Relative abundance of denitrifying bacteria in sediments was studied by quantitative polymerase chain reaction of the 16S rRNA and the two phylogenetically distinct clades nosZI and nosZII genes encoding nitrous oxide reductases. Diversity of denitrifiers in sediments was assessed using a culture-dependent approach and after the construction of clone libraries employing the nosZI gene as a molecular marker. In addition to genera Polymorphum, Paracoccus, Azospirillum, Pseudomonas, Hyphomicrobium, Thauera, and Methylophaga, which were present in the clone libraries, Arthrobacter, Burkholderia, and Rhizobium were also detected in culture media that were not found in the clone libraries. Analysis of biological activities involved in the C, N, P, and S cycles from sediments revealed that nitrate was not a limiting nutrient in the lake, allowed N2O production and determined denitrifiers’ community structure. All these results indicate that

  17. Denitrification and Biodiversity of Denitrifiers in a High-Mountain Mediterranean Lake

    Science.gov (United States)

    Castellano-Hinojosa, Antonio; Correa-Galeote, David; Carrillo, Presentación; Bedmar, Eulogio J.; Medina-Sánchez, Juan M.

    2017-01-01

    Wet deposition of reactive nitrogen (Nr) species is considered a main factor contributing to N inputs, of which nitrate (NO3−) is usually the major component in high-mountain lakes. The microbial group of denitrifiers are largely responsible for reduction of nitrate to molecular dinitrogen (N2) in terrestrial and aquatic ecosystems, but the role of denitrification in removal of contaminant nitrates in high-mountain lakes is not well understood. We have used the oligotrophic, high-altitude La Caldera lake in the Sierra Nevada range (Spain) as a model to study the role of denitrification in nitrate removal. Dissolved inorganic Nr concentration in the water column of la Caldera, mainly nitrate, decreased over the ice-free season which was not associated with growth of microbial plankton or variations in the ultraviolet radiation. Denitrification activity, estimated as nitrous oxide (N2O) production, was measured in the water column and in sediments of the lake, and had maximal values in the month of August. Relative abundance of denitrifying bacteria in sediments was studied by quantitative polymerase chain reaction of the 16S rRNA and the two phylogenetically distinct clades nosZI and nosZII genes encoding nitrous oxide reductases. Diversity of denitrifiers in sediments was assessed using a culture-dependent approach and after the construction of clone libraries employing the nosZI gene as a molecular marker. In addition to genera Polymorphum, Paracoccus, Azospirillum, Pseudomonas, Hyphomicrobium, Thauera, and Methylophaga, which were present in the clone libraries, Arthrobacter, Burkholderia, and Rhizobium were also detected in culture media that were not found in the clone libraries. Analysis of biological activities involved in the C, N, P, and S cycles from sediments revealed that nitrate was not a limiting nutrient in the lake, allowed N2O production and determined denitrifiers’ community structure. All these results indicate that denitrification could be a

  18. Relative Contribution of nirK- and nirS- Bacterial Denitrifiers as Well as Fungal Denitrifiers to Nitrous Oxide Production from Dairy Manure Compost.

    Science.gov (United States)

    Maeda, Koki; Toyoda, Sakae; Philippot, Laurent; Hattori, Shohei; Nakajima, Keiichi; Ito, Yumi; Yoshida, Naohiro

    2017-12-19

    The relative contribution of fungi, bacteria, and nirS and nirK denirifiers to nitrous oxide (N 2 O) emission with unknown isotopic signature from dairy manure compost was examined by selective inhibition techniques. Chloramphenicol (CHP), cycloheximide (CYH), and diethyl dithiocarbamate (DDTC) were used to suppress the activity of bacteria, fungi, and nirK-possessing denitrifiers, respectively. Produced N 2 O were surveyed to isotopocule analysis, and its 15 N site preference (SP) and δ 18 O values were compared. Bacteria, fungi, nirS, and nirK gene abundances were compared by qPCR. The results showed that N 2 O production was strongly inhibited by CHP addition in surface pile samples (82.2%) as well as in nitrite-amended core samples (98.4%), while CYH addition did not inhibit the N 2 O production. N 2 O with unknown isotopic signature (SP = 15.3-16.2‰), accompanied by δ 18 O (19.0-26.8‰) values which were close to bacterial denitrification, was also suppressed by CHP and DDTC addition (95.3%) indicating that nirK denitrifiers were responsible for this N 2 O production despite being less abundant than nirS denitrifiers. Altogether, our results suggest that bacteria are important for N 2 O production with different SP values both from compost surface and pile core. However, further work is required to decipher whether N 2 O with unknown isotopic signature is mostly due to nirK denitrifiers that are taxonomically different from the SP-characterized strains and therefore have different SP values rather than also being interwoven with the contribution of the NO-detoxifying pathway and/or of co-denitrification.

  19. Community Structure of Denitrifiers, Bacteria, and Archaea along Redox Gradients in Pacific Northwest Marine Sediments by Terminal Restriction Fragment Length Polymorphism Analysis of Amplified Nitrite Reductase (nirS) and 16S rRNA Genes

    Science.gov (United States)

    Braker, Gesche; Ayala-del-Río, Héctor L.; Devol, Allan H.; Fesefeldt, Andreas; Tiedje, James M.

    2001-01-01

    Steep vertical gradients of oxidants (O2 and NO3−) in Puget Sound and Washington continental margin sediments indicate that aerobic respiration and denitrification occur within the top few millimeters to centimeters. To systematically explore the underlying communities of denitrifiers, Bacteria, and Archaea along redox gradients at distant geographic locations, nitrite reductase (nirS) genes and bacterial and archaeal 16S rRNA genes (rDNAs) were PCR amplified and analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis. The suitablility of T-RFLP analysis for investigating communities of nirS-containing denitrifiers was established by the correspondence of dominant terminal restriction fragments (T-RFs) of nirS to computer-simulated T-RFs of nirS clones. These clones belonged to clusters II, III, and IV from the same cores and were analyzed in a previous study (G. Braker, J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje, Appl. Environ. Microbiol. 66:2096–2104, 2000). T-RFLP analysis of nirS and bacterial rDNA revealed a high level of functional and phylogenetic diversity, whereas the level of diversity of Archaea was lower. A comparison of T-RFLPs based on the presence or absence of T-RFs and correspondence analysis based on the frequencies and heights of T-RFs allowed us to group sediment samples according to the sampling location and thus clearly distinguish Puget Sound and the Washington margin populations. However, changes in community structure within sediment core sections during the transition from aerobic to anaerobic conditions were minor. Thus, within the top layers of marine sediments, redox gradients seem to result from the differential metabolic activities of populations of similar communities, probably through mixing by marine invertebrates rather than from the development of distinct communities. PMID:11282647

  20. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda

    2014-01-01

    Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration...... (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r......-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal....

  1. Mechanisms of nitrous oxide (N2 O) formation and reduction in denitrifying biofilms.

    Science.gov (United States)

    Sabba, Fabrizio; Picioreanu, Cristian; Nerenberg, Robert

    2017-12-01

    Nitrous oxide (N 2 O) is a potent greenhouse gas that can be formed in wastewater treatment processes by ammonium oxidizing and denitrifying microorganisms. While N 2 O emissions from suspended growth systems have been extensively studied, and some recent studies have addressed emissions from nitrifying biofilms, much less is known about N 2 O emissions from denitrifying biofilm processes. This research used modeling to evaluate the mechanisms of N 2 O formation and reduction in denitrifying biofilms. The kinetic model included formation and consumption of key denitrification species, including nitrate (NO3-), nitrite (NO2-), nitric oxide (NO), and N 2 O. The model showed that, in presence of excess of electron donor, denitrifying biofilms have two distinct layers of activity: an outer layer where there is net production of N 2 O and an inner layer where there is net consumption. The presence of oxygen (O 2 ) had an important effect on N 2 O emission from suspended growth systems, but a smaller effect on biofilm systems. The effects of NO3- and O 2 differed significantly based on the biofilm thickness. Overall, the effects of biofilm thickness and bulk substrate concentrations on N 2 O emissions are complex and not always intuitive. A key mechanism for denitrifying biofilms is the diffusion of N 2 O and other intermediates from one zone of the biofilm to another. This leads to zones of N 2 O formation or consumption transformations that would not exist in suspended growth systems. © 2017 Wiley Periodicals, Inc.

  2. Insight into the short- and long-term effects of Cu(II) on denitrifying biogranules

    International Nuclear Information System (INIS)

    Chen, Hui; Chen, Qian-Qian; Jiang, Xiao-Yan; Hu, Hai-Yan; Shi, Man-Ling; Jin, Ren-Cun

    2016-01-01

    Highlights: • It is the first time to evaluate the effect of Cu"2"+ on denitrifying biogranules. • A high level of Cu(II) was investigated during batch assays and continuous tests. • Mechanisms of the effects of Cu"2"+ on denitrifying biogranules were discussed. • Effects of pre-exposure to Cu"2"+ and starvation treatments were investigated. - Abstract: This study aimed to investigate the short- and long-term effects of Cu"2"+ on the activity and performance of denitrifying bacteria. The short-term effects of various concentrations of Cu"2"+ on the denitrifying bacteria were evaluated using batch assays. The specific denitrifying activity (SDA) decreased from 14.3 ± 2.2 (without Cu"2"+) to 6.1 ± 0.1 mg N h"−"1 g"−"1 VSS (100 mgCu"2"+ L"−"1) when Cu"2"+ increased from 0 to 100 mg L"−"1 with an increment of 10 mgCu"2"+ L"−"1. A non-competitive inhibition model was used to calculate the 50% inhibition concentration (IC_5_0) of Cu"2"+ on denitrifying sludge (30.6 ± 2.5 mg L"−"1). Monod and Luong models were applied to investigate the influence of the initial substrate concentration, and the results suggested that the maximum substrate removal rate would be reduced with Cu"2"+ supplementation. Pre-exposure to Cu"2"+ could lead to an 18.2–46.2% decrease in the SDA and decreasing percentage of the SDA increased with both exposure time and concentration. In the continuous-flow test, Cu"2"+ concentration varied from 1 to 75 mg L"−"1; however, no clear deterioration was observed in the reactor, and the reactor was kept stable, with the total nitrogen removal efficiency and total organic carbon efficiency greater than 89.0 and 85.0%, respectively. The results demonstrated the short-term inhibition of Cu"2"+ upon denitrification, and no notable adversity was observed during the continuous-flow test after long-term acclimation.

  3. Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems

    DEFF Research Database (Denmark)

    Mcllroy, Simon; Starnawska, Anna; Starnawski, Piotr

    2015-01-01

    Denitrification is essential to the removal of nitrogen from wastewater during treatment, yet an understanding of the diversity of the active denitrifying bacteria responsible in full-scale wastewater treatment plants (WWTPs) is lacking. In this study, stable-isotope probing (SIP) was applied......-labelled complex substrate was used for SIP incubations, under nitrite-reducing conditions, in order to maximize the capture of the potentially metabolically diverse denitrifiers likely present. Members of the Rhodoferax, Dechloromonas, Sulfuritalea, Haliangium and Thermomonas were represented in the 16S rRNA gene...

  4. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.

    Science.gov (United States)

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka

    2015-06-30

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.

  5. Structure of nitrogen-converting communities induced by hydraulic retention time and COD/N ratio in constantly aerated granular sludge reactors treating digester supernatant.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Rusanowska, Paulina; Zielińska, Magdalena; Bernat, Katarzyna; Wojnowska-Baryła, Irena

    2014-02-01

    This study investigated how hydraulic retention time (HRT) and COD/N ratio affect nitrogen-converting consortia in constantly aerated granules treating high-ammonium digester supernatant. Three HRTs (10, 13, 19 h) were tested at COD/N ratios of 4.5 and 2.3. Denaturing gradient gel electrophoresis and relative real-time PCR were used to characterize the microbial communities. When changes in HRT and COD/N increased nitrogen loading, the ratio of the relative abundance of aerobic to anaerobic ammonium-oxidizers decreased. The COD/N ratio determined the species composition of the denitrifiers; however, Thiobacillus denitrificans, Pseudomonas denitrificans and Azoarcus sp. showed a high tolerance to the environmental conditions and occurred in the granules from all reactors. Denitrifier genera that support granule formation were identified, such as Pseudomonas, Shinella, and Flavobacterium. In aerated granules, nirK-possessing bacteria were more diverse than nirS-possessing bacteria. At a low COD/N ratio, N2O-reducer diversity increased because of the presence of bacteria known as aerobic denitrifiers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Denitrifying woodchip bioreactor and phosphorus filter pairing to minimize pollution swapping.

    Science.gov (United States)

    Christianson, Laura E; Lepine, Christine; Sibrell, Philip L; Penn, Chad; Summerfelt, Steven T

    2017-09-15

    Pairing denitrifying woodchip bioreactors and phosphorus-sorbing filters provides a unique, engineered approach for dual nutrient removal from waters impaired with both nitrogen (N) and phosphorus (P). This column study aimed to test placement of two P-filter media (acid mine drainage treatment residuals and steel slag) relative to a denitrifying system to maximize N and P removal and minimize pollution swapping under varying flow conditions (i.e., woodchip column hydraulic retention times (HRTs) of 7.2, 18, and 51 h; P-filter HRTs of 7.6-59 min). Woodchip denitrification columns were placed either upstream or downstream of P-filters filled with either medium. The configuration with woodchip denitrifying systems placed upstream of the P-filters generally provided optimized dissolved P removal efficiencies and removal rates. The P-filters placed upstream of the woodchip columns exhibited better P removal than downstream-placed P-filters only under overly long (i.e., N-limited) retention times when highly reduced effluent exited the woodchip bioreactors. The paired configurations using mine drainage residuals provided significantly greater P removal than the steel slag P-filters (e.g., 25-133 versus 8.8-48 g P removed m -3 filter media d -1 , respectively), but there were no significant differences in N removal between treatments (removal rates: 8.0-18 g N removed m -3 woodchips d -1 ; N removal efficiencies: 18-95% across all HRTs). The range of HRTs tested here resulted in various undesirable pollution swapping by-products from the denitrifying bioreactors: nitrite production when nitrate removal was not complete and sulfate reduction, chemical oxygen demand production and decreased pH during overly long retention times. The downstream P-filter placement provided a polishing step for removal of chemical oxygen demand and nitrite. Copyright © 2017 The Conservation Fund. Published by Elsevier Ltd.. All rights reserved.

  7. Denitrifying woodchip bioreactor and phosphorus filter pairing to minimize pollution swapping

    Science.gov (United States)

    Christianson, Laura E.; Lepine, Christine; Sibrell, Philip; Penn, Chad J.; Summerfelt, Steven T.

    2017-01-01

    Pairing denitrifying woodchip bioreactors and phosphorus-sorbing filters provides a unique, engineered approach for dual nutrient removal from waters impaired with both nitrogen (N) and phosphorus (P). This column study aimed to test placement of two P-filter media (acid mine drainage treatment residuals and steel slag) relative to a denitrifying system to maximize N and P removal and minimize pollution swapping under varying flow conditions (i.e., woodchip column hydraulic retention times (HRTs) of 7.2, 18, and 51 h; P-filter HRTs of 7.6–59 min). Woodchip denitrification columns were placed either upstream or downstream of P-filters filled with either medium. The configuration with woodchip denitrifying systems placed upstream of the P-filters generally provided optimized dissolved P removal efficiencies and removal rates. The P-filters placed upstream of the woodchip columns exhibited better P removal than downstream-placed P-filters only under overly long (i.e., N-limited) retention times when highly reduced effluent exited the woodchip bioreactors. The paired configurations using mine drainage residuals provided significantly greater P removal than the steel slag P-filters (e.g., 25–133 versus 8.8–48 g P removed m−3 filter media d−1, respectively), but there were no significant differences in N removal between treatments (removal rates: 8.0–18 g N removed m−3 woodchips d−1; N removal efficiencies: 18–95% across all HRTs). The range of HRTs tested here resulted in various undesirable pollution swapping by-products from the denitrifying bioreactors: nitrite production when nitrate removal was not complete and sulfate reduction, chemical oxygen demand production and decreased pH during overly long retention times. The downstream P-filter placement provided a polishing step for removal of chemical oxygen demand and nitrite.

  8. Composition and dynamic of benthic macroinvertebrates community ...

    African Journals Online (AJOL)

    the purpose to analyze the taxonomic composition, the structure of benthic macroinvertebrates community and the composite ... differences relative to the spatial and temporal variation in the taxonomic composition. ... changes in the structure of macroinvertebrates community ... 2007) with an annual growth rate of 2.4% rely.

  9. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen

    NARCIS (Netherlands)

    Lipsewers, Y.A.; Hopmans, E.C.; Meysman, F.J.R.; Sinninghe Damsté, J.S.; Villanueva, L.

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox,

  10. Abundance and diversity of denitrifying and anammox bacteria in seasonally hypoxic and sulfidic sediments of the saline lake grevelingen

    NARCIS (Netherlands)

    Lipsewers, Yvonne A.; Hopmans, Ellen C.; Meysman, Filip J.R.; Sinninghe Damsté, Jaap S.|info:eu-repo/dai/nl/07401370X; Villanueva, Laura

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox,

  11. Post-cold-storage conditioning time affects soil denitrifying enzyme activity

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2011-01-01

    Soil denitrifying enzyme activity (DEA) is often assessed after cold storage. Previous studies using the short-term acetylene inhibition method have not considered conditioning time (post-cold-storage warm-up time prior to soil analysis) as a factor influencing results. We observed fluctuations...

  12. Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions

    Science.gov (United States)

    Wang, Ning; Yu, Jian-Guang; Zhao, Ya-Hui; Chang, Zhi-Zhou; Shi, Xiao-Xia; Ma, Lena Q.; Li, Hong-Bo

    2018-02-01

    To explore microbial mechanisms of straw-induced changes in CO2, CH4, and N2O emissions from paddy field, wheat straw was amended to two paddy soils from Taizhou (TZ) and Yixing (YX), China for 60 d under flooded condition. Illumia sequencing was used to characterize shift in bacterial community compositions. Compared to control, 1-5% straw amendment significantly elevated CO2 and CH4 emissions with higher increase at higher application rates, mainly due to increased soil DOC concentrations. In contrast, straw amendment decreased N2O emission. Considering CO2, CH4, and N2O emissions as a whole, an overall increase in global warming potential was observed with straw amendment. Total CO2 and CH4 emissions from straw-amended soils were significantly higher for YX than TZ soil, suggesting that straw-induced greenhouse gas emissions depended on soil characteristics. The abundance of C-turnover bacteria Firmicutes increased from 28-41% to 54-77% with straw amendment, thereby increasing CO2 and CH4 emissions. However, straw amendment reduced the abundance of denitrifying bacteria Proteobacteria from 18% to 7.2-13% or increased the abundance of N2O reducing bacteria Clostridium from 7.6-11% to 13-30%, thereby decreasing N2O emission. The results suggested straw amendment strongly influenced greenhouse gas emissions via alerting soil properties and bacterial community compositions. Future field application is needed to ascertain the effects of straw return on greenhouse gas emissions.

  13. Prokaryotic community composition involved production of nitrogen in sediments of Mejillones Bay

    International Nuclear Information System (INIS)

    Moraga, Ruben; Galan, Alexander; Rosello-Mora, Ramon; Araya, Ruben; Valdes, Jorge

    2014-01-01

    Conventional denitrification and anaerobic ammonium oxidation (anammox) contributes to nitrogen loss in oxygen-deficient systems, thereby influencing many aspects of ecosystem function and global biogeochemistry. Mejillones Bay, northern Chile, presents ideal conditions to study nitrogen removal processes, because it is inserted in a coastal upwelling system, its sediments have anoxia and hypoxia conditions and under the influence of the Oxygen Minimum Zone (OMZ), unknown processes that occur there and what are the microbial communities responsible for their removal. Microbial communities associated with coastal sediments of Mejillones Bay were studied by denaturing gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH), by incubation experiments with 15 N isotope tracers were studied nitrogen loss processes operating in these sediments. DGGE analysis showed high bacterial diversity, certain redundant phylotypes and differences in community structure given by the depth; this reflects the microbial community adaptations to environmental conditions. A large fraction (up to 70%) of DAPI-stained cells hybridized with the bacterial probes. Nearly 52-90% of the cell could be further identified to know phyla. Members of the Cytophaga-Flavobacterium cluster were most abundant in the sediments (13-26%), followed by Proteobacteria. Isotopic tracer experiments for the sediments studied indicated that nitrogen loss processes that predominated were performed by denitrifying communities (43.31-111.20 μMd -1 ) was not possible to detect anammox in the area and not anammox bacteria were detected

  14. Plastic carrier polishing chamber reduces pollution swapping from denitrifying woodchip bioreactors

    Science.gov (United States)

    Denitrifying bioreactors with solid organic carbon sources (i.e., “woodchip bioreactors”) have proven to be relatively simple and cost effective treatment systems for nitrate-laden agricultural and aquacultural waters and wastewaters. However, because this technology is still relatively new, design ...

  15. Invasion in microbial communities: Role of community composition and assembly processes

    DEFF Research Database (Denmark)

    Kinnunen, Marta

    of microbial community assembly. Biotic factors include interactions between different microbial groups as well as the community response to alien species – invaders. Microbial invasions can have significant effects on the composition and functioning of resident communities. There is, however, lack......Microbes contribute to all biogeochemical cycles on earth and are responsible for key biological processes that support the survival of plants and animals. There is increased interest in controlling and managing microbial communities in different ecosystems in order to make targeted microbiological...... processes more effective. In order to manage microbial communities, it is essential to understand the factors that shape and influence microbial community composition. In addition to abiotic factors, such as environmental conditions and resource availability, biotic factors also shape the dynamics...

  16. Insight into the effects of biochar on manure composting: evidence supporting the relationship between N2O emission and denitrifying community.

    Science.gov (United States)

    Wang, Cheng; Lu, Haohao; Dong, Da; Deng, Hui; Strong, P J; Wang, Hailong; Wu, Weixiang

    2013-07-02

    Although nitrous oxide (N2O) emissions from composting contribute to the accelerated greenhouse effect, it is difficult to implement practical methods to mitigate these emissions. In this study, the effects of biochar amendment during pig manure composting were investigated to evaluate the inter-relationships between N2O emission and the abundance of denitrifying bacteria. Analytical results from two pilot composting treatments with (PWSB, pig manure + wood chips + sawdust + biochar) or without (PWS, pig manure + wood chips + sawdust) biochar (3% w/w) demonstrated that biochar amendment not only lowered NO2(-)-N concentrations but also lowered the total N2O emissions from pig manure composting, especially during the later stages. Quantification of functional genes involved in denitrification and Spearman rank correlations matrix revealed that the N2O emission rates correlated with the abundance of nosZ, nirK, and nirS genes. Biochar-amended pig manure had a higher pH and a lower moisture content. Biochar amendment altered the abundance of denitrifying bacteria significantly; less N2O-producing and more N2O-consuming bacteria were present in the PWSB, and this significantly lowered N2O emissions in the maturation phase. Together, the results demonstrate that biochar amendment could be a novel greenhouse gas mitigation strategy during pig manure composting.

  17. Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge.

    Science.gov (United States)

    Morgan-Sagastume, Fernando; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2008-11-01

    The denitrification capacity of different phylogenetic bacterial groups was investigated on addition of different substrates in activated sludge from two nutrient-removal plants. Nitrate/nitrite consumption rates (CRs) were calculated from nitrate and nitrite biosensor, in situ measurements. The nitrate/nitrite CRs depended on the substrate added, and acetate alone or combined with other substrates yielded the highest rates (3-6 mg N gVSS(-1) h(-1)). The nitrate CRs were similar to the nitrite CRs for most substrates tested. The structure of the active denitrifying population was investigated using heterotrophic CO2 microautoradiography (HetCO2-MAR) and FISH. Probe-defined denitrifiers appeared as specialized substrate utilizers despite acetate being preferentially used by most of them. Azoarcus and Accumulibacter abundance in the two different sludges was related to differences in their substrate-specific nitrate/nitrite CRs. Aquaspirillum-related bacteria were the most abundant potential denitrifiers (c. 20% of biovolume); however, Accumulibacter (3-7%) and Azoarcus (2-13%) may have primarily driven denitrification by utilizing pyruvate, ethanol, and acetate. Activated sludge denitrification was potentially conducted by a diverse, versatile population including not only Betaproteobacteria (Aquaspirillum, Thauera, Accumulibacter, and Azoarcus) but also some Alphaproteobacteria and Gammaproteobacteria, as indicated by the assimilation of 14CO2 by these probe-defined groups with a complex substrate mixture as an electron donor and nitrite as an electron acceptor in HetCO2-MAR-FISH tests.

  18. Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: Modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xijun; Chen, Chuan; Wang, Aijie; Guo, Wanqian; Zhou, Xu [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Lee, Duu-Jong, E-mail: djlee@ntu.edu.tw [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Ren, Nanqi, E-mail: rnq@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Chang, Jo-Shu [Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan (China)

    2014-01-15

    Graphical abstract: Model evaluation applied to case study 1: (A-G) S{sup 2−}, NO{sub 3}{sup −}-N, NO{sub 2}{sup −}-N, and Ac{sup −}-C profiles under initial sulfide concentrations of 156.2 (A), 539 (B), 964 (C), 1490 (D), 342.7 (E), 718 (F), and 1140.7 (G) mg L{sup −1}. The solid line represents simulated result and scatter represents experimental result. -- Highlights: • This work developed a mathematical model for DSR process. • Kinetics of sulfur–nitrogen–carbon and interactions between denitrifiers were studied. • Kinetic parameters of the model were estimated via data fitting. • The model described kinetic behaviors of DSR processes over wide parametric range. -- Abstract: Simultaneous removal of sulfide (S{sup 2−}), nitrate (NO{sub 3}{sup −}) and acetate (Ac{sup −}) under denitrifying sulfide removal process (DSR) is a novel biological wastewater treatment process. This work developed a mathematical model to describe the kinetic behavior of sulfur–nitrogen–carbon and interactions between autotrophic denitrifiers and heterotrophic denitrifiers. The kinetic parameters of the model were estimated via data fitting considering the effects of initial S{sup 2−} concentration, S{sup 2−}/NO{sub 3}{sup −}-N ratio and Ac{sup −}-C/NO{sub 3}{sup −}-N ratio. Simulation supported that the heterotrophic denitratation step (NO{sub 3}{sup −} reduction to NO{sub 2}{sup −}) was inhibited by S{sup 2−} compared with the denitritation step (NO{sub 2}{sup −} reduction to N{sub 2}). Also, the S{sup 2−} oxidation by autotrophic denitrifiers was shown two times lower in rate with NO{sub 2}{sup −} as electron acceptor than that with NO{sub 3}{sup −} as electron acceptor. NO{sub 3}{sup −} reduction by autotrophic denitrifiers occurs 3–10 times slower when S{sup 0} participates as final electron donor compared to the S{sup 2−}-driven pathway. Model simulation on continuous-flow DSR reactor suggested that the adjustment of

  19. Anaerobic degradation of long-chain alkylamines by a denitrifying Pseudomonas stutzeri

    NARCIS (Netherlands)

    Nguyen, P.D.; Ginkel, van C.G.; Plugge, C.M.

    2008-01-01

    The anaerobic degradation of tetradecylamine and other long-chain alkylamines by a newly isolated denitrifying bacterium was studied. Strain ZN6 was isolated from a mixture of soil and active sludge and was identified as representing Pseudomonas stutzeri, based on partial 16S rRNA gene sequence

  20. Illumina sequencing-based analysis of a microbial community enriched under anaerobic methane oxidation condition coupled to denitrification revealed coexistence of aerobic and anaerobic methanotrophs.

    Science.gov (United States)

    Siniscalchi, Luciene Alves Batista; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto Lemos; de Araújo, Juliana Calabria

    2017-07-01

    Methane is produced in anaerobic environments, such as reactors used to treat wastewaters, and can be consumed by methanotrophs. The composition and structure of a microbial community enriched from anaerobic sewage sludge under methane-oxidation condition coupled to denitrification were investigated. Denaturing gradient gel electrophoresis (DGGE) analysis retrieved sequences of Methylocaldum and Chloroflexi. Deep sequencing analysis revealed a complex community that changed over time and was affected by methane concentration. Methylocaldum (8.2%), Methylosinus (2.3%), Methylomonas (0.02%), Methylacidiphilales (0.45%), Nitrospirales (0.18%), and Methanosarcinales (0.3%) were detected. Despite denitrifying conditions provided, Nitrospirales and Methanosarcinales, known to perform anaerobic methane oxidation coupled to denitrification (DAMO) process, were in very low abundance. Results demonstrated that aerobic and anaerobic methanotrophs coexisted in the reactor together with heterotrophic microorganisms, suggesting that a diverse microbial community was important to sustain methanotrophic activity. The methanogenic sludge was a good inoculum to enrich methanotrophs, and cultivation conditions play a selective role in determining community composition.

  1. Bioavailability and biodegradation of weathered diesel fuel in aquifer material under denitrifying conditions

    International Nuclear Information System (INIS)

    Bregnard, T.P.A.; Hoehener, P.; Zeyer, J.

    1998-01-01

    During the in situ bioremediation of a diesel fuel-contaminated aquifer in Menziken, Switzerland, aquifer material containing weathered diesel fuel (WDF) and indigenous microorganisms was excavated. This material was used to identify factors limiting WDF biodegradation under denitrifying conditions. Incubations of this material for 360 to 390 d under denitrifying conditions resulted in degradation of 23% of the WDF with concomitant consumption of NO 3 - and production of inorganic carbon. The biodegradation of WDF and the rate of NO 3 - consumption was stimulated by agitation of the microcosms. Biodegradation was not stimulated by the addition of a biosurfactant (rhamnolipids) or a synthetic surfactant (Triton X-100) at concentrations above their critical micelle concentrations. The rhamnolipids were biodegraded preferentially to WDF, whereas Triton X-100 was not degraded. Both surfactants reduced the surface tension of the growth medium from 72 to <35 dynes/cm and enhanced the apparent aqueous solubility of the model hydrocarbon n-hexadecane by four orders of magnitude. Solvent-extracted WDF, added at a concentration equal to that already present in the aquifer material, was also biodegraded by the microcosms, but not at a higher rate than the WDF already present in the material. The results show that the denitrifying biodegradation of WDF is not necessarily limited by bioavailability but rather by the inherent recalcitrance of WDF

  2. Edaphic Conditions Regulate Denitrification Directly and Indirectly by Altering Denitrifier Abundance in Wetlands along the Han River, China.

    Science.gov (United States)

    Xiong, Ziqian; Guo, Laodong; Zhang, Quanfa; Liu, Guihua; Liu, Wenzhi

    2017-05-16

    Riparian wetlands play a critical role in retaining nitrogen (N) from upland runoff and improving river water quality, mainly through biological processes such as soil denitrification. However, the relative contribution of abiotic and biotic factors to riparian denitrification capacity remains elusive. Here we report the spatiotemporal dynamics of potential and unamended soil denitrification rates in 20 wetlands along the Han River, an important water source in central China. We also quantified the abundance of soil denitrifying microorganisms using nirK and nirS genes. Results showed that soil denitrification rates were significantly different between riparian and reservoir shoreline wetlands, but not between mountain and lowland wetlands. In addition, soil denitrification rates showed strong seasonality, with higher values in August (summer) and April (spring) but lower values in January (winter). The potential and unamended denitrification rates were positively correlated with edaphic conditions (moisture and carbon concentration), denitrifier abundance, and plant species richness. Path analysis further revealed that edaphic conditions could regulate denitrification rates both directly and indirectly through their effects on denitrifier abundance. Our findings highlight that not only environmental factors, but also biotic factors including denitrifying microorganisms and standing vegetation, play an important role in regulating denitrification rate and N removal capacity in riparian wetlands.

  3. Predicting community composition from pairwise interactions

    Science.gov (United States)

    Friedman, Jonathan; Higgins, Logan; Gore, Jeff

    The ability to predict the structure of complex, multispecies communities is crucial for understanding the impact of species extinction and invasion on natural communities, as well as for engineering novel, synthetic communities. Communities are often modeled using phenomenological models, such as the classical generalized Lotka-Volterra (gLV) model. While a lot of our intuition comes from such models, their predictive power has rarely been tested experimentally. To directly assess the predictive power of this approach, we constructed synthetic communities comprised of up to 8 soil bacteria. We measured the outcome of competition between all species pairs, and used these measurements to predict the composition of communities composed of more than 2 species. The pairwise competitions resulted in a diverse set of outcomes, including coexistence, exclusion, and bistability, and displayed evidence for both interference and facilitation. Most pair outcomes could be captured by the gLV framework, and the composition of multispecies communities could be predicted for communities composed solely of such pairs. Our results demonstrate the predictive ability and utility of simple phenomenology, which enables accurate predictions in the absence of mechanistic details.

  4. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    Science.gov (United States)

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  5. Oxygen regulation of nitrate uptake in denitrifying Pseudomonas aeruginosa.

    OpenAIRE

    Hernandez, D; Rowe, J J

    1987-01-01

    Oxygen had an immediate and reversible inhibitory effect on nitrate respiration by denitrifying cultures of Pseudomonas aeruginosa. Inhibition of nitrate utilization by oxygen appeared to be at the level of nitrate uptake, since nitrate reduction to nitrite in cell extracts was not affected by oxygen. The degree of oxygen inhibition was dependent on the concentration of oxygen, and increasing nitrate concentrations could not overcome the inhibition. The inhibitory effect of oxygen was maximal...

  6. Complete Nutrient Removal Coupled to Nitrous Oxide Production as a Bioenergy Source by Denitrifying Polyphosphate-Accumulating Organisms.

    Science.gov (United States)

    Gao, Han; Liu, Miaomiao; Griffin, James S; Xu, Longcheng; Xiang, Da; Scherson, Yaniv D; Liu, Wen-Tso; Wells, George F

    2017-04-18

    Coupled aerobic-anoxic nitrous decomposition operation (CANDO) is a promising emerging bioprocess for wastewater treatment that enables direct energy recovery from nitrogen (N) in three steps: (1) ammonium oxidation to nitrite; (2) denitrification of nitrite to nitrous oxide (N 2 O); and (3) N 2 O conversion to N 2 with energy generation. However, CANDO does not currently target phosphorus (P) removal. Here, we demonstrate that denitrifying polyphosphate-accumulating organism (PAO) enrichment cultures are capable of catalyzing simultaneous biological N and P removal coupled to N 2 O generation in a second generation CANDO process, CANDO+P. Over 7 months (>300 cycles) of operation of a prototype lab-scale CANDO+P sequencing batch reactor treating synthetic municipal wastewater, we observed stable and near-complete N removal accompanied by sustained high-rate, high-yield N 2 O production with partial P removal. A substantial increase in abundance of the PAO Candidatus Accumulibacter phosphatis was observed, increasing from 5% of the total bacterial community in the inoculum to over 50% after 4 months. PAO enrichment was accompanied by a strong shift in the dominant Accumulibacter population from clade IIC to clade IA, based on qPCR monitoring of polyphosphate kinase 1 (ppk1) gene variants. Our work demonstrates the feasibility of combining high-rate, high-yield N 2 O production for bioenergy production with combined N and P removal from wastewater, and it further suggests a putative denitrifying PAO niche for Accumulibacter clade IA.

  7. Anaerobic oxidation of 2-chloroethanol under denitrifying conditions by Pseudomonas stutzeri strain JJ.

    Science.gov (United States)

    Dijk, J A; Stams, A J M; Schraa, G; Ballerstedt, H; de Bont, J A M; Gerritse, J

    2003-11-01

    A bacterium that uses 2-chloroethanol as sole energy and carbon source coupled to denitrification was isolated from 1,2-dichloroethane-contaminated soil. Its 16 S rDNA sequence showed 98% similarity with the type strain of Pseudomonas stutzeri (DSM 5190) and the isolate was tentatively identified as Pseudomonas stutzeri strain JJ. Strain JJ oxidized 2-chloroethanol completely to CO(2) with NO(3)(- )or O(2) as electron acceptor, with a preference for O(2) if supplied in combination. Optimum growth on 2-chloroethanol with nitrate occurred at 30 degrees C with a mu(max) of 0.14 h(-1) and a yield of 4.4 g protein per mol 2-chloroethanol metabolized. Under aerobic conditions, the mu(max) was 0.31 h(-1). NO(2)(-) also served as electron acceptor, but reduction of Fe(OH)(3), MnO(2), SO(4)(2-), fumarate or ClO(3)(-) was not observed. Another chlorinated compound used as sole energy and carbon source under aerobic and denitrifying conditions was chloroacetate. Various different bacterial strains, including some closely related Pseudomonas stutzeri strains, were tested for their ability to grow on 2-chloroethanol as sole energy and carbon source under aerobic and denitrifying conditions, respectively. Only three strains, Pseudomonas stutzeri strain LMD 76.42, Pseudomonas putida US2 and Xanthobacter autotrophicus GJ10, grew aerobically on 2-chloroethanol. This is the first report of oxidation of 2-chloroethanol under denitrifying conditions by a pure bacterial culture.

  8. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis.

    Science.gov (United States)

    Sun, Yihua; De Vos, Paul; Heylen, Kim

    2016-01-19

    Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industrial applications, is investigated. B. licheniformis has long been considered a denitrifier but physiological experiments on three different strains demonstrated that nitrous oxide is not produced from nitrate in stoichiometric amounts, rather ammonium is the most important end-product, produced during fermentation. Significant strain dependency in end-product ratios, attributed to nitrite and ammonium, and medium dependency in nitrous oxide production were also observed. Genome analyses confirmed the lack of a nitrite reductase to nitric oxide, the key enzyme of denitrification. Based on the gene inventory and building on knowledge from other non-denitrifying nitrous oxide emitters, hypothetical pathways for nitrous oxide production, involving NarG, NirB, qNor and Hmp, are proposed. In addition, all publically available genomes of B. licheniformis demonstrated similar gene inventories, with specific duplications of the nar operon, narK and hmp genes as well as NarG phylogeny supporting the evolutionary separation of previously described distinct BALI1 and BALI2 lineages. Using physiological and genomic data we have demonstrated that the common soil bacterium B. licheniformis does not denitrify but is capable of fermentative dissimilatory nitrate/nitrite reduction to ammonium (DNRA) with concomitant production of N2O. Considering its ubiquitous nature and non-fastidious growth in the lab, B. licheniformis is a suitable candidate for further exploration of the actual mechanism of N2O

  9. Inhibitory Effect of Gamma-Irradiated Chitosan on the Growth of Denitrifiers

    Directory of Open Access Journals (Sweden)

    Javier Vilcáez

    2009-01-01

    Full Text Available In order to find an environmentally benign substitute to hazardous inhibitory agents, the inhibitory effect of -irradiated chitosans against a mixed culture of denitrifying bacteria was experimentally evaluated. Unlike other studies using pure aerobic cultures, the observed effect was not a complete inhibition but a transient inhibition reflected by prolonged lag phases and reduced growth rates. Raw chitosan under acid conditions (pH 6.3 exerted the strongest inhibition followed by the 100 kGy and 500 kGy irradiated chitosans, respectively. Therefore, because the molecular weight of chitosan decreases with the degree of -irradiation, the inhibitory properties of chitosan due to its high molecular weight were more relevant than the inhibitory properties gained due to the modification of the surface charge and/or chemical structure by -irradiation. High dosage of -irradiated appeared to increase the growth of mixed denitrifying bacteria in acid pH media. However, in neutral pH media, high dosage of -irradiation appeared to enhance the inhibitory effect of chitosan.

  10. Optimum O2:CH4 Ratio Promotes the Synergy between Aerobic Methanotrophs and Denitrifiers to Enhance Nitrogen Removal

    Directory of Open Access Journals (Sweden)

    Jing Zhu

    2017-06-01

    Full Text Available The O2:CH4 ratio significantly effects nitrogen removal in mixed cultures where aerobic methane oxidation is coupled with denitrification (AME-D. The goal of this study was to investigate nitrogen removal of the AME-D process at four different O2:CH4 ratios [0, 0.05, 0.25, and 1 (v/v]. In batch tests, the highest denitrifying activity was observed when the O2:CH4 ratio was 0.25. At this ratio, the methanotrophs produced sufficient carbon sources for denitrifiers and the oxygen level did not inhibit nitrite removal. The results indicated that the synergy between methanotrophs and denitrifiers was significantly improved, thereby achieving a greater capacity of nitrogen removal. Based on thermodynamic and chemical analyses, methanol, butyrate, and formaldehyde could be the main trophic links of AME-D process in our study. Our research provides valuable information for improving the practical application of the AME-D systems.

  11. Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes.

    Science.gov (United States)

    Marques, Ricardo; Ribera-Guardia, Anna; Santos, Jorge; Carvalho, Gilda; Reis, Maria A M; Pijuan, Maite; Oehmen, Adrian

    2018-06-15

    Denitrifying enhanced biological phosphorus removal (EBPR) systems can be an efficient means of removing phosphate (P) and nitrate (NO 3 - ) with low carbon source and oxygen requirements. Tetrasphaera is one of the most abundant polyphosphate accumulating organisms present in EBPR systems, but their capacity to achieve denitrifying EBPR has not previously been determined. An enriched Tetrasphaera culture, comprising over 80% of the bacterial biovolume was obtained in this work. Despite the denitrification capacity of Tetrasphaera, this culture achieved only low levels of anoxic P-uptake. Batch tests with different combinations of NO 3 - , nitrite (NO 2 - ) and nitrous oxide (N 2 O) revealed lower N 2 O accumulation by Tetrasphaera as compared to Accumulibacter and Competibacter when multiple electron acceptors were added. Electron competition was observed during the addition of multiple nitrogen electron acceptors species, where P uptake appeared to be slightly favoured over glycogen production in these situations. This study increases our understanding of the role of Tetrasphaera-related organisms in denitrifying EBPR systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Michela eLangone

    2014-02-01

    Full Text Available Elevated nitrogen removal efficiencies from ammonium-rich wastewaters have been demonstrated by several applications, that combine nitritation and anammox processes. Denitrification will occur simultaneously when organic carbon is also present. In this study, the activity of aerobic ammonia oxidizing, anammox and denitrifying bacteria in a full scale Sequencing Batch Reactor, treating digester supernatants, was studied by means of batch-assays. AOB and anammox activities were maximum at pH of 8.0 and 7.8-8.0, rispectively. Short term effect of nitrite on anammox activity was studied, showing nitrite up to 42 mg/L did not result in inhibition. Both denitrification via nitrate and nitrite were measured. To reduce nitrite-oxidizing activity, high of NH3 – N (1.9-10 mg N-NH3/L and low nitrite (3-8 mg TNN/L are required conditions during the whole SBR cycle.Molecular analysis showed the nitritation-anammox sludge harbored a high microbial diversity, where each microorganism has a specific role. Using ammonia monooxygenase α –subunit (amoA gene as a marker, our analyses suggested different macro- and micro-environments in the reactor strongly affect the AOB community, allowing the development of different AOB species, such as N. europaea/eutropha and N. oligotropha groups, which improve the stability of nitritation process. A specific PCR primer set, used to target the 16S rRNA gene of anammox bacteria, confirmed the presence of the Ca. Brocadia fulgida type, able to grow in precence of organic matter and to tolerate high nitrite concentrations. The diversity of denitrifiers was assessed by using dissimilatory nitrite reductase (nirS gene-based analyses, who showed denitifiers were related to different betaproteobacterial genera, such as Thauera, Pseudomonas, Dechloromonas and Aromatoleum, able to assist in forming microbial aggregates. Concerning possible secondary processes, no n-damo bacteria were found while NOB from the genus of Nitrobacter

  13. Microbial Community Composition and Ultrastructure of Granules from a Full-Scale Anammox Reactor

    KAUST Repository

    Gonzalez-Gil, Graciela; Sougrat, Rachid; Behzad, Ali Reza; Lens, Piet Nl L; Saikaly, Pascal

    2014-01-01

    . Hydrogenotrophic methananogens, which scavenge the key fermentation product H2, were the most abundant archaea detected. Cells resembling the polygon-shaped denitrifying methanotroph Candidatus Methylomirabilis oxyfera were observed by electron microscopy

  14. Plastic biofilm carrier after corn cobs reduces nitrate loading in laboratory denitrifying bioreactors

    Science.gov (United States)

    Nitrate-nitrogen removal rates can be increased substantially in denitrifying bioreactors with a corn cob bed medium compared to woodchips; however, additional organic carbon (C) is released into the effluent. This laboratory column experiment was conducted to test the performance of a post-bed cha...

  15. Microbial community composition affects soil fungistasis.

    Science.gov (United States)

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J A; Kowalchuk, George A; van Veen, Johannes A

    2003-02-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis.

  16. A preliminary study of anaerobic thiosulfate-oxidising bacteria as denitrifiers in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Chandramohan, D.; Nair, S.

    Bacteria which oxidize thiosulfate and reduce nitrate (TONRB) and bacteria which oxidize thiosulfate and denitrify (TODB) sampled at 5-, 100-, 200-and 300-m depths were enumerated in agar shake cultures by colony counting and by applying MPN...

  17. Nitrogen fixation in denitrified marine waters.

    Directory of Open Access Journals (Sweden)

    Camila Fernandez

    Full Text Available Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria, whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria. Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP, a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ. Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m(-2 d(-1. Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m(-2 d(-1 than the oxic euphotic layer (48±68 µmol m(-2 d(-1. Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions.

  18. Nitrogen Fixation in Denitrified Marine Waters

    Science.gov (United States)

    Fernandez, Camila; Farías, Laura; Ulloa, Osvaldo

    2011-01-01

    Nitrogen fixation is an essential process that biologically transforms atmospheric dinitrogen gas to ammonia, therefore compensating for nitrogen losses occurring via denitrification and anammox. Currently, inputs and losses of nitrogen to the ocean resulting from these processes are thought to be spatially separated: nitrogen fixation takes place primarily in open ocean environments (mainly through diazotrophic cyanobacteria), whereas nitrogen losses occur in oxygen-depleted intermediate waters and sediments (mostly via denitrifying and anammox bacteria). Here we report on rates of nitrogen fixation obtained during two oceanographic cruises in 2005 and 2007 in the eastern tropical South Pacific (ETSP), a region characterized by the presence of coastal upwelling and a major permanent oxygen minimum zone (OMZ). Our results show significant rates of nitrogen fixation in the water column; however, integrated rates from the surface down to 120 m varied by ∼30 fold between cruises (7.5±4.6 versus 190±82.3 µmol m−2 d−1). Moreover, rates were measured down to 400 m depth in 2007, indicating that the contribution to the integrated rates of the subsurface oxygen-deficient layer was ∼5 times higher (574±294 µmol m−2 d−1) than the oxic euphotic layer (48±68 µmol m−2 d−1). Concurrent molecular measurements detected the dinitrogenase reductase gene nifH in surface and subsurface waters. Phylogenetic analysis of the nifH sequences showed the presence of a diverse diazotrophic community at the time of the highest measured nitrogen fixation rates. Our results thus demonstrate the occurrence of nitrogen fixation in nutrient-rich coastal upwelling systems and, importantly, within the underlying OMZ. They also suggest that nitrogen fixation is a widespread process that can sporadically provide a supplementary source of fixed nitrogen in these regions. PMID:21687726

  19. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    Science.gov (United States)

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  20. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    Science.gov (United States)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  1. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil.

    Science.gov (United States)

    Meyer, Annabel; Focks, Andreas; Radl, Viviane; Keil, Daniel; Welzl, Gerhard; Schöning, Ingo; Boch, Steffen; Marhan, Sven; Kandeler, Ellen; Schloter, Michael

    2013-01-01

    Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.

  2. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil.

    Directory of Open Access Journals (Sweden)

    Annabel Meyer

    Full Text Available Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM, intensely used mown pastures (IP and extensively used pastures (EP, respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK. The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation might be independently regulated by different abiotic and biotic factors in response to land use intensity.

  3. Different Land Use Intensities in Grassland Ecosystems Drive Ecology of Microbial Communities Involved in Nitrogen Turnover in Soil

    Science.gov (United States)

    Meyer, Annabel; Focks, Andreas; Radl, Viviane; Keil, Daniel; Welzl, Gerhard; Schöning, Ingo; Boch, Steffen; Marhan, Sven; Kandeler, Ellen; Schloter, Michael

    2013-01-01

    Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity. PMID:24039974

  4. Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate.

    Science.gov (United States)

    Gabarró, J; Hernández-Del Amo, E; Gich, F; Ruscalleda, M; Balaguer, M D; Colprim, J

    2013-12-01

    This study investigates the microbial community dynamics in an intermittently aerated partial nitritation (PN) SBR treating landfill leachate, with emphasis to the nosZ encoding gene. PN was successfully achieved and high effluent stability and suitability for a later anammox reactor was ensured. Anoxic feedings allowed denitrifying activity in the reactor. The influent composition influenced the mixed liquor suspended solids concentration leading to variations of specific operational rates. The bacterial community was low diverse due to the stringent conditions in the reactor, and was mostly enriched by members of Betaproteobacteria and Bacteroidetes as determined by 16S rRNA sequencing from excised DGGE melting types. The qPCR analysis for nitrogen cycle-related enzymes (amoA, nirS, nirK and nosZ) demonstrated high amoA enrichment but being nirS the most relatively abundant gene. nosZ was also enriched from the seed sludge. Linear correlation was found mostly between nirS and the organic specific rates. Finally, Bacteroidetes sequenced in this study by 16S rRNA DGGE were not sequenced for nosZ DGGE, indicating that not all denitrifiers deal with complete denitrification. However, nosZ encoding gene bacteria was found during the whole experiment indicating the genetic potential to reduce N2O. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    Science.gov (United States)

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  6. Draft Genome Sequence of an Active Heterotrophic Nitrifier-Denitrifier, Cupriavidus pauculus UM1

    OpenAIRE

    Putonti, Catherine; Polley, Nathaniel; Castignetti, Domenic

    2018-01-01

    ABSTRACT Here, we present the draft genome sequence of Cupriavidus pauculus UM1, a metal-resistant heterotrophic nitrifier-denitrifier capable of synthesizing nitrite from pyruvic oxime. The size of the genome is 7,402,815 bp with a GC content of 64.8%. This draft assembly consists of 38 scaffolds.

  7. Ammonia-Oxidizing Archaea Are More Resistant Than Denitrifiers to Seasonal Precipitation Changes in an Acidic Subtropical Forest Soil

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2017-07-01

    Full Text Available Seasonal precipitation changes are increasingly severe in subtropical areas. However, the responses of soil nitrogen (N cycle and its associated functional microorganisms to such precipitation changes remain unclear. In this study, two projected precipitation patterns were manipulated: intensifying the dry-season drought (DD and extending the dry-season duration (ED but increasing the wet-season storms following the DD and ED treatment period. The effects of these two contrasting precipitation patterns on soil net N transformation rates and functional gene abundances were quantitatively assessed through a resistance index. Results showed that the resistance index of functional microbial abundance (-0.03 ± 0.08 was much lower than that of the net N transformation rate (0.55 ± 0.02 throughout the experiment, indicating that microbial abundance was more responsive to precipitation changes compared with the N transformation rate. Spring drought under the ED treatment significantly increased the abundances of both nitrifying (amoA and denitrifying genes (nirK, nirS, and nosZ, while changes in these gene abundances overlapped largely with control treatment during droughts in the dry season. Interestingly, the resistance index of the ammonia-oxidizing archaea (AOA amoA abundance was significantly higher than that of the denitrifying gene abundances, suggesting that AOA were more resistant to the precipitation changes. This was attributed to the stronger environmental adaptability and higher resource utilization efficiency of the AOA community, as indicated by the lack of correlations between AOA gene abundance and environmental factors [i.e., soil water content, ammonium (NH4+ and dissolved organic carbon concentrations] during the experiment.

  8. Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms.

    Science.gov (United States)

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2014-09-15

    The purpose of the study was to analyse the impact of hydrodynamic disintegration of thickened excess activated sludge, performed at different levels of energy density (70, 140 and 210 kJ/L), on the activity of microorganisms involved in nutrient removal from wastewater, i.e. nitrifiers, denitrifiers and phosphorus accumulating organisms (PAOs). Ammonium and nitrogen utilisation rates and phosphorus release rates for raw and disintegrated sludge were determined using batch tests. The experiment also included: 1) analysis of organic and nutrient compound release from activated sludge flocs, 2) determination of the sludge disintegration degree (DD), and 3) evaluation of respiratory activity of the biomass by using the oxygen uptake rate (OUR) batch test. It was shown that the activity degree of the examined groups of microorganisms depended on energy density and related sludge disintegration degree, and that inactivation of individual groups of microorganisms occurred at different values of DD. Least resistant to the destruction of activated sludge flocs turned out to be phosphorus accumulating organisms, while the most resistant were denitrifiers. A decrease of 20-40% in PAO activity was noted already at DD equal to 3-5%. The threshold values of DD, after crossing which the inactivation of nitrifiers and denitrifiers occurred, were equal to 8% and 10%, respectively. At lesser DD values an increase in the activity of these groups of microorganisms was observed, averaging 20.2-41.7% for nitrifiers and 9.98-36.3% for denitrifiers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Control of Microcystis spp. Bloom by Combining Indigenous Denitrifying Bacteria From Sutami Reservoir with Fimbristylis globulosa and Vetiveria zizanoides

    Directory of Open Access Journals (Sweden)

    Bayu Agung Prahardika

    2013-04-01

    Full Text Available The purpose of this research is to know the ability of polyculture macrophyte (Fimbristylis globulosa and Vetiveria zizanoides and the combination of both with consortium of indigenous denitrifying bacteria from Sutami reservoir that was added by Microcystis spp. or not to reduce the concentration of nitrate, dissolved phosphate and the carrying capacity of Microcystis spp. The experiment was done in a medium filled up with Sutami reservoir water enriched with 16 ppm of nitrate and 0.4 ppm of phosphate. The denitrifying bacteria used in this research were DR-14, DU-27-1, DU-30-1, DU-30-2, TA-8 and DU-27-4 isolated from Sutami reservoir. The treatments were incubated within 15 days. Microcystis spp. abundance was calculated every day, but the measurement of the concentration of nitrate and dissolved phosphate was done every six days. The results showed that both treatment and the combination of both macrophytes with a consortium of denitrifying indigenous bacteria were added or not either Microcystis able to reduce nitrate at 99% and 93-99% orthophosphoric. The combination of macrophytes with denitrifying indigenous bacterial consortium from Sutami reservoir was able to inhibit the carrying capacity of Microcystis spp. highest up to 47.87%. They could also significantly reduce the abundance of Microcystis from 107 cells/mL in earlier days of the treatment into 0.35x104 cells/mL after fifteen days of incubation.

  10. Effects of pesticides on community composition and activity of sediment microbes - responses at various levels of microbial community organization

    International Nuclear Information System (INIS)

    Widenfalk, Anneli; Bertilsson, Stefan; Sundh, Ingvar; Goedkoop, Willem

    2008-01-01

    A freshwater sediment was exposed to the pesticides captan, glyphosate, isoproturon, and pirimicarb at environmentally relevant and high concentrations. Effects on sediment microorganisms were studied by measuring bacterial activity, fungal and total microbial biomass as community-level endpoints. At the sub-community level, microbial community structure was analysed (PLFA composition and bacterial 16S rRNA genotyping, T-RFLP). Community-level endpoints were not affected by pesticide exposure. At lower levels of microbial community organization, however, molecular methods revealed treatment-induced changes in community composition. Captan and glyphosate exposure caused significant shifts in bacterial community composition (as T-RFLP) at environmentally relevant concentrations. Furthermore, differences in microbial community composition among pesticide treatments were found, indicating that test compounds and exposure concentrations induced multidirectional shifts. Our study showed that community-level end points failed to detect these changes, underpinning the need for application of molecular techniques in aquatic ecotoxicology. - Molecular techniques revealed pesticide-induced changes at lower levels of microbial community organization that were not detected by community-level end points

  11. Effects of pesticides on community composition and activity of sediment microbes - responses at various levels of microbial community organization

    Energy Technology Data Exchange (ETDEWEB)

    Widenfalk, Anneli [Department of Environmental Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, SE-750 07 Uppsala (Sweden)], E-mail: anneli.widenfalk@kemi.se; Bertilsson, Stefan [Limnology/Department of Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvaegen 20, SE-752 36 Uppsala (Sweden); Sundh, Ingvar [Department of Microbiology, Swedish University of Agricultural Sciences, P.O. Box 7025, SE-750 07 Uppsala (Sweden); Goedkoop, Willem [Department of Environmental Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, SE-750 07 Uppsala (Sweden)

    2008-04-15

    A freshwater sediment was exposed to the pesticides captan, glyphosate, isoproturon, and pirimicarb at environmentally relevant and high concentrations. Effects on sediment microorganisms were studied by measuring bacterial activity, fungal and total microbial biomass as community-level endpoints. At the sub-community level, microbial community structure was analysed (PLFA composition and bacterial 16S rRNA genotyping, T-RFLP). Community-level endpoints were not affected by pesticide exposure. At lower levels of microbial community organization, however, molecular methods revealed treatment-induced changes in community composition. Captan and glyphosate exposure caused significant shifts in bacterial community composition (as T-RFLP) at environmentally relevant concentrations. Furthermore, differences in microbial community composition among pesticide treatments were found, indicating that test compounds and exposure concentrations induced multidirectional shifts. Our study showed that community-level end points failed to detect these changes, underpinning the need for application of molecular techniques in aquatic ecotoxicology. - Molecular techniques revealed pesticide-induced changes at lower levels of microbial community organization that were not detected by community-level end points.

  12. Distribution of baroduric, psychrotrophic and culturable nitrifying and denitrifying bacteria in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; PradeepRam, A.S.; Nair, S.; Nath, B.N.; Chandramohan, D.

    The abundance of baroduric, culturable nitrifying and denitrifying bacteria in the deep-sea cores of Central Indian Basin (CIB) at ca 5000 m depth was investigated. Analysis of 8 cores, sampled between 10 degrees 00 minutes S and 75 degrees 55...

  13. Watershed Urbanization Linked to Differences in Stream Bacterial Community Composition

    Directory of Open Access Journals (Sweden)

    Jacob D. Hosen

    2017-08-01

    Full Text Available Urbanization strongly influences headwater stream chemistry and hydrology, but little is known about how these conditions impact bacterial community composition. We predicted that urbanization would impact bacterial community composition, but that stream water column bacterial communities would be most strongly linked to urbanization at a watershed-scale, as measured by impervious cover, while sediment bacterial communities would correlate with environmental conditions at the scale of stream reaches. To test this hypothesis, we determined bacterial community composition in the water column and sediment of headwater streams located across a gradient of watershed impervious cover using high-throughput 16S rRNA gene amplicon sequencing. Alpha diversity metrics did not show a strong response to catchment urbanization, but beta diversity was significantly related to watershed impervious cover with significant differences also found between water column and sediment samples. Samples grouped primarily according to habitat—water column vs. sediment—with a significant response to watershed impervious cover nested within each habitat type. Compositional shifts for communities in urbanized streams indicated an increase in taxa associated with human activity including bacteria from the genus Polynucleobacter, which is widespread, but has been associated with eutrophic conditions in larger water bodies. Another indicator of communities in urbanized streams was an OTU from the genus Gallionella, which is linked to corrosion of water distribution systems. To identify changes in bacterial community interactions, bacterial co-occurrence networks were generated from urban and forested samples. The urbanized co-occurrence network was much smaller and had fewer co-occurrence events per taxon than forested equivalents, indicating a loss of keystone taxa with urbanization. Our results suggest that urbanization has significant impacts on the community composition

  14. Draft Genome Sequence of an Active Heterotrophic Nitrifier-Denitrifier, Cupriavidus pauculus UM1.

    Science.gov (United States)

    Putonti, Catherine; Polley, Nathaniel; Castignetti, Domenic

    2018-02-08

    Here, we present the draft genome sequence of Cupriavidus pauculus UM1, a metal-resistant heterotrophic nitrifier-denitrifier capable of synthesizing nitrite from pyruvic oxime. The size of the genome is 7,402,815 bp with a GC content of 64.8%. This draft assembly consists of 38 scaffolds. Copyright © 2018 Putonti et al.

  15. Changes in the water quality and bacterial community composition of an alkaline and saline oxbow lake used for temporary reservoir of geothermal waters.

    Science.gov (United States)

    Borsodi, Andrea K; Szirányi, Barbara; Krett, Gergely; Márialigeti, Károly; Janurik, Endre; Pekár, Ferenc

    2016-09-01

    Geothermal waters exploited in the southeastern region of Hungary are alkali-hydrogen-carbonate type, and beside the high amount of dissolved salt, they contain a variety of aromatic, heteroaromatic, and polyaromatic hydrocarbons. The majority of these geothermal waters used for heating are directed into surface waters following a temporary storage in reservoir lakes. The aim of this study was to gain information about the temporal and spatial changes of the water quality as well as the bacterial community composition of an alkaline and saline oxbow lake operated as reservoir of used geothermal water. On the basis of the water physical and chemical measurements as well as the denaturing gradient gel electrophoresis (DGGE) patterns of the bacterial communities, temporal changes were more pronounced than spatial differences. During the storage periods, the inflow, reservoir water, and sediment samples were characterized with different bacterial community structures in both studied years. The 16S ribosomal RNA (rRNA) gene sequences of the bacterial strains and molecular clones confirmed the differences among the studied habitats. Thermophilic bacteria were most abundant in the geothermal inflow, whereas the water of the reservoir was dominated by cyanobacteria and various anoxygenic phototrophic prokaryotes. In addition, members of several facultative anaerobic denitrifying, obligate anaerobic sulfate-reducing and syntrophic bacterial species capable of decomposition of different organic compounds including phenols were revealed from the water and sediment of the reservoir. Most of these alkaliphilic and/or halophilic species may participate in the local nitrogen and sulfur cycles and contribute to the bloom of phototrophs manifesting in a characteristic pink-reddish discoloration of the water of the reservoir.

  16. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities.

    Science.gov (United States)

    Strickland, Michael S; McCulley, Rebecca L; Nelson, Jim A; Bradford, Mark A

    2015-01-01

    Inputs of low molecular weight carbon (LMW-C) to soil - primarily via root exudates- are expected to be a major driver of microbial activity and source of stable soil organic carbon. It is expected that variation in the type and composition of LMW-C entering soil will influence microbial community composition and function. If this is the case then short-term changes in LMW-C inputs may alter processes regulated by these communities. To determine if change in the composition of LMW-C inputs influences microbial community function and composition, we conducted a 90 day microcosm experiment whereby soils sourced from three different land covers (meadows, deciduous forests, and white pine stands) were amended, at low concentrations, with one of eight simulated root exudate treatments. Treatments included no addition of LMW-C, and the full factorial combination of glucose, glycine, and oxalic acid. After 90 days, we conducted a functional response assay and determined microbial composition via phospholipid fatty acid analysis. Whereas we noted a statistically significant effect of exudate treatments, this only accounted for ∼3% of the variation observed in function. In comparison, land cover and site explained ∼46 and ∼41% of the variation, respectively. This suggests that exudate composition has little influence on function compared to site/land cover specific factors. Supporting the finding that exudate effects were minor, we found that an absence of LMW-C elicited the greatest difference in function compared to those treatments receiving any LMW-C. Additionally, exudate treatments did not alter microbial community composition and observable differences were instead due to land cover. These results confirm the strong effects of land cover/site legacies on soil microbial communities. In contrast, short-term changes in exudate composition, at meaningful concentrations, may have little impact on microbial function and composition.

  17. Invasion of nitrite oxidizer dominated communities: interactions between propagule pressure and community composition

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen

    consider a broader community ecology framework. For example, the effect of propagule pressure, often studied in macro-ecology, has rarely been examined for microbial communities. Also, the interactions between processes governing community assembly and propagule pressure on invasion success have never been...... by nitrite oxidizer strain (Candidatus Nitrotoga sp. HW29) at 3 different propagule pressures. The reactors were then operated another 2 weeks before analyzing community composition by targeted qPCRs and 16S rRNA gene amplicon analysis. We successfully assembled resident communities with different ratios...

  18. Meta-Transcriptomic Analysis of a Chromate-Reducing Aquifer Microbial Community

    Science.gov (United States)

    Beller, H. R.; Brodie, E. L.; Han, R.; Karaoz, U.

    2010-12-01

    A major challenge for microbial ecology that has become more tractable in the advent of new molecular techniques is characterizing gene expression in complex microbial communities. We are using meta-transcriptomic analysis to characterize functional changes in an aquifer-derived, chromate-reducing microbial community as it transitions through various electron-accepting conditions. We inoculated anaerobic microcosms with groundwater from the Cr-contaminated Hanford 100H site and supplemented them with lactate and electron acceptors present at the site, namely, nitrate, sulfate, and Fe(III). The microcosms progressed successively through various electron-accepting conditions (e.g., denitrifying, sulfate-reducing, and ferric iron-reducing conditions, as well as nitrate-dependent, chemolithotrophic Fe(II)-oxidizing conditions). Cr(VI) was rapidly reduced initially and again upon further Cr(VI) amendments. Extensive geochemical sampling and analysis (e.g., lactate, acetate, chloride, nitrate, nitrite, sulfate, dissolved Cr(VI), total Fe(II)), RNA/DNA harvesting, and PhyloChip analyses were conducted. Methods were developed for removal of rRNA from total RNA in preparation for meta-transcriptome sequencing. To date, samples representing denitrifying and fermentative/sulfate-reducing conditions have been sequenced using 454 Titanium technology. Of the non-rRNA related reads for the denitrifying sample (which was also actively reducing chromate), ca. 8% were associated with denitrification and ca. 0.9% were associated with chromate resistance/transport, in contrast to the fermentative/sulfate-reducing sample (in which chromate had already been reduced), which had zero reads associated with either of these categories but many predicted proteins associated with sulfate-reducing bacteria. We observed sequences for key functional transcripts that were unique at the nucleotide level compared to the GenBank non-redundant database [such as L-lactate dehydrogenase (iron

  19. DRIVERS OF THE DYNAMICS OF DIAZOTROPHS AND DENITRIFIERS IN NORTH SEA BOTTOM WATERS AND SEDIMENTS

    Directory of Open Access Journals (Sweden)

    Lucas eStal

    2015-07-01

    Full Text Available The fixation of dinitrogen (N2 and denitrification are two opposite processes in the nitrogen cycle. The former transfers atmospheric dinitrogen gas into bound nitrogen in the biosphere, while the latter returns this bound nitrogen back to atmospheric dinitrogen. It is unclear whether or not these processes are intimately connected in any microbial ecosystem or that they are spatially and/or temporally separated. Here, we measured seafloor nitrogen fixation and denitrification as well as pelagic nitrogen fixation by using the stable isotope technique. Alongside, we measured the diversity, abundance, and activity of nitrogen-fixing and denitrifying microorganisms at three stations in the southern North Sea. Nitrogen fixation ranged from undetectable to 2.4 nmol N L-1 d-1 and from undetectable to 8.2 nmol N g-1 d-1 in the water column and seafloor, respectively. The highest rates were measured in August at Doggersbank, both for the water column and for the seafloor. Denitrification ranged from 1.7 to 208.8 µmol m-2 d-1 and the highest rates were measured in May at the Oyster Grounds. DNA sequence analysis showed sequences of nifH, a structural gene for nitrogenase, related to sequences from anaerobic sulfur/iron reducers and sulfate reducers. Sequences of the structural gene for nitrite reductase, nirS, were related to environmental clones from marine sediments. Quantitative polymerase chain reaction (qPCR data revealed the highest abundance of nifH and nirS genes at the Oyster Grounds. Quantitative reverse transcription polymerase chain reaction (qRT-PCR data revealed the highest nifH expression at Doggersbank and the highest nirS expression at the Oyster Grounds. The distribution of the diazotrophic and denitrifying communities seems to be subject to different selecting factors, leading to spatial and temporal separation of nitrogen fixation and denitrification. These selecting factors include temperature, organic matter availability, and

  20. Diversity of nitrite reductase genes (nirS) in the denitrifying water column of the coastal Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, D.A.; Francis, C.A.; Naqvi, S.W.A.; Ward, B.B.

    Denitrification often occurs in the water column, underlying zones of intense productivity and decomposition in upwelling regions. In the denitrifying zone off the southwest coast of India, high concentrations of nitrite (greater than 15 mu M...

  1. RELATIONSHIP BETWEEN THE CONCENTRATION OF DENITRIFIERS AND PSEUDOMONAS SPP. IN SOILS: IMPLICATIONS FOR BTX BIOREMEDIATION (R823420)

    Science.gov (United States)

    Aquifer microcosms were used to investigate the effect of stimulating denitrification on microbial population shifts and BTX degradation potential. Selective pressurefor facultative denitrifiers was applied to a treatment set by feeding acetate and nitrate, and cycling electr...

  2. The community ecology of pathogens: coinfection, coexistence and community composition.

    Science.gov (United States)

    Seabloom, Eric W; Borer, Elizabeth T; Gross, Kevin; Kendig, Amy E; Lacroix, Christelle; Mitchell, Charles E; Mordecai, Erin A; Power, Alison G

    2015-04-01

    Disease and community ecology share conceptual and theoretical lineages, and there has been a resurgence of interest in strengthening links between these fields. Building on recent syntheses focused on the effects of host community composition on single pathogen systems, we examine pathogen (microparasite) communities using a stochastic metacommunity model as a starting point to bridge community and disease ecology perspectives. Such models incorporate the effects of core community processes, such as ecological drift, selection and dispersal, but have not been extended to incorporate host-pathogen interactions, such as immunosuppression or synergistic mortality, that are central to disease ecology. We use a two-pathogen susceptible-infected (SI) model to fill these gaps in the metacommunity approach; however, SI models can be intractable for examining species-diverse, spatially structured systems. By placing disease into a framework developed for community ecology, our synthesis highlights areas ripe for progress, including a theoretical framework that incorporates host dynamics, spatial structuring and evolutionary processes, as well as the data needed to test the predictions of such a model. Our synthesis points the way for this framework and demonstrates that a deeper understanding of pathogen community dynamics will emerge from approaches working at the interface of disease and community ecology. © 2015 John Wiley & Sons Ltd/CNRS.

  3. [Effect of short-time drought process on denitrifying bacteria abundance and N2O emission in paddy soil].

    Science.gov (United States)

    Lu, Jing; Liu, Jin-Bo; Sheng, Rong; Liu, Yi; Chen, An-Lei; Wei, Wen-Xue

    2014-10-01

    In order to investigate the impact of drying process on greenhouse gas emissions and denitrifying microorganisms in paddy soil, wetting-drying process was simulated in laboratory conditions. N2O flux, redox potential (Eh) were monitored and narG- and nosZ-containing denitrifiers abundances were determined by real-time PCR. N2O emission was significantly increased only 4 h after drying process began, and it was more than 6 times of continuous flooding (CF) at 24 h. In addition, narG and nosZ gene abundances were increased rapidly with the drying process, and N2O emission flux was significantly correlated with narG gene abundance (P driving microorganisms which caused the N2O emission in the short-time drought process in paddy soil.

  4. Toxic effects exerted on methanogenic, nitrifying and denitrifying bacteria by chemicals used in a milk analysis laboratory

    NARCIS (Netherlands)

    Lopez-Fiuza, J.; Buys, B.; Mosquera-Corral, A.; Omil, F.; Mendez, R.

    2002-01-01

    The toxic effects caused by the chemicals contained in wastewaters generated by laboratories involved in raw milk analyses were assessed using batch assays. These assays were carried out separately with methanogenic, ammonium-oxidizing, nitrite-oxidizing and denitrifying bacteria. Since sodium azide

  5. Seasonal variations of nitrate reducing and denitrifying bacteria utilizing hexadecane in Mandovi estuary, Goa, West Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sousa, T.D.; Ingole, B.; Sousa, S.D.; Bhosle, S.

    > cfu/ml on minimal media containing hexadecane as the sole carbon source. Highest bacterial counts were obtained during the monsoons. 22% of bacteria capable of hexadecane utilization were nitrate reducing and 12% were denitrifying. 29...

  6. Bacterial community composition in reclaimed and unreclaimed ...

    African Journals Online (AJOL)

    AJL-021

    2013-07-24

    Jul 24, 2013 ... characteristics, chemical speciation of heavy metals Cu, Cd and Zn were revealed to ... Phylogenetic analysis indicated that bacteria in these two samples fell into 12 ... plant community and the abundance and composition of.

  7. Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils.

    Science.gov (United States)

    Espenberg, Mikk; Truu, Marika; Mander, Ülo; Kasak, Kuno; Nõlvak, Hiie; Ligi, Teele; Oopkaup, Kristjan; Maddison, Martin; Truu, Jaak

    2018-03-16

    Tropical peatlands, which play a crucial role in the maintenance of different ecosystem services, are increasingly drained for agriculture, forestry, peat extraction and human settlement purposes. The present study investigated the differences between natural and drained sites of a tropical peatland in the community structure of soil bacteria and archaea and their potential to perform nitrogen transformation processes. The results indicate significant dissimilarities in the structure of soil bacterial and archaeal communities as well as nirK, nirS, nosZ, nifH and archaeal amoA gene-possessing microbial communities. The reduced denitrification and N 2 -fixing potential was detected in the drained tropical peatland soil. In undisturbed peatland soil, the N 2 O emission was primarily related to nirS-type denitrifiers and dissimilatory nitrate reduction to ammonium, while the conversion of N 2 O to N 2 was controlled by microbes possessing nosZ clade I genes. The denitrifying microbial community of the drained site differed significantly from the natural site community. The main reducers of N 2 O were microbes harbouring nosZ clade II genes in the drained site. Additionally, the importance of DNRA process as one of the controlling mechanisms of N 2 O fluxes in the natural peatlands of the tropics revealed from the results of the study.

  8. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.

    Science.gov (United States)

    Hubert, Nathaniel A; Gehring, Catherine A

    2008-09-01

    Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

  9. Diversity of Nitrate-Reducing and Denitrifying Bacteria in a Marine Aquaculture Biofilter and their Response to Sulfide

    DEFF Research Database (Denmark)

    Krieger, Bärbel; Schwermer, Carsten U.; Rezakhani, Nastaran

    2006-01-01

    with Alphaproteobacteria but also including Beta- and Gammaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. The diversity of the isolates was compared to the cultivation-independent diversity of nitrate-reducing and denitrifying bacteria based on narG and nosZ as functional marker genes. Growth experiments...

  10. Bacterial community composition and structure in an Urban River impacted by different pollutant sources.

    Science.gov (United States)

    Ibekwe, A Mark; Ma, Jincai; Murinda, Shelton E

    2016-10-01

    Microbial communities in terrestrial fresh water are diverse and dynamic in composition due to different environmental factors. The goal of this study was to undertake a comprehensive analysis of bacterial composition along different rivers and creeks and correlate these to land-use practices and pollutant sources. Here we used 454 pyrosequencing to determine the total bacterial community composition, and bacterial communities that are potentially of fecal origin, and of relevance to water quality assessment. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, and community composition. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to correlate bacterial composition in streams and creeks to different environmental parameters impacting bacterial communities in the sediment and surface water within the watershed. Bacteria were dominated by the phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, with Bacteroidetes significantly (PPCoA and DCA showed that bacterial composition in sediment and surface water was significantly different (Pmicrobial community compositions were influenced by several environmental factors, and pH, NO2, and NH4 were the major environmental factors driving FIB in surface water based on CCA analysis, while NO3 was the only factor in sediment. Published by Elsevier B.V.

  11. Compositional differences in simulated root exudates elicit a limited functional and compositional response in soil microbial communities

    Directory of Open Access Journals (Sweden)

    Michael S Strickland

    2015-08-01

    Full Text Available Inputs of low molecular weight carbon (LMW-C to soil −primarily via root exudates− are expected to be a major driver of microbial activity and source of stable soil organic carbon. It is expected that variation in the type and composition of LMW-C entering soil will influence microbial community composition and function. If this is the case then short-term changes in LMW-C inputs may alter processes regulated by these communities. To determine if change in the composition of LMW-C inputs influences microbial community function and composition, we conducted a 90 day microcosm experiment whereby soils sourced from three different land covers (meadows, deciduous forests, and white pine stands were amended, at low concentrations, with one of eight simulated root exudate treatments. Treatments included no addition of LMW-C, and the full factorial combination of glucose, glycine, and oxalic acid. After 90 days, we conducted a functional response assay and determined microbial composition via phospholipid fatty acid analysis. Whereas we noted a statistically significant effect of exudate treatments, this only accounted for ~3% of the variation observed in function. In comparison, land cover and site explained ~46 and ~41% of the variation, respectively. This suggests that exudate composition has little influence on function

  12. Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland.

    Science.gov (United States)

    Weedon, James T; Kowalchuk, George A; Aerts, Rien; Freriks, Stef; Röling, Wilfred F M; van Bodegom, Peter M

    2017-01-01

    The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50-100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12-15% of variance explained) > temporal variation (7-11%) > climate treatment (4-9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates-evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts.

  13. Experimental soil warming shifts the fungal community composition at the alpine treeline.

    Science.gov (United States)

    Solly, Emily F; Lindahl, Björn D; Dawes, Melissa A; Peter, Martina; Souza, Rômulo C; Rixen, Christian; Hagedorn, Frank

    2017-07-01

    Increased CO 2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant-soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere. At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO 2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel. Fungal community composition was significantly altered by soil warming, whereas CO 2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils. Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Modeling of Cr(VI) Bioreduction Under Fermentative and Denitrifying Conditions

    Science.gov (United States)

    Molins, S.; Steefel, C.; Yang, L.; Beller, H. R.

    2011-12-01

    The mechanisms of bioreductive immobilization of Cr(VI) were investigated by reactive transport modeling of a set of flow-through column experiments performed using natural Hanford 100H aquifer sediment. The columns were continuously eluted with 5 μM Cr(VI), 5 mM lactate as the electron donor, and selected electron acceptors (tested individually). Here we focus on the two separate experimental conditions that showed the most removal of Cr(VI) from solution: fermentation and denitrification. In each case, a network of enzymatic and abiotic reaction pathways was considered to interpret the rate of chromate reduction. The model included biomass growth and decay, and thermodynamic limitations on reaction rates, and was constrained by effluent concentrations measured by IC and ICP-MS and additional information from bacterial isolates from column effluent. Under denitrifying conditions, Cr(VI) reduction was modeled as co-metabolic with nitrate reduction based on experimental observations and previous studies on a denitrifying bacterium derived from the Hanford 100H aquifer. The reactive transport model results supported this interpretation of the reaction mechanism and were used to quantify the efficiency of the process. The models results also suggest that biomass growth likely relied on a nitrogen source other than ammonium (e.g. nitrate). Under fermentative conditions and based on cell suspension studies performed on a bacterial isolate from the columns, the model assumes that Cr(VI) reduction is carried out directly by fermentative bacteria that convert lactate into acetate and propionate. The evolution to complete lactate fermentation and Cr(VI) reduction took place over a week's time and simulations were used to determine an estimate for a lower limit of the rate of chromate reduction by calibration with the flow-through column experimental results. In spite of sulfate being added to these columns, sulfate reduction proceeded at a slow rate and was not well

  15. Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples

    NARCIS (Netherlands)

    Kester, R.A.; Boer, W. de; Laanbroek, H.J.

    1996-01-01

    The contribution of nitrifiers and denitrifiers to the nitrous oxide production in slurries of calcareous silt loam and river bank sediment at different oxygen concentrations was determined using acetylene as nitrification inhibitor. The addition of 10 Pa acetylene resulted in inhibition of

  16. Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples

    NARCIS (Netherlands)

    Kester, R.A.; De Boer, W.; Laanbroek, H.J.

    1996-01-01

    The contribution of nitrifiers and denitrifiers to the nitrous oxide production in slurries of calcareous silt loam and river bank sediment at different oxygen concentrations was determined using acetylene as nitrification inhibitor. The addition of 10 Pa acetylene resulted in inhibition of nitrous

  17. Rapid decay of tree-community composition in Amazonian forest fragments

    Science.gov (United States)

    Laurance, William F.; Nascimento, Henrique E. M.; Laurance, Susan G.; Andrade, Ana; Ribeiro, José E. L. S.; Giraldo, Juan Pablo; Lovejoy, Thomas E.; Condit, Richard; Chave, Jerome; Harms, Kyle E.; D'Angelo, Sammya

    2006-01-01

    Forest fragmentation is considered a greater threat to vertebrates than to tree communities because individual trees are typically long-lived and require only small areas for survival. Here we show that forest fragmentation provokes surprisingly rapid and profound alterations in Amazonian tree-community composition. Results were derived from a 22-year study of exceptionally diverse tree communities in 40 1-ha plots in fragmented and intact forests, which were sampled repeatedly before and after fragment isolation. Within these plots, trajectories of change in abundance were assessed for 267 genera and 1,162 tree species. Abrupt shifts in floristic composition were driven by sharply accelerated tree mortality and recruitment within ≈100 m of fragment margins, causing rapid species turnover and population declines or local extinctions of many large-seeded, slow-growing, and old-growth taxa; a striking increase in a smaller set of disturbance-adapted and abiotically dispersed species; and significant shifts in tree size distributions. Even among old-growth trees, species composition in fragments is being restructured substantially, with subcanopy species that rely on animal seed-dispersers and have obligate outbreeding being the most strongly disadvantaged. These diverse changes in tree communities are likely to have wide-ranging impacts on forest architecture, canopy-gap dynamics, plant–animal interactions, and forest carbon storage. PMID:17148598

  18. Draft genome sequence of Bacillus azotoformans MEV2011, a (Co-) denitrifying strain unable to grow with oxygen.

    Science.gov (United States)

    Nielsen, Maja; Schreiber, Lars; Finster, Kai; Schramm, Andreas

    2015-01-01

    Bacillus azotoformans MEV2011, isolated from soil, is a microaerotolerant obligate denitrifier, which can also produce N2 by co-denitrification. Oxygen is consumed but not growth-supportive. The draft genome has a size of 4.7 Mb and contains key genes for both denitrification and dissimilatory nitrate reduction to ammonium.

  19. Bacterial community evolutions driven by organic matter and powder activated carbon in simultaneous anammox and denitrification (SAD) process.

    Science.gov (United States)

    Ge, Cheng-Hao; Sun, Na; Kang, Qi; Ren, Long-Fei; Ahmad, Hafiz Adeel; Ni, Shou-Qing; Wang, Zhibin

    2018-03-01

    A distinct shift of bacterial community driven by organic matter (OM) and powder activated carbon (PAC) was discovered in the simultaneous anammox and denitrification (SAD) process which was operated in an anti-fouling submerged anaerobic membrane bio-reactor. Based on anammox performance, optimal OM dose (50 mg/L) was advised to start up SAD process successfully. The results of qPCR and high throughput sequencing analysis indicated that OM played a key role in microbial community evolutions, impelling denitrifiers to challenge anammox's dominance. The addition of PAC not only mitigated the membrane fouling, but also stimulated the enrichment of denitrifiers, accounting for the predominant phylum changing from Planctomycetes to Proteobacteria in SAD process. Functional genes forecasts based on KEGG database and COG database showed that the expressions of full denitrification functional genes were highly promoted in R C , which demonstrated the enhanced full denitrification pathway driven by OM and PAC under low COD/N value (0.11). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Rapid adjustment of bird community compositions to local climatic variations and its functional consequences.

    Science.gov (United States)

    Gaüzère, Pierre; Jiguet, Frédéric; Devictor, Vincent

    2015-09-01

    The local spatial congruence between climate changes and community changes has rarely been studied over large areas. We proposed one of the first comprehensive frameworks tracking local changes in community composition related to climate changes. First, we investigated whether and how 12 years of changes in the local composition of bird communities were related to local climate variations. Then, we tested the consequences of this climate-induced adjustment of communities on Grinnellian (habitat-related) and Eltonian (function-related) homogenization. A standardized protocol monitoring spatial and temporal trends of birds over France from 2001 to 2012 was used. For each plot and each year, we used the spring temperature and the spring precipitations and calculated three indices reflecting the thermal niche, the habitat specialization, and the functional originality of the species within a community. We then used a moving-window approach to estimate the spatial distribution of the temporal trends in each of these indices and their congruency with local climatic variations. Temperature fluctuations and community dynamics were found to be highly variable in space, but their variations were finely congruent. More interestingly, the community adjustment to temperature variations was nonmonotonous. Instead, unexplained fluctuations in community composition were observed up to a certain threshold of climate change intensity, above which a change in community composition was observed. This shift corresponded to a significant decrease in the relative abundance of habitat specialists and functionally original species within communities, regardless of the direction of temperature change. The investigation of variations in climate and community responses appears to be a central step toward a better understanding of climate change effects on biodiversity. Our results suggest a fine-scale and short-term adjustment of community composition to temperature changes. Moreover

  1. Storm-scale dynamics of bacterial community composition in throughfall and stemflow

    Science.gov (United States)

    Van Stan, J. T., II; Teachey, M. E.; Pound, P.; Ottesen, E. A.

    2017-12-01

    Transport of bacteria between ecosystem spheres can significantly affect microbially-mediated biogeochemical processes. During rainfall, there is a large, temporally-concentrated exchange of bacteria between the forest phyllosphere and the pedosphere by rain dripping from canopy surfaces, as throughfall (TF), and draining to the stem, as stemflow (SF). Many phyllosphere bacteria possibly transported by TF and SF have been linked to important litter and soil processes (like cyanobacteria and actinobacteria). Despite this, no work has applied high throughput DNA sequencing to assess the community composition of bacteria transported by TF and SF. We characterized bacterial community composition for TF and SF from an epiphyte-laden (Tillandsia usneoides L., Spanish moss) southern live oak (Quercus virginiana) forest in southeastern Georgia (USA) to address two hypotheses: that bacterial community composition will differ between (1) TF and SF, and (2) TF sampled beneath bare and epiphyte-laden canopy. Variability in family-level bacterial abundance, Bray-Curtis dissimilarity, and Shannon diversity index was greater between storms than between net rainfall fluxes. In fact, TF and SF bacterial communities were relatively similar for individual storms and may be driven by pre-storm atmospheric deposition rather than the communities affixed to leaves, bark, and epiphyte surfaces.

  2. Performance of denitrifying microbial fuel cell subjected to variation in pH, COD concentration and external resistance.

    Science.gov (United States)

    Li, Jin-Tao; Zhang, Shao-Hui; Hua, Yu-Mei

    2013-01-01

    The effects of pH, chemical oxygen demand (COD) concentration and external resistance on denitrifying microbial fuel cell were evaluated in terms of electricity generation characteristics and pollutant removal performance. The results showed that anodic influent with weakly alkaline or neutral pH and cathodic influent with weakly acidic pH favored pollutant removal and electricity generation. The suitable influent pH of the anode and cathode were found to be 7.5-8.0 and 6.0-6.5, respectively. In the presence of sufficient nitrate in the cathode, higher influent COD concentration led to more electricity generation and greater pollutant removal rates. With an anodic influent pH of 8.0 and a cathodic influent pH of 6.0, an influent COD concentration of 400 mg/L was deemed to be appropriate. Low external resistance favored nitrate and COD removal. The results suggest that operation of denitrifying microbial fuel cell at a lower external resistance would be desirable for pollutant removal but not electricity generation.

  3. Does stability in local community composition depend on temporal variation in rates of dispersal and connectivity?

    Science.gov (United States)

    Valanko, Sebastian; Norkko, Joanna; Norkko, Alf

    2015-04-01

    In ecology understanding variation in connectivity is central for how biodiversity is maintained. Field studies on dispersal and temporal dynamics in community regulating processes are, however, rare. We test the short-term temporal stability in community composition in a soft-sediment benthic community by determining among-sampling interval similarity in community composition. We relate stability to in situ measures of connectivity (wind, wave, current energy) and rates of dispersal (quantified in different trap types). Waves were an important predictor of when local community taxa are most likely to disperse in different trap-types, suggesting that wave energy is important for connectivity in a region. Community composition at the site was variable and changed stochastically over time. We found changes in community composition (occurrence, abundance, dominance) to be greater at times when connectivity and rates of dispersal were low. In response to periods of lower connectedness dominant taxa in the local community only exhibited change in their relative abundance. In contrast, locally less abundant taxa varied in both their presence, as well as in relative abundance. Constancy in connectivity and rates of dispersal promotes community stability and persistence, suggesting that local community composition will be impacted by changes in the spatial extent over which immigration and emigration operates in the region. Few empirical studies have actually measured dispersal directly in a multi-species context to demonstrate the role it plays in maintaining local community structure. Even though our study does not evaluate coexistence over demographic time scales, it importantly demonstrates that dispersal is not only important in initial recruitment or following a disturbance, but also key in maintaining local community composition.

  4. Stability of U(VI) and Tc(VII) Reducing Microbial Communities to Environmental Perturbation: Development and Testing of a Thermodynamic Network Model

    International Nuclear Information System (INIS)

    McKinley, James P.; Istok, Jonathan

    2005-01-01

    Previously published research from in situ field experiments at the NABIR Field Research Center have shown that cooperative metabolism of denitrifiers and Fe(III)/sulfate reducers is essential for creating subsurface conditions favorable for U(VI) and Tc(VII) bioreduction (Istok et al., 2004). The overall goal of this project is to develop and test a thermodynamic network model for predicting the effects of substrate additions and environmental perturbations on the composition and functional stability of subsurface microbial communities. The overall scientific hypothesis is that a thermodynamic analysis of the energy-yielding reactions performed by broadly defined groups of microorganisms can be used to make quantitative and testable predictions of the change in microbial community composition that will occur when a substrate is added to the subsurface or when environmental conditions change. An interactive computer program was developed to calculate the overall growth equation and free energy yield for microorganisms that grow by coupling selected combinations of electron acceptor and electron donor half-reactions. Each group performs a specific function (e.g. oxidation of acetate coupled to reduction of nitrate); collectively the groups provide a theoretical description of the entire natural microbial community. The microbial growth data are combined with an existing thermodynamic data base for associated geochemical reactions and used to simulate the coupled microbial-geochemical response of a complex natural system to substrate addition or any other environmental perturbations

  5. Effects of viruses and predators on prokaryotic community composition.

    Science.gov (United States)

    Jardillier, Ludwig; Bettarel, Yvan; Richardot, Mathilde; Bardot, Corinne; Amblard, Christian; Sime-Ngando, Télesphore; Debroas, Didier

    2005-11-01

    Dialysis bags were used to examine the impact of predation and viral lysis on prokaryotic community composition (PCC) over a 5-day experiment in the oligomesotrophic Lake Pavin (France). The impact of the different predator communities (protists and metazoans) of prokaryotes was estimated by water fractionation (protists, which also affected PCC, whereas viruses seemed to be essentially responsible for profound changes in PCC via direct and indirect actions.

  6. Predictability of bee community composition after floral removals differs by floral trait group.

    Science.gov (United States)

    Urban-Mead, Katherine R

    2017-11-01

    Plant-bee visitor communities are complex networks. While studies show that deleting nodes alters network topology, predicting these changes in the field remains difficult. Here, a simple trait-based approach is tested for predicting bee community composition following disturbance. I selected six fields with mixed cover of flower species with shallow (open) and deep (tube) nectar access, and removed all flowers or flower heads of species of each trait in different plots paired with controls, then observed bee foraging and composition. I compared the bee community in each manipulated plot with bees on the same flower species in control plots. The bee morphospecies composition in manipulations with only tube flowers remaining was the same as that in the control plots, while the bee morphospecies on only open flowers were dissimilar from those in control plots. However, the proportion of short- and long-tongued bees on focal flowers did not differ between control and manipulated plots for either manipulation. So, bees within some functional groups are more strongly linked to their floral trait partners than others. And, it may be more fruitful to describe expected bee community compositions in terms of relative proportions of relevant ecological traits than species, particularly in species-diverse communities. © 2017 The Author(s).

  7. Grazing of leaf-associated Cercomonads (Protists: Rhizaria: Cercozoa) structures bacterial community composition and function.

    Science.gov (United States)

    Flues, Sebastian; Bass, David; Bonkowski, Michael

    2017-08-01

    Preferential food selection in protists is well documented, but we still lack basic understanding on how protist predation modifies the taxonomic and functional composition of bacterial communities. We conducted feeding trials using leaf-associated cercomonad Cercozoa by incubating them on a standardized, diverse bacterial community washed from plant leaves. We used a shotgun metagenomics approach to investigate the taxonomic and functional changes of the bacterial community after five days protist predation on bacteria. Predation-induced shifts in bacterial community composition could be linked to phenotypic protist traits. Protist reproduction rate, morphological plasticity and cell speed were most important in determining bacterial community composition. Analyses of co-occurrence patterns showed less complex correlations between bacterial taxa in the protist-grazed treatments with a higher proportion of positive correlations than in non-grazed controls, suggesting that predation reduced the influence of strong competitors. Protist predation influenced 14 metabolic core functions including membrane transport from which type VI secretion systems were in particular upregulated. In view of the functional importance of bacterial communities in the phyllosphere and rhizosphere of plants, a more detailed understanding of predator-prey interactions, changes in microbial composition and function, and subsequent repercussions on plant performance are clearly required. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Impact of enzymatic digestion on bacterial community composition in CF airway samples.

    Science.gov (United States)

    Williamson, Kayla M; Wagner, Brandie D; Robertson, Charles E; Johnson, Emily J; Zemanick, Edith T; Harris, J Kirk

    2017-01-01

    Previous studies have demonstrated the importance of DNA extraction methods for molecular detection of Staphylococcus, an important bacterial group in cystic fibrosis (CF). We sought to evaluate the effect of enzymatic digestion (EnzD) prior to DNA extraction on bacterial communities identified in sputum and oropharyngeal swab (OP) samples from patients with CF. DNA from 81 samples (39 sputum and 42 OP) collected from 63 patients with CF was extracted in duplicate with and without EnzD. Bacterial communities were determined by rRNA gene sequencing, and measures of alpha and beta diversity were calculated. Principal Coordinate Analysis (PCoA) was used to assess differences at the community level and Wilcoxon Signed Rank tests were used to compare relative abundance (RA) of individual genera for paired samples with and without EnzD. Shannon Diversity Index (alpha-diversity) decreased in sputum and OP samples with the use of EnzD. Larger shifts in community composition were observed for OP samples (beta-diversity, measured by Morisita-Horn), whereas less change in communities was observed for sputum samples. The use of EnzD with OP swabs resulted in significant increase in RA for the genera Gemella ( p  microbial community composition. We show that the application of EnzD to CF airway samples, particularly OP swabs, results in differences in microbial communities detected by sequencing. Use of EnzD can result in large changes in bacterial community composition, and is particularly useful for detection of Staphylococcus in CF OP samples. The enhanced identification of Staphylococcus aureus is a strong indication to utilize EnzD in studies that use OP swabs to monitor CF airway communities.

  9. Stormwater runoff drives viral community composition changes in inland freshwaters

    Science.gov (United States)

    Williamson, Kurt E.; Harris, Jamie V.; Green, Jasmin C.; Rahman, Faraz; Chambers, Randolph M.

    2014-01-01

    Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities. PMID:24672520

  10. Submerged macrophytes modify bacterial community composition in sediments in a large, shallow, freshwater lake.

    Science.gov (United States)

    Zhao, Da-Yong; Liu, Peng; Fang, Chao; Sun, Yi-Meng; Zeng, Jin; Wang, Jian-Qun; Ma, Ting; Xiao, Yi-Hong; Wu, Qinglong L

    2013-04-01

    Submerged aquatic macrophytes are an important part of the lacustrine ecosystem. In this study, the bacterial community compositions in the rhizosphere sediments from three kinds of submerged macrophytes (Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans) were investigated to determine whether submerged macrophytes could drive the variation of bacterial community in the eutrophic Taihu Lake, China. Molecular techniques, including terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries, were employed to analyze the bacterial community compositions. Remarkable differences of the T-RFLP patterns were observed among the different samples, and the results of LIBSHUFF analysis also confirmed that the bacterial community compositions in the rhizosphere sediments of three kinds of submerged macrophytes were statistically different from that of the unvegetated sediment. Acidobacteria, Deltaproteobacteria, and Betaproteobacteria were the dominant bacterial groups in the rhizosphere sediments of Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans, respectively, accounting for 15.38%, 29.03%, and 18.00% of the total bacterial abundances. Our study demonstrated that submerged macrophytes could influence the bacterial community compositions in their rhizosphere sediments, suggesting that macrophytes have an effect on the cycling and transportation of nutrients in the freshwater lake ecosystem.

  11. Bacterial community composition of a wastewater treatment system reliant on N{sub 2} fixation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, N.M.; Bowers, T.H.; Lloyd-Jones, G. [Scion, Rotorua (New Zealand)

    2008-05-15

    The temporal stability and change of the dominant phylogenetic groups of the domain bacteria were studied in a model plant-based industrial wastewater treatment system showing high levels of organic carbon removal supported by high levels of N{sub 2} fixation. Community profiles were obtained through terminal restriction fragment length polymorphism analysis and cloning of 16S rRNA amplicons followed by sequencing. Bacterial community profiles showed that ten common terminal restriction fragments made up approximately 50% of the measured bacterial community. As much as 42% of the measured bacterial community could be monitored by using quantitative PCR and primers that targeted three dominant operational taxonomic units. Despite changes in wastewater composition and dissolved oxygen levels, the bacterial community composition appeared stable and was dominated by {alpha}-Proteobacteria and {beta}-Proteobacteria, with a lesser amount of the highly diverse bacterial phylum Bacteroidetes. A short period of considerable change in the bacterial community composition did not appear to affect treatment performance indicating functional redundancy in this treatment system. (orig.)

  12. Denitrifiers in the surface zone are primarily responsible for the nitrous oxide emission of dairy manure compost

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Koki, E-mail: k_maeda@affrc.go.jp [Dairy Research Division, National Agricultural Research Center for Hokkaido Region, National Agricultural and Food Research Organization, 1 Hitsujigaoka, Sapporo 062-8555 (Japan); Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Toyoda, Sakae [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Hanajima, Dai [Dairy Research Division, National Agricultural Research Center for Hokkaido Region, National Agricultural and Food Research Organization, 1 Hitsujigaoka, Sapporo 062-8555 (Japan); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2013-03-15

    Highlights: ► Nitrous oxide (N{sub 2}O) productions of each compost zones were compared. ► The pile surface emitted significant fluxes of N{sub 2}O. ► The isotopic signature of N{sub 2}O from surface and NO{sub 2}{sup −} amended core were different. ► The denitrifying gene abundance was significantly higher in pile surface than the pile core. -- Abstract: During the dairy manure composting process, significant nitrous oxide (N{sub 2}O) emissions occur just after the pile turnings. To understand the characteristics of this N{sub 2}O emission, samples were taken from the compost surface and core independently, and the N{sub 2}O production was monitored in laboratory incubation experiments. Equal amounts of surface and core samples were mixed to simulate the turning, and the {sup 15}N isotope ratios within the molecules of produced N{sub 2}O were analyzed by isotopomer analysis. The results showed that the surface samples emitted significant levels of N{sub 2}O, and these emissions were correlated with NO{sub x}{sup −}-N accumulation. Moreover, the surface samples and surface-core mixed samples incubated at 30 °C produced N{sub 2}O with a low site preference (SP) value (−0.9 to 7.0‰) that was close to bacteria denitrification (0‰), indicating that denitrifiers in the surface samples are responsible for this N{sub 2}O production. On the other hand, N{sub 2}O produced by NO{sub 2}{sup −}-amended core samples and surface samples incubated at 60 °C showed unrecognized isotopic signatures (SP = 11.4–20.3‰). From these results, it was revealed that the N{sub 2}O production occurring just after the turnings was mainly derived from bacterial denitrification (including nitrifier denitrification) of NO{sub x}{sup −}-N under mesophilic conditions, and surface denitrifying bacteria appeared to be the main contributor to this process.

  13. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    Science.gov (United States)

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-05-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities.

  14. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest

    Science.gov (United States)

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient—namely, Santa Virginia, Picinguaba and Restinga—we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms—ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning. PMID:26752633

  15. Linking the Composition of Bacterial and Archaeal Communities to Characteristics of Soil and Flora Composition in the Atlantic Rainforest.

    Science.gov (United States)

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient-namely, Santa Virginia, Picinguaba and Restinga-we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms-ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning.

  16. Spatial variation of bacterial community composition near the Luzon ...

    African Journals Online (AJOL)

    Spatial variation of bacterial community composition near the Luzon strait assessed by polymerase chain reaction-denaturing gradient gel electrophoresis ... chain reaction (PCR)-amplified bacterial 16S ribosomal deoxyribonucleic acid (DNA) gene fragments and interpreted the results; its relationship with physical and ...

  17. Impacts of Fertilization Regimes on Arbuscular Mycorrhizal Fungal (AMF) Community Composition Were Correlated with Organic Matter Composition in Maize Rhizosphere Soil.

    Science.gov (United States)

    Zhu, Chen; Ling, Ning; Guo, Junjie; Wang, Min; Guo, Shiwei; Shen, Qirong

    2016-01-01

    The understanding of the response of arbuscular mycorrhizal fungi (AMF) community composition to fertilization is of great significance in sustainable agriculture. However, how fertilization influences AMF diversity and composition is not well-established yet. A field experiment located in northeast China in typical black soil (Chernozem) was conducted and high-throughput sequencing approach was used to investigate the effects of different fertilizations on the variation of AMF community in the rhizosphere soil of maize crop. The results showed that AMF diversity in the maize rhizosphere was significantly altered by different fertilization regimes. As revealed by redundancy analysis, the application of organic manure was the most important factor impacting AMF community composition between samples with and without organic manure, followed by N fertilizer and P fertilizer inputs. Moreover, the organic matter composition in the rhizosphere, determined by GC-MS, was significantly altered by the organic manure amendment. Many of the chemical components displayed significant relationships with the AMF community composition according to the Mantel test, among those, 2-ethylnaphthalene explained the highest percentage (54.2%) of the variation. The relative contents of 2-ethylnaphthalene and 2, 6, 10-trimethyltetradecane had a negative correlation with Glomus relative abundance, while the relative content of 3-methylbiphenyl displayed a positive correlation with Rhizophagus . The co-occurrence patterns in treatments with and without organic manure amendment were analyzed, and more hubs were detected in the network of soils with organic manure amendment. Additionally, three operational taxonomic units (OTUs) belonging to Glomerales were identified as hubs in all treatments, indicating these OTUs likely occupied broad ecological niches and were always active for mediating AMF species interaction in the maize rhizosphere. Taken together, impacts of fertilization regimes on

  18. Impacts of fertilization regimes on arbuscular mycorrhizal fungal (AMF community composition were correlated with organic matter composition in maize rhizosphere soil

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2016-11-01

    Full Text Available The understanding of the response of arbuscular mycorrhizal fungi (AMF community composition to fertilization is of great significance in sustainable agriculture. However, how fertilization influences AMF diversity and composition is not well established yet. A field experiment located in northeast China in typical black soil (Chernozem was conducted and high-throughput sequencing approach was used to investigate the effects of different fertilizations on the variation of AMF community in the rhizosphere soil of maize crop. The results showed that AMF diversity in the maize rhizosphere was significantly altered by different fertilization regimes. As revealed by redundancy analysis, the application of organic manure was the most important factor impacting AMF community composition between samples with and without organic manure, followed by N fertilizer and P fertilizer inputs. Moreover, the organic matter composition in the rhizosphere, determined by GC-MS, was significantly altered by the organic manure amendment. Many of the chemical components displayed significant relationships with the AMF community composition according to the Mantel test, among those, 2-ethylnaphthalene explained the highest percentage (54.2% of the variation. The relative contents of 2-ethylnaphthalene and 2, 6, 10-trimethyltetradecane had a negative correlation with Glomus relative abundance, while the relative content of 3-methylbiphenyl displayed a positive correlation with Rhizophagus. The co-occurrence patterns in treatments with and without organic manure amendment were analysed, and more hubs were detected in the network of soils with organic manure amendment. Additionally, three OTUs belonging to Glomerales were identified as hubs in all treatments, indicating these OTUs likely occupied broad ecological niches and were always active for mediating AMF species interaction in the maize rhizosphere. Taken together, impacts of fertilization regimes on AMF community

  19. RNA preservation agents and nucleic acid extraction method bias perceived bacterial community composition.

    Directory of Open Access Journals (Sweden)

    Ann McCarthy

    Full Text Available Bias is a pervasive problem when characterizing microbial communities. An important source is the difference in lysis efficiencies of different populations, which vary depending on the extraction protocol used. To avoid such biases impacting comparisons between gene and transcript abundances in the environment, the use of one protocol that simultaneously extracts both types of nucleic acids from microbial community samples has gained popularity. However, knowledge regarding tradeoffs to combined nucleic acid extraction protocols is limited, particularly regarding yield and biases in the observed community composition. Here, we evaluated a commercially available protocol for simultaneous extraction of DNA and RNA, which we adapted for freshwater microbial community samples that were collected on filters. DNA and RNA yields were comparable to other commonly used, but independent DNA and RNA extraction protocols. RNA protection agents benefited RNA quality, but decreased DNA yields significantly. Choice of extraction protocol influenced the perceived bacterial community composition, with strong method-dependent biases observed for specific phyla such as the Verrucomicrobia. The combined DNA/RNA extraction protocol detected significantly higher levels of Verrucomicrobia than the other protocols, and those higher numbers were confirmed by microscopic analysis. Use of RNA protection agents as well as independent sequencing runs caused a significant shift in community composition as well, albeit smaller than the shift caused by using different extraction protocols. Despite methodological biases, sample origin was the strongest determinant of community composition. However, when the abundance of specific phylogenetic groups is of interest, researchers need to be aware of the biases their methods introduce. This is particularly relevant if different methods are used for DNA and RNA extraction, in addition to using RNA protection agents only for RNA

  20. Benzene degradation in a denitrifying biofilm reactor : activity and microbial community composition

    NARCIS (Netherlands)

    van der Waals, Marcelle J.; Atashgahi, Siavash; da Rocha, Ulisses Nunes; van der Zaan, Bas M.; Smidt, Hauke; Gerritse, Jan

    2017-01-01

    Benzene is an aromatic compound and harmful for the environment. Biodegradation of benzene can reduce the toxicological risk after accidental or controlled release of this chemical in the environment. In this study, we further characterized an anaerobic continuous biofilm culture grown for more than

  1. Community composition of target vs. non-target fungi in fungicide treated wheat

    DEFF Research Database (Denmark)

    Knorr, Kamilla; Jørgensen, Lise Nistrup; Justesen, Annemarie Fejer

    2012-01-01

    disease in wheat and within the last decade, new aggressive strains of yellow rust has caused severe epidemics that lead to substantial yield losses. This study explored the community composition of target versus non-target fungi in yellow rust infected wheat as affected by treatment timing and dose......Fungicide treatments are common control strategies used to manage fungal pathogens in agricultural fields, however, effects of treatments on the composition of total fungal communities, including non-target fungi, in the phyllosphere is not well known. Yellow rust (Puccinia striiformis) is a common...

  2. Production of NO and N(inf2)O by Pure Cultures of Nitrifying and Denitrifying Bacteria during Changes in Aeration

    NARCIS (Netherlands)

    Kester, R.A.; De Boer, W.; Laanbroek, H.J.

    1997-01-01

    Peak emissions of NO and N2O are often observed after wetting of soil, The reactions to sudden changes in the aeration of cultures of nitrifying and denitrifying bacteria with respect to NO and N2O emissions were compared to obtain more information about the microbiological aspects of peak

  3. Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions.

    Science.gov (United States)

    Suarez, Sonia; Lema, Juan M; Omil, Francisco

    2010-05-01

    The contribution of volatilization, sorption and transformation to the removal of 16 Pharmaceutical and Personal Care Products (PPCPs) in two lab-scale conventional activated sludge reactors, working under nitrifying (aerobic) and denitrifying (anoxic) conditions for more than 1.5 years, have been assessed. Pseudo-first order biological degradation rate constants (k(biol)) were calculated for the selected compounds in both reactors. Faster degradation kinetics were measured in the nitrifying reactor compared to the denitrifying system for the majority of PPCPs. Compounds could be classified according to their k(biol) into very highly (k(biol)>5Lg(SS)(-1)d(-1)), highly (1fragrances (HHCB, AHTN and ADBI) were transformed to a large extent under aerobic (>75%) and anoxic (>65%) conditions, whereas naproxen (NPX), ethinylestradiol (EE2), roxithromycin (ROX) and erythromycin (ERY) were only significantly transformed in the aerobic reactor (>80%). The anti-depressant citalopram (CTL) was moderately biotransformed under both, aerobic and anoxic conditions (>60% and >40%, respectively). Some compounds, as carbamazepine (CBZ), diazepam (DZP), sulfamethoxazole (SMX) and trimethoprim (TMP), manifested high resistance to biological transformation. Solids Retention Time (SRT(aerobic) >50d and 20d and <20d) had a slightly positive effect on the removal of FLX, NPX, CTL, EE2 and natural estrogens (increase in removal efficiencies <10%). Removal of diclofenac (DCF) in the aerobic reactor was positively affected by the development of nitrifying biomass and increased from 0% up to 74%. Similarly, efficient anoxic transformation of ibuprofen (75%) was observed after an adaptation period of 340d. Temperature (16-26 degrees C) only had a slight effect on the removal of CTL which increased in 4%.

  4. Associations between retail food store exterior advertisements and community demographic and socioeconomic composition.

    Science.gov (United States)

    Isgor, Zeynep; Powell, Lisa; Rimkus, Leah; Chaloupka, Frank

    2016-05-01

    This paper examines the association between the prevalence of various types of outdoor food and beverage advertising found on the building exteriors and properties of retail food outlets and community racial/ethnic and socioeconomic composition in a nationwide sample of food outlets in the U.S. Our major finding from multivariable analysis is that food stores in low-income communities have higher prevalence of all food and beverage ads, including those for unhealthy products such as regular soda, controlling for community racial/ethnic composition and other covariates. This adds to growing research pointing to socioeconomic disparities in food and beverage marketing exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. High-Resolution Melt Analysis for Rapid Comparison of Bacterial Community Compositions

    DEFF Research Database (Denmark)

    Hjelmsø, Mathis Hjort; Hansen, Lars Hestbjerg; Bælum, Jacob

    2014-01-01

    In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High......-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized...... that HRM analysis of amplified 16S rRNA genes from a soil ecosystem could be used as a screening tool to identify changes in bacterial community structure. This hypothesis was tested using a soil microcosm setup exposed to a total of six treatments representing different combinations of pesticide...

  6. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    Directory of Open Access Journals (Sweden)

    Julia A F Langer

    Full Text Available The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta. Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  7. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

    Science.gov (United States)

    Langer, Julia A F; Sharma, Rahul; Schmidt, Susanne I; Bahrdt, Sebastian; Horn, Henriette G; Algueró-Muñiz, María; Nam, Bora; Achterberg, Eric P; Riebesell, Ulf; Boersma, Maarten; Thines, Marco; Schwenk, Klaus

    2017-01-01

    The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.

  8. Effects of Biochar Blends on Microbial Community Composition in Two Coastal Plain Soils

    Directory of Open Access Journals (Sweden)

    Thomas F. Ducey

    2015-11-01

    Full Text Available The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure. These impacts are modulated not only by the biochar composition, but also on the soil’s physicochemical characteristics. This indicates that soil characteristics must be considered prior to biochar amendment. A significant portion of the soils of the southeastern coastal plain are severely degraded and, therefore, candidates for biochar amendment to strengthen soil fertility. In this study we focused on two common soil series in the southeastern coastal plain, utilizing feedstocks endemic to the area. We chose feedstocks in four ratios (100% pine chip; 80:20 mixture of pine chip to poultry litter; 50:50 mixture of pine chip to poultry litter; 100% poultry litter prior to pyrolysis and soil amendment as a biochar product. Soil was analyzed for bioavailable nutrients via Mehlich-1 extractions, as well as microbial community composition using phospholipid fatty acid analysis (PLFA. Our results demonstrated significant shifts in microbial community composition in response to biochar amendment, the effects of which were greatest with 100% poultry litter biochar. Strong relationships between PLFAs and several Mehlich-1 extractable nutrients (Al, Cu, Fe, and P were observed.

  9. Patterns of vegetation and grasshopper community composition.

    Science.gov (United States)

    Kemp, W P; Harvey, S J; O'Neill, K M

    1990-06-01

    A study was conducted to evaluate differences in rangeland grasshopper communities over environmental gradients in Gallatin Valley, Montana, USA. The concept of habitat type (Daubenmire 1966) was used as a basis for discriminating between groupings of patches based on vegetation. A total of 39 patches were selected that represented five recognized grassland habitat types (Mueggler and Stewart 1980), as well as two disturbed types (replanting within a known habitat type). Repeated sampling in 1988 of both the insect and plant communities yielded a total of 40 grasshopper (19 664 individuals) and 97 plant species. Detrended Correspondence Analysis (DCA) indicated that patch classifications based on presence and percent cover of plants were appropriate and showed good between-group (habitat type) separation for patches along gradients of precipitation/elevation and plant community complexity. Results from undisturbed habitats showed that plant and grasshopper species composition changed over observed environmental gradients and suggested that habitat type influenced not only species presence, but also relative abundance. Discussion is presented that relates results with patch-use and core and satellite species paradigms.

  10. Composition and abundance of the zooplankton community in the ...

    African Journals Online (AJOL)

    The taxonomic composition of the zooplankton community of the Bitter Lakes, Egypt, was examined in 2003–2004 in relation to the spatial and temporal distribution of environmental factors. Copepoda were dominant, forming 49% of the zooplankton, followed by Protista at 37%. During the autumn, zooplankton in Small ...

  11. Soil Conditions Rather Than Long-Term Exposure to Elevated CO2 Affect Soil Microbial Communities Associated with N-Cycling

    Directory of Open Access Journals (Sweden)

    Kristof Brenzinger

    2017-10-01

    Full Text Available Continuously rising atmospheric CO2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO2 (eCO2 concentrations (20% higher compared to current atmospheric concentrations at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE sites resulted in a more than 2-fold increase of long-term N2O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO2 (aCO2. We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected eCO2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term eCO2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing. Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot, which were fumigated with eCO2 and aCO2, respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under eCO2 differed only slightly from soil under aCO2. Wherever differences in microbial community abundance and composition were detected, they were not linked to CO2 level but rather determined by differences in soil parameters (e.g., soil moisture content due to the localization of the GiFACE sets in the experimental field. We concluded that +20% eCO2 had little to no effect on the overall microbial community involved in N-cycling in the

  12. Soil Conditions Rather Than Long-Term Exposure to Elevated CO2 Affect Soil Microbial Communities Associated with N-Cycling.

    Science.gov (United States)

    Brenzinger, Kristof; Kujala, Katharina; Horn, Marcus A; Moser, Gerald; Guillet, Cécile; Kammann, Claudia; Müller, Christoph; Braker, Gesche

    2017-01-01

    Continuously rising atmospheric CO 2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO 2 ( e CO 2 ) concentrations (20% higher compared to current atmospheric concentrations) at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE) sites resulted in a more than 2-fold increase of long-term N 2 O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO 2 ( a CO 2 ). We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected e CO 2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term e CO 2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing). Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot), which were fumigated with e CO 2 and a CO 2 , respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under e CO 2 differed only slightly from soil under a CO 2 . Wherever differences in microbial community abundance and composition were detected, they were not linked to CO 2 level but rather determined by differences in soil parameters (e.g., soil moisture content) due to the localization of the GiFACE sets in the experimental field. We concluded that +20% e CO 2 had little to no effect on the overall microbial community involved in N

  13. Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice.

    Science.gov (United States)

    Hatam, Ido; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2016-10-01

    Arctic sea ice can be classified into two types: seasonal ice (first-year ice, FYI) and multi-year ice (MYI). Despite striking differences in the physical and chemical characteristics of FYI and MYI, and the key role sea ice bacteria play in biogeochemical cycles of the Arctic Ocean, there are a limited number of studies comparing the bacterial communities from these two ice types. Here, we compare the membership and composition of bacterial communities from FYI and MYI sampled north of Ellesmere Island, Canada. Our results show that communities from both ice types were dominated by similar class-level phylogenetic groups. However, at the operational taxonomic unit (OTU) level, communities from MYI and FYI differed in both membership and composition. Communities from MYI sites had consistent structure, with similar membership (presence/absence) and composition (OTU abundance) independent of location and year of sample. By contrast, communities from FYI were more variable. Although FYI bacterial communities from different locations and different years shared similar membership, they varied significantly in composition. Should these findings apply to sea ice across the Arctic, we predict increased compositional variability in sea ice bacterial communities resulting from the ongoing transition from predominantly MYI to FYI, which may impact nutrient dynamics in the Arctic Ocean.

  14. Physical disturbance to ecological niches created by soil structure alters community composition of methanotrophs.

    Science.gov (United States)

    Kumaresan, Deepak; Stralis-Pavese, Nancy; Abell, Guy C J; Bodrossy, Levente; Murrell, J Colin

    2011-10-01

    Aggregates of different sizes and stability in soil create a composite of ecological niches differing in terms of physico-chemical and structural characteristics. The aim of this study was to identify, using DNA-SIP and mRNA-based microarray analysis, whether shifts in activity and community composition of methanotrophs occur when ecological niches created by soil structure are physically perturbed. Landfill cover soil was subject to three treatments termed: 'control' (minimal structural disruption), 'sieved' (sieved soil using 2 mm mesh) and 'ground' (grinding using mortar and pestle). 'Sieved' and 'ground' soil treatments exhibited higher methane oxidation potentials compared with the 'control' soil treatment. Analysis of the active community composition revealed an effect of physical disruption on active methanotrophs. Type I methanotrophs were the most active methanotrophs in 'sieved' and 'ground' soil treatments, whereas both Type I and Type II methanotrophs were active in the 'control' soil treatment. The result emphasize that changes to a particular ecological niche may not result in an immediate change to the active bacterial composition and change in composition will depend on the ability of the bacterial communities to respond to the perturbation. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Legacy effects of no-analogue disturbances alter plant community diversity and composition in semi-arid sagebrush steppe

    Science.gov (United States)

    Ripplinger, Julie; Franklin, Janet; Edwards, Thomas C.

    2015-01-01

    Questions(i) What role does the type of managed disturbance play in structuring sagebrush steppe plant communities? (ii) How does the composition of post-disturbance plant communities change with time since disturbance? (iii) Does plant community diversity change over time following managed disturbance?LocationField study within the sagebrush steppe ecosystem. Rich County, Utah, USA.MethodsWe developed a chronosequence spanning up to 50 yrs post-treatment to study sagebrush steppe vegetation dynamics. Direct ordination was used to examine plant community composition by managed disturbance type and time since disturbance, and factorial analysis of covariance was used to examine diversity dynamics following disturbance. Indicator species values were calculated in order to identify characteristic species for each disturbance type.ResultsPlant communities experienced a shift toward distinct community composition for each of the three managed disturbance types, and gave no indication of returning to untreated community composition or diversity. Small post-disturbance increases in the number of non-native grass species were observed in the treatments relative to reference, with native forb species making the largest contribution to altered composition. On fire- and chemically-treated sites the proportional native forb species richness increased over time since disturbance, while the proportional contribution of non-native forbs to total species richness decreased. For all three treatment types, native grasses contributed less on average to total richness than on reference sites, while non-native grasses made up a higher proportion of total richness.ConclusionsCommon shrubland management techniques have legacy effects on the composition and diversity of sagebrush steppe plant communities, and no-analogue disturbances, such as chemical or mechanical treatments, have more pronounced legacy effects than treatments similar to natural disturbance regimes (fire). This study

  16. Coral Reef Community Composition in the Context of Disturbance History on the Great Barrier Reef, Australia

    Science.gov (United States)

    Graham, Nicholas A. J.; Chong-Seng, Karen M.; Huchery, Cindy; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.

    2014-01-01

    Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into

  17. New steady-state microbial community compositions and process performances in biogas reactors induced by temperature disturbances

    DEFF Research Database (Denmark)

    Luo, Gang; De Francisci, Davide; Kougias, Panagiotis

    2015-01-01

    that stochastic factors had a minor role in shaping the profile of the microbial community composition and activity in biogas reactors. On the contrary, temperature disturbance was found to play an important role in the microbial community composition as well as process performance for biogas reactors. Although...... three different temperature disturbances were applied to each biogas reactor, the increased methane yields (around 10% higher) and decreased volatile fatty acids (VFAs) concentrations at steady state were found in all three reactors after the temperature disturbances. After the temperature disturbance...... in shaping the profile of the microbial community composition and activity in biogas reactors. New steady-state microbial community profiles and reactor performances were observed in all the biogas reactors after the temperature disturbance....

  18. Effects of long-term elevated CO2 on N2-fixing, denitrifying and nitrifying enzyme activities in forest soils under Pinus sylvestriformis in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun-Qiang; HAN Shi-Jie; REN Fei-Rong; ZHOU Yu-Mei; ZHANG Yan

    2008-01-01

    A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province,northeastern China (42o24'N,128o06'E,and 738 m elevation).A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999.Changpai Scotch pine (Pinus sylvestris var.sylvestriformis seeds were sowed in May,1999 and CO2 fumigation treatments began after seeds germination.In each year,the exposure started at the end of April and stopped at the end of October.Soil samples were collected in June and August 2006 and in June 2007,and soil nitrifying,denitrifying and N2-fixing enzyme activities were measured.Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006,by 30.9% in August 2006 and by 11.3% in June 2007.Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P < 0.012) and August 2006 (P < 0.005) samplings in our study; no significant difference was detected in June 2007,and no significant changes in N2-fixing enzyme activity were found.This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities.

  19. Effects of biochar blends on microbial community composition in two coastal plain soils

    Science.gov (United States)

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....

  20. Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities.

    Science.gov (United States)

    Moora, Mari; Davison, John; Öpik, Maarja; Metsis, Madis; Saks, Ülle; Jairus, Teele; Vasar, Martti; Zobel, Martin

    2014-12-01

    Arbuscular mycorrhizal (AM) fungi play an important role in ecosystems, but little is known about how soil AM fungal community composition varies in relation to habitat type and land-use intensity. We molecularly characterized AM fungal communities in soil samples (n = 88) from structurally open (permanent grassland, intensive and sustainable agriculture) and forested habitats (primeval forest and spruce plantation). The habitats harboured significantly different AM fungal communities, and there was a broad difference in fungal community composition between forested and open habitats, the latter being characterized by higher average AM fungal richness. Within both open and forest habitats, intensive land use significantly influenced community composition. There was a broad difference in the phylogenetic structure of AM fungal communities between mechanically disturbed and nondisturbed habitats. Taxa from Glomeraceae served as indicator species for the nondisturbed habitats, while taxa from Archaeosporaceae, Claroideoglomeraceae and Diversisporaceae were indicators for the disturbed habitats. The distribution of these indicator taxa among habitat types in the MaarjAM global database of AM fungal diversity was in accordance with their local indicator status. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Performance of denitrifying microbial fuel cell with biocathode over nitrite

    Directory of Open Access Journals (Sweden)

    Zhao eHuimin

    2016-03-01

    Full Text Available Microbial fuel cell (MFC with nitrite as an electron acceptor in cathode provided a new technology for nitrogen removal and electricity production simultaneously. The influences of influent nitrite concentration and external resistance on the performance of denitrifying MFC were investigated. The optimal effectiveness were obtained with the maximum total nitrogen (TN removal rate of 54.80±0.01 g m-3 d-1. It would be rather desirable for the TN removal than electricity generation at lower external resistance. Denaturing gradient gel electrophoresis suggested that Proteobacteria was the predominant phylum, accounting for 35.72%. Thiobacillus and Afipia might benefit to nitrite removal. The presence of nitrifying Devosia indicated that nitrite was oxidized to nitrate via a biochemical mechanism in the cathode. Ignavibacterium and Anaerolineaceae was found in the cathode as a heterotrophic bacterium with sodium acetate as substrate, which illustrated that sodium acetate in anode was likely permeated through proton exchange membrane to the cathode .

  2. Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Chris L Dupont

    Full Text Available Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.

  3. Optimizing BTEX biodegradation under denitrifying conditions

    International Nuclear Information System (INIS)

    Hutchins, S.R.

    1991-01-01

    Leaking underground storage tanks are a major source of ground water contamination by petroleum hydrocarbons. Gasoline and other fuels contain benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX), which are hazardous compounds, regulated by the U.S. Environmental Protection Agency (EPA). Laboratory tests were conducted to determine optimum conditions for benzene, toluene, ethylbenzene, and xylene (collectively known as BTEX) biodegradation by aquifer microorganisms under denitrifying conditions. Microcosms, constructed with aquifer samples from Traverse City, Michigan, were amended with selected concentrations of nutrients and one or more hydrocarbons. Toluene, ethylbenzene, m-xylene, and p-xylene, were degraded to below 5 micrograms/L when present as sole source substrates; stoichiometric calculations indicated that nitrate removal was sufficient to account for 70 to 80% of the compounds being mineralized. o-Xylene was recalcitrant when present as a sole source substrate, but was slowly degraded in the presence of the other hydrocarbons. Benzene was not degraded within one year, regardless of whether it was available as a sole source substrate or in combination with toluene, phenol, or catechol. Pre-exposure to low levels of BTEX and nutrients had variable effects, as did the addition of different concentrations of ammonia and phosphate. Nitrate concentrations as high as 500 mg/L NO3-N were slightly inhibitory. These data indicate that nitrate-mediated biodegradation of BTEX at Traverse City can occur under a variety of environmental conditions with rates relatively independent of nutrient concentrations. However, the data reaffirm that benzene is recalcitrant under strictly anaerobic conditions in these samples

  4. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria

    International Nuclear Information System (INIS)

    Ghafari, Shahin; Hasan, Masitah; Aroua, Mohamed Kheireddine

    2009-01-01

    Acclimation of autohydrogenotrophic denitrifying bacteria using inorganic carbon source (CO 2 and bicarbonate) and hydrogen gas as electron donor was performed in this study. In this regard, activated sludge was used as the seed source and sequencing batch reactor (SBR) technique was applied for accomplishing the acclimatization. Three distinct strategies in feeding of carbon sources were applied: (I) continuous sparging of CO 2 , (II) bicarbonate plus continuous sparging of CO 2 , and (III) only bicarbonate. The pH-reducing nature of CO 2 showed an unfavorable impact on denitrification rate; however bicarbonate resulted in a buffered environment in the mixed liquor and provided a suitable mean to maintain the pH in the desirable range of 7-8.2. As a result, bicarbonate as the only carbon source showed a faster adaptation, while carbon dioxide as the only carbon source as well as a complementary carbon source added to bicarbonate resulted in longer acclimation period. Adapted hydrogenotrophic denitrifying bacteria, using bicarbonate and hydrogen gas in the aforementioned pH range, caused denitrification at a rate of 13.33 mg NO 3 - -N/g MLVSS/h for degrading 20 and 30 mg NO 3 - -N/L and 9.09 mg NO 3 - -N/g MLVSS/h for degrading 50 mg NO 3 - -N/L

  5. Impact of enzymatic digestion on bacterial community composition in CF airway samples

    Directory of Open Access Journals (Sweden)

    Kayla M. Williamson

    2017-05-01

    Full Text Available Background Previous studies have demonstrated the importance of DNA extraction methods for molecular detection of Staphylococcus, an important bacterial group in cystic fibrosis (CF. We sought to evaluate the effect of enzymatic digestion (EnzD prior to DNA extraction on bacterial communities identified in sputum and oropharyngeal swab (OP samples from patients with CF. Methods DNA from 81 samples (39 sputum and 42 OP collected from 63 patients with CF was extracted in duplicate with and without EnzD. Bacterial communities were determined by rRNA gene sequencing, and measures of alpha and beta diversity were calculated. Principal Coordinate Analysis (PCoA was used to assess differences at the community level and Wilcoxon Signed Rank tests were used to compare relative abundance (RA of individual genera for paired samples with and without EnzD. Results Shannon Diversity Index (alpha-diversity decreased in sputum and OP samples with the use of EnzD. Larger shifts in community composition were observed for OP samples (beta-diversity, measured by Morisita-Horn, whereas less change in communities was observed for sputum samples. The use of EnzD with OP swabs resulted in significant increase in RA for the genera Gemella (p < 0.01, Streptococcus (p < 0.01, and Rothia (p < 0.01. Staphylococcus (p < 0.01 was the only genus with a significant increase in RA from sputum, whereas the following genera decreased in RA with EnzD: Veillonella (p < 0.01, Granulicatella (p < 0.01, Prevotella (p < 0.01, and Gemella (p = 0.02. In OP samples, higher RA of Gram-positive taxa was associated with larger changes in microbial community composition. Discussion We show that the application of EnzD to CF airway samples, particularly OP swabs, results in differences in microbial communities detected by sequencing. Use of EnzD can result in large changes in bacterial community composition, and is particularly useful for detection of Staphylococcus in CF OP

  6. Organic carbon and nitrogen availability determine bacterial community composition in paddy fields of the Indo-Gangetic plain.

    Science.gov (United States)

    Kumar, Arvind; Rai, Lal Chand

    2017-07-01

    Soil quality is an important factor and maintained by inhabited microorganisms. Soil physicochemical characteristics determine indigenous microbial population and rice provides food security to major population of the world. Therefore, this study aimed to assess the impact of physicochemical variables on bacterial community composition and diversity in conventional paddy fields which could reflect a real picture of the bacterial communities operating in the paddy agro-ecosystem. To fulfill the objective; soil physicochemical characterization, bacterial community composition and diversity analysis was carried out using culture-independent PCR-DGGE method from twenty soils distributed across eight districts. Bacterial communities were grouped into three clusters based on UPGMA cluster analysis of DGGE banding pattern. The linkage of measured physicochemical variables with bacterial community composition was analyzed by canonical correspondence analysis (CCA). CCA ordination biplot results were similar to UPGMA cluster analysis. High levels of species-environment correlations (0.989 and 0.959) were observed and the largest proportion of species data variability was explained by total organic carbon (TOC), available nitrogen, total nitrogen and pH. Thus, results suggest that TOC and nitrogen are key regulators of bacterial community composition in the conventional paddy fields. Further, high diversity indices and evenness values demonstrated heterogeneity and co-abundance of the bacterial communities.

  7. Vertical distribution and community composition of anammox bacteria in sediments of a eutrophic shallow lake.

    Science.gov (United States)

    Qin, H; Han, C; Jin, Z; Wu, L; Deng, H; Zhu, G; Zhong, W

    2018-07-01

    The aim of this study was to explore the vertical distribution traits of anaerobic ammonium-oxidizing (anammox) bacterial relative abundance and community composition along the oxic/anoxic sediment profiles in a shallow lake. The Illumina Miseq-based sequencing and quantitative polymerase chain reactions were utilized to analyse relative abundance of anammox hydrazine synthase (hzsB) gene in comparison with bacterial 16S rRNA genes, anammox bacterial relative abundance (the number of anammox sequences divided by total number of sequences), community composition and diversity in sediments. The relative abundance of hzsB gene at the low-nitrogen (LN) site in the lake sediments showed that the vertical distribution of anammox bacteria increased to a peak, then decreased with increasing depth. Moreover, the relative abundance of hzsB gene at the high-nitrogen site was significantly lower than that at the LN site. Additionally, the community composition results showed that Candidatus Brocadia sp. was the dominant genus. In addition, the anammox bacterial diversity was also site specific. Redundancy analysis showed that the total N and the NH 4 + -N content might be the most important factors affecting anammox bacterial community composition in the studied sites. The results revealed the specific vertical variance of anammox bacterial distribution and community composition in oxic/anoxic sediments of a eutrophic shallow lake. This is the first study to demonstrate that anammox bacteria displayed the particular distribution in freshwater sediments, which implied a strong response to the anthropogenic eutrophication. © 2018 The Society for Applied Microbiology.

  8. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation

    Science.gov (United States)

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L.; Steele, Andrew

    2013-01-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.

  9. Variability in Parasites' Community Structure and Composition in Cat ...

    African Journals Online (AJOL)

    This study investigated the composition and structure of the parasite communities in Cat fish with respect to levels of water pollution in Lake Victoria. A total of 1071 Clarias gariepinus with mean TL range of 19 to 27 cm were analyzed from three localities in Mwanza Gulf (Kirumba, 298 fish infected with 15 parasite species), ...

  10. Short exposure to acetylene to distinguish between nitrifier and denitrifier nitrous oxide production in soil and sediment samples

    OpenAIRE

    Kester, R.A.; Boer, W. de; Laanbroek, H.J.

    1996-01-01

    The contribution of nitrifiers and denitrifiers to the nitrous oxide production in slurries of calcareous silt loam and river bank sediment at different oxygen concentrations was determined using acetylene as nitrification inhibitor. The addition of 10 Pa acetylene resulted in inhibition of nitrous oxide production at oxic conditions, but strongly enhanced the nitrous oxide production at oxygen-poor and anoxic conditions. Inhibition of nitrification by short exposure (1 to 24 h) to high conce...

  11. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting.

    Directory of Open Access Journals (Sweden)

    Elisabeth Pohlon

    Full Text Available Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany. Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes

  12. Soil biochar amendment shapes the composition of N2O-reducing microbial communities.

    Science.gov (United States)

    Harter, Johannes; Weigold, Pascal; El-Hadidi, Mohamed; Huson, Daniel H; Kappler, Andreas; Behrens, Sebastian

    2016-08-15

    Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N2O) emissions. N2O is a potent greenhouse gas. The main sources of N2O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N2O emission mitigation and the abundance and activity of N2O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described 'atypical' nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N2O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N2O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N2O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Antibiotics and Manure Effects on Microbial Communities Responsible for Nitrous Oxide Emissions from Grasslands

    Science.gov (United States)

    Semedo, M.; Song, B.; Sparrer, T.; Crozier, C.; Tobias, C. R.; Phillips, R. L.

    2015-12-01

    Agroecosystems are major contributors of nitrous oxide (N2O) emissions. Denitrification and nitrification are the primary pathways of N2O emission in soils. However, there is uncertainty regarding the organisms responsible for N2O production. Bacteria were previously considered the only microbial N2O source, however, current studies indicate that fungi also produce N2O by denitrification. Denitrifying bacteria can be a source or sink of N2O depending on the presence and expression of nitrous oxide reductase genes (nosZ), encoding for the enzyme converting N2O to N2. Fungal denitrification may produce only N2O as an end product due to missing the nosZ gene. Animal manures applied to agricultural fields can transfer antibiotics to soils as a result of antibiotic use in the livestock industry. These antibiotics target mostly bacteria and may promote fungal growth. The growth inhibition of denitrifying bacteria may favor fungal denitrifiers potentially enhancing N2O emissions. Our objective is to examine the effects of antibiotic exposure and manure fertilization on the microbial communities responsible for N2 and N2O production in grasslands. Soil slurry incubations were conducted with tetracycline at different concentrations. A mesocosm experiment was also performed with soil cores exposed to tetracycline and cow manure. Production of N2O and N2 was measured using gas chromatography with electron capture detector (GC-ECD) and isotope ratio mass spectrometry (IRMS), respectively. Antibiotic inhibition of soil N2 production was found to be dose dependent, reaching up to 80% inhibition with 1g Kg-1 of tetracycline treatment, while N2O production was enhanced up to 8 times. These results suggest higher fungal denitrification with a concomitant decrease in bacterial denitrification after antibiotic exposure. We also found higher N2O fluxes in the soil mesocosms treated with manure plus tetracycline. Quantitative PCR (qPCR) will be conducted to examine the changes in

  14. The Microbial Database for Danish wastewater treatment plants with nutrient removal (MiDas-DK) - a tool for understanding activated sludge population dynamics and community stability.

    Science.gov (United States)

    Mielczarek, A T; Saunders, A M; Larsen, P; Albertsen, M; Stevenson, M; Nielsen, J L; Nielsen, P H

    2013-01-01

    Since 2006 more than 50 Danish full-scale wastewater treatment plants with nutrient removal have been investigated in a project called 'The Microbial Database for Danish Activated Sludge Wastewater Treatment Plants with Nutrient Removal (MiDas-DK)'. Comprehensive sets of samples have been collected, analyzed and associated with extensive operational data from the plants. The community composition was analyzed by quantitative fluorescence in situ hybridization (FISH) supported by 16S rRNA amplicon sequencing and deep metagenomics. MiDas-DK has been a powerful tool to study the complex activated sludge ecosystems, and, besides many scientific articles on fundamental issues on mixed communities encompassing nitrifiers, denitrifiers, bacteria involved in P-removal, hydrolysis, fermentation, and foaming, the project has provided results that can be used to optimize the operation of full-scale plants and carry out trouble-shooting. A core microbial community has been defined comprising the majority of microorganisms present in the plants. Time series have been established, providing an overview of temporal variations in the different plants. Interestingly, although most microorganisms were present in all plants, there seemed to be plant-specific factors that controlled the population composition thereby keeping it unique in each plant over time. Statistical analyses of FISH and operational data revealed some correlations, but less than expected. MiDas-DK (www.midasdk.dk) will continue over the next years and we hope the approach can inspire others to make similar projects in other parts of the world to get a more comprehensive understanding of microbial communities in wastewater engineering.

  15. Denitrifying metabolism of the methylotrophic marine bacterium Methylophaga nitratireducenticrescens strain JAM1.

    Science.gov (United States)

    Mauffrey, Florian; Cucaita, Alexandra; Constant, Philippe; Villemur, Richard

    2017-01-01

    Methylophaga nitratireducenticrescens strain JAM1 is a methylotrophic, marine bacterium that was isolated from a denitrification reactor treating a closed-circuit seawater aquarium. It can sustain growth under anoxic conditions by reducing nitrate ([Formula: see text]) to nitrite ([Formula: see text]). These physiological traits are attributed to gene clusters that encode two dissimilatory nitrate reductases (Nar). Strain JAM1 also contains gene clusters encoding two nitric oxide (NO) reductases and one nitrous oxide (N 2 O) reductase, suggesting that NO and N 2 O can be reduced by strain JAM1. Here we characterized further the denitrifying activities of M. nitratireducenticrescens JAM1. Series of oxic and anoxic cultures of strain JAM1 were performed with N 2 O, [Formula: see text] or sodium nitroprusside, and growth and N 2 O, [Formula: see text], [Formula: see text] and N 2 concentrations were measured. Ammonium ([Formula: see text])-free cultures were also tested to assess the dynamics of N 2 O, [Formula: see text] and [Formula: see text]. Isotopic labeling of N 2 O was performed in 15 NH 4 + -amended cultures. Cultures with the JAM1Δ narG1narG2 double mutant were performed to assess the involvement of the Nar systems on N 2 O production. Finally, RT-qPCR was used to measure the gene expression levels of the denitrification genes cytochrome bc -type nitric oxide reductase ( cnorB1 and cnorB2 ) and nitrous oxide reductase ( nosZ ), and also nnrS and norR that encode NO-sensitive regulators. Strain JAM1 can reduce NO to N 2 O and N 2 O to N 2 and can sustain growth under anoxic conditions by reducing N 2 O as the sole electron acceptor. Although strain JAM1 lacks a gene encoding a dissimilatory [Formula: see text] reductase, [Formula: see text]-amended cultures produce N 2 O, representing up to 6% of the N-input. [Formula: see text] was shown to be the key intermediate of this production process. Upregulation in the expression of c norB1 , cnorB2, nnrS and nor

  16. Do freshwater macrophytes influence the community structure of ammonia-oxidizing and denitrifying bacteria in the rhizospere?

    DEFF Research Database (Denmark)

    Herrmann, Martina; Schramm, Andreas

    2006-01-01

    to unvegetated sediment, especially with respect to the availability of oxygen, organic carbon, and inorganic nitrogen. We hypothesize that macrophyte species create specific niches for ammonia oxidizing and nitrate-reducing bacteria in their rhizosphere, leading to plant-dependant differences in abundance...... dortmanna have been shown to release oxygen from their roots and to stimulate nitrification and coupled nitrification-denitrification in the rhizosphere. Together with the excretion of root exudates, this effect leads to strongly modified microenvironments at the root surface and in the rhizosphere compared......-denitrification using the 15N isotope pairing technique. Ammonia-oxidizing and nitrate-reducing populations are analyzed based on the ammonia monooxygenase gene (amoA) and the nitrate reductase gene (narG) as functional markers. Preliminary data indicate that there in fact exist differences in the community composition...

  17. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    OpenAIRE

    Ramirez, Miguel; Obrzydowski, Jennifer; Ayers, Mary; Virparia, Sonia; Wang, Meijing; Stefan, Kurtis; Linchangco, Richard; Castignetti, Domenic

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH)–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a g...

  18. Receding Water Line and Interspecific Competition Determines Plant Community Composition and Diversity in Wetlands in Beijing

    Science.gov (United States)

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity

  19. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities.

    Science.gov (United States)

    Zaller, Johann G; Parth, Myriam; Szunyogh, Ilona; Semmelrock, Ines; Sochurek, Susanne; Pinheiro, Marcia; Frank, Thomas; Drapela, Thomas

    2013-05-13

    Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms' specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms containing more plant

  20. Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles

    Directory of Open Access Journals (Sweden)

    Maaike evan Agtmaal

    2015-07-01

    Full Text Available There is increasing evidence that microbial volatiles (VOCs play an important role in natural suppression of soil-borne diseases, but little is known on the factors that influence production of suppressing VOCs. In the current study we examined whether a stress-induced change in soil microbial community composition would affect the production by soils of VOCs suppressing the plant-pathogenic oomycete Pythium. Using pyrosequencing of 16S ribosomal gene fragments we compared the composition of bacterial communities in sandy soils that had been exposed to anaerobic disinfestation (AD, a treatment used to kill harmful soil organisms, with the composition in untreated soils. Three months after the AD treatment had been finished, there was still a clear legacy effect of the former anaerobic stress on bacterial community composition with a strong increase in relative abundance of the phylum Bacteroidetes and a significant decrease of the phyla Acidobacteria, Planctomycetes, Nitrospirae, Chloroflexi and Chlorobi. This change in bacterial community composition coincided with loss of production of Pythium suppressing soil volatiles (VOCs and of suppression of Pythium impacts on Hyacinth root development. One year later, the composition of the bacterial community in the AD soils was reflecting that of the untreated soils. In addition, both production of Pythium-suppressing VOCs and suppression of Pythium in Hyacinth bioassays had returned to the levels of the untreated soil. GC/MS analysis identified several VOCs, among which compounds known to be antifungal, that were produced in the untreated soils but not in the AD soils. These compounds were again produced 15 months after the AD treatment. Our data indicate that soils exposed to a drastic stress can temporarily lose pathogen suppressive characteristics and that both loss and return of these suppressive characteristics coincides with shifts in the soil bacterial community composition. Our data are

  1. Urban-development-induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing

    Science.gov (United States)

    Yan, Bing; Li, Junsheng; Xiao, Nengwen; Qi, Yue; Fu, Gang; Liu, Gaohui; Qiao, Mengping

    2016-12-01

    Numerous studies have implicated urbanization as a major cause of loss of biodiversity. Most of them have focused on plants and animals, even though soil microorganisms make up a large proportion of that biodiversity. However, it is unclear how the soil bacterial community is affected by urban development. Here, paired-end Illumina sequencing of the 16 S rRNA gene at V4 region was performed to study the soil microbial community across Beijing’s built-up area. Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Gemmatimonadetes, Verrucomicrobia, Planctomycetes, and Chloroflexi were the dominant phyla in all samples, but the relative abundance of these phyla differed significantly across these concentric zones. The diversity and composition of the soil bacterial community were found to be closely correlated with soil pH. Variance partitioning analysis suggested that urban ring roads contributed 5.95% of the bacterial community variation, and soil environmental factors explained 17.65% of the variation. The results of the current work indicate that urban development can alter the composition and diversity of the soil microbial community, and showed pH to be a key factor in the shaping of the composition of the soil bacterial community. Urban development did have a strong impact on the bacterial community of urban soil in Beijing.

  2. Progressive biogeochemical transformation of placer gold particles drives compositional changes in associated biofilm communities.

    Science.gov (United States)

    Rea, Maria Angelica; Standish, Christopher D; Shuster, Jeremiah; Bissett, Andrew; Reith, Frank

    2018-05-03

    Biofilms on placer gold (Au)-particle surfaces drive Au solubilization and re-concentration thereby progressively transforming the particles. Gold solubilization induces Au-toxicity; however, Au-detoxifying community members ameliorates Au-toxicity by precipitating soluble Au to metallic Au. We hypothesize that Au-dissolution and re-concentration (precipitation) places selective pressures on associated microbial communities, leading to compositional changes and subsequent Au-particle transformation. We analyzed Au-particles from eight United Kingdom sites using next generation sequencing, electron microscopy and micro-analyses. Gold particles contained biofilms composed of prokaryotic cells and extracellular polymeric substances intermixed with (bio)minerals. Across all sites communities were dominated by Proteobacteria (689, 97% Operational Taxonomic Units, 59.3% of total reads), with β-Proteobacteria being the most abundant. A wide range of Au-morphotypes including nanoparticles, micro-crystals, sheet-like Au and secondary rims, indicated that dissolution and re-precipitation occurred, and from this transformation indices were calculated. Multivariate statistical analyses showed a significant relationship between the extent of Au-particle transformation and biofilm community composition, with putative metal-resistant Au-cycling taxa linked to progressive Au transformation. These included the genera Pseudomonas, Leptothrix and Acinetobacter. Additionally, putative exoelectrogenic genera Rhodoferax and Geobacter were highly abundant. In conclusion, biogeochemical Au-cycling and Au-particle transformation occurred at all sites and exerted a strong influence on biofilm community composition.

  3. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    Science.gov (United States)

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  4. Fire effects on the composition of a bird community in an amazonian Savanna (Brazil

    Directory of Open Access Journals (Sweden)

    R. Cintra

    Full Text Available The effects of fire on the composition of a bird community were investigated in an Amazonian savanna near Alter-do-Chão, Pará (Brazil. Mist-net captures and visual counts were used to assess species richness and bird abundance pre- and post-fire in an approximately 20 ha area. Visual counts along transects were used to survey birds in an approximately 2000 ha area in a nearby area. Results using the same method of ordination analysis (multidimensional scaling showed significant effects of fire in the 20 ha and 2000 ha areas and strongly suggest direct effects on bird community composition. However, the effects were different at different spatial scales and/or in different years, indicating that the effects of fire vary spatially and/or temporally. Bird community composition pre-fire was significantly different from that found post-fire. Using multiple regression analysis it was found that the numbers of burned and unburned trees were not significantly related to either bird species richness or bird abundance. Two months after the fire, neither bird species richness nor bird abundance was significantly related to the number of flowering trees (Lafoensia pacari or fruiting trees (Byrsonima crassifolia. Since fire is an annual event in Alter-do-Chão and is becoming frequent in the entire Amazon, bird community composition in affected areas could be constantly changing in time and space.

  5. Co-composting of municipal solid waste mixed with matured sewage sludge: The relationship between N2O emissions and denitrifying gene abundance.

    Science.gov (United States)

    Bian, Rongxing; Sun, Yingjie; Li, Weihua; Ma, Qiang; Chai, Xiaoli

    2017-12-01

    Aerobic composting is an alternative measure to the disposal of municipal solid waste (MSW). However, it produces nitrous oxide (N 2 O), a highly potent greenhouse via microbial nitrification and denitrification. In this study, the effects of matured sewage sludge (MSS) amendment on N 2 O emissions and the inter-relationships between N 2 O emissions and the abundance of denitrifying bacteria were investigated during aerobic composting of MSW. The results demonstrated that MSW composting with MSS amendments (C1, and C2, with a MSW to MSS ratio of 2:1 and 4:1, (v/v), respectively) significantly increased N 2 O emissions during the initial stage, yet contributed to the mitigation of N 2 O emissions during the cooling and maturation stage. MSS amended composting emitted a total of 18.4%-25.7% less N 2 O than the control treatment without MSS amendment (CK). Matured sewage sludge amendment also significantly altered the abundance of denitrifying bacteria. The quantification of denitrifying functional genes revealed that the N 2 O emission rate had a significant positive correlation with the abundance of the nirS, nirK genes in both treatments with MSS amendment. The nosZ/(nirS + nirK) ratio could be a good indicator for predicting N 2 O emissions. The higher N 2 O emission rate during the initial stage of composting mixed with MSS was characterized by lower nosZ/(nirS + nirK) ratios, compared to CK treatment. Higher ratios of nosZ/(nirS + nirK) were measured during the cooling and maturation stage in treatments with MSS which resulted in a reduction of the N 2 O emissions. These results demonstrated that MSS amendment could be a valid strategy for mitigating N 2 O emissions during MSW composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors.

    Science.gov (United States)

    Wang, Yayi; Zhou, Shuai; Ye, Liu; Wang, Hong; Stephenson, Tom; Jiang, Xuxin

    2014-12-15

    Nitrite-based phosphorus (P) removal could be useful for innovative biological P removal systems where energy and carbon savings are a priority. However, using nitrite for denitrification may cause nitrous oxide (N2O) accumulation and emissions. A denitrifying nitrite-fed P removal system [Formula: see text] was successfully set up in a sequencing batch reactor (SBR) and was run for 210 days. The maximum pulse addition of nitrite to [Formula: see text] was 11 mg NO2(-)-N/L in the bulk, and a total of 34 mg NO2(-)-N/L of nitrite was added over three additions. Fluorescent in situ hybridization results indicated that the P-accumulating organisms (PAOs) abundance was 75 ± 1.1% in [Formula: see text] , approximately 13.6% higher than that in a parallel P removal SBR using nitrate [Formula: see text] . Type II Accumulibacter (PAOII) (unable to use nitrate as an electron acceptor) was the main PAOs species in [Formula: see text] , contributing 72% to total PAOs. Compared with [Formula: see text] , [Formula: see text] biomass had enhanced nitrite/free nitrous acid (FNA) endurance, as demonstrated by its higher nitrite denitrification and P uptake rates. N2O accumulated temporarily in [Formula: see text] after each pulse of nitrite. Peak N2O concentrations in the bulk for [Formula: see text] were generally 6-11 times higher than that in [Formula: see text] ; these accumulations were rapidly denitrified to nitrogen gases. N2O concentration increased rapidly in nitrate-cultivated biomass when 5 or 10 mg NO2(-)-N/L per pulse was added. Whereas, N2O accumulation did not occur in nitrite-cultivated biomass until up to 30 mg NO2(-)-N/L per pulse was added. Long-term acclimation to nitrite and pulse addition of nitrite in [Formula: see text] reduced the risk of nitrite accumulation, and mitigated N2O accumulation and emissions from denitrifying P removal by nitrite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, Shahin; Hasan, Masitah [Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Aroua, Mohamed Kheireddine [Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)], E-mail: mk_aroua@um.edu.my

    2009-03-15

    Acclimation of autohydrogenotrophic denitrifying bacteria using inorganic carbon source (CO{sub 2} and bicarbonate) and hydrogen gas as electron donor was performed in this study. In this regard, activated sludge was used as the seed source and sequencing batch reactor (SBR) technique was applied for accomplishing the acclimatization. Three distinct strategies in feeding of carbon sources were applied: (I) continuous sparging of CO{sub 2}, (II) bicarbonate plus continuous sparging of CO{sub 2}, and (III) only bicarbonate. The pH-reducing nature of CO{sub 2} showed an unfavorable impact on denitrification rate; however bicarbonate resulted in a buffered environment in the mixed liquor and provided a suitable mean to maintain the pH in the desirable range of 7-8.2. As a result, bicarbonate as the only carbon source showed a faster adaptation, while carbon dioxide as the only carbon source as well as a complementary carbon source added to bicarbonate resulted in longer acclimation period. Adapted hydrogenotrophic denitrifying bacteria, using bicarbonate and hydrogen gas in the aforementioned pH range, caused denitrification at a rate of 13.33 mg NO{sub 3}{sup -}-N/g MLVSS/h for degrading 20 and 30 mg NO{sub 3}{sup -}-N/L and 9.09 mg NO{sub 3}{sup -}-N/g MLVSS/h for degrading 50 mg NO{sub 3}{sup -}-N/L.

  8. Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale.

    Directory of Open Access Journals (Sweden)

    Nicolas Chemidlin Prévost-Bouré

    Full Text Available Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2: i to examine their spatial structuring; ii to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landescommunities' composition turnovers. The relative importance of processes and filters was assessed by distance-based redundancy analysis. This study demonstrates significant community composition turnover rates for soil bacteria and fungi, which were dependent on the region. Bacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at

  9. Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale.

    Science.gov (United States)

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P A; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landescommunities' composition turnovers. The relative importance of processes and filters was assessed by distance-based redundancy analysis. This study demonstrates significant community composition turnover rates for soil bacteria and fungi, which were dependent on the region. Bacterial and fungal community composition turnovers were mainly driven by environmental selection explaining from 10% to 20% of community composition variations, but spatial variables also explained 3% to 9% of total variance. These variables highlighted significant spatial autocorrelation of both communities unexplained by the environmental variables measured and could partly be explained by dispersal limitations. Although the identified filters and their hierarchy were dependent on the region and organism, selection was systematically based on a common group of environmental variables: pH, trophic resources, texture and land use. Spatial autocorrelation was also important at coarse (80 to 120 km radius) and/or medium (40 to 65 km radius) spatial scales, suggesting dispersal limitations at these scales.

  10. Structure and Composition of Leachfield Bacterial Communities: Role of Soil Texture, Depth and Septic Tank Effluent Inputs

    Directory of Open Access Journals (Sweden)

    Janet A. Atoyan

    2012-09-01

    Full Text Available Although groundwater quality depends on microbial processes in the soil treatment area (STA of onsite wastewater treatment systems (OWTS, our understanding of the development of these microbial communities is limited. We examined the bacterial communities of sand, sandy loam, and clay STAs at different depths in response to septic tank effluent (STE addition using mesocosms. Terminal restriction fragment length polymorphism (TRFLP analysis was used to compare the bacterial community structure and composition of STE, native soil prior to STE addition (UNX and soil exposed to STE (EXP. Principal component analysis separated communities with depth in sand but not in sandy loam or clay. Indices of richness, diversity, and evenness followed the order: sandy loam > sand > clay. Analysis of TRF peaks indicated that STE contributed least to the composition of STA bacterial communities (5%–16%, followed by UNX soil (18%–48%, with the highest proportion of the community made up of TRFs not detected previously in either UNX or STE (50%–82% for all three soils. Soil type and depth can have a marked effect on the structure and composition of STA bacterial communities, and on the relative contribution of native soil and STE to these communities.

  11. Soil biochar amendment shapes the composition of N_2O-reducing microbial communities

    International Nuclear Information System (INIS)

    Harter, Johannes; Weigold, Pascal; El-Hadidi, Mohamed; Huson, Daniel H.; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N_2O) emissions. N_2O is a potent greenhouse gas. The main sources of N_2O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N_2O emission mitigation and the abundance and activity of N_2O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described ‘atypical’ nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N_2O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N_2O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N_2O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling. - Highlights: • Biochar promoted anaerobic, alkalinity-adapted, and polymer-degrading microbial taxa. • Biochar fostered the development of distinct N_2O-reducing microbial taxa. • Taxonomic shifts among N_2O-reducing microbes might explain lower N_2O emissions.

  12. Denitrifying metabolism of the methylotrophic marine bacterium Methylophaga nitratireducenticrescens strain JAM1

    Directory of Open Access Journals (Sweden)

    Florian Mauffrey

    2017-11-01

    Full Text Available Background Methylophaga nitratireducenticrescens strain JAM1 is a methylotrophic, marine bacterium that was isolated from a denitrification reactor treating a closed-circuit seawater aquarium. It can sustain growth under anoxic conditions by reducing nitrate ( ${\\mathrm{NO}}_{3}^{-}$ NO 3 − to nitrite ( ${\\mathrm{NO}}_{2}^{-}$ NO 2 − . These physiological traits are attributed to gene clusters that encode two dissimilatory nitrate reductases (Nar. Strain JAM1 also contains gene clusters encoding two nitric oxide (NO reductases and one nitrous oxide (N2O reductase, suggesting that NO and N2O can be reduced by strain JAM1. Here we characterized further the denitrifying activities of M. nitratireducenticrescens JAM1. Methods Series of oxic and anoxic cultures of strain JAM1 were performed with N2O, ${\\mathrm{NO}}_{3}^{-}$ NO 3 − or sodium nitroprusside, and growth and N2O, ${\\mathrm{NO}}_{3}^{-}$ NO 3 − , ${\\mathrm{NO}}_{2}^{-}$ NO 2 − and N2 concentrations were measured. Ammonium ( ${\\mathrm{NH}}_{4}^{+}$ NH 4 + -free cultures were also tested to assess the dynamics of N2O, ${\\mathrm{NO}}_{3}^{-}$ NO 3 − and ${\\mathrm{NO}}_{2}^{-}$ NO 2 − . Isotopic labeling of N2O was performed in 15NH4+-amended cultures. Cultures with the JAM1ΔnarG1narG2 double mutant were performed to assess the involvement of the Nar systems on N2O production. Finally, RT-qPCR was used to measure the gene expression levels of the denitrification genes cytochrome bc-type nitric oxide reductase (cnorB1 and cnorB2 and nitrous oxide reductase (nosZ, and also nnrS and norR that encode NO-sensitive regulators. Results Strain JAM1 can reduce NO to N2O and N2O to N2 and can sustain growth under anoxic conditions by reducing N2O as the sole electron acceptor. Although strain JAM1 lacks a gene encoding a dissimilatory ${\\mathrm{NO}}_{2}^{-}$ NO 2 − reductase, ${\\mathrm{NO}}_{3}^{-}$ NO 3 − -amended cultures produce N2O, representing up to 6% of the N

  13. Microbial ecology of denitrification in biological wastewater treatment.

    Science.gov (United States)

    Lu, Huijie; Chandran, Kartik; Stensel, David

    2014-11-01

    Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of soil properties and hydrology on Archaeal community composition in three temperate grasslands on peat

    DEFF Research Database (Denmark)

    Görres, Carolyn-Monika; Conrad, Ralf; Petersen, Søren O

    2013-01-01

    Grasslands established on drained peat soils are regarded as negligible methane (CH4) sources; however, they can still exhibit considerable soil CH4 dynamics. We investigated archaeal community composition in two different fen peat soils and one bog peat soil under permanent grassland in Denmark........ Overall, there seemed to be a significant coupling between peat type and archaeal community composition, with local hydrology modifying the strength of this coupling....

  15. Carbon dioxide and submersed macrophytes in lakes: linking functional ecology to community composition.

    Science.gov (United States)

    Titus, John E; Pagano, Angela M

    2017-12-01

    Evaluating plant community response to atmospheric CO 2 rise is critical to predicting ecosystem level change. Freshwater lakes offer a model system for examining CO 2 effects as submersed macrophyte species differ greatly in their growth responses to CO 2 enrichment, and free CO 2 concentrations among these habitats show a wide range of natural, spatial variation. We determined free CO 2 concentrations in the water column and sediment porewater in littoral zones with pH macrophyte communities coupled with greenhouse-derived growth responses to CO 2 enrichment of constituent species to test two hypotheses: (1) CCRI, which is higher for communities dominated by species with greater growth responses to CO 2 enrichment, is positively correlated to free [CO 2 ] in the water column, and (2) in natural communities, the percent of sediment CO 2 -using species, which are relatively unresponsive to CO 2 enrichment, is negatively correlated to free [CO 2 ]. A significant positive correlation (P = 0.003) between our physiologically based CCRI and the concentration of free CO 2 in the water column supported our primary hypothesis that sites with higher levels of free CO 2 are dominated by species with greater growth responses to CO 2 enrichment. Our CCRI is also highly significantly correlated (P macrophyte community composition. Further, we demonstrate the utility of a physiologically-based index of community composition, our CCRI, as an ecologically valid measure of community response to CO 2 . © 2017 by the Ecological Society of America.

  16. Spatial patterns and links between microbial community composition and function in cyanobacterial mats

    KAUST Repository

    Alnajjar, Mohammad Ahmad; Ramette, Alban; Kü hl, Michael; Hamza, Waleed; Klatt, Judith M.; Polerecky, Lubos

    2014-01-01

    We imaged reflectance and variable fluorescence in 25 cyanobacterial mats from four distant sites around the globe to assess, at different scales of resolution, spatial variabilities in the physiological parameters characterizing their photosynthetic capacity, including the absorptivity by chlorophyll a (Achl), maximum quantum yield of photosynthesis (Ymax), and light acclimation irradiance (Ik). Generally, these parameters significantly varied within individual mats on a sub-millimeter scale, with about 2-fold higher variability in the vertical than in the horizontal direction. The average vertical profiles of Ymax and Ik decreased with depth in the mat, while Achl exhibited a sub-surface maximum. The within-mat variability was comparable to, but often larger than, the between-sites variability, whereas the within-site variabilities (i.e., between samples from the same site) were generally lowest. When compared based on averaged values of their photosynthetic parameters, mats clustered according to their site of origin. Similar clustering was found when the community composition of the mats' cyanobacterial layers were compared by automated ribosomal intergenic spacer analysis (ARISA), indicating a significant link between the microbial community composition and function. Although this link is likely the result of community adaptation to the prevailing site-specific environmental conditions, our present data is insufficient to identify the main factors determining these patterns. Nevertheless, this study demonstrates that the spatial variability in the photosynthetic capacity and light acclimation of benthic phototrophic microbial communities is at least as large on a sub-millimeter scale as it is on a global scale, and suggests that this pattern of variability scaling is similar for the microbial community composition. © 2014 Al-Najjar, Ramette, Kühl, Hamza, Klatt and Polerecky.

  17. Spatial patterns and links between microbial community composition and function in cyanobacterial mats

    KAUST Repository

    Alnajjar, Mohammad Ahmad

    2014-08-06

    We imaged reflectance and variable fluorescence in 25 cyanobacterial mats from four distant sites around the globe to assess, at different scales of resolution, spatial variabilities in the physiological parameters characterizing their photosynthetic capacity, including the absorptivity by chlorophyll a (Achl), maximum quantum yield of photosynthesis (Ymax), and light acclimation irradiance (Ik). Generally, these parameters significantly varied within individual mats on a sub-millimeter scale, with about 2-fold higher variability in the vertical than in the horizontal direction. The average vertical profiles of Ymax and Ik decreased with depth in the mat, while Achl exhibited a sub-surface maximum. The within-mat variability was comparable to, but often larger than, the between-sites variability, whereas the within-site variabilities (i.e., between samples from the same site) were generally lowest. When compared based on averaged values of their photosynthetic parameters, mats clustered according to their site of origin. Similar clustering was found when the community composition of the mats\\' cyanobacterial layers were compared by automated ribosomal intergenic spacer analysis (ARISA), indicating a significant link between the microbial community composition and function. Although this link is likely the result of community adaptation to the prevailing site-specific environmental conditions, our present data is insufficient to identify the main factors determining these patterns. Nevertheless, this study demonstrates that the spatial variability in the photosynthetic capacity and light acclimation of benthic phototrophic microbial communities is at least as large on a sub-millimeter scale as it is on a global scale, and suggests that this pattern of variability scaling is similar for the microbial community composition. © 2014 Al-Najjar, Ramette, Kühl, Hamza, Klatt and Polerecky.

  18. Plankton community composition and vertical migration during polar night in Kongsfjorden

    DEFF Research Database (Denmark)

    Grenvald, Julie Cornelius; Callesen, Trine Abraham; Daase, Malin

    2016-01-01

    characterize the plankton community composition during the polar night using water samplers and zooplankton net samples (50, 64, 200, 1500 lm), supplemented by acoustics (ADCPs, 300 kHz), to address a previously unresolved question–which species of zooplankton perform diel vertical migration during the polar...

  19. Abundance, diversity and community composition of free-living protozoa on vegetable sprouts.

    Science.gov (United States)

    Chavatte, N; Lambrecht, E; Van Damme, I; Sabbe, K; Houf, K

    2016-05-01

    Interactions with free-living protozoa (FLP) have been implicated in the persistence of pathogenic bacteria on food products. In order to assess the potential involvement of FLP in this contamination, detailed knowledge on their occurrence, abundance and diversity on food products is required. In the present study, enrichment and cultivation methods were used to inventory and quantify FLP on eight types of commercial vegetable sprouts (alfalfa, beetroot, cress, green pea, leek, mung bean, red cabbage and rosabi). In parallel, total aerobic bacteria and Escherichia coli counts were performed. The vegetable sprouts harbored diverse communities of FLP, with Tetrahymena (ciliate), Bodo saltans and cercomonads (flagellates), and Acanthamoeba and Vannella (amoebae) as the dominant taxa. Protozoan community composition and abundance significantly differed between the sprout types. Beetroot harbored the most abundant and diverse FLP communities, with many unique species such as Korotnevella sp., Vannella sp., Chilodonella sp., Podophrya sp. and Sphaerophrya sp. In contrast, mung bean sprouts were species-poor and had low FLP numbers. Sampling month and company had no significant influence, suggesting that seasonal and local factors are of minor importance. Likewise, no significant relationship between protozoan community composition and bacterial load was observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Different Land Use Intensities in Grassland Ecosystems Drive Ecology of Microbial Communities Involved in Nitrogen Turnover in Soil

    OpenAIRE

    Meyer, Annabel; Focks, Andreas; Radl, Viviane; Keil, Daniel; Welzl, Gerhard; Sch?ning, Ingo; Boch, Steffen; Marhan, Sven; Kandeler, Ellen; Schloter, Michael

    2013-01-01

    Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions,...

  1. Effects of Bubble-Mediated Processes on Nitrous Oxide Dynamics in Denitrifying Bioreactors

    Science.gov (United States)

    McGuire, P. M.; Falk, L. M.; Reid, M. C.

    2017-12-01

    To mitigate groundwater and surface water impacts of reactive nitrogen (N), agricultural and stormwater management practices can employ denitrifying bioreactors (DNBs) as low-cost solutions for enhancing N removal. Due to the variable nature of hydrologic events, DNBs experience dynamic flows which can impact physical and biological processes within the reactors and affect performance. A particular concern is incomplete denitrification, which can release the potent greenhouse gas nitrous oxide (N2O) to the atmosphere. This study aims to provide insight into the effects of varying hydrologic conditions upon the operation of DNBs by disentangling abiotic and biotic controls on denitrification and N2O dynamics within a laboratory-scale bioreactor. We hypothesize that under transient hydrologic flows, rising water levels lead to air entrapment and bubble formation within the DNB porous media. Mass transfer of oxygen (O2) between trapped gas and liquid phases creates aerobic microenvironments that can inhibit N2O reductase (NosZ) enzymes and lead to N2O accumulation. These bubbles also retard N2O transport and make N2O unavailable for biological reduction, further enhancing atmospheric fluxes when water levels fall. The laboratory-scale DNB permits measurements of longitudinal and vertical profiles of dissolved constituents as well as trace gas concentrations in the reactor headspace. We describe a set of experiments quantifying denitrification pathway biokinetics under steady-state and transient hydrologic conditions and evaluate the role of bubble-mediated processes in enhancing N2O accumulation and fluxes. We use sulfur hexafluoride and helium as dissolved gas tracers to examine the impact of bubble entrapment upon retarded gas transport and enhanced trace gas fluxes. A planar optode sensor within the bioreactor provides near-continuous 2-D profiles of dissolved O2 within the bioreactor and allows for identification of aerobic microenvironments. We use qPCR to

  2. Enterotypes in the landscape of gut microbial community composition

    DEFF Research Database (Denmark)

    Costea, Paul I.; Hildebrand, Falk; Manimozhiyan, Arumugam

    2017-01-01

    Population stratification is a useful approach for a better understanding of complex biological problems in human health and wellbeing. The proposal that such stratification applies to the human gut microbiome, in the form of distinct community composition types termed enterotypes, has been met...... with both excitement and controversy. In view of accumulated data and re-analyses since the original work, we revisit the concept of enterotypes, discuss different methods of dividing up the landscape of possible microbiome configurations, and put these concepts into functional, ecological and medical...... contexts. As enterotypes are of use in describing the gut microbial community landscape and may become relevant in clinical practice, we aim to reconcile differing views and encourage a balanced application of the concept....

  3. Organic Matter Loading Modifies the Microbial Community Responsible for Nitrogen Loss in Estuarine Sediments.

    Science.gov (United States)

    Babbin, Andrew R; Jayakumar, Amal; Ward, Bess B

    2016-04-01

    Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using (15)N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more, and the fraction of nitrogen loss attributed to anammox slightly reduced, by the higher organic matter addition. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community composition as determined using a nirS microarray, indicating that the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.

  4. Distribution, Community Composition, and Potential Metabolic Activity of Bacterioplankton in an Urbanized Mediterranean Sea Coastal Zone.

    Science.gov (United States)

    Richa, Kumari; Balestra, Cecilia; Piredda, Roberta; Benes, Vladimir; Borra, Marco; Passarelli, Augusto; Margiotta, Francesca; Saggiomo, Maria; Biffali, Elio; Sanges, Remo; Scanlan, David J; Casotti, Raffaella

    2017-09-01

    Bacterioplankton are fundamental components of marine ecosystems and influence the entire biosphere by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in knowledge about their diversity and specific activities, as well as environmental factors that shape their community composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline of the Gulf of Naples (GON; Italy) were investigated using flow cytometry coupled with high-throughput sequencing of the 16S rRNA gene. Heterotrophic bacteria numerically dominated the bacterioplankton and comprised mainly Alphaproteobacteria , Gammaproteobacteria , and Bacteroidetes Distinct communities occupied river-influenced, coastal, and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric (UniFrac), linear discriminant analysis effect size (LEfSe), and multivariate analyses. The heterogeneity in diversity and community composition was mainly due to salinity and changes in environmental conditions across sites, as defined by nutrient and chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a large proportion (92%) of rare taxa (here defined as operational taxonomic units [OTUs] accounting for coastal zones is of critical importance, considering that these areas are highly productive and anthropogenically impacted. Their richness and evenness, as well as their potential activity, are very important to assess ecosystem health and functioning. Here, we investigated bacterial distribution, community composition, and potential metabolic activity in the GON, which is an ideal test site due to its heterogeneous environment characterized by a complex hydrodynamics and terrestrial inputs of varied quantities and quality. Our study demonstrates that bacterioplankton communities in this region are highly diverse and strongly regulated by a combination of different environmental

  5. How microbial community composition regulates coral disease development.

    Directory of Open Access Journals (Sweden)

    Justin Mao-Jones

    2010-03-01

    Full Text Available Reef coral cover is in rapid decline worldwide, in part due to bleaching (expulsion of photosynthetic symbionts and outbreaks of infectious disease. One important factor associated with bleaching and in disease transmission is a shift in the composition of the microbial community in the mucus layer surrounding the coral: the resident microbial community-which is critical to the healthy functioning of the coral holobiont-is replaced by pathogenic microbes, often species of Vibrio. In this paper we develop computational models for microbial community dynamics in the mucus layer in order to understand how the surface microbial community responds to changes in environmental conditions, and under what circumstances it becomes vulnerable to overgrowth by pathogens. Some of our model's assumptions and parameter values are based on Vibrio spp. as a model system for other established and emerging coral pathogens. We find that the pattern of interactions in the surface microbial community facilitates the existence of alternate stable states, one dominated by antibiotic-producing beneficial microbes and the other pathogen-dominated. A shift to pathogen dominance under transient stressful conditions, such as a brief warming spell, may persist long after environmental conditions have returned to normal. This prediction is consistent with experimental findings that antibiotic properties of Acropora palmata mucus did not return to normal long after temperatures had fallen. Long-term loss of antibiotic activity eliminates a critical component in coral defense against disease, giving pathogens an extended opportunity to infect and spread within the host, elevating the risk of coral bleaching, disease, and mortality.

  6. How microbial community composition regulates coral disease development.

    Science.gov (United States)

    Mao-Jones, Justin; Ritchie, Kim B; Jones, Laura E; Ellner, Stephen P

    2010-03-30

    Reef coral cover is in rapid decline worldwide, in part due to bleaching (expulsion of photosynthetic symbionts) and outbreaks of infectious disease. One important factor associated with bleaching and in disease transmission is a shift in the composition of the microbial community in the mucus layer surrounding the coral: the resident microbial community-which is critical to the healthy functioning of the coral holobiont-is replaced by pathogenic microbes, often species of Vibrio. In this paper we develop computational models for microbial community dynamics in the mucus layer in order to understand how the surface microbial community responds to changes in environmental conditions, and under what circumstances it becomes vulnerable to overgrowth by pathogens. Some of our model's assumptions and parameter values are based on Vibrio spp. as a model system for other established and emerging coral pathogens. We find that the pattern of interactions in the surface microbial community facilitates the existence of alternate stable states, one dominated by antibiotic-producing beneficial microbes and the other pathogen-dominated. A shift to pathogen dominance under transient stressful conditions, such as a brief warming spell, may persist long after environmental conditions have returned to normal. This prediction is consistent with experimental findings that antibiotic properties of Acropora palmata mucus did not return to normal long after temperatures had fallen. Long-term loss of antibiotic activity eliminates a critical component in coral defense against disease, giving pathogens an extended opportunity to infect and spread within the host, elevating the risk of coral bleaching, disease, and mortality.

  7. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    Science.gov (United States)

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  8. Biofouling of reverse-osmosis membranes during tertiary wastewater desalination: microbial community composition.

    Science.gov (United States)

    Al Ashhab, Ashraf; Herzberg, Moshe; Gillor, Osnat

    2014-03-01

    Reverse-osmosis (RO) desalination is frequently used for the production of high-quality water from tertiary treated wastewater (TTWW). However, the RO desalination process is often hampered by biofouling, including membrane conditioning, microbial adhesion, and biofilm growth. The vast majority of biofilm exploration concentrated on the role of bacteria in biofouling neglecting additional microbial contributors, i.e., fungi and archaea. To better understand the RO biofouling process, bacterial, archaeal and fungal diversity was characterized in a laboratory-scale RO desalination plant exploring the TTWW (RO feed), the RO membrane and the RO feed tube biofilms. We sequenced 77,400 fragments of the ribosome small subunit-encoding gene (16S and 18S rRNA) to identify the microbial community members in these matrices. Our results suggest that the bacterial, archaeal but not fungal community significantly differ from the RO membrane biofouling layer to the feedwater and tube biofilm (P < 0.01). Moreover, the RO membrane supported a more diverse community compared to the communities monitored in the feedwater and the biofilm attached to the RO feedwater tube. The tube biofilm was dominated by Actinobacteria (91.2 ± 4.6%), while the Proteobacteria phylum dominated the feedwater and RO membrane (at relative abundance of 92.3 ± 4.4% and 71.5 ± 8.3%, respectively), albeit comprising different members. The archaea communities were dominated by Crenarchaeota (53.0 ± 6.9%, 32.5 ± 7.2% and 69%, respectively) and Euryarchaeota (43.3 ± 6.3%, 23.2 ± 4.8% and 24%, respectively) in all three matrices, though the communities' composition differed. But the fungal communities composition was similar in all matrices, dominated by Ascomycota (97.6 ± 2.7%). Our results suggest that the RO membrane is a selective surface, supporting unique bacterial, and to a lesser extent archaeal communities, yet it does not select for a fungal community. Copyright © 2013

  9. Metagenomic insights into evolution of heavy metal-contaminated groundwater microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, C.L.; Deng, Y.; Gentry, T.J.; Fields, M.W.; Wu, L.; Barua, S.; Barry, K.; Green-Tringe, S.; Watson, D.B.; He, Z.; Hazen, T.C.; Tiedje, J.M.; Rubin, E.M.; Zhou, J.

    2010-07-01

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents ({approx}50 years) has resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying {gamma}- and {beta}-proteobacterial populations. The resulting community is overabundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could have a key function in rapid response and adaptation to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.

  10. Do Honeybees Shape the Bacterial Community Composition in Floral Nectar?

    Science.gov (United States)

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers’ nectar, but not from those in the uncovered flowers’ nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves. PMID:23844027

  11. iDynoMiCS: next‐generation individual‐based modelling of biofilms

    DEFF Research Database (Denmark)

    Lardon, Laurent; Merkey, Brian; Martins, Sónia

    2011-01-01

    how environmentally fluctuating oxygen availability affects the diversity and composition of a community of denitrifying bacteria that induce the denitrification pathway under anoxic or low oxygen conditions. We tested the hypothesis that the existence of these diverse strategies of denitrification...... and higher at intermediate frequency of change. The highly modular nature of the new computational model made this case study straightforward to implement, and reflects the sort of novel studies that can easily be executed with the new model....

  12. Nitrate Removal Rates in Denitrifying Bioreactors During Storm Flows

    Science.gov (United States)

    Pluer, W.; Walter, T.

    2017-12-01

    Field denitrifying bioreactors are designed to reduce excess nitrate (NO3-) pollution in runoff from agricultural fields. Field bioreactors saturate organic matter to create conditions that facilitate microbial denitrification. Prior studies using steady flow in lab-scale bioreactors showed that a hydraulic retention time (HRT) between 4 and 10 hours was optimal for reducing NO3- loads. However, during storm-induced events, flow rate and actual HRT fluctuate. These fluctuations have the potential to disrupt the system in significant ways that are not captured by the idealized steady-flow HRT models. The goal of this study was to investigate removal rate during dynamic storm flows of variable rates and durations. Our results indicate that storm peak flow and duration were not significant controlling variables. Instead, we found high correlations (p=0.004) in average removal rates between bioreactors displaying a predominantly uniform flow pattern compared with bioreactors that exhibited preferential flow (24.4 and 21.4 g N m-3 d-1, respectively). This suggests that the internal flow patterns are a more significant driver of removal rate than external factors of the storm hydrograph. Designing for flow patterns in addition to theoretical HRT will facilitate complete mixing within the bioreactors. This will help maximize excess NO3- removal during large storm-induced runoff events.

  13. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing.

    Science.gov (United States)

    Hakkenberg, C R; Peet, R K; Urban, D L; Song, C

    2018-01-01

    In light of the need to operationalize the mapping of forest composition at landscape scales, this study uses multi-scale nested vegetation sampling in conjunction with LiDAR-hyperspectral remotely sensed data from the G-LiHT airborne sensor to map vascular plant compositional turnover in a compositionally and structurally complex North Carolina Piedmont forest. Reflecting a shift in emphasis from remotely sensing individual crowns to detecting aggregate optical-structural properties of forest stands, predictive maps reflect the composition of entire vascular plant communities, inclusive of those species smaller than the resolution of the remotely sensed imagery, intertwined with proximate taxa, or otherwise obscured from optical sensors by dense upper canopies. Stand-scale vascular plant composition is modeled as community continua: where discrete community-unit classes at different compositional resolutions provide interpretable context for continuous gradient maps that depict n-dimensional compositional complexity as a single, consistent RGB color combination. In total, derived remotely sensed predictors explain 71%, 54%, and 48% of the variation in the first three components of vascular plant composition, respectively. Among all remotely sensed environmental gradients, topography derived from LiDAR ground returns, forest structure estimated from LiDAR all returns, and morphological-biochemical traits determined from hyperspectral imagery each significantly correspond to the three primary axes of floristic composition in the study site. Results confirm the complementarity of LiDAR and hyperspectral sensors for modeling the environmental gradients constraining landscape turnover in vascular plant composition and hold promise for predictive mapping applications spanning local land management to global ecosystem modeling. © 2017 by the Ecological Society of America.

  14. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Phoebe Dreux Chappell

    2013-09-01

    Full Text Available Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a three-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a three-month-old Haida eddy remained largely (>80% similar over a two-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response.

  15. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant.

    Science.gov (United States)

    Lautenschlager, Karin; Hwang, Chiachi; Ling, Fangqiong; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Egli, Thomas; Hammes, Frederik

    2014-10-01

    Indigenous bacterial communities are essential for biofiltration processes in drinking water treatment systems. In this study, we examined the microbial community composition and abundance of three different biofilter types (rapid sand, granular activated carbon, and slow sand filters) and their respective effluents in a full-scale, multi-step treatment plant (Zürich, CH). Detailed analysis of organic carbon degradation underpinned biodegradation as the primary function of the biofilter biomass. The biomass was present in concentrations ranging between 2-5 × 10(15) cells/m(3) in all filters but was phylogenetically, enzymatically and metabolically diverse. Based on 16S rRNA gene-based 454 pyrosequencing analysis for microbial community composition, similar microbial taxa (predominantly Proteobacteria, Planctomycetes, Acidobacteria, Bacteriodetes, Nitrospira and Chloroflexi) were present in all biofilters and in their respective effluents, but the ratio of microbial taxa was different in each filter type. This change was also reflected in the cluster analysis, which revealed a change of 50-60% in microbial community composition between the different filter types. This study documents the direct influence of the filter biomass on the microbial community composition of the final drinking water, particularly when the water is distributed without post-disinfection. The results provide new insights on the complexity of indigenous bacteria colonizing drinking water systems, especially in different biofilters of a multi-step treatment plant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Shifts in the microbial community composition of Gulf Coast beaches following beach oiling.

    Directory of Open Access Journals (Sweden)

    Ryan J Newton

    Full Text Available Microorganisms associated with coastal sands serve as a natural biofilter, providing essential nutrient recycling in nearshore environments and acting to maintain coastal ecosystem health. Anthropogenic stressors often impact these ecosystems, but little is known about whether these disturbances can be identified through microbial community change. The blowout of the Macondo Prospect reservoir on April 20, 2010, which released oil hydrocarbons into the Gulf of Mexico, presented an opportunity to examine whether microbial community composition might provide a sensitive measure of ecosystem disturbance. Samples were collected on four occasions, beginning in mid-June, during initial beach oiling, until mid-November from surface sand and surf zone waters at seven beaches stretching from Bay St. Louis, MS to St. George Island, FL USA. Oil hydrocarbon measurements and NOAA shoreline assessments indicated little to no impact on the two most eastern beaches (controls. Sequence comparisons of bacterial ribosomal RNA gene hypervariable regions isolated from beach sands located to the east and west of Mobile Bay in Alabama demonstrated that regional drivers account for markedly different bacterial communities. Individual beaches had unique community signatures that persisted over time and exhibited spatial relationships, where community similarity decreased as horizontal distance between samples increased from one to hundreds of meters. In contrast, sequence analyses detected larger temporal and less spatial variation among the water samples. Superimposed upon these beach community distance and time relationships, was increased variability in bacterial community composition from oil hydrocarbon contaminated sands. The increased variability was observed among the core, resident, and transient community members, indicating the occurrence of community-wide impacts rather than solely an overprinting of oil hydrocarbon-degrading bacteria onto otherwise

  17. Local environment rather than past climate determines community composition of mountain stream macroinvertebrates across Europe.

    Science.gov (United States)

    Múrria, Cesc; Bonada, Núria; Vellend, Mark; Zamora-Muñoz, Carmen; Alba-Tercedor, Javier; Sainz-Cantero, Carmen Elisa; Garrido, Josefina; Acosta, Raul; El Alami, Majida; Barquín, Jose; Derka, Tomáš; Álvarez-Cabria, Mario; Sáinz-Bariain, Marta; Filipe, Ana F; Vogler, Alfried P

    2017-11-01

    Community assembly is determined by a combination of historical events and contemporary processes that are difficult to disentangle, but eco-evolutionary mechanisms may be uncovered by the joint analysis of species and genetic diversity across multiple sites. Mountain streams across Europe harbour highly diverse macroinvertebrate communities whose composition and turnover (replacement of taxa) among sites and regions remain poorly known. We studied whole-community biodiversity within and among six mountain regions along a latitudinal transect from Morocco to Scandinavia at three levels of taxonomic hierarchy: genus, species and haplotypes. Using DNA barcoding of four insect families (>3100 individuals, 118 species) across 62 streams, we found that measures of local and regional diversity and intraregional turnover generally declined slightly towards northern latitudes. However, at all hierarchical levels we found complete (haplotype) or high (species, genus) turnover among regions (and even among sites within regions), which counters the expectations of Pleistocene postglacial northward expansion from southern refugia. Species distributions were mostly correlated with environmental conditions, suggesting a strong role of lineage- or species-specific traits in determining local and latitudinal community composition, lineage diversification and phylogenetic community structure (e.g., loss of Coleoptera, but not Ephemeroptera, at northern sites). High intraspecific genetic structure within regions, even in northernmost sites, reflects species-specific dispersal and demographic histories and indicates postglacial migration from geographically scattered refugia, rather than from only southern areas. Overall, patterns were not strongly concordant across hierarchical levels, but consistent with the overriding influence of environmental factors determining community composition at the species and genus levels. © 2017 John Wiley & Sons Ltd.

  18. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities.

    Science.gov (United States)

    Legay, N; Baxendale, C; Grigulis, K; Krainer, U; Kastl, E; Schloter, M; Bardgett, R D; Arnoldi, C; Bahn, M; Dumont, M; Poly, F; Pommier, T; Clément, J C; Lavorel, S

    2014-10-01

    Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover. In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities. Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification. The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. The Effects of Disturbance History on Ground-Layer Plant Community Composition in British Columbia

    Directory of Open Access Journals (Sweden)

    Michael Ton

    2016-05-01

    Full Text Available Plant communities are sensitive to perturbations and may display alternative recovery pathways depending on disturbance history. In sub-boreal lodgepole pine forests of central interior British Columbia, Canada, fire and logging are two widespread landscape disturbances that overlap in many regions. We asked whether cumulative, short-interval disturbance from logging and fire resulted in different ground-layer plant communities than resulted from fire alone. Using field-collected data, we compared the taxonomic composition and functional traits of 3-year old plant communities that were either harvested 6-to-13 years prior, or not harvested prior to being burned in a large stand-replacing fire. The taxonomic composition diverged between the two treatments, driven primarily by differences in a few key indicator species such as Petasites frigidus and Vaccinium membranaceum. Analysis of individual species’ morphological traits indicated that only a few species vary in size in relation to disturbance history. Our data suggest that a history of forest harvest leaves a subtle footprint on post-fire ground-layer plant communities at early stages of succession.

  20. Assessment of Zooplankton Community Composition along a Depth Profile in the Central Red Sea

    KAUST Repository

    Pearman, John K.

    2015-07-17

    The composition of zooplankton in the water column has received limited attention in the main body of the Red Sea and this study investigates the change in the community both spatially and temporally across 11 stations in the central Red Sea. Using molecular methods to target the v9 region of the 18S rRNA gene a total of approximately 11.5 million reads were sequenced resulting in 2528 operational taxonomic units (OTUs) at 97% similarity. The phylum Arthropoda dominated in terms of reads accounting for on average 86.2% and 65.3% for neuston nets and vertical multinets respectively. A reduction in the number of OTUs was noticed with depth for both total metazoa and Maxillopoda whilst there was also a significant change in the composition of the Maxillopoda community. The genus Corycaeus had a higher proportion of reads in the epipelagic zone with Pleuromamma becoming increasingly dominant with depth. No significant difference was observed in the community between night and day sampling however there was a significant difference in the zooplankton community between two sampling periods separated by 10 days.

  1. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere.

    Science.gov (United States)

    Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A

    2010-06-01

    The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.

  2. Defining microbial community composition and seasonal variation in a sewage treatment plant in India using a down-flow hanging sponge reactor.

    Science.gov (United States)

    Nomoto, Naoki; Hatamoto, Masashi; Hirakata, Yuga; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki

    2018-05-01

    The characteristics of the microbial community in a practical-scale down-flow hanging sponge (DHS) reactor, high in organic matter and sulfate ion concentration, and the seasonal variation of the microbial community composition were investigated. Microorganisms related to sulfur oxidation and reduction (2-27%), as well as Leucobacter (7.50%), were abundant in the reactor. Anaerobic bacteria (27-38% in the first layer) were also in abundance and were found to contribute to the removal of organic matter from the sewage in the reactor. By comparing the Simpson index, the abundance-based coverage estimator (ACE) index, and the species composition of the microbial community across seasons (summer/dry, summer/rainy, autumn/dry, and winter/dry), the microbial community was found to change in composition only during the winter season. In addition to the estimation of seasonal variation, the difference in the microbial community composition along the axes of the DHS reactor was investigated for the first time. Although the abundance of each bacterial species differed along both axes of the reactor, the change of the community composition in the reactor was found to be greater along the vertical axis than the horizontal axis of the DHS reactor.

  3. Microbial Community Composition of Polyhydroxyalkanoate-Accumulating Organisms in Full-Scale Wastewater Treatment Plants Operated in Fully Aerobic Mode

    Science.gov (United States)

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  4. Effects of dairy manure management in annual and perennial cropping systems on soil microbial communities associated with in situ N2O fluxes

    Science.gov (United States)

    Dunfield, Kari; Thompson, Karen; Bent, Elizabeth; Abalos, Diego; Wagner-Riddle, Claudia

    2016-04-01

    Liquid dairy manure (LDM) application and ploughing events may affect soil microbial community functioning differently between perennial and annual cropping systems due to plant-specific characteristics stimulating changes in microbial community structure. Understanding how these microbial communities change in response to varied management, and how these changes relate to in situ N2O fluxes may allow the creation of predictive models for use in the development of best management practices (BMPs) to decrease nitrogen (N) losses through choice of crop, plough, and LDM practices. Our objectives were to contrast changes in the population sizes and community structures of genes associated with nitrifier (amoA, crenamoA) and denitrifier (nirK, nirS, nosZ) communities in differently managed annual and perennial fields demonstrating variation in N2O flux, and to determine if differences in these microbial communities were linked to the observed variation in N2O fluxes. Soil was sampled in 2012 and in 2014 in a 4-ha spring-applied LDM grass-legume (perennial) plot and two 4-ha corn (annual) treatments under fall or spring LDM application. Soil DNA was extracted and used to target N-cycling genes via qPCR (n=6) and for next-generation sequencing (Illumina Miseq) (n=3). Significantly higher field-scale N2O fluxes were observed in the annual plots compared to the perennial system; however N2O fluxes increased after plough down of the perennial plot. Nonmetric multidimensional scaling (NMS) indicated differences in N-cycling communities between annual and perennial cropping systems, and some communities became similar between annual and perennial plots after ploughing. Shifts in these communities demonstrated relationships with agricultural management, which were associated with differences in N2O flux. Indicator species analysis was used to identify operational taxonomic units (OTUs) most responsible for community shifts related to management. Nitrifying and denitrifying soil

  5. Soil biochar amendment shapes the composition of N{sub 2}O-reducing microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    Harter, Johannes; Weigold, Pascal [Geomicrobiology & Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Sigwartstr. 10, 72076 Tuebingen (Germany); El-Hadidi, Mohamed; Huson, Daniel H. [Algorithms in Bioinformatics, Center for Bioinformatics, University of Tuebingen, Sand 14, 72076 Tuebingen (Germany); Kappler, Andreas [Geomicrobiology & Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Sigwartstr. 10, 72076 Tuebingen (Germany); Behrens, Sebastian, E-mail: sbehrens@umn.edu [Geomicrobiology & Microbial Ecology, Center for Applied Geosciences, University of Tuebingen, Sigwartstr. 10, 72076 Tuebingen (Germany); Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, MN 55455-0116 (United States); BioTechnology Institute, 140 Gortner Labs, 1479 Gortner Avenue, St. Paul, MN 55108-6106 (United States)

    2016-08-15

    Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N{sub 2}O) emissions. N{sub 2}O is a potent greenhouse gas. The main sources of N{sub 2}O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N{sub 2}O emission mitigation and the abundance and activity of N{sub 2}O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described ‘atypical’ nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N{sub 2}O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N{sub 2}O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N{sub 2}O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling. - Highlights: • Biochar promoted anaerobic, alkalinity-adapted, and polymer-degrading microbial taxa. • Biochar fostered the development of distinct N{sub 2}O-reducing microbial taxa. • Taxonomic shifts among N{sub 2}O-reducing microbes

  6. Epiphytic Macrolichen Community Composition Database—epiphytic lichen synusiae in forested areas of the US

    Science.gov (United States)

    Sarah. Jovan

    2012-01-01

    The Forest Inventory and Analysis (FIA) Program's Lichen Communities Indicator is used for tracking epiphytic macrolichen diversity and is applied for monitoring air quality and climate change effects on forest health in the United States. Started in 1994, the Epiphytic Macrolichen Community Composition Database (GIVD ID NA-US-012) now has over 8,000 surveys of...

  7. The bacterial community composition of the surface microlayer in a high mountain lake.

    Science.gov (United States)

    Hörtnagl, Paul; Pérez, Maria Teresa; Zeder, Michael; Sommaruga, Ruben

    2010-09-01

    The existence of bacterioneuston in aquatic ecosystems is well established, but little is known about its composition and dynamics, particularly in lakes. The bacterioneuston underlies extreme conditions at the air-water boundary, which may influence its dynamics in a different way compared with the bacterioplankton. In this study, we assessed quantitative changes in major bacterial groups of the surface microlayer (SML) (upper 900 microm) and the underlying water (ULW) (0.2-0.5 m depth) of an alpine lake during two consecutive ice-free seasons. Analysis of the bacterial community composition was done using catalyzed reporter deposition FISH with oligonucleotide probes. In addition, several physicochemical parameters were measured to characterize these two water layers. Dissolved organic carbon was consistently enriched in the SML and the dissolved organic matter pool presented clear signals of photodegradation and photobleaching. The water temperature was generally colder in the SML than in the subsurface. The bacterial community of the SML and the ULW was dominated by Betaproteobacteria and Actinobacteria. The bacterial community composition was associated with different combinations of physicochemical factors in these two layers, but temporal changes showed similar trends in both layers over the two seasons. Our results identify the SML of alpine lakes as a microhabitat where specific bacterial members such as of Betaproteobacteria seem to be efficient colonizers.

  8. Impact of Anthracene Exposure on Bacterial Community Composition and Function in an Egyptian Marine Environment

    International Nuclear Information System (INIS)

    Zakaria, A.E.M.; Lappin-Scott, H.

    2013-01-01

    The application of bioremediation technology for pollution treatment requires more knowledge about how do microbial communities respond to pollutant exposure. The main goals of this study are to investigate the behavior of natural bacterial microflora of Suez Gulf (SGM) in response to exposure to different concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) for different periods. In this study, anthracene, as a model of (PAHs) was added in different concentrations, (30,150 and 500 ppm) to fertilized Suez Gulf water in shaking microcosms to examine the possible shifts in bacterial community composition and function. Changes in bacterial community composition was followed up after different periods of exposure (0, 6, 12, and 18) days to the above mentioned concentrations of anthracene by profiling the amplified product of 16S rDNA via denaturing gradient gel electrophoresis (DGGE) of SGM in treated microcosm separately. DGGE profiles revealed remarkable changes in diversity due to exposure concentration and duration to anthracene. A diverse relationship between anthracene concentration and bacterial diversity was detected. On the other hand, changes in community function were determined by testing the biodegradation capabilities of the consortia after different exposures separately in microcosms containing 50 ppm of anthracene for 14 days. The remaining anthracene was extracted and monitored by high performance liquid chromatography (HPLC) and DGGE profiles of amplified 16S rDNA extracted from parallel biodegradation microcosms were examined to indicate the effects of pre-exposure to different concentrations for different periods to PAHs on the bacterial community compositions. The results confirm that the long term effects of pre exposure to high concentrations of PAH on the bacterial community composition, suggesting that that some organisms can be used as a bio marker indicating the exposures of the marine environment to high concentrations of PAHs. HPLC

  9. Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene.

    Science.gov (United States)

    Babin, Doreen; Ding, Guo-Chun; Pronk, Geertje Johanna; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2013-10-01

    Microbial communities in soil reside in a highly heterogeneous habitat where diverse mineral surfaces, complex organic matter and microorganisms interact with each other. This study aimed to elucidate the long-term effect of the soil mineral composition and charcoal on the microbial community composition established in matured artificial soils and their response to phenanthrene. One year after adding sterile manure to different artificial soils and inoculating microorganisms from a Cambisol, the matured soils were spiked with phenanthrene or not and incubated for another 70 days. 16S rRNA gene and internal transcribed spacer fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis. Metal oxides and clay minerals and to a lesser extent charcoal influenced the microbial community composition. Changes in the bacterial community composition in response to phenanthrene differed depending on the mineral composition and presence of charcoal, while no shifts in the fungal community composition were observed. The abundance of ring-hydroxylating dioxygenase genes was increased in phenanthrene-spiked soils except for charcoal-containing soils. Here we show that the formation of biogeochemical interfaces in soil is an ongoing process and that different properties present in artificial soils influenced the bacterial response to the phenanthrene spike. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems

    Directory of Open Access Journals (Sweden)

    Kezia eGoldmann

    2015-11-01

    Full Text Available Fungal communities have been shown to be highly sensitive towards shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L., with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L. or spruce (Picea abies Karst. which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure.We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal OTU richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera.This study extends our knowledge

  11. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems.

    Science.gov (United States)

    Goldmann, Kezia; Schöning, Ingo; Buscot, François; Wubet, Tesfaye

    2015-01-01

    Fungal communities have been shown to be highly sensitive toward shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L.), with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L.) or spruce (Picea abies Karst.) which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure. We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal operational taxonomic units richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM) and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera. This study extends our

  12. Metagenomic Insights into Evolution of a Heavy Metal-Contaminated Groundwater Microbial Community

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, Christopher L.; Deng, Ye; Gentry, Terry J.; Fields, Matthew W.; Wu, Liyou; Barua, Soumitra; Barry, Kerrie; Tringe, Susannah G.; Watson, David B.; He, Zhili; Hazen, Terry C.; Tiedje, James M.; Rubin, Edward M.; Zhou, Jizhong

    2010-02-15

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents (~;;50 years) have resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying ?- and ?-proteobacterial populations. The resulting community is over-abundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could be a key mechanism in rapidly responding and adapting to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.

  13. Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL

    Institute of Scientific and Technical Information of China (English)

    TAYLOR Shauna M; HE Yiliang; ZHAO Bin; HUANG Jue

    2009-01-01

    Bacterium Providencia rettgeri YL was found to exhibit an unusual ability to heterotrophically nitrify and aerobically denitrify various concentrations of ammonium (NH4+-N). In order to further analyze its removal ability, several experiments were conducted to identify the growth and ammonium removal response in different carbon to nitrogen (C/N) mass ratios, shaking speeds, temperatures, ammonium concentrations and to qualitatively verify the production of nitrogen gas using gas chromatography techniques. Results showed that under optimum conditions (C/N 10, 30℃, 120 r/min), YL can significantly remove low and high concentrations of ammonium within 12 to 48 h of growth. The nitrification products hydroxylamine (NH2OH), nitrite (NO2-) and nitrate (NO3-) as well as the denitrification product, nitrogen gas (N2), were detected under completely aerobic conditions.

  14. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp.

    Science.gov (United States)

    Liu, Chunshuang; Zhao, Dongfeng; Ma, Wenjuan; Guo, Yadong; Wang, Aijie; Wang, Qilin; Lee, Duu-Jong

    2016-02-01

    Biological conversion of sulfide, acetate, and nitrate to, respectively, elemental sulfur (S(0)), carbon dioxide, and nitrogen-containing gas (such as N2) at NaCl concentration of 35-70 g/L was achieved in an expanded granular sludge bed (EGSB) reactor. A C/N ratio of 1:1 was noted to achieve high sulfide removal and S(0) conversion rate at high salinity. The extracellular polymeric substance (EPS) quantities were increased with NaCl concentration, being 11.4-mg/g volatile-suspended solids at 70 mg/L NaCl. The denitrifying sulfide removal (DSR) consortium incorporated Thauera sp. and Halomonas sp. as the heterotrophs and Azoarcus sp. being the autotrophs at high salinity condition. Halomonas sp. correlates with the enhanced DSR performance at high salinity.

  15. Microbial community composition and dynamics of moving bed biofilm reactor systems treating municipal sewage.

    Science.gov (United States)

    Biswas, Kristi; Turner, Susan J

    2012-02-01

    Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (<5%). Biovolume estimates of the SRBs were higher in biofilm samples from one of the WWTPs which receives both domestic and industrial waste and is influenced by seawater infiltration. The suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems.

  16. Reconstructing riverine mesohabitat unit composition using fish community data and an autecology matrix.

    Science.gov (United States)

    Suen, J P; Su, W C

    2010-09-01

    This research proposes a simplified method for estimating the mesohabitat composition that would favour members of a given set of aquatic species. The simulated composition of four types of mesohabitat units (deep pool, shallow pool, deep riffle and shallow riffle) could guide the design of in-stream structures in creating pool-riffle systems with ecological reference. Fish community data and an autecology matrix are used to support the development of a stream mesohabitat simulation based on regression models for reaches in mid to upper-order streams. The fish community-mesohabitat model results constitute a reference condition that can be used to guide stream restoration and ecological engineering decisions aimed at maintaining the natural ecological integrity and diversity of rivers. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.

  17. Linking the composition of bacterial and archaeal communities to characteristics of soil and flora composition in the Atlantic rainforest

    NARCIS (Netherlands)

    Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini

    2016-01-01

    The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of

  18. The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature.

    Science.gov (United States)

    Auffret, Marc D; Karhu, Kristiina; Khachane, Amit; Dungait, Jennifer A J; Fraser, Fiona; Hopkins, David W; Wookey, Philip A; Singh, Brajesh K; Freitag, Thomas E; Hartley, Iain P; Prosser, James I

    2016-01-01

    Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited.

  19. Changes in ground beetle diversity and community composition in age structured forests (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Kathryn Riley

    2011-11-01

    Full Text Available We examined diversity, community composition, and wing-state of Carabidae as a function of forest age in Piedmont North Carolina. Carabidae were collected monthly from 396 pitfall traps (12×33 sites from March 2009 through February 2010, representing 5 forest age classes approximately 0, 10, 50, 85, and 150 years old. A total of 2,568 individuals, representing 30 genera and 63 species, were collected. Carabid species diversity, as estimated by six diversity indices, was significantly different between the oldest and youngest forest age classes for four of the six indices. Most carabid species were habitat generalists, occurring in all or most of the forest age classes. Carabid species composition varied across forest age classes. Seventeen carabid species were identified as potential candidates for ecological indicators of forest age. Non-metric multidimensional scaling (NMDS showed separation among forest age classes in terms of carabid beetle community composition. The proportion of individuals capable of flight decreased significantly with forest age.

  20. Fluctuation of microbial activities after influent load variations in a full-scale SBR. Recovery of the biomass after starvation

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas, Angela; Draper, Patricia; Etchebehere, Claudia [Universidad de la Republica, Montevideo (Uruguay). Catedra de Microbiologia, Facultad de Quimica y Facultad de Ciencias

    2009-10-15

    Due to variations in the production levels, a full-scale sequencing batch reactor (SBR) for post-treatment of tannery wastewater was exposed to low and high ammonia load periods. In order to study how these changes affected the N-removal capacity, the microbiology of the reactor was studied by a diverse set of techniques including molecular tools, activity tests, and microbial counts in samples taken along 3 years. The recover capacity of the biomass was also studied in a lab-scale reactor operated with intermittent aeration without feeding for 36 days. The results showed that changes in the feeding negatively affected the nitrifying community, but the nitrogen removal efficiencies could be restored after the concentration stress. Species substitution was observed within the nitrifying bacteria, Nitrosomonas europaea and Nitrobacter predominated initially, and after an ammonia overload period, Nitrosomonas nitrosa and Nitrospira became dominant. Some denitrifiers, with nirS related to Alicycliphilus, Azospirillum, and Marinobacter nirS, persisted during long-term reactor operation, but the community fluctuated both in composition and in abundance. This fluctuating community may better resist the continuous changes in the feeding regime. Our results showed that a nitrifying-denitrifying SBR could be operated with low loads or even without feeding during production shut down periods. (orig.)

  1. RNA-Based Assessment of Diversity and Composition of Active Archaeal Communities in the German Bight

    Directory of Open Access Journals (Sweden)

    Bernd Wemheuer

    2012-01-01

    Full Text Available Archaea play an important role in various biogeochemical cycles. They are known extremophiles inhabiting environments such as thermal springs or hydrothermal vents. Recent studies have revealed a significant abundance of Archaea in moderate environments, for example, temperate sea water. Nevertheless, the composition and ecosystem function of these marine archaeal communities is largely unknown. To assess diversity and composition of active archaeal communities in the German Bight, seven marine water samples were taken and studied by RNA-based analysis of ribosomal 16S rRNA. For this purpose, total RNA was extracted from the samples and converted to cDNA. Archaeal community structures were investigated by pyrosequencing-based analysis of 16S rRNA amplicons generated from cDNA. To our knowledge, this is the first study combining next-generation sequencing and metatranscriptomics to study archaeal communities in marine habitats. The pyrosequencing-derived dataset comprised 62,045 archaeal 16S rRNA sequences. We identified Halobacteria as the predominant archaeal group across all samples with increased abundance in algal blooms. Thermoplasmatales (Euryarchaeota and the Marine Group I (Thaumarchaeota were identified in minor abundances. It is indicated that archaeal community patterns were influenced by environmental conditions.

  2. Mineralogical composition changes of postagrogenic soils under different plant communities.

    Science.gov (United States)

    Churilin, Nikita; Chizhikova, Natalia; Varlamov, Evgheni; Churilina, Alexandra

    2017-04-01

    Plant communities play the leading role in transformation of soil. The need of studying former arable lands increases due to large number of abandoned lands in Russia. It is necessary to study mineralogical composition of soils involved into natural processes to understand the trends of their development after agricultural activities in the past. The aim of the study is to identify changes in mineralogical composition of soils under the influence of different plant communities. Soils were sampled in the south of Arkhangelsk region, Ustyansky district, near Akichkin Pochinok village. Soils are formed on clay moraine of Moscow glaciation. Soil profiles were dug on interfluve. We selected 4 plant communities on different stages of succession: upland meadow with domination of sod grasses (Phleum pratense, Agrostis tenuis), 16-year-old birch forest where dominants are herbaceous plants such as Poa sp., Chamerion angustiflium, Agrostis tenuis, 16-year-old spruce forest with no herbaceous vegetation and 70-year-old bilberry spruce forest with domination of Vaccinium myrtillus and Vaccinium vitis-idaea. To separate soil fractions mineral content. We noticed a clear differentiation of studied soils both in the content of fraction and composition of minerals. Mineralogical composition and major mineral phases correlation of profiles under 70 years and 16 years of spruce forests are different. Mineralogical content in upper part of profile under the young spruce is more differentiated than in old spruce forest: the amount of quartz and kaolinite increases in upper horizon, although in this case the overall pattern of profile formation of clay material during podzolization remains unchanged. There is more substantial desilting under the birch forest, compared with profile under the spruce of same age within top 50 cm. Under the meadow vegetation we've discovered differentiation in mineral composition. Upper horizons contain smectite phase and differ from the underlying

  3.   Diversity and composition of palm communities (Arecaceae) in Quintana Roo Mexico

    DEFF Research Database (Denmark)

    Alvarado, Arturo A.; Calvo, Luz M.; Duno, Rodrigo

      We compared composition and diversity of palm (Arecaceae) communities in three forest types along a gradient from dry deciduous, over intermediate to wet evergreen forest in Quintana Roo, Mexico. In forty-nine 5×500-m transects, we counted 52,612 individuals representing 14 species in 11 genera...

  4. Free-living protozoa in drinking water supplies: community composition and role as hosts for Legionella pneumophila

    NARCIS (Netherlands)

    Valster, R.M.

    2011-01-01

    Free-living protozoa in drinking water supplies: community composition and role as hosts for Legionella pneumophila


    Free-living protozoa, which feed on bacteria, play an important role in the communities of microorganisms and invertebrates in drinking water supplies and in (warm)

  5. Denitrifying bacterial community composition changes associated with stages of denitrification in oxygen minimum zones

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, D.A; O'Mullan, G.D.; Naqvi, S.W.A.; Ward, B.B.

    in the ocean. Nature 445:163–167 11. Devol AH (1978) Bacterial oxygen uptake kinetics as related to biological processes in oxygen deficient zones of the oceans. Deep-Sea Res 25:137–146 12. Devol AH, Uhlenhopp AG, Naqvi SWA, Brandes JA, Jayakumar DA, Naik H...

  6. Factors affecting the bacterial community composition and heterotrophic production of Columbia River estuarine turbidity maxima.

    Science.gov (United States)

    Herfort, Lydie; Crump, Byron C; Fortunato, Caroline S; McCue, Lee Ann; Campbell, Victoria; Simon, Holly M; Baptista, António M; Zuber, Peter

    2017-12-01

    Estuarine turbidity maxima (ETM) function as hotspots of microbial activity and diversity in estuaries, yet, little is known about the temporal and spatial variability in ETM bacterial community composition. To determine which environmental factors affect ETM bacterial populations in the Columbia River estuary, we analyzed ETM bacterial community composition (Sanger sequencing and amplicon pyrosequencing of 16S rRNA gene) and bulk heterotrophic production ( 3 H-leucine incorporation rates). We collected water 20 times to cover five ETM events and obtained 42 samples characterized by different salinities, turbidities, seasons, coastal regimes (upwelling vs. downwelling), locations, and particle size. Spring and summer populations were distinct. All May samples had similar bacterial community composition despite having different salinities (1-24 PSU), but summer non-ETM bacteria separated into marine, freshwater, and brackish assemblages. Summer ETM bacterial communities varied depending on coastal upwelling or downwelling conditions and on the sampling site location with respect to tidal intrusion during the previous neap tide. In contrast to ETM, whole (>0.2 μm) and free-living (0.2-3 μm) assemblages of non-ETM waters were similar to each other, indicating that particle-attached (>3 μm) non-ETM bacteria do not develop a distinct community. Brackish water type (ETM or non-ETM) is thus a major factor affecting particle-attached bacterial communities. Heterotrophic production was higher in particle-attached than free-living fractions in all brackish waters collected throughout the water column during the rise to decline of turbidity through an ETM event (i.e., ETM-impacted waters). However, free-living communities showed higher productivity prior to or after an ETM event (i.e., non-ETM-impacted waters). This study has thus found that Columbia River ETM bacterial communities vary based on seasons, salinity, sampling location, and particle size, with the

  7. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell.

    Science.gov (United States)

    Timmers, Ruud A; Rothballer, Michael; Strik, David P B T B; Engel, Marion; Schulz, Stephan; Schloter, Michael; Hartmann, Anton; Hamelers, Bert; Buisman, Cees

    2012-04-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors.

  8. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Timmers, Ruud A.; Strik, David P.B.T.B.; Hamelers, Bert; Buisman, Cees [Wageningen Univ. (Netherlands). Sub-dept. of Environmental Technology; Rothballer, Michael; Hartmann, Anton [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg (Germany). Dept. Microbe-Plant Interactions; Engel, Marion; Schulz, Stephan; Schloter, Michael [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg (Germany). Dept. Terrestrial Ecogenetics

    2012-04-15

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors. (orig.)

  9. Biogeochemical interactions control a temporal succession in the elemental composition of marine communities

    KAUST Repository

    Martiny, Adam C.; Talarmin, Agathe Anne Gaelle; Mouginot, Cé line; Lee, Jeanette A.; Huang, Jeremy S.; Gellene, Alyssa G.; Caron, David A.

    2015-01-01

    Recent studies have revealed clear regional differences in the particulate organic matter composition and stoichiometry of plankton communities. In contrast, less is known about potential mechanisms and patterns of temporal changes in the elemental composition of marine systems. Here, we monitored weekly changes in environmental conditions, phytoplankton abundances, and particulate organic carbon, nitrogen, and phosphorus concentrations over a 3-yr period. We found that variation in the particulate organic matter (POM) concentrations and ratios were related to seasonal oscillations of environmental conditions and phytoplankton abundances. Periods with low temperature, high nutrient concentrations and a dominance of large phytoplankton corresponded to low C : N : P and vice-versa for warmer periods during the summer and fall. In addition to seasonal changes, we observed a multiyear increase in POM C : P and N : P that might be associated with the Pacific Decadal Oscillation. Finally, there was substantial short-term variability in all factors but similar linkages between environmental variability and elemental composition as observed on seasonal and interannual time-scales. Using a feed-forward neural network, we could explain a large part of the variation in POM concentrations and ratios based on changes in environmental conditions and phytoplankton abundances. The apparent links across all time-scales between changes in physics, chemistry, phytoplankton, and POM concentrations and ratios suggest we have identified key controls of the elemental composition of marine communities in this region.

  10. Biogeochemical interactions control a temporal succession in the elemental composition of marine communities

    KAUST Repository

    Martiny, Adam C.

    2015-11-23

    Recent studies have revealed clear regional differences in the particulate organic matter composition and stoichiometry of plankton communities. In contrast, less is known about potential mechanisms and patterns of temporal changes in the elemental composition of marine systems. Here, we monitored weekly changes in environmental conditions, phytoplankton abundances, and particulate organic carbon, nitrogen, and phosphorus concentrations over a 3-yr period. We found that variation in the particulate organic matter (POM) concentrations and ratios were related to seasonal oscillations of environmental conditions and phytoplankton abundances. Periods with low temperature, high nutrient concentrations and a dominance of large phytoplankton corresponded to low C : N : P and vice-versa for warmer periods during the summer and fall. In addition to seasonal changes, we observed a multiyear increase in POM C : P and N : P that might be associated with the Pacific Decadal Oscillation. Finally, there was substantial short-term variability in all factors but similar linkages between environmental variability and elemental composition as observed on seasonal and interannual time-scales. Using a feed-forward neural network, we could explain a large part of the variation in POM concentrations and ratios based on changes in environmental conditions and phytoplankton abundances. The apparent links across all time-scales between changes in physics, chemistry, phytoplankton, and POM concentrations and ratios suggest we have identified key controls of the elemental composition of marine communities in this region.

  11. COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS

    Science.gov (United States)

    Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...

  12. A glimpse into the future composition of marine phytoplankton communities

    Directory of Open Access Journals (Sweden)

    Esteban eAcevedo-Trejos

    2014-07-01

    Full Text Available It is expected that climate change will have significant impacts on ecosystems. Most model projections agree that the ocean will experience stronger stratification and less nutrient supply from deep waters. These changes will likely affect marine phytoplankton communities and will thus impact on the higher trophic levels of the oceanic food web. The potential consequences of future climate change on marine microbial communities can be investigated and predicted only with the help of mathematical models. Here we present the application of a model that describes aggregate properties of marine phytoplankton communities and captures the effects of a changing environment on their composition and adaptive capacity. Specifically, the model describes the phytoplankton community in terms of total biomass, mean cell size, and functional diversity. The model is applied to two contrasting regions of the Atlantic Ocean (tropical and temperate and is tested under two emission scenarios: SRES A2 or ``business as usual'' and SRES B1 or ``local utopia''. We find that all three macroecological properties will decline during the next century in both regions, although this effect will be more pronounced in the temperate region. Being consistent with previous model predictions, our results show that a simple trait-based modelling framework represents a valuable tool for investigating how phytoplankton communities may reorganize under a changing climate.

  13. Effect of land use on the density of nitrifying and denitrifying bacteria in the Colombian Coffee Region

    Directory of Open Access Journals (Sweden)

    Vallejo Quintero Victoria Eugenia

    2011-12-01

    Full Text Available

    Soil microbial communities involved in the cycling of nitrogen (N are essential to maintaining and improving soil fertility, productivity and functionality of natural and agricultural ecosystems. However, some compounds generated during the metabolic processes performed by nitrifying (NB and denitrifying (DB bacteria are associated with the production of greenhouse gases, groundwater pollution and acidification. Therefore, the study of these bacteria is essential for economic and environmental sustainability. This study evaluated the effect of different land uses in two river basins (La Vieja and Otun on NB and DB densities. Two sampling events (SE were conducted by selecting the most representative land uses. Physicochemical (T °, pH, moisture and nitrate and microbiological properties (NB and DB densities were evaluated. In both SEs, significantly higher densities of NB and DB were observed in the land uses: pasture, guadua (DB only and unshaded coffee (La Vieja and onion (Otun. These land uses, excluding guadua, are dependent on nitrogen fertilizers, which together with the activities of grazing livestock on pastures may lead to greater availability of substrates for the NB. The use of agricultural machinery and overgrazing in pasture and onion uses generate compacted soil and other physical disturbances, encouraging the growth of DB. Forests had the lowest densities of NB and DB possibly due to a reduced availability of N and the releasing of allelopathic compounds from certain plants. Finally, the densities of ammonium-oxidizing bacteria had the greatest differences between the land uses evaluated, demonstrating its high sensitivity to agricultural management practices and livestock. We suggest that changes in the abundance of this community could

  14. Bacterial community composition and potential driving factors in different reef habitats of the Spermonde Archipelago, Indonesia

    DEFF Research Database (Denmark)

    Kegler, Hauke F.; Lukman, Muhammad; Teichberg, Mirta

    2017-01-01

    Coastal eutrophication is a key driver of shifts in bacterial communities on coral reefs. With fringing and patch reefs at varying distances from the coast the Spermonde Archipelago in southern Sulawesi, Indonesia offers ideal conditions to study the effects of coastal eutrophication along...... a spatially defined gradient. The present study investigated bacterial community composition of three coral reef habitats: the water column, sediments, and mucus of the hard coral genus Fungia, along that cross shelf environmental and water quality gradient. The main research questions were: (1) How do water....../Shigella (Gammaproteobacteria) and Raistonia (Betaproteobacteria), respectively, both dominated the bacterial community composition of the both size fractions of the water column and coral mucus. The sampled reef sediments were more diverse, and no single OTUs was dominant. There was no gradual shift in bacterial classes...

  15. Community composition and diversity of ground beetles (Coleoptera: Carabidae) in Yaoluoping National Nature Reserve

    Science.gov (United States)

    Li, Wen-Bo; Liu, Nai-Yi; Wu, Yun-He; Zhang, Yu-Cai; Xu, Qin; Chu, Jun; Wang, Shu-Yan

    2017-01-01

    Abstract This study used pitfall trapping to examine community composition and diversity of ground beetles in five different habitats (coniferous, deciduous, mixed coniferous, farmland, and settlements) within Anhui Yaoluoping National Nature Reserve from May to September 2014. In total, 1,352 ground beetles were collected, belonging to 16 genera and 44 species. Of these, four dominant species Dolichus halensis, Harpalus pastor, Carabus casaleianus, and Pheropsophus jessoensis were identified, respectively, comprising 370, 177, 131, and 123 individuals. The deciduous forest showed greater diversity (3.78 according to Shannon–Weiner index), equitability (0.80 according to Pielou’s index), and dominance (9.52 according to Simpson’s index) when compared with farmland, but species richness in the deciduous forest (27) was lower than that in farmland (35). One-way analysis of variance showed that ground beetle species composition and abundance among different habitats varied significantly. Cluster analysis and principal coordinate analysis showed that farmland shared low community similarity with other habitat types, and coniferous and mixed coniferous forests shared similar community types. Our results indicate that species composition, abundance, and diversity of ground beetles are affected by different habitat types, with deciduous forest types being critical in maintaining the diversity of rare species. We recommend reducing cultivated farmland area and increasing the area of carefully planned deciduous forest in order to better protect ground beetle diversity in the region.

  16. Storage and growth of denitrifiers in aerobic granules: part I. model development.

    Science.gov (United States)

    Ni, Bing-Jie; Yu, Han-Qing

    2008-02-01

    A mathematical model, based on the Activated Sludge Model No.3 (ASM3), is developed to describe the storage and growth activities of denitrifiers in aerobic granules under anoxic conditions. In this model, mass transfer, hydrolysis, simultaneous anoxic storage and growth, anoxic maintenance, and endogenous decay are all taken into account. The model established is implemented in the well-established AQUASIM simulation software. A combination of completely mixed reactor and biofilm reactor compartments provided by AQUASIM is used to simulate the mass transport and conversion processes occurring in both bulk liquid and granules. The modeling results explicitly show that the external substrate is immediately utilized for storage and growth at feast phase. More external substrates are diverted to storage process than the primary biomass production process. The model simulation indicates that the nitrate utilization rate (NUR) of granules-based denitrification process includes four linear phases of nitrate reduction. Furthermore, the methodology for determining the most important parameter in this model, that is, anoxic reduction factor, is established. (c) 2007 Wiley Periodicals, Inc.

  17. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange.

    Science.gov (United States)

    Williams, Alwyn; Manoharan, Lokeshwaran; Rosenstock, Nicholas P; Olsson, Pål Axel; Hedlund, Katarina

    2017-01-01

    Agricultural fertilization significantly affects arbuscular mycorrhizal fungal (AMF) community composition. However, the functional implications of community shifts are unknown, limiting understanding of the role of AMF in agriculture. We assessed AMF community composition at four sites managed under the same nitrogen (N) and phosphorus (P) fertilizer regimes for 55 yr. We also established a glasshouse experiment with the same soils to investigate AMF-barley (Hordeum vulgare) nutrient exchange, using carbon ( 13 C) and 33 P isotopic labelling. N fertilization affected AMF community composition, reducing diversity; P had no effect. In the glasshouse, AMF contribution to plant P declined with P fertilization, but was unaffected by N. Barley C allocation to AMF also declined with P fertilization. As N fertilization increased, C allocation to AMF per unit of P exchanged increased. This occurred with and without P fertilization, and was concomitant with reduced barley biomass. AMF community composition showed no relationship with glasshouse experiment results. The results indicate that plants can reduce C allocation to AMF in response to P fertilization. Under N fertilization, plants allocate an increasing amount of C to AMF and receive relatively less P. This suggests an alteration in the terms of P-C exchange under N fertilization regardless of soil P status. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Skewed matrilineal genetic composition in a small wild chimpanzee community.

    Science.gov (United States)

    Shimada, Makoto K; Hayakawa, Sachiko; Fujita, Shiho; Sugiyama, Yukimaru; Saitou, Naruya

    2009-01-01

    Maternal kinship is important in primate societies because it affects individual behaviour as well as the sustainability of populations. All members of the Bossou chimpanzee community are descended from 8 individuals (herein referred to as original adults) who were already adults or subadults when field observations were initiated in 1976 and whose genetic relationships were unknown. Sequencing of the control region on the maternally inherited mtDNA revealed that 4 (1 male and 3 females) of the 8 original adults shared an identical haplotype. We investigated the effects of the skewed distribution of mtDNA haplotypes on the following two outcomes. First, we demonstrated that the probability of mtDNA haplotype extinction would be increased under such a skewed composition in a small community. Second, the ratio of potential mating candidates to competitors is likely to decrease if chimpanzees become aware of maternal kinship and avoid incest. We estimated that the magnitude of the decrease in the ratio is 10 times greater in males than in females. Here we demonstrate a scenario in which this matrilineal skewness in a small community accelerates extinction of mtDNA haplotype, which will make it more difficult to find a suitable mate within the community. 2008 S. Karger AG, Basel.

  19. Can differences in soil community composition after peat meadow restoration lead to different decomposition and mineralization rates?

    NARCIS (Netherlands)

    Dijk, van J.; Didden, W.A.M.; Kuenen, F.; Bodegom, van P.M.; Verhoef, H.A.; Aerts, R.

    2009-01-01

    Reducing decomposition and mineralization of organic matter by increasing groundwater levels is a common approach to reduce plant nutrient availability in many peat meadow restoration projects. The soil community is the main driver of these processes, but how community composition is affected by

  20. Macro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline-Alkaline Soils.

    Science.gov (United States)

    Liu, Kaihui; Ding, Xiaowei; Tang, Xiaofei; Wang, Jianjun; Li, Wenjun; Yan, Qingyun; Liu, Zhenghua

    2018-01-01

    Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differed significantly between the sediments and saline soils. The compositions of prokaryotic and fungal communities in the hypersaline sediments were different from those in adjacent saline-alkaline soils, indicating a habitat-specific microbial distribution pattern. The macroelements (S, P, K, Mg, and Fe) and Ca were, respectively, correlated closely with the alpha diversity of prokaryotes and fungi, while the macronutrients (e.g., Na, S, P, and Ca) were correlated with the prokaryotic and fungal beta-diversity ( P ≤ 0.05). And, the nine microelements (e.g., Al, Ba, Co, Hg, and Mn) and micronutrients (Ba, Cd, and Sr) individually shaped the alpha diversity of prokaryotes and fungi, while the six microelements (e.g., As, Ba, Cr, and Ge) and only the trace elements (Cr and Cu), respectively, influenced the beta diversity of prokaryotes and fungi ( P analysis (VPA) showed that environmental variables jointly explained 55.49% and 32.27% of the total variation for the prokaryotic and fungal communities, respectively. Together, our findings demonstrate that the diversity and community composition of the prokaryotes and fungi were driven by different macro and microelements in saline habitats, and that geochemical elements could more widely regulate the diversity and community composition of prokaryotes than these of fungi.

  1. Macro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline–Alkaline Soils

    Science.gov (United States)

    Liu, Kaihui; Ding, Xiaowei; Tang, Xiaofei; Wang, Jianjun; Li, Wenjun; Yan, Qingyun; Liu, Zhenghua

    2018-01-01

    Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differed significantly between the sediments and saline soils. The compositions of prokaryotic and fungal communities in the hypersaline sediments were different from those in adjacent saline–alkaline soils, indicating a habitat-specific microbial distribution pattern. The macroelements (S, P, K, Mg, and Fe) and Ca were, respectively, correlated closely with the alpha diversity of prokaryotes and fungi, while the macronutrients (e.g., Na, S, P, and Ca) were correlated with the prokaryotic and fungal beta-diversity (P ≤ 0.05). And, the nine microelements (e.g., Al, Ba, Co, Hg, and Mn) and micronutrients (Ba, Cd, and Sr) individually shaped the alpha diversity of prokaryotes and fungi, while the six microelements (e.g., As, Ba, Cr, and Ge) and only the trace elements (Cr and Cu), respectively, influenced the beta diversity of prokaryotes and fungi (P analysis (VPA) showed that environmental variables jointly explained 55.49% and 32.27% of the total variation for the prokaryotic and fungal communities, respectively. Together, our findings demonstrate that the diversity and community composition of the prokaryotes and fungi were driven by different macro and microelements in saline habitats, and that geochemical elements could more widely regulate the diversity and community composition of prokaryotes than these of fungi. PMID:29535703

  2. First Investigation of Microbial Community Composition in the Bridge (Gadeok Channel) between the Jinhae-Masan Bay and the South Sea of Korea

    Science.gov (United States)

    Lee, Jiyoung; Lim, Jae-Hyun; Park, Junhyung; Youn, Seok-Hyun; Oh, Hyun-Ju; Kim, Ju-Hyoung; Kim, Myung Kyum; Cho, Hyeyoun; Yoon, Joo-Eun; Kim, Soyeon; Markkandan, Kesavan; Park, Ki-Tae; Kim, Il-Nam

    2018-02-01

    Microbial community composition varies based on seasonal dynamics (summer: strongly stratified water column; autumn: weakly stratified water column; winter: vertically homogeneous water column) and vertical distributions (surface, middle, and bottom depths) in the Gadeok Channel, which is the primary passage to exchange waters and materials between the Jinhae-Masan Bay and the South Sea waters. The microbial community composition was analyzed from June to December 2016 using 16S rRNA gene sequencing. The community was dominated by the phyla Proteobacteria (45%), Bacteroidetes (18%), Cyanobacteria (15%), Verrucomicrobia (6%), and Actinobacteria (6%). Alphaproteobacteria (29%) was the most abundant microbial class, followed by Flavobacteria (15%) and Gammaproteobacteria (15%) in all samples. The composition of the microbial communities was found to vary vertically and seasonally. The orders Flavobacteriales and Stramenopiles showed opposing seasonal patterns; Flavobacteriales was more abundant in August and December while Stramenopiles showed high abundance in June and October at all depths. The genus Synechococcus reached extremely high abundance (14%) in the June surface water column, but was much less abundant in December water columns. Clustering analysis showed that there was a difference in the microbial community composition pattern between the strongly stratified season and well-mixed season. These results indicate that the seasonal dynamics of physicochemical and hydrologic conditions throughout the water column are important parameters in shaping the microbial community composition in the Gadeok Channel.

  3. From traits to life-history strategies: Deconstructing fish community composition across European seas

    DEFF Research Database (Denmark)

    Pécuchet, Lauréne; Lindegren, Martin; Hidalgo, Manuel

    2017-01-01

    The life history of a species is determined by trade-offs between growth, survival and reproduction to maximize fitness in a given environment. Following a theoretical model, we investigate whether the composition of marine fish communities can be understood in terms of a set of lifehistory...

  4. Fish Community Composition and Habitat Use in the Eg-Uur River System, Mongolia

    Directory of Open Access Journals (Sweden)

    Norman Mercado-Silva

    2008-06-01

    Full Text Available Mongolian rivers and their fi sh communities have suffered severe impacts from anthropogenic activities. However, the remoteness of some systems has allowed for the conservation of unique fi sh faunas, including robust populations of Hucho taimen . Conservation of H. taimen requires understanding the composition and ecology of other fi shes in the community. Using multiple sampling techniques, direct observation, and existing literature, we assessed the composition, relative abundance, and ecological attributes of fi shes in the Eg-Uur watershed (Selenge basin. We collected 6 of 12 species known in the watershed. Phoxinus cf. phoxinus and Lota lota were the most and least abundant species, respectively. We failed to detect H. taimen , indicating low abundance or unknown habitat requirements for juveniles. We compared the effectiveness of different sampling techniques (with electro fi shing producing the highest species richness, constructed length-weight relationships for four species , and identi fi ed ecological attributes (i.e., trophic guild, preferred habitat for resident fi shes.

  5. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach.

    Directory of Open Access Journals (Sweden)

    Erin A Gontang

    Full Text Available Investigations of gut microbiomes have shed light on the diversity and genetic content of these communities, and helped shape our understanding of how host-associated microorganisms influence host physiology, behavior, and health. Despite the importance of gut microbes to metazoans, our understanding of the changes in diversity and composition across the alimentary tract, and the source of the resident community are limited. Here, using community metagenomics and 16S rRNA gene sequencing, we assess microbial community diversity and coding potential in the foregut, midgut, and hindgut of a juvenile Panchlora cockroach, which resides in the refuse piles of the leaf-cutter ant species Atta colombica. We found a significant shift in the microbial community structure and coding potential throughout the three gut sections of Panchlora sp., and through comparison with previously generated metagenomes of the cockroach's food source and niche, we reveal that this shift in microbial community composition is influenced by the ecosystems in which Panchlora sp. occurs. While the foregut is composed of microbes that likely originate from the symbiotic fungus gardens of the ants, the midgut and hindgut are composed of a microbial community that is likely cockroach-specific. Analogous to mammalian systems, the midgut and hindgut appear to be dominated by Firmicutes and Bacteroidetes with the capacity for polysaccharide degradation, suggesting they may assist in the degradation of dietary plant material. Our work underscores the prominence of community changes throughout gut microbiomes and highlights ecological factors that underpin the structure and function of the symbiotic microbial communities of metazoans.

  6. Major changes in microbial diversity and community composition across gut sections of a juvenile Panchlora cockroach.

    Science.gov (United States)

    Gontang, Erin A; Aylward, Frank O; Carlos, Camila; Glavina Del Rio, Tijana; Chovatia, Mansi; Fern, Alison; Lo, Chien-Chi; Malfatti, Stephanie A; Tringe, Susannah G; Currie, Cameron R; Kolter, Roberto

    2017-01-01

    Investigations of gut microbiomes have shed light on the diversity and genetic content of these communities, and helped shape our understanding of how host-associated microorganisms influence host physiology, behavior, and health. Despite the importance of gut microbes to metazoans, our understanding of the changes in diversity and composition across the alimentary tract, and the source of the resident community are limited. Here, using community metagenomics and 16S rRNA gene sequencing, we assess microbial community diversity and coding potential in the foregut, midgut, and hindgut of a juvenile Panchlora cockroach, which resides in the refuse piles of the leaf-cutter ant species Atta colombica. We found a significant shift in the microbial community structure and coding potential throughout the three gut sections of Panchlora sp., and through comparison with previously generated metagenomes of the cockroach's food source and niche, we reveal that this shift in microbial community composition is influenced by the ecosystems in which Panchlora sp. occurs. While the foregut is composed of microbes that likely originate from the symbiotic fungus gardens of the ants, the midgut and hindgut are composed of a microbial community that is likely cockroach-specific. Analogous to mammalian systems, the midgut and hindgut appear to be dominated by Firmicutes and Bacteroidetes with the capacity for polysaccharide degradation, suggesting they may assist in the degradation of dietary plant material. Our work underscores the prominence of community changes throughout gut microbiomes and highlights ecological factors that underpin the structure and function of the symbiotic microbial communities of metazoans.

  7. Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors.

    Science.gov (United States)

    Pervin, Hasina M; Dennis, Paul G; Lim, Hui J; Tyson, Gene W; Batstone, Damien J; Bond, Philip L

    2013-12-01

    Temperature-phased anaerobic digestion (TPAD) is an emerging technology that facilitates improved performance and pathogen destruction in anaerobic sewage sludge digestion by optimising conditions for 1) hydrolytic and acidogenic organisms in a first-stage/pre-treatment reactor and then 2) methogenic populations in a second stage reactor. Pre-treatment reactors are typically operated at 55-65 °C and as such select for thermophilic bacterial communities. However, details of key microbial populations in hydrolytic communities and links to functionality are very limited. In this study, experimental thermophilic pre-treatment (TP) and control mesophilic pre-treatment (MP) reactors were operated as first-stages of TPAD systems treating activated sludge for 340 days. The TP system was operated sequentially at 50, 60 and 65 °C, while the MP rector was held at 35 °C for the entire period. The composition of microbial communities associated with the MP and TP pre-treatment reactors was characterised weekly using terminal-restriction fragment length polymorphism (T-RFLP) supported by clone library sequencing of 16S rRNA gene amplicons. The outcomes of this approach were confirmed using 454 pyrosequencing of gene amplicons and fluorescence in-situ hybridisation (FISH). TP associated bacterial communities were dominated by populations affiliated to the Firmicutes, Thermotogae, Proteobacteria and Chloroflexi. In particular there was a progression from Thermotogae to Lutispora and Coprothermobacter and diversity decreased as temperature and hydrolysis performance increased. While change in the composition of TP associated bacterial communities was attributable to temperature, that of MP associated bacterial communities was related to the composition of the incoming feed. This study determined processes driving the dynamics of key microbial populations that are correlated with an enhanced hydrolytic functionality of the TPAD system. Copyright © 2013 Elsevier Ltd. All rights

  8. Drivers of cyanobacterial diversity and community composition in mangrove soils in south-east Brazil.

    Science.gov (United States)

    Rigonato, Janaina; Kent, Angela D; Alvarenga, Danillo O; Andreote, Fernando D; Beirigo, Raphael M; Vidal-Torrado, Pablo; Fiore, Marli F

    2013-04-01

    Cyanobacteria act as primary producers of carbon and nitrogen in nutrient-poor ecosystems such as mangroves. This important group of microorganisms plays a critical role in sustaining the productivity of mangrove ecosystems, but the structure and function of cyanobacteria assemblages can be perturbed by anthropogenic influences. The aim of this work was to assess the community structure and ecological drivers that influence the cyanobacterial community harboured in two Brazilian mangrove soils, and examine the long-term effects of oil contamination on these keystone species. Community fingerprinting results showed that, although cyanobacterial communities are distinct between the two mangroves, the structure and diversity of the assemblages exhibit similar responses to environmental gradients. In each ecosystem, cyanobacteria occupying near-shore areas were similar in composition, indicating importance of marine influences for structuring the community. Analysis of 16S rRNA sequences revealed the presence of diverse cyanobacterial communities in mangrove sediments, with clear differences among mangrove habitats along a transect from shore to forest. While near-shore sites in both mangroves were mainly occupied by Prochlorococcus and Synechococcus genera, sequences retrieved from other mangrove niches were mainly affiliated with uncultured cyanobacterial 16S rRNA. The most intriguing finding was the large number of potentially novel cyanobacteria 16S rRNA sequences obtained from a previously oil-contaminated site. The abundance of cyanobacterial 16S rRNA sequences observed in sites with a history of oil contamination was significantly lower than in the unimpacted areas. This study emphasized the role of environmental drivers in determining the structure of cyanobacterial communities in mangrove soils, and suggests that anthropogenic impacts may also act as ecological filters that select cyanobacterial taxa. These results are an important contribution to our

  9. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale.

    Science.gov (United States)

    Hazard, Christina; Gosling, Paul; van der Gast, Christopher J; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D

    2013-03-01

    Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis ('everything is everywhere, but, the environment selects') was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Lolium perenne roots were assessed in 40 geographically dispersed sites in Ireland representing different land uses and soil types. Field sampling and laboratory bioassays were used, with AMF communities characterised using 18S rRNA terminal-restriction fragment length polymorphism. Landscape-scale distribution of AMF was driven by the local environment. AMF community composition was influenced by abiotic variables (pH, rainfall and soil type), but not land use or geographical distance. Trifolium repens and L. perenne supported contrasting communities of AMF, and the communities colonising each plant species were consistent across pasture habitats and over distance. Furthermore, L. perenne AMF communities grouped by soil type within pasture habitats. This is the largest and most comprehensive study that has investigated the landscape-scale distribution of AMF. Our findings support the Baas-Becking hypothesis at the landscape scale and demonstrate the strong influence the local environment has on determining AMF community composition.

  10. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing.

    Science.gov (United States)

    Ma, Qiao; Qu, Yuanyuan; Shen, Wenli; Zhang, Zhaojing; Wang, Jingwei; Liu, Ziyan; Li, Duanxing; Li, Huijie; Zhou, Jiti

    2015-03-01

    In this study, Illumina high-throughput sequencing was used to reveal the community structures of nine coking wastewater treatment plants (CWWTPs) in China for the first time. The sludge systems exhibited a similar community composition at each taxonomic level. Compared to previous studies, some of the core genera in municipal wastewater treatment plants such as Zoogloea, Prosthecobacter and Gp6 were detected as minor species. Thiobacillus (20.83%), Comamonas (6.58%), Thauera (4.02%), Azoarcus (7.78%) and Rhodoplanes (1.42%) were the dominant genera shared by at least six CWWTPs. The percentages of autotrophic ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were unexpectedly low, which were verified by both real-time PCR and fluorescence in situ hybridization analyses. Hierarchical clustering and canonical correspondence analysis indicated that operation mode, flow rate and temperature might be the key factors in community formation. This study provides new insights into our understanding of microbial community compositions and structures of CWWTPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands.

    Science.gov (United States)

    Arroyo, Paula; Sáenz de Miera, Luis E; Ansola, Gemma

    2015-02-15

    Bacteria are key players in wetland ecosystems, however many essential aspects regarding the ecology of wetland bacterial communities remain unknown. The present study characterizes soil bacterial communities from natural and constructed wetlands through the pyrosequencing of 16S rDNA genes in order to evaluate the influence of wetland variables on bacterial community composition and structure. The results show that the composition of soil bacterial communities was significantly associated with the wetland type (natural or constructed wetland), the type of environment (lagoon, Typha or Salix) and three continuous parameters (SOM, COD and TKN). However, no clear associations were observed with soil pH. Bacterial diversity values were significantly lower in the constructed wetland with the highest inlet nutrient concentrations. The abundances of particular metabolic groups were also related to wetland characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G. F. (Ciska); Geuverink, Elzemiek; Olff, Han; Schmid, Bernhard

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  13. Large grazers modify effects of aboveground–belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G.F.; Geuverink, E.; Olff, H.

    2012-01-01

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  14. Organic fertilization alters the community composition of root associated fungi in Pisum sativum

    DEFF Research Database (Denmark)

    Yu, L.; Nicolaisen, M.; Ravnskov, S.

    2013-01-01

    Organic fertilization is well known to affect individual functional groups of root associated fungi such as arbuscular mycorrhizal (AM) fungi and root pathogens, but limited information is available on the effect of organic fertilization at the fungal community composition level. The main objective...... of the present study was to examine the response of communities of root associated fungi in Pisum sativum to Protamylasse, an organic fertilizer used in pea production. Plants were grown in pots with field soil amended with four different levels of Protamylasse. 454 pyrosequencing was employed to examine......, the organic fertilizer Protamylasse clearly affects communities of root associated fungi, which seems to be linked to the life strategy of the different functional groups of root associated fungi. --------------------------------------------------------------------------------...

  15. Feeding guild composition of a macrobenthic subtidal community along a depth gradient

    Directory of Open Access Journals (Sweden)

    Marina Dolbeth

    2009-06-01

    Full Text Available The feeding guild composition of a macrobenthic community from southern Portugal was studied along a depth gradient (1.3 to 32 m. This gradient comprised shallow areas with severe physical stress and deeper areas with no significant hydrodynamic impact at the seafloor. The main goal was to determine the influence of the spatial and temporal differences of the hydrodynamic impact at the seafloor on the feeding guild composition of the macrobenthic community. The feeding guild composition changed gradually with depth, which reflects the differences in the hydrodynamics impact at the seafloor. Herbivores and sand-lickers dominated at the shallowest depths with fine sands, which correlated with higher levels of primary production. Scavengers were also distributed in the shallow areas, which was associated with the lower predation impact. Suspension feeders, in accordance with their physiological requirements, were distributed in coarser sands subjected to a physical impact. Carnivores, surface deposit feeders and sub-surface deposit feeders were distributed mainly below 8 m depth, where there was no significant impact from the wave climate. Carnivores were associated with coarser sands and were mainly small polychaetes and nemerteans. Sub-surface and surface deposit feeders were more abundant in the deepest areas of the depth gradient with fine sands and mud deposits with higher organic content. However, surface deposit feeders also occurred at shallower depths. Some seasonal differences related to disturbance impacts were found in the numerical dominance of the feeding guilds.

  16. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    Science.gov (United States)

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  17. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    International Nuclear Information System (INIS)

    Coyne, P.; Smith, G.

    1995-01-01

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments

  18. Biofouling community composition across a range of environmental conditions and geographical locations suitable for floating marine renewable energy generation.

    Science.gov (United States)

    Macleod, Adrian K; Stanley, Michele S; Day, John G; Cook, Elizabeth J

    2016-01-01

    Knowledge of biofouling typical of marine structures is essential for engineers to define appropriate loading criteria in addition to informing other stakeholders about the ecological implications of creating novel artificial environments. There is a lack of information regarding biofouling community composition (including weight and density characteristics) on floating structures associated with future marine renewable energy generation technologies. A network of navigation buoys were identified across a range of geographical areas, environmental conditions (tidal flow speed, temperature and salinity), and deployment durations suitable for future developments. Despite the perceived importance of environmental and temporal factors, geographical location explained the greatest proportion of the observed variation in community composition, emphasising the importance of considering geography when assessing the impact of biofouling on device functioning and associated ecology. The principal taxa associated with variation in biofouling community composition were mussels (Mytilus edulis), which were also important when determining loading criteria.

  19. Proteotyping of laboratory-scale biogas plants reveals multiple steady-states in community composition.

    Science.gov (United States)

    Kohrs, F; Heyer, R; Bissinger, T; Kottler, R; Schallert, K; Püttker, S; Behne, A; Rapp, E; Benndorf, D; Reichl, U

    2017-08-01

    Complex microbial communities are the functional core of anaerobic digestion processes taking place in biogas plants (BGP). So far, however, a comprehensive characterization of the microbiomes involved in methane formation is technically challenging. As an alternative, enriched communities from laboratory-scale experiments can be investigated that have a reduced number of organisms and are easier to characterize by state of the art mass spectrometric-based (MS) metaproteomic workflows. Six parallel laboratory digesters were inoculated with sludge from a full-scale BGP to study the development of enriched microbial communities under defined conditions. During the first three month of cultivation, all reactors (R1-R6) were functionally comparable regarding biogas productions (375-625 NL L reactor volume -1 d -1 ), methane yields (50-60%), pH values (7.1-7.3), and volatile fatty acids (VFA, 1 gNH 3 L -1 ) showed an increase to pH 7.5-8.0, accumulation of acetate (>10 mM), and decreasing biogas production (<125 NL L reactor volume -1 d -1 ). Tandem MS (MS/MS)-based proteotyping allowed the identification of taxonomic abundances and biological processes. Although all reactors showed similar performances, proteotyping and terminal restriction fragment length polymorphisms (T-RFLP) fingerprinting revealed significant differences in the composition of individual microbial communities, indicating multiple steady-states. Furthermore, cellulolytic enzymes and cellulosomal proteins of Clostridium thermocellum were identified to be specific markers for the thermophilic reactors (R3, R4). Metaproteins found in R3 indicated hydrogenothrophic methanogenesis, whereas metaproteins of acetoclastic methanogenesis were identified in R4. This suggests not only an individual evolution of microbial communities even for the case that BGPs are started at the same initial conditions under well controlled environmental conditions, but also a high compositional variance of microbiomes under

  20. Floral diversity increases beneficial arthropod richness and decreases variability in arthropod community composition.

    Science.gov (United States)

    Bennett, Ashley B; Gratton, Claudio

    2013-01-01

    Declines in species diversity resulting from anthropogenic alterations of the environment heighten the need to develop management strategies that conserve species and ecosystem services. This study examined how native plant species and their diversity influence the abundance and richness of beneficial arthropods, a functionally important group that provides ecosystem services such as pollination and natural pest suppression. Beneficial arthropods were sampled in replicated study plots containing native perennials planted in one-, two-, and seven-species mixtures. We found plant diversity had a positive impact on arthropod richness but not on arthropod abundance. An analysis of arthropod community composition revealed that each flower species attracted a different assemblage of beneficial arthropods. In addition, the full seven-species mixture also attracted a distinct arthropod community compared to single-species monocultures. Using a multivariate approach, we determined whether arthropod assemblages in two- and seven-species plots were additive and could be predicted based on assemblages from their component single-species plots. On average, assemblages in diverse plots were nonadditive when compared to assemblages predicted using single-species plots. Arthropod assemblages in two-species plots most closely resembled those of only one of the flower species in the mixture. However, the arthropod assemblages in seven-species plots, although statistically deviating from the expectation of an additive model, more closely resembled predicted communities compared to the assemblages found in two-species plots, suggesting that variability in arthropod community composition decreased as planting diversity increased. Our study demonstrates that careful selection of plants in managed landscapes can augment beneficial arthropod richness and support a more predictable arthropod community, suggesting that planning and design efforts could shape arthropod assemblages in natural

  1. New molecular method to detect denitrifying anaerobic methane oxidation bacteria from different environmental niches.

    Science.gov (United States)

    Xu, Sai; Lu, Wenjing; Muhammad, Farooq Mustafa; Liu, Yanting; Guo, Hanwen; Meng, Ruihong; Wang, Hongtao

    2018-03-01

    The denitrifying anaerobic methane oxidation is an ecologically important process for reducing the potential methane emission into the atmosphere. The responsible bacterium for this process was Candidatus Methylomirabilis oxyfera belonging to the bacterial phylum of NC10. In this study, a new pair of primers targeting all the five groups of NC10 bacteria was designed to amplify NC10 bacteria from different environmental niches. The results showed that the group A was the dominant NC10 phylum bacteria from the sludges and food waste digestate while in paddy soil samples, group A and group B had nearly the same proportion. Our results also indicated that NC10 bacteria could exist in a high pH environment (pH9.24) from the food waste treatment facility. The Pearson relationship analysis showed that the pH had a significant positive relationship with the NC10 bacterial diversity (pbacteria. Copyright © 2017. Published by Elsevier B.V.

  2. Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II).

    Science.gov (United States)

    Chen, Chuan; Zhou, Xu; Wang, Aijie; Wu, Dong-hai; Liu, Li-hong; Ren, Nanqi; Lee, Duu-Jong

    2012-10-01

    The denitrifying sulfide removal (DSR) process can simultaneously convert sulfide, nitrate and organic compounds into elementary sulfur (S(0)), di-nitrogen gas and carbon dioxide, respectively. However, the S(0) formed in the DSR process are micro-sized colloids with negatively charged surface, making isolation of S(0) colloids from other biological cells and metabolites difficult. This study proposed the use of S(0) in DSR effluent as a novel adsorbent for zinc removal from wastewaters. Batch and continuous tests were conducted for efficient zinc removal with S(0)-containing DSR effluent. At pHremoval rates of zinc(II) were increased with increasing pH. The formed S(0) colloids carried negative charge onto which zinc(II) ions could be adsorbed via electrostatic interactions. The zinc(II) adsorbed S(0) colloids further enhanced coagulation-sedimentation efficiency of suspended solids in DSR effluents. The DSR effluent presents a promising coagulant for zinc(II) containing wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests

    Science.gov (United States)

    McIntosh, Anne C. S.; Macdonald, S. Ellen; Quideau, Sylvie A.

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  4. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta Forests.

    Directory of Open Access Journals (Sweden)

    Anne C S McIntosh

    Full Text Available Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs and multiple carbon-source substrate-induced respiration (MSIR of the forest floor microbial community environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis showed that two above-ground (mean tree diameter, litter cover and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs properties were associated with variation in understory plant community composition. These results provide

  5. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    Science.gov (United States)

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  6. Preliminary evaluation of an in vivo fluorometer to quantify algal periphyton biomass and community composition

    Science.gov (United States)

    Harris, Theodore D.; Graham, Jennifer L.

    2015-01-01

    The bbe-Moldaenke BenthoTorch (BT) is an in vivo fluorometer designed to quantify algal biomass and community composition in benthic environments. The BT quantifies total algal biomass via chlorophyll a (Chl-a) concentration and may differentiate among cyanobacteria, green algae, and diatoms based on pigment fluorescence. To evaluate how BT measurements of periphytic algal biomass (as Chl-a) compared with an ethanol extraction laboratory analysis, we collected BT- and laboratory-measured Chl-a data from 6 stream sites in the Indian Creek basin, Johnson County, Kansas, during August and September 2012. BT-measured Chl-a concentrations were positively related to laboratory-measured concentrations (R2 = 0.47); sites with abundant filamentous algae had weaker relations (R2 = 0.27). Additionally, on a single sample date, we used the BT to determine periphyton biomass and community composition upstream and downstream from 2 wastewater treatment facilities (WWTF) that discharge into Indian Creek. We found that algal biomass increased immediately downstream from the WWTF discharge then slowly decreased as distance from the WWTF increased. Changes in periphyton community structure also occurred; however, there were discrepancies between BT- and laboratory-measured community composition data. Most notably, cyanobacteria were present at all sites based on BT measurements but were present at only one site based on laboratory-analyzed samples. Overall, we found that the BT compared reasonably well with laboratory methods for relative patterns in Chl-a but not as well with absolute Chl-aconcentrations. Future studies need to test the BT over a wider range of Chl-aconcentrations, in colored waters, and across various periphyton assemblages.

  7. Heat Production by the Denitrifying Bacterium Pseudomonas fluorescens and the Dissimilatory Ammonium-Producing Bacterium Pseudomonas putrefaciens during Anaerobic Growth with Nitrate as the Electron Acceptor

    OpenAIRE

    Samuelsson, M.-O.; Cadez, P.; Gustafsson, L.

    1988-01-01

    The heat production rate and the simultaneous nitrate consumption and production and consumption of nitrite and nitrous oxide were monitored during the anaerobic growth of two types of dissimilatory nitrate reducers. Pseudomonas fluorescens, a denitrifier, consumed nitrate and accumulated small amounts of nitrite or nitrous oxide. The heat production rate increased steadily during the course of nitrate consumption and decreased rapidly concomitant with the depletion of the electron acceptors....

  8. Compositional divergence and convergence in local communities and spatially structured landscapes.

    Directory of Open Access Journals (Sweden)

    Tancredi Caruso

    Full Text Available Community structure depends on both deterministic and stochastic processes. However, patterns of community dissimilarity (e.g. difference in species composition are difficult to interpret in terms of the relative roles of these processes. Local communities can be more dissimilar (divergence than, less dissimilar (convergence than, or as dissimilar as a hypothetical control based on either null or neutral models. However, several mechanisms may result in the same pattern, or act concurrently to generate a pattern, and much research has recently been focusing on unravelling these mechanisms and their relative contributions. Using a simulation approach, we addressed the effect of a complex but realistic spatial structure in the distribution of the niche axis and we analysed patterns of species co-occurrence and beta diversity as measured by dissimilarity indices (e.g. Jaccard index using either expectations under a null model or neutral dynamics (i.e., based on switching off the niche effect. The strength of niche processes, dispersal, and environmental noise strongly interacted so that niche-driven dynamics may result in local communities that either diverge or converge depending on the combination of these factors. Thus, a fundamental result is that, in real systems, interacting processes of community assembly can be disentangled only by measuring traits such as niche breadth and dispersal. The ability to detect the signal of the niche was also dependent on the spatial resolution of the sampling strategy, which must account for the multiple scale spatial patterns in the niche axis. Notably, some of the patterns we observed correspond to patterns of community dissimilarities previously observed in the field and suggest mechanistic explanations for them or the data required to solve them. Our framework offers a synthesis of the patterns of community dissimilarity produced by the interaction of deterministic and stochastic determinants of community

  9. Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Elisabet Marti

    Full Text Available Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs, their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B, sul(I, sul(II, tet(O and tet(W were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river.

  10. ARK: Aggregation of Reads by K-Means for Estimation of Bacterial Community Composition.

    Science.gov (United States)

    Koslicki, David; Chatterjee, Saikat; Shahrivar, Damon; Walker, Alan W; Francis, Suzanna C; Fraser, Louise J; Vehkaperä, Mikko; Lan, Yueheng; Corander, Jukka

    2015-01-01

    Estimation of bacterial community composition from high-throughput sequenced 16S rRNA gene amplicons is a key task in microbial ecology. Since the sequence data from each sample typically consist of a large number of reads and are adversely impacted by different levels of biological and technical noise, accurate analysis of such large datasets is challenging. There has been a recent surge of interest in using compressed sensing inspired and convex-optimization based methods to solve the estimation problem for bacterial community composition. These methods typically rely on summarizing the sequence data by frequencies of low-order k-mers and matching this information statistically with a taxonomically structured database. Here we show that the accuracy of the resulting community composition estimates can be substantially improved by aggregating the reads from a sample with an unsupervised machine learning approach prior to the estimation phase. The aggregation of reads is a pre-processing approach where we use a standard K-means clustering algorithm that partitions a large set of reads into subsets with reasonable computational cost to provide several vectors of first order statistics instead of only single statistical summarization in terms of k-mer frequencies. The output of the clustering is then processed further to obtain the final estimate for each sample. The resulting method is called Aggregation of Reads by K-means (ARK), and it is based on a statistical argument via mixture density formulation. ARK is found to improve the fidelity and robustness of several recently introduced methods, with only a modest increase in computational complexity. An open source, platform-independent implementation of the method in the Julia programming language is freely available at https://github.com/dkoslicki/ARK. A Matlab implementation is available at http://www.ee.kth.se/ctsoftware.

  11. Long-term effects of plant diversity and composition on soil nematode communities in grassland.

    NARCIS (Netherlands)

    Viketoft, M.; Bengtsson, J.; Sohlenius, B.; Berg, M.P.; Petchey, O.; Palmborg, C.; Huss-Daniel, K.

    2009-01-01

    An important component of plant-soil feedbacks is how plant species identity and diversity influence soil organism communities. We examine the effects of grassland plant species growing alone and together up to a richness of 12 species on nematode diversity and feeding group composition, eight years

  12. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents.

    Science.gov (United States)

    Ochoa-Hueso, Raúl; Collins, Scott L; Delgado-Baquerizo, Manuel; Hamonts, Kelly; Pockman, William T; Sinsabaugh, Robert L; Smith, Melinda D; Knapp, Alan K; Power, Sally A

    2018-03-05

    The effects of short-term drought on soil microbial communities remain largely unexplored, particularly at large scales and under field conditions. We used seven experimental sites from two continents (North America and Australia) to evaluate the impacts of imposed extreme drought on the abundance, community composition, richness, and function of soil bacterial and fungal communities. The sites encompassed different grassland ecosystems spanning a wide range of climatic and soil properties. Drought significantly altered the community composition of soil bacteria and, to a lesser extent, fungi in grasslands from two continents. The magnitude of the fungal community change was directly proportional to the precipitation gradient. This greater fungal sensitivity to drought at more mesic sites contrasts with the generally observed pattern of greater drought sensitivity of plant communities in more arid grasslands, suggesting that plant and microbial communities may respond differently along precipitation gradients. Actinobateria, and Chloroflexi, bacterial phyla typically dominant in dry environments, increased their relative abundance in response to drought, whereas Glomeromycetes, a fungal class regarded as widely symbiotic, decreased in relative abundance. The response of Chlamydiae and Tenericutes, two phyla of mostly pathogenic species, decreased and increased along the precipitation gradient, respectively. Soil enzyme activity consistently increased under drought, a response that was attributed to drought-induced changes in microbial community structure rather than to changes in abundance and diversity. Our results provide evidence that drought has a widespread effect on the assembly of microbial communities, one of the major drivers of soil function in terrestrial ecosystems. Such responses may have important implications for the provision of key ecosystem services, including nutrient cycling, and may result in the weakening of plant-microbial interactions and a

  13. Bacterial community composition in the water column of a lake formed by a former uranium open pit mine.

    Science.gov (United States)

    Edberg, Frida; Andersson, Anders F; Holmström, Sara J M

    2012-11-01

    Mining of pyrite minerals is a major environmental issue involving both biological and geochemical processes. Here we present a study of an artificial lake of a former uranium open pit mine with the aim to connect the chemistry and bacterial community composition (454-pyrosequencing of 16S rRNA genes) in the stratified water column. A shift in the water chemistry from oxic conditions in the epilimnion to anoxic, alkaline, and metal and sulfide-rich conditions in the hypolimnion was corresponded by a strong shift in the bacterial community, with few shared operational taxonomic units (OTU) between the water layers. The epilimnetic bacterial community of the lake (~20 years old) showed similarities to other temperate freshwater lakes, while the hypolimnetic bacterial community showed similarity to extreme chemical environments. The epilimnetic bacterial community had dominance of Actinobacteria and Betaproteobacteria. The hypolimnion displayed a higher bacterial diversity and was dominated by the phototrophic green sulphur bacterium of the genus Chlorobium (ca. 40 % of the total community). Deltaproteobacteria were only represented in the hypolimnion and the most abundant OTUs were affiliated with ferric iron and sulfate reducers of the genus Geobacter and Desulfobulbus, respectively. The chemistry is clearly controlling, especially the hypolimnetic, bacterial community but the community composition also indicates that the bacteria are involved in metal cycling in the lake.

  14. Effect of investigator disturbance in experimental forensic entomology: succession and community composition.

    Science.gov (United States)

    De Jong, G D; Hoback, W W

    2006-06-01

    Carrion insect succession studies have historically used repeated sampling of single or a few carcasses to produce data, either weighing the carcasses, removing a qualitative subsample of the fauna present, or both, on every visit over the course of decomposition and succession. This study, conducted in a set of related experimental hypotheses with two trials in a single season, investigated the effect that repeated sampling has on insect succession, determined by the number of taxa collected on each visit and by community composition. Each trial lasted at least 21 days, with daily visits on the first 14 days. Rat carcasses used in this study were all placed in the field on the same day, but then either sampled qualitatively on every visit (similar to most succession studies) or ignored until a given day of succession, when they were sampled qualitatively (a subsample) and then destructively sampled in their entirety. Carcasses sampled on every visit were in two groups: those from which only a sample of the fauna was taken and those from which a sample of fauna was taken and the carcass was weighed for biomass determination. Of the carcasses visited only once, the number of taxa in subsamples was compared to the actual number of taxa present when the carcass was destructively sampled to determine if the subsamples adequately represented the total carcass fauna. Data from the qualitative subsamples of those carcasses visited only once were also compared to data collected from carcasses that were sampled on every visit to investigate the effect of the repeated sampling. A total of 39 taxa were collected from carcasses during the study and the component taxa are discussed individually in relation to their role in succession. Number of taxa differed on only one visit between the qualitative subsamples and the actual number of taxa present, primarily because the organisms missed by the qualitative sampling were cryptic (hidden deep within body cavities) or rare (only

  15. Fish-mediated changes in bacterioplankton community composition: an in situ mesocosm experiment

    Science.gov (United States)

    Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen

    2017-06-01

    We characterized variations in bacterioplankton community composition (BCC) in mesocosms subject to three different treatments. Two groups contained fish (group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-day period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly different between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected inC. carpio mesocosms. The redundancy analysis (RDA) result demonstrated that the BCC was closely related to the bottom-up (total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces (biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa (heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.

  16. Fish-mediated changes in bacterioplankton community composition: an in situ mesocosm experiment

    Science.gov (United States)

    Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen

    2018-03-01

    We characterized variations in bacterioplankton community composition (BCC) in mesocosms subject to three different treatments. Two groups contained fish (group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-d period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly different between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected in C. carpio mesocosms. The redundancy analysis (RDA) result demonstrated that the BCC was closely related to the bottom-up (total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces (biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa (heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.

  17. Reactor staging influences microbial community composition and diversity of denitrifying MBBRs- Implications on pharmaceutical removal

    DEFF Research Database (Denmark)

    Torresi, Elena; Gülay, Arda; Polesel, Fabio

    2018-01-01

    The subdivision of biofilm reactor in two or more stages (i.e., reactor staging) represents an option for process optimisation of biological treatment. In our previous work, we showed that the gradient of influent organic substrate availability (induced by the staging) can influence the microbial...

  18. The effect of native and introduced biofuel crops on the composition of soil biota communities

    Science.gov (United States)

    Frouz, Jan; Hedenec, Petr

    2016-04-01

    Biofuel crops are an accepted alternative to fossil fuels, but little is known about the ecological impact of their production. The aim of this contribution is to study the effect of native (Salix viminalis and Phalaris arundinacea) and introduced (Helianthus tuberosus, Reynoutria sachalinensis and Silphium perfoliatum) biofuel crop plantations on the soil biota in comparison with cultural meadow vegetation used as control. The study was performed as part of a split plot field experiment of the Crop Research Institute in the city of Chomutov (Czech Republic). The composition of the soil meso- and macrofauna community, composition of the cultivable fraction of the soil fungal community, cellulose decomposition (using litter bags), microbial biomass, basal soil respiration and PLFA composition (incl. F/B ratio) were studied in each site. The C:N ratio and content of polyphenols differed among plant species, but these results could not be considered significant between introduced and native plant species. Abundance of the soil meso- and macrofauna was higher in field sites planted with S. viminalis and P. arundinacea than those planted with S. perfoliatum, H. tuberosus and R. sachalinensis. RDA and Monte Carlo Permutation Test showed that the composition of the faunal community differed significantly between various native and introduced plants. Significantly different basal soil respiration was found in sites planted with various energy crops; however, this difference was not significant between native and introduced species. Microbial biomass carbon and cellulose decomposition did not exhibit any statistical differences among the biofuel crops. The largest statistically significant difference we found was in the content of actinobacterial and bacterial (bacteria, G+ bacteria and G- bacteria) PLFA in sites overgrown by P. arundinacea compared to introduced as well as native biofuel crops. In conclusion, certain parameters significantly differ between various native

  19. Community composition of picoeukaryotes in the South China Sea during winter

    Science.gov (United States)

    Lin, Yun-Chi; Chiang, Kuo-Ping; Kang, Lee-Kuo

    2017-07-01

    Picoeukaryotes, the smallest protists, are highly diverse and abundant in the ocean. However, little information is available about their community composition in the tropical northwestern Pacific Ocean. This study collected surface and deep chlorophyll maximum (DCM) waters from the South China Sea (SCS) to study the picoeukaryotic composition by constructing clone libraries of the 18S rRNA gene. The libraries were dominated by the heterotrophic organisms, alveolates and Rhizaria, which accounted for 46% and 16% of total clones, respectively. MALV-I was the most abundant group in alveolates, and Rhizaria appears to be a key organism in the SCS, particularly within DCM layers. These results indicate that parasitism is significant in the oligotrophic and tropical SCS. Apart from core-dinoflagellates, chlorophytes, haptophytes, cryptophytes and pelagophytes were other important contributors to primary production in pico-sized fraction based on quantitative and qualitative data.

  20. Association between Trichomonas vaginalis and vaginal bacterial community composition among reproductive-age women

    Science.gov (United States)

    Brotman, Rebecca M.; Bradford, L. Latey; Conrad, Melissa; Gajer, Pawel; Ault, Kevin; Peralta, Ligia; Forney, Larry J.; Carlton, Jane M.; Abdo, Zaid; Ravel, Jacques

    2012-01-01

    Objectives Some vaginal bacterial communities are thought to prevent infection by sexually transmitted organisms. Prior work demonstrated that the vaginal microbiota of reproductive-age women cluster into five types of bacterial communities; 4 dominated by Lactobacillus species (L. iners, L. crispatus, L. gasseri, L. jensenii), and one (termed community state type (CST) IV) lacking significant numbers of lactobacilli and characterized by higher proportions of Atopobium, Prevotella, Parvimonas, Sneathia, Gardnerella, Mobiluncus, and other taxa. We sought to evaluate the relationship between vaginal bacterial composition and Trichomonas vaginalis. Methods Self-collected vaginal swabs were obtained cross-sectionally from 394 women equally representing four ethnic/racial groups. T. vaginalis screening was performed using PCR targeting the 18S rRNA and β-tubulin genes. Vaginal bacterial composition was characterized by pyrosequencing of barcoded 16S rRNA genes. A panel of eleven microsatellite markers was used to genotype T. vaginalis. The association between vaginal microbiota and T. vaginalis was evaluated by exact logistic regression. Results T. vaginalis was detected in 2.8% of participants (11/394). Of the eleven T. vaginalis-positive cases, eight (72%) were categorized as CST-IV, two (18%) as communities dominated by L. iners and one (9%) as L. crispatus-dominated (p-value:0.05). CST-IV microbiota were associated with an 8-fold increased odds of detecting T. vaginalis compared to women in the L. crispatus-dominated state (OR:8.26, 95% CI:1.07–372.65). Seven of the 11 T. vaginalis isolates were assigned to two genotypes. Conclusion T. vaginalis was associated with vaginal microbiota consisting of low proportions of lactobacilli and high proportions of Mycoplasma, Parvimonas, Sneathia, and other anaerobes. PMID:23007708

  1. Response of herbaceous plant community diversity and composition to overstorey harvest within riparian management zones in Northern Hardwoods

    Science.gov (United States)

    Eric K. Zenner; Michelle A. Martin; Brian J. Palik; Jerilynn E. Peck; Charles R. Blinn

    2013-01-01

    Partial timber harvest within riparian management zones (RMZs) may permit active management of riparian forests while protecting stream ecosystems, but impacts on herbaceous communities are poorly understood. We compared herbaceous plant community abundance, diversity and composition in RMZs along small streams in northern Minnesota, USA, among four treatments before...

  2. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland.

    Directory of Open Access Journals (Sweden)

    Erica N Spotswood

    Full Text Available Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species, temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.

  3. Hotspots of Community Change: Temporal Dynamics Are Spatially Variable in Understory Plant Composition of a California Oak Woodland.

    Science.gov (United States)

    Spotswood, Erica N; Bartolome, James W; Allen-Diaz, Barbara

    2015-01-01

    Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.

  4. Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands

    Czech Academy of Sciences Publication Activity Database

    Oja, J.; Vahtra, J.; Bahram, M.; Kohout, Petr; Kull, T.; Rannap, R.; Köljalg, U.; Tedersoo, L.

    2017-01-01

    Roč. 27, č. 4 (2017), s. 355-367 ISSN 0940-6360 Institutional support: RVO:67985939 Keywords : mycorrhiza * orchids * fungal community composition * calcareous grassland * spatial distribution * grazing intensity Subject RIV: EF - Botanics OBOR OECD: Ecology Impact factor: 3.047, year: 2016

  5. Contribution of trace metals in structuring in situ macroinvertebrate community composition along a salinity gradient

    NARCIS (Netherlands)

    Peeters, E.T.H.M.; Gardeniers, J.J.P.; Koelmans, A.A.

    2000-01-01

    Macroinvertebrates were studied along a salinity gradient in the North Sea Canal, The Netherlands, to quantify the effect of trace metals (cadmium, copper, lead, zinc) on community composition. In addition, two methods for assessing metal bioavailability (normalizing metal concentrations on organic

  6. Use of vegetable oil in a pilot-scale denitrifying barrier

    Science.gov (United States)

    Hunter, William J.

    2001-12-01

    Nitrate in drinking water is a hazard to both humans and animals. Contaminated water can cause methemoglobinemia and may pose a cancer risk. Permeable barriers containing innocuous oils, which stimulate denitrification, can remove nitrate from flowing groundwater. For this study, a sand tank (1.1×2.0×0.085 m in size) containing sand was used as a one-dimensional open-top scale model of an aquifer. A meter-long area near the center of the tank contained sand coated with soybean oil. This region served as a permeable denitrifying barrier. Water containing 20 mg l -1 nitrate-N was pumped through the barrier at a high flow rate, 1112 l week -1, for 30 weeks. During the 30-week study, the barrier removed 39% of the total nitrate-N present in the water. The barrier was most efficient during the first 10 weeks of the study when almost all of the nitrate and nitrogen was removed. Efficiency declined with time so that by week 30 almost no nitrate was removed by the system. Nitrite levels in the effluent water remained low throughout the study. Barriers could be used to protect groundwater from nitrate contamination or for the in situ treatment of contaminated water. At the low flow rates that exist in most aquifers, such barriers should be effective at removing nitrate from groundwater for a much longer period of time.

  7. Wild Bee Community Composition and Foraging Behaviour in Commercial Strawberries

    DEFF Research Database (Denmark)

    Ahrenfeldt, Erica Juel

    possibly due to the low biodiversity offered by many commercially driven, single species, Danish forests. At field scale (I) bee species richness was higher in field margins compared to field centres but there was no difference between centre and margin in body-size or activity-density. Sampling time had...... an effect on wild bee community composition with higher activity-density and species richness in late May and late June than in early and mid-June (II). Results thus indicate that functional diversity of visiting wild bee assemblages in strawberry differs depending on the spatial and time scale...

  8. Effect of polybrominated diphenyl ether (PBDE) treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis.

    KAUST Repository

    Tian, Ren-Mao

    2014-01-01

    Marine sponges play important roles in benthic environments and are sensitive to environmental stresses. Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants since the 1970s and are cytotoxic and genotoxic to organisms. In the present study, we studied the short-period effect of PBDE-47 (2,2\\',4,4\\'-tetrabromodiphenyl ether) treatment on the community structure and functional gene composition of the bacterial community inhabiting the marine sponge Haliclona cymaeformis. Our results showed that the bacterial community shifted from an autotrophic bacteria-dominated community to a heterotrophic bacteria-dominated community in response to PBDE-47 in a time- and concentration-dependent manner. A potentially symbiotic sulfur-oxidizing bacterium (SOB) was dominant (>80% in abundance) in the untreated sponge. However, exposure to a high concentration (1 μg/L) of PBDE-47 caused a substantial decrease in the potential symbiont and an enrichment of heterotrophic bacteria like Clostridium. A metagenomic analysis showed a selective effect of the high concentration treatment on the functional gene composition of the enriched heterotrophic bacteria, revealing an enrichment for the functions responsible for DNA repair, multidrug efflux pumping, and bacterial chemotaxis and motility. This study demonstrated that PBDE-47 induced a shift in the composition of the community and functional genes in the sponge-associated bacterial community, revealing the selective effect of PBDE-47 treatment on the functions of the bacterial community in the microenvironment of the sponge.

  9. Free-living protozoa in drinking water supplies: community composition and role as hosts for Legionella pneumophila

    OpenAIRE

    Valster, R.M.

    2011-01-01

    Free-living protozoa in drinking water supplies: community composition and role as hosts for Legionella pneumophila Free-living protozoa, which feed on bacteria, play an important role in the communities of microorganisms and invertebrates in drinking water supplies and in (warm) tap water installations. Several bacteria, including opportunistic human pathogens such as Legionella pneumophila, are able to survive and replicate within protozoan hosts, and certain free-living protozoa are opp...

  10. Interactive effects of warming and increased precipitation on community structure and composition in an annual forb dominated desert steppe.

    Directory of Open Access Journals (Sweden)

    Yanhui Hou

    Full Text Available To better understand how warming, increased precipitation and their interactions influence community structure and composition, a field experiment simulating hydrothermal interactions was conducted at an annual forb dominated desert steppe in northern China over 2 years. Increased precipitation increased species richness while warming significantly decreased species richness, and their effects were additive rather than interactive. Although interannual variations in weather conditions may have a major affect on plant community composition on short term experiments, warming and precipitation treatments affected individual species and functional group composition. Warming caused C4 grasses such as Cleistogenes squarrosa to increase while increased precipitation caused the proportions of non-perennial C3 plants like Artemisia capillaris to decrease and perennial C4 plants to increase.

  11. Biofilm scrubbing for restoration—algae community composition and succession in artificial streams

    Directory of Open Access Journals (Sweden)

    Magdalena Mayr

    2016-09-01

    Full Text Available Photoautotrophic biofilms play a pivotal role in self-purification of rivers. We took advantage of the biofilm’s cleaning capacity by applying artificial stream mesocosms, called algae turf scrubberTM (ATS, to reduce the nutrient load of a highly eutrophicated backwater in Vienna (Austria. Since purification strongly depends on benthic algae on the ATS, we focused on the algae community composition and succession. Estimation of coverage, photographic documentation for micromapping, species identification and pigment analyses were carried out. Already one week after exposition, 20–30 different taxa were recorded, suggesting a rapid colonization of the substrate. In total around 200 taxa were identified, mainly belonging to Chlorophyta, Bacillariophyceae and Cyanoprokaryota. Nonmetric multidimensional scaling implied that season and succession strongly influenced species composition on the ATS and a minimum turnover of 0.28 indicates a development towards a more stable community at the end of experiments. We measured maximum biomass production of ~250 g m−2 in June and August and during a period of 5 months nearly 19 kg ha−1 phosphorus could be removed. ATS systems proved to retain nutrients and produce algae biomass in an environmentally friendly and cost effective way and thus support restoration of highly eutrophicated water bodies.

  12. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities.

    Science.gov (United States)

    Lindh, Markus V; Figueroa, Daniela; Sjöstedt, Johanna; Baltar, Federico; Lundin, Daniel; Andersson, Agneta; Legrand, Catherine; Pinhassi, Jarone

    2015-01-01

    Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundances than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating an adjustment effect. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, a priming effect resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial ecosystem process rates.

  13. Large-Scale Mapping of Tree-Community Composition as a Surrogate of Forest Degradation in Bornean Tropical Rain Forests

    Directory of Open Access Journals (Sweden)

    Shogoro Fujiki

    2016-12-01

    Full Text Available Assessment of the progress of the Aichi Biodiversity Targets set by the Convention on Biological Diversity (CBD and the safeguarding of ecosystems from the perverse negative impacts caused by Reducing Emissions from Deforestation and Forest Degradation Plus (REDD+ requires the development of spatiotemporally robust and sensitive indicators of biodiversity and ecosystem health. Recently, it has been proposed that tree-community composition based on count-plot surveys could serve as a robust, sensitive, and cost-effective indicator for forest intactness in Bornean logged-over rain forests. In this study, we developed an algorithm to map tree-community composition across the entire landscape based on Landsat imagery. We targeted six forest management units (FMUs, each of which ranged from 50,000 to 100,000 ha in area, covering a broad geographic range spanning the most area of Borneo. Approximately fifty 20 m-radius circular plots were established in each FMU, and the differences in tree-community composition at a genus level among plots were examined for trees with diameter at breast height ≥10 cm using an ordination with non-metric multidimensional scaling (nMDS. Subsequently, we developed a linear regression model based on Landsat metrics (e.g., reflectance value, vegetation indices and textures to explain the nMDS axis-1 scores of the plots, and extrapolated the model to the landscape to establish a tree-community composition map in each FMU. The adjusted R2 values based on a cross-validation approach between the predicted and observed nMDS axis-1 scores indicated a close correlation, ranging from 0.54 to 0.69. Histograms of the frequency distributions of extrapolated nMDS axis-1 scores were derived from each map and used to quantitatively diagnose the forest intactness of the FMUs. Our study indicated that tree-community composition, which was reported as a robust indicator of forest intactness, could be mapped at a landscape level to

  14. The community composition and production of phytoplankton in fish pens of Cape Bolinao, Pangasinan: a field study

    International Nuclear Information System (INIS)

    Yap, Leni G.; Azanza, Rhodora V.; Talaue-McManus, Liana

    2004-01-01

    From 1995 up to the present, fish pens proliferated in the municipal waters of Bolinao, northern Philippines. Since then, fish kills and phytoplankton blooms have been recurrent. Have fishpens altered the phytoplankton community composition and production of these waters? The phytoplankton community in Cape Bolinao, Lingayen Gulf is typical of a tropical coastal area where diatoms alternate with dinoflagellates during the dry and wet seasons. In the nutrient-rich fish pens, phytoplankton in this study showed a lower diatom/dinoflagellate ratio and unusually high phytoplankton counts of 10 4 cells/l and even as high as 10 5 cells/l. Correlations between physico-chemical parameters, phytoplankton production and community composition were made in 2001. This paper tried to explain the occurrence of a Cylindrotheca closterium bloom (10 5 cells/l), during the dry season of the same year and a Prorocentrum minimum bloom (4.7 x 10 5 cells/l), which accompanied a massive fish kill during January 2002

  15. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils.

    Science.gov (United States)

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  16. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition.

    Science.gov (United States)

    Bradford, Mark A; Wood, Stephen A; Bardgett, Richard D; Black, Helaina I J; Bonkowski, Michael; Eggers, Till; Grayston, Susan J; Kandeler, Ellen; Manning, Peter; Setälä, Heikki; Jones, T Hefin

    2014-10-07

    Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such "multifunctionality" has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson's paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding--and in management decisions--about how biodiversity is related to the provision of multiple ecosystem services.

  17. Effects of the pyrethroid insecticide cypermethrin on a freshwater community studied under field conditions. II. Direct and indirect effects on the species composition

    DEFF Research Database (Denmark)

    Wendt-Rasch, Lina; Friberg-Jensen, Ursula; Woin, Per

    2003-01-01

    species were calculated using inverse regression and revealed that copepod nauplii were the most sensitive (NEC=0.01 microg/l) of the crustacean groups examined. The observed alterations of the species composition of the autotrophic communities as well as of the rotifers were most likely caused indirectly...... cypermethrin concentrations, ranging from 0.01 to 6 microg/l. This paper is the second in a series of two and describes the effects on the species composition of the crustacean, rotifer, periphyton and phytoplankton communities. Multivariate ordination technique (redundancy analysis (RDA) combined with Monte...... Carlo permutation tests) showed that exposure to cypermethrin caused significant changes in the species composition of the communities. Changes in the structure of the communities were observed following exposure to a nominal concentration of 0.13 microg cypermethrin per litre above. The direct acute...

  18. Assessing historical fish community composition using surveys, historical collection data, and species distribution models.

    Science.gov (United States)

    Labay, Ben; Cohen, Adam E; Sissel, Blake; Hendrickson, Dean A; Martin, F Douglas; Sarkar, Sahotra

    2011-01-01

    Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of

  19. Structure and composition of oligohaline marsh plant communities exposed to salinity pulses

    Science.gov (United States)

    Howard, R.J.; Mendelssohn, I.A.

    2000-01-01

    The response of two oligohaline marsh macrophyte communities to pulses of increased salinity was studied over a single growing season in a greenhouse experiment. The plant communities were allowed a recovery period in freshwater following the pulse events. The experimental treatments included: (1) salinity influx rate (rate of salinity increase from 0 to 12 gl-1); (2) duration of exposure to elevated salinity; and (3) water depth. The communities both included Sagittaria lancifolia L.; the codominant species were Eleocharis palustris (L.) Roemer and J.A. Schultes in community 1 and Schoenoplectus americanus (Pers.) Volk. ex Schinz and R. Keller in community 2. Effects of the treatments on sediment chemical characteristics (salinity, pH, redox potential, and sulfide and ammonium concentrations) and plant community attributes (aboveground and belowground biomass, stem density, leaf tissue nutrients, and species richness) were examined. The treatment effects often interacted to influence sediment and plant communities characteristics following recovery in fresh water. Salinity influx rate per se, however, had little effect on the abiotic or biotic response variables; significant influx effects were found when the 0 gl-1 (zero influx) treatment was compared to the 12 gl-1 treatments, regardless of the rate salinity was raised. A salinity level of 12 gl-1 had negative effects on plant community structure and composition; these effects were usually associated with 3 months of salinity exposure. Water depth often interacted with exposure duration, but increased water depth did independently decrease the values of some community response measures. Community 1 was affected more than community 2 in the most extreme salinity treatment (3 months exposure/15-cm water depth). Although species richness in both communities was reduced, structural changes were more dramatic in community 1. Biomass and stem density were reduced in community 1 overall and in both dominant species

  20. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce

    Science.gov (United States)

    Rastogi, Gurdeep; Sbodio, Adrian; Tech, Jan J; Suslow, Trevor V; Coaker, Gitta L; Leveau, Johan H J

    2012-01-01

    The presence, size and importance of bacterial communities on plant leaf surfaces are widely appreciated. However, information is scarce regarding their composition and how it changes along geographical and seasonal scales. We collected 106 samples of field-grown Romaine lettuce from commercial production regions in California and Arizona during the 2009–2010 crop cycle. Total bacterial populations averaged between 105 and 106 per gram of tissue, whereas counts of culturable bacteria were on average one (summer season) or two (winter season) orders of magnitude lower. Pyrosequencing of 16S rRNA gene amplicons from 88 samples revealed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the most abundantly represented phyla. At the genus level, Pseudomonas, Bacillus, Massilia, Arthrobacter and Pantoea were the most consistently found across samples, suggesting that they form the bacterial ‘core' phyllosphere microbiota on lettuce. The foliar presence of Xanthomonas campestris pv. vitians, which is the causal agent of bacterial leaf spot of lettuce, correlated positively with the relative representation of bacteria from the genus Alkanindiges, but negatively with Bacillus, Erwinia and Pantoea. Summer samples showed an overrepresentation of Enterobacteriaceae sequences and culturable coliforms compared with winter samples. The distance between fields or the timing of a dust storm, but not Romaine cultivar, explained differences in bacterial community composition between several of the fields sampled. As one of the largest surveys of leaf surface microbiology, this study offers new insights into the extent and underlying causes of variability in bacterial community composition on plant leaves as a function of time, space and environment. PMID:22534606

  1. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce.

    Science.gov (United States)

    Rastogi, Gurdeep; Sbodio, Adrian; Tech, Jan J; Suslow, Trevor V; Coaker, Gitta L; Leveau, Johan H J

    2012-10-01

    The presence, size and importance of bacterial communities on plant leaf surfaces are widely appreciated. However, information is scarce regarding their composition and how it changes along geographical and seasonal scales. We collected 106 samples of field-grown Romaine lettuce from commercial production regions in California and Arizona during the 2009-2010 crop cycle. Total bacterial populations averaged between 10(5) and 10(6) per gram of tissue, whereas counts of culturable bacteria were on average one (summer season) or two (winter season) orders of magnitude lower. Pyrosequencing of 16S rRNA gene amplicons from 88 samples revealed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the most abundantly represented phyla. At the genus level, Pseudomonas, Bacillus, Massilia, Arthrobacter and Pantoea were the most consistently found across samples, suggesting that they form the bacterial 'core' phyllosphere microbiota on lettuce. The foliar presence of Xanthomonas campestris pv. vitians, which is the causal agent of bacterial leaf spot of lettuce, correlated positively with the relative representation of bacteria from the genus Alkanindiges, but negatively with Bacillus, Erwinia and Pantoea. Summer samples showed an overrepresentation of Enterobacteriaceae sequences and culturable coliforms compared with winter samples. The distance between fields or the timing of a dust storm, but not Romaine cultivar, explained differences in bacterial community composition between several of the fields sampled. As one of the largest surveys of leaf surface microbiology, this study offers new insights into the extent and underlying causes of variability in bacterial community composition on plant leaves as a function of time, space and environment.

  2. Urbanization alters the functional composition, but not taxonomic diversity, of the soil nematode community

    Science.gov (United States)

    Mitchell A. Pavao-Zuckerman; David C. Coleman

    2007-01-01

    We evaluated the response of riparian forest soil nematode community structure to the physico-chemical environment associated with urban land use. Soils were sampled seasonally between December 2000 and October 2002 along an urban-rural transect in Asheville, North Carolina. We characterized the taxonomic (to genus) and functional composition (trophic groups) of the...

  3. Exploring the dynamics of bacterial community composition in soil: the pan-bacteriome approach.

    Science.gov (United States)

    Bacci, Giovanni; Ceccherini, Maria Teresa; Bani, Alessia; Bazzicalupo, Marco; Castaldini, Maurizio; Galardini, Marco; Giovannetti, Luciana; Mocali, Stefano; Pastorelli, Roberta; Pantani, Ottorino Luca; Arfaioli, Paola; Pietramellara, Giacomo; Viti, Carlo; Nannipieri, Paolo; Mengoni, Alessio

    2015-03-01

    We performed a longitudinal study (repeated observations of the same sample over time) to investigate both the composition and structure of temporal changes of bacterial community composition in soil mesocosms, subjected to three different treatments (water and 5 or 25 mg kg(-1) of dried soil Cd(2+)). By analogy with the pan genome concept, we identified a core bacteriome and an accessory bacteriome. Resident taxa were assigned to the core bacteriome, while occasional taxa were assigned to the accessory bacteriome. Core and accessory bacteriome represented roughly 35 and 50 % of the taxa detected, respectively, and were characterized by different taxonomic signatures from phylum to genus level while 15 % of the taxa were found to be unique to a particular sample. In particular, the core bacteriome was characterized by higher abundance of members of Planctomycetes, Actinobacteria, Verrucomicrobia and Acidobacteria, while the accessory bacteriome included more members of Firmicutes, Clamydiae and Proteobacteria, suggesting potentially different responses to environmental changes of members from these phyla. We conclude that the pan-bacteriome model may be a useful approach to gain insight for modeling bacterial community structure and inferring different abilities of bacteria taxa.

  4. The effect of positive interactions on temporal turnover of community composition along an environmental gradient.

    Directory of Open Access Journals (Sweden)

    Youshi Wang

    Full Text Available It has been demonstrated that the interplay between negative and positive interactions simultaneously shapes community structure and composition. However, few studies have attempted to examine the effect of facilitation on compositional changes in communities through time. Additionally, due to the difficulties in collecting the long-term data, it would be useful to indicate the rate of temporal turnover using a readily obtainable metric. Using an individual-based model incorporating plant strategies, we examined the role of facilitation on the temporal turnover of communities located at different positions along an environmental gradient for three model scenarios: CM without facilitation; CFM-U, a unimodal relationship between facilitation and environmental severity; and CFM-L, a positively linear relationship between facilitation and environmental severity. Our results demonstrated that facilitation could increase, decrease or have no remarkable effect on temporal turnover. The specific outcome depended on the location of the focal community across the environmental gradient and the model employed. Compared with CM, the inclusion of positive interactions (i.e. CFM-U and CFM-L, at intermediate environmental stress levels (such as S = 0.7 and 0.8 resulted in lower Bray-Curtis similarity values; at other severity levels, facilitation slowed down (such as S = 0.3 and 0.4 at low to medium stress levels, and S = 0.9 at high stress levels or had only a subtle effect (such as at S = 0.1 on temporal turnover. We also found that the coefficient of variation (CV in species abundances and the rate of temporal variability showed a significant quadratic relationship. Our theoretical analysis contributes to the understanding of factors driving temporal turnover in biotic communities, and presents a potential metric (i.e. CV in species abundances assessing the consequences of ongoing environmental change on community structure.

  5. The effect of positive interactions on temporal turnover of community composition along an environmental gradient.

    Science.gov (United States)

    Wang, Youshi; Yang, Zhiyong; Zhou, Shurong; Soininen, Janne; Ai, Dexiecuo; Li, Yali; Chu, Chengjin

    2013-01-01

    It has been demonstrated that the interplay between negative and positive interactions simultaneously shapes community structure and composition. However, few studies have attempted to examine the effect of facilitation on compositional changes in communities through time. Additionally, due to the difficulties in collecting the long-term data, it would be useful to indicate the rate of temporal turnover using a readily obtainable metric. Using an individual-based model incorporating plant strategies, we examined the role of facilitation on the temporal turnover of communities located at different positions along an environmental gradient for three model scenarios: CM without facilitation; CFM-U, a unimodal relationship between facilitation and environmental severity; and CFM-L, a positively linear relationship between facilitation and environmental severity. Our results demonstrated that facilitation could increase, decrease or have no remarkable effect on temporal turnover. The specific outcome depended on the location of the focal community across the environmental gradient and the model employed. Compared with CM, the inclusion of positive interactions (i.e. CFM-U and CFM-L), at intermediate environmental stress levels (such as S = 0.7 and 0.8) resulted in lower Bray-Curtis similarity values; at other severity levels, facilitation slowed down (such as S = 0.3 and 0.4 at low to medium stress levels, and S = 0.9 at high stress levels) or had only a subtle effect (such as at S = 0.1) on temporal turnover. We also found that the coefficient of variation (CV) in species abundances and the rate of temporal variability showed a significant quadratic relationship. Our theoretical analysis contributes to the understanding of factors driving temporal turnover in biotic communities, and presents a potential metric (i.e. CV in species abundances) assessing the consequences of ongoing environmental change on community structure.

  6. Effects of simulated acid rain on soil fauna community composition and their ecological niches.

    Science.gov (United States)

    Wei, Hui; Liu, Wen; Zhang, Jiaen; Qin, Zhong

    2017-01-01

    Acid rain is one of the severest environmental issues globally. Relative to other global changes (e.g., warming, elevated atmospheric [CO 2 ], and nitrogen deposition), however, acid rain has received less attention than its due. Soil fauna play important roles in multiple ecological processes, but how soil fauna community responds to acid rain remains less studied. This microcosm experiment was conducted using latosol with simulated acid rain (SAR) manipulations to observe potential changes in soil fauna community under acid rain stress. Four pH levels, i.e., pH 2.5, 3.5, 4.5, and 5.5, and a neutral control of pH 7.0 were set according to the current pH condition and acidification trend of precipitation in southern China. As expected, we observed that the SAR treatments induced changes in soil fauna community composition and their ecological niches in the tested soil; the treatment effects tended to increase as acidity increased. This could be attributable to the environmental stresses (such as acidity, porosity and oxygen supply) induced by the SAR treatments. In addition to direct acidity effect, we propose that potential changes in permeability and movability of water and oxygen in soils induced by acid rain could also give rise to the observed shifts in soil fauna community composition. These are most likely indirect pathways of acid rain to affect belowground community. Moreover, we found that nematodes, the dominating soil fauna group in this study, moved downwards to mitigate the stress of acid rain. This is probably detrimental to soil fauna in the long term, due to the relatively severer soil conditions in the deep than surface soil layer. Our results suggest that acid rain could change soil fauna community and the vertical distribution of soil fauna groups, consequently changing the underground ecosystem functions such as organic matter decomposition and greenhouse gas emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system.

    Science.gov (United States)

    Douterelo, I; Sharpe, R L; Boxall, J B

    2013-02-01

    Microbial biofilms formed on the inner-pipe surfaces of drinking water distribution systems (DWDS) can alter drinking water quality, particularly if they are mechanically detached from the pipe wall to the bulk water, such as due to changes in hydraulic conditions. Results are presented here from applying 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene to investigate the influence of different hydrological regimes on bacterial community structure and to study the potential mobilisation of material from the pipe walls to the network using a full scale, temperature-controlled experimental pipeline facility accurately representative of live DWDS. Analysis of pyrosequencing and water physico-chemical data showed that habitat type (water vs. biofilm) and hydraulic conditions influenced bacterial community structure and composition in our experimental DWDS. Bacterial community composition clearly differed between biofilms and bulk water samples. Gammaproteobacteria and Betaproteobacteria were the most abundant phyla in biofilms while Alphaproteobacteria was predominant in bulk water samples. This suggests that bacteria inhabiting biofilms, predominantly species belonging to genera Pseudomonas, Zooglea and Janthinobacterium, have an enhanced ability to express extracellular polymeric substances to adhere to surfaces and to favour co-aggregation between cells than those found in the bulk water. Highest species richness and diversity were detected in 28 days old biofilms with this being accentuated at highly varied flow conditions. Flushing altered the pipe-wall bacterial community structure but did not completely remove bacteria from the pipe walls, particularly under highly varied flow conditions, suggesting that under these conditions more compact biofilms were generated. This research brings new knowledge regarding the influence of different hydraulic regimes on the composition and structure of bacterial communities within DWDS and the implication that this

  8. Salinity Affects the Composition of the Aerobic Methanotroph Community in Alkaline Lake Sediments from the Tibetan Plateau.

    Science.gov (United States)

    Deng, Yongcui; Liu, Yongqin; Dumont, Marc; Conrad, Ralf

    2017-01-01

    Lakes are widely distributed on the Tibetan Plateau, which plays an important role in natural methane emission. Aerobic methanotrophs in lake sediments reduce the amount of methane released into the atmosphere. However, no study to date has analyzed the methanotroph community composition and their driving factors in sediments of these high-altitude lakes (>4000 m). To provide new insights on this aspect, the abundance and composition in the sediments of six high-altitude alkaline lakes (including both freshwater and saline lakes) on the Tibetan Plateau were studied. The quantitative PCR, terminal restriction fragment length polymorphism, and 454-pyrosequencing methods were used to target the pmoA genes. The pmoA gene copies ranged 10 4 -10 6 per gram fresh sediment. Type I methanotrophs predominated in Tibetan lake sediments, with Methylobacter and uncultivated type Ib methanotrophs being dominant in freshwater lakes and Methylomicrobium in saline lakes. Combining the pmoA-pyrosequencing data from Tibetan lakes with other published pmoA-sequencing data from lake sediments of other regions, a significant salinity and alkalinity effect (P = 0.001) was detected, especially salinity, which explained ∼25% of methanotroph community variability. The main effect was Methylomicrobium being dominant (up to 100%) in saline lakes only. In freshwater lakes, however, methanotroph composition was relatively diverse, including Methylobacter, Methylocystis, and uncultured type Ib clusters. This study provides the first methanotroph data for high-altitude lake sediments (>4000 m) and shows that salinity is a driving factor for the community composition of aerobic methanotrophs.

  9. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station

    Science.gov (United States)

    Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun

    2014-01-01

    Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix,Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.

  10. Benzene and ethylbenzene removal by denitrifying culture in a horizontal fixed bed anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gusmao, V.R.; Chinalia, F.A.; Sakamoto, I.K.; Varesche [Univ. de Sao Paulo (Brazil). Dept. de Hidraulica e Saneamento; Thiemann, O.H. [Univ. de Sao Paulo (Brazil). Inst. de Fisica de Sao Carlos

    2004-07-01

    Benzene, ethylbenzene, toluene, and xylene are toxic and are important constituents of gasoline and other petroleum fuels. These compounds are potential health hazards because of their high solubility and hence their ability to contaminate groundwater. Anaerobic immobilized biomass is a way of treating wastewater contaminated with the above compounds. The performance of a specially adapted biofilm is critical in the viability of this idea. In this investigation, an especially adapted biofilm was obtained using a denitrifying bacterial strain isolated from a slaughterhouse wastewater treatment plant. The strain was cultured in a liquid medium with added ethanol, nitrate, ethylbenzene, and benzene. To assess the viability of the strain for the purposes of degradation of ethylbenzene, and benzene two separate horizontal reactors were prepared with polyurethane foam in order to immobilize the biomass. Various concentrations of the two compounds were admitted. At high concentrations chemical oxygen demand decreased dramatically and benzene and ethylbenzene removal almost 100 per cent. DNA sequencing of the biofilm showed that Paracoccus versutus was the dominant species in the ethylbenzene reactor. 7 refs., 6 figs.

  11. Impact of copper on the diazotroph abundance and community composition during swine manure composting.

    Science.gov (United States)

    Yin, Yanan; Gu, Jie; Wang, Xiaojuan; Zhang, Kaiyu; Hu, Ting; Ma, Jiyue; Wang, Qianzhi

    2018-05-01

    Biological nitrogen fixation is a major pathway in ecosystems. This study investigated the effects of adding Cu at different levels (0, 200, and 2000 mg kg -1 ) on the diazotroph community during swine manure composting. Quantitative PCR and high-throughput sequencing were used to analyze the abundances of diazotrophs and the community composition based on the nifH gene. The nifH gene copy number was relatively high in the early stage of composting and Cu had a significant inhibitory effect on the nifH copy number. Furthermore, Cu decreased the diversity of nifH and changed the microbial community structure in the early stage. The nifH genes from members of Firmicutes and Clostridium were most abundant. Co-occurrence ecological network analysis showed that the Cu treatments affected the co-occurrence patterns of diazotroph communities and reduced the associations between different diazotrophs. Interestingly, Cu may weaken symbiotic diazotrophic interactions and enhance the roles of free-living diazotrophs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Impact of Lowland Rainforest Transformation on Diversity and Composition of Soil Prokaryotic Communities in Sumatra (Indonesia)

    Science.gov (United States)

    Schneider, Dominik; Engelhaupt, Martin; Allen, Kara; Kurniawan, Syahrul; Krashevska, Valentyna; Heinemann, Melanie; Nacke, Heiko; Wijayanti, Marini; Meryandini, Anja; Corre, Marife D.; Scheu, Stefan; Daniel, Rolf

    2015-01-01

    Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use systems comprised rubber agroforests (jungle rubber), rubber plantations and oil palm plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 16,413 bacterial and 1679 archaeal operational taxonomic units at species level (97% genetic identity). Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaumarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota) dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to N ratio

  13. Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia

    Directory of Open Access Journals (Sweden)

    Dominik eSchneider

    2015-12-01

    Full Text Available Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use system comprised rubber agroforests (jungle rubber, rubber plantation and oil plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 20,494 bacterial and 1,762 archaeal Operational Taxonomic Units at species level (97% genetic identity. Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaumarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to

  14. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Kotsopoulos, T. A.

    2013-01-01

    exposure to different ammonia concentrations. The methanogenic pathway was determined by following the production of (14) CH(4) and (14) CO(2) from acetate labeled in the methyl group (C-2). Microbial communities' composition was determined by fluorescence in situ hybridization. Upon acclimatization......Methanogenesis from acetate (aceticlastic methanogenesis or syntrophic acetate oxidation (SAO) coupled with hydrogenotrophic methanogenesis) is the most important step for the biogas process. The major environmental factors influencing methanogenesis are volatile fatty acids, ammonia, p...

  15. Rapid plant evolution in the presence of an introduced species alters community composition.

    Science.gov (United States)

    Smith, David Solance; Lau, Matthew K; Jacobs, Ryan; Monroy, Jenna A; Shuster, Stephen M; Whitham, Thomas G

    2015-10-01

    Because introduced species may strongly interact with native species and thus affect their fitness, it is important to examine how these interactions can cascade to have ecological and evolutionary consequences for whole communities. Here, we examine the interactions among introduced Rocky Mountain elk, Cervus canadensis nelsoni, a common native plant, Solidago velutina, and the diverse plant-associated community of arthropods. While introduced species are recognized as one of the biggest threats to native ecosystems, relatively few studies have investigated an evolutionary mechanism by which introduced species alter native communities. Here, we use a common garden design that addresses and supports two hypotheses. First, native S. velutina has rapidly evolved in the presence of introduced elk. We found that plants originating from sites with introduced elk flowered nearly 3 weeks before plants originating from sites without elk. Second, evolution of S. velutina results in a change to the plant-associated arthropod community. We found that plants originating from sites with introduced elk supported an arthropod community that had ~35 % fewer total individuals and a different species composition. Our results show that the impacts of introduced species can have both ecological and evolutionary consequences for strongly interacting species that subsequently cascade to affect a much larger community. Such evolutionary consequences are likely to be long-term and difficult to remediate.

  16. Pseudomonads Isolated from Pristine Background Groundwater Proliferate More Effectively in Co-culture than in Monoculture Under Denitrifying Conditions

    Science.gov (United States)

    Aaring, A. B.; Lancaster, A.; Novichkov, P.; Adams, M. W. W.; Deutschbauer, A. M.; Chakraborty, R.

    2016-12-01

    As part of the Ecosystems and Networks Integrated with Genes and Molecular Assemblies (ENIGMA) consortium, we study the microbial community at the U.S. Department of Energy's Field Research Center (FRC) in Oak Ridge. The groundwater at this site contains plumes of nitrate with concentrations up to 14,000mg/L among other contaminants, though molybdenum concentrations are low. Because molybdenum is essential to nitrate reduction, this can be inhibitory to growth. Several strains of Pseudomonas were isolated from the same background groundwater sample. These isolates utilized diverse carbon sources ranging from acetate to glucose while growing under denitrifying conditions. The strains were also screened for nitrate tolerance and a couple of them were shown to be tolerant to 300-400 mM nitrate under anaerobic conditions. In the field site the bacteria live in consortia rather than in isolation, therefore we hypothesized that growth of these strains will be more robust in co-culture, as the denitrification pathway was segmented between the species. Three of the isolates (Pseudomonas fluorescens strains N1B4, N2E2, N2E3) were selected for in-depth analysis based on growth in pairwise co-cultures relative to monocultures, and the availability of the relevant genetic tools, such as transposon mutant libraries. Full genome sequencing showed that strain N2E3 has a truncated dentrification pathway: it lacks nitrous oxide reductase. Our results show strain N2E2 grow to maximum cell density an average of 45 hours more quickly when grown with strain N2E3 than in monoculture. Utilizing RB-TnSeq libraries of our strains, it was also found that some genes involved in nitrate reduction, sulfate permeability, molybdenum utilization, and anaerobic reduction are important for growth under these conditions. In addition, a few unexpected genes were also shown to be positively correlated to growth, such as genes homologous to genes for DNA proofreading or antibiotic production. These

  17. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities

    Directory of Open Access Journals (Sweden)

    Markus V Lindh

    2015-04-01

    Full Text Available Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, intensifying loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2 and Bothnian Sea (salinity 3.6 water. Baltic Proper bacteria generally reached higher abundance than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating a higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating replacement. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating adjustment. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, the original triggering, or priming effect, resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment, and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial

  18. Seed bank and big sagebrush plant community composition in a range margin for big sagebrush

    Science.gov (United States)

    Martyn, Trace E.; Bradford, John B.; Schlaepfer, Daniel R.; Burke, Ingrid C.; Laurenroth, William K.

    2016-01-01

    The potential influence of seed bank composition on range shifts of species due to climate change is unclear. Seed banks can provide a means of both species persistence in an area and local range expansion in the case of increasing habitat suitability, as may occur under future climate change. However, a mismatch between the seed bank and the established plant community may represent an obstacle to persistence and expansion. In big sagebrush (Artemisia tridentata) plant communities in Montana, USA, we compared the seed bank to the established plant community. There was less than a 20% similarity in the relative abundance of species between the established plant community and the seed bank. This difference was primarily driven by an overrepresentation of native annual forbs and an underrepresentation of big sagebrush in the seed bank compared to the established plant community. Even though we expect an increase in habitat suitability for big sagebrush under future climate conditions at our sites, the current mismatch between the plant community and the seed bank could impede big sagebrush range expansion into increasingly suitable habitat in the future.

  19. Molecular Approaches to Studying Denitrification

    Science.gov (United States)

    Voytek, M. A.

    2001-05-01

    Denitrification is carried out by a diverse array of microbes, mainly as an alternative mode of respiration that allows the organisms to respire using oxidized N compounds instead of oxygen. A common approach in biogeochemistry to the study of the regulation of denitrification is to assess activity by mass balance of substrates and products or direct rate measurements and has intrinsically assumed resource regulation of denitrification. Reported rates can vary significantly even among ecosystems characterized by similar environmental conditions, thus indicating that direct control by abiotic factors often is not sufficient to predict denitrification rates accurately in natural environments. Alternatively, a microbiological approach would proceed with the identification of the organisms responsible and an evaluation of the effect of environmental factors on the biochemical pathways involved. Traditional studies have relied on culturing techniques, such as most probable number enrichments, and have failed to assess the role of the predominately uncultivable members of the microbial community. A combination of biogeochemical measurements and the assessment of the microbial community is necessary and becoming increasingly possible with the development and application of molecular techniques. In order to understand how the composition and physiological behavior of the microbial community affects denitrification rates, we use a suite of molecular techniques developed for phylogenetic and metabolic characterization of denitrifying communities. Molecular tools available for quantifying denitrifying bacteria and assessing their diversity and activity are summarized. Their application is illustrated with examples from marine and freshwater environments. Emerging techniques and their application to ground water studies will be discussed.

  20. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna.

    Directory of Open Access Journals (Sweden)

    Annika Busse

    Full Text Available The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover than under high habitat quality (high canopy cover, which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems.

  1. Different in the dark: The effect of habitat characteristics on community composition and beta diversity in bromeliad microfauna

    Science.gov (United States)

    Antiqueira, Pablo A. P.; Neutzling, Alexandre S.; Wolf, Anna M.; Romero, Gustavo Q.; Petermann, Jana S.

    2018-01-01

    The mechanisms which structure communities have been the focus of a large body of research. Here, we address the question if habitat characteristics describing habitat quality may drive changes in community composition and beta diversity of bromeliad-inhabiting microfauna. In our system, changes in canopy cover along an environmental gradient may affect resource availability, disturbance in form of daily water temperature fluctuations and predation, and thus may lead to changes in community structure of bromeliad microfauna through differences in habitat quality along this gradient. Indeed, we observed distinct changes in microfauna community composition along the environmental gradient explained by changes in the extent of daily water temperature fluctuations. We found beta diversity to be higher under low habitat quality (low canopy cover) than under high habitat quality (high canopy cover), which could potentially be explained by a higher relative importance of stochastic processes under low habitat quality. We also partitioned beta diversity into turnover and nestedness components and we found a nested pattern of beta diversity along the environmental gradient, with communities from the lower-quality habitat being nested subsets of communities from the higher-quality habitat. However, this pattern resulted from an increase in microfauna alpha diversity with an increase in habitat quality. By providing insights into microfauna-environment relationships our results contribute to the mechanistic understanding of community dynamics in small freshwater bodies. Here, we highlight the importance of habitat characteristics representing habitat quality in structuring communities, and suggest that this information may help to improve conservation practices of small freshwater ecosystems. PMID:29401522

  2. Trait-specific responses of wild bee communities to landscape composition, configuration and local factors.

    Directory of Open Access Journals (Sweden)

    Sebastian Hopfenmüller

    Full Text Available Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes. Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees were positively affected by landscape composition (high percentage of semi-natural habitats. Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales.

  3. Trait-specific responses of wild bee communities to landscape composition, configuration and local factors.

    Science.gov (United States)

    Hopfenmüller, Sebastian; Steffan-Dewenter, Ingolf; Holzschuh, Andrea

    2014-01-01

    Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales.

  4. Alteration of chromophoric dissolved organic matter by solar UV radiation causes rapid changes in bacterial community composition.

    Science.gov (United States)

    Piccini, Claudia; Conde, Daniel; Pernthaler, Jakob; Sommaruga, Ruben

    2009-09-01

    We evaluated the effect of photochemical alterations of chromophoric dissolved organic matter (CDOM) on bacterial abundance, activity and community composition in a coastal lagoon of the Atlantic Ocean with high dissolved organic carbon concentration. On two occasions during the austral summer, bacteria-free water of the lagoon was exposed to different regions of the solar spectrum (full solar radiation, UV-A+PAR, PAR) or kept in the dark. Subsequently, dilution cultures were established with bacterioplankton from the lagoon that were incubated in the pre-exposed water for 5 h in the dark. Cell abundance, activity, and community composition of bacterioplankton were assessed before and after incubation in the different treatments. Changes in absorption, fluorescence, and DOC concentration were used as proxies for CDOM photoalteration. We found a significant CDOM photobleaching signal, DOC loss, as well as a stimulation of bacterial activity in the treatments pre-exposed to UV radiation, suggesting increased bioavailability of DOM. Bacterial community analysis by fluorescence in situ hybridization revealed that this stimulation was mainly accompanied by the specific enrichment of Alpha- and Betaproteobacteria. Thus, our results suggest that CDOM photoalteration not only stimulates bacterioplankton growth, but also induces rapid changes in bacterioplankton composition, which can be of relevance for ecosystem functioning, particularly considering present and future changes in the input of terrestrial CDOM to aquatic systems.

  5. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    Science.gov (United States)

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  6. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Nilsson, Lars Ola; Hansen, Karin

    2012-01-01

    • Nitrogen (N) availability is known to influence ectomycorrhizal fungal components, such as fungal community composition, biomass of root tips and production of mycelia, but effects have never been demonstrated within the same forest. • We measured concurrently the abundance of ectomycorrhizal...... root tips and the production of external mycelia, and explored the changes in the ectomycorrhizal community composition, across a stand-scale N deposition gradient (from 27 to 43 kg N ha¿¹ yr¿¹) at the edge of a spruce forest. The N status was affected along the gradient as shown by a range of N...... availability indices. • Ectomycorrhizal root tip abundance and mycelial production decreased five and 10-fold, respectively, with increasing N deposition. In addition, the ectomycorrhizal fungal community changed and the species richness decreased. The changes were correlated with the measured indices of N...

  7. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition

    DEFF Research Database (Denmark)

    Bang-Andreasen, Toke; Nielsen, Jeppe T.; Voriskova, Jana

    2017-01-01

    Recirculation of wood ash from energy production to forest soil improves the sustainability of this energy production form as recycled wood ash contains nutrients that otherwise would be lost at harvest. In addition, wood-ash is beneficial to many soils due to its inherent acid......-neutralizing capabilities. However, wood ash has several ecosystem-perturbing effects like increased soil pH and pore water electrical conductivity both known to strongly impact soil bacterial numbers and community composition. Studies investigating soil bacterial community responses to wood ash application remain sparse...... and the available results are ambiguous and remain at a general taxonomic level. Here we investigate the response of bacterial communities in a spruce forest soil to wood ash addition corresponding to 0, 5, 22, and 167 t wood ash ha(-1). We used culture-based enumerations of general bacteria, Pseudomonas...

  8. Impact of fishing on size composition and diversity of demersal fish communities

    DEFF Research Database (Denmark)

    Bianchi, G.; Gislason, Henrik; Graham, K.

    2000-01-01

    . but particularly in high-latitude regions, we observe a decreasing trend in the slope, reflecting changes in size composition toward a relative decline in larger fish. The results from tropical regions are less conclusive, partly owing to the difficulty in obtaining consistent data series, but probably also......By analysing data sets from different world regions we add evidence to documented changes in demersal fish community structure that may be related to fishing. Changes are analysed by community properties that might be expected to capture relevant overall changes - size spectra slopes and intercepts...... because the generally higher growth rates of the constituent species make the slope less sensitive to changes in fishing. No evidence was found of any decline in species richness, while changes in diversity (richness and evenness) were caused either by changes in patterns of dominance or by changes...

  9. Soil microbial community composition is correlated to soil carbon processing along a boreal wetland formation gradient

    Science.gov (United States)

    Chapman, Eric; Cadillo-Quiroz, Hinsby; Childers, Daniel L.; Turetsky, Merritt R.; Waldrop, Mark P.

    2017-01-01

    Climate change is modifying global biogeochemical cycles. Microbial communities play an integral role in soil biogeochemical cycles; knowledge about microbial composition helps provide a mechanistic understanding of these ecosystem-level phenomena. Next generation sequencing approaches were used to investigate changes in microbial functional groups during ecosystem development, in response to climate change, in northern boreal wetlands. A gradient of wetlands that developed following permafrost degradation was used to characterize changes in the soil microbial communities that mediate C cycling: a bog representing an “undisturbed” system with intact permafrost, and a younger bog and an older bog that formed following the disturbance of permafrost thaw. Reference 16S rRNA databases and several diversity indices were used to assess structural differences among these communities, to assess relationships between soil microbial community composition and various environmental variables including redox potential and pH. Rates of potential CO2 and CH4 gas production were quantified to correlate sequence data with gas flux. The abundance of organic C degraders was highest in the youngest bog, suggesting higher rates of microbial processes, including potential CH4 production. In addition, alpha diversity was also highest in the youngest bog, which seemed to be related to a more neutral pH and a lower redox potential. These results could potentially be driven by increased niche differentiation in anaerobic soils. These results suggest that ecosystem structure, which was largely driven by changes in edaphic and plant community characteristics between the “undisturbed” permafrost bog and the two bogs formed following permafrost thaw, strongly influenced microbial function.

  10. Change in gene abundance in the nitrogen biogeochemical cycle with temperature and nitrogen addition in Antarctic soils.

    Science.gov (United States)

    Jung, Jaejoon; Yeom, Jinki; Kim, Jisun; Han, Jiwon; Lim, Hyoun Soo; Park, Hyun; Hyun, Seunghun; Park, Woojun

    2011-12-01

    The microbial community (bacterial, archaeal, and fungi) and eight genes involved in the nitrogen biogeochemical cycle (nifH, nitrogen fixation; bacterial and archaeal amoA, ammonia oxidation; narG, nitrate reduction; nirS, nirK, nitrite reduction; norB, nitric oxide reduction; and nosZ, nitrous oxide reduction) were quantitatively assessed in this study, via real-time PCR with DNA extracted from three Antarctic soils. Interestingly, AOB amoA was found to be more abundant than AOA amoA in Antarctic soils. The results of microcosm studies revealed that the fungal and archaeal communities were diminished in response to warming temperatures (10 °C) and that the archaeal community was less sensitive to nitrogen addition, which suggests that those two communities are well-adapted to colder temperatures. AOA amoA and norB genes were reduced with warming temperatures. The abundance of only the nifH and nirK genes increased with both warming and the addition of nitrogen. NirS-type denitrifying bacteria outnumbered NirK-type denitrifiers regardless of the treatment used. Interestingly, dramatic increases in both NirS and NirK-types denitrifiers were observed with nitrogen addition. NirK types increase with warming, but NirS-type denitrifiers tend to be less sensitive to warming. Our findings indicated that the Antarctic microbial nitrogen cycle could be dramatically altered by temperature and nitrogen, and that warming may be detrimental to the ammonia-oxidizing archaeal community. To the best of our knowledge, this is the first report to investigate genes associated with each process of the nitrogen biogeochemical cycle in an Antarctic terrestrial soil environment. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Degradation of Biofumigant Isothiocyanates and Allyl Glucosinolate in Soil and Their Effects on the Microbial Community Composition.

    Directory of Open Access Journals (Sweden)

    Franziska S Hanschen

    Full Text Available Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils (model biofumigation. In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products.

  12. Carbon, metals and grain size correlate with bacterial community composition in sediments of a high arsenic aquifer

    Directory of Open Access Journals (Sweden)

    Teresa eLegg

    2012-03-01

    Full Text Available Bacterial communities can exert significant influence on the biogeochemical cycling of arsenic (As. This has globally important implications since As toxicity in drinking water affects the health of millions of people worldwide, including in the Ganges-Brahmaputra Delta region of Bangladesh where geogenic groundwater arsenic concentrations can be more than 10 times the World Health Organization’s limit. Thus, the goal of this research was to investigate patterns in bacterial community composition across environmental gradients in an aquifer with elevated groundwater As concentrations in Araihazar, Bangladesh. We characterized the bacterial community by pyrosequencing 16S rRNA genes from aquifer sediment samples collected at three locations along a groundwater flowpath, at a range of depths between 1.5 and 15 m. We identified significant shifts in bacterial community composition along the groundwater flowpath in the aquifer. In addition, we found that bacterial community structure was significantly related to sediment grain size, and sediment carbon (C, manganese (Mn, and iron (Fe concentrations. Deltaproteobacteria and Chloroflexi were more abundant in silty sediments with higher concentrations of C, Fe, and Mn. By contrast, Alphaproteobacteria and Betaproteobacteria were more abundant in sediments with higher concentrations of sand and Si, and lower concentrations of C and metals. Based on the phylogenetic affiliations of these taxa, these results may indicate a shift to more Fe-, Mn-, and humic substance- reducers in the high C and metal sediments. It is well-documented that C, Mn and Fe may influence the mobility of groundwater arsenic, and it is intriguing that these constituents may also structure the bacterial community.

  13. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession.

    Science.gov (United States)

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-06

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  14. Alterations in soil microbial community composition and biomass following agricultural land use change.

    Science.gov (United States)

    Zhang, Qian; Wu, Junjun; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli

    2016-11-04

    The effect of agricultural land use change on soil microbial community composition and biomass remains a widely debated topic. Here, we investigated soil microbial community composition and biomass [e.g., bacteria (B), fungi (F), Arbuscular mycorrhizal fungi (AMF) and Actinomycete (ACT)] using phospholipid fatty acids (PLFAs) analysis, and basal microbial respiration in afforested, cropland and adjacent uncultivated soils in central China. We also investigated soil organic carbon and nitrogen (SOC and SON), labile carbon and nitrogen (LC and LN), recalcitrant carbon and nitrogen (RC and RN), pH, moisture, and temperature. Afforestation averaged higher microbial PLFA biomass compared with cropland and uncultivated soils with higher values in top soils than deep soils. The microbial PLFA biomass was strongly correlated with SON and LC. Higher SOC, SON, LC, LN, moisture and lower pH in afforested soils could be explained approximately 87.3% of total variation of higher total PLFAs. Afforestation also enhanced the F: B ratios compared with cropland. The basal microbial respiration was higher while the basal microbial respiration on a per-unit-PLFA basis was lower in afforested land than adjacent cropland and uncultivated land, suggesting afforestation may increase soil C utilization efficiency and decrease respiration loss in afforested soils.

  15. Performance of Denitrifying Bioreactors at Reducing  Agricultural Nitrogen Pollution in a Humid  Subtropical Coastal Plain Climate

    Directory of Open Access Journals (Sweden)

    Timothy Rosen

    2017-02-01

    Full Text Available Denitrifying bioreactors are an agricultural best management practice developed in the  midwestern United States to treat agricultural drainage water enriched with nitrate‐nitrogen (NO3N. The practice is spreading rapidly to agricultural regions with poor water quality due to nutrient  enrichment. This makes it imperative to track bioreactor NO3‐N reduction efficiency as this practice  gets deployed to new regions. This study evaluated the application and performance of denitrifying  bioreactors in the humid subtropical coastal plain environment of the Chesapeake Bay catchment to  provide data about regionally specific NO3‐N reduction efficiencies. NO3‐N samples were taken  before  and  after  treatment  at  three  denitrifying  bioreactors,  in  addition  to  other  nutrients  (orthophosphate‐phosphorus,  PO4‐P;  ammonium‐nitrogen,  NH4‐N;  total  nitrogen,  TN;  total  phosphorus,  TP  and  water  quality  parameters  (dissolved  oxygen,  DO;  oxidation  reduction  potential,  ORP;  pH;  specific  conductance,  SPC.  Total  removal  ranged  drastically  between  bioreactors from 10 to 133 kg N, with removal efficiencies of 9.0% to 62% and N removal rates of  0.21 to 5.36 g N removed per m3 of bioreactor per day. As the first bioreactor study in the humid  subtropical coastal plain, this data provides positive proof of concept that denitrifying bioreactor is  another tool for reducing N loads in agricultural tile drainage in this region.

  16. Effect of polybrominated diphenyl ether (PBDE) treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis.

    KAUST Repository

    Tian, Ren-Mao; Lee, On On; Wang, Yong; Cai, Lin; Bougouffa, Salim; Chiu, Jill Man Ying; Wu, Rudolf Shiu Sun; Qian, Pei-Yuan

    2014-01-01

    . In the present study, we studied the short-period effect of PBDE-47 (2,2',4,4'-tetrabromodiphenyl ether) treatment on the community structure and functional gene composition of the bacterial community inhabiting the marine sponge Haliclona cymaeformis. Our

  17. [Composition diversity of lactic acid bacteria (LAB) community Al2 used for alfalfa silage].

    Science.gov (United States)

    Wang, Xiao-Fen; Gao, Li-Juan; Yang, Hong-Yan; Wang, Wei-Dong; Cui, Zong-Jun

    2006-10-01

    Alfalfa is the most important forage grass that is difficult to ensile for good quality. Using silage inoculants are the important way for preservation of alfalfa silage. Through continuous restricted subcultivation, a lactic acid bacteria (LAB) community Al2 was selected from well-fermented alfalfa silage. Plate isolation and Denaturing Gradient Gel Electrophoresis (DGGE), construction of 16S rDNA clone library were used to identify the composition diversity of Al2 community, with 7 strains detected, and they were all belonged to Lactobacillus. The composition ratios of the 7 strains were 55.21%, 19.79%, 14.58%, 3.13%, 3.13%, 3.13%, 1.03% according to 16S rDNA clone library. Al2-1i, Al2-2i, Al2-3i, corresponding to L. plantarum (99.9%), L. kimchii (99.4%), L. farciminis (100%) were detected by plate isolation. Among 3 isolates, Al2-1i had the highest ability of dropping pH and producing lactic acid, and the amount of lactic acid was reach to 18g/L at 24h cultivated in MRS media. The ability of dropping pH and producing lactic acid of Al2-3i was the lowest. From DGGE profiles, the dominant strains in Al2 community were L. plantarum and L. kimchii. L. plantarum was detected during the whole process, and L. kimchii was detected in the later phase.

  18. Biodiversity and community composition of sediment macrofauna associated with deep-sea Lophelia pertusa habitats in the Gulf of Mexico

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Bourque, Jill R.; Frometa, Janessy

    2014-01-01

    Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350–500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm−2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher’s α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L

  19. Biodiversity and community composition of sediment macrofauna associated with deep-sea Lophelia pertusa habitats in the Gulf of Mexico

    Science.gov (United States)

    Demopoulos, Amanda W. J.; Bourque, Jill R.; Frometa, Janessy

    2014-11-01

    Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350-500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm-2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher's α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L. pertusa

  20. Prokaryotic community composition in alkaline-fermented skate (Raja pulchra).

    Science.gov (United States)

    Jang, Gwang Il; Kim, Gahee; Hwang, Chung Yeon; Cho, Byung Cheol

    2017-02-01

    Prokaryotes were extracted from skates and fermented skates purchased from fish markets and a local manufacturer in South Korea. The prokaryotic community composition of skates and fermented skates was investigated using 16S rRNA pyrosequencing. The ranges for pH and salinity of the grinded tissue extract from fermented skates were 8.4-8.9 and 1.6-6.6%, respectively. Urea and ammonia concentrations were markedly low and high, respectively, in fermented skates compared to skates. Species richness was increased in fermented skates compared to skates. Dominant and predominant bacterial groups present in the fermented skates belonged to the phylum Firmicutes, whereas those in skates belonged to Gammaproteobacteria. The major taxa found in Firmicutes were Atopostipes (Carnobacteriaceae, Lactobacillales) and/or Tissierella (Tissierellaceae, Tissierellales). A combination of RT-PCR and pyrosequencing for active bacterial composition showed that the dominant taxa i.e., Atopostipes and Tissierella, were active in fermented skate. Those dominant taxa are possibly marine lactic acid bacteria. Marine bacteria of the taxa Lactobacillales and/or Clostridia seem to be important in alkaline fermentation of skates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Development of a molecular approach to describe the composition of Trichoderma communities.

    Science.gov (United States)

    Meincke, Remo; Weinert, Nicole; Radl, Viviane; Schloter, Michael; Smalla, Kornelia; Berg, Gabriele

    2010-01-01

    Trichoderma and its teleomorphic stage Hypocrea play a key role for ecosystem functioning in terrestrial habitats. However, little is known about the ecology of the fungus. In this study we developed a novel Trichoderma-specific primer pair for diversity analysis. Based on a broad range master alignment, specific Trichoderma primers (ITSTrF/ITSTrR) were designed that comprise an approximate 650bp fragment of the internal transcribed spacer region from all taxonomic clades of the genus Trichoderma. This amplicon is suitable for identification with TrichoKey and TrichoBLAST. Moreover, this primer system was successfully applied to study the Trichoderma communities in the rhizosphere of different potato genotypes grown at two field sites in Germany. Cloning and sequencing confirmed the specificity of the primer and revealed a site-dependent Trichoderma composition. Based on the new primer system a semi-nested approach was used to generate amplicons suitable for denaturing gradient gel electrophoresis (DGGE) analysis and applied to analyse Trichoderma communities in the rhizosphere of potatoes. High field heterogeneity of Trichoderma communities was revealed by both DGGE. Furthermore, qPCR showed significantly different Trichoderma copy numbers between the sites. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries

    NARCIS (Netherlands)

    Feon, Le V.; Schermann-Legionnet, A.; Delettre, Y.; Aviron, S.; Billeter, R.; Bugter, R.J.F.; Hendrickx, F.; Burel, F.

    2010-01-01

    The impacts of agricultural practices and landscape composition on bee communities were investigated in 14 sites located in four Western European countries (Belgium, France, the Netherlands and Switzerland). Standardized interviews with farmers assessed agricultural practices in terms of

  3. Between-year changes in community composition shape species’ roles in an Arctic plant–pollinator network

    DEFF Research Database (Denmark)

    Cirtwill, Alyssa R.; Roslin, Tomas; Rasmussen, Claus

    2018-01-01

    Inter-annual turnover in community composition can affect the richness and functioning of ecological communities. If incoming and outgoing species do not interact with the same partners, ecological functions such as pollination may be disrupted. Here, we explore the extent to which turnover affects...... in species’ roles between networks. Variation in the roles of plants and pollinators tended to increase with the amount of community turnover, although a negative interaction between turnover in the plant and pollinator assemblages complicated this trend for the roles of pollinators. This suggests...... species’ roles – as defined based on their participation in different motifs positions – in a series of temporally replicated plant–pollinator networks from high-Arctic Zackenberg, Greenland. We observed substantial turnover in the plant and pollinator assemblages, combined with significant variation...

  4. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    Directory of Open Access Journals (Sweden)

    Helena I Hanson

    Full Text Available In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities.

  5. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    Science.gov (United States)

    Hanson, Helena I; Palmu, Erkki; Birkhofer, Klaus; Smith, Henrik G; Hedlund, Katarina

    2016-01-01

    In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities.

  6. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium

    Science.gov (United States)

    de Andrade, Pedro Avelino Maia; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil. PMID:28686690

  7. Effects of Misgurnus anguillicaudatus and Cipangopaludina cathayensis on Pollutant Removal and Microbial Community in Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Pengfei Li

    2015-05-01

    Full Text Available Aquatic animals play an important role in the energy flow and matter cycling in the wetland ecosystem. However, little is known about their effects on pollutant removal performance and microbial community in constructed wetlands. This work presents an initial attempt to investigate the effects of Misgurnus anguillicaudatus (loach and Cipangopaludina cathayensis (snail on nutrient removal performance and microbial community of constructed wetlands (CWs. Compared with a control group, CW microcosms with aquatic animals exhibited better pollutant removal performance. The removal efficiencies of total phosphorus (TP in the loach group were 13.1% higher than in the control group, and snails increased the ammonium removal most effectively. Moreover, the concentration of total organic carbon (TOC and TP in sediment significantly reduced with the addition of loaches and snails (p < 0.05, whereas the concentration of total nitrogen (TN showed an obvious increase with the addition of loaches. High-throughput sequencing showed a microbial community structure change. Loaches and snails in wetlands changed the microbial diversity, especially in the Proteobacteria and denitrifying community. Results suggested that benthic aquatic animals might play an important role in CW ecosystems.

  8. Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the Sponge Haliclona cymaeformis

    KAUST Repository

    Tian, R.-M.

    2014-11-04

    Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. IMPORTANCE This study determined the bacterial community structure of the common sponge Haliclona cymaeformis and examined the effect of copper

  9. Bacterial community composition in the gut content of Lampetra japonica revealed by 16S rRNA gene pyrosequencing.

    Science.gov (United States)

    Zuo, Yu; Xie, Wenfang; Pang, Yue; Li, Tiesong; Li, Qingwei; Li, Yingying

    2017-01-01

    The composition of the bacterial communities in the hindgut contents of Lampetrs japonica was surveyed by Illumina MiSeq of the 16S rRNA gene. An average of 32385 optimized reads was obtained from three samples. The rarefaction curve based on the operational taxonomic units tended to approach the asymptote. The rank abundance curve representing the species richness and evenness was calculated. The composition of microbe in six classification levels was also analyzed. Top 20 members in genera level were displayed as the classification tree. The abundance of microorganisms in different individuals was displayed as the pie charts at the branch nodes in the classification tree. The differences of top 50 genera in abundance between individuals of lamprey are displayed as a heatmap. The pairwise comparison of bacterial taxa abundance revealed that there are no significant differences of gut microbiota between three individuals of lamprey at a given rarefied depth. Also, the gut microbiota derived from L. japonica displays little similarity with other aquatic organism of Vertebrata after UPGMA analysis. The metabolic function of the bacterial communities was predicted through KEGG analysis. This study represents the first analysis of the bacterial community composition in the gut content of L. japonica. The investigation of the gut microbiota associated with L. japonica will broaden our understanding of this unique organism.

  10. Bacterial community composition in the gut content of Lampetra japonica revealed by 16S rRNA gene pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Yu Zuo

    Full Text Available The composition of the bacterial communities in the hindgut contents of Lampetrs japonica was surveyed by Illumina MiSeq of the 16S rRNA gene. An average of 32385 optimized reads was obtained from three samples. The rarefaction curve based on the operational taxonomic units tended to approach the asymptote. The rank abundance curve representing the species richness and evenness was calculated. The composition of microbe in six classification levels was also analyzed. Top 20 members in genera level were displayed as the classification tree. The abundance of microorganisms in different individuals was displayed as the pie charts at the branch nodes in the classification tree. The differences of top 50 genera in abundance between individuals of lamprey are displayed as a heatmap. The pairwise comparison of bacterial taxa abundance revealed that there are no significant differences of gut microbiota between three individuals of lamprey at a given rarefied depth. Also, the gut microbiota derived from L. japonica displays little similarity with other aquatic organism of Vertebrata after UPGMA analysis. The metabolic function of the bacterial communities was predicted through KEGG analysis. This study represents the first analysis of the bacterial community composition in the gut content of L. japonica. The investigation of the gut microbiota associated with L. japonica will broaden our understanding of this unique organism.

  11. Microbe-mediated plant-soil feedback in pioneer stages of secondary succession causes long-lasting historical contingency effects in plant community composition.

    NARCIS (Netherlands)

    Kardol, P.; Bezemer, T.M.; Putten, van der W.H.

    2006-01-01

    Soil microbes and soil fauna have been assumed to play a key role in interspecific plant competition and successional community development. It has been suggested that plants can influence their performance by changing the composition of their associated soil communities. Such feedback effects may

  12. Species Composition and Structure of the Communities of Plant-Parasitic and Free-Living Soil Nematodes in the Greenhouses of Botanical Gardens of Ukraine

    Directory of Open Access Journals (Sweden)

    Gubin A.I.

    2014-07-01

    Full Text Available Species Composition and Structure of the Communities of Plant-Parasitic and Free-Living Soil Nematodes in the Greenhouses of Botanical Gardens of Ukraine. Gubin, A. I., Sigareva, D. D. — In greenhouses of botanical gardens of Ukraine 81 species of nematodes were found. The richest by the number of species was Tylenchida order that was presented by 25 species (31 % of species composition. The dominant group of nematodes was plant-parasitic (most frequent was Rotylenchus robustus (de Man, 1876 Filipjev, 1936 and Meloidogyne incognita (Kofoid et White, 1919 Chitwood, 1949. The group of saprobiotic nematodes, which was presented by 52 species (64 %, appeared to be the richest by the number of species. It is shown, that formation of nematode communities in greenhouses of botanical gardens was caused by the interaction of many related factors, crucial of which is the composition of plant collections. The structure of communities is quite constant and almost independent of the quantity of nematodes species. Plant-parasitic species dominate by the number and frequency of detection, and represent a kind of a core of nematode communities.

  13. Distribution, species diversity and composition of plant communities in relation to various affecting factors in an alpine grassland at Bandipora, Kashmir

    International Nuclear Information System (INIS)

    Dad, J. M.

    2016-01-01

    This study provides a broad understanding of vascular plant richness and community structure of mountain grassland (Matri) at Bandipora, Kashmir and links it various environmental variables. Employing a stratified sampling design, six sites were selected wherein vegetation was sampled by placing quadrats (n=210). Elucidating an important effect of topography and anthropic pressure, numerical classification TWINSPAN segregated the quadrats into seven community types. Contrary to species rich communities which showed an explicit composition and localized distribution, the other communities depicted a vague composition and stretched unevenly between the lower and middle altitudes. Using canonical correspondence analysis (CCA), elevation and disturbance were found as most influencing factors whereas steepness of slope, organic carbon, soil reaction (pH) and soil salinity (electrical conductivity) were other important factors. Indices of diversity measured at two measurement scales varied differently between communities and at a macro scale (site level) highest values were recorded in least disturbed communities. However, on a micro scale (quadrat level) the indices behaved differently. For effective conservation of these species rich grasslands, acknowledging the local level variability in vegetation structure is all but crucial. (author)

  14. The Brazilian freshwater wetscape: Changes in tree community diversity and composition on climatic and geographic gradients.

    Directory of Open Access Journals (Sweden)

    Florian Wittmann

    Full Text Available Wetlands harbor an important compliment of regional plant diversity, but in many regions data on wetland diversity and composition is still lacking, thus hindering our understanding of the processes that control it. While patterns of broad-scale terrestrial diversity and composition typically correlate with contemporary climate it is not clear to what extent patterns in wetlands are complimentary, or conflicting. To elucidate this, we consolidate data from wetland forest inventories in Brazil and examine patterns of diversity and composition along temperature and rainfall gradients spanning five biomes. We collated 196 floristic inventories covering an area >220 ha and including >260,000 woody individuals. We detected a total of 2,453 tree species, with the Amazon alone accounting for nearly half. Compositional patterns indicated differences in freshwater wetland floras among Brazilian biomes, although biomes with drier, more seasonal climates tended to have a larger proportion of more widely distributed species. Maximal alpha diversity increased with annual temperature, rainfall, and decreasing seasonality, patterns broadly consistent with upland vegetation communities. However, alpha diversity-climate relationships were only revealed at higher diversity values associated with the uppermost quantiles, and in most sites diversity varied irrespective of climate. Likewise, mean biome-level differences in alpha-diversity were unexpectedly modest, even in comparisons of savanna-area wetlands to those of nearby forested regions. We describe attenuated wetland climate-diversity relationships as a shifting balance of local and regional effects on species recruitment. Locally, excessive waterlogging strongly filters species able to colonize from regional pools. On the other hand, increased water availability can accommodate a rich community of drought-sensitive immigrant species that are able to track buffered wetland microclimates. We argue that

  15. Composition and structure of bird communities in vegetational gradients of Bodoquena Mountains, western Brazil

    Directory of Open Access Journals (Sweden)

    MAURICIO N. GODOI

    2016-03-01

    Full Text Available ABSTRACT The informations of bird species distribution in different habitats and the structure of their communities are crucial for bird conservation. We tested the differences in composition, richness and abundance of birds in different phytophysiognomies at Bodoquena Mountains, western Brazil, and we demonstrated the variations in richness and abundance of birds between different trophic groups. Sampling was conducted between July 2011 and June 2012 in 200 point counts arranged in the study area. A total of 3350 contacts were obtained belonging to 156 bird species. Woodland savannas, seasonal forests and arboreal savannas had higher bird abundance and richness, while riparian forests, clean pastures and dirty pastures had smaller values of these parameters. The bird community was organized according to local vegetational gradient, with communities of forests, open areas and savannas, although many species occurred in more than one vegetation type. The insectivorous, omnivorous, frugivorous and gramnivorous birds composed most of the community. These data showed how important environmental heterogeneity is to bird communities. Furthermore, the presence of extensive patches of natural habitats, the small distance between these patches and the permeability of pastures, with high arboreal and shrubby cover, are indicated as important factors to maintain the bird diversity.

  16. Effect of ocean acidification on the fatty acid composition of a natural plankton community

    Science.gov (United States)

    Leu, E.; Daase, M.; Schulz, K. G.; Stuhr, A.; Riebesell, U.

    2013-02-01

    The effect of ocean acidification on the fatty acid composition of a natural plankton community in the Arctic was studied in a large-scale mesocosm experiment, carried out in Kongsfjorden (Svalbard, Norway) at 79° N. Nine mesocosms of ~50 m3 each were exposed to 8 different pCO2 levels (from natural background conditions to ~1420 μatm), yielding pH values (on the total scale) from ~8.3 to 7.5. Inorganic nutrients were added on day 13. The phytoplankton development during this 30-day experiment passed three distinct phases: (1) prior to the addition of inorganic nutrients, (2) first bloom after nutrient addition, and (3) second bloom after nutrient addition. The fatty acid composition of the natural plankton community was analysed and showed, in general, high percentages of polyunsaturated fatty acids (PUFAs): 44-60% of total fatty acids. Positive correlations with pCO2 were found for most PUFAs during phases 2 and/or 3, with the exception of 20:5n3 (eicosapentaenoic acid, EPA), an important diatom marker. These correlations are probably linked to changes in taxonomic composition in response to pCO2. While diatoms (together with prasinophytes and haptophytes) increased during phase 3 mainly in the low and intermediate pCO2 treatments, dinoflagellates were favoured by high CO2 concentrations during the same time period. This is reflected in the development of group-specific fatty acid trophic markers. No indications were found for a generally detrimental effect of ocean acidification on the planktonic food quality in terms of essential fatty acids.

  17. Bacterial communities in full-scale wastewater treatment systems.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.

  18. The potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum peatlands.

    Science.gov (United States)

    Sullivan, Maura E; Booth, Robert K

    2011-07-01

    Testate amoebae are a group of moisture-sensitive, shell-producing protozoa that have been widely used as indicators of changes in mean water-table depth within oligotrophic peatlands. However, short-term environmental variability (i.e., sub-annual) also probably influences community composition. The objective of this study was to assess the potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum-dominated peatlands. Testate amoebae and environmental conditions, including hourly measurements of relative humidity within the upper centimeter of the peatland surface, were examined throughout the 2008 growing season at 72 microsites within 11 peatlands of Pennsylvania and Wisconsin, USA. Relationships among testate amoeba communities, vegetation, depth to water table, pH, and an index of short-term environmental variability (EVI), were examined using nonmetric multidimensional scaling and correlation analysis. Results suggest that EVI influences testate amoeba communities, with some taxa more abundant under highly variable conditions (e.g., Arcella discoides, Difflugia pulex, and Hyalosphenia subflava) and others more abundant when environmental conditions at the peatland surface were relatively stable (e.g., Archerella flavum and Bullinularia indica). The magnitude of environmental variability experienced at the peatland surface appears to be primarily controlled by vegetation composition and density. In particular, sites with dense Sphagnum cover had lower EVI values than sites with loose-growing Sphagnum or vegetation dominated by vascular plants and/or non-Sphagnum bryophytes. Our results suggest that more environmental information may be inferred from testate amoebae than previously recognized. Knowledge of relationships between testate amoebae and short-term environmental variability should lead to more detailed and refined environmental inferences.

  19. Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3

    Science.gov (United States)

    Ivan P. Edwards; Donald R. Zak

    2011-01-01

    The long-term effects of rising atmospheric carbon dioxide (CO2) and tropospheric O3 concentrations on fungal communities in soil are not well understood. Here, we examine fungal community composition and the activities of cellobiohydrolase and N-acetylglucosaminidase (NAG) after 10 years of exposure to 1...

  20. Productivity and species composition of algal mat communities exposed to a fluctuating thermal regime

    International Nuclear Information System (INIS)

    Tison, D.L.; Wilde, E.W.; Pope, D.H.; Fliermans, C.B.

    1981-01-01

    Algal mat communities growing in thermal effluents of production nuclear reactors at the Savannah River Plant, near Aiken, SC, are exposed to large temperature fluctuations resulting from reactor operations. Rates of primary production and species composition were monitored at 4 sites along a thermal gradient in a trough microcosm to determine how these large temperature fluctuations affected productivity and algal community structure. Blue-green algae (cyanobacteria) were the only phototrophic primary producers growing in water above 45 0 C. These thermophiles were able to survive and apparently adapt to ambient temperatures when the reactor was shut down. The algal mat communities exposed to 14 C-labeled dissolved organic compounds and a decrease in primary production were observed during periods of thermal fluctuation. The results show that the dominant phototrophs in this artificially heated aquatic habitat have been selected for their abiity to survive large temperature fluctuations and are similar to those of natural hot springs

  1. Microbial community diversity and composition varies with habitat characteristics and biofilm function in macrophyte-rich streams

    DEFF Research Database (Denmark)

    Levi, Peter S.; Starnawski, Piotr; Poulsen, Britta

    2017-01-01

    Biofilms in streams play an integral role in ecosystem processes and function yet few studies have investigated the broad diversity of these complex prokaryotic and eukaryotic microbial communities. Physical habitat characteristics can affect the composition and abundance of microorganisms...... in these biofilms by creating microhabitats. Here we describe the prokaryotic and eukaryotic microbial diversity of biofilms in sand and macrophyte habitats (i.e. epipsammon and epiphyton, respectively) in five macrophyte-rich streams in Jutland, Denmark. The macrophyte species varied in growth morphology, C......:N stoichiometry, and preferred stream habitat, providing a range in environmental conditions for the epiphyton. Among all habitats and streams, the prokaryotic communities were dominated by common phyla, including Alphaproteobacteria, Bacteriodetes, and Gammaproteobacteria, while the eukaryotic communities were...

  2. Monitoring of the microbial community composition of the saline aquifers during CO2 storage by fluorescence in situ hybridisation

    OpenAIRE

    Daria Morozova; M. Wandrey; Mashal Alawi; Martin Zimmer; Andrea Vieth-Hillebrand [Vieth; M. Zettlitzer; Hilke Würdemann

    2010-01-01

    This study reveals the first analyses of the composition and activity of the microbial community of a saline CO2 storage aquifer. Microbial monitoring during CO2 injection has been reported. By using fluorescence in situ hybridisation (FISH), we have shown that the microbial community was strongly influenced by the CO2 injection. Before CO2 arrival, up to 6 × 106 cells ml−1 were detected by DAPI staining at a depth of 647 m below the surface. The microbial community was dominated by the dom...

  3. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats

    NARCIS (Netherlands)

    Severin, I.; Confurius-Guns, V.; Stal, L.J.

    2012-01-01

    Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community ( transcript libraries) of three types of microbial mats situated

  4. PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances

    OpenAIRE

    Tang, Zheng-Zheng; Chen, Guanhua; Alekseyenko, Alexander V.

    2016-01-01

    Motivation: Recent advances in sequencing technology have made it possible to obtain high-throughput data on the composition of microbial communities and to study the effects of dysbiosis on the human host. Analysis of pairwise intersample distances quantifies the association between the microbiome diversity and covariates of interest (e.g. environmental factors, clinical outcomes, treatment groups). In the design of these analyses, multiple choices for distance metrics are available. Most di...

  5. The effects of coastal development on sponge abundance, diversity, and community composition on Jamaican coral reefs.

    Science.gov (United States)

    Stubler, Amber D; Duckworth, Alan R; Peterson, Bradley J

    2015-07-15

    Over the past decade, development along the northern coast of Jamaica has accelerated, resulting in elevated levels of sedimentation on adjacent reefs. To understand the effects of this development on sponge community dynamics, we conducted surveys at three locations with varying degrees of adjacent coastal development to quantify species richness, abundance and diversity at two depths (8-10 m and 15-18 m). Sediment accumulation rate, total suspended solids and other water quality parameters were also quantified. The sponge community at the location with the least coastal development and anthropogenic influence was often significantly different from the other two locations, and exhibited higher sponge abundance, richness, and diversity. Sponge community composition and size distribution were statistically different among locations. This study provides correlative evidence that coastal development affects aspects of sponge community ecology, although the precise mechanisms are still unclear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Compost Addition Enhanced Hyphal Growth and Sporulation of Arbuscular Mycorrhizal Fungi without Affecting Their Community Composition in the Soil

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-02-01

    Full Text Available Arbuscular mycorrhizal (AM fungi form symbiotic associations with most crop plant species in agricultural ecosystems, and are conspicuously influenced by various agricultural practices. To understand the impact of compost addition on AM fungi, we examined effect of four compost rates (0, 11.25, 22.5, and 45 Mg/ha on the abundance and community composition of AM fungi in seedling, flowering, and mature stage of soybean in a 1-year compost addition experiment system in Northeast China. Soybean [Glycine max (L. Merrill] was used as test plant. Moderate (22.5 Mg/ha and high (45 Mg/ha levels of compost addition significantly increased AM root colonization and extraradical hyphal (ERH density compared with control, whereas low (11.5 Mg/ha level of compost addition did not cause significant increase in AM root colonization and ERH density. AM fungal spore density was significantly enhanced by all the compost rates compared with control. The temporal variations analysis revealed that, AM root colonization in seedling stage was significantly lower than in flowering and mature stage. Although AM fungal operational taxonomic unit richness and community composition was unaffected by compost addition, some abundant AM fungal species showed significantly different response to compost addition. In mature stage, Rhizophagus fasciculatum showed increasing trend along with compost addition gradient, whereas the opposite was observed with Paraglomus sp. In addition, AM fungal community composition exhibited significant temporal variation during growing season. Further analysis indicated that the temporal variation in AM fungal community only occurred in control treatment, but not in low, moderate, and high level of compost addition treatments. Our findings highlighted the significant effects of compost addition on AM growth and sporulation, and emphasized that growth stage is a stronger determinant than 1-year compost addition in shaping AM fungal community in

  7. Compost Addition Enhanced Hyphal Growth and Sporulation of Arbuscular Mycorrhizal Fungi without Affecting Their Community Composition in the Soil.

    Science.gov (United States)

    Yang, Wei; Gu, Siyu; Xin, Ying; Bello, Ayodeji; Sun, Wenpeng; Xu, Xiuhong

    2018-01-01

    Arbuscular mycorrhizal (AM) fungi form symbiotic associations with most crop plant species in agricultural ecosystems, and are conspicuously influenced by various agricultural practices. To understand the impact of compost addition on AM fungi, we examined effect of four compost rates (0, 11.25, 22.5, and 45 Mg/ha) on the abundance and community composition of AM fungi in seedling, flowering, and mature stage of soybean in a 1-year compost addition experiment system in Northeast China. Soybean [ Glycine max (L.) Merrill] was used as test plant. Moderate (22.5 Mg/ha) and high (45 Mg/ha) levels of compost addition significantly increased AM root colonization and extraradical hyphal (ERH) density compared with control, whereas low (11.5 Mg/ha) level of compost addition did not cause significant increase in AM root colonization and ERH density. AM fungal spore density was significantly enhanced by all the compost rates compared with control. The temporal variations analysis revealed that, AM root colonization in seedling stage was significantly lower than in flowering and mature stage. Although AM fungal operational taxonomic unit richness and community composition was unaffected by compost addition, some abundant AM fungal species showed significantly different response to compost addition. In mature stage, Rhizophagus fasciculatum showed increasing trend along with compost addition gradient, whereas the opposite was observed with Paraglomus sp. In addition, AM fungal community composition exhibited significant temporal variation during growing season. Further analysis indicated that the temporal variation in AM fungal community only occurred in control treatment, but not in low, moderate, and high level of compost addition treatments. Our findings highlighted the significant effects of compost addition on AM growth and sporulation, and emphasized that growth stage is a stronger determinant than 1-year compost addition in shaping AM fungal community in black soil of

  8. Compost Addition Enhanced Hyphal Growth and Sporulation of Arbuscular Mycorrhizal Fungi without Affecting Their Community Composition in the Soil

    Science.gov (United States)

    Yang, Wei; Gu, Siyu; Xin, Ying; Bello, Ayodeji; Sun, Wenpeng; Xu, Xiuhong

    2018-01-01

    Arbuscular mycorrhizal (AM) fungi form symbiotic associations with most crop plant species in agricultural ecosystems, and are conspicuously influenced by various agricultural practices. To understand the impact of compost addition on AM fungi, we examined effect of four compost rates (0, 11.25, 22.5, and 45 Mg/ha) on the abundance and community composition of AM fungi in seedling, flowering, and mature stage of soybean in a 1-year compost addition experiment system in Northeast China. Soybean [Glycine max (L.) Merrill] was used as test plant. Moderate (22.5 Mg/ha) and high (45 Mg/ha) levels of compost addition significantly increased AM root colonization and extraradical hyphal (ERH) density compared with control, whereas low (11.5 Mg/ha) level of compost addition did not cause significant increase in AM root colonization and ERH density. AM fungal spore density was significantly enhanced by all the compost rates compared with control. The temporal variations analysis revealed that, AM root colonization in seedling stage was significantly lower than in flowering and mature stage. Although AM fungal operational taxonomic unit richness and community composition was unaffected by compost addition, some abundant AM fungal species showed significantly different response to compost addition. In mature stage, Rhizophagus fasciculatum showed increasing trend along with compost addition gradient, whereas the opposite was observed with Paraglomus sp. In addition, AM fungal community composition exhibited significant temporal variation during growing season. Further analysis indicated that the temporal variation in AM fungal community only occurred in control treatment, but not in low, moderate, and high level of compost addition treatments. Our findings highlighted the significant effects of compost addition on AM growth and sporulation, and emphasized that growth stage is a stronger determinant than 1-year compost addition in shaping AM fungal community in black soil of

  9. Composition and temporal patterns of larval fish communities in Chesapeake and Delaware Bays

    Directory of Open Access Journals (Sweden)

    Filipe Ribeiro

    2015-11-01

    Full Text Available Comparing larval fish assemblages in different estuaries provides insights about the coastal distribution of larval populations, larval transport, and adult spawning locations (Ribeiro et al. 2015. We simultaneously compared the larval fish assemblages entering two Middle Atlantic Bight (MAB estuaries (Delaware Bay and Chesapeake Bay, USA through weekly sampling from 2007 to 2009. In total, 43 taxa (32 families and 36 taxa (24 families were collected in Delaware and Chesapeake Bays, respectively. Mean taxonomic diversity, mean richness, and evenness were generally lower in Delaware Bay. Communities of both bays were dominated by Anchoa spp., Gobiosoma spp., Micropogonias undulatus, and Brevoortia tyrannus; Paralichthys spp. was more abundant in Delaware Bay and Microgobius thalassinus was more abundant in Chesapeake Bay. Inter-annual variation in the larval fish communities was low at both sites, with a relatively consistent composition across years, but strong seasonal (intra-annual variation in species composition occurred in both bays. Two groups were identified in Chesapeake Bay: a ‘winter’ group dominated by shelf-spawned species (e.g. M. undulatus and a ‘summer’ group comprising obligate estuarine species and coastal species (e.g. Gobiosoma spp. and Cynoscion regalis, respectively. In Delaware Bay, 4 groups were identified: a ‘summer’ group of mainly obligate estuarine fishes (e.g. Menidia sp. being replaced by a ‘fall’ group (e.g. Ctenogobius boleosoma and Gobionellus oceanicus; ‘winter’ and ‘spring’ groups were dominated by shelf-spawned (e.g. M. undulatus and Paralichthys spp. and obligate estuarine species (e.g. Leiostomus xanthurus and Pseudopleuronectes americanus, respectively. This study demonstrates that inexpensive and simultaneous sampling in different estuaries provides important insights into the variability in community structure of fish assemblages at large spatial scales.

  10. A dinosaur community composition dataset for the Late Cretaceous Nemegt Basin of Mongolia

    Directory of Open Access Journals (Sweden)

    G.F. Funston

    2018-02-01

    Full Text Available Dinosaur community composition data for eleven fossil localities in the Late Cretaceous Nemegt Basin of Mongolia are compiled from field observations and records in the literature. Counts were generated from skeletons and represent numbers of individuals preserved in each locality. These data were used in the analyses of Funston et al. [1] “Oviraptorosaur anatomy, diversity, and ecology in the Nemegt Basin” in the Nemegt Ecosystems Special Issue of Palaeogeography, Palaeoclimatology, Palaeoecology, where the results are discussed.

  11. Rainfall and Coconut Accession Explain the Composition and Abundance of the Community of Potential Auchenorrhyncha Phytoplasma Vectors in Brazil.

    Science.gov (United States)

    Silva, Flaviana G; Passos, Eliana M; Diniz, Leandro E C; Farias, Adriano P; Teodoro, Adenir V; Fernandes, Marcelo F; Dollet, Michel

    2018-04-05

    Coconut plantations are attacked by the lethal yellowing (LY), which is spreading rapidly with extremely destructive effects in several countries. The disease is caused by phytoplasmas that occur in the plant phloem and are transmitted by Haplaxius crudus (Van Duzee) (Auchenorrhyncha: Cixiidae). Owing to their phloem-sap feeding habit, other planthopper species possibly act as vectors. Here, we aimed at assessing the seasonal variation in the Auchenorrhyncha community in six dwarf coconut accessions. Also, we assessed the relative contribution of biotic (coconut accession) and abiotic (rainfall, temperature) in explaining Auchenorrhyncha composition and abundance. The Auchenorrhyncha community was monthly evaluated for 1 yr using yellow sticky traps. Among the most abundant species, Oecleus sp., Balclutha sp., Deltocephalinae sp.2, Deltocephalinae sp.3, Cenchreini sp., Omolicna nigripennis Caldwell (Derbidae), and Cedusa sp. are potential phytoplasma vectors. The composition of the Auchenorrhyncha community differed between dwarf coconut accessions and periods, namely, in March and April (transition from dry to rainy season) and August (transition from rainy to dry season). In these months, Oecleus sp. was predominantly found in the accessions Cameroon Red Dwarf, Malayan Red Dwarf, and Brazilian Red Dwarf Gramame, while Cenchreini sp. and Bolbonota sp. were dominant in the accessions Brazilian Yellow Dwarf Gramame, Malayan Yellow Dwarf, and Brazilian Green Dwarf Jequi. We conclude that dwarf coconut host several Auchenorrhyncha species potential phytoplasma vectors. Furthermore, coconut accessions could be exploited in breeding programs aiming at prevention of LY. However, rainfall followed by accessions mostly explained the composition and abundance of the Auchenorrhyncha community.

  12. Legacy effects of continuous chloropicrin-fumigation for 3-years on soil microbial community composition and metabolic activity

    NARCIS (Netherlands)

    Zhang, Shuting; Liu, Xiaojiao; Jiang, Qipeng; Shen, Guihua; Ding, Wei

    2017-01-01

    Chloropicrin is widely used to control ginger wilt in China, which have an enormous impact on soil microbial diversity. However, little is known on the possible legacy effects on soil microbial community composition with continuous fumigation over different years. In this report, we used high

  13. Biodiversity conservation in an anthropized landscape: Trees, not patch size drive, bird community composition in a low-input agro-ecosystem.

    Science.gov (United States)

    Mellink, Eric; Riojas-López, Mónica E; Cárdenas-García, Melinda

    2017-01-01

    One of the most typical agro-ecosystems in the Llanos de Ojuelos, a semi-arid region of central Mexico, is that of fruit-production orchards of nopales (prickly pear cacti). This perennial habitat with complex vertical structure provides refuge and food for at least 112 species of birds throughout the year. Nopal orchards vary in their internal structure, size and shrub/tree composition, yet these factors have unknown effects on the animals that use them. To further understand the conservation potential of this agro-ecosystem, we evaluated the effects of patch-size and the presence of trees on bird community composition, as well as several habitat variables, through an information-theoretical modelling approach. Community composition was obtained through a year of census transects in 12 orchards. The presence of trees in the orchards was the major driver of bird communities followed by seasonality; bird communities are independent of patch size, except for small orchard patches that benefit black-chin sparrows, which are considered a sensitive species. At least 55 species of six trophic guilds (insectivores, granivores, carnivores, nectivores, omnivores, and frugivores) used the orchards. Orchards provide adequate habitat and food resources for several sensitive species of resident and migratory sparrows. The attributes that make orchards important for birds: trees, shrubs, herb seeds, and open patches can be managed to maintain native biodiversity in highly anthropized regions with an urgent need to find convergence between production and biological conservation.

  14. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions.

    Science.gov (United States)

    He, Shaomei; Malfatti, Stephanie A; McFarland, Jack W; Anderson, Frank E; Pati, Amrita; Huntemann, Marcel; Tremblay, Julien; Glavina del Rio, Tijana; Waldrop, Mark P; Windham-Myers, Lisamarie; Tringe, Susannah G

    2015-05-19

    Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhouse gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial communities

  15. Exogenous Nitrogen Addition Reduced the Temperature Sensitivity of Microbial Respiration without Altering the Microbial Community Composition

    Directory of Open Access Journals (Sweden)

    Hui Wei

    2017-12-01

    Full Text Available Atmospheric nitrogen (N deposition is changing in both load quantity and chemical composition. The load effects have been studied extensively, whereas the composition effects remain poorly understood. We conducted a microcosm experiment to study how N chemistry affected the soil microbial community composition characterized by phospholipid fatty acids (PLFAs and activity indicated by microbial CO2 release. Surface and subsurface soils collected from an old-growth subtropical forest were supplemented with three N-containing materials (ammonium, nitrate, and urea at the current regional deposition load (50 kg ha-1 yr-1 and incubated at three temperatures (10, 20, and 30°C to detect the interactive effects of N deposition and temperature. The results showed that the additions of N, regardless of form, did not alter the microbial PLFAs at any of the three temperatures. However, the addition of urea significantly stimulated soil CO2 release in the early incubation stage. Compared with the control, N addition consistently reduced the temperature dependency of microbial respiration, implying that N deposition could potentially weaken the positive feedback of the warming-stimulated soil CO2 release to the atmosphere. The consistent N effects for the surface and subsurface soils suggest that the effects of N on soil microbial communities may be independent of soil chemical contents and stoichiometry.

  16. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.

    Science.gov (United States)

    Kishida, Naohiro; Kim, Juhyun; Tsuneda, Satoshi; Sudo, Ryuichi

    2006-07-01

    In a biological nutrient removal (BNR) process, the utilization of denitrifying polyphosphate-accumulating organisms (DNPAOs) has many advantages such as effective use of organic carbon substrates and low sludge production. As a suitable process for the utilization of DNPAOs in BNR, an anaerobic/oxic/anoxic granular sludge (AOAGS) process was proposed in this study. In spite of performing aeration for nitrifying bacteria, the AOAGS process can create anaerobic/anoxic conditions suitable for the cultivation of DNPAOs because anoxic zones exist inside the granular sludge in the oxic phase. Thus, DNPAOs can coexist with nitrifying bacteria in a single reactor. In addition, the usability of DNPAOs in the reactor can be improved by adding the anoxic phase after the oxic phase. These characteristics enable the AOAGS process to attain effective removal of both nitrogen and phosphorus. When acetate-based synthetic wastewater (COD: 600 mg/L, NH4-N: 60 mg/L, PO(4)-P: 10 mg/L) was supplied to a laboratory-scale sequencing batch reactor under the operation of anaerobic/oxic/anoxic cycles, granular sludge with a diameter of 500 microm was successfully formed within 1 month. Although the removal of both nitrogen and phosphorus was almost complete at the end of the oxic phase, a short anoxic period subsequent to the oxic phase was necessary for further removal of nitrogen and phosphorus. As a result, effluent concentrations of NH(4)-N, NO(x)-N and PO(4)-P were always lower than 1 mg/L. It was found that penetration depth of oxygen inside the granular sludge was approximately 100 microm by microsensor measurements. In addition, from the microbiological analysis by fluorescence in situ hybridization, existence depth of polyphosphate-accumulating organisms was further than the maximum oxygen penetration depth. The water quality data, oxygen profiles and microbial community structure demonstrated that DNPAOs inside the granular sludge may be responsible for denitrification in the

  17. Prokaryotic diversity and community composition in the Salar de Uyuni, a large scale, chaotropic salt flat.

    Science.gov (United States)

    dC Rubin, Sergio S; Marín, Irma; Gómez, Manuel J; Morales, Eduardo A; Zekker, Ivar; San Martín-Uriz, Patxi; Rodríguez, Nuria; Amils, Ricardo

    2017-09-01

    Salar de Uyuni (SdU), with a geological history that reflects 50 000 years of climate change, is the largest hypersaline salt flat on Earth and is estimated to be the biggest lithium reservoir in the world. Its salinity reaches saturation levels for NaCl, a kosmotropic salt, and high concentrations of MgCL 2 and LiCl, both salts considered important chaotrophic stressors. In addition, extreme temperatures, anoxic conditions, high UV irradiance, high albedo and extremely low concentrations of phosphorous, make SdU a unique natural extreme environment in which to contrast hypotheses about limiting factors of life diversification. Geophysical studies of brines from different sampling stations show that water activity is rather constant along SdU. Geochemical measurements show significant differences in magnesium concentration, ranging from 0.2 to 2M. This work analyses the prokaryotic diversity and community structure at four SdU sampling stations, selected according to their location and ionic composition. Prokaryotic communities were composed of both Archaea (with members of the classes Halobacteria, Thermoplasmata and Nanohaloarchaea, from the Euryarchaeota and Nanohaloarcheota phyla respectively) and Bacteria (mainly belonging to Bacteroidetes and Proteobacteria phyla). The important differences in composition of microbial communities inversely correlate with Mg 2+ concentration, suggesting that prokaryotic diversity at SdU is chaotropic dependent. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development.

    Science.gov (United States)

    Martínez-García, Laura B; Richardson, Sarah J; Tylianakis, Jason M; Peltzer, Duane A; Dickie, Ian A

    2015-03-01

    Little is known about the response of arbuscular mycorrhizal fungal communities to ecosystem development. We use a long-term soil chronosequence that includes ecosystem progression and retrogression to quantify the importance of host plant identity as a factor driving fungal community composition during ecosystem development. We identified arbuscular mycorrhizal fungi and plant species from 50 individual roots from each of 10 sites spanning 5-120 000 yr of ecosystem age using terminal restriction fragment length polymorphism (T-RFLP), Sanger sequencing and pyrosequencing. Arbuscular mycorrhizal fungal communities were highly structured by ecosystem age. There was strong niche differentiation, with different groups of operational taxonomic units (OTUs) being characteristic of early succession, ecosystem progression and ecosystem retrogression. Fungal alpha diversity decreased with ecosystem age, whereas beta diversity was high at early stages and lower in subsequent stages. A total of 39% of the variance in fungal communities was explained by host plant and site age, 29% of which was attributed to host and the interaction between host and site (24% and 5%, respectively). The strong response of arbuscular mycorrhizal fungi to ecosystem development appears to be largely driven by plant host identity, supporting the concept that plant and fungal communities are tightly coupled rather than independently responding to habitat. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. Biopotentiality of High Efficient Aerobic Denitrifier Bacillus megaterium S379 for Intensive Aquaculture Water Quality Management.

    Science.gov (United States)

    Gao, Junqian; Gao, Dan; Liu, Hao; Cai, Jiajai; Zhang, Junqi; Qi, Zhengliang

    2018-05-24

    Excessive nitrite accumulation is a very tough issue for intensive aquaculture. A high efficient aerobic denitrifier Bacillus megaterium S379 with 91.71±0.17% of NO 2 - -N (65 mg L -1 ) removal was successfully isolated for solving the problem. Denitrification of S379 showed excellent environment adaptation that it kept high nitrite removal ratio (more than 85%) when temperature ranged from 25°C to 40°C and pH varied between 7.0 and 9.0, and could endure as high as 560 mg L -1 of NO 2 - -N. Immobilization of S379 could enhance denitrification even when NO 2 - -N adding amount got to 340 mg L -1 . Immobilized cells also showed well pollutants removal performance in aquaculture wastewater treatment. Moreover, S379 possessed positive hydrolase activities for starch, casein, cellulose and fat and bore more than 60 ppt of salinity. Totally, all the results revealed significant potentiality of immobilized S379 applied in aquaculture water quality management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Geological differentiation explains diversity and composition of fish communities in upland streams in the southern Amazon of Colombia

    NARCIS (Netherlands)

    Arbeláez, F.; Duivenvoorden, J.F.; Maldonado-Ocampo, J.A.

    2008-01-01

    Fish biomass, species richness and composition were compared between upland streams draining two contrasting geological units (Pebas and Tsa) in Colombian Amazonia. Because Pebas sediments reportedly show higher levels of base concentrations than Tsa sediments, we expected that the fish communities

  1. Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the Sponge Haliclona cymaeformis

    KAUST Repository

    Tian, R.-M.; Wang, Y.; Bougouffa, Salim; Gao, Z.-M.; Cai, L.; Zhang, W.-P.; Bajic, Vladimir B.; Qian, P.-Y.

    2014-01-01

    and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S

  2. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes.

    Science.gov (United States)

    Zhu, Daochen; Tanabe, Shoko-Hosoi; Yang, Chong; Zhang, Weimin; Sun, Jianzhong

    2013-01-01

    Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.

  3. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes.

    Directory of Open Access Journals (Sweden)

    Daochen Zhu

    Full Text Available BACKGROUND: Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. METHODOLOGY/PRINCIPAL FINDINGS: Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. CONCLUSIONS: This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.

  4. Arbuscular mycorrhizal fungal community composition associated with Juniperus brevifolia in native Azorean forest

    Science.gov (United States)

    Melo, Catarina Drumonde; Luna, Sara; Krüger, Claudia; Walker, Christopher; Mendonça, Duarte; Fonseca, Henrique M. A. C.; Jaizme-Vega, Maria; da Câmara Machado, Artur

    2017-02-01

    The communities of glomeromycotan fungi (arbuscular mycorrhizal fungi, AMF) under native Juniperus brevifolia forest from two Azorean islands, Terceira and São Miguel, were compared, mainly by spore morphology, and when possible, by molecular analysis. Thirty-nine morphotypes were detected from 12 genera. Glomeromycotan fungal richness was similar in Terceira and São Miguel, but significantly different among the four fragments of native forest. Spore diversity and community composition differed significantly between the two islands. The less degraded island, Terceira, showed 10 exclusive morphotypes including more rare types, whereas the more disturbed forest on São Miguel showed 13 morphs, mostly of common types. Forests from Terceira were dominated by Acaulosporaceae and Glomeraceae. Whereas members of Acaulosporaceae, Glomeraceae and Ambisporaceae were most frequent and abundant in those from São Miguel. Spore abundance was greatest on Terceira, and correlated with soil chemical properties (pH), average monthly temperature and relative humidity.

  5. Nitrogen Deposition Reduces Decomposition Rates Through Shifts in Microbial Community Composition and Function

    Science.gov (United States)

    Waldrop, M.; Zak, D.; Sinsabaugh, R.

    2002-12-01

    Atmospheric nitrogen (N) deposition may alter soil biological activity in northern hardwood forests by repressing phenol oxidase enzyme activity and altering microbial community composition, thereby slowing decomposition and increasing the export of phenolic compounds. We tested this hypothesis by adding 13C-labelled cellobiose, vanillin, and catechol to control and N fertilized soils (30 and 80 kg ha-1) collected from three forests; two dominated by Acer Saccharum and one dominated by Quercus Alba and Quercus Velutina. While N deposition increased total microbial respiration, it decreased soil oxidative enzyme activities, resulting in slower degradation rates of all compounds, and larger DOC pools. This effect was larger in the oak forest, where fungi dominate C-cycling processes. DNA and 13C-phospolipid analyses showed that N addition altered the fungal community and reduced the activity of fungal and bacterial populations in soil, potentially explaining reduced soil enzyme activities and incomplete decomposition.

  6. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions.

    Directory of Open Access Journals (Sweden)

    Daniel R H Graf

    Full Text Available Nitrous oxide (N2O is a potent greenhouse gas and the predominant ozone depleting substance. The only enzyme known to reduce N2O is the nitrous oxide reductase, encoded by the nosZ gene, which is present among bacteria and archaea capable of either complete denitrification or only N2O reduction to di-nitrogen gas. To determine whether the occurrence of nosZ, being a proxy for the trait N2O reduction, differed among taxonomic groups, preferred habitats or organisms having either NirK or NirS nitrite reductases encoded by the nirK and nirS genes, respectively, 652 microbial genomes across 18 phyla were compared. Furthermore, the association of different co-occurrence patterns with enzymes reducing nitric oxide to N2O encoded by nor genes was examined. We observed that co-occurrence patterns of denitrification genes were not randomly distributed across taxa, as specific patterns were found to be more dominant or absent than expected within different taxonomic groups. The nosZ gene had a significantly higher frequency of co-occurrence with nirS than with nirK and the presence or absence of a nor gene largely explained this pattern, as nirS almost always co-occurred with nor. This suggests that nirS type denitrifiers are more likely to be capable of complete denitrification and thus contribute less to N2O emissions than nirK type denitrifiers under favorable environmental conditions. Comparative phylogenetic analysis indicated a greater degree of shared evolutionary history between nosZ and nirS. However 30% of the organisms with nosZ did not possess either nir gene, with several of these also lacking nor, suggesting a potentially important role in N2O reduction. Co-occurrence patterns were also non-randomly distributed amongst preferred habitat categories, with several habitats showing significant differences in the frequencies of nirS and nirK type denitrifiers. These results demonstrate that the denitrification pathway is highly modular, thus

  7. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.

    Science.gov (United States)

    Angell, John H; Peng, Xuefeng; Ji, Qixing; Craick, Ian; Jayakumar, Amal; Kearns, Patrick J; Ward, Bess B; Bowen, Jennifer L

    2018-01-01

    Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes ( amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

  8. The optimal ecological factors and the denitrification populationof a denitrifying process for sulfate reducing bacteriainhibition

    Science.gov (United States)

    Li, Chunying

    2018-02-01

    SRB have great negative impacts on the oil production in Daqing Oil field. A continuous-flow anaerobic baffled reactors (ABR) are applied to investigate the feasibility and optimal ecological factors for the inhibition of SRB by denitrifying bacteria (DNB). The results showed that the SO42- to NO3- concentration ratio (SO42-/NO3-) are the most important ecological factor. The input of NO3- and lower COD can enhance the inhibition of S2-production effectively. The effective time of sulfate reduction is 6 h. Complete inhibition of SRB is obtained when the influent COD concentration is 600 mg/L, the SO42-/NO3- is 1/1 (600 mg/L for each), N is added simultaneously in the 2# and the 5# ABR chambers. By extracting the total DNA of wastewater from the effective chamber, 16SrDNA clones of a bacterium had been constructed. It is showed that the Proteobacteria accounted for eighty- four percent of the total clones. The dominant species was the Neisseria. Sixteen percent of the total clones were the Bacilli of Frimicutes. It indicated that DNB was effective and feasible for SRB inhibition.

  9. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days.

    Science.gov (United States)

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing.

  10. Differences found in the macroinvertebrate community composition in the presence or absence of the invasive alien crayfish, Orconectes hylas

    Science.gov (United States)

    Freeland-Riggert, Brandye T.; Cairns, Stefan H.; Poulton, Barry C.; Riggert, Chris M.

    2016-01-01

    Introductions of alien species into aquatic ecosystems have been well documented, including invasions of crayfish species; however, little is known about the effects of these introductions on macroinvertebrate communities. The woodland crayfish (Orconectes hylas (Faxon)) has been introduced into the St. Francis River watershed in southeast Missouri and has displaced populations of native crayfish. The effects of O. hylas on macroinvertebrate community composition were investigated in a fourth-order Ozark stream at two locations, one with the presence of O. hylas and one without. Significant differences between sites and across four sampling periods and two habitats were found in five categories of benthic macroinvertebrate metrics: species richness, percent/composition, dominance/diversity, functional feeding groups, and biotic indices. In most seasons and habitat combinations, the invaded site had significantly higher relative abundance of riffle beetles (Coleoptera: Elmidae), and significantly lower Missouri biotic index values, total taxa richness, and both richness and relative abundance of midges (Diptera: Chironomidae). Overall study results indicate that some macroinvertebrate community differences due to the O. hylas invasion were not consistent between seasons and habitats, suggesting that further research on spatial and temporal habitat use and feeding ecology of Ozark crayfish species is needed to improve our understanding of the effects of these invasions on aquatic communities.

  11. Effects of food on bacterial community composition associated with the copepod Acartia tonsa Dana

    OpenAIRE

    Tang, Kam; Dziallas, Claudia; Hutalle-Schmelzer, Kristine; Grossart, Hans-Peter

    2009-01-01

    The estuarine copepod Acartia tonsa naturally carried diverse strains of bacteria on its body. The bacterial community composition (BCC) remained very conservative even when the copepod was fed different axenic algal species, indicating that the food per se did not much affect BCC associated with the copepod. In xenic algal treatments, however, copepod-associated BCC differed with each alga fed, even though the same bacterial source was used to inoculate the algae. In addition, starved copepo...

  12. Assessing plant community composition fails to capture impacts of white-tailed deer on native and invasive plant species.

    Science.gov (United States)

    Nuzzo, Victoria; Dávalos, Andrea; Blossey, Bernd

    2017-07-01

    Excessive herbivory can have transformative effects on forest understory vegetation, converting diverse communities into depauperate ones, often with increased abundance of non-native plants. White-tailed deer are a problematic herbivore throughout much of eastern North America and alter forest understory community structure. Reducing (by culling) or eliminating (by fencing) deer herbivory is expected to return understory vegetation to a previously diverse condition. We examined this assumption from 1992 to 2006 at Fermilab (Batavia, IL) where a cull reduced white-tailed deer ( Odocoileus virginianus ) abundance in 1998/1999 by 90 % from 24.6 to 2.5/km 2 , and at West Point, NY, where we assessed interactive effects of deer, earthworms, and invasive plants using 30 × 30 m paired fenced and open plots in 12 different forests from 2009 to 2012. We recorded not only plant community responses (species presence and cover) within 1 m 2 quadrats, but also responses of select individual species (growth, reproduction). At Fermilab, introduced Alliaria petiolata abundance initially increased as deer density increased, but then declined after deer reduction. The understory community responded to the deer cull by increased cover, species richness and height, and community composition changed but was dominated by early successional native forbs. At West Point plant community composition was affected by introduced earthworm density but not deer exclusion. Native plant cover increased and non-native plant cover decreased in fenced plots, thus keeping overall plant cover similar. At both sites native forb cover increased in response to deer reduction, but the anticipated response of understory vegetation failed to materialize at the community level. Deer-favoured forbs ( Eurybia divaricata , Maianthemum racemosum , Polygonatum pubescens and Trillium recurvatum ) grew taller and flowering probability increased in the absence of deer. Plant community monitoring fails to capture

  13. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients.

    Science.gov (United States)

    Azarbad, Hamed; Niklińska, Maria; Laskowski, Ryszard; van Straalen, Nico M; van Gestel, Cornelis A M; Zhou, Jizhong; He, Zhili; Wen, Chongqing; Röling, Wilfred F M

    2015-01-01

    Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did, however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes), but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appears to be a more promising strategy. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The Role of Abiotic Environmental Conditions and Herbivory in Shaping Bacterial Community Composition in Floral Nectar

    Science.gov (United States)

    Samuni-Blank, Michal; Izhaki, Ido; Laviad, Sivan; Bar-Massada, Avi; Gerchman, Yoram; Halpern, Malka

    2014-01-01

    Identifying the processes that drive community assembly has long been a central theme in ecology. For microorganisms, a traditional prevailing hypothesis states that “everything is everywhere, but the environment selects”. Although the bacterial community in floral nectar may be affected by both atmosphere (air-borne bacteria) and animals as dispersal vectors, the environmental and geographic factors that shape microbial communities in floral nectar are unknown. We studied culturable bacterial communities in Asphodelus aestivus floral nectar and in its typical herbivorous bug Capsodes infuscatus, along an aridity gradient. Bacteria were sampled from floral nectar and bugs at four sites, spanning a geographical range of 200 km from Mediterranean to semi-arid conditions, under open and bagged flower treatments. In agreement with the niche assembly hypothesis, the differences in bacterial community compositions were explained by differences in abiotic environmental conditions. These results suggest that microbial model systems are useful for addressing macro-ecological questions. In addition, similar bacterial communities were found in the nectar and on the surface of the bugs that were documented visiting the flowers. These similarities imply that floral nectar bacteria dispersal is shaped not only by air borne bacteria and nectar consumers as previously reported, but also by visiting vectors like the mirid bugs. PMID:24922317

  15. Macrophyte Species Drive the Variation of Bacterioplankton Community Composition in a Shallow Freshwater Lake

    Science.gov (United States)

    Zeng, Jin; Bian, Yuanqi; Xing, Peng

    2012-01-01

    Macrophytes play an important role in structuring aquatic ecosystems. In this study, we explored whether macrophyte species are involved in determining the bacterioplankton community composition (BCC) in shallow freshwater lakes. The BCC in field areas dominated by different macrophyte species in Taihu Lake, a large, shallow freshwater lake, was investigated over a 1-year period. Subsequently, microcosm experiments were conducted to determine if single species of different types of macrophytes in an isolated environment would alter the BCC. Denaturing gradient gel electrophoresis (DGGE), followed by cloning and sequence analysis of selected samples, was employed to analyze the BCC. The DGGE results of the field investigations indicated that the BCC changed significantly from season to season and that the presence of different macrophyte species resulted in lower BCC similarities in the summer and fall. LIBSHUFF analysis of selected clone libraries from the summer demonstrated different BCCs in the water column surrounding different macrophytes. Relative to the field observations, the microcosm studies indicated that the BCC differed more pronouncedly when associated with different species of macrophytes, which was also supported by LIBSHUFF analysis of the selected clone libraries. Overall, this study suggested that macrophyte species might be an important factor in determining the composition of bacterial communities in this shallow freshwater lake and that the species-specific influence of macrophytes on BCC is variable with the season and distance. PMID:22038598

  16. Diet compositions and trophic guild structure of the eastern Chukchi Sea demersal fish community

    Science.gov (United States)

    Whitehouse, George A.; Buckley, Troy W.; Danielson, Seth L.

    2017-01-01

    Fishes are an important link in Arctic marine food webs, connecting production of lower trophic levels to apex predators. We analyzed 1773 stomach samples from 39 fish species collected during a bottom trawl survey of the eastern Chukchi Sea in the summer of 2012. We used hierarchical cluster analysis of diet dissimilarities on 21 of the most well sampled species to identify four distinct trophic guilds: gammarid amphipod consumers, benthic invertebrate generalists, fish and shrimp consumers, and zooplankton consumers. The trophic guilds reflect dominant prey types in predator diets. We used constrained analysis of principal coordinates (CAP) to determine if variation within the composite guild diets could be explained by a suite of non-diet variables. All CAP models explained a significant proportion of the variance in the diet matrices, ranging from 7% to 25% of the total variation. Explanatory variables tested included latitude, longitude, predator length, depth, and water mass. These results indicate a trophic guild structure is present amongst the demersal fish community during summer in the eastern Chukchi Sea. Regular monitoring of the food habits of the demersal fish community will be required to improve our understanding of the spatial, temporal, and interannual variation in diet composition, and to improve our ability to identify and predict the impacts of climate change and commercial development on the structure and functioning of the Chukchi Sea ecosystem.

  17. The effect of poly-β-hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system.

    Science.gov (United States)

    Wei, Yan; Wang, Shuying; Ma, Bin; Li, Xiyao; Yuan, Zhiguo; He, Yuelan; Peng, Yongzhen

    2014-10-01

    Poly-β-hydroxyalkanoates (PHAs) and free nitrous acid (FNA) have been revealed as significant factors causing nitrous oxide (N2O) production in denitrifying phosphorus removal systems. In this study, the effect of PHA degradation rate on N2O production was studied at low FNA levels. N2O production always maintained at approximately 40% of the amount of nitrite reduced independent of the PHA degradation rate. The electrons distributed to nitrite reduction were 1.6 times that to N2O reduction. This indicated that electron competition between these two steps was not affected by the PHA degradation rate. Continuous feed of nitrate was proposed, and demonstrated to reduce N2O accumulation by 75%. While being kept low, a possible compounding effect of a low-level FNA could not be ruled out. The sludge used likely contained both polyphosphate- and glycogen-accumulating organisms, and the results could not be simply attributed to either group of organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The Importance of Biotic vs. Abiotic Drivers of Local Plant Community Composition Along Regional Bioclimatic Gradients.

    Directory of Open Access Journals (Sweden)

    Kari Klanderud

    Full Text Available We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.

  19. Effect of ocean acidification on the fatty acid composition of a natural plankton community

    Directory of Open Access Journals (Sweden)

    E. Leu

    2013-02-01

    Full Text Available The effect of ocean acidification on the fatty acid composition of a natural plankton community in the Arctic was studied in a large-scale mesocosm experiment, carried out in Kongsfjorden (Svalbard, Norway at 79° N. Nine mesocosms of ~50 m3 each were exposed to 8 different pCO2 levels (from natural background conditions to ~1420 μatm, yielding pH values (on the total scale from ~8.3 to 7.5. Inorganic nutrients were added on day 13. The phytoplankton development during this 30-day experiment passed three distinct phases: (1 prior to the addition of inorganic nutrients, (2 first bloom after nutrient addition, and (3 second bloom after nutrient addition. The fatty acid composition of the natural plankton community was analysed and showed, in general, high percentages of polyunsaturated fatty acids (PUFAs: 44–60% of total fatty acids. Positive correlations with pCO2 were found for most PUFAs during phases 2 and/or 3, with the exception of 20:5n3 (eicosapentaenoic acid, EPA, an important diatom marker. These correlations are probably linked to changes in taxonomic composition in response to pCO2. While diatoms (together with prasinophytes and haptophytes increased during phase 3 mainly in the low and intermediate pCO2 treatments, dinoflagellates were favoured by high CO2 concentrations during the same time period. This is reflected in the development of group-specific fatty acid trophic markers. No indications were found for a generally detrimental effect of ocean acidification on the planktonic food quality in terms of essential fatty acids.

  20. Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings.

    Science.gov (United States)

    Chen, Lin-Xing; Li, Jin-Tian; Chen, Ya-Ting; Huang, Li-Nan; Hua, Zheng-Shuang; Hu, Min; Shu, Wen-Sheng

    2013-09-01

    In an attempt to link the microbial community composition and function in mine tailings to the generation of acid mine drainage, we simultaneously explored the geochemistry and microbiology of six tailings collected from a lead/zinc mine, i.e. primary tailings (T1), slightly acidic tailings (T2), extremely acidic tailings (T3, T4 and T5) and orange-coloured oxidized tailings (T6). Geochemical results showed that the six tailings (from T1 to T6) likely represented sequential stages of the acidification process of the mine tailings. 16S rRNA pyrosequencing revealed a contrasting microbial composition between the six tailings: Proteobacteria-related sequences dominated T1-T3 with relative abundance ranging from 56 to 93%, whereas Ferroplasma-related sequences dominated T4-T6 with relative abundance ranging from 28 to 58%. Furthermore, metagenomic analysis of the microbial communities of T2 and T6 indicated that the genes encoding key enzymes for microbial carbon fixation, nitrogen fixation and sulfur oxidation in T2 were largely from Thiobacillus and Acidithiobacillus, Methylococcus capsulatus, and Thiobacillus denitrificans respectively; while those in T6 were mostly identified in Acidithiobacillus and Leptospirillum, Acidithiobacillus and Leptospirillum, and Acidithiobacillus respectively. The microbial communities in T2 and T6 harboured more genes suggesting diverse metabolic capacities for sulfur oxidation/heavy metal detoxification and tolerating low pH respectively. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    Science.gov (United States)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-10-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485

  2. Household waste compositional analysis variation from insular communities in the framework of waste prevention strategy plans

    International Nuclear Information System (INIS)

    Zorpas, Antonis A.; Lasaridi, Katia; Voukkali, Irene; Loizia, Pantelitsa; Chroni, Christina

    2015-01-01

    Highlights: • Waste framework directive has set clear waste prevention procedures. • Household Compositional analysis. • Waste management plans. • Zero waste approach. • Waste generation. - Abstract: Waste management planning requires reliable data regarding waste generation, affecting factors on waste generation and forecasts of waste quantities based on facts. In order to decrease the environmental impacts of waste management the choice of prevention plan as well as the treatment method must be based on the features of the waste that are produced in a specific area. Factors such as culture, economic development, climate, and energy sources have an impact on waste composition; composition influences the need of collecting waste more or less frequently of waste collection and disposition. The research question was to discover the main barriers concerning the compositional analysis in Insular Communities under warm climate conditions and the findings from this study enabled the main contents of a waste management plan to be established. These included advice to residents on waste minimisation, liaison with stakeholders and the expansion of kerbside recycling schemes

  3. Household waste compositional analysis variation from insular communities in the framework of waste prevention strategy plans

    Energy Technology Data Exchange (ETDEWEB)

    Zorpas, Antonis A., E-mail: antonis.zorpas@ouc.ac.cy [Cyprus Open University, Faculty of Pure and Applied Science, Environmental Conservation and Management, P.O. Box 12794, 2252 Latsia, Nicosia (Cyprus); Lasaridi, Katia, E-mail: klasaridi@hua.gr [Harokopio University, Department of Geography, 70 El. Venizelou, 176 71 Athens, Kallithea (Greece); Voukkali, Irene [Institute of Environmental Technology and Sustainable Development, ENVITECH LTD, Department of Research and Development, P.O. Box 34073, 5309 (Cyprus); Loizia, Pantelitsa, E-mail: irenevoukkali@envitech.org [Institute of Environmental Technology and Sustainable Development, ENVITECH LTD, Department of Research and Development, P.O. Box 34073, 5309 (Cyprus); Chroni, Christina [Harokopio University, Department of Geography, 70 El. Venizelou, 176 71 Athens, Kallithea (Greece)

    2015-04-15

    Highlights: • Waste framework directive has set clear waste prevention procedures. • Household Compositional analysis. • Waste management plans. • Zero waste approach. • Waste generation. - Abstract: Waste management planning requires reliable data regarding waste generation, affecting factors on waste generation and forecasts of waste quantities based on facts. In order to decrease the environmental impacts of waste management the choice of prevention plan as well as the treatment method must be based on the features of the waste that are produced in a specific area. Factors such as culture, economic development, climate, and energy sources have an impact on waste composition; composition influences the need of collecting waste more or less frequently of waste collection and disposition. The research question was to discover the main barriers concerning the compositional analysis in Insular Communities under warm climate conditions and the findings from this study enabled the main contents of a waste management plan to be established. These included advice to residents on waste minimisation, liaison with stakeholders and the expansion of kerbside recycling schemes.

  4. Emergent macrophytes modify the abundance and community composition of ammonia oxidizers in their rhizosphere sediments.

    Science.gov (United States)

    Zhao, Dayong; He, Xiaowei; Huang, Rui; Yan, Wenming; Yu, Zhongbo

    2017-07-01

    Ammonia oxidation is a crucial process in global nitrogen cycling, which is catalyzed by the ammonia oxidizers. Emergent plants play important roles in the freshwater ecosystem. Therefore, it is meaningful to investigate the effects of emergent macrophytes on the abundance and community composition of ammonia oxidizers. In the present study, two commonly found emergent macrophytes (Zizania caduciflora and Phragmitas communis) were obtained from freshwater lakes and the abundance and community composition of the ammonia-oxidizing prokaryotes in the rhizosphere sediments of these emergent macrophytes were investigated. The abundance of the bacterial amoA gene was higher in the rhizosphere sediments of the emergent macrophytes than those of bulk sediments. Significant positive correlation was found between the potential nitrification rates (PNRs) and the abundance of bacterial amoA gene, suggesting that ammonia-oxidizing bacteria (AOB) might play an important role in the nitrification process of the rhizosphere sediments of emergent macrophytes. The Nitrosotalea cluster is the dominant ammonia-oxidizing archaea (AOA) group in all the sediment samples. Analysis of AOB group showed that the N. europaeal cluster dominated the rhizosphere sediments of Z. caduciflora and the bulk sediments, whereas the Nitrosospira cluster was the dominant AOB group in the rhizosphere sediments of P. communis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect evaluation of uranium mining effluents on the density and composition of the phytoplankton community

    International Nuclear Information System (INIS)

    Roque, Claudio V.; Azevedo, Heliana de; Bruschi, Armando L.; Ferrari, Carla R.; Ronqui, Leilane B.; Campos, Michelle B.; Nascimento, Marcos Roberto L.; Rodgher, Suzelei

    2011-01-01

    Located in the region of the Pocos de Caldas Plateau, the Osamu Utsumi mine is the first uranium extraction and production mine to have its deposits explored in Brazil and it is situated on the premises of the Brazilian Nuclear Industries Ore Treatment Unit (UTM/INB). Within the UTM/INB installations, water samplings were carried out every three months (from October 2008 to July 2009) in three points (P1, P2 and P3): P1 (pit mine), P2 (Tailings Management Facility/TMF) and P3 (environment). The objective of the current study was to evaluate density and composition of the phytoplankton community, as well as chemical characteristics of water samples from UTM/INB effluents, which present different pH levels (ranging from acidic to alkaline). In the current study, values of pH, total nitrogen, total phosphorus, silicate, sulfate (SO 4 -2 ), fluoride, uranium, thorium and chlorophyll a were determined, as well as composition and density of the phytoplankton community. After comparing the three sampling points, it was verified that Cyanophyceae presented greater tolerance to chemical conditions of the water such as elevated concentrations of sulfate, fluoride, uranium and thorium, as well as pH variations, since this class was detected in all studied environments. (author)

  6. Flow regime in a restored wetland determines trophic links and species composition in the aquatic macroinvertebrate community

    International Nuclear Information System (INIS)

    González-Ortegón, E.; Walton, M.E.M.; Moghaddam, B.; Vilas, C.; Prieto, A.; Kennedy, H.A.; Pedro Cañavate, J.; Le Vay, L.

    2015-01-01

    In a restored wetland (South of Spain), where different flow regimes control water exchange with the adjacent Guadalquivir estuary, the native Palaemon varians coexists with an exotic counterpart species Palaemon macrodactylus. This controlled m/acrocosm offers an excellent opportunity to investigate how the effects of water management, through different flow regimes, and the presence of a non-native species affect the aquatic community and the trophic niche (by gut contents and C-N isotopic composition) of the native shrimp Palaemon varians. We found that increased water exchange rate (5% day −1 in mixed ponds vs. 0.1% day −1 in extensive ponds) modified the aquatic community of this wetland; while extensive ponds are dominated by isopods and amphipods with low presence of P. macrodactylus, mixed ponds presented high biomass of mysids, corixids, copepods and both shrimp species. An estuarine origin of nutrients and primary production might explain seasonal and spatial differences found among ponds of this wetland. A combined analysis of gut contents and isotopic composition of the native and the exotic species showed that: (1) native P. varians is mainly omnivorous (2) while the non-native P. macrodactylus is more zooplanktivorous and (3) a dietary overlap occurred when both species coexist at mixed ponds where a higher water exchange and high abundance of mysids and copepods diversifies the native species' diet. Thus differences in the trophic ecology of both species are clearly explained by water management. This experimental study is a valuable tool for integrated management between river basin and wetlands since it allows quantification of wetland community changes in response to the flow regime. - Highlights: • Flow regimen is a major determinant of physicochemical habitat of a wetland. • Water exchanges wetland-estuary modify its aquatic community and trophic links. • Omnivory and physiological tolerance key in the resistance of a wetland

  7. Geobacteraceae community composition is related to hydrochemistry and biodegradetion in an iron-reducing aquifer polluted by a neigbour landfill

    NARCIS (Netherlands)

    Lin, B; van Breukelen, B.M.; van Verseveld, H.W.; Westerhoff, H.V.; Roling, W.F.M.

    2005-01-01

    Relationships between community composition of the iron-reducing Geobacteraceae, pollution levels, and the occurrence of biodegradation were established for an iron-reducing aquifer polluted with landfill leachate by using cultivation-independent Geobacteraceae 16S rRNA gene-targeting techniques.

  8. Geobacteraceae community composition is related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighboring landfill.

    NARCIS (Netherlands)

    Lin, B.; Braster, M.; van Breukelen, B.M.; van Verseveld, H.W.; Westerhoff, H.V.; Roling, W.F.M.

    2005-01-01

    Relationships between community composition of the iron-reducing Geobacteraceae, pollution levels, and the occurrence of biodegradation were established for an iron-reducing aquifer polluted with landfill leachate by using cultivation-independent Geobacteraceae 16S rRNA gene-targeting techniques.

  9. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale

    OpenAIRE

    Hazard, Christina; Gosling, Paul; van der Gast, Christopher J; Mitchell, Derek T; Doohan, Fiona M; Bending, Gary D

    2012-01-01

    Arbuscular fungi have a major role in directing the functioning of terrestrial ecosystems yet little is known about their biogeographical distribution. The Baas-Becking hypothesis (‘everything is everywhere, but, the environment selects') was tested by investigating the distribution of arbuscular mycorrhizal fungi (AMF) at the landscape scale and the influence of environmental factors and geographical distance in determining community composition. AMF communities in Trifolium repens and Loliu...

  10. Functional and compositional responses in soil microbial communities along two metal pollution gradients: does the level of historical pollution affect resistance against secondary stress?

    NARCIS (Netherlands)

    Azarbad, H.; Niklinska, M.; Nikiel, K.; van Straalen, N.M.; Röling, W.F.M.

    2015-01-01

    We examined how the exposure to secondary stressors affected the functional and compositional responses of microbial communities along two metal pollution gradients in Polish forests and whether responses were influenced by the level of metal pollution. Basal respiration rate and community

  11. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China

    NARCIS (Netherlands)

    Wu, Q.L.; Zwart, G.; Schauer, M.; Kamst-van Agterveld, M.P.; Hahn, M.W.

    2006-01-01

    The influence of altitude and salinity on bacterioplankton community composition (BCC) in 16 high-mountain lakes located at altitudes of 2,817 to 5,134 m on the Eastern Qinghai-Xizang (Tibetan) Plateau, China, spanning a salinity gradient from 0.02% (freshwater) to 22.3% (hypersaline), was

  12. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China

    DEFF Research Database (Denmark)

    Liu, Lei; Gundersen, Per; Zhang, Tao

    2012-01-01

    Elevated nitrogen (N) deposition in humid tropical regions may aggravate phosphorus (P) deficiency in forest on old weathered soil found in these regions. From January 2007 to August 2009, we studied the responses of soil microbial biomass and community composition to P addition (in two monthly...

  13. The ghost of fouling communities past: the effect of original community on subsequent recruitment.

    Science.gov (United States)

    Ralston, Emily A; Swain, Geoffrey W

    2014-01-01

    Biofouling on ships has been linked to the spread of invasive species, which has been identified as one of the current primary threats to the environment. Previous research on antifouling coatings suggested that the quantity of fouling, as well as community composition, on biocidal coatings was modified by prior fouling settlement. The experiment reported in this paper was designed to determine how preconditioning affected the rate and composition of subsequent fouling on transplanted silicone coatings. A series of 10 × 20 cm panels coated with Intersleek 700 or DC3140 were placed at three locations in Florida (Ponce Inlet, Sebastian Inlet, and Port of Miami), which were characterized by distinct fouling communities. Panels were immersed for four months, cleaned, and reciprocally transplanted among the three sites. Fouling community composition and coverage were characterized at bimonthly intervals both before and after transplantation. The original fouling community affected the subsequent fouling composition and recolonization by tunicates, sea anemones, barnacles, sponges, hydroids, and arborescent bryozoans. The community-level effects were short-term, lasting 2-4 months, but specific responses lasted up to 14 months post-transplant.

  14. Plant community composition and species richness in the High Arctic tundra: from the present to the future

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Normand, Signe; Hui, Francis K.C.

    2017-01-01

    of these conditions is limited due to the scarcity of studies, especially in the High Arctic. 2. We investigated variations in vascular plant community composition and species richness based on 288 plots distributed on three sites along a coast-inland gradient in Northeast Greenland using a stratified random design......1. Arctic plant communities are altered by climate changes. The magnitude of these alterations depends on whether species distributions are determined by macroclimatic conditions, by factors related to local topography, or by biotic interactions. Our current understanding of the relative importance....... We used an information theoretic approach to determine whether variations in species richness were best explained by macroclimate, by factors related to local topography (including soil water) or by plant-plant interactions. Latent variable models were used to explain patterns in plant community...

  15. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain.

    Directory of Open Access Journals (Sweden)

    Jianmin Gao

    Full Text Available The application of crop residues combined with Nitrogen (N fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat, individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV under 80% WFPS (the water filled pore space in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0, 200 kg N ha-1 (N200, 250 kg N ha-1 (N250, maize residue plus N200 (MN200, maize residue plus N250 (MN250, wheat residue plus N200 (WN200 and wheat residue plus N250 (WN250. Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O

  16. Biofouling of reverse-osmosis membranes under different shear rates during tertiary wastewater desalination: microbial community composition.

    Science.gov (United States)

    Al Ashhab, Ashraf; Gillor, Osnat; Herzberg, Moshe

    2014-12-15

    We investigated the influence of feed-water shear rate during reverse-osmosis (RO) desalination on biofouling with respect to microbial community composition developed on the membrane surface. The RO membrane biofilm's microbial community profile was elucidated during desalination of tertiary wastewater effluent in a flat-sheet lab-scale system operated under high (555.6 s(-1)), medium (370.4 s(-1)), or low (185.2 s(-1)) shear rates, corresponding to average velocities of 27.8, 18.5, and 9.3 cm s(-1), respectively. Bacterial diversity was highest when medium shear was applied (Shannon-Weaver diversity index H' = 4.30 ± 0.04) compared to RO-membrane biofilm developed under lower and higher shear rates (H' = 3.80 ± 0.26 and H' = 3.42 ± 0.38, respectively). At the medium shear rate, RO-membrane biofilms were dominated by Betaproteobacteria, whereas under lower and higher shear rates, the biofilms were dominated by Alpha- and Gamma- Proteobacteria, and the latter biofilms also contained Deltaproteobacteria. Bacterial abundance on the RO membrane was higher at low and medium shear rates compared to the high shear rate: 8.97 × 10(8) ± 1.03 × 10(3), 4.70 × 10(8) ± 1.70 × 10(3) and 5.72 × 10(6) ± 2.09 × 10(3) copy number per cm(2), respectively. Interestingly, at the high shear rate, the RO-membrane biofilm's bacterial community consisted mainly of populations known to excrete high amounts of extracellular polymeric substances. Our results suggest that the RO-membrane biofilm's community composition, structure and abundance differ in accordance with applied shear rate. These results shed new light on the biofouling phenomenon and are important for further development of antibiofouling strategies for RO membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA.

    Directory of Open Access Journals (Sweden)

    Lee F Stanish

    Full Text Available The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria, MLE1-12 (phylum Cyanobacteria, Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources.

  18. Bacterial Community Succession in Pine-Wood Decomposition.

    Science.gov (United States)

    Kielak, Anna M; Scheublin, Tanja R; Mendes, Lucas W; van Veen, Johannes A; Kuramae, Eiko E

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  19. Diversity analysis of bacterial community compositions in sediments of urban lakes by terminal restriction fragment length polymorphism (T-RFLP).

    Science.gov (United States)

    Zhao, Dayong; Huang, Rui; Zeng, Jin; Yan, Wenming; Wang, Jianqun; Ma, Ting; Wang, Meng; Wu, Qinglong L

    2012-11-01

    Bacteria are crucial components in lake sediments and play important role in various environmental processes. Urban lakes in the densely populated cities are often small, shallow, highly artificial and hypereutrophic compared to rural and natural lakes and have been overlooked for a long time. In the present study, bacterial community compositions in surface sediments of three urban lakes (Lake Mochou, Lake Qianhu and Lake Zixia) in Nanjing City, China, were investigated using the terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries. Remarkable differences in the T-RFLP patterns were observed in different lakes or different sampling stations of the same lake. Canonical correspondence analysis indicated that total nitrogen (TN) had significant effects on bacterial community structure in the lake sediments. Chloroflexi were the most dominant bacterial group in the clone library from Lake Mochou (21.7 % of the total clones) which was partly associated with its higher TN and organic matters concentrations. However, Bacteroidetes appeared to be dominated colonizers in the sediments of Lake Zixia (20.4 % of the total clones). Our study gives a comprehensive insight into the structure of bacterial community of urban lake sediments, indicating that the environmental factors played a key role in influencing the bacterial community composition in the freshwater ecosystems.

  20. Cascading influence of inorganic nitrogen sources on DOM production, composition, lability and microbial community structure in the open ocean.

    Science.gov (United States)

    Goldberg, S J; Nelson, C E; Viviani, D A; Shulse, C N; Church, M J

    2017-09-01

    Nitrogen frequently limits oceanic photosynthesis and the availability of inorganic nitrogen sources in the surface oceans is shifting with global change. We evaluated the potential for abrupt increases in inorganic N sources to induce cascading effects on dissolved organic matter (DOM) and microbial communities in the surface ocean. We collected water from 5 m depth in the central North Pacific and amended duplicate 20 liter polycarbonate carboys with nitrate or ammonium, tracking planktonic carbon fixation, DOM production, DOM composition and microbial community structure responses over 1 week relative to controls. Both nitrogen sources stimulated bulk phytoplankton, bacterial and DOM production and enriched Synechococcus and Flavobacteriaceae; ammonium enriched for oligotrophic Actinobacteria OM1 and Gammaproteobacteria KI89A clades while nitrate enriched Gammaproteobacteria SAR86, SAR92 and OM60 clades. DOM resulting from both N enrichments was more labile and stimulated growth of copiotrophic Gammaproteobacteria (Alteromonadaceae and Oceanospirillaceae) and Alphaproteobacteria (Rhodobacteraceae and Hyphomonadaceae) in weeklong dark incubations relative to controls. Our study illustrates how nitrogen pulses may have direct and cascading effects on DOM composition and microbial community dynamics in the open ocean. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Endemicity, biogeograhy, composition, and community structure on a northeast pacific seamount.

    Directory of Open Access Journals (Sweden)

    Craig R McClain

    Full Text Available The deep ocean greater than 1 km covers the majority of the earth's surface. Interspersed on the abyssal plains and continental slope are an estimated 14000 seamounts, topographic features extending 1000 m off the seafloor. A variety of hypotheses are posited that suggest the ecological, evolutionary, and oceanographic processes on seamounts differ from those governing the surrounding deep sea. The most prominent and oldest of these hypotheses, the seamount endemicity hypothesis (SMEH, states that seamounts possess a set of isolating mechanisms that produce highly endemic faunas. Here, we constructed a faunal inventory for Davidson Seamount, the first bathymetric feature to be characterized as a 'seamount', residing 120 km off the central California coast in approximately 3600 m of water (Fig 1. We find little support for the SMEH among megafauna of a Northeast Pacific seamount; instead, finding an assemblage of species that also occurs on adjacent continental margins. A large percentage of these species are also cosmopolitan with ranges extending over much of the Pacific Ocean Basin. Despite the similarity in composition between the seamount and non-seamount communities, we provide preliminary evidence that seamount communities may be structured differently and potentially serve as source of larvae for suboptimal, non-seamount habitats.

  2. Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009

    Science.gov (United States)

    Robert R. Pattison; Janet C. Jorgenson; Martha K. Raynolds; Jeffery M. Welker

    2015-01-01

    As Arctic ecosystems experience increases in surface air temperatures, plot-level analyses of tundra vegetation composition suggest that there are important changes occurring in tundra communities that are typified by increases in shrubs and declines in non-vascular species. At the same time analyses of NDVI indicate that the Arctic tundra is greening. Few studies have...

  3. Spatial patterns of bacterial abundance, activity and community composition in relation to water masses in the eastern Mediterranean Sea

    NARCIS (Netherlands)

    Yokokawa, Taichi; De Corte, Daniele; Sintes, Eva; Herndl, Gerhard J.

    2010-01-01

    To determine the variation of bacterial activity and community composition between and within specific water masses, samples were collected throughout the water column at 5 stations in the eastern Mediterranean Sea corresponding to the regions of the northern Aegean, mid-Aegean, western Cretan,

  4. Mitigation of nitrous oxide (N2O) emissions from denitrifying fluidized bed bioreactors (DFBBRs) using calcium.

    Science.gov (United States)

    Eldyasti, Ahmed; Nakhla, George; Zhu, Jesse

    2014-12-01

    Nitrous oxide (N2O) is a significant anthropogenic greenhouse gases (AnGHGs) emitted from biological nutrient removal (BNR) processes. In this study, N2O production from denitrifying fluidized bed bioreactors (DFBBR) was reduced using calcium (Ca2+) dosage. The DFBBRs were operated on a synthetic municipal wastewater at four different calcium concentrations ranging from the typical municipal wastewater Ca2+ concentration (60 mg Ca2+/L) to 240 mg Ca2+/L at two different COD/N ratios. N2O emission rates, extracellular polymeric substances (EPS), water quality parameters, and microscopic images were monitored regularly in both phases. Calcium concentrations played a significant role in biofilm morphology with the detachment rates for R120Ca, R180Ca, and R240Ca 75% lower than for R60Ca, respectively. The N2O conversion rate at the typical municipal wastewater Ca2+ concentration (R60Ca) was about 0.53% of the influent nitrogen loading as compared with 0.34%, 0.42%, and 0.41% for R120Ca, R180Ca, and R240Ca, respectively corresponding to 21-36% reduction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Environmental evaluation of coexistence of denitrifying anaerobic methane-oxidizing archaea and bacteria in a paddy field.

    Science.gov (United States)

    Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J

    2016-01-01

    The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage.

  6. Bacterioplankton diversity and community composition in the Southern Lagoon of Venice.

    Science.gov (United States)

    Simonato, Francesca; Gómez-Pereira, Paola R; Fuchs, Bernhard M; Amann, Rudolf

    2010-04-01

    The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. In this study, the 16S rRNA approach was used to investigate the bacterial diversity and community composition within the southern basin of the Lagoon of Venice and at one inlet in October 2007 and June 2008. Comparative sequence analysis of 645 mostly partial 16S rRNA gene sequences indicated high diversity and dominance of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes at the lagoon as well as at the inlet station, therefore pointing to significant mixing. Many of these sequences were close to the 16S rRNA of marine, often coastal, bacterioplankton, such as the Roseobacter clade, the family Vibrionaceae, and class Flavobacteria. Sequences of Actinobacteria were indicators of a freshwater input. The composition of the bacterioplankton was quantified by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) with a set of rRNA-targeted oligonucleotide probes. CARD-FISH counts corroborated the dominance of members of the phyla Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. When assessed by a probe set for the quantification of selected clades within Alphaproteobacteria and Gammaproteobacteria, bacterioplankton composition differed between October 2007 and June 2008, and also between the inlet and the lagoon. In particular, members of the readily culturable copiotrophic gammaproteobacterial genera Vibrio, Alteromonas and Pseudoalteromonas were enriched in the southern basin of the Lagoon of Venice. Interestingly, the alphaproteobacterial SAR11 clade and related clusters were also present in high abundances at the inlet and within the lagoon, which was indicative of inflow of water from the open sea.

  7. DECREASING OF SODIUM NITRITE CONTENT IN COOKED SAUSAGES USING DENITRIFYING MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Bal-Prylypko L. V.

    2015-08-01

    Full Text Available The purpose of this work was to study reduction of sodium nitrite in cooked sausages by adding of the optimized amount of denitrifying microorganisms to the bacterial preparation maintaining quality characteristics of the product. To develop biotechnology of boiled sausages «Naturel» we selected bacterial preparation based on nitrite-reducing strains of Staphylococcus carnosus and S. carnosus ssp.utilis. It was used generally accepted and special methods. The content of total pigments and nitrozopigments was determined by a method based on the extraction of meat pigments by aqueous acetone; color stability of final products was evaluated as the difference in optical density of nitroso pigment extracts before and after exposure (40 min of the sample under the light source; analytical processing of the experimental data was carried out using modern software; quantitative evaluation of color characteristics was performed in the RGB using a multifunctional device Epson Stylus TX400. Mathematical modeling was carried out on the basis of full factorial experiment such as 22, the optimization was performed by Box–Wilson. According to the study, using of the bacterial preparation based on nitrite-reducing strains of Staphylococcus carnosus and S. carnosus ssp. utilis in biotechnology of boiled sausages «Naturel» has a positive effect on the formation of the complex of required color characteristics of final products (for prototypes of sausages the index redness was 1. 61 times higher compared to the control. Degradation of sodium nitrite and formation of nitroso pigments were intensified that improved the stability of color during the storage (the index of color fastness of experimental cooked sausages was higher by 19%. The results of performed investigations illustrate the possibility of production of cooked sausages with a minimized content of synthetic food additives and ingredients.

  8. Composition and function of the microbial community related with the nitrogen cycling on the potato rhizosphere

    International Nuclear Information System (INIS)

    Florez Zapata, Nathalia; Garcia, Juan Carlos; Del Portillo, Patricia; Restrepo, Silvia; Uribe Velez, Daniel

    2013-01-01

    In the S. tuberosum group phureja crops, mineral fertilizer and organic amendments are applied to meet the plants nutritional demands, however the effect of such practices on the associated rizospheric microbial communities are still unknown. Nitrogen plays an important role in agricultural production, and a great diversity of microorganisms regulates its transformation in the soil, affecting its availability for the plant. The aim of this study was to assess the structure of microbial communities related with the N cycle of S. tuberosum group phureja rizospheric soil samples, with contrasting physical-chemical properties and fertilization strategy. Few significant differences between the community compositions at the phylum level were found, only Planctomycetes phylum was different between samples of different soil type and fertilization strategy. However, the analysis of nitrogen-associated functional groups made by ribotyping characterization, grouped soils in terms of such variables in a similar way to the physical-chemical properties. Major differences between soil samples were typified by higher percentages of the ribotypes from nitrite oxidation, nitrogen fixation and denitrification on organic amendment soils. Our results suggest that, the dominant rhizosphere microbial composition is very similar between soils, possibly as a result of population's selection mediated by the rhizosphere effect. However, agricultural management practices in addition to edaphic properties of sampled areas appear to affect some functional groups associated with the nitrogen cycling, due to differences found on soil's physicalchemical properties, like the concentration of ammonium that seems to have an effect regulating the distribution and activity of nitrogen related functional groups in the S. tuberosum rhizosphere.

  9. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem.

    Science.gov (United States)

    Hao, Yi; Ma, Chuanxin; Zhang, Zetian; Song, Youhong; Cao, Weidong; Guo, Jing; Zhou, Guopeng; Rui, Yukui; Liu, Liming; Xing, Baoshan

    2018-01-01

    The aim of this study was to compare the toxicity effects of carbon nanomaterials (CNMs), namely fullerene (C 60 ), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), on a mini-ecosystem of rice grown in a loamy potted soil. We measured plant physiological and biochemical parameters and examined bacterial community composition in the CNMs-treated plant-soil system. After 30 days of exposure, all the three CNMs negatively affected the shoot height and root length of rice, significantly decreased root cortical cells diameter and resulted in shrinkage and deformation of cells, regardless of exposure doses (50 or 500 mg/kg). Additionally, at the high exposure dose of CNM, the concentrations of four phytohormones, including auxin, indoleacetic acid, brassinosteroid and gibberellin acid 4 in rice roots significantly increased as compared to the control. At the high exposure dose of MWCNTs and C 60 , activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) in roots increased significantly. High-throughput sequencing showed that three typical CNMs had little effect on shifting the predominant soil bacterial species, but the presence of CNMs significantly altered the composition of the bacterial community. Our results indicate that different CNMs indeed resulted in environmental toxicity to rice and soil bacterial community in the rhizosphere and suggest that CNMs themselves and their incorporated products should be reasonably used to control their release/discharge into the environment to prevent their toxic effects on living organisms and the potential risks to food safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Community composition, structure, and interrelationships in the marine intertidal Endocladia muricata – Balanus glandula association in Monterey Bay, California

    NARCIS (Netherlands)

    Glynn, Peter W.

    1965-01-01

    Studies of the community composition, structure and species interrelationships of the Endocladia-Balanus association were carried out on the rocky shores at the Hopkins Marine Station, Pacific Grove, California, over the period 1959—1961. The organisms making up this biotic association form a

  11. Role of primary substrate composition on microbial community structure and function and trace organic chemical attenuation in managed aquifer recharge systems

    KAUST Repository

    Li, Dong; Alidina, Mazahirali; Drewes, Jorg

    2014-01-01

    This study was performed to reveal the microbial community characteristics in simulated managed aquifer recharge (MAR), a natural water treatment system, under different concentrations and compositions of biodegradable dissolved organic carbon (BDOC

  12. Bacterial community succession in pine-wood decomposition

    Directory of Open Access Journals (Sweden)

    Anna eKielak

    2016-03-01

    Full Text Available Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities.

  13. Trophic structure of cold-water coral communities revealed from the analysis of tissue isotopes and fatty acid composition

    NARCIS (Netherlands)

    Van Oevelen, D.; Duineveld, G.; Lavaleye, M.S.S.; Kutti, T.; Soetaert, K.

    2018-01-01

    The trophic structure of cold-water coral reef communities at two contrasting locations, the 800-m deep Belgica Mounds (Irish margin) and the 300-m deep Træna reefs (Norwegian Shelf), was investigated using stable isotope (δ13C and δ15N) and fatty-acid composition analysis. A broad range of

  14. Temporal dynamics of the compositions and activities of soil microbial communities post-application of the insecticide chlorantraniliprole in paddy soils.

    Science.gov (United States)

    Wu, Meng; Liu, Jia; Li, Weitao; Liu, Ming; Jiang, Chunyu; Li, Zhongpei

    2017-10-01

    Chlorantraniliprole (CAP) is a newly developed insecticide widely used in rice fields in China. There has been few studies evaluating the toxicological effects of CAP on soil-associated microbes. An 85-day microcosm experiment was performed to reveal the dissipation dynamics of CAP in three types of paddy soils in subtropical China. The effects of CAP on microbial activities (microbial biomass carbon-MBC, basal soil respiration-BSR, microbial metabolic quotient-qCO 2 , acid phosphatase and sucrose invertase activities) in the soils were periodically evaluated. Microbial phospholipid fatty acid (PLFA) analysis was used to evaluate the change of soil microbial community composition on day 14 and 50 of the experiment. CAP residues were extracted using the quick, easy, cheap, effective, rugged, and safe (QuChERS) method and quantification was measured by high performance liquid chromatography (HPLC). The half-lives (DT 50 ) of CAP were in the range of 41.0-53.0 days in the three soils. The results showed that CAP did not impart negative effects on MBC during the incubation. CAP inhibited BSR, qCO 2 , acid phosphatase and sucrose invertase activities in the first 14 days of incubation in all the soils. After day 14, the soil microbial parameters of CAP-treated soils became statistically at par with their controls. Principal component analysis (PCA) determining abundance of biomarker PLFAs indicated that the application of CAP significantly changed the compositions of microbial communities in all three paddy soils on day 14 but the compositions of soil microbial communities recovered by day 50. This study indicates that CAP does not ultimately impair microbial activities and microbial compositions of these three paddy soil types. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range

    NARCIS (Netherlands)

    Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H.; Bannink, A.; Dieho, K.; Dijkstra, J.

    2015-01-01

    Ruminant livestock are important sources of human food and global greenhouse gas emissions. Feed degradation and methane formation by ruminants rely on metabolic interactions between rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community composition was

  16. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition.

    Directory of Open Access Journals (Sweden)

    Etelka Kovács

    Full Text Available It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the

  17. Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition

    Science.gov (United States)

    Kovács, Etelka; Wirth, Roland; Maróti, Gergely; Bagi, Zoltán; Rákhely, Gábor; Kovács, Kornél L.

    2013-01-01

    It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in

  18. Temporal changes in randomness of bird communities across Central Europe.

    Science.gov (United States)

    Renner, Swen C; Gossner, Martin M; Kahl, Tiemo; Kalko, Elisabeth K V; Weisser, Wolfgang W; Fischer, Markus; Allan, Eric

    2014-01-01

    Many studies have examined whether communities are structured by random or deterministic processes, and both are likely to play a role, but relatively few studies have attempted to quantify the degree of randomness in species composition. We quantified, for the first time, the degree of randomness in forest bird communities based on an analysis of spatial autocorrelation in three regions of Germany. The compositional dissimilarity between pairs of forest patches was regressed against the distance between them. We then calculated the y-intercept of the curve, i.e. the 'nugget', which represents the compositional dissimilarity at zero spatial distance. We therefore assume, following similar work on plant communities, that this represents the degree of randomness in species composition. We then analysed how the degree of randomness in community composition varied over time and with forest management intensity, which we expected to reduce the importance of random processes by increasing the strength of environmental drivers. We found that a high portion of the bird community composition could be explained by chance (overall mean of 0.63), implying that most of the variation in local bird community composition is driven by stochastic processes. Forest management intensity did not consistently affect the mean degree of randomness in community composition, perhaps because the bird communities were relatively insensitive to management intensity. We found a high temporal variation in the degree of randomness, which may indicate temporal variation in assembly processes and in the importance of key environmental drivers. We conclude that the degree of randomness in community composition should be considered in bird community studies, and the high values we find may indicate that bird community composition is relatively hard to predict at the regional scale.

  19. Temporal changes in randomness of bird communities across Central Europe.

    Directory of Open Access Journals (Sweden)

    Swen C Renner

    Full Text Available Many studies have examined whether communities are structured by random or deterministic processes, and both are likely to play a role, but relatively few studies have attempted to quantify the degree of randomness in species composition. We quantified, for the first time, the degree of randomness in forest bird communities based on an analysis of spatial autocorrelation in three regions of Germany. The compositional dissimilarity between pairs of forest patches was regressed against the distance between them. We then calculated the y-intercept of the curve, i.e. the 'nugget', which represents the compositional dissimilarity at zero spatial distance. We therefore assume, following similar work on plant communities, that this represents the degree of randomness in species composition. We then analysed how the degree of randomness in community composition varied over time and with forest management intensity, which we expected to reduce the importance of random processes by increasing the strength of environmental drivers. We found that a high portion of the bird community composition could be explained by chance (overall mean of 0.63, implying that most of the variation in local bird community composition is driven by stochastic processes. Forest management intensity did not consistently affect the mean degree of randomness in community composition, perhaps because the bird communities were relatively insensitive to management intensity. We found a high temporal variation in the degree of randomness, which may indicate temporal variation in assembly processes and in the importance of key environmental drivers. We conclude that the degree of randomness in community composition should be considered in bird community studies, and the high values we find may indicate that bird community composition is relatively hard to predict at the regional scale.

  20. Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil

    Science.gov (United States)

    Krüger, Claudia; Kohout, Petr; Janoušková, Martina; Püschel, David; Frouz, Jan; Rydlová, Jana

    2017-01-01

    Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age. PMID:28473828