WorldWideScience

Sample records for denison uranium facilities

  1. Statement to the Select Committee of the Legislature by the Minister of Energy on Ontario Hydro's uranium supply contracts with Denison Mines Ltd. and Preston Mines Ltd

    International Nuclear Information System (INIS)

    1978-01-01

    Contracts between Ontario Hydro and two uranium suppliers, Denison Mines and Preston Mines, provide the utility with an assured supply of uranium from 1980 to 2011 at below world price, and give the suppliers financial aid in expanding their facilities. The total value of these contracts in 1978 dollars is $6.3 billion. Ontario Hydro decided to seek long-term supply contracts because there is expected to be continuing pressure on available uranium supplies wth steadily rising prices. The government of Ontario believes the contracts to be in the public interest. (LL)

  2. Jarosite formation in the uranium processing circuit of Denison Mines Limited, Elliot Lake, Ontario

    International Nuclear Information System (INIS)

    Dutrizac, J.E.

    1985-04-01

    Jarosite precipitation occurs in several parts of the uranium processing circuit of Denison Mines Limited, Elliot Lake, Ontario. Extensive precipitation of jarosite takes place in the filter cloth and on the drum face of the secondary drum filters, and this precipitation causes severe operating difficulties. Precipitation of jarosite is also observed in the ion exchange beads, but it is not known whether the jarosite is responsible for the observed decrease in resin efficiency. The resin beads are also rimmed with significant quantities of silica, lead, phosphate, sulphate, etc. which could be responsible for the fouling of the resin. In every instance, potassium jarosite, containing only minor amounts of sodium or ammonium, was the observed species; the potassium likely originates from the acid leaching of muscovite in the ore. Potential methods of avoiding the jarosite problem are discussed, but these may not be compatible with the overall process requirements

  3. Decommissioning of denison and Stanrock tailings management areas

    International Nuclear Information System (INIS)

    Ludgate, I.R.; Counsell, H.C.; Knapp, R.; Feasby, D.G.

    2000-01-01

    The Denison Mines Limited uranium mining and milling facility in Elliot Lake ceased operations in April of 1992. Since that time major site decommissioning projects were completed. These projects involved demolition of site facilities and acid mine drainage (AMD) mitigation in the three tailings management areas known as TMA-1, TMA-2 at Denison and TMA-3 at Stanrock. The work on TMA-1 and TMA-2 was generally completed in late 1996 and the work at TMA-3 was essentially completed in late 1998. The use of water covers was chosen as the best technology for long term tailings stabilization for TMA-1 and -2. In the gently sloped and partially flooded basin of TMA-1, 1.83 million cubic metres of tailings were dredged and relocated to deeper areas of the basin to establish 0.9 metre water cover (also termed 'dredge the wedge'). Perimeter dams were regraded to add additional factors of safety and an upstream seepage reduction berm and a downstream toe stabilization berm were constructed at, the western most dam, Dam 10. (author)

  4. COGEMA's UMF [Uranium Management Facility

    International Nuclear Information System (INIS)

    Lamorlette, G.; Bertrand, J.P.

    1988-01-01

    The French government-owned corporation, COGEMA, is responsible for the nuclear fuel cycle. This paper describes the activities at COGEMA's Pierrelatte facility, especially its Uranium Management Facility. UF6 handling and storage is described for natural, enriched, depleted, and reprocessed uranium. UF6 quality control specifications, sampling, and analysis (halocarbon and volatile fluorides, isotopic analysis, uranium assay, and impurities) are described. In addition, the paper discusses the filling and cleaning of containers and security at UMF

  5. Uranium Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — An integral part of Y‑12's transformation efforts and a key component of the National Nuclear Security Administration's Uranium Center of Excellence, the Uranium...

  6. Hazard analysis in uranium hexafluoride production facility

    International Nuclear Information System (INIS)

    Marin, Maristhela Passoni de Araujo

    1999-01-01

    The present work provides a method for preliminary hazard analysis of nuclear fuel cycle facilities. The proposed method identify both chemical and radiological hazards, as well as the consequences associated with accident scenarios. To illustrate the application of the method, a uranium hexafluoride production facility was selected. The main hazards are identified and the potential consequences are quantified. It was found that, although the facility handles radioactive material, the main hazards as associated with releases of toxic chemical substances such as hydrogen fluoride, anhydrous ammonia and nitric acid. It was shown that a contention bung can effectively reduce the consequences of atmospheric release of toxic materials. (author)

  7. A modern depleted uranium manufacturing facility

    International Nuclear Information System (INIS)

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980's, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality

  8. Decommissioning and disposal of foreign uranium mine and mill facilities

    International Nuclear Information System (INIS)

    Pan Yingjie; Xue Jianxin; Yuan Baixiang; Xu Lechang

    2012-01-01

    Disposal techniques in decommissioning of foreign uranium mine and mill facilities are systematically discussed, including covering of uranium tailing impoundment, drainaging and consolidation of uranium tailing, and treatment of mining waste water and polluted groundwater, and the costs associated with disposal are analyzed. The necessity of strengthening the decommissioning disposal technology research and international exchanges and cooperation is emphasized. (authors)

  9. Decommissioning plan depleted uranium manufacturing facility

    International Nuclear Information System (INIS)

    Bernhardt, D.E.; Pittman, J.D.; Prewett, S.V.

    1987-01-01

    Aerojet Ordnance Tennessee, Inc. (Aerojet) is decommissioning its California depleted uranium (DU) manufacturing facility. Aerojet has conducted manufacturing and research and development activities at the facility since 1977 under a State of California Source Materials License. The decontamination is being performed by a contractor selector for technical competence through competitive bid. Since the facility will be released for uncontrolled use it will be decontaminated to levels as low as reasonably achievable (ALARA). In order to fully apply the principles of ALARA, and ensure the decontamination is in full compliance with appropriate guides, Aerojet has retained Rogers and Associaties Engineering Corporation (RAE) to assist in the decommissioning. RAE has assisted in characterizing the facility and preparing contract bid documents and technical specifications to obtain a qualified decontamination contractor. RAE will monitor the decontamination work effort to assure the contractor's performance complies with the contract specifications and the decontamination plan. The specifications require a thorough cleaning and decontamination of the facility, not just sufficient cleaning to meet the numeric cleanup criteria

  10. Facility effluent monitoring plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontag, S.

    1991-11-01

    A facility effluent monitoring plant is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The UO 3 Plant is located in the south-central portion of the 200 West Area of the Hanford Site. The plant consists of two primary processing buildings and several ancillary facilities. The purpose of the UO 3 Plant is to receive uranyl nitrate hexahydrate (UNH) from the Plutonium-Uranium Extraction (PUREX) Plant, concentrate it, convert the UNH to uranium trioxide (UO 3 ) powder by calcination and package it for offsite shipment. The UO 3 Plant has been placed in a standby mode. There are two liquid discharges, and three gaseous exhaust stacks, and seven building exhausters that are active during standby conditions

  11. Several issues of uranium geology exploration facilities decommissioning

    International Nuclear Information System (INIS)

    Zhang Lu; Lu Caixia; Sheng Qing; Zhuang Jingqi; Xie Shujun; Liao Yunxuan

    2013-01-01

    The environmental protection completion acceptance review work of uranium geology exploration facilities 'llth five-year plan' decommissioned and remediation projects is introduced. Some questions related to norms and standards for uranium geology exploration facilities decommissioning and remediation, scheme of decommissioning and remediation, process inspection and acceptance of project and so on are discussed, and corresponding countermeasures and suggestions are put forward, Some references can be provided for the later development of uranium geological exploration facility '12th five-year plan' decommissioning and remediation projects. (authors)

  12. 77 FR 33782 - License Amendment To Construct and Operate New In Situ Leach Uranium Recovery Facility; Uranium...

    Science.gov (United States)

    2012-06-07

    ... and Operate New In Situ Leach Uranium Recovery Facility; Uranium One Americas; Ludeman AGENCY: Nuclear... provided the first time that a document is referenced. The Ludeman facility In Situ Leach Uranium Recovery... request to amend Source Material License SUA-1341 to construct and operate a new in situ leach uranium...

  13. Airborne uranium, its concentration and toxicity in uranium enrichment facilities

    International Nuclear Information System (INIS)

    Thomas, J.; Mauro, J.; Ryniker, J.; Fellman, R.

    1979-02-01

    The release of uranium hexafluoride and its hydrolysis products into the work environment of a plant for enriching uranium by means of gas centrifuges is discussed. The maximum permissible mass and curie concentration of airborne uranium (U) is identified as a function of the enrichment level (i.e., U-235/total U), and chemical and physical form. A discussion of the chemical and radiological toxicity of uranium as a function of enrichment and chemical form is included. The toxicity of products of UF 6 hydrolysis in the atmosphere, namely, UO 2 F 2 and HF, the particle size of toxic particulate material produced from this hydrolysis, and the toxic effects of HF and other potential fluoride compounds are also discussed. Results of an investigation of known effects of humidity and temperature on particle size of UO 2 F 2 produced by the reaction of UF 6 with water vapor in the air are reported. The relationship of the solubility of uranium compounds to their toxic effects was studied. Identification and discussion of the standards potentially applicable to airborne uranium compounds in the working environment are presented. The effectiveness of High Efficiency Particulate (HEPA) filters subjected to the corrosive environment imposed by the presence of hydrogen fluoride is discussed

  14. Decommissioning of U.S. uranium production facilities

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  15. Decommissioning of U.S. uranium production facilities

    International Nuclear Information System (INIS)

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U 3 O 8 to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington

  16. Decommissioning of nuclear facilities involving operations with uranium and thorium

    International Nuclear Information System (INIS)

    Shum, E.Y.; Neuder, S.M.

    1990-01-01

    When a licensed nuclear facility ceases operation, the U.S. Nuclear Regulatory Commission (NRC) ensures that the facility and its site are decontaminated to acceptable levels so they may safely be released for unrestricted public use. Because specific environmental standards or broad federal guidelines governing release of residual radioactive contamination have not been issued, NRC has developed ad hoc cleanup criteria for decommissioning nuclear facilities that involved uranium and thorium. Cleanup criteria include decontamination of buildings, equipment, and land. We will address cleanup criteria and their rationale; procedures for decommissioning uranium/thorium facilities; radiological survey designs and procedures; radiological monitoring and measurement; and cost-effectiveness to demonstrate compliance

  17. Challenges of ICRP 60 for uranium refining and conversion facilities

    International Nuclear Information System (INIS)

    Takala, J.M.

    1998-01-01

    Cameco Corporation operates high-grade uranium mines in northern Saskatchewan and uranium refining and conversion facilities in Ontario. The dose limits for these and all other nuclear facilities in Canada are 50 mSv per year and 4 WLM per year, which are applied separately. However, the upcoming incorporation of the recommendations in ICRP 60 into the Canadian regulations will result in several important changes. In addition to a more restrictive dose limit, the new regulations will require that all radiation exposures be combined into a single index of exposure. Meeting the new lower dose limits of 50 mSv per year and 100 mSv per 5 years will not be a major problem at Cameco facilities. However, the incorporation of long-lived radioactive dust exposures into the dose calculation will be a major challenge. This will cause the most difficulty at the uranium refining and conversion facilities where much of the process involves handling a variety of uranium compounds in the form of a dry powder. At the uranium conversion facilities the control of exposure to airborne uranium is achieved through a combination of lung counting, urinalysis, and fixed area monitors. To progress from a system of exposure control to dose estimation to individual workers will require some major changes. (author)

  18. Uranium isotopic signatures measured in samples of dirt collected at two former uranium facilities

    International Nuclear Information System (INIS)

    Meyers, L.A.; Stalcup, A.M.; LaMont, S.P.; Spitz, H.B.

    2014-01-01

    Nuclear forensics is a multidisciplinary science that uses a variety of analytical methods and tools to explore the physical, chemical, and isotopic characteristics of nuclear and radiological materials. These characteristics, when evaluated alone or in combination, become signatures that may reveal how and when the material was fabricated. The signatures contained in samples of dirt collected at two different uranium metal processing facilities in the United States were evaluated to determine uranium isotopic composition and compare results with processes that were conducted at these sites. One site refined uranium and fabricated uranium metal ingots for fuel and targets and the other site rolled hot forged uranium and other metals into dimensional rods. Unique signatures were found that are consistent with the activities and processes conducted at each facility and establish confidence in using these characteristics to reveal the provenance of other materials that exhibit similar signatures. (author)

  19. Uranium, the joint facilities, disarmament and peace

    International Nuclear Information System (INIS)

    Anon.

    1984-07-01

    The Australian Government recognises that the only outcome which is ultimately acceptable is total nuclear disarmament. One of the issues addressed in this document is that of the export of Australian uranium. It is argued that by refusing to supply uranium Australia would be making a symbolic gesture which would have the reverse effect to that which was intended. It would weaken the non-proliferation regime and Australia's voice in arms control and disarmament forums

  20. Remotely operated facility for in situ solidification of fissile uranium

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Collins, E.D.; Patton, B.D.

    1986-01-01

    A heavily shielded, remotely operated facility, located within the Radiochemical processing Plant at Oak Ridge National Laboratory (ORNL), has been designed and is being operated to convert approx.1000 kg of fissile uranium (containing approx.75% 235 U, approx.10% 233 U, and approx.140 ppM 232 U) from a nitrate solution (130 g of uranium per L) to a solid oxide form. This project, the Consolidated Edison Uranium Solidification Program (CEUSP), is being carried out in order to prepare a stable uranium form for longterm storage. This paper describes the solidification process selected, the equipment and facilities required, the experimental work performed to ensure successful operation, some problems that were solved, and the initial operations

  1. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  2. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF 6 and a (2) blend the pure HEU UF 6 with diluent UF 6 to produce LWR grade LEU-UF 6 . The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry

  3. Restoration activities in uranium mining and milling facilities in Spain

    International Nuclear Information System (INIS)

    Garcia Quiros, J.M.

    1997-01-01

    From the end of the 80's up to now, several tasks have been carried out in Spain on restoration in the field of uranium mining and milling, significant among them being Andujar Uranium Mill (FUA) closure and La Haba closure. Also, a study has been carried out on restoration of inoperative and abandoned uranium mine sites. At present, detailed plans are being worked out for the project on the closure of the Elefante plant. All activities have been developed in the common framework of national standards and regulations which are generally in compliance with the standards, regulations and recommendations of international organizations. This paper describes briefly the standards and the criteria applied to the restoration tasks at various sites of the uranium mining and milling facilities in Spain. The restoration activities have different characteristics La Haba facility is an isolated and conventional facility to produce uranium concentrate; in the case of old and abandoned uranium mines the intervention criteria is more relevant than the activities to be carried out; the closure (the first phase of licensing) and restoration activities of Elefante plant have to be developed taking into account that it is sited within the area of Quercus plant which is currently in operation. (author)

  4. Uranium Production Safety Assessment Team. UPSAT. An international peer review service for uranium production facilities

    International Nuclear Information System (INIS)

    1996-01-01

    The IAEA Uranium Production Safety Assessment Team (UPSAT) programme is designed to assist Member States to improve the safe operation of uranium production facilities. This programme facilitates the exchange of knowledge and experience between team members and industry personnel. An UPSAT mission is an international expert review, conducted outside of any regulatory framework. The programme is implemented in the spirit of voluntary co-operation to contribute to the enhancement of operational safety and practices where it is most effective, at the facility itself. An UPSAT review supplements other facility and regulatory efforts which may have the same objective

  5. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  6. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  7. Development laser light facility for uranium isotope separation

    International Nuclear Information System (INIS)

    Dickinson, G.J.

    1992-01-01

    A laser light facility has been built and successfully commissioned as part of a programme to explore the economic potential of Laser Isotope Separation of Uranium. The laser systems are comprised of tunable dye lasers pumped by copper vapour lasers. The requirements for optical beam stability, alignment of lasers in chains, and protection of optical coatings have made challenging demands on the engineering design and operation of the facility. (Author)

  8. Uranium Mining and Nuclear Facilities (Prohibitions) Act 1986 No. 194

    International Nuclear Information System (INIS)

    1986-01-01

    The purpose of this Act is to protect the health and safety of the people of New South Wales and its environment. Accordingly it prohibits prospecting or mining for uranium and the construction and operation of nuclear reactors and other facilities in the nuclear fuel cycle. (NEA) [fr

  9. Procedure of uranium mine and mill facilities decommissioning work

    International Nuclear Information System (INIS)

    Li Renjie

    1995-01-01

    The procedure of decommissioning work of uranium mine and mill facilities includes three stages: preparation, on-the-spot construction and acceptance after being completed. The first stage, preparation, is discussed in detail, and it is presented to take the measures of strengthening leadership and improving leading body to conduct the decommissioning work best

  10. 10 CFR 40.33 - Issuance of a license for a uranium enrichment facility.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Issuance of a license for a uranium enrichment facility... License Applications § 40.33 Issuance of a license for a uranium enrichment facility. (a) The Commission... the licensing of the construction and operation of a uranium enrichment facility. The Commission will...

  11. 10 CFR 70.23a - Hearing required for uranium enrichment facility.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...

  12. 77 FR 60482 - Regulatory Guide 5.67, Material Control and Accounting for Uranium Enrichment Facilities...

    Science.gov (United States)

    2012-10-03

    ... Accounting for Uranium Enrichment Facilities Authorized To Produce Special Nuclear Material of Low Strategic... Accounting for Uranium Enrichment Facilities Authorized to Produce Special Nuclear Material of Low Strategic... and is applicable to the Paducah GDP and other uranium enrichment facilities that have been licensed...

  13. Overview of the environmental impact assessment for the proposed expansion of the Elliot Lake Ontario uranium mines

    International Nuclear Information System (INIS)

    Gorber, D.M.; Graham, R.G.; Ibbotson, B.G.

    1978-01-01

    As a result of the resurgence in the demand for uranium, Denison Mines Limited and Rio Algom Limited began preparations, in 1973 and 1974 respectively, for expansion of their facilities at Elliot Lake, Ontario. These programmes involved not only the expansion of facilities currently in operation in the area, but also the rehabilitation of non-operating properties that were previously used during the 1960's. This paper reviews the methodology employed during the environmental assessment study of the proposed expansion and highlights the long and short-term strategies recommended

  14. The regulation of uranium refineries and conversion facilities in Canada

    International Nuclear Information System (INIS)

    Didyk, J.P.

    1986-04-01

    The nuclear regulatory process as it applies to uranium refineries and conversion facilities in Canada is reviewed. In the early 1980s, Eldorado Resources Limited proposed to construct and operate new facilities for refining yellowcake and for the production of uranium hexafluoride (UF 6 ). These projects were subject to regulation by the Atomic Energy Control Board (AECB). A description of the AECB's comprehensive licensing process covering all stages of siting, construction, operation and eventual decommissioning of nuclear facilities is traced as it was applied to the Eldorado projects. The AECB's concern with occupational health and safety, with public health and safety and with the protection of the environment in so far as it affects public health and safety is emphasized. Some regulatory difficulties encountered during the project's development which led to opening up the licensing process to public input and closer coordination of regulatory activities with other provincial and federal regulatory agencies are described. The Board's regulatory operational compliance program for uranium refineries and conversion facilities is summarized

  15. Facility effluent monitoring plan for the plutonium uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  16. Facility Effluent Monitoring Plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  17. Facility effluent monitoring plan for the plutonium uranium extraction facility

    International Nuclear Information System (INIS)

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  18. Facility effluent monitoring plan for the Plutonium Uranium Extraction Facility

    International Nuclear Information System (INIS)

    Greager, E.M.

    1997-01-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan will ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, at a minimum, every 3 years

  19. Guide to the bioassay of uranium at uranium mine-mill facilities

    International Nuclear Information System (INIS)

    1981-01-01

    As a result of occupational exposure, uranium may be taken into the body by inhalation, ingestion or absorption through skin wounds. The organs at risk are the lung, kidney, and bones. Analysis of urine samples for uranium is recommended on a regular monthly basis, before and after a rest period, and it is suggested that a worker be removed from a working area if a level above 300 μg/l is found before a rest period, or 150 μg/l after a rest period. Background information on the development of a bioassay program is given, and a recommended program for uranium mine and mill facilities is included. (L.L.)

  20. Heap leaching for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    Denison Mines Ltd. is using two bacterial leaching processes to combat the high cost of extracting uranium from low grade ore in thin reefs. Both processes use thiobacillus ferro-oxidans, a bacterium that employs the oxidation of ferrous iron and sulphur as its source of energy for growth. The first method is flood leaching, in which ore is subjected to successive flood, drain and rest cycles. The second, trickle leaching, uses sprinklers to douse the broken muck continuously with leaching solution. In areas where grades are too low to justify the expense of hauling the ore to the surface, the company is using this biological process underground to recover uranium. In 1987 Denison recovered 840 000 lb of uranium through bacterial heap leaching. It plans to have biological in-place leaching contribute 25% of the total uranium production by 1990. (fig.)

  1. The preparation of reports of a significant event at a uranium processing or uranium handling facility

    International Nuclear Information System (INIS)

    1988-08-01

    Licenses to operate uranium processing or uranium handling facilities require that certain events be reported to the Atomic Energy Control Board (AECB) and to other regulatory authorities. Reports of a significant event describe unusual events which had or could have had a significant impact on the safety of facility operations, the worker, the public or on the environment. The purpose of this guide is to suggest an acceptable method of reporting a significant event to the AECB and to describe the information that should be included. The reports of a significant event are made available to the public in accordance with the provisions of the Access to Information Act and the AECB's policy on public access to licensing information

  2. Material control and accounting requirements for uranium enrichment facilities

    International Nuclear Information System (INIS)

    Ting, P.

    1991-01-01

    This paper reports that the U.S. Nuclear Regulatory Commission has defined material control and accounting (MC and A) requirement for low-enriched uranium enrichment plants licensed under 10 CFR parts 40 and 70. Following detailed assessment of potential safeguards issues relevant to these facilities, a new MC and A rule was developed. The primary safeguards considerations are detection of the loss of special nuclear material, detection of clandestine production of special nuclear material of low strategic significance for unauthorized use or distribution, and detection of unauthorized production of uranium enriched to ≥10 wt % U-235. The primary safeguards concerns identified were the large absolute limit of error associated with the material balance closing, the inability to shutdown some uranium enrichment technologies to perform a cleanout inventory of the process system, and the flexibility of some of these technologies to produce higher enrichments. Unauthorized production scenarios were identified for some technologies that could circumvent the detection of the production and removal of 5 kilograms of U-235 as high-enriched uranium through conventional material control and accounting programs. Safeguards techniques, including the use of production and process control information, measurements, and technical surveillance, were identified to compensate for these concerns

  3. Secondary limits of exposure in facilities handling uranium

    International Nuclear Information System (INIS)

    Raghavayya, M.

    1999-08-01

    Annual limits of exposure and intake for radiation workers in nuclear installations have been recommended by the International Commission on Radiological Protection and the same have been adopted by the Indian Atomic Energy Regulatory Board for all the radionuclides of interest. The prescribed limits cannot be directly used for day to day radiation protection work. Hence secondary limits have to be derived for routine applications. The modeling steps may be simple in some situations and more complicated in some others. The limits recommended are for individual radionuclides. But in facilities handling natural or enriched uranium the radionuclides (isotopes of uranium and its decay products) generally occur together in specific ratios. Derivation of secondary limits has to take this into consideration. The present document is an attempt at deriving the secondary limits required for routine application in facilities handling uranium (Mine, mill, refineries and fuel fabrication etc.). Secondary limits of exposure have been derived in this document for air borne activity, activity in water, surface contamination and internal exposures. (author)

  4. Radiation protection of workers from uranium mines and of the public living nearby uranium mining and milling facilities

    International Nuclear Information System (INIS)

    Kiselev, Mikhail; Romanov, Vladimir; Shandala, Nataliya; Gneusheva, Galina; Titov, Alex; Novikova, Natalia; Smith, Graham

    2008-01-01

    As part of the program of nuclear power development, the Russia Federation plans to increase uranium production and to improve supply from existing uranium mining and milling facilities. Moreover, development of new uranium ore deposits is also envisaged. A corollary of these developments is the placing of a high priority on environmental and human health protection Special attention should be paid to assurance of health protection both of workers and of the public living nearby such facilities. This paper reviews the status and development of understanding of facilities in the Russian Federation from a regulatory perspective. (author)

  5. Fire hazards analysis for the uranium oxide (UO3) facility

    International Nuclear Information System (INIS)

    Wyatt, D.M.

    1994-01-01

    The Fire Hazards Analysis (FHA) documents the deactivation end-point status of the UO 3 complex fire hazards, fire protection and life safety systems. This FHA has been prepared for the Uranium Oxide Facility by Westinghouse Hanford Company in accordance with the criteria established in DOE 5480.7A, Fire Protection and RLID 5480.7, Fire Protection. The purpose of the Fire Hazards Analysis is to comprehensively and quantitatively assess the risk from a fire within individual fire areas in a Department of Energy facility so as to ascertain whether the objectives stated in DOE Order 5480.7, paragraph 4 are met. Particular attention has been paid to RLID 5480.7, Section 8.3, which specifies the criteria for deactivating fire protection in decommission and demolition facilities

  6. 10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.

    Science.gov (United States)

    2010-01-01

    ... enrichment facilities. 140.13b Section 140.13b Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...

  7. Radiological characterization of two Spanish uranium mine facilities

    International Nuclear Information System (INIS)

    Quindos Poncela, L.S.; Fernandez, P.I.; Gomez Arozamena, J.; Bordonoba, M.L.

    2000-01-01

    During the last decade our Department of Applied and Medical Physics has been involved in the development of a Radiation Protection Programme to monitor and control the environmental radiation conditions existing in the only two Spanish uranium mill facilities located at La Haba (Badajoz) and Salacious (Salamanca). Both mines are located in the west of the country, geographical area with high natural radiation levels. In the framework of this Programme, measurements of radon, radon progeny and external gamma radiation indoors and outdoors, as well as of radon exhalation rate and natural radionuclide concentrations in tailings and soils, have been systematically carried out. In particular, two ore body areas in these uranium mill sites have been specially studied to determine the natural radiation background to be used as a reference value to design reliable criteria for the closure of both facilities, which is planned for the next year. This paper summarizes the main results obtained from the measurements of external gamma radiation, radon concentrations, radon exhalation rate and natural radionuclide activity concentrations made in the above mentioned facilities with special emphasis on the results achieved from the ore body areas. Correlations between experimental results and a short description of the devices and methods used in the measurements are also shown. (author)

  8. Research on evaluation of enterprise project culture based on Denison model

    Directory of Open Access Journals (Sweden)

    Yucheng Zeng

    2015-05-01

    Full Text Available Purpose: The purpose of this paper is to build enterprise project culture evaluation model and search for the best evaluation method for Chinese enterprise project culture on the basis of studying and drawing lessons from enterprise culture evaluation theory and method at home and abroad. Design/methodology/approach: Referring to the Denison enterprise culture evaluation model, this paper optimizes it according to the difference of enterprise project culture, designs the enterprise project culture evaluation model and proves the practicability of the model through empirical. Finding: This paper finds that it`s more applicable to use the Denison model for enterprise project culture evaluation through the comparative analysis of domestic and foreign enterprise culture evaluation theory and method, the systematic project culture management framework of Chinese enterprises has not yet formed through empirical research, and four factors in enterprise project culture have important influence on project operation performance improvement. Research limitations/implications: The research on evaluation of enterprise project culture based on Denison model is a preliminary attempt, the design of evaluation index system, evaluation model and scale structure also need to be improved, but the thinking of this paper in this field provides a valuable reference for future research. Practical Implications: This paper provides the support of theory and practice for evaluating the present situation of enterprise project culture construction and analyzing the advantages and disadvantages of project culture, which contributes to the "dialectical therapy" of enterprise project management, enterprise management and enterprise project culture construction. Originality/value: The main contribution of this paper is the introduction of Denison enterprise culture model. Combining with the actual situation of enterprises, this paper also builds the evaluation model for

  9. Safeguarding uranium enrichment facilities. Review and analysis of the status of safeguards technology for uranium enrichment facilities

    International Nuclear Information System (INIS)

    1977-09-01

    The objective of this paper is to examine critically the diversion potential at uranium enrichment facilities and to outline a basic safeguards strategy which counters all identified hazards as completely as possible yet with a minimum of non-essential redundancy. Where existing technology does not appear to be adequate for effective safeguards, the limitations are examined, and suggestions for further R and D effort are made. Parts of this report are generally applicable to all currently known enrichment processes, while other parts are specifically directed toward facilities based on the gas centrifuge process. It is hoped that additional sections discussing a safeguards strategy for gas diffusion facilities can be added later. It should be emphasized that this is a technical report, and does not reflect any legal positions. The safeguards strategy and subsequent inspection procedures are intended as guidelines, not as negotiating positions

  10. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  11. Quality assurance in the enriched uranium operations NDA facility

    Energy Technology Data Exchange (ETDEWEB)

    May, P.K.; Ceo, R.N. [Oak Ridge Y-12 Plant, TN (United States)

    1997-11-01

    The Nondestructive Analysis (NDA) Facility at the Oak Ridge Y-12 Plant has characterized process wastes for Enriched Uranium Operations since 1978. Since that time, over 50,000 items have been analyzed. Analysis results are used to determine whether or not recovery of uranium from process wastes is economically feasible. Our instrument complement includes one large segmented gamma scanner (SGS), two smaller SGS, two solution assay systems (SAS), and Active Well Coincidence Counter (AWCC). The large SGS is used for analyzing High Efficiency Particulate Air (HEPA) filters ant 208-L drums filled with combustible contaminated waste. The smaller SGS are used to analyze 4-L containers of ash and leached residues. The SAS are used to analyze 125 ml bottles of aqueous or organic waste solutions that may contain uranium. The gamma-based NDA techniques are used to identify which process wastes can be discarded, and which must be recycled. The AWCC is used to analyze high-density materials which are not amenable to gamma-ray analysis. 1 ref., 4 figs.

  12. Control and prevention of seepage from uranium mill waste disposal facilities

    International Nuclear Information System (INIS)

    Williams, R.E.

    1978-01-01

    This paper constitutes an analysis of the technologies which are available for the prevention of movement of waste waters out of uranium mill waste disposal facilities via sub-surface routes. Hydrogeologic criteria for potential uranium mill waste disposal sites and mathematical modeling of contaminant migration in ground water are presented. Methods for prevention of seepage from uranium mill waste disposal facilities are investigated: liners, clay seals, synthetic polymeric membranes (PVC, polyethylene, chlorinated polyethylene, hypalon, butyl rubber, neoprene, elasticized polyolefin)

  13. Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R M

    1976-01-01

    Evidence of expanding markets, improved prices and the short supply of uranium became abundantly clear in 1975, providing the much needed impetus for widespread activity in all phases of uranium operations. Exploration activity that had been at low levels in recent years in Canada was evident in most provinces as well as the Northwest Territories. All producers were in the process of expanding their uranium-producing facilities. Canada's Atomic Energy Control Board (AECB) by year-end had authorized the export of over 73,000 tons of U/sub 3/0/sub 8/ all since September 1974, when the federal government announced its new uranium export guidelines. World production, which had been in the order of 25,000 tons of U/sub 3/0/sub 8/ annually, was expected to reach about 28,000 tons in 1975, principally from increased output in the United States.

  14. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility

    International Nuclear Information System (INIS)

    Rathbun, R.

    1993-01-01

    Separate review of NMP-NCS-930058, open-quotes Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility (U), August 17, 1993,close quotes was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility's Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2x2x1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion

  15. Several issues on the decommissioning of uranium mining/milling facilities

    International Nuclear Information System (INIS)

    Xu Lechang; Xu Jianxin; Gao Shangxiong

    2007-01-01

    Several issues on the decommissioning of uranium mining/milling facilities are discussed at the national and international level of decommissioning, including radiation, monitoring, dose evaluation, covering, water treatment and stabilization of uranium tailings impoundment, etc. Some suggestions are made: drawing international lessons on decommissioning of uranium mining/milling facilities; enhancing monitoring and database construction in decommissioning management; stressing utilization of measured dose data; using the experience of other countries for reference on covering designs for uranium tailings impoundment and water treatment; strengthening decommissioning management, etc. (authors)

  16. Description of an engineering-scale facility for uranium fluorination studies

    International Nuclear Information System (INIS)

    Yagi, Eiji; Saito, Shinichi; Horiuchi, Masato

    1976-03-01

    In the research program of power reactor fuel reprocessing by fluoride volatility process, the engineering facility was constructed to establish the techniques of handling kilogram quantities of fluorine and uranium hexafluoride and to obtain engineering data on the uranium fluidized-bed oxidation and fluorination. This facility is designed for a capacity of 5 kg per batch. Descriptions on the facility and equipment are given, including design philosophy, safety and its analysis. (auth.)

  17. Decommissioning an uranium and thorium facility: a radiation protection approach

    International Nuclear Information System (INIS)

    Feijo Vasques, Francisco Mario; Saburo Todo, Alberto; Mestre, Paulo Antonio

    2008-01-01

    Decommissioning means actions taken at the end of the useful life of a facility in retiring it from service with adequate regard for the health and safety of workers and members of the public. In the present work, we introduce a radiation protection approach for the removal of radioactive material to the extent that the facility or site becomes available for use without restriction. The facility to be decommissioned is a fuel cycle pilot plant that operated with natural uranium and thorium for almost two decades and then, kept inactive for about 10 years at the Nuclear and Energy Research Institute - IPEN. Even after this long period of inactivity, it has presented significant levels of radiation and contamination spread over the floor, walls, windows, doors and ceiling. The fuel cycle pilot plant was completely dismantled, remaining only the walls and the concrete structures. In this work we present the job done to restore the area. According to each step of dismantling a continuous monitoring of the contaminated surfaces was carried out including the survey of the deep material from the floor and walls. The material identified as radioactive waste was stored into appropriated metal drums. A radiation protection team guided this stage of the work, prescribing the tasks, and the amount of material that should be removed from floors, windows and ceiling. For this, repetitive surveys had to be done. The results of monitoring and contamination levels were analysed, thus guiding the next steps of the job. In this way radiation protection team took over the tasks, running the work with the purpose of achieving acceptable levels of radiation, restoring the area for unrestricted use. (author)

  18. The strategy on rehabilitation of the former uranium facilities at the 'Pridneprovsky chemical plant' in Ukraine

    International Nuclear Information System (INIS)

    Voitsekhovich, O.; Lavrova, T.; Skalskiy, A.S.; Ryazantsev, V.F.

    2007-01-01

    This paper describes current status of the former Uranium Facilities at the Pridneprovsky Chemical Plant in Ukraine, which are currently under development of action plan for its territory rehabilitation. The monitoring data carried out during recent several years show its impact to the Environment and gives a basis for justification of the number of measures aiming to reduce radiological and ecological risks of the Uranium tailings situated at the territory of PChP. The monitoring data and strategy for its remediation are considered in the presentation. Uranium mining has been intensively conducted in Ukraine since the end of the 40-s. Most of the uranium deposits have been explored in the Dnieper river basin, while some smaller deposits can be found within the basins of the Southern Bug and Severskiy Donets rivers. There also several large Uranium Milling facilities were in operation since the end of the 40-s till 1991, when due to disintegration of the former Soviet Union system the own uranium production has been significantly declined. The Milling Plant and Uranium extraction Facilities in ZhevtiVody is still in operation with UkrAtomprom Industrial Consortium. Therefore rehabilitation programme for all Uranium facilities in this site are in duty of the East Mining Combine and the Consortium. The most difficult case is to provide rehabilitation Action Plan for Uranium tailings and number of other facilities situated in Dnieprodzerzhinsk town and which were in operation by the former State Industrial Enterprise Pridneprovskiy Chemical Plant (PChP). In past PChP was one of the largest Uranium Milling facilities of the Former Soviet Union and has been in operation since 1948 till 1991. During Soviet time the Uranium extraction at this legacy site has been carried out using the ore raw products delivered also from Central Asia, Germany and Checz Republic. After extraction the uranium residue has been putting to the nearest landscape depressions at the vicinity of

  19. 77 FR 18272 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Science.gov (United States)

    2012-03-27

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice... Louisiana Energy Services (LES), LLC, National enrichment Facility in Eunice, New Mexico, and has verified...

  20. 77 FR 65729 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Science.gov (United States)

    2012-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice... Services (LES), LLC, National Enrichment Facility in Eunice, New Mexico, and has verified that cascades...

  1. CRITICALITY ANALYSIS OF URANIUM STORAGE FACILITY WITH FORMATION RACKS

    Directory of Open Access Journals (Sweden)

    Sri Kuntjoro

    2017-03-01

    ANALISIS KRITIKALITAS DI FASILITAS PENYIMPANAN BAHAN URANIUM DENGAN FORMASI PENGATURAN RAK. Bahan uranium dibutuhkan untuk produksi bahan bakar reaktor penelitian dan radioisotop. Bahan uranium sebelum digunakan terlebih dahulu disimpan pada fasilitas penyimpanan. Salah satu prasyarat fasilitas penyimpanan bahan uranium adalah fasilitas tersebut harus dalam kondisi sub-kritis. Bila kondisi kritis terjadi mengakibatkan proses fissi pada bahan uranium tidak terkendali, sehingga akan menimbulkan suhu yang sangat tinggi. Tujuan dari penelitian ini adalah untuk menganalisa kondisi kritikalitas dari fasilitas penyimpanan bahan uranium yang berada di PT. INUKI (Persero untuk menjamin fasilitas tersebut dalam kondisi sub-kritis. Analisis kritikalitas dilakukan menggunakan program MCNP-5 untuk mengetahui tingkat kritikalitas dari tiga fasilitas penyimpanan bahan uranium untuk kondisi awal dan kondisi setelah ditambahkan rak penyimpanan. Untuk fasilitas penyimpanan 1 dan 2 dibuat tiga skenario pengaturan container pada rak penyimpanan, sedangkan pada fasilitas penyimpanan 3 dilakukan 1 skenario.  Hasil ini menunjukkan seluruh fasilitas penyimpanan pada kondisi awal dan setelah ditambah rak penyimpanan dalam kondisi sub-kritis (k-eff<1. Hasil tersebut selanjutnya dipergunakan sebagai dasar untuk menyusun manejemen pengelolaan bahan uranium. Selain itu juga digunakan sebagai dasar untuk pembuatan ijin dari badan pengawas (BAPETEN. Kata Kunci : kritikalitas, fasilitas penyimpanan berbahan uranium,  k-eff

  2. Adaptación al español del instrumento sobre cultura organizacional de Denison

    Directory of Open Access Journals (Sweden)

    Tomás Bonavia

    2013-08-01

    Full Text Available En este estudio se presentan los resultados de la adaptación a grupos I+D universitarios de habla hispanade la encuesta sobre cultura organizacional de Denison. Este cuestionario, compuesto por 60 ítems que identifican 12 tipos culturales, que a su vez se agrupan en cuatro dimensiones, ha demostrado su influencia para aumentar la efectividad organizacional. La adaptación al castellano que aquí se propone ha sido aplicada a 488 personas pertenecientes a 39 grupos de I+D tecnológicos de la Universidad Politécnica de Valencia. Los resultados obtenidos muestran unas propiedades psicométricas adecuadas para la adaptación realizada en cuanto a validez y fiabilidad, que replican casi en su totalidad la estructura del modelo de la versión original.

  3. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  4. Depleted uranium determination at the Novi Sad low level facility

    International Nuclear Information System (INIS)

    Bikit, I.; Slivka, J.; Krmar, M.; Veskovic, M.; Conkic, Lj.; Varga, E.

    2002-01-01

    Natural uranium determination in environmental samples at the low-level gamma-spectroscopy laboratory of the Faculty of Science in Novi Sad has more than 20 years long tradition. When the issue of depleted uranium emerged the experimental advantages of the measuring equipment (GMX type of HPGe detector with enhanced efficiency below 100 keV, and iron low level shielding) where fully exploited. A detection technique selective for depleted uranium was developed. The details of this method together with the results for about 100 samples (soil, plants, water, food) are presented, and discussed. (author)

  5. The potential for criticality following disposal of uranium at low-level waste facilities: Uranium blended with soil

    International Nuclear Information System (INIS)

    Toran, L.E.; Hopper, C.M.; Naney, M.T.

    1997-06-01

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop achievable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM), and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team's approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some achievable scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via sorption or precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increases in uranium concentration over disposal limits. The analysis of SNM was restricted to 235 U in the present scope of work. The outcome of the work indicates that criticality is possible given established regulatory limits on SNM disposal. However, a review based on actual disposal records of an existing site operation indicates that the potential for criticality is not a concern under current burial practices

  6. The potential for criticality following disposal of uranium at low-level waste facilities: Uranium blended with soil

    Energy Technology Data Exchange (ETDEWEB)

    Toran, L.E.; Hopper, C.M.; Naney, M.T. [and others

    1997-06-01

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop achievable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM), and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team`s approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some achievable scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via sorption or precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increases in uranium concentration over disposal limits. The analysis of SNM was restricted to {sup 235}U in the present scope of work. The outcome of the work indicates that criticality is possible given established regulatory limits on SNM disposal. However, a review based on actual disposal records of an existing site operation indicates that the potential for criticality is not a concern under current burial practices.

  7. Use of Savannah River Site facilities for blend down of highly enriched uranium

    International Nuclear Information System (INIS)

    Bickford, W.E.; McKibben, J.M.

    1994-02-01

    Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO 3 ) powder, uranyl nitrate [UO 2 (NO 3 ) 2 ] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO 2 ) or uranium hexafluoride (UF 3 ), the normal inputs for commercial fuel fabrication. This study's scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO 2 or UF 6 , blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM)

  8. Environmental monitoring data review of a uranium ore processing facility in Argentina

    International Nuclear Information System (INIS)

    Bonetto, J.

    2014-01-01

    An uranium ore processing facility in the province of Mendoza (Argentina) that has produced uranium concentrate from 1954 to 1986 is currently undergoing the last steps of environmental restoration. The operator has been performing post-closure environmental monitoring since 1986, while the Nuclear Regulatory Authority (ARN) has been carrying out its own independent radiological environmental monitoring for verification purposes since its creation, in 1995. A detailed revision of ARN´s monitoring plan for uranium mining and milling facilities has been undergoing since 2013, starting with this particular site. Results obtained from long-time sampling locations (some of them currently unused) have been analyzed and potentially new sampling points have been studied and proposed. In this paper, some statistical analysis and comparison of sampling-points’ datasets are presented (specifically uranium and radium concentration in groundwater, surface water and sediments) with conclusions pertaining to their keeping or discarding as sampling points in future monitoring plans. (author)

  9. Proposal for Monitoring Within the Centrifuge Cascades of Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, David R.

    2017-04-01

    Safeguards are technical measures implemented by the International Atomic Energy Agency (IAEA) to independently verify that nuclear material is not diverted from peaceful purposes to weapons (IAEA, 2017a). Safeguards implemented at uranium enrichment facilities (facilities hereafter) include enrichment monitors (IAEA, 2011). Figure 1 shows a diagram of how a facility could be monitored. The use of a system for monitoring within centrifuge cascades is proposed.

  10. Hypertension and hematologic parameters in a community near a uranium processing facility

    International Nuclear Information System (INIS)

    Wagner, Sara E.; Burch, James B.; Bottai, Matteo; Pinney, Susan M.; Puett, Robin; Porter, Dwayne; Vena, John E.; Hebert, James R.

    2010-01-01

    Background: Environmental uranium exposure originating as a byproduct of uranium processing can impact human health. The Fernald Feed Materials Production Center functioned as a uranium processing facility from 1951 to 1989, and potential health effects among residents living near this plant were investigated via the Fernald Medical Monitoring Program (FMMP). Methods: Data from 8216 adult FMMP participants were used to test the hypothesis that elevated uranium exposure was associated with indicators of hypertension or changes in hematologic parameters at entry into the program. A cumulative uranium exposure estimate, developed by FMMP investigators, was used to classify exposure. Systolic and diastolic blood pressure and physician diagnoses were used to assess hypertension; and red blood cells, platelets, and white blood cell differential counts were used to characterize hematology. The relationship between uranium exposure and hypertension or hematologic parameters was evaluated using generalized linear models and quantile regression for continuous outcomes, and logistic regression or ordinal logistic regression for categorical outcomes, after adjustment for potential confounding factors. Results: Of 8216 adult FMMP participants 4187 (51%) had low cumulative uranium exposure, 1273 (15%) had moderate exposure, and 2756 (34%) were in the high (>0.50 Sievert) cumulative lifetime uranium exposure category. Participants with elevated uranium exposure had decreased white blood cell and lymphocyte counts and increased eosinophil counts. Female participants with higher uranium exposures had elevated systolic blood pressure compared to women with lower exposures. However, no exposure-related changes were observed in diastolic blood pressure or hypertension diagnoses among female or male participants. Conclusions: Results from this investigation suggest that residents in the vicinity of the Fernald plant with elevated exposure to uranium primarily via inhalation exhibited

  11. Hypertension and hematologic parameters in a community near a uranium processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Sara E., E-mail: swagner@uga.edu [College of Public Health, Department of Epidemiology and Biostatistics, Paul D. Coverdell Center for Biomedical and Health Sciences, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602-7396 (United States); Burch, James B. [Arnold School of Public Health, Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC (United States); South Carolina Statewide Cancer Prevention and Control Program, Columbia, SC (United States); WJB Dorn Veteran' s Affairs Medical Center, Columbia, SC (United States); Bottai, Matteo [Arnold School of Public Health, Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC (United States); Pinney, Susan M. [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH (United States); Puett, Robin [Arnold School of Public Health, Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC (United States); South Carolina Statewide Cancer Prevention and Control Program, Columbia, SC (United States); Arnold School of Public Health, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC (United States); Porter, Dwayne [Arnold School of Public Health, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC (United States); Vena, John E. [College of Public Health, Department of Epidemiology and Biostatistics, Paul D. Coverdell Center for Biomedical and Health Sciences, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602-7396 (United States); Hebert, James R. [Arnold School of Public Health, Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC (United States); South Carolina Statewide Cancer Prevention and Control Program, Columbia, SC (United States)

    2010-11-15

    Background: Environmental uranium exposure originating as a byproduct of uranium processing can impact human health. The Fernald Feed Materials Production Center functioned as a uranium processing facility from 1951 to 1989, and potential health effects among residents living near this plant were investigated via the Fernald Medical Monitoring Program (FMMP). Methods: Data from 8216 adult FMMP participants were used to test the hypothesis that elevated uranium exposure was associated with indicators of hypertension or changes in hematologic parameters at entry into the program. A cumulative uranium exposure estimate, developed by FMMP investigators, was used to classify exposure. Systolic and diastolic blood pressure and physician diagnoses were used to assess hypertension; and red blood cells, platelets, and white blood cell differential counts were used to characterize hematology. The relationship between uranium exposure and hypertension or hematologic parameters was evaluated using generalized linear models and quantile regression for continuous outcomes, and logistic regression or ordinal logistic regression for categorical outcomes, after adjustment for potential confounding factors. Results: Of 8216 adult FMMP participants 4187 (51%) had low cumulative uranium exposure, 1273 (15%) had moderate exposure, and 2756 (34%) were in the high (>0.50 Sievert) cumulative lifetime uranium exposure category. Participants with elevated uranium exposure had decreased white blood cell and lymphocyte counts and increased eosinophil counts. Female participants with higher uranium exposures had elevated systolic blood pressure compared to women with lower exposures. However, no exposure-related changes were observed in diastolic blood pressure or hypertension diagnoses among female or male participants. Conclusions: Results from this investigation suggest that residents in the vicinity of the Fernald plant with elevated exposure to uranium primarily via inhalation exhibited

  12. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  13. Process for decontamination of surfaces in an facility of natural uranium hexafluoride production (UF6)

    International Nuclear Information System (INIS)

    Almeida, Claudio C. de; Silva, Teresinha M.; Rodrigues, Demerval L.; Carneiro, Janete C.G.G.

    2017-01-01

    The experience acquired in the actions taken during the decontamination process of an IPEN-CNEN / SP Nuclear and Energy Research Institute facility, for the purpose of making the site unrestricted, is reported. The steps of this operation involved: planning, training of facility operators, workplace analysis and radiometric measurements. The facility had several types of equipment from the natural uranium hexafluoride (UF 6 ) production tower and other facility materials. Rules for the transportation of radioactive materials were established, both inside and outside the facility and release of materials and installation

  14. Domestic round robin exercise on analysis of uranium for nuclear material handling facilities in Japan

    International Nuclear Information System (INIS)

    Kato, Yoshiyasu; Nagai, Kohta; Handa, Takamitsu; Inoue, Shin-ichi; Sato, Yoshihiro

    2016-01-01

    Interlaboratory comparison programme as well as internal quality control system is an effective tool for an analytical laboratory responsible to nuclear material accountancy of a nuclear facility to maintain and enhance its capability for analysis. However, it is a burden on nuclear material handling facilities in Japan to attend interlaboratory comparison programme run by overseas institutions because of high costs and complicated procedure for importing nuclear materials, and therefore facilities which can participate in such international programme would be limited. Nuclear Material Control Center has hence started and organised an annual domestic round robin exercise on analysis of uranium standard materials, funded by the Japan Safeguards Office of the Nuclear Regulation Authority, since 2008 to enhance analytical capability of Japanese Facilities. The outline of the round robin exercise will be given and the results of uranium isotopic and concentration analysis reported by participant facilities from 2008 to 2015 will be summarised in the presentation. (author)

  15. Evaluation of environmental control technologies for commercial uranium nuclear fuel fabrication facilities

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1983-01-01

    At present in the United States, there are seven commercial light-water reactor uranium fuel fabrication facilities. Effluent wastes from these facilities include uranium, nitrogen, fluorine, and organic-containing compounds. These effluents may be either discharged to the ambient environment, treated and recycled internally, stored or disposed of on-site, sent off-site for treatment and/or recovery, or sent off-site for disposal (including disposal in low-level waste burial sites). Quantities of waste generated and treatment techniques vary greatly depending on the facility and circuits used internally at the facility, though in general all the fluorine entering the facility as UF 6 is discharged as waste. Further studies to determine techniques and procedures that might minimize dose (ALARA) and to give data on possible long-term effects of effluent discharge and waste disposal are needed

  16. Analysis of characteristics and radiation safety situation of uranium mining and metallurgy facilities in north area of China

    International Nuclear Information System (INIS)

    Liu Ruilan; Li Jianhui; Wang Xiaoqing; Huang Mingquan

    2014-01-01

    According to the radiation safety management of uranium mining and metallurgy facilities in north area of China, features and radiation safety conditions of uranium mining and metallurgy facilities in north area of China were analyzed based on summarizing the inspection data for 2011-2013. So the main problems of radiation environment security on uranium mine were studied. The relevant management measures and recommendations were put forward, and the basis for environmental radiation safety management decision making of uranium mining and metallurgy facilities in future was provided. (authors)

  17. Long-term criticality control in radioactive waste disposal facilities using depleted uranium

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1997-01-01

    Plant photosynthesis has created a unique planetary-wide geochemistry - an oxidizing atmosphere with oxidizing surface waters on a planetary body with chemically reducing conditions near or at some distance below the surface. Uranium is four orders of magnitude more soluble under chemically oxidizing conditions than it is under chemically reducing conditions. Thus, uranium tends to leach from surface rock and disposal sites, move with groundwater, and concentrate where chemically reducing conditions appear. Earth's geochemistry concentrates uranium and can separate uranium from all other elements except oxygen, hydrogen (in water), and silicon (silicates, etc). Fissile isotopes include 235 U, 233 U, and many higher actinides that eventually decay to one of these two uranium isotopes. The potential for nuclear criticality exists if the precipitated uranium from disposal sites has a significant fissile enrichment, mass, and volume. The earth's geochemistry suggests that isotopic dilution of fissile materials in waste with 238 U is a preferred strategy to prevent long-term nuclear criticality in and beyond the boundaries of waste disposal facilities because the 238 U does not separate from the fissile uranium isotopes. Geological, laboratory, and theoretical data indicate that the potential for nuclear criticality can be minimized by diluting fissile materials with- 238 U to 1 wt % 235 U equivalent

  18. Occupational control of the uranium mine industrial facility in Brazil

    International Nuclear Information System (INIS)

    Neto, C.A.; Figueiredo, N.; Py, J.; Azevedo, D. de; Torrico, J.M.

    1996-01-01

    This Occupational Radiation Protection Plan is applied to uranium ore mining and milling, for uranium concentrate production in form of ammonium diuranate (DUA), in 'Complexo Minero-industrial do Planalto de Pocos de Caldas' - CIPC, in 'Caldas', sited in the southwest of Minas Gerais State. The aims of this program are: to estimate the exposure doses of workers by applying dose calculation models; to control the workplace conditions based on monitoring results, variation studies, and to minimize the radiological risks, with available radiation protection resources optimization. The utilized techniques are: talks, area and individual monitoring, individual protection clothes and equipment, use and application of proper conducts in the workplace, according to the radiation protection norms. (authors)

  19. Compliance determination procedures for environmental radiation protection standards for uranium recovery facilities 40 CFR part 190

    International Nuclear Information System (INIS)

    1982-03-01

    Uranium Milling operations are licensed by the Nuclear Regulatory Commission and by some States in agreement with the Commission. The radiation dose to any individual from the operation of facilities within the uranium fuel cycle is limited to levels set by the Environmental Protection Agency. These levels are contained in the EPA Environmental Radiation Protection Standards for Nuclear Power Operations, in Part 190 of Title 40 of the Code of Federal Regulations (40 CFR Part 190). This report describes the procedures used within NRC's Uranium Recovery Licensing Branch for evaluating compliance with these regulations for uranium milling operations. The report contains descriptions of these procedures, dose factors for evaluating environmental measurement data, and guidance to the NRC staff reviewer

  20. Lessons learned from recent safety related incidents at A Canadian uranium conversion facility

    International Nuclear Information System (INIS)

    Jaferi, Jafir

    2013-01-01

    This paper presents the Canadian Nuclear Safety Commission's (CNSC) regulatory requirements for nuclear fuel facility licensees to report any situation or incident that results or is likely to result in a hazard to the health or safety of any person or the environment and to submit its incident investigation report with cause(s) of the incident and corrective actions taken or planned. In addition, the paper presents two recent safety-related incidents that occurred at a uranium conversion facility in Canada along with their consequences, causes, corrective actions and any lessons learned. The first incident resulted in a release of uranium hexafluoride (UF6) inside the UF6 cylinder filling station and the second one resulted in a spill of uranium tetrafluoride (UF 4 ) slurry inside the UF6 plant. Both incidents had no impact on the workers or the environment. (authors)

  1. Development of ISA procedure for uranium fuel fabrication and enrichment facilities

    International Nuclear Information System (INIS)

    Yamate, Kazuki; Arakawa, Tomoyuki; Yamashita, Masahiro; Sasaki, Noriaki; Hirano, Mitsumasa

    2011-01-01

    The integrated safety analysis (ISA) procedure has been developed to apply risk-informed regulation to uranium fuel fabrication and enrichment facilities. The major development efforts are as follows: (a) preparing the risk level matrix as an index for items-relied-on-for-safety (IROFS) identification, (b) defining requirements of IROFS, and (c) determining methods of IROFS importance based on the results of risk- and scenario-based analyses. For the risk level matrix, the consequence and likelihood categories have been defined by taking into account the Japanese regulatory laws, rules, and safety standards. The trial analyses using the developed procedure have been performed for several representative processes of the reference uranium fuel fabrication and enrichment facilities. This paper presents the results of the ISA for the sintering process of the reference fabrication facility. The results of the trial analyses have demonstrated the applicability of the procedure to the risk-informed regulation of these facilities. (author)

  2. Uranium

    International Nuclear Information System (INIS)

    Cuney, M.; Pagel, M.; Leroy, J.

    1992-01-01

    First, this book presents the physico-chemical properties of Uranium and the consequences which can be deduced from the study of numerous geological process. The authors describe natural distribution of Uranium at different scales and on different supports, and main Uranium minerals. A great place in the book is assigned to description and classification of uranium deposits. The book gives also notions on prospection and exploitation of uranium deposits. Historical aspects of Uranium economical development (Uranium resources, production, supply and demand, operating costs) are given in the last chapter. 7 refs., 17 figs

  3. An assessment of the effectiveness of personal visual observation for a uranium enrichment facility

    International Nuclear Information System (INIS)

    Ohno, Fubito; Okamoto, Tsuyoshi; Yokochi, Akira; Nidaira, Kazuo

    2002-01-01

    In a centrifuge uranium enrichment facility, a cascade producing low enriched uranium is composed of a large number of UF 6 gas centrifuges interconnected with pipes. If new advanced centrifuges are developed and they are installed in the facility, the number of centrifuges in the unit cascade will decrease. This means that the number of pipes connecting centrifuges will decrease also. In addition, if integrated type centrifuges containing a few tens of centrifuges are adopted for economical reasons, the number of pipes will further decrease. The smaller the number of pipes, the less the labor required to reconstruct the cascade by changing the piping arrangement so that it can produce highly enriched uranium. Because personal visual observation by inspectors is considered as one of safeguards measures against changing the piping arrangement, its effectiveness is assessed in this study. An inspection in a cascade area is modeled as a two-person non-cooperative game between an inspector and a facility operator. As a result, it is suggested that personal visual observation of the piping arrangement is worth carrying out in an advanced centrifuge uranium enrichment facility. (author)

  4. Numerical simulation of radon migration from a uranium ore storage facility

    International Nuclear Information System (INIS)

    Vasil'ev, I.A.; Politov, V.Yu.; Chernov, V.V.; Shestakov, A.A.

    2007-01-01

    Data on geologic structure and radiation environment in the vicinity of the tailings storage facility (TSF) of Kara-Balta uranium hydrometallurgical factory in Kyrgyzstan were used to design a mathematical model of radon migration from the surface of TSF. Numerical calculations have been performed to describe prevalence of radon contamination [ru

  5. Stabilization of uranium hexafluoride by hydrolysis method for decommissioning of safeguard laboratory facility

    Energy Technology Data Exchange (ETDEWEB)

    Inagawa, Jun; Hotoku, Shinobu; Oda, Tetsuzo; Aoyagi, Noboru; Magara, Masaaki [Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, Tokai, Ibaraki (Japan)

    2014-03-15

    In safeguard laboratory (SGL) facility of Nuclear Science Research Institute of JAEA , uranium hexafluoride (UF{sub 6}) of enriched uranium of various enrichment was used for research and development of a spectrometric method for the determination of the enrichment of uranium in April 1983 through March 1993. After completion of this R and D, the UF{sub 6} has been stored in SGL facility. It was decided that the UF{sub 6} is carried to out of the facility, because the SGL facility will be decommissioning until March 2015. To transport and store in safety after transportation, it is necessary that the UF{sub 6} should be converted to stable chemical form. Hydrolysis of UF{sub 6} to uranyl fluoride (UO{sub 2}F{sub 2}) and evaporation to solid state were selected for the stabilization method. The equipment for hydrolysis and evaporation was installed in the SGL facility. Stabilization was operated in this equipment, and all of the UF{sub 6} in the SGL facility was converted to UO{sub 2}F{sub 2} solid state in October 2012 through August 2013. In this report, results of examination and operation for stabilization of UF{sub 6} were reported. (author)

  6. Automatic chemical determination facility for plutonium and uranium

    International Nuclear Information System (INIS)

    Benhamou, A.

    1980-01-01

    A proposal for a fully automated chemical determination system for uranium and plutonium in (U, Pu)O 2 mixed oxide fuel, from the solid sample weighing operation to the final result is described. The steps completed to data are described. These include: test sample preparation by weighing, potentiometer titration system, cleaning and drying of glassware after titration. The process uses a Mettler SR 10 Titrator System in conjunction with others automatized equipment in corse of realization. Precision may reach 0.02% and is generally better than 0.1%. Accuracy in within +-0.1% of manual determination results or titration standards [fr

  7. The Potential for Criticality Following Disposal of Uranium at Low-Level-Waste Facilities. Containerized Disposal

    International Nuclear Information System (INIS)

    Colten-Bradley, V.A.; Hopper, C.M.; Parks, C.V.; Toran, L.E.

    1999-01-01

    The purpose of this study was to evaluate whether or not fissile uranium in low-level-waste (LLW) facilities can be concentrated by hydrogeochemical processes to permit nuclear criticality. A team of experts in hydrology, geology, geochemistry, soil chemistry, and criticality safety was formed to develop and test some reasonable scenarios for hydrogeochemical increases in concentration of special nuclear material (SNM) and to use these scenarios to aid in evaluating the potential for nuclear criticality. The team's approach was to perform simultaneous hydrogeochemical and nuclear criticality studies to (1) identify some possible scenarios for uranium migration and concentration increase at LLW disposal facilities, (2) model groundwater transport and subsequent concentration increase via precipitation of uranium, and (3) evaluate the potential for nuclear criticality resulting from potential increase in uranium concentration over disposal limits. The analysis of SNM was restricted to 235 U in the present scope of work. The work documented in this report indicates that the potential for a criticality safety concern to arise in an LLW facility is extremely remote, but not impossible. Theoretically, conditions that lead to a potential criticality safety concern might arise. However, study of the hydrogeochemical mechanisms, the associated time frames, and the factors required for an actual criticality event indicate that proper emplacement of the SNM at the site can eliminate practical concerns relative to the occurrence and possible consequences of a criticality event

  8. Audit of the Uranium Solidification Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    1994-01-01

    In the late 1980s, DOE decided to construct a Uranium Solidification Facility at the Savannah River Site to process liquid uranyl nitrate into powder. Since the need for weapons materials has been reduced, an audit was conducted to assess the need for this facility. The audit disclosed that DOE continued to construct the facility, because DOE's procedures did not ensure that projects of this type were periodically reassessed when significant program changes occurred. The audit identified more economical alternatives for processing existing quantities of liquid uranyl nitrate at the Savannah River Site

  9. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article briefly discusses the Australian government policy and the attitude of political party factions towards the mining and exporting of the uranium resources in Australia. Australia has a third of the Western World's low-cost uranium resources

  10. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  11. Uranium

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    The author discusses the contribution made by various energy sources in the production of electricity. Estimates are made of the future nuclear contribution, the future demand for uranium and future sales of Australian uranium. Nuclear power growth in the United States, Japan and Western Europe is discussed. The present status of the six major Australian uranium deposits (Ranger, Jabiluka, Nabarlek, Koongarra, Yeelerrie and Beverley) is given. Australian legislation relevant to the uranium mining industry is also outlined

  12. Uranium

    International Nuclear Information System (INIS)

    1982-01-01

    The development, prospecting, research, processing and marketing of South Africa's uranium industry and the national policies surrounding this industry form the headlines of this work. The geology of South Africa's uranium occurences and their positions, the processes used in the extraction of South Africa's uranium and the utilisation of uranium for power production as represented by the Koeberg nuclear power station near Cape Town are included in this publication

  13. Measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-08-01

    The purpose of this work has been an analysis and evaluation of the state-of-the-art of measurement and instrumentation techniques for monitoring plutonium and uranium particulates released from nuclear facilities. The occurrence of plutonium and uranium in the nuclear fuel cycle, the corresponding potential for releases, associated radiological protection standards and monitoring objectives are discussed. Techniques for monitoring via decay radiation from plutonium and uranium isotopes are presented in detail, emphasizing air monitoring, but also including soil sampling and survey methods. Additionally, activation and mass measurement techniques are discussed. The availability and prevalence of these various techniques are summarized. Finally, possible improvements in monitoring capabilities due to alterations in instrumentation, data analysis, or programs are presented

  14. Uranium

    International Nuclear Information System (INIS)

    Stewart, E.D.J.

    1974-01-01

    A discussion is given of uranium as an energy source in The Australian economy. Figures and predictions are presented on the world supply-demand position and also figures are given on the added value that can be achieved by the processing of uranium. Conclusions are drawn about Australia's future policy with regard to uranium (R.L.)

  15. Uranium

    International Nuclear Information System (INIS)

    Toens, P.D.

    1981-03-01

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  16. Treatment of wastewater for removal of soluble uranium species at Cameco's Port Hope Conversion Facility

    International Nuclear Information System (INIS)

    Dumont, H.; Tairova, G.; Kwong, A.K.; Smith, B.D.

    2000-01-01

    Ion exchange (IX) resin processes have been used for many years in the uranium mining industry for the recovery of uranium from both acid and alkaline leach solutions. More recently, IX processes have been shown to be an effective approach to control the uranium levels in non-process waters, such as mine water, public drinking water supply and well water. Bench scale and mini-pilot plant tests were conducted at the Cameco's Port Hope Conversion Facility to demonstrate the economic and technical viability of an IX process as an uranium remediation treatment for trace amounts of uranium in non-process laundry water. In the mini-pilot plant study, waste laundry water containing between 10 mg U/L and 200 mg U/L was treated at a rate ranging from 120 L/h to 240 L/h, using a typical 'merry-go-round' fixed-bed ion exchange system with three ion exchange columns. Each column contained 14 L of strongly basic Purolite A300 resin type II. The results indicated that the breakthrough limit, set at 0.1 mg U/L was obtained after a minimum of 1,200 equivalent bed volumes, while saturation was obtained at 3,300 equivalent bed volumes. Recovery parameters are discussed along with feed and effluent stream quality and modifications to the upstream operation. (author)

  17. A study of the material accountancy procedure at the uranium enrichment facility

    International Nuclear Information System (INIS)

    Shirahashi, J.; Akiba, M.; Omae, M.

    1984-01-01

    This paper describes an evaluation of material accountancy based on total uranium (U element MUF) to detect diversions of significant quantity in the uranium enrichment facility operating at a stated maximum enrichment level of 5%. Verification that material production is within the declared enrichment can be achieved by the inspection activities associated with limited - frequency unannounced access (LFUA) to cascade areas as treated extensively in HSP. According to the experience of the material accountancy at our facility, the reduction of the material accountancy capability by changing from U-235 isotope MUF to U element MUF is only about half. However, still the U element MUF approach can meet the current IAEA detection goals for the up to about 1000 tswu/a plant

  18. Characterization of aerosols in uranium handling facilities and its impact on the assessment of internal dose

    International Nuclear Information System (INIS)

    Roy, Ankush; Rao, D.D.; Sawant, Pramilla D.; Khan, Arshad; Srinivasan, P.; Chandrashekara, A.

    2016-01-01

    In nuclear facilities, compounds of uranium such as Magnesium DiUranate (MDU) U 3 O 8 , UO 2 etc. are handled in different stages of operation. There may be a possibility of intake of these compounds by radiation workers during the course of their work. The internal doses received by the workers depend not only on the quantity but also the physiochemical characteristics of the radioactive contaminant. The depositions in different regions of lung of these inhaled aerosols depend on their particle size; whereas the clearance is dependent upon the chemical nature. In this study, aerosol characterization is carried out in four different Uranium Handling Facilities (UF) for realistic assessment of internal dose to the radiation worker

  19. Nuclear criticality safety assessment of the Consolidated Edison Uranium-Solidification Program Facility

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1984-01-01

    A nuclear criticality assessment of the Consolidated Edison Uranium-Solidification Program facility confirms that all operations involved in the process may be conducted with an acceptable margin of subcriticality. Normal operation presents no concern since subcriticality is maintained by design. Several recommendations are presented to prevent, or mitigate the consequences of, any abnormal events that might occur in the various portions of the process. These measures would also serve to reduce to a minimum the administrative controls required to prevent criticality

  20. An assessment of the effectiveness of personal visual observation for a uranium enrichment facility (2)

    International Nuclear Information System (INIS)

    Bando, Masatsugu; Okamoto, Tsuyoshi

    2003-01-01

    In a centrifuge uranium enrichment facility, a large number of unit cascades are operated to produce low enriched uranium for nuclear power reactors. Some thousands of UF 6 gas centrifuges are installed in unit cascade. If a new type of advanced centrifuge is developed in the near future, the number of stages and UF 6 gas centrifuges in the unit cascade would decrease dramatically. Furthermore, an integrated type of centrifuge, which is composed of a few tens of centrifuges, is adopted from the point of economic view, the piping arrangement among UF 6 gas centrifuges can be more simplified. It can be said that the simpler the piping arrangement, the less the operation time we are required to make any diverted cascade with the help of re-arrangement of the unit cascade piping. When two type of centrifuge, conventional and advanced centrifuge are used in the uranium enrichment facility, we predicted an inspection effort of personal visual observation for inspector by Game Theory. In our mathematical model, an activity of inspection in a cascade area is simplified into two-person non-cooperative game between inspector and facility operator. As a result of our calculation, it became clear that total inspection effort is likely to increase unless the integrated type of centrifuge is installed. (author)

  1. Surveillance and Maintenance Plan for the Uranium Trioxide(UO3) Facility

    International Nuclear Information System (INIS)

    McGuire, J.J.

    1999-01-01

    This document provides a plan for implementing surveillance and maintenance (S and M) activities to ensure the Uranium Oxide(UO3) Facility is maintained in a safe, environmentally secure, and cost effective manner until subsequent closure during the final disposition phase of decommissioning. This plan has been prepared in accordance with the guidelines provided in the U.S. Department of Energy (DOE) Office of Environmental Management (EM) Decommissioning Resource Manual (DOE 1995) and Section 8.6 of TPA change form P-08-97-01 to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology, et al. 1996)

  2. Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

  3. Nondestructive assay of special nuclear material for uranium fuel-fabrication facilities

    International Nuclear Information System (INIS)

    Smith, H.A. Jr.; Schillebeeckx, P.

    1997-01-01

    A high-quality materials accounting system and effective international inspections in uranium fuel-fabrication facilities depend heavily upon accurate nondestructive assay measurements of the facility's nuclear materials. While item accounting can monitor a large portion of the facility inventory (fuel rods, assemblies, storage items), the contents of all such items and mass values for all bulk materials must be based on quantitative measurements. Weight measurements, combined with destructive analysis of process samples, can provide highly accurate quantitative information on well-characterized and uniform product materials. However, to cover the full range of process materials and to provide timely accountancy data on hard-to-measure items and rapid verification of previous measurements, radiation-based nondestructive assay (NDA) techniques play an important role. NDA for uranium fuel fabrication facilities relies on passive gamma spectroscopy for enrichment and U isotope mass values of medium-to-low-density samples and holdup deposits; it relies on active neutron techniques for U-235 mass values of high-density and heterogeneous samples. This paper will describe the basic radiation-based nondestructive assay techniques used to perform these measurements. The authors will also discuss the NDA measurement applications for international inspections of European fuel-fabrication facilities

  4. Safeguards considerations for uranium enrichment facilities, as applied to gas centrifuge and gaseous diffusion facilities

    International Nuclear Information System (INIS)

    1979-03-01

    The goals and objectives of IAEA safeguards as they are understood by the authors based on published documents are reviewed. These goals are then used to derive safeguards concerns, diversion strategies, and potential safeguards measures for four base cases, the production of highly enriched uranium (HEU) at a diffusion plant, the diversion of low enriched uranium (LEU) at a diffusion plant, the diversion of HEU at a gas centrifuge plant, and the diversion of LEU at a gas centrifuge plant. Tables of estimated capabilities are given for each case, under the assumption that the inspector would have access: to the cascade perimeter at or after the start of operations, to the cascade perimeter throughout construction and operation, to the cascade perimeter during operation plus a one-time access to the cascade itself, to the cascade during construction but only its perimeter during operation, or to the cascade itself during construction and operation

  5. Pursuit of improvement in uranium bulk analysis at the clear facility for safeguards environmental samples

    International Nuclear Information System (INIS)

    Sakurai, S.; Takahashi, M.; Sakakibara, T.; Magara, M.; Kurosawa, S.; Esaka, F.; Takai, K.; Watanabe, K.; Usuda, S.; Adachi, T.

    2002-01-01

    Full text: In order to contribute to the IAEA strengthened safeguards system, a project started in Japan Atomic Energy Research Institute (JAERI) in 1998. Consequently, a clean room facility called as CLEAR, the Clean Laboratory for Environmental Analysis and Research, was constructed in June 2001 at JAERI Tokai and the analytical techniques of ultra-trace nuclear materials in environmental samples are being developed. As for the bulk analysis, performance of inductively-coupled plasma mass spectrometry (ICP-MS) was mainly examined because sample preparation for ICP-MS is simpler than that for thermal ionization mass spectrometry (TIMS). Interference of polyatomic ion (such as PtAr + ) and coexisting element (such as Na) on the uranium ions, as well as mass bias caused by ICP-MS operating conditions, has been investigated for precise measurement on uranium isotope ratio. The authors have also studied on the uranium blanks during sample treatment process. The blank value below 10 pg uranium per sample treatment was obtained: dominant origins were elution from Teflon vessel surface in acid heating process of the sample to dry up. The work is in progress to minimize the blank. Compared with the process blank and the minimum uranium amount for isotope ratio measurement by ICP-MS (ca. 10 pg for natural uranium), the swipe cotton (Texwipe-304) which is currently used for IAEA Environmental Sampling includes much more amount of natural uranium in several nano-grams. If the amount of uranium collected on Texwipe-304 is small, sensitive and reliable measurement on isotope ratio will be impossible by bulk analysis. The authors are seeking alternative swipe materials with less amount of uranium. Recently, one of the authors devised an effective technique for recovery of uranium-containing particles from Texwipe-304. The technique, named as Vacuum Suction Method, uses a combination of polycarbonate membrane filters and a macro-pipette tip, which is connected to a vacuum pump

  6. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, S.A., E-mail: dewjisa@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States); Lee, D.L.; Croft, S. [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States); Hertel, N.E. [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States); Nuclear and Radiological Engineering Program, Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States); Chapman, J.A.; McElroy, R.D.; Cleveland, S. [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS-6335, Oak Ridge, TN 37831-6335 (United States)

    2016-07-01

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO{sub 2}(NO{sub 3}){sub 2}) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10–90 g U/L of natural uranyl nitrate are presented. A range of

  7. Study of immobilization of waste from treatment of acid waters of a uranium mining facility

    International Nuclear Information System (INIS)

    Goda, R.T.; Oliveira, A.P. de; Silva, N.C. da; Villegas, R.A.S.; Ferreira, A.M.

    2017-01-01

    This study aimed to produce scientific and technical knowledge aiming at the development of techniques to immobilize the waste generated in the treatment of acid waters in the UTM-INB Caldas uranium mining and processing facility using Portland cement. This residue (calcium diuranate - DUCA) contains uranium compounds and metal hydroxides in a matrix of calcium sulfate. It is observed that this material, in contact with the lake of acid waters of the mine's own pit, undergoes resolubilization and, therefore, changes the quality of the acidic water contained therein, changing the treatment parameters. For the study of immobilization of this residue, the mass of water contained in both the residue deposited in the pit of the mine and in the pulp resulting from the treatment of the acid waters was determined. In addition, different DUCA / CEMENT / WATER ratios were used for immobilization and subsequent mechanical strength and leaching tests. The results showed that in the immobilized samples with 50% cement mass condition, no uranium was detected in the leaching tests, and the mechanical strength at compression was 9.4 MPa, which indicates that more studies are needed, but indicate a good capacity to immobilize uranium in cement

  8. Uranium

    International Nuclear Information System (INIS)

    Whillans, R.T.

    1981-01-01

    Events in the Canadian uranium industry during 1980 are reviewed. Mine and mill expansions and exploration activity are described, as well as changes in governmental policy. Although demand for uranium is weak at the moment, the industry feels optimistic about the future. (LL)

  9. Detailed description of an SSAC at the facility level for a low-enriched uranium conversion and fuel fabrication facility

    International Nuclear Information System (INIS)

    Jones, R.J.

    1984-09-01

    Some States have expressed a need for more detailed guidance with regard to the technical elements in the design and operation of SSACs for both the national and the international objectives. To meet this need the present document has been prepared, describing the technical elements of an SSAC in considerable detail. The purpose of this document is therefore, to provide a detailed description of a system for the accounting for and control of nuclear material in a model low enriched uranium conversion and fuel fabrication facility which can be used by a facility operator to establish his own system in a way which will provide the necessary information for compliance with a national system for nuclear material accounting and control and for the IAEA to carry out its safeguards responsibilities

  10. Preliminary study for treatment methodology establishment of liquid waste containing uranium in refining facility lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Lee, Kune Woo; Won, Hui Jun; Ahn, Byung Gil; Shim, Joon Bo

    1999-12-01

    The preliminary study which establishes the treatment methodology of the sludge waste containing uranium in the conversion facility lagoon was performed. The property of lagoon liquid waste such as the initial water content, the density including radiochemical analysis results were obtained using the samples taken from the lagoon. The objective of this study is to provide some basically needed materials for selection of the most proper lagoon waste treatment methodology by reviewing the effective processes and methods for minimizing the secondary waste resulting from the treatment and disposition of large amount of radioactive liquid waste according to the facility closing. The lagoon waste can be classified into two sorts, such as supernatant and precipitate. The supernatants contain uranium less than 5 ppm and their water content are about 35 percent. Therefore, supernatants are solutions composed of mainly salt components. However, the precipitates have lots of uranium compound contained in the coagulation matrix, and are formed as two kinds of crystalline structures. The most proper method minimizing the secondary waste would be direct drying and solidification of the supernatants and precipitates after separation of them by filtering. (author)

  11. Environmental monitoring program of the uranium enrichment facility Almirante Alvaro Alberto

    International Nuclear Information System (INIS)

    Hiromoto, G.; Jacomino, V.M.F.; Venturini, L.; Moreira, S.R.D.; Gordon, A.M.P.L.; Duarte, C.L.; Pocequilo, B.R.S.; Mazzilli, B.P.

    1988-11-01

    In this report, the Environmental Monitoring Program of the Uranium Enrichment Facility Almirante Alvaro Alberto is outlined and the results obtained during the preoperational period are presented. Information concerning the population distribution, the use of water and land, the local agricultural production and the local meteorology are also available. In order to evaluate the levels of the background radiation, sample of water, air and biological and terrestrial indicators were analysed. Measurements were performed of natural gamma emitters concentrations levels and of uranium in air, surface water, precipitation, groundwater, river sediment, soil, grass, vegetation and various foodstuffs. For direct measurement of background radiation levels a solid state dosimeter network was used. Results are also presented for the analysis of non radioactive pollutants in the water samples and for the particles and gaseous fluorides concentration in the atmosphere. (author) [pt

  12. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Nickels, J.M.; Geiger, J.L.

    1992-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation requires the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified. in. A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements

  13. Disposition of PUREX facility tanks D5 and E6 uranium and plutonium solutions

    International Nuclear Information System (INIS)

    Harty, D.P.

    1993-12-01

    Approximately 9 kilograms of plutonium and 5 metric tons of uranium in a 1 molar nitric acid solution are being stored in two PUREX facility vessels, tanks D5 and E6. The plutonium was accumulated during cleanup activities of the plutonium product area of the PUREX facility. Personnel at PUREX recently completed a formal presentation to the Surplus Materials Peer Panel (SMPP) regarding disposition of the material currently in these tanks. The peer panel is a group of complex-wide experts who have been chartered by EM-64 (Office of Site and Facility Transfer) to provide a third party independent review of disposition decisions. The information presented to the peer panel is provided in the first section of this report. The panel was generally receptive to the information provided at that time and the recommendations which were identified

  14. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years

  15. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontage, S.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years

  16. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    Energy Technology Data Exchange (ETDEWEB)

    Lohrasbi, J.; Johnson, D.L. [Westinghouse Hanford Co., Richland, WA (United States); De Lorenzo, D.S. [Los Alamos Technical Associates, NM (United States)

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  17. Uranium industry update

    International Nuclear Information System (INIS)

    Poissonnet, M.

    1994-01-01

    Canada is the world's largest producer of uranium. With stockpiles becoming depleted, new sources of production will soon be needed. Production in Ontario was expected to cease in 1996, leaving decommissioning as the main activity there. Present production in Canada is almost entirely from the Athabasca basin in Saskatchewan, and mainly from three mines, Key Lake and Rabbit Lake (both owned by Cameco and Uranerz), and Cluff Lake (owned by Cogema). Following hearings in 1993, extensions to Cluff Lake and Rabbit Lake, and a new project at McClean Lake (by Minatco) received environmental approval, while the Midwest project as presented by Denison was rejected, but Cogema was revising it (at the time of the conference). An environmental impact statement for Cigar Lake was due to be submitted to the Assessment panel in October 1994. The author regrets that discussion of 'natural analogues' has created confusion between uranium mining and nuclear waste disposal in the public mind. 2 ills

  18. The McClean Lake uranium project

    International Nuclear Information System (INIS)

    Blaise, J.R.

    2001-01-01

    The McClean Lake Uranium Project, located in the northern part of Saskatchewan, consists of five uranium deposits, Jeb - Sue A - Sue B - Sue C - McClean, scattered in three different locations on the mineral lease. On 16 March 1995, COGEMA Resources Inc and its partners, Denison Mines Ltd and OURD (Canada) Co Ltd, made the formal decision to develop the McClean Lake Project. Construction of the mine and mill started during summer 1995 and should be finished by mid 1997. Mining of the first deposit, Jeb started in 1996, ore being currently mined. The start of the yellowcake production is scheduled to start this fall. (author)

  19. Results of Active Test of Uranium-Plutonium Co-denitration Facility at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Numao, Teruhiko; Nakayashiki, Hiroshi; Arai, Nobuyuki; Miura, Susumu; Takahashi, Yoshiharu; Nakamura, Hironobu; Tanaka, Izumi

    2007-01-01

    In the U-Pu co-denitration facility at Rokkasho Reprocessing Plant (RRP), Active Test which composes of 5 steps was performed by using uranium-plutonium nitrate solution that was extracted from spent fuels. During Active Test, two kinds of tests were performed in parallel. One was denitration performance test in denitration ovens, and expected results were successfully obtained. The other was validation and calibration of non-destructive assay (NDA) systems, and expected performances were obtained and their effectiveness as material accountancy and safeguards system was validated. (authors)

  20. Japan-IAEA sefeguards demonstration programme in the gas centrifuge uranium enrichment facility

    International Nuclear Information System (INIS)

    Akiba, Mitsunori; Iwamoto, Tomonori; Omae, Masayoshi

    1985-01-01

    The Hexa-partite Safequard Project was started for the purpose of examining the effective techniques of safeguards for gas centrifuge uranium enrichment facilities. By the proposal of respective participating countries, it was decided to carry out the verifying test of various safeguard techniques at the actual plants. Japan carried out the verifying test of safeguard techniques at the Ningyotoge uranium enrichment pilot plant in June, 1982, and from November, 1983, to August, 1984. The contents of this test is reported. In Japan, this verifying test was positioned as a part of JASPAS (Japanese project of supporting IAEA safeguards). The verifying test of realtime and in-operation inventories, the verifying test of IAEA load cell type weighing machines for UF 6 cylinders, the verifying test of the measurement of the degree of enrichment in UF 6 cylinders by nondestructive test, the verifying test of confinement/watch system, and the verifying test of IAEA gas phase uranium enrichment monitors were carried out. The results were presented as the data for examination in the HSP, and evaluated as useful, informative and well compiled. It is necessary to pursue more cost-effective approaches. (Kako, I.)

  1. Characterization of uranium in surface-waters collected at the Rocky Flats Facility

    International Nuclear Information System (INIS)

    Efurd, D.W.; Rokop, D.J.; Aguilar, R.D.; Roensch, F.R.; Perrin, R.E.; Banar, J.C.

    1994-01-01

    The Rocky Flats Plant (RFP) is a Department of Energy (DOE) facility where plutonium and uranium components were manufactured for nuclear weapons. During plant operations radioactivity was inadvertently released into the environment. This study was initiated to characterize the uranium present in surface-waters at RFP. Three drainage basins and natural ephemeral streams transverse RFP. The Woman Creek drainage basin traverses and drains the southern portion of the site. The Rock Creek drainage basin drains the northwestern portion of the plant complex. The Walnut Creek drainage basin traverses the western, northern, and northeastern portions of the RFP site. Dams, detention ponds, diversion structures, and ditches have been constructed at RFP to control the release of plant discharges and surface (storm water) runoff. The ponds located downstream of the plant complex on North Walnut Creek are designated A-1 through A-4. Ponds on South Walnut Creek are designated B-1 through B-5. The ponds in the Woman Creek drainage basin are designated C-1 and C-2. Water samples were collected from each pond and the uranium was characterized by TIMS measurement techniques

  2. Assessment of surface contamination level in an operating uranium ore processing facility of Jaduguda, India

    International Nuclear Information System (INIS)

    Meena, J.S.; Patnaik, R.L.; Jha, V.N.; Sahoo, S.K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Radiological concern of the occupational workers and the area is given priority over other safety issue in confirmation with the stipulated guideline of national regulatory agency (AERB/FEFCF/SG-2, 2007). The key concern from the radiological hazard evaluation point of view is air activity, external gamma level and surface contamination. Present investigations was carried out to ascertain the surface contamination level of uranium ore processing facility at Jaduguda, Jharkhand. For a low grade uranium ore processing industry surface contamination is a major concern in product precipitation and recovery section. In view of this, the ore processing plant can broadly be classified into three areas i.e. ion exchange area, precipitation and product recovery section and other areas. The monitoring results incorporate the level of surface contamination of the plant during the last five years. The geometric mean activity of surface contamination level was 31.1, 34.5 and 9.8 Bq dm -2 in ion exchange, product precipitation and recovery and other areas with GSD of 2, 2.5 and 1.9. In most of the cases the surface contamination level was well within the recommended limit of 100 Bq dm -2 for M class uranium compound. Occasional cases of surface contamination levels exceeding the recommended limit were addressed and areas were decontaminated. Based on the study, modification in the design feature of the surface of the finished product section was also suggested so that the decontamination procedure can be more effectively implemented

  3. Sorption and bioreduction of hexavalent uranium at a military facility by the Chesapeake Bay

    International Nuclear Information System (INIS)

    Dong Wenming; Xie Guibo; Miller, Todd R.; Franklin, Mark P.; Oxenberg, Tanya Palmateer; Bouwer, Edward J.; Ball, William P.; Halden, Rolf U.

    2006-01-01

    Directly adjacent to the Chesapeake Bay lies the Aberdeen Proving Ground, a U.S. Army facility where testing of armor-piercing ammunitions has resulted in the deposition of >70,000 kg of depleted uranium (DU) to local soils and sediments. Results of previous environmental monitoring suggested limited mobilization in the impact area and no transport of DU into the nation's largest estuary. To determine if physical and biological reactions constitute mechanisms involved in limiting contaminant transport, the sorption and biotransformation behavior of the radionuclide was studied using geochemical modeling and laboratory microcosms (500 ppb U(VI) initially). An immediate decline in dissolved U(VI) concentrations was observed under both sterile and non-sterile conditions due to rapid association of U(VI) with natural organic matter in the sediment. Reduction of U(VI) to U(IV) occurred only in non-sterile microcosms. In the non-sterile samples, intrinsic bioreduction of uranium involved bacteria of the order Clostridiales and was only moderately enhanced by the addition of acetate (41% vs. 56% in 121 days). Overall, this study demonstrates that the migration of depleted uranium from the APG site into the Chesapeake Bay may be limited by a combination of processes that include rapid sorption of U(VI) species to natural organic matter, followed by slow, intrinsic bioreduction to U(IV). - At the Aberdeen Proving Ground in Maryland, USA, migration of depleted uranium into the Chesapeake Bay is limited by rapid sorption of the radionuclide to natural organic matter followed by slow biological reduction of water-soluble U(VI) to the insoluble and less toxic U(IV) species

  4. Development of the Falea Polymetallic Uranium Project, Mali

    International Nuclear Information System (INIS)

    Ring, Bob; Freeman, Paul

    2014-01-01

    Falea project basics: • Project now owned by Denison Mines; • ANSTO Minerals working with owner and their consultant, DRA; • Located in south western Mali, West Africa, near the intersection of the Senegal and Guinea borders; • Established mining region (mainly gold); • Location on plateau favourable for underground operation; • Significant uranium, silver and copper mineralisation - different to other U deposits; • Excellent metallurical outcomes to date

  5. Methods for nondestructive assay holdup measurements in shutdown uranium enrichment facilities

    International Nuclear Information System (INIS)

    Hagenauer, R.C.; Mayer, R.L. II.

    1991-09-01

    Measurement surveys of uranium holdup using nondestructive assay (NDA) techniques are being conducted for shutdown gaseous diffusion facilities at the Oak Ridge K-25 Site (formerly the Oak Ridge Gaseous Diffusion Plant). When in operation, these facilities processed UF 6 with enrichments ranging from 0.2 to 93 wt % 235 U. Following final shutdown of all process facilities, NDA surveys were initiated to provide process holdup data for the planning and implementation of decontamination and decommissioning activities. A three-step process is used to locate and quantify deposits: (1) high-resolution gamma-ray measurements are performed to generally define the relative abundances of radioisotopes present, (2) sizable deposits are identified using gamma-ray scanning methods, and (3) the deposits are quantified using neutron measurement methods. Following initial quantitative measurements, deposit sizes are calculated; high-resolution gamma-ray measurements are then performed on the items containing large deposits. The quantitative estimates for the large deposits are refined on the basis of these measurements. Facility management is using the results of the survey to support a variety of activities including isolation and removal of large deposits; performing health, safety, and environmental analyses; and improving facility nuclear material control and accountability records. 3 refs., 1 tab

  6. Calculation of parameters for inspection planning and evaluation: low enriched uranium conversion and fuel fabrication facilities

    International Nuclear Information System (INIS)

    Reardon, P.T.; Mullen, M.F.; Harms, N.L.

    1981-02-01

    As part of Task C.35 (Calculation of Parameters for Inspection Planning and Evaluation) of the US Program of Technical Assistance to IAEA Safeguards, Pacific Northwest Laboratory has performed some quantitative analyses of IAEA inspection activities at low-enriched uranium (LEU) conversion and fuel fabrication facilities. This report presents the results and conclusions of those analyses. Implementation of IAEA safeguards at LEU conversion and fuel fabrication facilities must take into account a variety of practical problems and constraints. One of the key concerns is the problem of flow verification, especially product verification. The objective of this report is to help put the problem of flow verification in perspective by presenting the results of some specific calculations of inspection effort and probability of detection for various product measurement strategies. In order to provide quantitative information about the advantages and disadvantages of the various strategies, eight specific cases were examined

  7. Uranium

    International Nuclear Information System (INIS)

    Perkin, D.J.

    1982-01-01

    Developments in the Australian uranium industry during 1980 are reviewed. Mine production increased markedly to 1841 t U 3 O 8 because of output from the new concentrator at Nabarlek and 1131 t of U 3 O 8 were exported at a nominal value of $37.19/lb. Several new contracts were signed for the sale of yellowcake from Ranger and Nabarlek Mines. Other developments include the decision by the joint venturers in the Olympic Dam Project to sink an exploration shaft and the release of an environmental impact statement for the Honeymoon deposit. Uranium exploration expenditure increased in 1980 and additions were made to Australia's demonstrated economic uranium resources. A world review is included

  8. Uranium

    International Nuclear Information System (INIS)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-01-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U 3 O 8 ; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables

  9. Radio-Ecological Conditions of Groundwater in the Area of Uranium Mining and Milling Facility - 13525

    Energy Technology Data Exchange (ETDEWEB)

    Titov, A.V.; Semenova, M.P.; Seregin, V.A.; Isaev, D.V.; Metlyaev, E.G. [FSBU SRC A.I.Burnasyan Federal Medical Biophysical Center of FMBA of Russia, Zhivopisnaya Street, 46, Moscow (Russian Federation); Glagolev, A.V.; Klimova, T.I.; Sevtinova, E.B. [FSESP ' Hydrospecgeologiya' (Russian Federation); Zolotukhina, S.B.; Zhuravleva, L.A. [FSHE ' Centre of Hygiene and Epidemiology no. 107' under FMBA of Russia (Russian Federation)

    2013-07-01

    Manmade chemical and radioactive contamination of groundwater is one of damaging effects of the uranium mining and milling facilities. Groundwater contamination is of special importance for the area of Priargun Production Mining and Chemical Association, JSC 'PPMCA', because groundwater is the only source of drinking water. The paper describes natural conditions of the site, provides information on changes of near-surface area since the beginning of the company, illustrates the main trends of contaminators migration and assesses manmade impact on the quality and mode of near-surface and ground waters. The paper also provides the results of chemical and radioactive measurements in groundwater at various distances from the sources of manmade contamination to the drinking water supply areas. We show that development of deposits, mine water discharge, leakages from tailing dams and cinder storage facility changed general hydro-chemical balance of the area, contributed to new (overlaid) aureoles and flows of scattering paragenetic uranium elements, which are much smaller in comparison with natural ones. However, increasing flow of groundwater stream at the mouth of Sukhoi Urulyungui due to technological water infiltration, mixing of natural water with filtration streams from industrial reservoirs and sites, containing elevated (relative to natural background) levels of sulfate-, hydro-carbonate and carbonate- ions, led to the development and moving of the uranium contamination aureole from the undeveloped field 'Polevoye' to the water inlet area. The aureole front crossed the southern border of water inlet of drinking purpose. The qualitative composition of groundwater, especially in the southern part of water inlet, steadily changes for the worse. The current Russian intervention levels of gross alpha activity and of some natural radionuclides including {sup 222}Rn are in excess in drinking water; regulations for fluorine and manganese

  10. Radio-Ecological Conditions of Groundwater in the Area of Uranium Mining and Milling Facility - 13525

    International Nuclear Information System (INIS)

    Titov, A.V.; Semenova, M.P.; Seregin, V.A.; Isaev, D.V.; Metlyaev, E.G.; Glagolev, A.V.; Klimova, T.I.; Sevtinova, E.B.; Zolotukhina, S.B.; Zhuravleva, L.A.

    2013-01-01

    Manmade chemical and radioactive contamination of groundwater is one of damaging effects of the uranium mining and milling facilities. Groundwater contamination is of special importance for the area of Priargun Production Mining and Chemical Association, JSC 'PPMCA', because groundwater is the only source of drinking water. The paper describes natural conditions of the site, provides information on changes of near-surface area since the beginning of the company, illustrates the main trends of contaminators migration and assesses manmade impact on the quality and mode of near-surface and ground waters. The paper also provides the results of chemical and radioactive measurements in groundwater at various distances from the sources of manmade contamination to the drinking water supply areas. We show that development of deposits, mine water discharge, leakages from tailing dams and cinder storage facility changed general hydro-chemical balance of the area, contributed to new (overlaid) aureoles and flows of scattering paragenetic uranium elements, which are much smaller in comparison with natural ones. However, increasing flow of groundwater stream at the mouth of Sukhoi Urulyungui due to technological water infiltration, mixing of natural water with filtration streams from industrial reservoirs and sites, containing elevated (relative to natural background) levels of sulfate-, hydro-carbonate and carbonate- ions, led to the development and moving of the uranium contamination aureole from the undeveloped field 'Polevoye' to the water inlet area. The aureole front crossed the southern border of water inlet of drinking purpose. The qualitative composition of groundwater, especially in the southern part of water inlet, steadily changes for the worse. The current Russian intervention levels of gross alpha activity and of some natural radionuclides including 222 Rn are in excess in drinking water; regulations for fluorine and manganese concentrations are also in excess

  11. Derivation of release limits for a typical uranium mining and milling facility

    International Nuclear Information System (INIS)

    1985-09-01

    This report develops guidelines for calculating derived release limits (DRLs) for releases of each radionuclide belonging to the uranium-238 and thorium-232 decay chains to atmosphere, surface water and groundwater from uranium mining and milling operations in Canada. DRLs are defined as calculated limits on releases from the facility that result in radiation exposures through all environmental pathways equal to the annual effective dose equivalent limit of 0.005 Sv for stochastic effects or the annual dose equivalent limit of 0.05 Sv for non-stochastic effects in the critical group. By definition, DRLs apply to controllable radionuclide emissions which occur during the operational phase of mine/mill facilities. The report develops a steady-state environmental transfer model to determine environmental dilution and dispersion in atmosphere, surface water and groundwater between the sources at the mine and mill and the critical group receptor. Exposure pathways incorporated in the model include external exposure from immersion in the airborne plume, immersion in water, contaminated ground and contaminated shoreline sediments. Internal exposure pathways include inhalation of contaminated air and ingestion of contaminated water and terrestrial and aquatic foods

  12. Uranium and thorium mining regulations: Amendments relating to financial assurances and decommissioning of uranium mining facilities. Consultative document

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, G L [Atomic Energy of Canada Ltd., Sheridan Park, ON (Canada). CANDU Operations

    1993-12-23

    The purpose of this document is to describe the objectives, scope, substance and application of proposed amendments to the Uranium and Thorium Mining Regulations; in particular, amendments relating to the provision of financial assurances for the decommissioning of Canadian uranium mines. (author).

  13. Uranium and thorium mining regulations: Amendments relating to financial assurances and decommissioning of uranium mining facilities. Consultative document

    International Nuclear Information System (INIS)

    Brooks, G.L.

    1993-01-01

    The purpose of this document is to describe the objectives, scope, substance and application of proposed amendments to the Uranium and Thorium Mining Regulations; in particular, amendments relating to the provision of financial assurances for the decommissioning of Canadian uranium mines. (author)

  14. The structural innovative design of DN400 experimental facility with inversed U-shaped twin tower for uranium ion exchange

    International Nuclear Information System (INIS)

    Li Geng; Lei Ze'nan; Liu Qing

    2012-01-01

    A DN400 experimental facility with inversed U-shaped twin towers for uranium ion exchange is designed and developed to solve the existing problems in ion exchange equipment, such as easy agglomeration on the upper layer of resin bed, much resin abrasion, high sensitiveness for mud and sand, and difficulty in producing ideal plug flow in back-wash process. The facility combined with the valve control principle, cross flow type sieve plate and the unique inlet and outlet structures can solve the above problems, and the efficiency of uranium extraction can be improved significantly. (authors)

  15. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Recent decisions by the Australian Government will ensure a significant expansion of the uranium industry. Development at Roxby Downs may proceed and Ranger may fulfil two new contracts but the decision specifies that apart from Roxby Downs, no new mines should be approved. The ACTU maintains an anti-uranium policy but reaction to the decision from the trade union movement has been muted. The Australian Science and Technology Council (ASTEC) has been asked by the Government to conduct an inquiry into a number of issues relating to Australia's role in the nuclear fuel cycle. The inquiry will examine in particular Australia's nuclear safeguards arrangements and the adequacy of existing waste management technology. In two additional decisions the Government has dissociated itself from a study into the feasibility of establishing an enrichment operation and has abolished the Uranium Advisory Council. Although Australian reserves account for 20% of the total in the Western World, Australia accounts for a relatively minor proportion of the world's uranium production

  16. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The French Government has decided to freeze a substantial part of its nuclear power programme. Work has been halted on 18 reactors. This power programme is discussed, as well as the effect it has on the supply of uranium by South Africa

  17. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  18. Surveillance and Maintenance Plan for the Plutonium Uranium Extraction (PUREX) Facility

    International Nuclear Information System (INIS)

    Woods, P.J.

    1998-05-01

    This document provides a plan for implementing surveillance and maintenance (S ampersand M) activities to ensure the Plutonium Uranium Extraction (PUREX) Facility is maintained in a safe, environmentally secure, and cost-effective manner until subsequent closure during the final disposition phase of decommissioning. This plan has been prepared in accordance with the guidelines provided in the U.S. Department of Energy (DOE), Office of Environmental Management (EM) Decommissioning Resource Manual (DOE/EM-0246) (DOE 1995), and Section 8.6 of TPA change form P-08-97-01 to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology, et al. 1996). Specific objectives of the S ampersand M program are: Ensure adequate containment of remaining radioactive and hazardous material. Provide security control for access into the facility and physical safety to surveillance personnel. Maintain the facility in a manner that will minimize potential hazards to the public, the environment, and surveillance personnel. Provide a plan for the identification and compliance with applicable environmental, safety, health, safeguards, and security requirements

  19. Radiological considerations in the design of Reprocessing Uranium Plant (RUP) of Fast Reactor Fuel Cycle Facility (FRFCF), Kalpakkam

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    A Fast Reactor Fuel Cycle Facility (FRFCF) being planned at Indira Gandhi Centre for Atomic Research, Kalpakkam is an integrated facility with head end and back end of fuel cycle plants co-located in a single place, to meet the refuelling needs of the prototype fast breeder reactor (PFBR). Reprocessed uranium oxide plant (RUP) is one such plant in FRFCF to built to meet annual requirements of UO 2 for fabrication of fuel sub-assemblies (FSAs) and radial blanket sub-assemblies (RSAs) for PFBR. RUP receives reprocessed uranium oxide powder (U 3 O 8 ) from fast reactor fuel reprocessing plant (FRP) of FRFCF. Unlike natural uranium oxide plant, RUP has to handle reprocessed uranium oxide which is likely to have residual fission products activity in addition to traces of plutonium. As the fuel used for PFBR is recycled within these plants, formation of higher actinides in the case of plutonium and formation of higher levels of 232 U in the uranium product would be a radiological problem to be reckoned with. The paper discussed the impact of handling of multi-recycled reprocessed uranium in RUP and the radiological considerations

  20. Remediation of former uranium mining and milling facilities in Germany - the WISMUT experience

    International Nuclear Information System (INIS)

    Gatzweiler, R.

    2000-01-01

    The former German Democratic Republic (East Germany) provided most of the natural uranium for the nuclear programmes of the former Soviet Union. Uranium mining and milling activities caused extensive devastation and resulted in large amounts of waste with serious impacts on the environment and unacceptable risks to human health. Production ceased in 1990-91 in the course of the reunification of Germany. At the same time a very large environmental remediation programme was initiated by the German Federal Government. WISMUT GmbH, the successor company of the former Soviet-German enterprise SDAG WISMUT, was designated to carry out this DM 13 billion programme. The programme is currently in its ninth year and will likely continue up to 2015. The initial assessment of the remediation and the cost estimates were based on closure plans for the mining and milling facilities, an extensive environmental database and basic concepts for site specific remediation in accordance with legal requirements and directives. The decision making process for individual remediation objects is based on risk analyses and the evaluation of remediation options. The methodologies used depend on the size and complexity of the individual object. For simple cases, an environmental assessment study is used. Remediation options for larger and more complex objects such as tailings facilities are evaluated by multi-attribute analysis with emphasis on sensitivity investigations. The general public is not formally involved in the decision making process but is informed on conceptual remediation plans for the individual sites. These plans are regularly updated. For several of the remediated facilities, future use cannot be unrestricted and therefore, some form of institutional control is needed. To date, criteria for close-out have not been clearly defined for all sites. Similarly, criteria concerning transfer of ownership and responsibilities for long term surveillance and maintenance have yet to be

  1. Uranium isotopes in tree bark as a spatial tracer of environmental contamination near former uranium processing facilities in southwest Ohio.

    Science.gov (United States)

    Conte, Elise; Widom, Elisabeth; Kuentz, David

    2017-11-01

    Inappropriate handling of radioactive waste at nuclear facilities can introduce non-natural uranium (U) into the environment via the air or groundwater, leading to anthropogenic increases in U concentrations. Uranium isotopic analyses of natural materials (e.g. soil, plants or water) provide a means to distinguish between natural and anthropogenic U in areas near sources of radionuclides to the environment. This study examines the utility of two different tree bark transects for resolving the areal extent of U atmospheric contamination using several locations in southwest Ohio that historically processed U. This study is the first to utilize tree bark sampling transects to assess environmental contamination emanating from a nuclear facility. The former Fernald Feed Materials Production Center (FFMPC; Ross, Ohio) produced U metal from natural U ores and recycled nuclear materials from 1951 to 1989. Alba Craft Laboratory (Oxford, Ohio) machined several hundred tons of natural U metal from the FFMPC between 1952 and 1957. The Herring-Hall-Marvin Safe Company (HHM; Hamilton, Ohio) intermittently fabricated slugs rolled from natural U metal stock for use in nuclear reactors from 1943 to 1951. We have measured U concentrations and isotope signatures in tree bark sampled along an ∼35 km SSE-NNW transect from the former FFMPC to the vicinity of the former Alba Craft laboratories (transect #1) and an ∼20 km SW- NE (prevailing local wind direction) transect from the FFMPC to the vicinity of the former HHM (transect #2), with a focus on old trees with thick, persistent bark that could potentially record a time-integrated signature of environmental releases of U related to anthropogenic activity. Our results demonstrate the presence of anthropogenic U contamination in tree bark from the entire study area in both transects, with U concentrations within 1 km of the FFMPC up to ∼400 times local background levels of 0.066 ppm. Tree bark samples from the Alba Craft and

  2. Uranium ore mining in Spain with a focus on the closure and remediation measures in former production facilities

    International Nuclear Information System (INIS)

    Koch, H.; Blunck, S.; Lopez Romero, A.R.

    2004-01-01

    In early 2000, the uranium ore mining activities in Spain ceased. Since the middle of the last century, Spain had pushed ahead its own production of uranium concentrate with the formation of several companies (ENUSA, J.E.N.). In that period, Spain produced around 6000 t of uranium. With the completion of the operations at Andujar, La Haba and Elephante as well as Quercus at Saelices el Chico, the corporate tasks have shifted from building-up of a strategic uranium reserve to remediation and subsequent use of the locations. The operations have reached different remediation phases. While at Saelices el Chico remediation is still proceeding, the Andujar and La Haba locations are undergoing a monitoring phase as agreed for all former operating facilities. The estimated closure and remediation costs for the three operating facilities described amount to approx. 85 mio. Euro. In all three cases dealt with, however, these limited financial resources have been sufficient to successfully implement a closure and remediation concept that minimizes the risks from the facilities of uranium ore mining and processing with regard to the environment. (orig.)

  3. Development of ISA procedure for uranium fuel fabrication and enrichment facilities: overview of ISA procedure and its application

    International Nuclear Information System (INIS)

    Yamate, Kazuki; Yamada, Takashi; Takanashi, Mitsuhiro; Sasaki, Noriaki

    2013-01-01

    Integrated Safety Analysis (ISA) procedure for uranium fuel fabrication and enrichment facilities has been developed for aiming at applying risk-informed regulation to these uranium facilities. The development has carried out referring to the ISA (NUREG-1520) by the Nuclear Regulatory Commission (NRC). The paper presents purpose, principles and activities for the development of the ISA procedure, including Risk Level (RL) matrix and grading evaluation method of IROFS (Items Relied on for Safety), as well as general description and features of the procedure. Also described in the paper is current status in application of risk information from the ISA. Japanese four licensees of the uranium facilities have been conducting ISA for their representative processes using the developed procedure as their voluntary safety activities. They have been accumulating experiences and knowledge on the ISA procedure and risk information through the field activities. NISA (Nuclear and Industrial Safety Agency) and JNES (Japan Nuclear Energy Safety Organization) are studying how to use such risk information for the safety regulation of the uranium facilities, taking into account the licensees' experiences and knowledge. (authors)

  4. Review of Sodium and Plutonium related Technical Standards in Trans-Uranium Fuel Fabrication Facilities

    International Nuclear Information System (INIS)

    Jang, Misuk; Jeon, Jong Seon; Kang, Hyun Sik; Kim, Seoung Rae

    2016-01-01

    In this paper, we would introduce and review technical standards related to sodium fire and plutonium criticality safety. This paper may be helpful to identify considerations in the development of equipment, standards, and etc., to meet the safety requirements in the design, construction and operating of TFFF, KAPF and SFR. The feasibility and conceptual designs are being examined on related facilities, for example, TRU Fuel Fabrication Facilities (TFFF), Korea Advanced Pyro-process Facility (KAPF), and Sodium Cooled Fast Reactor (SFR), in Korea. However, the safety concerns of these facilities have been controversial in part because of the Sodium fire accident and Plutonium related radiation safety caused by transport and handling accident. Thus, many researches have been performed to ensure safety and various documents including safety requirements have been developed. In separating and reducing the long-lived radioactive transuranic(TRU) in the spent nuclear fuel, reusing as the potential energy of uranium fuel resources and reducing the high level wastes, TFFF would be receiving the attention of many people. Thus, people would wonder whether compliance with technical standards that ensures safety. For new facility design, one of the important tasks is to review of technical standards, especially for sodium and Plutonium because of water related highly reactive characteristics and criticality hazard respectively. We have introduced and reviewed two important technical standards for TFFF, which are sodium fire and plutonium criticality safety, in this paper. This paper would provide a brief guidance, about how to start and what is important, to people who are responsible for the initial design to operation of TFFF

  5. Review of Sodium and Plutonium related Technical Standards in Trans-Uranium Fuel Fabrication Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Misuk; Jeon, Jong Seon; Kang, Hyun Sik; Kim, Seoung Rae [NESS, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, we would introduce and review technical standards related to sodium fire and plutonium criticality safety. This paper may be helpful to identify considerations in the development of equipment, standards, and etc., to meet the safety requirements in the design, construction and operating of TFFF, KAPF and SFR. The feasibility and conceptual designs are being examined on related facilities, for example, TRU Fuel Fabrication Facilities (TFFF), Korea Advanced Pyro-process Facility (KAPF), and Sodium Cooled Fast Reactor (SFR), in Korea. However, the safety concerns of these facilities have been controversial in part because of the Sodium fire accident and Plutonium related radiation safety caused by transport and handling accident. Thus, many researches have been performed to ensure safety and various documents including safety requirements have been developed. In separating and reducing the long-lived radioactive transuranic(TRU) in the spent nuclear fuel, reusing as the potential energy of uranium fuel resources and reducing the high level wastes, TFFF would be receiving the attention of many people. Thus, people would wonder whether compliance with technical standards that ensures safety. For new facility design, one of the important tasks is to review of technical standards, especially for sodium and Plutonium because of water related highly reactive characteristics and criticality hazard respectively. We have introduced and reviewed two important technical standards for TFFF, which are sodium fire and plutonium criticality safety, in this paper. This paper would provide a brief guidance, about how to start and what is important, to people who are responsible for the initial design to operation of TFFF.

  6. Regulatory philosophy and requirements for radiation control in Canadian uranium mine-mill facilities

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-10-01

    The approach the Canadian Atomic Energy Control Board takes in licensing uranium mine/mill facilities is based on a minimum of rigidly set regulatory requirements. The regulations state only the basic objectives: the obligation to acquire a licence, some administrative and reporting requirements, and exposure limits. The regulations are supported by a set of regulatory guides. The operator always has the option of following different procedures if he can demonstrate that they will produce the same or better results. Good relationships exist between the AECB and mine management as well as trade unions. Under this approach, however, it is difficult to take action against uncooperative parties. The Board has decided that a somewhat more formalized system is necessary. New regulations are being drafted, giving more detailed licensing and administrative requirements and covering the areas of ventilation and worker and supervisor education more thoroughly

  7. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    International Nuclear Information System (INIS)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C.

    1995-01-01

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation

  8. Standard guide for establishing a quality assurance program for uranium conversion facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This guide provides guidance and recommended practices for establishing a comprehensive quality assurance program for uranium conversion facilities. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate health and safety practices and determine the applicability of regulatory limitations prior to use. 1.3 The basic elements of a quality assurance program appear in the following order: FUNCTION SECTION Organization 5 Quality Assurance Program 6 Design Control 7 Instructions, Procedures & Drawings 8 Document Control 9 Procurement 10 Identification and Traceability 11 Processes 12 Inspection 13 Control of Measuring and Test Equipment 14 Handling, Storage and Shipping 15 Inspection, Test and Operating Status 16 Control of Nonconforming Items 17 Corrective Actions 18 Quality Assurance Records 19 Audits 20 TABLE 1 NQA-1 Basic Requirements Relat...

  9. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C. [Oak Ridge National Lab., TN (United States). Technical Programs and Services; Brock, W.R.; Denton, D.R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  10. Contaminant distributions at typical U.S. uranium milling facilities and their effect on remedial action decisions

    International Nuclear Information System (INIS)

    Hamp, S.; Dotson, P.W.

    1995-01-01

    Past operations at uranium processing sites throughout the US have resulted in local contamination of soils and ground water by radionuclides, toxic metals, or both. Understanding the origin of contamination and how the constituents are distributed is a basic element for planning remedial action decisions. This report describes the radiological and nonradiological species found in ground water at a typical US uranium milling facility. The report will provide the audience with an understanding of the vast spectrum of contaminants that must be controlled in planning solutions to the long-term management of these waste materials

  11. Assessment of the effectiveness of personal visual observation as a safeguards measure in a uranium enrichment facility

    International Nuclear Information System (INIS)

    Ohno, Fubito; Okamoto, Tsuyoshi; Yokochi, Akira; Nidaira, Kazuo

    2003-01-01

    In a centrifuge enrichment facility, a cascade that produces low enriched uranium is composed of a large number of UF 6 gas centrifuges interconnected with pipes. It is possible to divert the cascade to the illegal production of highly enriched uranium (HEU) by changing the piping arrangement within the cascade. If integrated type centrifuges that contain a few tens of advanced centrifuges are introduced into the facility, the number of pipes will greatly decrease. The smaller the number of pipes, the less the labor required to change the piping arrangement. Because personal visual observation by an inspector is considered as one of measures against changing the piping arrangement, its effectiveness is assessed in this study. First, a model centrifuge enrichment facility that has a capacity of 2,400 ton-SWU/y is designed. In this model facility, integrated type centrifuges that contain advanced centrifuges are installed. Second, the diversion path analysis is carried out for the model facility under the assumption that a facility operator's goal is to produce 75 kg of HEU with 20% enrichment in a month. The analysis shows that, in our assumed diversion path, changes of the piping arrangement can be certainly detected by personal visual observation of a part of pipes connected with integrated type centrifuges that compose the cascade diverted to the HEU production. Finally, inspections in a cascade area are modeled as two-person noncooperative games between the inspector and the facility operator. As a result, it is found that all the cascades in the model facility will be investigated if the inspector can devote the inspection effort of 0.83 man-day per month to personal visual observation in the cascade area. Therefore, it is suggested that personal visual observation of the piping arrangement is worth carrying out in a uranium enrichment facility where integrated type centrifuges that contain advanced centrifuges are installed. (author)

  12. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  13. Criticality safety studies for plutonium–uranium metal fuel pin fabrication facility

    International Nuclear Information System (INIS)

    Stephen, Neethu Hanna; Reddy, C.P.

    2013-01-01

    Highlights: ► Criticality safety limits for PUMP-F facility is identified. ► The fissile mass which can be handled safely during alloy preparation is 10.5 kg. ► The number of fuel slugs which can be handled safely during injection casting is 53. ► The number of fuel slugs which can be handled safely after fuel fabrication is 71. - Abstract: This study focuses on the criticality safety during the fabrication of fast reactor metal fuel pins comprising of the fuel type U–15Pu, U–19Pu and U–19Pu–6Zr in the Plutonium–Uranium Metal fuel Pin fabrication Facility (PUMP-F). Maximum amount of fissile mass which can be handled safely during master alloy preparation, Injection casting and fuel slug preparation following fuel pin fabrication were identified and fixed based on this study. In the induction melting furnace, the fissile mass can be limited to 10.5 kg. During fuel slug preparation and fuel pin fabrication, fuel slugs and pins were arranged in hexagonal and square lattices to identify the most reactive configuration. The number of fuel slugs which can be handled safely after injection casting can be fixed to be 53, whereas after fuel fabrication it is 71

  14. Uranium

    International Nuclear Information System (INIS)

    Battey, G.C.; McKay, A.D.

    1988-01-01

    Production for 1986 was 4899 t U 3 O 8 (4154 t U), 30% greater than in 1985, mainly because of a 39% increase in production at Ranger. Exports for 1986 were 4166 t U 3 O 8 at an average f.o.b. unit value of $40.57/lb U 3 O 8 . Private exploration expenditure for uranium in Australia during the 1985-86 fiscal year was $50.2 million. Plans were announced to increase the nominal capacity of the processing plant at Ranger from 3000 t/year U 3 O 8 to 4500 t and later to 6000 t/year. Construction and initial mine development at Olympic Dam began in March. Production is planned for mid 1988 at an annual rate of 2000 t U 3 O 8 , 30 000 t Cu, and 90 000 oz (2800 kg) Au. The first long-term sales agreement was concluded in September 1986. At the Manyingee deposit, testing of the alkaline solution mining method was completed, and the treatment plant was dismantled. Spot market prices (in US$/lb U 3 O 8 ) quoted by Nuexco were generally stable. From January-October the exchange value fluctuated from US$17.00-US$17.25; for November and December it was US$16.75. Australia's Reasonably Assured Resources of uranium recoverable at less than US$80/kg U at December 1986 were estimated as 462 000 t U, 3000 t U less than in 1985. This represents 30% of the total low-cost RAR in the WOCA (World Outside the Centrally Planned Economy Areas) countries. Australia also has 257 000 t U in the low-cost Estimated Additional Resources Category I, 29% of the WOCA countries' total resources in this category

  15. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event

    International Nuclear Information System (INIS)

    Totemeier, T.C.

    1999-01-01

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO 2 and U 3 O 7 . The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated

  16. Characterization of uranium corrosion products involved in the March 13, 1998 fuel manufacturing facility pyrophoric event.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T.C.

    1999-04-26

    Uranium metal corrosion products from ZPPR fuel plates involved in the March 13, 1998 pyrophoric event in the Fuel Manufacturing Facility at Argonne National Laboratory-West were characterized using thermo-gravimetric analysis, X-ray diffraction, and BET gas sorption techniques. Characterization was performed on corrosion products in several different conditions: immediately after separation from the source metal, after low-temperature passivation, after passivation and extended vault storage, and after burning in the pyrophoric event. The ignition temperatures and hydride fractions of the corrosion product were strongly dependent on corrosion extent. Corrosion products from plates with corrosion extents less than 0.7% did not ignite in TGA testing, while products from plates with corrosion extents greater than 1.2% consistently ignited. Corrosion extent is defined as mass of corrosion products divided by the total mass of uranium. The hydride fraction increased with corrosion extent. There was little change in corrosion product properties after low-temperature passivation or vault storage. The burned products were not reactive and contained no hydride; the principal constituents were UO{sub 2} and U{sub 3}O{sub 7}. The source of the event was a considerable quantity of reactive hydride present in the corrosion products. No specific ignition mechanism could be conclusively identified. The most likely initiator was a static discharge in the corrosion product from the 14th can as it was poured into the consolidation can. The available evidence does not support scenarios in which the powder in the consolidation can slowly self-heated to the ignition point, or in which the powder in the 14th can was improperly passivated.

  17. Leaching study of heavy and radioactive elements present in wastes discarded by a uranium extraction and processing facility

    International Nuclear Information System (INIS)

    Pihlak, A.; Lippmaa, E.; Maremaee, E.; Sirk, A; Uustalu, E.

    1995-08-01

    The present report provides a systematic leaching study of the waste depository at the Sillamaee metallurgical plant 'Silmet' (former uranium extraction and processing facility), its construction and environmental impact. The following data are presented: γ-activity data of the depository and two drill cores, chemical composition and physical properties of depository material and leaching waters, results of γ- and α-spectrometric studies, leaching (with demineralized and sea water) intensities of loparite and uranium ore processing waste components. Environmental danger presented by the Sillamaee waste dump to the Gulf of Finland and the surrounding environment in Estonia is mainly due to uranium leaching and the presence of a large array of chemically poisonous substances

  18. Uranium Determination in Samples from Decommissioning of Nuclear facilities Related to the First Stage of Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Alvarez, A.; Correa, E.; Navarro, N.; Sancho, C.; Angeles, A.

    2000-01-01

    An adequate workplace monitoring must be carried out during the decommissioning activities, to ensure the protection of workers involved in these tasks. In addition, a large amount of waste materials are generated during the decommissioning of nuclear facilities. Clearance levels are established by regulatory authorities and are normally quite low. The determination of those activity concentration levels become more difficult when it is necessary to quantify alpha emitters such as uranium, especially when complex matrices are involved. Several methods for uranium determination in samples obtained during the decommissioning of a facility related to the first stage of the nuclear fuel cycle are presented in this work. Measurements were carried out by laboratory techniques. In situ gamma spectrometry was also used to perform measurements on site. A comparison among the different techniques was also done by analysing the results obtained in some practical applications. (Author)

  19. A study of facilities relative to stabilization of uranium mill tailings at Elliot Lake

    International Nuclear Information System (INIS)

    1983-06-01

    The total project capital cost of facilities to stabilize uranium mill tailings at Elliot Lake while producing 350,000 short tons per year of sulphuric acid and 266,000 short tons per year of triple superphosphate is approximately 153 million dollars. This includes pyrite flotation, roasting, acid and phosphate production, site preparation, utilities and project overhead. A new operating credit of 20.43 dollars per short ton of acid is estimated, achieved from the sale of steam and fertilizer. Two alternatives to the above were also examined, as follows: a) Production of 596,000 short tons per year of acid, and the sale of 246,000 short tons which are in excess of the Elliot Lake mill's requirement. The capital cost of this scheme is approximately 89 million dollars, with a net operating credit of 14.97 dollars per short ton of acid. b) Production of only 350,000 short tons per year of acid. This would entail disposal of the excess pyrite floated from the Rio Algom mills. The capital cost of this scheme is approximately 75 million dollars, with an operating cost of 10.47 dollars per short ton of acid

  20. International uranium production. An eastern Canadian perspective

    International Nuclear Information System (INIS)

    Albino, G.R.

    1984-01-01

    The Eastern Canadian perspective on uranium production is based on 30 years of continuous mining at Elliot Lake and on the experience of selling uranium over the same time period, mainly to export markets. In Ontario the orebodies are basically contiguous, being part of the same large formation. All the mining is underground. Ore grades are low, but economic extraction is improved by continuity and uniformity of grades, stable ground conditions, and the ability to mine and mill on a large scale. Mining is being carried out by two companies, Denison and Rio Algom. It is unlikely that mine capacity will be increased. Government policies have significant effects on the Eastern Canadian uranium industry in particular, as to U.S. import policies. (L.L.)

  1. Introduction to in situ leaching technique and facility at Smith Ranch uranium project in USA

    International Nuclear Information System (INIS)

    Xu Lechang; Wang Delin; Sun Xianrong; Gao Shangxiong

    2005-01-01

    The history of in situ leaching of uranium in USA is reviewed. Some techniques and parameters of alkaline in situ leach at Smith Ranch uranium project are introduced, including well field, sorption, elution, precipitation, filter and drying, automatic control, radiation protection, safety and environmental protection. (authors)

  2. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    International Nuclear Information System (INIS)

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L.

    1997-01-01

    The Department of Energy's (DOE) Office of Science and Technology Decontamination and Decommissioning (D ampersand D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D ampersand D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D ampersand D Focus Area's approach to verifying the benefits of the improved D ampersand D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD's awarded by the D ampersand D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP's selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP's Plant 1 D ampersand D Project which was an ongoing D ampersand D Project for which a firm fixed price contract had been issued to the D ampersand D Contractor. Thus, interferences with the baseline D ampersand D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D ampersand D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of open-quotes winners.close quotes All demonstrated, technologies will be evaluated for incorporation into the FEMP's baseline D ampersand D

  3. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, L A; Williams, R W; Glover, S E; LaMont, S P; Stalcup, A M; Spitz, H B

    2012-03-16

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.

  4. Radiochronological age of a uranium metal sample from an abandoned facility

    International Nuclear Information System (INIS)

    Meyers, L.A.; Stalcup, A.M.; Glover, S.E.; Spitz, H.B.

    2013-01-01

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940 and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope 230 Th from the decay of 234 U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 ± 1.5 years. (author)

  5. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    International Nuclear Information System (INIS)

    Meyers, L.A.; Williams, R.W.; Glover, S.E.; LaMont, S.P.; Stalcup, A.M.; Spitz, H.B.

    2012-01-01

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope 230 Th from the decay of 234 U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 ± 1.5 years.

  6. Decommissioning: A critical component of the design for uranium tailings management facilities

    International Nuclear Information System (INIS)

    Clifton, W.A.; Barsi, R.G.; Misfeldt, G.A.

    2000-01-01

    Uranium was discovered in the Beaverlodge area of northern Saskatchewan in 1934 with the first major mill beginning operation in 1953. Little attention was paid to tailings quality or tailings management practices. With the onset of the modem uranium operations beginning in the late 1970's, it was repeatedly evident, that the public had significant concerns, particularly with respect to tailings management, that must be addressed if the developments were to be allowed to proceed. Primary considerations related to environmental protection, public safety and an assurance of the ongoing sustainable development of the region. Integrating the decommissioning of a mine/mill site into development planning from the very outset has proven to be a critical component that has contributed to the ongoing success of the Saskatchewan uranium operations. This paper will provide a case study of the evolution of the uranium tailings management technology utilized in Saskatchewan. It documents the evolution of tailings management processes and the characteristics of tailings produced by successive mines in northern Saskatchewan. It also discusses the evolution of technologies applied to management of uranium mill tailings and demonstrates how progressively increasing levels of environmental protection have been achieved during the last 47 years of uranium mill operation. The paper also shows that the planned and progressive decommissioning of an operational site is the key to: Minimizing environmental impacts; Satisfying public and regulatory concerns; Minimizing operational and decommissioning costs; Minimizing corporate liability; and Shifting public resistance to public support. (author)

  7. Decommissioning: A critical component of the design for uranium tailings management facilities

    International Nuclear Information System (INIS)

    Clifton, A.W.; Barsi, R.G.; Misfeldt, G.A.

    2002-01-01

    Uranium was discovered in the Beaverlodge area of northern Saskatchewan in 1934 with the first major mill beginning operation in 1953. Little attention was paid to tailings quality or tailings management practices. With the onset of the modern uranium operations beginning in the late 1970's, it was repeatedly evident, that the public had significant concerns, particularly with respect to tailings management, that must be addressed if the developments were to be allowed to proceed. Primary considerations related to environmental protection, public safety and an assurance of the ongoing sustainable development of the region. Integrating the decommissioning of a mine/mill site into development planning from the very outset has proven to be a critical component that has contributed to the ongoing success of the Saskatchewan uranium operations. This paper will provide a case study of the evolution of the uranium tailings management technology utilized in Saskatchewan. It documents the evolution of tailings management processes and the characteristics of tailings produced by successive mines in northern Saskatchewan. It also discusses the evolution of technologies applied to management of uranium mill tailings and demonstrates how progressively increasing levels of environmental protection have been achieved during the last 47 years of uranium mill operation. The paper also shows that the planned and progressive decommissioning of an operational site is the key to: Minimizing environmental impacts; Satisfying public and regulatory concerns; Minimizing operational and decommissioning costs; Minimizing corporate liability; and Shifting public resistance to public support. (author)

  8. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    International Nuclear Information System (INIS)

    2003-01-01

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF 6 conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (DandD) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products

  9. Draft CSA standard on environmental risk assessments at class I nuclear facilities and uranium mines and mills

    International Nuclear Information System (INIS)

    Hart, D.; Garisto, N.; Parker, R.; Kovacs, R.; Thompson, B.

    2012-01-01

    The Canadian Standards Association (CSA) is preparing a draft Standard on environmental risk assessments (ERAs) at Class I nuclear facilities and uranium mines and mills (CSA N288.6). It is being prepared by a technical subcommittee of the CSA N288 Technical Committee, including experts from across the nuclear industry, government and regulatory authorities, and environmental service providers, among others. It addresses the design, implementation, and management of environmental risk assessment programs, and is intended to standardize practice across the industry. This paper outlines the scope of the draft Standard and highlights key features. It is under development and subject to change. (author)

  10. SRTC criticality safety technical review: Nuclear criticality safety evaluation 94-02, uranium solidification facility pencil tank module spacing

    International Nuclear Information System (INIS)

    Rathbun, R.

    1994-01-01

    Review of NMP-NCS-94-0087, ''Nuclear Criticality Safety Evaluation 94-02: Uranium Solidification Facility Pencil Tank Module Spacing (U), April 18, 1994,'' was requested of the SRTC Applied Physics Group. The NCSE is a criticality assessment to show that the USF process module spacing, as given in Non-Conformance Report SHM-0045, remains safe for operation. The NCSE under review concludes that the module spacing as given in Non-Conformance Report SHM-0045 remains in a critically safe configuration for all normal and single credible abnormal conditions. After a thorough review of the NCSE, this reviewer agrees with that conclusion

  11. Safety review and stress test of the uranium enrichment facility Gronau; Compact. Sicherheitsueberpruefung und Stresstest der Urananreicherungsanlage Gronau

    Energy Technology Data Exchange (ETDEWEB)

    Kleiboemer, Burkhard [URENCO Deutschland GmbH, Gronau (Germany). Ueberwachung

    2013-07-01

    As a consequence of the earthquake and tsunami in Japan in 2011 and the subsequent catastrophic destruction of the nuclear power plant in Fukushima URENCO has agreed to perform the safety check of the uranium enrichment facility Gronau (UAG) two years earlier than planned. The review was started in May 2011. The contribution deals with the requirements for the safety analysis and the questionnaire for the stress test, the methodology for realization of the safety check and the results of the investigations performed by URENCO and experts of ESK.

  12. Impact of uranium-233/thorium cycle on advanced accountability concepts and fabrication facilities. Addendum 2 to application of advanced accountability concepts in mixed oxide fabrication

    International Nuclear Information System (INIS)

    Bastin, J.J.; Jump, M.J.; Lange, R.A.; Crandall, C.C.

    1977-11-01

    The Phase I study of the application of advanced accountability methods (DYMAC) in a uranium/plutonium mixed oxide facility was extended to cover the possible fabrication of uranium-233/thorium fuels. Revisions to Phase II of the DYMAC plan which would be necessitated by such a process are specified. These revisions include shielding requirements, measurement systems, licensing conditions, and safeguards considerations. The impact of the uranium/thorium cycle on a large-scale fuel fabrication facility was also reviewed; it was concluded that the essentially higher radioactivity of uranium/thorium feeds would lead to increased difficulties which tend to preclude early commercial application of the process. An amended schedule for Phase II is included

  13. Wetland and Sensitive Species Survey Report for Y-12: Proposed Uranium Processing Facility (UPF)

    Energy Technology Data Exchange (ETDEWEB)

    Giffen, N.; Peterson, M.; Reasor, S.; Pounds, L.; Byrd, G.; Wiest, M. C.; Hill, C. C.

    2009-11-01

    This report summarizes the results of an environmental survey conducted at sites associated with the proposed Uranium Processing Facility (UPF) at the Y-12 National Security Complex in September-October 2009. The survey was conducted in order to evaluate potential impacts of the overall project. This project includes the construction of a haul road, concrete batch plant, wet soil storage area and dry soil storage area. The environmental surveys were conducted by natural resource experts at ORNL who routinely assess the significance of various project activities on the Oak Ridge Reservation (ORR). Natural resource staff assistance on this project included the collection of environmental information that can aid in project location decisions that minimize impacts to sensitive resource such as significant wildlife populations, rare plants and wetlands. Natural resources work was conducted in various habitats, corresponding to the proposed areas of impact. Thc credentials/qualifications of the researchers are contained in Appendix A. The proposed haul road traverses a number of different habitats including a power-line right-of-way. wetlands, streams, forest and mowed areas. It extends from what is known as the New Salvage Yard on the west to the Polaris Parking Lot on the east. This haul road is meant to connect the proposed concrete batch plant to the UPF building site. The proposed site of the concrete batch plant itself is a highly disturbed fenced area. This area of the project is shown in Fig. 1. The proposed Wet Soils Disposal Area is located on the north side of Bear Creek Road at the former Control Burn Study Area. This is a second growth arce containing thick vegetation, and extensive dead and down woody material. This area of the project is shown in Fig. 2. Thc dry soils storage area is proposed for what is currently known as the West Borrow Area. This site is located on the west side of Reeves Road south of Bear Creek Road. The site is an early successional

  14. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility.

    Science.gov (United States)

    Döppner, T; Callahan, D A; Hurricane, O A; Hinkel, D E; Ma, T; Park, H-S; Berzak Hopkins, L F; Casey, D T; Celliers, P; Dewald, E L; Dittrich, T R; Haan, S W; Kritcher, A L; MacPhee, A; Le Pape, S; Pak, A; Patel, P K; Springer, P T; Salmonson, J D; Tommasini, R; Benedetti, L R; Bond, E; Bradley, D K; Caggiano, J; Church, J; Dixit, S; Edgell, D; Edwards, M J; Fittinghoff, D N; Frenje, J; Gatu Johnson, M; Grim, G; Hatarik, R; Havre, M; Herrmann, H; Izumi, N; Khan, S F; Kline, J L; Knauer, J; Kyrala, G A; Landen, O L; Merrill, F E; Moody, J; Moore, A S; Nikroo, A; Ralph, J E; Remington, B A; Robey, H F; Sayre, D; Schneider, M; Streckert, H; Town, R; Turnbull, D; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-07-31

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  15. Nonlinear estimation of weathering rate parameters for uranium in surface soil near a nuclear facility

    International Nuclear Information System (INIS)

    Killough, G.G.; Rope, S.K.; Shleien, B.; Voilleque, P.G.

    1999-01-01

    A dynamic mass-balance model has been calibrated by a nonlinear parameter estimation method, using time-series measurements of uranium in surface soil near the former Feed Materials Production Center (FMPC) near Fernald, Ohio, USA. The time-series data, taken at six locations near the site boundary since 1971, show a statistically significant downtrend of above-background uranium concentration in surface soil for all six locations. The dynamic model is based on first-order kinetics in a surface-soil compartment 10 cm in depth. Median estimates of weathering rate coefficients for insoluble uranium in this soil compartment range from about 0.065-0.14 year -1 , corresponding to mean transit times of about 7-15 years, depending on the location sampled. The model, calibrated by methods similar to those discussed in this paper, has been used to simulate surface soil kinetics of uranium for a dose reconstruction study. It was also applied, along with other data, to make confirmatory estimates of airborne releases of uranium from the FMPC between 1951 and 1988. Two soil-column models (one diffusive and one advective, the latter similar to a catenary first-order kinetic box model) were calibrated to profile data taken at one of the six locations in 1976. The temporal predictions of the advective model approximate the trend of the time series data for that location. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Radioactivity of uranium production cycle facilities in the Czech Republic compared to the natural environment

    International Nuclear Information System (INIS)

    Matolin, M.

    2002-01-01

    Forty-five years (1946-1990) of intensive uranium exploration and exploitation in the Czech Republic led to mining at 64 uranium deposits. These mining and milling activities left numerous accumulations of waste rock material in the landscape. The radioactivity of these man-made accumulations was measured and compared to the natural radiation environment. Waste rock dumps at the uranium deposits Pribram, Rozna, Jachymov, Straz-Hamr and deposits in the Zelezne Hory area show surface gamma dose rates mostly in the range of 200-1000 nGy/h, with a uranium concentration 10-100 ppm eU. An extremely high radioactivity of 3000-4200 nGy/h was detected at the extensive uranium processing tailings impoundments at Straz. Terrestrial gamma dose rate of regional geological units in the Czech Republic is in the range of 6-245 nGy/h. Reclamation and recultivation of dumps, control of their radioactivity and restriction of their accessibility are the major measures introduced to protect the public. (author)

  17. The Canadian Nuclear Safety Commission regulatory process for decommissioning a uranium mining facility

    International Nuclear Information System (INIS)

    Scissons, K.; Schryer, D.M.; Goulden, W.; Natomagan, C.

    2002-01-01

    The Canadian Nuclear Safety Commission (CNSC) regulates uranium mining in Canada. The CNSC regulatory process requires that a licence applicant plan for and commit to future decommissioning before irrevocable decisions are made, and throughout the life of a uranium mine. These requirements include conceptual decommissioning plans and the provision of financial assurances to ensure the availability of funds for decommissioning activities. When an application for decommissioning is submitted to the CNSC, an environmental assessment is required prior to initiating the licensing process. A case study is presented for COGEMA Resources Inc. (COGEMA), who is entering the decommissioning phase with the CNSC for the Cluff Lake uranium mine. As part of the licensing process, CNSC multidisciplinary staff assesses the decommissioning plan, associated costs, and the environmental assessment. When the CNSC is satisfied that all of its requirements are met, a decommissioning licence may be issued. (author)

  18. Soil Characterization by Large Scale Sampling of Soil Mixed with Buried Construction Debris at a Former Uranium Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Nardi, A.J.; Lamantia, L.

    2009-01-01

    Recent soil excavation activities on a site identified the presence of buried uranium contaminated building construction debris. The site previously was the location of a low enriched uranium fuel fabrication facility. This resulted in the collection of excavated materials from the two locations where contaminated subsurface debris was identified. The excavated material was temporarily stored in two piles on the site until a determination could be made as to the appropriate disposition of the material. Characterization of the excavated material was undertaken in a manner that involved the collection of large scale samples of the excavated material in 1 cubic meter Super Sacks. Twenty bags were filled with excavated material that consisted of the mixture of both the construction debris and the associated soil. In order to obtain information on the level of activity associated with the construction debris, ten additional bags were filled with construction debris that had been separated, to the extent possible, from the associated soil. Radiological surveys were conducted of the resulting bags of collected materials and the soil associated with the waste mixture. The 30 large samples, collected as bags, were counted using an In-Situ Object Counting System (ISOCS) unit to determine the average concentration of U-235 present in each bag. The soil fraction was sampled by the collection of 40 samples of soil for analysis in an on-site laboratory. A fraction of these samples were also sent to an off-site laboratory for additional analysis. This project provided the necessary soil characterization information to allow consideration of alternate options for disposition of the material. The identified contaminant was verified to be low enriched uranium. Concentrations of uranium in the waste were found to be lower than the calculated site specific derived concentration guideline levels (DCGLs) but higher than the NRC's screening values. The methods and results are presented

  19. Regulatory philosophy and requirements for radiation control in Canadian uranium mine-mill facilities

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-10-01

    With the point made that radiation exposure is one of the health hazards of uranium mining and accordingly has to be controlled, the Canadian regulatory philosophy is outlined as it pertains to the uranium mining industry. Two extremes in regulatory approach are examined, and the joint regulatory process is explained. Two examples of poor management performance are given, and the role of mine unions in the regulatory process is touched upon. The development of new regulations to cover ventilation and employee training is sketched briefly. The author concludes with a general expression of objectives for the eighties which include improved personal dosimetry

  20. Uranium - a challenging mining business

    International Nuclear Information System (INIS)

    Stadelhofer, J.W.; Wedig, M.J.

    2007-01-01

    The main application of uranium is its use as a fuel for the nuclear electricity generation. Presently about 68,000 t (177 mill. lbs) of uranium are annually required, of which 41,500 (108 mill. lbs) are provided from fresh mine production whereas 26,500 t (69 mill. lbs) are stock drawdown supplies from civil or military sources. Two-thirds of production are recovered by underground mining and about 75% (30,350 t) of the world's uranium mine production are extracted from top ten mines. All major uranium mining companies are making efforts to enlarge their production capacities: The paramount Cameco's Cigar Lake project has been delayed due to mine water inflow. Production is expected to commence by latest in 2010; the nameplate capacity of 6000 t/a should be reached in 2011. AREVA reported plans to invest about Euro 500 to 600 mill. to double its uranium production by 2010. In 2006 Denison Mines and International Uranium Corporation announced that they have entered into an agreement to merge the two companies in order to create a mid-tier, North American-focused uranium producer with the potential annual production of more than 5.5 mill. lbs of U 3 O 8 by 2010. The skyrocketing global electricity demand, growing public acceptance and more favourable policies have initiated a new round of global development of the nuclear industry. Against this backdrop, about 30,000 t/a to 40,000 t/a of additional mine production will be required within the upcoming 20 years to substitute secondary uranium supplies and to meet the expected increased demand; new start-up junior mining companies (e.g. Paladin) will contribute to this increased production. (orig.)

  1. Uranium management activities

    International Nuclear Information System (INIS)

    Jackson, D.; Marshall, E.; Sideris, T.; Vasa-Sideris, S.

    2001-01-01

    One of the missions of the Department of Energy's (DOE) Oak Ridge Office (ORO) has been the management of the Department's uranium materials. This mission has been accomplished through successful integration of ORO's uranium activities with the rest of the DOE complex. Beginning in the 1980's, several of the facilities in that complex have been shut down and are in the decommissioning process. With the end of the Cold War, the shutdown of many other facilities is planned. As a result, inventories of uranium need to be removed from the Department facilities. These inventories include highly enriched uranium (HEU), low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU). The uranium materials exist in different chemical forms, including metals, oxides, solutions, and gases. Much of the uranium in these inventories is not needed to support national priorities and programs. (author)

  2. Use of historical uranium air sampling data to estimate worker exposure potential to airborne radioactive particulate in a uranium processing facility.

    Science.gov (United States)

    Methner, M M; Feng, H A; Utterback, D F

    2001-12-01

    Historical industrial hygiene monitoring records from a uranium processing plant were collected and analyzed to characterize exposure potential to airborne radioactive particulate. More than 2,100 samples were collected during the period of 1954-1968. The data was organized by job title, plant number, and year of measurement. Laboratory analysis of air samples indicated a wide range of potential exposures to the alpha-emitting particulate. Logarithmic transformation of the data was necessary to approximate Gaussian distributions. Geometric Mean (GM) values were used as the measure of central tendency within years. GM values ranged from 23-49 disintegrations per minute per cubic meter of air sampled (dpm/m3) with the years 1963 and 1964 being significantly higher than other years (ANOVA: p exposure potential across plants, GM ranged from 20-68 dpm/m3, with plants 5 and 8 being significantly higher than the others (ANOVA: p Exposure potential for specific job titles across the plants varied widely. GM for clerks was the lowest (11 dpm/m3) while furnace operators were the highest (235 dpm/m3). Other job titles with potentially high exposures were chemical operators, forklift operators, machine operators, and furnace operators. This analysis indicates the magnitude and distributions of worker exposure to alpha-emitting airborne particulate. Additional analysis and epidemiologic studies are planned for this facility.

  3. Uranium conversion; Urankonvertering

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina [Swedish Defence Research Agency (FOI), Stockholm (Sweden)

    2006-03-15

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF{sub 6} and UF{sub 4} are present require equipment that is made of corrosion resistant material.

  4. Environmental monitoring (operational period) of the uranium enrichment facility Almirante Alvaro Alberto. Quadrimonthly report of gamma spectroscopy measurements: march to june 1988

    International Nuclear Information System (INIS)

    Venturini, L.; Pecequilo, B.R.S.

    1990-02-01

    In this report we present the assessment of the environmental monitoring radiation levels during the operation period of the Uranium Enrichment Facility Almirante Alvaro Alberto from March to July 1988. The purpose was achieved by sampling and analyzing using gamma spectrometry, water and terrestrial and biological indicators. (author) [pt

  5. Coordinated safeguards for materials management in a uranium--plutonium nitrate-to-oxide coconversion facility: Coprecal

    International Nuclear Information System (INIS)

    Dayem, H.A.; Cobb, D.D.; Dietz, R.J.; Hakkila, E.A.; Kern, E.A.; Schelonka, E.P.; Shipley, J.P.; Smith, D.B.

    1979-02-01

    This report describes the conceptual design of an advanced materials-management system for safeguarding special nuclear materials in a uranium--plutonium nitrate-to-oxide coconversion facility based on the Coprecal process. Design concepts are presented for near real-time (dynamic) accountability by forming dynamic materials balances from information provided by chemical and nondestructive analyses and from process-control instrumentation. Modeling and simulation techniques are used to compare the sensitivities of proposed dynamic materials accounting strategies to both abrupt and protracted diversion. The safeguards implications of coconversion as well as some unique features of the reference process are discussed and design criteria are identified to improve the safeguardability of the Coprecal coconversion process

  6. Water management of the uranium production facility in Brazil (Caetite, BA): potential impacts over groundwater quality

    International Nuclear Information System (INIS)

    Lamego, Fernando; Santos, Robson Rodger; Silva, L. Ferreira da; Fernandes, Horst Monken

    2008-01-01

    The uranium unit of Caetite - in charge of all the 'yellow cake' produced in Brazil - is located in the semi-arid Northeast region at Bahia State. The geological uranium content of the ore is 3000 ppm, which is mainly associated with albite (NaAlSi 8 O 8 ), and its extraction is achieved by means of a Heap-Leach process. This process has a low water demand, which is supplied by a network of wells, but can contribute to change the groundwater quality and in some cases the extinguishing of wells was observed. The managing of liquid mining wastes formed by drainage waters from mine pit and solid waste piles is not enough to avoid unwarranted releases in the environment, which turn necessary the waste treatment through passing them into the industrial plant in order to reduce radionuclide concentrations. The groundwater is Na-HCO 3 type water and relative high concentration of Cl are observed in some groundwater. It seems that levels of uranium in groundwaters are mainly a consequence of the complexation of the metal by carbonates (or other anions) and not by any sort of the contamination of these waters by the drainage accumulated in the open pit. The speciation modelling allows identifying some areas where the replenishment of the aquifer is more active, but in general the recharge is a fast process run by direct infiltration. The stable isotope data (δ 2 H and δ 18 O) showed that evaporation plays a role during the infiltration, causing the groundwater salinization. These data discard the possibility that groundwater salinization was caused by discharge of deeper saline groundwater through faults associated to a regional groundwater flow system. The presence of an active shallow groundwater flow system offers better possibility for sustainable use of the groundwater resources in this semi-arid region of Brazil. (author)

  7. Nuclear occupational safety in uranium conversion facility at the IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Gaburo, J.; Silva, T. de M. da; Sordi, G.-M.A.A.

    1988-10-01

    After a brief description of the operations involved in the Uranium Process Conversion at the IPEN-CNEN/SP it is shown the principal radioactive sources exposure, the health physics procedures implemented and finally are discussed the doses received by the workers. The health physics measurements includ air sampling, internal contamination control by bioassay analysis and workplace monitoring for external radiation. The air monitoring results show in some points that the radiation levels are very near of the 3/10 of the DAC, but the permanence of the workers are very short. This fact is confirmed by the results of the bioassay analysis performed on the workers. (author) [pt

  8. An introduction and overview of DRAFT CSA Standard N288.7 Groundwater Protection at Class I Nuclear Facilities and Uranium Mines and Mills

    Energy Technology Data Exchange (ETDEWEB)

    DeWilde, J., E-mail: john_dewilde@golder.com [Golder Associates Ltd., Whitby, ON (Canada); Klukas, M.; Audet, M., E-mail: marc.audet@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    The DRAFT CSA Standard N288.7 entitled Groundwater Protection at Class I Nuclear Facilities and Uranium Mines and Mills is currently under development and is anticipated to publish in June of 2015. This draft standard identifies a process for the protection and monitoring of groundwater at nuclear facilities but may also be used at any facility (i.e. nuclear facilities that are not Class I or non-nuclear facilities). The paper discusses the background to the draft standard, the formalized methodology described in the draft standard and provides some input on implementation. The paper is intended for people that have responsibilities related to groundwater protection at facilities that may need to comply with the draft standard or any site/facility that has some form of groundwater monitoring program. (author)

  9. Long-term fate and transport of arsenic in an in-pit uranium mine tailings facility

    International Nuclear Information System (INIS)

    Moldovan, B.; Hendry, M.J.

    2006-01-01

    An important environmental issue facing the uranium mining industry in Saskatchewan is the quantification of the long-term migration of arsenic from its tailings facilities to the adjacent groundwater system. Decommissioning of these arsenic-rich tailings requires that the long-term arsenic source term for the tailings to the groundwater be defined. To meet this need, arsenic-rich uranium mine tailings from one in-pit tailings facility (tailings emplaced in a mined out open pit) were studied in detail. The tailings facility selected for study was the Rabbit Lake in-pit tailings management facility (RLITMF) in northern Saskatchewan, Canada. The tailings body in the RLITMF is 425 m long x 300 m wide x 100 m deep at its center and mill tailings were deposited in layers between 1985 (base) and 2004 (top). Associated with the low-level radioactive tailings is approximately 23,000 tonnes of arsenic. The in-pit design limits solute transport in these fine-grained tailings to diffusion. Because the layers of tailings have varying chemical characteristics (controlled by the ore being milled at the time), the total arsenic concentrations in the layers and their associated pore fluids range from 56 to 9,871 μ/g and 0.24 to 140 mg/l, respectively. As was the case for arsenic, the concentration of iron present in the layers was also variable (ranging from 8,967 to 30,247 μ/g). Synchrotron-based studies show that the arsenic in these tailings is strongly attenuated by adsorption to secondary 2-line ferrihydrite through inner sphere bidentate linkages. Single reservoir diffusion cell testing shows that the effective diffusion coefficient for arsenic in the tailings is 4.5 x 10 -10 m 2 s- 1 . Based on results from our field- and laboratory-based studies, the redistribution (via diffusion) and attenuation (via adsorption) of arsenic in the RLITMF was modelled using a one-dimensional geochemical reactive transport model to provide a source term for arsenic migration from the

  10. Facile reductive silylation of UO{sub 2}{sup 2+} to uranium(IV) chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kiernicki, John J.; Bart, Suzanne C. [H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN (United States); Zeller, Matthias [H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, IN (United States); Department of Chemistry, Youngstown State University, Youngstown, OH (United States)

    2017-01-19

    General reductive silylation of the UO{sub 2}{sup 2+} cation occurs readily in a one-pot, two-step stoichiometric reaction at room temperature to form uranium(IV) siloxides. Addition of two equivalents of an alkylating reagent to UO{sub 2}X{sub 2}(L){sub 2} (X=Cl, Br, I, OTf; L=triphenylphosphine oxide, 2,2'-bipyridyl) followed by two equivalents of a silyl (pseudo)halide, R{sub 3}Si-X (R=aryl, alkyl, H; X=Cl, Br, I, OTf, SPh), cleanly affords (R{sub 3}SiO){sub 2}UX{sub 2}(L){sub 2} in high yields. Support is included for the key step in the process, reduction of U{sup VI} to U{sup V}. This procedure is applicable to a wide range of commercially available uranyl salts, silyl halides, and alkylating reagents. Under this protocol, one equivalent of SiCl{sub 4} or two equivalents of Me{sub 2}SiCl{sub 2} results in direct conversion of the uranyl to uranium(IV) tetrachloride. Full spectroscopic and structural characterization of the siloxide products is reported. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Assessment of background gamma radiation levels around Tummalapalle uranium mining and processing facility, Andhra Pradesh

    International Nuclear Information System (INIS)

    Rana, B.K.; Dhumale, M.R.; Molla, Samim; Rao, K.B.; Jha, S.K.; Tripathi, R.M.; Sahu, S.K.

    2018-01-01

    Natural environmental radioactivity and the associated external exposure due to gamma radiation depend primarily on the geological and geographical conditions, and appear at different levels in the soil of each region in the world. The dose received by the population in a region comprises of (i) external gamma radiation dose due to cosmic rays and primordial radionuclides; (ii) inhalation dose due to radon, thoron and their progeny, and (iii) ingestion dose due to the intake of radionuclides through the consumption of food, milk, water, etc. In this study, background gamma radiation level around Tummalapalle uranium mining and processing site was estimated by using radiation survey meter and deploying environmental TLDs. The generated data can be served as baseline for this area for future comparison for prolonged operation of the plant, for the upcoming adjacent projects and during decommissioning phase of the mine, mill and tailings pond

  12. Cancer morbidity as radiation protection efficiency indicator in uranium mining facilities

    International Nuclear Information System (INIS)

    Pavlenko, T. A.; Operchuk, A.P.

    2017-01-01

    The paper reviews the efficiency of radiation protection in uranium mining industry. The officially provided data on individual doses for underground and surface mining professionals is analysed and cancer morbidity risk is assessed. The researchers defined the individual components of the total effective dose and separately assessed their contributions. The total of 114 cancer cases have been registered during the past 15 years. Accumulated equivalent doses for lungs are estimated from 20 to 430 mSv. The total working time in 56% of individual cancer cases diagnosed made over 20 years. The actual lung cancer mortality rate for miners is established 3 cases per 1000 individuals, which permits to question the authenticity of the dosimetric data and the efficiency of radiological protection applied.

  13. CURRENT STATUS AND RECLAMATION PLAN OF FORMER URANIUM MINING AND MILLING FACILITIES AT NINGYO-TOGE IN JAPAN

    International Nuclear Information System (INIS)

    Sato, Kazuhiko; Tokizawa, Takayuki

    2003-01-01

    The Japan Nuclear Cycle Development Institute (JNC) conducted research and development projects on uranium exploration in Japan from 1956 to 1987. Several mine facilities, such as waste rock yards and a mill tailing pond, were retained around Ningyo-toge after the projects ended. Although there is no legal issue in the mine in accordance with related law and agreements at present, JNC has a notion that it is important to reduce the burden of waste management on future generations. Thus, the Ningyo-toge Environmental Engineering Center of JNC proposed a reclamation plan for these facilities with fundamental policy, an example of safety analysis and timetables. The plan has mainly three phases: Phase I is the planning stage, and this paper corresponds to this: Phase II is the stage to perform various tests for safety analysis and site designing: Phase III is the stage to accomplish measures. Preliminarily safety analyses suggested that our supposed cover designs for both waste rock and m ill tailing are enough to keep dose limit of 1mSv/y at site boundaries. The plan is primarily based on the Japanese Mine Safety Law, also refers to ICRP recommendations, IAEA reports, measures implemented overseas, etc. because this is the first case in Japan. For the accomplishment of this plan, it is important to establish a close relationship with local communities and governments, and to maintain a policy of open-to-public

  14. The regulatory process for uranium mines in Canada -general overview and radiation health and safety in uranium mine-mill facilities

    International Nuclear Information System (INIS)

    Dory, A.B.

    1982-01-01

    This presentation is divided into two main sections. In the first, the author explores the issues of radiation and tailings disposal, and then examines the Canadian nuclear regulatory process from the point of view of jurisdiction, objectives, philosophy and mechanics. The compliance inspection program is outlined, and the author discussed the relationships between the AECB and other regulatory agencies, the public and uranium mine-mill workers. The section concludes with an examination of the stance of the medical profession on nuclear issues. In part two, the radiological hazards for uranium miners are examined: radon daughters, gamma radiation, thoron daughters and uranium dust. The author touches on new regulations being drafted, the assessment of past exposures in mine atmospheres, and the regulatory approach at the surface exploration stage. The presentation concludes with the author's brief observations on the findings of other uranium mining inquiries and on future requirements in the industry's interests

  15. Proceedings of a workshop on uses of depleted uranium in storage, transportation and repository facilities

    International Nuclear Information System (INIS)

    1997-01-01

    A workshop on the potential uses of depleted uranium (DU) in the repository was organized to coordinate the planning of future activities. The attendees, the original workshop objective and the agenda are provided in Appendices A, B and C. After some opening remarks and discussions, the objectives of the workshop were revised to: (1) exchange information and views on the status of the Department of Energy (DOE) activities related to repository design and planning; (2) exchange information on DU management and planning; (3) identify potential uses of DU in the storage, transportation, and disposal of high-level waste and spent fuel; and (4) define the future activities that would be needed if potential uses were to be further evaluated and developed. This summary of the workshop is intended to be an integrated resource for planning of any future work related to DU use in the repository. The synopsis of the first day's presentations is provided in Appendix D. Copies of slides from each presenter are presented in Appendix E

  16. Proceedings of a workshop on uses of depleted uranium in storage, transportation and repository facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    A workshop on the potential uses of depleted uranium (DU) in the repository was organized to coordinate the planning of future activities. The attendees, the original workshop objective and the agenda are provided in Appendices A, B and C. After some opening remarks and discussions, the objectives of the workshop were revised to: (1) exchange information and views on the status of the Department of Energy (DOE) activities related to repository design and planning; (2) exchange information on DU management and planning; (3) identify potential uses of DU in the storage, transportation, and disposal of high-level waste and spent fuel; and (4) define the future activities that would be needed if potential uses were to be further evaluated and developed. This summary of the workshop is intended to be an integrated resource for planning of any future work related to DU use in the repository. The synopsis of the first day`s presentations is provided in Appendix D. Copies of slides from each presenter are presented in Appendix E.

  17. A uranium enrichment facility safeguards technology based on the separation nozzle process

    International Nuclear Information System (INIS)

    Bahm, W.; Weppner, J.; Didier, H.J.

    1979-01-01

    Under the Trilateral Agreement between Brazil, the Federal Republic of Germany and the IAEA an enrichment plant operating on the basis of the separation nozzle process, will be safeguarded under INFCIRC/66/Rev.2. For nuclear materials balancing purposes the plant has been subdivided into 17 key measuring points to assess the nuclear material flow and the nuclear material inventory. Preliminary studies have indicated that the balancing accuracy required for safeguards purposes cannot be achieved by only using the foreseen in-plant measuring systems, since considerable quantities of enriched uranium cannot be covered in this way. This fraction will merely be estimated by the operator and thus cannot be verified by the inspection authorities. The plant components, whose inventories could not be verified in the first estimate of the balancing accuracy referred to above by means of the in-plant measuring systems, also include the low-temperature separators of the cascade shoulder and the product. Assessing and verifying the inventories of these key measuring points is particularly important because of the enrichment (some 3% 235 U for the product) and the relatively large inventory and, hence, the considerable contribution to the balancing inaccuracy. An estimate of the balancing inaccuracy on the basis of the measuring uncertainties to be expected in the light of the present status of technology indicated values between 0.2 and 0.3% relative to the feed flow with semi-annual inventory-taking. However, this is based on the condition that the experiments planned to determine the inventories of cryogenic separators confirm the measuring uncertainties underlying the calculation

  18. Impact of receipt of coprocessed uranium/plutonium on advanced accountability concepts and fabrication facilities. Addendum 1 to application of advanced accountability concepts in mixed oxide fabrication

    International Nuclear Information System (INIS)

    Bastin, J.J.; Jump, M.J.; Lange, R.A.; Randall, C.C.

    1977-11-01

    The Phase I study of the application of advanced accountability methods (DYMAC) in a uranium/plutonium mixed oxide facility was extended to assess the effect of coprocessed UO 2 --PuO 2 feed on the observations made in the original Phase I effort and on the proposed Phase II program. The retention of plutonium mixed with uranium throughout the process was also considered. This addendum reports that coprocessed feed would have minimal effect on the DYMAC program, except in the areas of material specifications, starting material delivery schedule, and labor requirements. Each of these areas is addressed, as are the impact of coprocessed feed at a large fuel fabrication facility and the changes needed in the dirty scrap recovery process to maintain the lower plutonium levels which may be required by future nonproliferation philosophy. An amended schedule for Phase II is included

  19. Burn-up analysis of uranium silicide fuels 20% 235U, in the LFR facility

    International Nuclear Information System (INIS)

    Amor, Ricardo A.; Bouza, Edgardo; Cabrejas, Julian L.; Devida, Claudio A.; Gil, Daniel A.; Stankevicius, Alejandro; Gautier, Eduardo; Garavaglia, Ricardo N.; Lobo, Alfredo

    2003-01-01

    The LFR Facility is a laboratory designed and constructed with a Hot-Cells line, a Globe-Box and a Fume-Hood, all of them suited to work with radioactive materials such as samples of irradiated silicide MTR fuel elements. A series of dissolutions of this material was performed. From the resulting solutions, two fractions were separated by HPLC. One contained U + Pu, and other the fission product Nd. The concentrations of these elements were obtained by isotopic dilution and mass spectrometry (IDMS). It is concluded that this technique is very powerful and accurate when properly applied, and makes the validation of burn-up calculation codes possible. It is worth remarking the Lfr capacity to carry on different Research and Development (R + D) tasks in the Nuclear Fuel Cycle field. (author)

  20. Isotopic composition of uranium in U3O8 by neutron induced reactions utilizing thermal neutrons from critical facility and high resolution gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Acharya, R.; Pujari, P.K.; Goel, Lokesh

    2015-01-01

    Uranium in oxide and metal forms is used as fuel material in nuclear power reactors. For chemical quality control, it is necessary to know the isotopic composition (IC) of uranium i.e., 235 U to 238 U atom ratio as well as 235 U atom % in addition to its total concentration. Uranium samples can be directly assayed by passive gamma ray spectrometry for obtaining IC by utilizing 185 keV (γ-ray abundance 57.2%) of 235 U and 1001 keV (γ-ray abundance 0.837%) of 234m Pa (decay product of 238 U). However, due to low abundance of 1001 keV, often it is not practiced to obtain IC by this method as it gives higher uncertainty even if higher mass of sample and counting time are used. IC of uranium can be determined using activity ratio of neutron induced fission product of 235 U to activation product of 238 U ( 239 Np). In the present work, authors have demonstrated methodologies for determination of IC of U as well as 235 U atom% in natural ( 235 U 0.715%) and low enriched uranium (LEU, 3-20 atom % of 235 U) samples of uranium oxide (U 3 O 8 ) by utilizing ratio of counts at 185 keV γ-ray or γ-rays of fission products with respect to 277 keV of 239 Np. Natural and enriched samples (about 25 mg) were neutron irradiated for 4 hours in graphite reflector position of AHWR Critical Facility (CF) using highly thermalized (>99.9% thermal component) neutron flux (∼10 7 cm -2 s -1 )

  1. Strategy for the future use and disposition of Uranium-233: History, inventories, storage facilities, and potential future uses

    International Nuclear Information System (INIS)

    Bereolos, P.J.; Lewis, L.C.

    1998-06-01

    This document provides background information on the man-made radioisotope 233 U. It is one of a series of four reports that map out potential national strategies for the future use and disposition of 233 U pending action under the National Environmental Policy Act (NEPA). The scope of this report is separated 233 U, where separated refers to nonwaste 233 U or 233 U that has been separated from fission products. Information on other 233 U, such as that in spent nuclear fuel (SNF), is included only to recognize that it may be separated at a later date and then fall under the scope of this report. The background information in this document includes the historical production and current inventory of 233 U, the uses of 233 U, and a discussion of the available facilities for storing 233 U. The considerations for what fraction of the current inventory should be preserved for future use depend on several issues. First, 233 U always contains a small amount of the contaminant isotope 232 U. The decay products of 232 U are highly radioactive and require special handling. The current inventory has a variety of qualities with regard to 232 U content, ranging from 1 to about 200 ppm (on a total uranium basis). It is preferable to use 233 U with the minimum amount of 232 U in all applications. The second issue pertains to other isotopes of uranium mixed in with the 233 U, specifically 235 U and 238 U. A large portion of the inventory has a high quantity of 235 U associated with it. The presence of bulk amounts of 235 U complicates storage because of the added volume needing safeguards and criticality controls. Isotopic dilution using DU may remove safeguards and criticality concerns, but it increases the overall mass and may limit applications that depend on the fissile nature of 233 U. The third issue concerns the packaging of the material. There is no standard packaging (although one is being developed); consequently, the inventory exists in a variety of packages. For some

  2. The Tevalac: A national facility for relativistic heavy-ion research to 10 GeV per nucleon with uranium

    International Nuclear Information System (INIS)

    1982-12-01

    This preliminary proposal addresses forefront physics research through the end of this century. It presents the implications of recent theoretical insights gained from relativistic heavy-ion studies that have led physicists to believe that the densities and temperatures needed to deconfine quarks from hadrons can be reached with only a ten-fold increase in beam energy beyond that available in today's highest-energy heavy-ion accelerators. In addition, the proposal describes a variety of other new and enhanced experimental opportunities that will be opened up by such an increase in projectile energy. Also presented are an accelerator concept, called the Tevalac, that provides the requisite 10-GeV/nucleon uranium beams and a program for research and development necessary to ensure that the facility to be proposed at a later date is ready for construction and will fit within the national program. Relativistic heavy-ion experiments using 1--2-GeV/nucleon beams have already demonstrated that high temperatures (of the order of 100 MeV) and high densities (up to four times normal nuclear density) are reached in head-on projectile-target collisions. Theoretical predictions now indicate a high probability that, when large amounts of nuclear matter are raised to the extreme temperatures and densities obtainable in head-on heavy-ion collisions at Tevalac beam energies, the quarks that constitute the individual nucleons will be deconfined: they will no longer be bound within individual nucleons, and a state of matter never before observed on earth--the quark-gluon plasma--will be created briefly. The investigation of the quark-gluon plasma will lead to unprecedented scientific opportunities and will serve as a bridge between conventional nuclear physics, which studies complex systems of particles, and high-energy physics, which studies the most fundamental constituents of matter

  3. Recommendations to the NRC on acceptable standard format and content for the Fundamental Nuclear Material Control (FNMC) Plan required for low-enriched uranium enrichment facilities

    International Nuclear Information System (INIS)

    Moran, B.W.; Belew, W.L.; Hammond, G.A.; Brenner, L.M.

    1991-11-01

    A new section, 10 CFR 74.33, has been added to the material control and accounting (MC ampersand A) requirements of 10 CFR Part 74. This new section pertains to US Nuclear Regulatory Commission (NRC)-licensed uranium enrichment facilities that are authorized to produce and to possess more than one effective kilogram of special nuclear material (SNM) of low strategic significance. The new section is patterned after 10 CFR 74.31, which pertains to NRC licensees (other than production or utilization facilities licensed pursuant to 10 CFR Part 50 and 70 and waste disposal facilities) that are authorized to possess and use more than one effective kilogram of unencapsulated SNM of low strategic significance. Because enrichment facilities have the potential capability of producing SNM of moderate strategic significance and also strategic SNM, certain performance objectives and MC ampersand A system capabilities are required in 10 CFR 74.33 that are not contained in 10 CFR 74.31. This document recommends to the NRC information that the licensee or applicant should provide in the fundamental nuclear material control (FNMC) plan. This document also describes methods that should be acceptable for compliance with the general performance objectives. While this document is intended to cover various uranium enrichment technologies, the primary focus at this time is gas centrifuge and gaseous diffusion

  4. Uranium material removing and recovering device

    International Nuclear Information System (INIS)

    Takita, Shin-ichi.

    1997-01-01

    A uranium material removing and recovering device for use in removing surplus uranium heavy metal (UO 2 ) generated in a uranium handling facility comprises a uranium material removing device and a uranium material recovering device. The uranium material removing device comprises an adsorbing portion filled with a uranium adsorbent, a control portion for controlling the uranium adsorbent of the uranium adsorbing portion by a controlling agent, a uranium adsorbing device connected thereto and a jetting device for jetting the adsorbing liquid to equipments deposited with uranium. The recovering device comprises a recovering apparatus for recovering uranium materials deposited with the adsorbent liquid removed by the jetting device and a recovering tank for storing the recovered uranium materials. The device of the present invention can remove surplus uranium simply and safely, mitigate body's load upon removing and recovering operations, facilitate the processing for the exchange of the adsorbent and reduces the radioactive wastes. (T.M.)

  5. Risk management in environmental pollution: a case study of the uranium mining and milling facilities at Pocos de Caldas, Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Fernandes, H.M.; Prado, V.C.S.; Veiga, L.H.S.; Amaral, E.C.S.; Freitas, P.; Bidone, E.D.

    1993-01-01

    Environmental risk management concept was adapted to uranium mining and milling facilities at Pocos de Caldas, Minas Gerais, Brazil. Environmental radionuclide and metal concentration in surface waters, efficiency of the effluent treatment were evaluate. The data shows that the effluent treatment was effective to reduce pollutant releases in the environment but the benefit in the dose reduction may be questioned. In addition it's stressed the necessity of a metal exposure assessment due to vegetables consumption that has never been developed in that region. (B.C.A.). 07 refs, 02 figs, 02 tabs

  6. Guide to the conduct of public meetings as part of the public information process for uranium and thorium mine-mill facilities

    International Nuclear Information System (INIS)

    1980-01-01

    The Canadian Atomic Energy Control Board requires that an applicant for a site approval for a uranium or thorium mine-mill facility inform the public about the project and facilitate public response. For small undertakings, the information requirement may be met by a public meeting organized by the proponents of the project. This guide provides specific instructions on giving notice of the meeting, availability of documentation, choice of a chairperson, agenda, the roles of the proponents and the regulatory agencies, and means of obtaining feedback from the public. (L.L.)

  7. The value of a mature, stable, and transparent regulatory framework in facilitating ER programs lessons learned in decommissioning of uranium recovery and other facilities in the USA - 59411

    International Nuclear Information System (INIS)

    McConnell, Keith I.; Camper, Larry

    2012-01-01

    Document available in abstract form only. Full text of publication follows: The history of decommissioning activities in the United States has demonstrated the value of a mature, stable and transparent regulatory framework in facilitating the timely completion of environmental remediation. Two examples are given as case studies. The first example relates to the history of uranium concentrate (yellowcake) production in the U.S. to support the initial development of civilian nuclear power in the U.S. in the 1950's, 60's, 70's and 80's. This yellowcake production, which took place mostly in the western U.S., was undertaken before laws and regulations to prevent contamination and protect public health and safety were fully developed. Significant contamination occurred in terms of both surface and ground water contamination. Although most conventional mills producing uranium during these early years entered decommissioning in the 70's and 80's, the vast majority are still remediating their sites because of persistent contamination in ground water. Had an effective regulatory framework been in place, much of this contamination would have been prevented and remediation accomplished more effectively. In contrast to this experience, a second example is provided related to development of the regulatory framework for decommissioning of non-uranium recovery facilities in the U.S. in the late 1990's and early 2000's

  8. Integral measurements of lattice properties in the natural uranium-graphite critical facility Marius; Mesures globales de reseaux a graphite dans l'empilement critique marius

    Energy Technology Data Exchange (ETDEWEB)

    Cogne, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A systematic study of natural uranium-graphite lattices has been undertaken in the critical facility MARIUS, which was built in 1959 in Marcoule. Integral measurement of lattice properties are carried out by the progressive replacement method. This report describes the experimental methods, the analysis of the experiments and the results obtained for lattices with pitches ranging from 192 to 317 mm and fuel elements with cross sections ranging from 6 to 20 cm{sup 2}. The principles of correlation of the results are also outlined. Additional experimental results are also given, pertaining to the determination of the anisotropy, of both the axial and the radial migration areas, and of the age in graphite. (author) [French] L'empilement critique MARIUS, construit en 1959 a Marcoule, a ete utilise pour l'etude systematique des reseaux a graphite-uranium naturel. Les mesures globales de reseaux sont faites par la methode de remplacement progressif. On decrit ici les methodes experimentales utilisees pour ces mesures globales, les principes du depouillement et les resultats obtenus pour des pas de 192 a 317 mm et des combustibles de 6 a 20 cm{sup 2} d'uranium naturel. On donne d'autre part le principe de correlation des mesures. Un certain nombre de resultats experimentaux complementaires sont donnes, en permettant de determiner l'anisotropie, les aires de migration axiale et radiale, l'age dans le graphite. (auteur)

  9. Rupture of Model 48Y UF6 cylinder and release of uranium hexafluoride, Sequoyah Fuels Facility, Gore, Oklahoma, January 4, 1986. Volume 1

    International Nuclear Information System (INIS)

    1986-02-01

    At 11:30 a.m. on January 4, 1986, a Model 48Y UF 6 cylinder filled with uranium hexafluoride (UF 6 ) ruptured while it was being heated in a steam chest at the Sequoyah Fuels Conversion Facility near Gore, Oklahoma. One worker died because he inhaled hydrogen fluoride fumes, a reaction product of UF 6 and airborne moisture. Several other workers were injured by the fumes, but none seriously. Much of the facility complex and some offsite areas to the south were contaminated with hydrogen fluoride and a second reaction product, uranyl fluoride. The interval of release was approximately 40 minutes. The cylinder, which had been overfilled, ruptured while it was being heated because of the expansion of UF 6 as it changed from the solid to the liquid phase. The maximum safe capacity for the cylinder is 27,560 pounds of product. Evidence indicates that it was filled with an amount exceeding this limit. 18 figs

  10. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Science.gov (United States)

    2010-01-01

    ... and special nuclear material in the accounting records are based on measured values; (3) A measurement... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for uranium... Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  11. Development of the Falea polymetallic uranium project

    International Nuclear Information System (INIS)

    Ring, R.; Freeman, P.

    2014-01-01

    The Falea uranium, silver, copper deposit is located in south western Mali, West Africa and is owned by Denison Mines Corp. The current resource estimate is approximately 45 million pounds of U_3O_8 [~17,300 t U] at an average grade of ~ 0.07% U_3O_8. [~0.06% U].The deposit also contains ~37 million Oz Ag and ~70,000 t Cu. The dominant uranium mineral is uraninite, copper is present mainly as chalcopyrite and silver mainly as argentite, and in its native form. Only 5% of the property has been explored to date, and all zones remain open. This paper reports the results of several stages of metallurgical investigations to support ongoing economic studies for the project. The polymetallic nature of the Falea deposit dictates that there are a range of flowsheet options. The ore contains both carbonate and sulphide mineralisations, which have potential impacts on acid and alkaline leaching, respectively. There is also the need to recover both silver and copper. Two primary flowsheet options were considered: 1) Acid leach of ore to recover uranium / flotation of leach residue to recover sulphide concentrate, treatment of concentrate for Cu and Ag recovery; 2) Flotation of ore / alkaline leaching of flotation tails to recover uranium and treatment of flotation concentrate for Cu and Ag recovery. A number of sub-options were considered for each flowsheet. Test work showed that high recoveries of copper and silver to flotation concentrate were obtained for both flotation of ore or acid leach residue. Uranium extraction was also > 90% for both acid and alkaline leaching. The preferred flowsheet was selected after trade-off studies by DRA. This paper presents an overview of the various flowsheet options considered, an outline of the preferred flowsheet, and the results and conclusions of on-going engineering and laboratory/pilot studies to refine the preferred flowsheet. (author)

  12. Physical characteristics and solubility of long-lived airborne particulates in uranium producing and manufacturing facilities Phase IV - Part III

    International Nuclear Information System (INIS)

    Robertson, R.; Stuart, D.C.

    1995-08-01

    The rates of dissolution in simulated lung fluid of uranium, thorium-230, radium-226 and lead-210 from six aerosol samples associated with mining operations at Cluff Lake, Saskatchewan were determined. Parallel studies were carried out for uranium aerosol samples collected directly on open-face filters at the Port Hope refinery and from four aerosol samples generated in the laboratory from yellowcake dusts obtained from the Blind River mill in Ontario. Bulk dusts were collected from surfaces in workplace locations. These dusts were resuspended in the laboratory and collected on glass fibre substrates using cascade impactor sampling methods. Two particle size fractions, less than 7 microns and 7-10 microns were collected. In all, 18 samples were subjected to parallel extractions by simulated lung fluid under continuous flow, at 37 deg C at pH 7.4, over a period of 66 days. For each extraction, 10 lung fluid fractions were collected at predetermined intervals and analyzed for uranium to estimate uranium dissolution rates as a function of time. For the Cluff Lake ore dust samples, analyses and dissolution rates estimates for thorium-230, radium-226 and lead-210 were also performed. The samples taken from Cluff Lake were found to be relatively insoluble. Uranium dissolution rates of about 20% were measured over 66 days. No measurable Th-228 dissolution was found during the experiments. Ra-226 and Pb-210 were most soluble as a fine particulate (less than 7 μm), with complete dissolution for some samples. Aerosol samples from Blind River and Port Hope were more readily soluble (complete dissolution over 66 days). The Blind River aerosols dissolved more slowly than the Port Hope aerosols. In both cases, the majority of the dissolution occurred within the first week. There was no effect of particle size on dissolution rate. (author). 12 refs., 6 tabs., 1 fig

  13. Physical characteristics and solubility of long-lived airborne particulates in uranium producing and manufacturing facilities. Phase III - Part II

    International Nuclear Information System (INIS)

    Robertson, R.; Stuart, D.C.; Stothers, M.A.

    1995-08-01

    The rates of dissolution in simulated lung fluid of uranium from aerosols associated with various stages of the yellowcake manufacturing process have been studied. Dusts were collected from eight workplace locations. Each dust sample was resuspended in the laboratory and collected on glass fibre substrates using cascade impactor sampling methods. The two particle size fractions collected were less than 7 microns and 10-7 microns. Each sample was prepared in duplicate. In all, 32 aerosol samples were prepared for solubility extraction studies. The aerosol-bearing filters were subjected to parallel extractions by simulated lung fluid under continuous flow, at 37 deg C at pH 7.4, over a period of 68.5 days. Ten lung fluid fractions were collected at predetermined time intervals and analyzed to allow estimates of uranium dissolution rates as a function of time. After completion of the 68.5 day simulated lung fluid extraction, the residual samples were subjected to a more aggressive nitric acid extraction for 48 hours. The fraction of uranium dissolved over the first 12 hours varied from 27% to 98% for seven of the eight yellowcake samples. For these yellowcake samples, the fractions of uranium dissolved over the first 36 hours and over the full 68.5 days ranged from 49% to 99% and 80% to 100% respectively. The eighth sample was a calcined yellowcake. The rate of dissolution for the calcined yellowcake was less than 4.5% over the first 12 hours and less than 10% over 68.5 days. No influence of particle size on the rate of dissolution was found. Most of the uranium was dissolved by the simulated lung fluid for seven of the eight yellowcake samples. As a result, the nitric acid extraction of the residual samples had little effect on these seven samples. The nitric acid extraction of the calcined sample, which was found to be relatively insoluble in simulated lung fluid, dissolved a further 21% to 36.1% of the uranium. (author). 9 refs., 6 tabs., 1 fig

  14. 77 FR 14837 - Bioassay at Uranium Mills

    Science.gov (United States)

    2012-03-13

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0057] Bioassay at Uranium Mills AGENCY: Nuclear Regulatory..., ``Bioassay at Uranium Mills.'' This guide describes a bioassay program acceptable to the NRC staff for uranium mills and applicable portions of uranium conversion facilities where the possibility of exposure...

  15. Uranium extraction history using pressure leaching

    International Nuclear Information System (INIS)

    Fraser, K.S.; Thomas, K.G.

    2010-01-01

    Over the past 60 years of uranium process development only a few commercial uranium plants have adopted a pressure leaching process in their flowsheet. The selection of acid versus alkaline pressure leaching is related to the uranium and gangue mineralogy. Tetravalent (U"+"4) uranium has to be oxidized to hexavalent (U"+"6) uranium to be soluble. Refractory tetravalent uranium requires higher temperature and pressure, as practised in pressure leaching, for conversation to soluble hexavalent uranium. This paper chronicles the history of these uranium pressure leaching facilities over the past 60 years, with specific details of each design and operation. (author)

  16. Physical characteristics and solubility of long-lived airborne particulates in uranium producing and manufacturing facilities. Phase III - Part I

    International Nuclear Information System (INIS)

    Robertson, R.

    1995-08-01

    The rates of dissolution in simulated lung fluid of uranium and radium-226 from aerosols associated with various operations at a mill in the Elliot Lake area of Ontario have been studied. Dust samples were collected from seven workplace locations. Each dust sample was re-suspended in the laboratory and sampled by a cascade impactor. The four particle size ranges were: 10-7 micron, 7-3 micron, 3-1 micron and less than 1 micron. In all, 28 aerosol samples were collected on cascade impactor substrates. For each dust sample, the two largest particle size fractions were combined into a single sample for extraction by simulated lung fluid. Similarly, the two smaller particle size fractions were combined. In all, 14 combined aerosol samples and a blank filter were subjected to parallel extractions by simulated lung fluid under continuous flow, at 37 deg C at pH 7.4, over a period of 63.5 days. For each aerosol sample, eight lung fluid fractions were collected at pre-determined intervals and analyzed to allow estimates of the rates of dissolution of uranium and radium-226 as a function of time. The total uranium dissolution for the dust samples taken from the yellowcake operations ranged from 22.7% to 55.3%. The other samples indicated a total uranium dissolution ranging from 6.7% to 41.4%. The dissolution rates for radium-226 in the ore-related aerosols ranged from 2.6% to 4.7%. (author). 8 refs., 6 tabs., 1 fig

  17. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  18. Remediation and upgrading of old, inadequate waste management facilities. Integrated waste management system for rare earth and rare metal industry at Sillamaee, Estonia, former uranium facility

    International Nuclear Information System (INIS)

    Kaasik, Tonis; Siinmaa, Anti

    2001-01-01

    Full text: The Sillamaee Metallurgical Plant was built in 1946-1948 at Sillamaee, in North-East Estonia, ca 190 km from Tallinn. Target product was uranium, mostly in form of yellow cake (U 3 O 8 ) for Soviet nuclear program. Uranium ore processing continued from 1948 to 1977, totally 4,013,000 tons of uranium ore were processed at Sillamaee plant. In early 1970s the plant introduced a new production line - rare earth elements. Rare earths were until 1991 produced from loparite (later from semi-processed loparite) - rare earths, niobium, tantalum and NORM-containing ore for Kola peninsula, Russia; later. All wastes were, as typical to hydrometallurgical processing all over the world, discharged to a large, 40 ha liquid waste depository - tailings pond, what in Sillamaee case was designed to discharge all liquid constituents slowly to the Baltic Sea. All uranium related activities were stopped in 1990, when only rare earth and rare metal production lines remained operational. The plant was 100 % privatized in 1997 and is today operated by Silmet Ltd., processing annually up to 8 000 tons of rare earth and 2000 tons of niobium and tantalum ores. Like all industries, inherited from Soviet times, Silmet plant is today facing a serious challenge to upgrading technologies towards waste minimizations process efficiency. The historical tailings pond, containing ca 1800 tons of natural uranium and ca 800 tons of thorium, was found geotechnically unstable and leaking to the Baltic Sea, in mid 90s. Being a problem of common Baltic concern, an international remediation project was initiated by Estonian Government and plant operator in 1998. In cooperation with Estonian, Finnish, Swedish, Danish and Norwegian Governments and with assistance by the European Union, the tailings pond will be environmentally remediated - dams stabilized and surface covered, by end of 2006. Close-down and environmental remediation of the tailings pond provides plant an ultimate challenge of

  19. Benchmark calculations for critical experiments at FKBN-M facility with uranium-plutonium-polyethylene systems using JENDL-3.2 and MVP Monte-Carlo code

    International Nuclear Information System (INIS)

    Obara, Toru; Morozov, A.G.; Kevrolev, V.V.; Kuznetsov, V.V.; Treschalin, S.A.; Lukin, A.V.; Terekhin, V.A.; Sokolov, Yu.A.; Kravchenko, V.G.

    2000-01-01

    Benchmark calculations were performed for critical experiments at FKBN-M facility in RFNC-VNIITF, Russia using JENDL-3.2 nuclear data library and continuous energy Monte-Carlo code MVP. The fissile materials were high-enriched uranium and plutonium. Polyethylene was used as moderator. The neutron spectrum was changed by changing the geometry. Calculation results by MVP showed some errors. Discussion was made by reaction rates and η values obtained by MVP. It showed the possibility that cross sections of U-235 had different trend of error in fast and thermal energy region respectively. It also showed the possibility of some error of cross section of Pu-239 in high energy region. (author)

  20. Utilization of BSS-Safety Series 115 in facilities for mining ore with uranium and thorium associated to it

    International Nuclear Information System (INIS)

    Matta, Luiz Ernesto S. de C.; Ferreira, Paulo R. Rocha; Mouco, Charles D. do C.L.

    1999-01-01

    During the year of 1995, the Brazilian Nuclear Energy Commission, started a investigation program called Mining Project. The main objective of this program was to create a integrated study of environmental and occupational conditions of mining ores with uranium and thorium associated to it. Several technical visits were done at four different types of mines: coal, phosphate, niobium and gold. This work presents the area monitoring results obtained by the occupational radiation protection group. The data found in these inspections were compared to limits established by national rules. A special assessment of the data obtained was done for a future adoption of the BSS-Safety Series 115 recommendations. (author)

  1. The mortality and cancer morbidity experience of workers at the Springfields uranium production facility, 1946-95

    International Nuclear Information System (INIS)

    McGeoghegan, D.; Binks, K.

    2000-01-01

    The results presented here are from the follow-up of the cohort of workers ever employed at the Springfields site of British Nuclear Fuels plc (BNFL) between 1946 and 1995. The main activity of the site is uranium fuel fabrication and uranium hexafluoride production. The study cohort consists of 19 454 current and former employees, 13 960 of which were classified as radiation workers, and contains 479 146 person-years of follow-up. The mean follow-up period is 24.6 years. To the end of 1995 there have been 4832 deaths recorded for this cohort, 3476 of which were amongst radiation workers and 1356 were amongst non-radiation workers. The standardised mortality ratios (SMRs) for all causes were 84 and 98 for radiation workers and non-radiation workers respectively. For all cancers the SMRs were 86 and 96 respectively. For cancer morbidity the standardised registration ratios (SRRs) for all cancers were 81 and 81 respectively. Significant associations were noted for both mortality and morbidity due to Hodgkin's disease and cumulative external dose. A strong association was also noted for morbidity, but not mortality, due to non-Hodgkin's lymphoma. These associations, however, are unlikely to be causal. The excess relative risk estimates for cancer other than leukaemia and for leukaemia excluding chronic lymphatic leukaemia are consistent with other occupationally exposed cohorts and estimates from the high-dose studies. (author)

  2. Uranium production from phosphates

    International Nuclear Information System (INIS)

    Ketzinel, Z.; Folkman, Y.

    1979-05-01

    According to estimates of the world's uranium consumption, exploitation of most rich sources is expected by the 1980's. Forecasts show that the rate of uranium consumption will increase towards the end of the century. It is therefore desirable to exploit poor sources not yet in use. In the near future, the most reasonable source for developing uranium is phosphate rock. Uranium reserves in phosphates are estimated at a few million tons. Production of uranium from phosphates is as a by-product of phosphate rock processing and phosphoric acid production; it will then be possible to save the costs incurred in crushing and dissolving the rock when calculating uranium production costs. Estimates show that the U.S. wastes about 3,000 tons of uranium per annum in phosphoric acid based fertilisers. Studies have also been carried out in France, Yugoslavia and India. In Israel, during the 1950's, a small plant was operated in Haifa by 'Chemical and Phosphates'. Uranium processes have also been developed by linking with the extraction processes at Arad. Currently there is almost no activity on this subject because there are no large phosphoric acid plants which would enable production to take place on a reasonable scale. Discussions are taking place about the installation of a plant for phosphoric acid production utilising the 'wet process', producing 200 to 250,000 tons P 2 O 5 per annum. It is necessary to combine these facilities with uranium production plant. (author)

  3. Water quality and toxicity of river water downstream of the uranium mining facility at Pocos de Caldas, MG, Brazil

    International Nuclear Information System (INIS)

    Lauria, Dejanira C.; Vascocnellos, Luisa M.H.; Simoes, Francisco F. Lamego; Clain, Almir F.; Scassiotti, Walter F.; Antunes, Ivan; Ferreira, Ana M.; Nascimento, Marcos R.L.

    2009-01-01

    The uranium mining site of Pocos de Caldas consists of open mine pit, tailings, waste rock dumps and an acid rock drainage problem, which has the potential to impact upon freshwater of the Ribeirao das Antas catchment. The high level of manganese (value of 1.8 mg/L) contained in the discharge water (DW) is an important factor affecting the water quality of the river (water quality criterion for aquatic life for Mn is 0.1 mg/L). Water quality criteria (WQC) are used for regulatory purpose and intended to define concentrations of chemicals in water that are protective of aquatic life and human health. WQC is a standard, although it is recognized that in some instances these criteria may be overprotective as metal bioavailability and hence toxicity is dependent on water chemistry. The toxicity assessment of WD was performed by bioassays with Daphnia similis and Ceriodaphnia dubia as bioindicators. As DW showed no toxicity to the organisms and the chemical analysis and dose assessments pointed U and Mn as the most important metals for water toxicity, the U and Mn toxicities were evaluated in the DW spiked with U and Mn. Acute uranium toxicity (48 h immobilisation test) for Daphnia similis was determined as a LC50 value (concentration that is toxic to 50% of test organisms) around 0.05-0.06 mg/L, value close to the one found for effects on reproduction, a 7 day LOEC (lowest observed effect concentration) of 0.062 mg/L for Ceriodaphnia dubia. The value of NOEC (no-observed effect concentration) for U was 0.03 mg U/L, which is higher than the concentration corresponded to the authorized dose limit for 238 U (0.004 mg/L) and higher than the uranium WQC (0.02 mg U/L). The manganese concentration in the DW is lower than the found value of LC50 (11.5 mg/L), LOEC (10 mg/L) and NOEC (5 mg Mn/L). (author)

  4. Sensitivity analysis of high resolution gamma-ray detection for safeguards monitoring at natural uranium conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Dewji, S.A., E-mail: dewjisa@ornl.gov [Oak Ridge National Laboratory, PO Box 2008 MS-6335, Oak Ridge TN 37831 (United States); Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States); Croft, S. [Oak Ridge National Laboratory, PO Box 2008 MS-6335, Oak Ridge TN 37831 (United States); Hertel, N.E. [Oak Ridge National Laboratory, PO Box 2008 MS-6335, Oak Ridge TN 37831 (United States); Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States)

    2017-03-11

    Under the policies proposed by recent International Atomic Energy Agency (IAEA) circulars and policy papers, implementation of safeguards exists when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed in previous work to develop and validate gamma-ray nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO{sub 2}(NO{sub 3}){sub 2}) solution exiting solvent extraction was identified as a key measurement point (KMP). Passive nondestructive assay techniques using high resolution gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely manner. Building upon the aforementioned previous validation work on detector sensitivity to varying concentrations of uranyl nitrate via a series of dilution measurements, this work investigates detector response parameter sensitivities to gamma-ray signatures of uranyl nitrate. The full energy peak efficiency of a detection system is dependent upon the sample, geometry, absorption, and intrinsic efficiency parameters. Perturbation of these parameters translates into corresponding variations of the 185.7 keV peak area of the {sup 235}U in uranyl nitrate. Such perturbations in the assayed signature impact the quality or versatility of the safeguards conclusions drawn. Given the potentially high throughput of uranyl nitrate in NUCPs, the ability to assay 1 SQ of material requires

  5. Characterization of the geochemical processes present in the radionuclides and metals mobilization in the tailing dam at the Uranium Mining and Milling Facilities - Pocos de Caldas, MG, Brazil

    International Nuclear Information System (INIS)

    Pinto, Patricia Freitas

    1995-08-01

    In Brazil, the first step of nuclear fuel cycle - the mining and milling of the uranium ore - is developed at the Uranium Mining and Milling Facilities of Pocos de Caldas, Minas Gerais state. The wastes management is a very important aspect of the process. The understanding of the geochemical processes that occur in the tailings dam is a key question to define a plan of action concerning the decommissioning strategy of the facility. The objective of the present work was to give some issues to help in the adoption of the remedial actions concerning the decommissioning of the facility. It focused on the characterization of the most important geochemical processes regulating the mobilization of radionuclides and heavy metals in the tailings dam. Two cores from the tailings dam (uncovered area) were collected. Seepage and drainage waters were sampled, the same being true for the tailings dam lake. Groundwater form an aquifer bellow the tailings dam and superficial waters from a river that receives the effluents of the dam (Soberbo River) were also sampled. Data from the mining company were used to calculate the inventory of radionuclides and heavy metals deposited in the waste dam.The obtained results showed that pyrite oxidation is the key process in the mobilization of radionuclides and heavy metals from the wastes. Pyrite oxidation is a process regulated by oxygen diffusion and water. In the studied scenario it could be shown that the process was limited to a one meter deep layer in the uncovered part of the waste dam. Because of this, Fe, Al, Mn, Zn, Th and 238 U showed higher concentrations in the bottom layers of the cores in relation to the upper ones. 226 Ra and 210 Pb showed opposite patterns. The coprecipitation with Ca SO 4 was the most relevant mechanism in both radionuclides immobilization in the wastes. Sulfate was the only chemical species that could be assigned as a contaminant in aquifer bellow the waste dam. As a conclusion, the target environmental

  6. Decommissioning of uranium pilot plants at IPEN-CNEN/SP: Facilities dismantling, decontamination and reuse as new laboratories for strategic programs

    International Nuclear Information System (INIS)

    Oliveira Lainetti, P.; Freitas, A.; Cotrim, M.; Pires, M.

    2014-01-01

    Radical changes of the Brazilian nuclear policy, in the beginning of 1990s, determined the interruption of most nuclear fuel cycle activities and the facilities shutdown at IPEN. Those facilities had already played their roles of technological development and personnel's training, with transfer of the technology for institutions entrusted of the ''scale up'' of the units. Most of the pilot plants interrupted the activities more than ten years ago, due to the lack of resources for the continuity of the research. The appropriate facilities maintenance had been also harmed by the lack of resources, with evident signs of deterioration in structures and equipment. The existence of those facilities also implicated in the need of constant surveillance, representing additional obligations, costs and problems. It should be emphasized that one of the most concerning aspects, with relationship to the future of the facilities and the postponement of the dismantling, was the loss of the experience accumulated by the personnel that set up and operated the referred units. Besides the mentioned aspects, other reasons to promote the dismantling of the IPEN´s Nuclear Fuel Cycle Pilot Plants elapsed mainly from the need of physical space for new activities, since the R in the nuclear fuel cycle area were interrupted. In the last decade IPEN has changed its “nuclear profile” to a “comprehensive and multidisciplinary profile”. During this period, IPEN has been restructured in 13 Research Centers. With the end of most nuclear fuel cycle activities, the former facilities were distributed in four different centers: Environmental and Chemical Technology Center; Fuel Cell Center; Materials Science and Engineering Center; Nuclear Fuel Center. Each center has adopted a different strategy and priority to face the R problem and to reintegrate the areas. The resources available depend on the specific program developed in each area (resources available from other sources, not only CNEN

  7. Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility

    Energy Technology Data Exchange (ETDEWEB)

    Penrod, S.R. [Martin Marietta Energy Systems, Inc., KY (United States)

    1991-12-31

    This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}. Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

  8. Implementation of conduct of operations at Paducah uranium hexafluoride (UF{sub 6}) sampling and transfer facility

    Energy Technology Data Exchange (ETDEWEB)

    Penrod, S.R. [Martin Marietta Energy Systems, Inc., KY (United States)

    1991-12-31

    This paper describes the initial planning and actual field activities associated with the implementation of {open_quotes}Conduct of Operations{close_quotes}, Conduct of Operations is an operating philosophy that was developed through the Institute of Nuclear Power Operations (INPO). Conduct of Operations covers many operating practices and is intended to provide formality and discipline to all aspects of plant operation. The implementation of these operating principles at the UF{sub 6} Sampling and Transfer Facility resulted in significant improvements in facility operations.

  9. Uranium hexafluoride purification

    International Nuclear Information System (INIS)

    Araujo, Eneas F. de

    1986-01-01

    Uranium hexafluoride might contain a large amount of impurities after manufacturing or handling. Three usual methods of purification of uranium hexafluoride were presented: selective sorption, sublimation, and distillation. Since uranium hexafluoride usually is contaminated with hydrogen fluoride, a theoretical study of the phase equilibrium properties was performed for the binary system UF 6 -HF. A large deviation from the ideal solution behaviour was observed. A purification unity based on a constant reflux batch distillation process was developed. A procedure was established in order to design the re boiler, condenser and packed columns for the UF 6 -HF mixture separation. A bench scale facility for fractional distillation of uranium hexafluoride was described. Basic operations for that facility and results extracted from several batches were discussed. (author)

  10. Depleted uranium

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2001-02-01

    This document deals with the physical, chemical and radiological properties of the depleted uranium. What is the depleted uranium? Why do the military use depleted uranium and what are the risk for the health? (A.L.B.)

  11. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.

    Energy Technology Data Exchange (ETDEWEB)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

  12. Uranium retrieval support, storage, and marketing

    International Nuclear Information System (INIS)

    Jackson, J.D.; Marshall, E.M.

    2001-01-01

    The United States Department of Energy is implementing a stewardship approach to management of uranium assets. This life-cycle approach to managing uranium addresses current needs in the context of a long-term strategy. In June 1998, the United States Department of Energy established the Uranium Management Group. The mission of the UMG is to safely collect and store commercially viable uranium from various DOE facilities at a central location. The Oak Ridge Operations Office, in Oak Ridge, Tennessee, was given the task to establish a facility for the storage of these uranium materials. Materials collected are non-waste uranium and packaged to allow transport and long-term storage. Coordination of uranium management under the Uranium Management Group offers significant opportunities for sayings through improved planning and efficiency and creates an environmentally sound approach for the storage and reuse of excess uranium. (author)

  13. Uranium retrieval support, storage, and marketing

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J.D.; Marshall, E.M. [U.S. Department of Energy, Oak Ridge, Tennessee (United States)

    2001-07-01

    The United States Department of Energy is implementing a stewardship approach to management of uranium assets. This life-cycle approach to managing uranium addresses current needs in the context of a long-term strategy. In June 1998, the United States Department of Energy established the Uranium Management Group. The mission of the UMG is to safely collect and store commercially viable uranium from various DOE facilities at a central location. The Oak Ridge Operations Office, in Oak Ridge, Tennessee, was given the task to establish a facility for the storage of these uranium materials. Materials collected are non-waste uranium and packaged to allow transport and long-term storage. Coordination of uranium management under the Uranium Management Group offers significant opportunities for sayings through improved planning and efficiency and creates an environmentally sound approach for the storage and reuse of excess uranium. (author)

  14. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Casey Durst

    2009-10-01

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a

  15. Methods for storage and disposal of residues from wastewater treatment of former uranium mining and milling facilities in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Larue, J; Weiss, D [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Berlin (Germany); Kiessig, G [WISMUTGmbH, Chemnitz (Germany)

    2002-02-01

    In connection with the flooding of uranium mines in Saxony and Thuringia, there are contaminated pit waters that must be purified before discharge into surface waters. The expected duration of the water purification process until concentrations of natural radionuclides, various heavy metals and arsenic are low enough to allow direct discharge into surface waters amounts to decades . To prevent or minimize the leaching of the contaminants from the sludge of the water treatment in the long term, the contaminants are either transformed into chemical compounds of low solubility or affixed within ion exchange resins. Due to the accumulation of those contaminants during the water processing procedure, the residua must be disposed of for reasons of radiation protection and waste management. A final storage of the residua in accord with nuclear regulatory stipulations is unnecessary because of the contamination levels and also because of the mining origin. The method of residua-storage chosen to be best suited to a particular site has to be based on costs-to-benefit analyses, giving due consideration to the different aspects e.g. radiation and environmental protection, long term safety, form of immobilization, site specific conditions. These methods will be described and illustrated using specific examples of applications. (author)

  16. Methods for storage and disposal of residues from wastewater treatment of former uranium mining and milling facilities in Germany

    International Nuclear Information System (INIS)

    Larue, J.; Weiss, D.; Kiessig, G.

    2002-01-01

    In connection with the flooding of uranium mines in Saxony and Thuringia, there are contaminated pit waters that must be purified before discharge into surface waters. The expected duration of the water purification process until concentrations of natural radionuclides, various heavy metals and arsenic are low enough to allow direct discharge into surface waters amounts to decades . To prevent or minimize the leaching of the contaminants from the sludge of the water treatment in the long term, the contaminants are either transformed into chemical compounds of low solubility or affixed within ion exchange resins. Due to the accumulation of those contaminants during the water processing procedure, the residua must be disposed of for reasons of radiation protection and waste management. A final storage of the residua in accord with nuclear regulatory stipulations is unnecessary because of the contamination levels and also because of the mining origin. The method of residua-storage chosen to be best suited to a particular site has to be based on costs-to-benefit analyses, giving due consideration to the different aspects e.g. radiation and environmental protection, long term safety, form of immobilization, site specific conditions. These methods will be described and illustrated using specific examples of applications. (author)

  17. Licensed fuel facility status report

    International Nuclear Information System (INIS)

    1990-04-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related NRC investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  18. Licensed fuel facility status report

    International Nuclear Information System (INIS)

    Joy, D.; Brown, C.

    1993-04-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related NRC investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  19. Control of uranium hazards - Portsmouth uranium enrichment plant

    International Nuclear Information System (INIS)

    Wagner, E.R.

    1985-01-01

    This report summarizes the Environmental, Safety and Health programs to control uranium hazards at the Portsmouth Gaseous Diffusion Plant. A description of the physical plant, the facility processes and the attendant uranium flows and effluents are provided. The hazards of uranium are discussed and the control systems are outlined. Finally, the monitoring programs are described and summaries of recent data are provided. 11 figs., 20 tabs

  20. Uranium industry annual 1993

    International Nuclear Information System (INIS)

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U 3 O 8 (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U 3 O 8 (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world's largest producer in 1993 with an output of 23.9 million pounds U 3 O 8 (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market

  1. Uranium industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  2. Uranium Determination in Samples from Decommissioning of Nuclear facilities Related to the First Stage of Nuclear Fuel Cycle; Determinacion de Uranio en Muestras Procedentes del Desmantelamiento de Instalaciones de la Primera Parte del Cielo del Combustible Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A; Correa, E; Navarro, N; Sancho, C [Ciemat, Madrid (Spain); Angeles, A

    2000-07-01

    An adequate workplace monitoring must be carried out during the decommissioning activities, to ensure the protection of workers involved in these tasks. In addition, a large amount of waste materials are generated during the decommissioning of nuclear facilities. Clearance levels are established by regulatory authorities and are normally quite low. The determination of those activity concentration levels become more difficult when it is necessary to quantify alpha emitters such as uranium, especially when complex matrices are involved. Several methods for uranium determination in samples obtained during the decommissioning of a facility related to the first stage of the nuclear fuel cycle are presented in this work. Measurements were carried out by laboratory techniques. In situ gamma spectrometry was also used to perform measurements on site. A comparison among the different techniques was also done by analysing the results obtained in some practical applications. (Author)

  3. Uranium exploration

    International Nuclear Information System (INIS)

    De Voto, R.H.

    1984-01-01

    This paper is a review of the methodology and technology that are currently being used in varying degrees in uranium exploration activities worldwide. Since uranium is ubiquitous and occurs in trace amounts (0.2 to 5 ppm) in virtually all rocks of the crust of the earth, exploration for uranium is essentially the search of geologic environments in which geologic processes have produced unusual concentrations of uranium. Since the level of concentration of uranium of economic interest is dependent on the present and future price of uranium, it is appropriate here to review briefly the economic realities of uranium-fueled power generation. (author)

  4. Uranium mill tailings management

    International Nuclear Information System (INIS)

    1982-01-01

    Facilities for the disposal of uranium mill tailings will invariably be subjected to geomorphological and climatological influences in the long-term. Proceedings of a workshop discuss how the principles of geomorphology can be applied to the siting, design, construction, decommissioning and rehabilitation of disposal facilities in order to provide for long-term containment and stability of tailings. The characteristics of tailings and their behaviour after disposal influence the potential impacts which might occur in the long-term. Proceedings of another workshop examine the technologies for uranium ore processing and tailings conditioning with a view to identifying improvements that could be made in such characteristics

  5. Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Portsmouth, Ohio,site

    International Nuclear Information System (INIS)

    Van Lonkhuyzen, R.

    2005-01-01

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF 6 ) Management Program evaluated alternatives for managing its inventory of DUF 6 and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF 6 PEIS) in April 1999 (DOE 1999). The DUF 6 inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF 6 PEIS, DOE stated its decision to promptly convert the DUF 6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF 6 conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF 6 cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Portsmouth site. The Indiana bat is known to occur in the area of the Portsmouth site and may potentially occur on the site during spring or summer. Evaluations of the Portsmouth site indicated that most of the site was found to have poor summer habitat for the Indiana bat because of the small size, isolation, and insufficient maturity of the few woodlands on the site. Potential summer habitat for the Indiana bat was identified outside the developed area bounded by Perimeter Road, within the corridors

  6. US uranium market developments

    International Nuclear Information System (INIS)

    Krusiewski, S.V.; Patterson, J.A.

    1980-01-01

    Domestic uranium delivery commitments have risen significantly since January 1979, with the bulk of deliveries scheduled after 1990. Much of the long-term procurement will be obtained from captive production. However, buyers have adjusted their delivery schedules in the near term, deferring some procurement to later years, including a portion of planned captive production. Under current commitments, US imports of foreign uranium in the 1981 to 1985 period will be greater than our exports of domestic uranium. The anticipated supply of domestic uranium through 1985 is clearly more than adequate to fill the probable US demand in the meantime, uranium producers are continuing their efforts to increase future domestic supply by their considerable investments in new or expanded mine and mill facilities. Since January 1980, average contract prices including market-price settlements, for 1980 uranium deliveries have increased slightly, but average market-price settlements made this year have decreased by several dollars. While the general trend of US uranium prices has been upward since we began reporting price data in 1973, some reductions in average prices for future deliveries appeared in 1980. The softening of prices for new procurement can be expected to be increasingly apparent in future surveys

  7. Wetland assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Portsmouth, Ohio, site

    International Nuclear Information System (INIS)

    Van Lonkhuyzen, R.

    2005-01-01

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF 6 ) Management Program evaluated alternatives for managing its inventory of DUF 6 and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF 6 PEIS) in April 1999 (DOE 1999). The DUF 6 inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF 6 PEIS, DOE stated its decision to promptly convert the DUF 6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF 6 conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF 6 cylinders stored at ETTP to the Portsmouth site for conversion. This wetland assessment has been prepared by DOE, pursuant to Executive Order 11990 (''Protection of Wetlands'') and DOE regulations for implementing this Executive Order as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [Compliance with Floodplain and Wetland Environmental Review Requirements]), to evaluate potential impacts to wetlands from the construction and operation of a conversion facility at the DOE Portsmouth site. Approximately 0.02 acre (0.009 ha) of a 0.08-acre (0.03-ha) palustrine emergent wetland would likely be eliminated by direct placement of fill material during facility construction at Location A. Portions of this wetland that are not filled may be indirectly affected by an altered hydrologic regime because of the

  8. Uranium Task Force final report

    International Nuclear Information System (INIS)

    1991-03-01

    Site-specific data on the management of uranium of 17 facilities have been assembled and analyzed to develop a comprehensive report on uranium processes, treatment, storage, and disposal on a Department of Energy-wide basis. By integrating a variety of waste generation sources, treatment processes, storage facilities, and disposal options, this waste management system study aims to effectively characterize and evaluate the performance and effectiveness of the total Department of Energy system for the management of uranium, as well as the individual sites. 7 refs., 7 figs., 2 tabs

  9. Uranium and environment in Kazakstan

    International Nuclear Information System (INIS)

    Fyodorov, G.; Bayadilov, E.; Zhelnov, V.; Akhmetov, M.; Abakumov, A.

    1997-01-01

    Kazakstan's data on uranium as a state report has been included for the first time in the Red Book. Therefore the report contains two large themes presented in Suggested Topics for Papers: Country report, based on the 1995 NEA/IAEA Red Book Questionnaire and environmental impact regulations. Kazakstan is considered as one of the world leaders on uranium supply. In Kazakstan there are many well known types of deposits but the main one is the sandstone-rollfront type. That type is represented by the group of deposits of the Syr-Darya uranium ore province. Deposits of that type include that main part of uranium ore of the Republic of Kazakstan and supply almost all of its uranium mining. At the large three enterprises the uranium is extracted by underground leaching. The mining method of uranium extraction is stopped. Because of the poor development of nuclear energy, Kazakstan's need for uranium is not very high. Presence of a large amount of cheap and technological uranium ores allow the Republic to export uranium. There are plans to increase uranium mining and perhaps to establish new mining facilities including joint-ventures. More than 50 uranium deposits are known in Kazakstan. During prospecting and exploitation of these deposits a large amount of rad wastes in the form of ore dumps and tailings were generated. They have a substantial influence on the environment. Moreover, near the sandstone-rollfront type uranium deposits the large amount of underground water has been contaminated by radionuclides. Special investigation of this phenomenon is necessary. In Kazakstan there are the rad waste disposal conception and contaminated earth recultivation regulations. At present ''The Rad Wastes Management Law'' is submitted for approval. (author). 2 figs

  10. Uranium Conversion & Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U3O8 yellowcake into UF6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.

  11. Uranium conversion wastes

    International Nuclear Information System (INIS)

    Vicente, R.; Dellamano, J.C.

    1989-12-01

    A set of mathematical equations was developed and used to estimate the radiological significance of each radionuclide potentially present in the uranium refining industry effluents. The equations described the evolution in time of the radionuclides activities in the uranium fuel cycle, from mining and milling, through the yellowcake, till the conversion effluents. Some radionuclides that are not usually monitored in conversion effluents (e.g. Pa-231 and Ac-227) were found to be potentially relevant from the radiological point of view in conversion facilities, and are certainly relevant in mining and milling industry, at least in a few waste streams. (author) [pt

  12. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    Energy Technology Data Exchange (ETDEWEB)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year

  13. Use of Activated Charcoal for 220Rn Adsorption for Operations Associated with the Uranium Deposit in the Auxiliary Charcoal Bed at the Molten Salt Reactor Experiment Facility

    International Nuclear Information System (INIS)

    Coleman, R.L.

    1999-01-01

    Measurements have been collected with the purpose of evaluating the effectiveness of activated charcoal for the removal of 220 Rn from process off-gas at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory. A series of bench-scale tests were performed at superficial flow velocities of 10, 18, 24, and 33 cm/s (20, 35, 47, and 65 ft/min) with a continuous input concentration of 220 Rn in the range of 9 x 10 3 pCi/L. In addition, two tests were performed at the MSRE facility by flowing helium through the auxiliary charcoal bed uranium deposit. These tests were performed so that the adsorptive effectiveness could be evaluated with a relatively high concentration of 220 Rn. In addition to measuring the effectiveness of activated charcoal as a 220 Rn adsorption media, the source term for available 220 Rn in the deposit is actually available for removal and that the relative activity of fission gases is very small when compared to 220 Rn. The measurement data were then used to evaluate the expected effectiveness of a proposed charcoal adsorption bed consisting of a right circular cylinder having a diameter of 43 cm and a length of 91 cm (17 in. I.D. x 3 ft.). The majority of the measurement data predicts an overall 220Rn activity reduction factor of about 1 x 10 9 for such a design; however, two measurements collected at a flow velocity of 18 cm/s (35 ft/min) indicated that the reduction factor could be as low as 1 x 10 6 . The adsorptive capacity of the proposed trap was also evaluated to determine the expected life prior to degradation of performance. Taking a conservative vantage point during analysis, it was estimated that the adsorption effectiveness should not begin to deteriorate until a 220 Rn activity on the order of 10 10 Ci has been processed. It was therefore concluded that degradation of performance would likely occur as the result of causes other than filling by radon progeny

  14. Czechoslovak uranium

    International Nuclear Information System (INIS)

    Pluskal, O.

    1992-01-01

    Data and knowledge related to the prospecting, mining, processing and export of uranium ores in Czechoslovakia are presented. In the years between 1945 and January 1, 1991, 98,461.1 t of uranium were extracted. In the period 1965-1990 the uranium industry was subsidized from the state budget to a total of 38.5 billion CSK. The subsidies were put into extraction, investments and geologic prospecting; the latter was at first, ie. till 1960 financed by the former USSR, later on the two parties shared costs on a 1:1 basis. Since 1981 the prospecting has been entirely financed from the Czechoslovak state budget. On Czechoslovak territory uranium has been extracted from deposits which may be classified as vein-type deposits, deposits in uranium-bearing sandstones and deposits connected with weathering processes. The future of mining, however, is almost exclusively being connected with deposits in uranium-bearing sandstones. A brief description and characteristic is given of all uranium deposits on Czechoslovak territory, and the organization of uranium mining in Czechoslovakia is described as is the approach used in the world to evaluate uranium deposits; uranium prices and actual resources are also given. (Z.S.) 3 figs

  15. Depleted uranium processing and fluorine extraction

    International Nuclear Information System (INIS)

    Laflin, S.T.

    2010-01-01

    Since the beginning of the nuclear era, there has never been a commercial solution for the large quantities of depleted uranium hexafluoride generated from uranium enrichment. In the United States alone, there is already in excess of 1.6 billion pounds (730 million kilograms) of DUF_6 currently stored. INIS is constructing a commercial uranium processing and fluorine extraction facility. The INIS facility will convert depleted uranium hexafluoride and use it as feed material for the patented Fluorine Extraction Process to produce high purity fluoride gases and anhydrous hydrofluoric acid. The project will provide an environmentally friendly and commercially viable solution for DUF_6 tails management. (author)

  16. Uranium ores

    International Nuclear Information System (INIS)

    Poty, B.; Roux, J.

    1998-01-01

    The processing of uranium ores for uranium extraction and concentration is not much different than the processing of other metallic ores. However, thanks to its radioactive property, the prospecting of uranium ores can be performed using geophysical methods. Surface and sub-surface detection methods are a combination of radioactive measurement methods (radium, radon etc..) and classical mining and petroleum prospecting methods. Worldwide uranium prospecting has been more or less active during the last 50 years, but the rise of raw material and energy prices between 1970 and 1980 has incited several countries to develop their nuclear industry in order to diversify their resources and improve their energy independence. The result is a considerable increase of nuclear fuels demand between 1980 and 1990. This paper describes successively: the uranium prospecting methods (direct, indirect and methodology), the uranium deposits (economical definition, uranium ores, and deposits), the exploitation of uranium ores (use of radioactivity, radioprotection, effluents), the worldwide uranium resources (definition of the different categories and present day state of worldwide resources). (J.S.)

  17. Uranium market

    International Nuclear Information System (INIS)

    Rubini, L.A.; Asem, M.A.D.

    1990-01-01

    The historical development of the uranium market is present in two periods: The initial period 1947-1970 and from 1970 onwards, with the establishment of a commercial market. The world uranium requirements are derived from the corresponding forecast of nuclear generating capacity, with, particular emphasis to the brazilian requirements. The forecast of uranium production until the year 2000 is presented considering existing inventories and the already committed demand. The balance between production and requirements is analysed. Finally the types of contracts currently being used and the development of uranium prices in the world market are considered. (author)

  18. Uranium enrichment

    International Nuclear Information System (INIS)

    1990-01-01

    This report looks at the following issues: How much Soviet uranium ore and enriched uranium are imported into the United States and what is the extent to which utilities flag swap to disguise these purchases? What are the U.S.S.R.'s enriched uranium trading practices? To what extent are utilities required to return used fuel to the Soviet Union as part of the enriched uranium sales agreement? Why have U.S. utilities ended their contracts to buy enrichment services from DOE?

  19. Uranium hexafluoride handling

    International Nuclear Information System (INIS)

    1991-01-01

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF 6 from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride

  20. Uranium hexafluoride handling. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  1. Beta activity of enriched uranium

    International Nuclear Information System (INIS)

    Nambiar, P.P.V.J.; Ramachandran, V.

    1975-01-01

    Use of enriched uranium as reactor fuel necessitates its handling in various forms. For purposes of planning and organising radiation protection measures in enriched uranium handling facilities, it is necessary to have a basic knowledge of the radiation status of enriched uranium systems. The theoretical variations in beta activity and energy with U 235 enrichment are presented. Depletion is considered separately. Beta activity build up is also studied for two specific enrichments, in respect of which experimental values for specific alpha activity are available. (author)

  2. Process for decontamination of surfaces in an facility of natural uranium hexafluoride production (UF{sub 6}); Processo de descontaminação de superfícies em uma instalação de produção de hexafluoreto de urânio natural (UF{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Claudio C. de; Silva, Teresinha M.; Rodrigues, Demerval L.; Carneiro, Janete C.G.G., E-mail: calmeida@ipen.br [Instituto de Pesquisas Energéticas e Nucleares(IPEN/CNEN-SP), São Paulo, SP (Brazil). Gerência de Radioproteção

    2017-07-01

    The experience acquired in the actions taken during the decontamination process of an IPEN-CNEN / SP Nuclear and Energy Research Institute facility, for the purpose of making the site unrestricted, is reported. The steps of this operation involved: planning, training of facility operators, workplace analysis and radiometric measurements. The facility had several types of equipment from the natural uranium hexafluoride (UF{sub 6}) production tower and other facility materials. Rules for the transportation of radioactive materials were established, both inside and outside the facility and release of materials and installation.

  3. Design project of the experimental facility for testing uranium creep in the reactor; Predprojekat eksperimentalnog uredjaja za ispitivanje CREEP-a urana u reaktoru

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, A [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    This report contains the design for constructing the experimental device for testing metal uranium creep in the RA reactor core under defined neutron flux conditions, temperature, mechanical loads and time of irradiation. This device will be placed in one of the experimental channels in the core. This report contains physical, thermal and mechanical calculations and engineering drawings of the device.

  4. Uranium mining

    International Nuclear Information System (INIS)

    Lange, G.

    1975-01-01

    The winning of uranium ore is the first stage of the fuel cycle. The whole complex of questions to be considered when evaluating the profitability of an ore mine is shortly outlined, and the possible mining techniques are described. Some data on uranium mining in the western world are also given. (RB) [de

  5. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  6. Uranium resources

    International Nuclear Information System (INIS)

    1976-01-01

    This is a press release issued by the OECD on 9th March 1976. It is stated that the steep increases in demand for uranium foreseen in and beyond the 1980's, with doubling times of the order of six to seven years, will inevitably create formidable problems for the industry. Further substantial efforts will be needed in prospecting for new uranium reserves. Information is given in tabular or graphical form on the following: reasonably assured resources, country by country; uranium production capacities, country by country; world nuclear power growth; world annual uranium requirements; world annual separative requirements; world annual light water reactor fuel reprocessing requirements; distribution of reactor types (LWR, SGHWR, AGR, HWR, HJR, GG, FBR); and world fuel cycle capital requirements. The information is based on the latest report on Uranium Resources Production and Demand, jointly issued by the OECD's Nuclear Energy Agency (NEA) and the International Atomic Energy Agency. (U.K.)

  7. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  8. Uranium supply and demand

    Energy Technology Data Exchange (ETDEWEB)

    Spriggs, M J

    1976-01-01

    Papers were presented on the pattern of uranium production in South Africa; Australian uranium--will it ever become available; North American uranium resources, policies, prospects, and pricing; economic and political environment of the uranium mining industry; alternative sources of uranium supply; whither North American demand for uranium; and uranium demand and security of supply--a consumer's point of view. (LK)

  9. Social Licensing in uranium mining: Experiences from the IAEA review of planned Mukju River Uranium Project, Tanzania

    International Nuclear Information System (INIS)

    Schnell, Henry

    2014-01-01

    The IAEA Uranium Production Site Appraisal Team (UPSAT) programme is designed to assist Member States to enhance the operational performance and the occupational, public and environmental health and safety of uranium mining and processing facilities across all phases of the uranium production cycle. These include exploration, resource assessment, mining, processing, waste management, site management and remediation, and final closure.

  10. Uranium, depleted uranium, biological effects; Uranium, uranium appauvri, effets biologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  11. Uranium toxicology

    International Nuclear Information System (INIS)

    Ferreyra, Mariana D.; Suarez Mendez, Sebastian

    1997-01-01

    In this paper are presented the methods and procedures optimized by the Nuclear Regulatory Authority (ARN) for the determination of: natural uranium mass, activity of enriched uranium in samples of: urine, mucus, filters, filter heads, rinsing waters and Pu in urine, adopted and in some cases adapted, by the Environmental Monitoring and Internal Dosimetry Laboratory. The analyzed material corresponded to biological and environmental samples belonging to the staff professionally exposed that work in plants of the nuclear fuel cycle. For a better comprehension of the activities of this laboratory, it is included a brief description of the uranium radiochemical toxicity and the limits internationally fixed to preserve the workers health

  12. Domestic utility attitudes toward foreign uranium supply

    International Nuclear Information System (INIS)

    1981-06-01

    The current embargo on the enrichment of foreign-origin uranium for use in domestic utilization facilities is scheduled to be removed in 1984. The pending removal of this embargo, complicated by a depressed worldwide market for uranium, has prompted consideration of a new or extended embargo within the US Government. As part of its on-going data collection activities, Nuclear Resources International (NRI) has surveyed 50 domestic utility/utility holding companies (representing 60 lead operator-utilities) on their foreign uranium purchase strategies and intentions. The most recent survey was conducted in early May 1981. A number of qualitative observations were made during the course of the survey. The major observations are: domestic utility views toward foreign uranium purchase are dynamic; all but three utilities had some considered foreign purchase strategy; some utilities have problems with buying foreign uranium from particular countries; an inducement is often required by some utilities to buy foreign uranium; opinions varied among utilities concerning the viability of the domestic uranium industry; and many utilities could have foreign uranium fed through their domestic uranium contracts (indirect purchases). The above observations are expanded in the final section of the report. However, it should be noted that two of the observations are particularly important and should be seriously considered in formulation of foreign uranium import restrictions. These important observations are the dynamic nature of the subject matter and the potentially large and imbalanced effect the indirect purchases could have on utility foreign uranium procurement

  13. Detection of uranium enrichment activities using environmental monitoring techniques

    International Nuclear Information System (INIS)

    Belew, W.L.; Carter, J.A.; Smith, D.H.; Walker, R.L.

    1993-01-01

    Uranium enrichment processes have the capability of producing weapons-grade material in the form of highly enriched uranium. Thus, detection of undeclared uranium enrichment activities is an international safeguards concern. The uranium separation technologies currently in use employ UF 6 gas as a separation medium, and trace quantities of enriched uranium are inevitably released to the environment from these facilities. The isotopic content of uranium in the vegetation, soil, and water near the plant site will be altered by these releases and can provide a signature for detecting the presence of enriched uranium activities. This paper discusses environmental sampling and analytical procedures that have been used for the detection of uranium enrichment facilities and possible safeguards applications of these techniques

  14. Rossing uranium

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    In this article the geology of the deposits of the Rossing uranium mine in Namibia is discussed. The planning of the open-pit mining, the blasting, drilling, handling and the equipment used for these processes are described

  15. Uranium and nuclear energy: 1986

    International Nuclear Information System (INIS)

    1987-01-01

    The papers (25 in all) cover energy policy issues (5 papers), uranium mining safety (4 papers), uranium production (3 papers), public attitudes and waste management (4 papers), advancing enrichment technology especially laser-based techniques (4 papers) and the uranium market (5 papers). The address by Lord Marshall, chairman of the Central Electricity Generating Board, which explains why an accident like the one at Chernobyl could not happen in a British reactor is also reprinted. All are indexed separately. The first appendix lists the nuclear power plants in the world, country by country, and gives details of type, supplier and commercial operation. The second appendix lists the uranium production facilities in the world country by country giving their status, ownership and some brief comments. (U.K.)

  16. Ailing uranium millworkers seek recognition, aid

    International Nuclear Information System (INIS)

    Ambler, M.

    1980-01-01

    Uranium millworkers who helped produce uranium for the U.S. nuclear defense program in the 1950's and 1960's are suing the federal government and uranium companies for compensation for illnesses that they believe are job-related. Symptoms of these illnesses include frequent blackouts, chronic bronchitis, asthma, constant fatigue, and susceptibility to colds. Research is being conducted to determine whether the millworkers' symptoms are due to excessive radiation exposure. Studies to date indicated that during the 1950's and early 1960's, radiation protection procedures at uranium milling facilities were extremely deficient

  17. Preventing proliferation : the role of Australian uranium

    International Nuclear Information System (INIS)

    Falk, J.

    1987-01-01

    The uranium debate has polarised Australian society for almost a decade. From 1977 until just before it achieved office in 1983 the Australia Labor Party took a position of strong opposition to uranium exports. The Australian Council of Trade Unions, the Australian Democrats, the Nuclear Disarmament Party, and many other organisations and sections of the community continue to oppose uranium mining and exports. Australia's uranium is currently exported for use in the commercial nuclear fuel cycle. But as the nuclear plants which are part of this cycle spread across the world, the risk rises that they will provide the cover and facilities for increasing numbers of countries to move towards nuclear weapons capability

  18. Retrieval of buried depleted uranium from the T-1 trench

    International Nuclear Information System (INIS)

    Burmeister, M.; Castaneda, N.; Hull, C.; Barbour, D.; Quapp, W.J.

    1998-01-01

    The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization

  19. Uranium, depleted uranium, biological effects

    International Nuclear Information System (INIS)

    2001-01-01

    Physicists, chemists and biologists at the CEA are developing scientific programs on the properties and uses of ionizing radiation. Since the CEA was created in 1945, a great deal of research has been carried out on the properties of natural, enriched and depleted uranium in cooperation with university laboratories and CNRS. There is a great deal of available data about uranium; thousands of analyses have been published in international reviews over more than 40 years. This presentation on uranium is a very brief summary of all these studies. (author)

  20. Uranium-bearing and associated minerals in their geochemical and sedimentological context, Elliot Lake, Ontario

    International Nuclear Information System (INIS)

    Theis, N.J.

    1979-01-01

    The depositional energy environment of the Rio Algom-Denison ore reef was investigated on a regional scale using several parameters including pebble size. Regional trends of decreasing pebble size coincide with the regional direction of sediment transport. Pebble size was also used to characterize the depositional energy environment at the sample level. Quartz-pebble size and pyrite-grain size as determined from the same samples have a correlation coefficient of 0.93 which indicates that the coarse granular pyrite is detrital. Bulk chemical analyses of selected elements (U, Th, Pb, Ti, Ce, La, Y and Zr) which were chosen to reflect specific minerals (uraninite, brannerite, monazite and zircon), showed strong correlation with quartz-pebble size of the respective samples. Electron microprobe analyses of uraninite and brannerite are reported. The uraninites have typical pegmatitic compositions. Several types of brannerite are described; the conclusion reached is that although some brannerite may be detrital, most of it formed by adsorption of uranium onto titania collectors. Redistribution of some of the uranium has not changed the placer nature of the ore reef. Genesis of individual minerals (pyrite, uraninite, brannerite, zircon and monazite) is discussed. It is concluded that the mineralogy and its geochemical expression have been controlled by processes of fluvial deposition. As a result of the regional patterns in depositional environment, the ore reef shows a broad mineralogical zoning. Fluctuations in depositional energy have also produced lithologically related mineral zoning on a smaller scale. (author)

  1. Uranium loans

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    When NUEXCO was organized in 1968, its founders conceived of a business based on uranium loans. The concept was relatively straightforward; those who found themselves with excess supplies of uranium would deposit those excesses in NUEXCO's open-quotes bank,close quotes and those who found themselves temporarily short of uranium could borrow from the bank. The borrower would pay interest based on the quantity of uranium borrowed and the duration of the loan, and the bank would collect the interest, deduct its service fee for arranging the loan, and pay the balance to those whose deposits were borrowed. In fact, the original plan was to call the firm Nuclear Bank Corporation, until it was discovered that using the word open-quotes Bankclose quotes in the name would subject the firm to various US banking regulations. Thus, Nuclear Bank Corporation became Nuclear Exchange Corporation, which was later shortened to NUEXCO. Neither the nuclear fuel market nor NUEXCO's business developed quite as its founders had anticipated. From almost the very beginning, the brokerage of uranium purchases and sales became a more significant activity for NUEXCO than arranging uranium loans. Nevertheless, loan transactions have played an important role in the international nuclear fuel market, requiring the development of special knowledge and commercial techniques

  2. Analytical methods used at model facility

    International Nuclear Information System (INIS)

    Wing, N.S.

    1984-01-01

    A description of analytical methods used at the model LEU Fuel Fabrication Facility is presented. The methods include gravimetric uranium analysis, isotopic analysis, fluorimetric analysis, and emission spectroscopy

  3. Western states uranium resource survey

    International Nuclear Information System (INIS)

    Tinney, J.F.

    1977-01-01

    ERDA's National Uranium Resource Evaluation (NURE) program was established to provide a comprehensive description of uranium resources in the United States. To carry out this task, ERDA has contracted with various facilities, including universities, private companies, and state agencies, to undertake projects such as airborne radiometric surveys, geological and geochemical studies, and the development of advanced geophysical technology. LLL is one of four ERDA laboratories systematically studying uranium distribution in surface water, groundwater, and lake and stream sediments. We are specifically responsible for surveying seven western states. This past year we have designed and installed facilities for delayed-neutron counting and neutron-activation analysis, completed seven orientation surveys, and analyzed several thousand field samples. Full-scale reconnaissance surveys began last fall

  4. Continued Multicolumns Bioleaching for Low Grade Uranium Ore at a Certain Uranium Deposit

    OpenAIRE

    Gongxin Chen; Zhanxue Sun; Yajie Liu

    2016-01-01

    Bioleaching has lots of advantages compared with traditional heap leaching. In industry, bioleaching of uranium is still facing many problems such as site space, high cost of production, and limited industrial facilities. In this paper, a continued column bioleaching system has been established for leaching a certain uranium ore which contains high fluoride. The analysis of chemical composition of ore shows that the grade of uranium is 0.208%, which is lower than that of other deposits. Howev...

  5. Uranium extraction from gold-uranium ores

    Energy Technology Data Exchange (ETDEWEB)

    Laskorin, B.N.; Golynko, Z.Sh.

    1981-01-01

    The process of uranium extraction from gold-uranium ores in the South Africa is considered. Flowsheets of reprocessing gold-uranium conglomerates, pile processing and uranium extraction from the ores are presented. Continuous counter flow ion-exchange process of uranium extraction using strong-active or weak-active resins is noted to be the most perspective and economical one. The ion-exchange uranium separation with the succeeding extraction is also the perspective one.

  6. Uranium mining

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The economic and environmental sustainability of uranium mining has been analysed by Monash University researcher Dr Gavin Mudd in a paper that challenges the perception that uranium mining is an 'infinite quality source' that provides solutions to the world's demand for energy. Dr Mudd says information on the uranium industry touted by politicians and mining companies is not necessarily inaccurate, but it does not tell the whole story, being often just an average snapshot of the costs of uranium mining today without reflecting the escalating costs associated with the process in years to come. 'From a sustainability perspective, it is critical to evaluate accurately the true lifecycle costs of all forms of electricity production, especially with respect to greenhouse emissions, ' he says. 'For nuclear power, a significant proportion of greenhouse emissions are derived from the fuel supply, including uranium mining, milling, enrichment and fuel manufacture.' Dr Mudd found that financial and environmental costs escalate dramatically as the uranium ore is used. The deeper the mining process required to extract the ore, the higher the cost for mining companies, the greater the impact on the environment and the more resources needed to obtain the product. I t is clear that there is a strong sensitivity of energy and water consumption and greenhouse emissions to ore grade, and that ore grades are likely to continue to decline gradually in the medium to long term. These issues are critical to the current debate over nuclear power and greenhouse emissions, especially with respect to ascribing sustainability to such activities as uranium mining and milling. For example, mining at Roxby Downs is responsible for the emission of over one million tonnes of greenhouse gases per year and this could increase to four million tonnes if the mine is expanded.'

  7. Future of uranium enrichment

    International Nuclear Information System (INIS)

    Hosmer, C.

    1981-01-01

    The increasing amount of separative work being done in government facilities to produce low-enriched uranium fuel for nuclear utilities again raises the question: should this business-type, industrial function be burned over the private industry. The idea is being looked at by the Reagan administration, but faces problems of national security as well as from the unique nature of the business. This article suggests that a joint government-private venture combining enriching, reprocessing, and waste disposal could be the answer. Further, a separate entity using advanced laser technology to deplete existing uranium tails and lease them for fertile blankets in breeder reactors might earn substantial revenues to help reduce the national debt

  8. Licensing of uranium mine and mill waste management systems

    International Nuclear Information System (INIS)

    Chamney, L.G.

    1986-09-01

    Systems for the management of wastes arising from uranium mining facilities are subject to regulatory control by the Atomic Energy Control Board (AECB). This paper describes the primary objectives, principles, requirements and guidelines which the AECB uses in the regulation of waste management activities at uranium mining facilities, and provides an understanding of the licensing process used by the AECB

  9. 76 FR 60941 - Policy Regarding Submittal of Amendments for Processing of Equivalent Feed at Licensed Uranium...

    Science.gov (United States)

    2011-09-30

    ... Processing of Equivalent Feed at Licensed Uranium Recovery Facilities AGENCY: Nuclear Regulatory Commission... State-licensed uranium recovery site, either conventional, heap leach, or in situ recovery. DATES... Regarding Submittal of Amendments for Processing of Equivalent Feed at Licensed Uranium Recovery Facilities...

  10. Uranium enrichment

    International Nuclear Information System (INIS)

    Rae, H.K.; Melvin, J.G.

    1988-06-01

    Canada is the world's largest producer and exporter of uranium, most of which is enriched elsewhere for use as fuel in LWRs. The feasibility of a Canadian uranium-enrichment enterprise is therefore a perennial question. Recent developments in uranium-enrichment technology, and their likely impacts on separative work supply and demand, suggest an opportunity window for Canadian entry into this international market. The Canadian opportunity results from three particular impacts of the new technologies: 1) the bulk of the world's uranium-enrichment capacity is in gaseous diffusion plants which, because of their large requirements for electricity (more than 2000 kW·h per SWU), are vulnerable to competition from the new processes; 2) the decline in enrichment costs increases the economic incentive for the use of slightly-enriched uranium (SEU) fuel in CANDU reactors, thus creating a potential Canadian market; and 3) the new processes allow economic operation on a much smaller scale, which drastically reduces the investment required for market entry and is comparable with the potential Canadian SEU requirement. The opportunity is not open-ended. By the end of the century the enrichment supply industry will have adapted to the new processes and long-term customer/supplier relationships will have been established. In order to seize the opportunity, Canada must become a credible supplier during this century

  11. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    International Nuclear Information System (INIS)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-01

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P and T) operations have had minimal impact on the contaminant plume - primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (''brownfield'') scenario for Tuba City. This alternative approach would have low risks, similar to the current P and T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations

  12. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-08

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

  13. Development of a stable uranium recovery regulatory framework for uranium recovery activities in the United States

    International Nuclear Information System (INIS)

    Layton, M.C.; Abrams, C.E.

    2000-01-01

    The U.S. Nuclear Regulatory Commission (NRC) has historically regulated operations at all uranium and thorium recovery facilities under the authority of the Atomic Energy Act of 1954, as amended. Uranium recovery facilities are those plants, or portions of facilities that process uranium- or thorium-bearing material primarily for its source material content. The uranium recovery industry expressed some concerns over several aspects of the NRC's practices, as described in the NRC's guidance documents. In April 1998, the National Mining Association submitted a report to the Commission, that identified specific concerns with NRC's current position and guidance regarding concurrent jurisdiction at uranium mills; dual regulatory authority at in situ leach facilities; the use of mill tailings impoundments for disposal of radioactive material other than 11e.(2) byproduct material; and the ability to process alternate feed material at uranium mills. The NRC staff addressed most of these concerns in two SECY (staff recommendations) papers that were concurrently provided to the Commission, along with a SECY paper on a draft rulemaking plan relating to these and other issues. The issues addressed in these papers included a new rulemaking, disposal of materials other than 11 e.(2) byproduct material, processing of materials other than natural ores, and improved efficiency for regulating in situ leach uranium facilities. The Commission issued final policy decisions on these issues and directions for NRC staff to implement those decisions in July 2000. (author)

  14. Uranium update

    International Nuclear Information System (INIS)

    Steane, R.

    1997-01-01

    This paper is about the current uranium mining situation, especially that in Saskatchewan. Canada has a unique advantage with the Saskatchewan uranium deposits. Making the most of this opportunity is important to Canada. The following is reviewed: project development and the time and capital it takes to bring a new project into production; the supply and demand situation to show where the future production fits into the world market; and our foreign competition and how we have to be careful not to lose our opportunity. (author)

  15. Explosion and fire in the uranium trioxide production facilities at the Savannah River Plant on February 12, 1975. A works technical report

    International Nuclear Information System (INIS)

    McKibben, J.M.

    1976-10-01

    On February 12, 1975, an explosion and fire occurred in the denitrator room of the separations A-Line facility, resulting in minor injury to two employees and about $230,000 damage to the building and equipment. The facility, which converts uranyl nitrate solution to UO 3 , had operated for 20 years without major accident. Accidental transfer of tributyl phosphate--uranyl nitrate adduct into a denitrator was followed by rapid decomposition of the organic material. Combustible gases were released into the denitrator room and ignited. No contamination was spread outside the facility. A-Line returned to operation August 11, 1975, after equipment and procedures were modified to lower the probability of similar incidents to a very low level. 18 figures, 9 tables

  16. Machining of uranium and uranium alloys

    International Nuclear Information System (INIS)

    Morris, T.O.

    1981-01-01

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures

  17. Civilian inventories of plutonium and highly enriched uranium

    International Nuclear Information System (INIS)

    Albright, D.

    1987-01-01

    In the future, commercial laser isotope enrichment technologies, currently under development, could make it easier for national to produce highly enriched uranium secretly. The head of a US firm that is developing a laser enrichment process predicts that in twenty years, major utilities and small countries will have relatively small, on-site, laser-based uranium enrichment facilities. Although these plants will be designed for the production of low enriched uranium, they could be modified to produce highly enriched uranium, an option that raises the possibility of countries producing highly enriched uranium in small, easily hidden facilities. Against this background, most of this report describes the current and future quantities of plutonium and highly enriched uranium in the world, their forms, the facilities in which they are produced, stored, and used, and the extent to which they are transported. 5 figures, 10 tables

  18. Uranium mining

    International Nuclear Information System (INIS)

    Cheeseman, E.W.

    1980-01-01

    The international uranium market appears to be currently over-supplied with a resultant softening in prices. Buyers on the international market are unhappy about some of the restrictions placed on sales by the government, and Canadian sales may suffer as a result. About 64 percent of Canada's shipments come from five operating Ontario mines, with the balance from Saskatchewan. Several other properties will be producing within the next few years. In spite of the adverse effects of the Three Mile Island incident and the default by the T.V.A. of their contract, some 3 600 tonnes of new uranium sales were completed during the year. The price for uranium had stabilized at US $42 - $44 by mid 1979, but by early 1980 had softened somewhat. The year 1979 saw the completion of major environmental hearings in Ontario and Newfoundland and the start of the B.C. inquiry. Two more hearings are scheduled for Saskatchewan in 1980. The Elliot Lake uranium mining expansion hearings are reviewed, as are other recent hearings. In the production of uranium for nuclear fuel cycle, environmental matters are of major concern to the industry, the public and to governments. Research is being conducted to determine the most effective method for removing radium from tailings area effluents. Very stringent criteria are being drawn up by the regulatory agencies that must be met by the industry in order to obtain an operating licence from the AECB. These criteria cover seepages from the tailings basin and through the tailings retention dam, seismic stability, and both short and long term management of the tailings waste management area. (auth)

  19. Uranium industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  20. Uranium industry annual 1996

    International Nuclear Information System (INIS)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs

  1. Uranium industry annual, 1991

    International Nuclear Information System (INIS)

    1992-10-01

    In the Uranium Industry Annual 1991, data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2. A feature article entitled ''The Uranium Industry of the Commonwealth of Independent States'' is included in this report

  2. New results from isochronous mass measurements of neutron-rich uranium fission fragments with the FRS-ESR-facility at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Knoebel, R.; Litvinov, Yu.A.; Weick, H.; Bosch, F.; Boutin, D.; Dimopoulou, C.; Dolinskii, A.; Franczak, B.; Franzke, B.; Kozhuharov, C.; Kurcewicz, J.; Litvinov, S.A.; Matos, M.; Mazzocco, M.; Muenzenberg, G.; Nociforo, C.; Nolden, F.; Stadlmann, J.; Steck, M.; Winkler, M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Diwisch, M. [Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Geissel, H.; Plass, W.R.; Scheidenberger, C.; Chen, L. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Patyk, Z. [National Centre for Nuclear Research - NCBJ Swierk, Warszawa (Poland); Sun, B. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Hausmann, M. [Michigan State University, East Lansing, MI (United States); Nakajima, S.; Suzuki, T.; Yamaguchi, T. [Saitama University, Department of Physics, Saitama (Japan); Ohtsubo, T. [Niigata University, Department of Physics, Niigata (Japan); Ozawa, A. [University of Tsukuba, Institute of Physics, Ibaraki (Japan); Walker, P.M. [University of Surrey, Department of Physics, Guildford (United Kingdom)

    2016-05-15

    Masses of uranium fission fragments have been measured with the FRagment Separator (FRS) combined with the Experimental Storage Ring (ESR) at GSI. A 410-415 MeV/u {sup 238}U projectile beam was fast extracted from the synchrotron SIS-18 with an average intensity of 10{sup 9}/spill. The projectiles were focused on a 1g/cm{sup 2} beryllium target at the entrance of the FRS to create neutron-rich isotopes via abrasion-fission. The fission fragments were spatially separated with the FRS and injected into the isochronous storage ring ESR for fast mass measurements without applying cooling. The Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without B ρ-tagging at the high-resolution dispersive central focal plane of the FRS. The evaluation has been done for the combined data sets from both experiments with a new method of data analysis. The use of a correlation matrix has provided experimental mass values for 23 different neutron-rich isotopes for the first time and 6 masses with improved values. The new masses were obtained for nuclides in the element range from Se to Ce. The applied analysis has given access even to rare isotopes detected with an intensity of a few atoms per week. The novel data analysis and systematic error determination are described and the results are compared with extrapolations of experimental values and theoretical models. (orig.)

  3. Acceptable standard format and content for the fundamental nuclear material control (FNMC) plan required for low-enriched uranium facilities. Revision 2

    International Nuclear Information System (INIS)

    Joy, D.R.

    1995-12-01

    This report documents a standard format suggested by the NRC for use in preparing fundamental nuclear material control (FNMC) plans as required by the Low Enriched Uranium Reform Amendments (10CFR 74.31). This report also describes the necessary contents of a comprehensive plan and provides example acceptance criteria which are intended to communicate acceptable means of achieving the performance capabilities of the Reform Amendments. By using the suggested format, the licensee or applicant will minimize administrative problems associated with the submittal, review and approval of the FNMC plan. Preparation of the plan in accordance with this format Will assist the NRC in evaluating the plan and in standardizing the review and licensing process. However, conformance with this guidance is not required by the NRC. A license applicant who employs a format that provides a equal level of completeness and detail may use their own format. This document is also intended for providing guidance to licensees when making revisions to their FNMC plan

  4. A clean environment approach to uranium mining

    International Nuclear Information System (INIS)

    Grancea, Luminita

    2015-01-01

    A global and multi-faceted response to climate change is essential if meaningful and cost-effective progress is to be made in reducing the effects of climate change around the world. There is no doubt that the uranium mining sector has an important role to play in such a goal. Uranium is the raw material used to produce fuel for long-lived nuclear facilities, necessary for the generation of significant amounts of baseload low-carbon electricity for decades to come. Given expectations of growth in nuclear generating capacity and the associated uranium demand, enhancing awareness of leading practices in uranium mining is indispensable. Actors in the uranium mining sector operate in a complex world, throughout different geographies, and involving global supply chains. They manage climate-sensitive water, land and energy resources and balance the interests of various stakeholders. Managed well, uranium mining delivers sustainable value for economic growth, employment and infrastructure, with specific attention given to the preservation of the environment. In the early phases of the industry, however, downside risks existed, which created legacy environmental and health issues that still can be recalled today. This article addresses key aspects of modern uranium mining operations that have been introduced as regulations and practices have evolved in response to societal attitudes about health, safety and environmental protection. Such aspects of mine management were seldom, if ever, respected in the early stages of uranium mining. With the implementation of modern mine lifecycle parameters and regulatory requirements, uranium mining has become a leader in safety and environmental management. Today, uranium mining is conducted under significantly different circumstances and is now the most regulated and one of the safest forms of mining in the world. Experiences from modern uranium mines show that successful companies develop innovative strategies to manage all the

  5. Rehabilitation of uranium tailings impoundments

    International Nuclear Information System (INIS)

    Crawley, A.H.

    1983-01-01

    Under Australian environmental controls relating to the management of uranium tailings, it is no longer acceptable practice to search for a rehabilitation strategy at the end of production when the generation of tailings has ceased. The uranium projects currently in production and those being proposed are tightly regulated by the authorities. The waste management plans must consider site specific factors and must include selection of appropriate disposal sites and design for long term containment. The final encapsulation in engineered facilities must take into account the probable routes to the environment of the tailings. Rehabilitation shoud be undertaken by the mining and milling operators to standards approved by appropriate authorities. Appropriate administrative arrangements are required, by way of technical committees and financial bonds to ensure that agreed standards of rehabilitation may be achieved. Past and present experience with the rehabilitation of uranium tailings impoundments in Australia is discussed

  6. 75 FR 62153 - Notice of the Nuclear Regulatory Commission Issuance of Materials License SUA-1596 for Uranium...

    Science.gov (United States)

    2010-10-07

    ... Commission Issuance of Materials License SUA-1596 for Uranium One Americas, Inc. Moore Ranch In Situ Recovery.... SUPPLEMENTARY INFORMATION: The Nuclear Regulatory Commission (NRC) has issued a license to Uranium One Americas, Inc. (Uranium One) for its Moore Ranch uranium in situ recovery (ISR) facility in Campbell County...

  7. The uranium market: 1986-2000

    International Nuclear Information System (INIS)

    Lewiner, C.; Walton, D.; Sinclair-Smith, D.

    1987-01-01

    This paper summarizes the main conclusions of the 1986 supply and demand report of the Uranium Institute. The probable nuclear generating capacity is estimated for 1986-2000. Previous capacity forecasts (1981-1986) are compared with actual generating capacity. When looking at demand, a distinction has to be made between what reactor operators require to fuel reactors (reactor requirements) and what they intend to purchase (uranium procurements). This distinction is defined and discussed. The interaction between supply and demand is shown and factors affecting trade (eg government policies) are discussed. 1985 was the first year when uranium production was less than reactor requirements. This shortfall will continue for a number of years with the current excess in consumer inventories supplying the difference between reactor requirements and uranium procurements. Uranium demand should exceed production by 1988 but additional capacity should be available from planned and possible restart and possible new facilities. (U.K.)

  8. Uranium - what role

    International Nuclear Information System (INIS)

    Grey, T.; Gaul, J.; Crooks, P.; Robotham, R.

    1980-01-01

    Opposing viewpoints on the future role of uranium are presented. Topics covered include the Australian Government's uranium policy, the status of nuclear power around the world, Australia's role as a uranium exporter and problems facing the nuclear industry

  9. Brazilian uranium exploration program

    International Nuclear Information System (INIS)

    Marques, J.P.M.

    1981-01-01

    General information on Brazilian Uranium Exploration Program, are presented. The mineralization processes of uranium depoits are described and the economic power of Brazil uranium reserves is evaluated. (M.C.K.) [pt

  10. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-11-01

    This paper analyzes under four different scenarios the adequacy of a $500 million annual deposit into a fund to pay for the cost of cleaning up the Department of Energy's (DOE) three aging uranium enrichment plants. These plants are located in Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. In summary the following was found: A fixed annual $500 million deposit made into a cleanup fund would not be adequate to cover total expected cleanup costs, nor would it be adequate to cover expected decontamination and decommissioning (D and D) costs. A $500 million annual deposit indexed to an inflation rate would likely be adequate to pay for all expected cleanup costs, including D and D costs, remedial action, and depleted uranium costs

  11. Uranium production

    International Nuclear Information System (INIS)

    Spriggs, M.

    1980-01-01

    The balance between uranium supply and demand is examined. Should new resources become necessary, some unconventional sources which could be considered include low-grade extensions to conventional deposits, certain types of intrusive rock, tuffs, and lake and sea-bed sediments. In addition there are large but very low grade deposits in carbonaceous shales, granites, and seawater. The possibility of recovery is discussed. Programmes of research into the feasibility of extraction of uranium from seawater, as a by-product from phosphoric acid production, and from copper leach solutions, are briefly discussed. Other possible sources are coal, old mine dumps and tailings, the latter being successfully exploited commercially in South Africa. The greatest constraints on increased development of U from lower grade sources are economics and environmental impact. It is concluded that apart from U as a by-product from phosphate, other sources are unlikely to contribute much to world requirements in the foreseeable future. (U.K.)

  12. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C. W.

    1993-09-01

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

  13. Uranium enrichment

    International Nuclear Information System (INIS)

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector

  14. Derived enriched uranium market

    International Nuclear Information System (INIS)

    Rutkowski, E.

    1996-01-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market

  15. Disposal project for LLW and VLLW generated from research facilities in Japan: A feasibility study for the near surface disposal of VLLW that includes uranium

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Hasegawa, M.; Sakamoto, Y.; Nakatani, T.

    2016-01-01

    Conclusion and future work: • JAEA plans trench disposal of U-bearing waste with less than 100 Bq/g. • Two safety measures of trench disposal of U-bearing waste have been discussed taking into account increasing radioactivity over a long period of time. 1. First is to carry out dose assessment of site use scenario by using a conservatively stylized condition. 2. Second is to control the average concentration of U in the trench facilities based on the concept of the existing exposure situation. • We are continuously developing the method for safety measures of near surface disposal of VLLW including U-bearing waste.

  16. Exposure implications for uranium aerosols formed at a new laser enrichment facility: application of the ICRP Respiratory Tract and Systemic Model

    Energy Technology Data Exchange (ETDEWEB)

    Ansorbolo, E.; Hodgson, A.; Stradling, G.N.; Hodgson, S.; Metivier, H.; Henge-Napoli, M.H.; Jarvis, N.S.; Birchall, A

    1998-07-01

    A pilot enrichment facility developed in France employs laser technology. The development of this process has resulted in three different types of aerosols identified as variable mixtures of U{sub metal}+ UO{sub 2} and U{sub 3}O{sub 8}. A procedure is described for assessing intakes and doses after inhalation of these dusts using site and material specific data in conjunction with the most recent ICRP biokinetic models. It is concluded that exposure control could be based on either radiotoxicity or chemical toxicity and that chest monitoring and urine assay could be useful, provided that measurements are made soon after a known acute intake. (author)

  17. Reducing emissions from uranium dissolving

    International Nuclear Information System (INIS)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO x emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO x fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO x emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO 2 which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered

  18. Uranium enrichment in the United States

    International Nuclear Information System (INIS)

    Hill, J.H.; Parks, J.W.

    1975-01-01

    History, improvement programs, status of electrical power availability, demands for uranium enrichment, operating plan for the U. S. enriching facilities, working inventory of enriched uranium, possible factors affecting deviations in the operating plan, status of gaseous diffusion technology, status of U. S. gas centrifuge advances, transfer of enrichment technology, gaseous diffusion--gas centrifuge comparison, new enrichment capacity, U. S. separative work pricing, and investment in nuclear energy are discussed. (LK)

  19. Uranium industry annual, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Uranium industry data collected in the EIA-858 survey provide a comprehensive statistical characterization of annual activities of the industry and include some information about industry plans over the next several years. This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities utility market requirements and related topics

  20. Uranium Industry. Annual 1984

    International Nuclear Information System (INIS)

    Lawrence, M.S.S.

    1985-01-01

    This report provides a statistical description of activities of the US uranium industry during 1984 and includes a statistical profile of the status of the industry at the end of 1984. It is based on the results of an Energy Information Administration (EIA) survey entitled ''Uranium Industry Annual Survey'' (Form EIA-858). The principal findings of the survey are summarized under two headings - Uranium Raw Materials Activities and Uranium Marketing Activities. The first heading covers exploration and development, uranium resources, mine and mill production, and employment. The second heading covers uranium deliveries and delivery commitments, uranium prices, foreign trade in uranium, inventories, and other marketing activities. 32 figs., 48 tabs

  1. Post decommissioning monitoring of uranium mines; a watershed monitoring program based on biological response

    International Nuclear Information System (INIS)

    Russel, C.; Coggan, A.; Ludgate, I.

    2006-01-01

    Rio Algom Limited and Denison Mines own and operated uranium mines in the Elliot Lake area. The mines operated from the late 1950's to the mid 1960's and again for the early 1970's to the 1990's when the mines ceased operations. There are eleven decommissioned mines in the Serpent River watershed. At the time of decommissioning each mine had it's own monitoring program, which had evolved over the operating life of the mine and did not necessarily reflect the objectives associated with the monitoring of decommissioned sites. In order to assess the effectiveness of the decommissioning plans and monitoring the cumulative effects within the watershed, a single watershed monitoring program was developed in 1999: the Serpent River Watershed Monitoring Program which focused on water and sediment quality within the watershed and response of the biological community over time. In order to address other 'source area' monitoring, three complimentary objective-focused programs were developed 1) the In- Basin Monitoring Program, 2) the Source Area Monitoring Program and 3) the TMA Operational Monitoring Program. Through development this program framework and monitoring programs that were objective- focused, more meaningful data has been provided while providing a significant reduction in the cost of monitoring. These programs allow for the reduction in scope over time in response to improvement in the watershed. This talk will describe the development of these programs, their implementation and effectiveness. (author)

  2. Department of Energy depleted uranium recycle

    International Nuclear Information System (INIS)

    Kosinski, F.E.; Butturini, W.G.; Kurtz, J.J.

    1994-01-01

    With its strategic supply of depleted uranium, the Department of Energy is studying reuse of the material in nuclear radiation shields, military hardware, and commercial applications. the study is expected to warrant a more detailed uranium recycle plan which would include consideration of a demonstration program and a program implementation decision. Such a program, if implemented, would become the largest nuclear material recycle program in the history of the Department of Energy. The bulk of the current inventory of depleted uranium is stored in 14-ton cylinders in the form of solid uranium hexafluoride (UF 6 ). The radioactive 235 U content has been reduced to a concentration of 0.2% to 0.4%. Present estimates indicate there are about 55,000 UF 6 -filled cylinders in inventory and planned operations will provide another 2,500 cylinders of depleted uranium each year. The United States government, under the auspices of the Department of Energy, considers the depleted uranium a highly-refined strategic resource of significant value. A possible utilization of a large portion of the depleted uranium inventory is as radiation shielding for spent reactor fuels and high-level radioactive waste. To this end, the Department of Energy study to-date has included a preliminary technical review to ascertain DOE chemical forms useful for commercial products. The presentation summarized the information including preliminary cost estimates. The status of commercial uranium processing is discussed. With a shrinking market, the number of chemical conversion and fabrication plants is reduced; however, the commercial capability does exist for chemical conversion of the UF 6 to the metal form and for the fabrication of uranium radiation shields and other uranium products. Department of Energy facilities no longer possess a capability for depleted uranium chemical conversion

  3. Uranium 2016: Resources, Production and Demand

    International Nuclear Information System (INIS)

    2016-01-01

    Uranium is the raw material used to produce fuel for long-lived nuclear power facilities, necessary for the generation of significant amounts of base-load low-carbon electricity for decades to come. Although a valuable commodity, declining market prices for uranium in recent years, driven by uncertainties concerning evolutions in the use of nuclear power, have led to the postponement of mine development plans in a number of countries and to some questions being raised about future uranium supply. This 26. edition of the 'Red Book', a recognised world reference on uranium jointly prepared by the Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA), provides analyses and information from 49 producing and consuming countries in order to address these and other questions. The present edition provides the most recent review of world uranium market fundamentals and presents data on global uranium exploration, resources, production and reactor-related requirements. It offers updated information on established uranium production centres and mine development plans, as well as projections of nuclear generating capacity and reactor-related requirements through 2035, in order to address long-term uranium supply and demand issues. (authors)

  4. Uranium price reporting systems

    International Nuclear Information System (INIS)

    1987-09-01

    This report describes the systems for uranium price reporting currently available to the uranium industry. The report restricts itself to prices for U 3 O 8 natural uranium concentrates. Most purchases of natural uranium by utilities, and sales by producers, are conducted in this form. The bulk of uranium in electricity generation is enriched before use, and is converted to uranium hexafluoride, UF 6 , prior to enrichment. Some uranium is traded as UF 6 or as enriched uranium, particularly in the 'secondary' market. Prices for UF 6 and enriched uranium are not considered directly in this report. However, where transactions in UF 6 influence the reported price of U 3 O 8 this influence is taken into account. Unless otherwise indicated, the terms uranium and natural uranium used here refer exclusively to U 3 O 8 . (author)

  5. Uranium Industry Annual, 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ''Decommissioning of US Conventional Uranium Production Centers,'' is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2

  6. Uranium Industry Annual, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  7. Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jun-Kai [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401 (China); Hou, Li-An; Zhang, Guang-Hui [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Gu, Ping, E-mail: guping@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2015-04-09

    Highlights: • Dopamine-functionalized SBA-15 (DMS) was developed via a biomimetic coating. • The modification approach was simple, facile and cost-effective. • The DMS was firstly used to remove U(VI) from aqueous solution. • Large adsorption capacity and rapid separation were obtained. - Abstract: A novel dopamine-functionalized mesoporous silica (DMS), synthesized by grafting dopamine onto a mesoporous molecular sieve (SBA-15), was developed as a sorbent to extract U(VI) from aqueous solution. The method used to modify SBA-15 was simple, facile and cost-effective. The DMS was characterized by SEM, TEM, XRD and BET, showing that the material had an ordered mesoporous structure and a large surface area. The effect of contact time, pH, ionic strength, temperature, and solid–liquid ratio on the sorption process was investigated. It was demonstrated that the adsorption of U(VI) by DMS was fast and that it can be described by the pseudo-second order-equation where the equilibrium time was 20 min. Additionally, the adsorption isotherm data were fitted well by the Langmuir model with the maximum adsorption capacity of DMS of 196 mg/g at pH 6.0. Furthermore, the influence of the K{sup +} and Na{sup +} concentrations and solid-to-liquid ratio on the sorption was very weak, and the values of the thermodynamic parameters revealed that the sorption process was exothermic and spontaneous. All the results suggested that the DMS could be used as an excellent adsorbent to remove U(VI) from aqueous solution.

  8. Low-resolution gamma-ray measurements of uranium enrichment

    International Nuclear Information System (INIS)

    Sprinkle, J.K. Jr.; Christiansen, A.; Cole, R.; Collins, M.L.

    1996-01-01

    Facilities that process special nuclear material perform periodic inventories. In bulk facilities that process low-enriched uranium, these inventories and their audits are based primarily on weight and enrichment measurements. Enrichment measurements determine the 211 U weight fraction of the uranium compound from the passive gamma-ray emissions of the sample. Both international inspectors and facility operators rely on the capability to make in-field gamma-ray measurements of uranium enrichment. These users require rapid, portable measurement capability. Some in-field measurements have been biased, forcing the inspectors to resort to high-resolution measurements or mass spectrometry to accomplish their goals

  9. Ore-processing technology and the uranium supply outlook

    International Nuclear Information System (INIS)

    James, H.E.; Simonsen, H.A.

    1978-01-01

    The subject is covered in sections, as follows: the resource base (uranium content of rocks, regional distribution of Western World uranium); ore types (distribution of Western World uranium, by ore types, response to ore-processing); constraints on expansion in traditional uranium areas (defined for this paper as the sandstone deposits of the U.S.A. and the quartz-pebble conglomerates of the Witwatersrand and Elliot Bay areas, all other deposits being referred to as new uranium areas). Sections then follow dealing in detail with the processing of deposits in U.S.A., South Africa, Canada, Niger, Australia, South West Africa, Greenland. More general sections follow on: shale, lignite and coal deposits, calcrete deposits. Finally, there are sections on: uranium as a by-product; uranium from very low-grade resources; constraints on expansion rate for production facilities. (U.K.)

  10. Geomigration model of uranium transfer

    International Nuclear Information System (INIS)

    Vasil'ev, I.A.; Ovchinnikov, N.A.; Chernov, V.V.; Shestakov, A.A.

    2007-01-01

    Data on geologic structure and radiation environment in the vicinity of the tailings storage facility (TSF) of Kara-Balta uranium hydrometallurgical factory in Kyrgyzstan were used to design a mathematical model of physical processes of wind erosion from the surface of TSF. Numerical calculations have been performed to describe prevalence of contamination due to wind erosion in the environs of Kara-Balta [ru

  11. Provision by the uranium and uranium products

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    2005-01-01

    International uranium market is converted from the buyer market into the seller market. The prices of uranium are high and the market attempts to adapt to changing circumstances. The industry of uranium enrichment satisfies the increasing demands but should to increase ots capacities. On the whole the situation is not stable and every year may change the existing position [ru

  12. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  13. Uranium enrichment

    International Nuclear Information System (INIS)

    Mohrhauer, H.

    1982-01-01

    The separation of uranium isotopes in order to enrich the fuel for light water reactors with the light isotope U-235 is an important part of the nuclear fuel cycle. After the basic principals of isotope separation the gaseous diffusion and the centrifuge process are explained. Both these techniques are employed on an industrial scale. In addition a short review is given on other enrichment techniques which have been demonstrated at least on a laboratory scale. After some remarks on the present situation on the enrichment market the progress in the development and the industrial exploitation of the gas centrifuge process by the trinational Urenco-Centec organisation is presented. (orig.)

  14. Development of uranium industry in Romania

    International Nuclear Information System (INIS)

    Iuhas, Tiberiu

    2000-01-01

    The management of the uranium resources is performed in Romania by the National Uranium Company. The tasks to be done are: 1. management and protection of rare and radioactive metal ores in the exploitation areas; 2. mining, preparation, refining and trading the radioactive ores, as well as reprocessing the uranium stock from the uranium concentrate in the national reserve; 3. performing geologic and technologic studies in the exploitation areas; 4. performing studies and projects concerning the maintenance of the present facilities and unearthing new ores; 5. building industrial facilities; 6. carrying out technological transport; 7. importation-exportation operations; 8. performing micro-production activity in experimental research units; 9. personnel training; 10. medical assistance for the personnel; 11. environment protection. The company is organized as follows: 1.three branches for uranium ore mining, located at Suceava, Bihor and Banat; 2. one branch for geologic survey, located at Magurele; 3. one branch for uranium ore preparation and concentration and for refining uranium concentrates, located at Feldioara; 4. One group for mine conservation, closure and ecology, located at Bucuresti. The final product, sintered powder of UO 2 produced at Feldioara plant, was tested in 1994 by the Canadian partner and met successfully the required standards. The Feldioara plant was certified as supplier of raw material for CANDU nuclear fuel production and as such, Romania is the only authorized producer of CANDU nuclear fuel in Europe and the second in the world, after Canada. Maintaining the uranium production in Romania is justified by the existence of uranium ore resources, the declining of natural gas resources, lower costs per kWh for electric nuclear power as compared to fossil-fuel power production, the possibility for Romania to become an important supplier of CANDU nuclear fuel, the low environmental impact and high costs for total shutdown of activity, high

  15. Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution.

    Science.gov (United States)

    Gao, Jun-Kai; Hou, Li-An; Zhang, Guang-Hui; Gu, Ping

    2015-04-09

    A novel dopamine-functionalized mesoporous silica (DMS), synthesized by grafting dopamine onto a mesoporous molecular sieve (SBA-15), was developed as a sorbent to extract U(VI) from aqueous solution. The method used to modify SBA-15 was simple, facile and cost-effective. The DMS was characterized by SEM, TEM, XRD and BET, showing that the material had an ordered mesoporous structure and a large surface area. The effect of contact time, pH, ionic strength, temperature, and solid-liquid ratio on the sorption process was investigated. It was demonstrated that the adsorption of U(VI) by DMS was fast and that it can be described by the pseudo-second order-equation where the equilibrium time was 20 min. Additionally, the adsorption isotherm data were fitted well by the Langmuir model with the maximum adsorption capacity of DMS of 196 mg/g at pH 6.0. Furthermore, the influence of the K(+) and Na(+) concentrations and solid-to-liquid ratio on the sorption was very weak, and the values of the thermodynamic parameters revealed that the sorption process was exothermic and spontaneous. All the results suggested that the DMS could be used as an excellent adsorbent to remove U(VI) from aqueous solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Long-term outlook for global natural uranium and uranium enrichment supply and demand situations after the impact of Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Murakami, Tomoko

    2012-01-01

    In this paper, the authors propose long-term projections of global nuclear power generation, uranium production, and uranium enrichment capacities by region, and estimate the trade flows of natural uranium and uranium enrichment activities in 2020 and 2035. In spite of the rapid nuclear power generation capacity growth expected especially in Asia, the natural uranium and uranium enrichment trade will not be tightened by 2020 due to the projected increase in both natural uranium production and uranium enrichment capacities, which may cause a drop in natural uranium and uranium enrichment prices. Thus, there is a great possibility that the current projects for capacity expansion will be delayed considerably. However, in the 'high-demand scenario', where nuclear expansion will be accelerated due to growing concerns about global warming and energy security issues, additional investments in uranium production and enrichment facilities will be needed by 2035. In Asia, the self-sufficiency ratio for both natural uranium supply and uranium enrichment activities will remain relatively low until 2035. However, the Herfindahl-Hirschman (HH) index of natural uranium and uranium enrichment activity trade to Asia will be lowered considerably up to 2035, indicating that nuclear capacity expansion can contribute to enhancing energy security in Asia. (author)

  17. Issues in uranium availability

    International Nuclear Information System (INIS)

    Schanz, J.J. Jr.; Adams, S.S.; Gordon, R.L.

    1982-01-01

    The purpose of this publication is to show the process by which information about uranium reserves and resources is developed, evaluated and used. The following three papers in this volume have been abstracted and indexed for the Energy Data Base: (1) uranium reserve and resource assessment; (2) exploration for uranium in the United States; (3) nuclear power, the uranium industry, and resource development

  18. Australian uranium industry

    Energy Technology Data Exchange (ETDEWEB)

    Warner, R K

    1976-04-01

    Various aspects of the Australian uranium industry are discussed including the prospecting, exploration and mining of uranium ores, world supply and demand, the price of uranium and the nuclear fuel cycle. The market for uranium and the future development of the industry are described.

  19. Irradiated uranium reprocessing

    International Nuclear Information System (INIS)

    Gal, I.

    1961-12-01

    Task concerned with reprocessing of irradiated uranium covered the following activities: implementing the method and constructing the cell for uranium dissolving; implementing the procedure for extraction of uranium, plutonium and fission products from radioactive uranium solutions; studying the possibilities for using inorganic ion exchangers and adsorbers for separation of U, Pu and fission products

  20. Uranium processing and properties

    CERN Document Server

    2013-01-01

    Covers a broad spectrum of topics and applications that deal with uranium processing and the properties of uranium Offers extensive coverage of both new and established practices for dealing with uranium supplies in nuclear engineering Promotes the documentation of the state-of-the-art processing techniques utilized for uranium and other specialty metals

  1. Recovering uranium from phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Bergeret, M [Compagnie de Produits Chimiques et Electrometallurgiques Pechiney-Ugine Kuhlmann, 75 - Paris (France)

    1981-06-01

    Processes for the recovery of the uranium contained in phosphates have today become competitive with traditional methods of working uranium sources. These new possibilities will make it possible to meet more rapidly any increases in the demand for uranium: it takes ten years to start working a new uranium deposit, but only two years to build a recovery plant.

  2. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Gagne, R.W.; Thomas, D.C.

    1977-01-01

    The status of existing uranium enrichment contracts in the US is reviewed and expected natural uranium requirements for existing domestic uranium enrichment contracts are evaluated. Uncertainty in natural uranium requirements associated with requirements-type and fixed-commitment type contracts is discussed along with implementation of variable tails assay

  3. Uranium enrichment plans

    International Nuclear Information System (INIS)

    Thomas, D.C.; Gagne, R.W.

    1978-01-01

    The following topics are covered: the status of the Government's existing uranium enrichment services contracts, natural uranium requirements based on the latest contract information, uncertainty in predicting natural uranium requirements based on uranium enrichment contracts, and domestic and foreign demand assumed in enrichment planning

  4. French uranium mining sites remediation

    International Nuclear Information System (INIS)

    Roche, M.

    2002-01-01

    Following a presentation of the COGEMA's general policy for the remediation of uranium mining sites and the regulatory requirements, the current phases of site remediation operations are described. Specific operations for underground mines, open pits, milling facilities and confining the milled residues to meet long term public health concerns are detailed and discussed in relation to the communication strategies to show and explain the actions of COGEMA. A brief review of the current remediation situation at the various French facilities is finally presented. (author)

  5. Study of immobilization of waste from treatment of acid waters of a uranium mining facility; Estudo de imobilização de resíduo proveniente de tratamento de águas ácidas de uma instalação de mineração de urânio

    Energy Technology Data Exchange (ETDEWEB)

    Goda, R.T.; Oliveira, A.P. de; Silva, N.C. da; Villegas, R.A.S., E-mail: ricardogoda@gmail.com [Comissão Nacional de Energia Nuclear (LAPOC/CNEN), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas; Ferreira, A.M. [Universidade Federal de Alfenas (ICT/UNIFAL), Poços de Caldas, MG (Brazil). Instituto de Ciência e Tecnologia

    2017-07-01

    This study aimed to produce scientific and technical knowledge aiming at the development of techniques to immobilize the waste generated in the treatment of acid waters in the UTM-INB Caldas uranium mining and processing facility using Portland cement. This residue (calcium diuranate - DUCA) contains uranium compounds and metal hydroxides in a matrix of calcium sulfate. It is observed that this material, in contact with the lake of acid waters of the mine's own pit, undergoes resolubilization and, therefore, changes the quality of the acidic water contained therein, changing the treatment parameters. For the study of immobilization of this residue, the mass of water contained in both the residue deposited in the pit of the mine and in the pulp resulting from the treatment of the acid waters was determined. In addition, different DUCA / CEMENT / WATER ratios were used for immobilization and subsequent mechanical strength and leaching tests. The results showed that in the immobilized samples with 50% cement mass condition, no uranium was detected in the leaching tests, and the mechanical strength at compression was 9.4 MPa, which indicates that more studies are needed, but indicate a good capacity to immobilize uranium in cement.

  6. Uranium industry annual 1985

    International Nuclear Information System (INIS)

    1986-11-01

    This report consists of two major sections. The first addresses uranium raw materials activities and covers the following topics: exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment. The second major section is concerned with the following uranium marketing activities: uranium purchase commitments, uranium prices, procurement arrangements, uranium imports and exports, enrichment services, inventories, secondary market activities, utility market requirements, and related topics. A glossary and appendices are included to assist the reader in interpreting the substantial array of statistical data in this report and to provide background information about the survey

  7. Uranium industry framework

    International Nuclear Information System (INIS)

    Riley, K.

    2008-01-01

    The global uranium market is undergoing a major expansion due to an increase in global demand for uranium, the highest uranium prices in the last 20 years and recognition of the potential greenhouse benefits of nuclear power. Australia holds approximately 27% of the world's uranium resources (recoverable at under US$80/kg U), so is well placed to benefit from the expansion in the global uranium market. Increasing exploration activity due to these factors is resulting in the discovery and delineation of further high grade uranium deposits and extending Australia's strategic position as a reliable and safe supplier of low cost uranium.

  8. Development and performance of on-line uranium analyzers

    International Nuclear Information System (INIS)

    Ofalt, A.E.; O'Rourke, P.E.

    1985-10-01

    A diode-array spectrophotometer and and x-ray fluorescence analyzer were installed online in a full-scale prototype facility to monitor uranium loading and breakthrough of ion exchange columns. Uranium concentrations of 10 ppM in uranyl nitrate solutions can be detected online to improve process control and material accountability. 9 figs

  9. 76 FR 63330 - Policy Regarding Submittal of Amendments for Processing of Equivalent Feed at Licensed Uranium...

    Science.gov (United States)

    2011-10-12

    ... Processing of Equivalent Feed at Licensed Uranium Recovery Facilities AGENCY: Nuclear Regulatory Commission... NRC and Agreement State-licensed uranium recovery site. This action is necessary to correct several... read ``(see Page A2 of SECY-99-011, ``Draft Rulemaking Plan: Domestic Licensing of Uranium and Thorium...

  10. Reduction of uranium hexafluoride to uranium tetrafluoride

    International Nuclear Information System (INIS)

    Chang, I.S.; Do, J.B.; Choi, Y.D.; Park, M.H.; Yun, H.H.; Kim, E.H.; Kim, Y.W.

    1982-01-01

    The single step continuous reduction of uranium hexafluoride (UF 6 ) to uranium tetrafluoride (UF 4 ) has been investigated. Heat required to initiate and maintain the reaction in the reactor is supplied by the highly exothermic reaction of hydrogen with a small amount of elemental fluorine which is added to the uranium hexafluoride stream. When gases uranium hexafluoride and hydrogen react in a vertical monel pipe reactor, the green product, UF 4 has 2.5g/cc in bulk density and is partly contaminated by incomplete reduction products (UF 5 ,U 2 F 9 ) and the corrosion product, presumably, of monel pipe of the reactor itself, but its assay (93% of UF 4 ) is acceptable for the preparation of uranium metal with magnesium metal. Remaining problems are the handling of uranium hexafluoride, which is easily clogging the flowmeter and gas feeding lines because of extreme sensitivity toward moisture, and a development of gas nozzel for free flow of uranium hexafluoride gas. (Author)

  11. Solubility of airborne uranium samples from uranium processing plant

    International Nuclear Information System (INIS)

    Kravchik, T.; Oved, S.; Sarah, R.; Gonen, R.; Paz-Tal, O.; Pelled, O.; German, U.; Tshuva, A.

    2005-01-01

    Full text: During the production and machining processes of uranium metal, aerosols might be released to the air. Inhalation of these aerosols is the main route of internal exposure of workers. To assess the radiation dose from the intake of these uranium compounds it is necessary to know their absorption type, based on their dissolution rate in extracellular aqueous environment of lung fluid. The International Commission on Radiological Protection (ICRP) has assigned UF4 and U03 to absorption type M (blood absorption which contains a 10 % fraction with an absorption rate of 10 minutes and 90 % fraction with an absorption rate of 140 fays) and UO2 and U3O8 to absorption type S (blood absorption rate with a half-time of 7000 days) in the ICRP-66 model.The solubility classification of uranium compounds defined by the ICRP can serve as a general guidance. At specific workplaces, differences can be encountered, because of differences in compounds production process and the presence of additional compounds, with different solubility characteristics. According to ICRP recommendations, material-specific rates of absorption should be preferred to default parameters whenever specific experimental data exists. Solubility profiles of uranium aerosols were determined by performing in vitro chemical solubility tests on air samples taken from uranium production and machining facilities. The dissolution rate was determined over 100 days in a simultant solution of the extracellular airway lining fluid. The filter sample was immersed in a test vial holding 60 ml of simultant fluid, which was maintained at a 37 o C inside a thermostatic bath and at a physiological pH of 7.2-7.6. The test vials with the solution were shaken to simulate the conditions inside the extracellular aqueous environment of the lung as much as possible. The tests indicated that the uranium aerosols samples taken from the metal production and machining facilities at the Nuclear Research Center Negev (NRCN

  12. Uranium - the world picture

    International Nuclear Information System (INIS)

    Silver, J.M.; Wright, W.J.

    1976-01-01

    The world resources of uranium and the future demand for uranium are discussed. The amount of uranium available depends on the price which users are prepared to pay for its recovery. As the price is increased, there is an incentive to recover uranium from lower grade or more difficult deposits. In view of this, attention is drawn to the development of the uranium industry in Australias

  13. Treatment of uranium-containing effluent in the process of metallic uranium parts

    International Nuclear Information System (INIS)

    Yuan Guoqi

    1993-01-01

    The anion exchange method used in treatment of uranium-containing effluent in the process of metallic parts is the subject of the paper. The results of the experiments shows that the uranium concentration in created water remains is less than 10 μg/l when the waste water flowed through 10000 column volume. A small facility with column volume 150 litre was installed and 1500 m 3 of waste water can be cleaned per year. (1 tab.)

  14. Natural uranium

    International Nuclear Information System (INIS)

    Ammerich, Marc; Frot, Patricia; Gambini, Denis-Jean; Gauron, Christine; Moureaux, Patrick; Herbelet, Gilbert; Lahaye, Thierry; Pihet, Pascal; Rannou, Alain

    2014-08-01

    This sheet belongs to a collection which relates to the use of radionuclides essentially in unsealed sources. Its goal is to gather on a single document the most relevant information as well as the best prevention practices to be implemented. These sheets are made for the persons in charge of radiation protection: users, radioprotection-skill persons, labor physicians. Each sheet treats of: 1 - the radio-physical and biological properties; 2 - the main uses; 3 - the dosimetric parameters; 4 - the measurement; 5 - the protection means; 6 - the areas delimitation and monitoring; 7 - the personnel classification, training and monitoring; 8 - the effluents and wastes; 9 - the authorization and declaration administrative procedures; 10 - the transport; and 11 - the right conduct to adopt in case of incident or accident. This sheet deals specifically with natural uranium

  15. Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing

    International Nuclear Information System (INIS)

    Francis, C.W.

    1993-09-01

    To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil's physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques

  16. Uranium and nuclear energy: 1990

    International Nuclear Information System (INIS)

    1991-01-01

    Since the last Symposium of the Uranium Institute in 1989 several major world events have occurred. First there has been an energy glut characterized by low and fairly stable oil prices. Secondly there have been important political developments in Eastern Europe. There are twenty-six papers included in this book; all are indexed separately. The discussions following each session are included in the book but not indexed. The keynote address considers the prospects and challenges for nuclear power. There are three papers on the factors affecting electricity demand and supply, three on the market for uranium, papers on Canadian and Australian uranium policies, five papers on recycling, four on the evolving attitudes to nuclear power especially in the United Kingdom and Japan, three papers on the economics of nuclear power, two on regulatory developments and three on future investment in nuclear power in the USSR, Hungary and Ontario. As well as a symposium summary and list of participants there are two annexes, the first a list of nuclear power plants worldwide, the second a list of uranium production facilities. (UK)

  17. Close-out concepts for the Elliot Lake uranium mining operations

    International Nuclear Information System (INIS)

    Culver, K.B.; Chakravatti, J.L.; Gorber, D.M.; Knapp, R.A.; Davis, J.B.

    1982-01-01

    In the Elliot Lake area, approximately 100 million tonnes of tailings have been generated and deposited in ten separate management areas covering a total of 460 hectares. With continued placement of tailings into land-based management areas, the ultimate combined area covered with tailings would be in the order of 1500 to 2000 hectares. The principal environmental concerns associated with the land-based management areas in the long term (after mining has ceased), as seen by the Canadian regulatory authorities, are the potential of acid generation from pyrite oxidation, and the release and migration of radionuclides into air and water. The development of close-out criteria and concepts, therefore, has focussed on addressing these concerns. A position paper was issued for comment by the Canadian Atomic Energy Control Board on long-term aspects of uranium tailings management. In response, three of the uranium companies, Rio Algom Limited, Denison Mines Limited, and Eldorado Nuclear Limited, have countered with their own position and supported it with the extensive research on close-out procedures that has been carried out on their properties. The companies' position is that regulations should allow for site specific solutions and that institutional control is a valid long-term control option. As radiological loadings to air and water in the long term will be less than during operations, the only long-term concern in Elliot Lake is pyrite oxidation. Research has indicated that pyrite oxidation can be controlled in the upper zone of tailings. A summary of options available to control pyrite oxidation in this upper zone, including vegetation, limestone addition, pyrite removal, and physical cover is presented as well as preliminary cost estimates of each alternative. (author)

  18. Uranium industry annual 1998

    International Nuclear Information System (INIS)

    1999-01-01

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data provides a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ''Uranium Industry Annual Survey'' is provided in Appendix C. The Form EIA-858 ''Uranium Industry Annual Survey'' is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs

  19. Uranium industry annual 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry's activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ''Uranium Industry Annual Survey.'' Data collected on the ''Uranium Industry Annual Survey'' (UIAS) provide a comprehensive statistical characterization of the industry's activities for the survey year and also include some information about industry's plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ''Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,'' is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2

  20. Licensed fuel facility status report: Inventory difference data, July 1, 1990--June 30, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related NRC investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  1. Licensed fuel facility status report: Inventory difference data, July 1987-December 1987

    International Nuclear Information System (INIS)

    1988-09-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  2. Licensed fuel facility status report. Inventory difference data, January-June 1985. Volume 6, No. 1

    International Nuclear Information System (INIS)

    1986-02-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  3. Licensed-fuel-facility status report: inventory difference data, July 1981-December 1981

    International Nuclear Information System (INIS)

    1982-10-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  4. Licensed fuel facility status report. Inventory difference data, July-December 1985. Volume 6, No. 2

    International Nuclear Information System (INIS)

    1986-08-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  5. Licensed fuel facility status report. Inventory difference data, January-June 1983. Volume 4, No. 1

    International Nuclear Information System (INIS)

    1984-03-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, or uranium-233

  6. Licensed fuel facility status report. Inventory difference data, January-June 1982

    International Nuclear Information System (INIS)

    1983-02-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  7. Licensed fuel facility status report. Inventory difference data, July 1983-December 1983. Volume 4, No. 2

    International Nuclear Information System (INIS)

    1984-08-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  8. Licensed fuel facility status report. Inventory difference data, January-June 1984. Volume 5, No. 1

    International Nuclear Information System (INIS)

    1985-04-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or Uranium-233

  9. Licensed fuel facility status report: Inventory difference data, January 1986-June 1986

    International Nuclear Information System (INIS)

    1987-02-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  10. Licensed fuel facility status report: Inventory difference data, January 1987-June 1987

    International Nuclear Information System (INIS)

    1988-03-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  11. Licensed fuel facility status report. Volume 5, No. 2. Inventory difference data, July 1984-December 1984

    International Nuclear Information System (INIS)

    1985-10-01

    NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  12. Determining uranium speciation in contaminated soils by molecular spectroscopic methods: Examples from the Uranium in Soils Integrated Demonstration

    International Nuclear Information System (INIS)

    Allen, P.G.; Berg, J.M.; Chisholm-Brause, C.J.; Conradson, S.D.; Donohoe, R.J.; Morris, D.E.; Musgrave, J.A.; Tait, C.D.

    1994-01-01

    The US Department of Energy's former uranium production facility located at Fernald, OH (18 mi NW of Cincinnati) is the host site for an Integrated Demonstration for remediation of uranium-contaminated soils. A wide variety of source terms for uranium contamination have been identified reflecting the diversity of operations at the facility. Most of the uranium contamination is contained in the top ∼1/2 m of soil, but uranium has been found in perched waters indicating substantial migration. In support of the development of remediation technologies and risk assessment, we are conducting uranium speciation studies on untreated and treated soils using molecular spectroscopies. Untreated soils from five discrete sites have been analyzed. We have found that ∼80--90% of the uranium exists as hexavalent UO 2 2+ species even though many source terms consisted of tetravalent uranium species such as UO 2 . Much of the uranium exists as microcrystalline precipitates (secondary minerals). There is also clear evidence for variations in uranium species from the microscopic to the macroscopic scale. However, similarities in speciation at sites having different source terms suggest that soil and groundwater chemistry may be as important as source term in defining the uranium speciation in these soils. Characterization of treated soils has focused on materials from two sites that have undergone leaching using conventional extractants (e.g., carbonate, citrate) or novel chelators such as Tiron. Redox reagents have also been used to facilitate the leaching process. Three different classes of treated soils have been identified based on the speciation of uranium remaining in the soils. In general, the effective treatments decrease the total uranium while increasing the ratio of U(IV) to U(VI) species

  13. Uranium: a basic evaluation

    International Nuclear Information System (INIS)

    Crull, A.W.

    1978-01-01

    All energy sources and technologies, including uranium and the nuclear industry, are needed to provide power. Public misunderstanding of the nature of uranium and how it works as a fuel may jeopardize nuclear energy as a major option. Basic chemical facts about uranium ore and uranium fuel technology are presented. Some of the major policy decisions that must be made include the enrichment, stockpiling, and pricing of uranium. Investigations and lawsuits pertaining to uranium markets are reviewed, and the point is made that oil companies will probably have to divest their non-oil energy activities. Recommendations for nuclear policies that have been made by the General Accounting Office are discussed briefly

  14. Uranium health physics

    International Nuclear Information System (INIS)

    1980-01-01

    This report contains the papers delivered at the Summer School on Uranium Health Physics held in Pretoria on the 14 and 15 April 1980. The following topics were discussed: uranium producton in South Africa; radiation physics; internal dosimetry and radiotoxicity of long-lived uranium isotopes; uranium monitoring; operational experience on uranium monitoring; dosimetry and radiotoxicity of inhaled radon daughters; occupational limits for inhalation of radon-222, radon-220 and their short-lived daughters; radon monitoring techniques; radon daughter dosimeters; operational experience on radon monitoring; and uranium mill tailings management

  15. Uranium: one utility's outlook

    International Nuclear Information System (INIS)

    Gass, C.B.

    1983-01-01

    The perspective of the Arizona Public Service Company (APS) on the uncertainty of uranium as a fuel supply is discussed. After summarizing the history of nuclear power and the uranium industries, a projection is made for the future uranium market. An uncrtain uranium market is attributed to various determining factors that include international politics, production costs, non-commercial government regulation, production-company stability, and questionable levels of uranium sales. APS offers its solutions regarding type of contract, choice of uranium producers, pricing mechanisms, and aids to the industry as a whole. 5 references, 10 figures, 1 table

  16. Environmental impact of uranium mining and milling

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-08-01

    The author introduces the subject with an overview of the regulatory requirments and philosophy applied to uranium mines and mills. The special attention given to tailings management is highlighted, and a discussion of the basic environmental concerns is concluded with an itemizing of the main tasks facing the AECB. The extent of the environmental impact of uranium mining, milling and waste management is illustrated with specific details pertaining to mines in the Elliot Lake area. The author concludes that the impact on the ground and surface water system is not alarming, and the impact on air quality is not significant beyond a few hundred metres from the mining facilities. The publicly perceived impact is discussed, followed by a rationale for the continued licensing of new uranium mining operations complete with tailings management facilities

  17. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    International Nuclear Information System (INIS)

    Myers, Astasia

    2011-01-01

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  18. Recovery of uranium from crude uranium tetrafluoride

    International Nuclear Information System (INIS)

    Ghosh, S.K.; Bellary, M.P.; Keni, V.S.

    1994-01-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author)

  19. Recovery of uranium from crude uranium tetrafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S K; Bellary, M P; Keni, V S [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    An innovative process has been developed for recovery of uranium from crude uranium tetrafluoride cake. The process is based on direct dissolution of uranium tetrafluoride in nitric acid in presence of aluminium hydroxide and use of solvent extraction for removal of fluorides and other bulk impurities to make uranium amenable for refining. It is a simple process requiring minimum process step and has advantage of lesser plant corrosion. This process can be applied for processing of uranium tetrafluoride generated from various sources like uranium by-product during thorium recovery from thorium concentrate, first stage product of uranium recovery from phosphoric acid by OPPA process and off grade uranium tetrafluoride material. The paper describes the details of the process developed and demonstrated on bench and pilot scale and its subsequent modification arising out of bulky solid waste generation. The modified process uses a lower quantity of aluminium hydroxide by allowing a lower dissolution of uranium per cycle and recycles the undissolved material to the next cycle, maintaining the overall recovery at high level. This innovation has reduced the solid waste generated by a factor of four at the cost of a slightly larger dissolution vessel and its increased corrosion rate. (author). 4 refs., 1 fig., 3 tabs.

  20. Environmental impact of uranium mining and milling

    International Nuclear Information System (INIS)

    Dory, A.B.

    1981-08-01

    The Atomic Energy Control Board is now involved from the early planning stages in the development of uranium mine/mill facilities. As a result, new facilities (including tailings management areas) are designed and developed to meet a high standard. The impact of the mines and tailings areas in the Elliot Lake area on ground and surface waters and air quality is discussed in detail

  1. DOE's Stewardship of Government-Owned Uranium Materials

    International Nuclear Information System (INIS)

    Jackson, J. Dale; Donaldson, Dale E.

    2002-01-01

    Beginning in the 1980's, a significant number of Department of Energy facilities have been shut down and are in the decommissioning process. The shutdown of additional facilities is planned. In addition, during the past several decades, the Department of Energy has loaned nuclear material to a wide variety of private and governmental institutions for research and educational purposes. Subsequent changes in the Department's priorities have reduced the need for nuclear materials to support the Department's programs. Similarly, there has been a reduction in the need for borrowed nuclear materials by organizations and institutions using nuclear materials 'on loan' from the Department. As a result, inventories of uranium material from the Department's facilities and 'on loan' must be removed and returned to the Department. This material is in the form of low enriched uranium (LEU), normal uranium (NU), and depleted uranium (DU) in various forms. This uranium material is located at over one hundred sites within the United States and overseas, including universities and laboratories. Much of this uranium is not needed to support national priorities and programs. The Department of Energy has assumed a stewardship role in managing nuclear materials throughout their life cycle, from acquisition to storage. Surplus uranium has created challenges for DOE in managing and storing the material as well as identifying opportunities for its further use. On behalf of the Department, the Oak Ridge Operations Office has been given the responsibility to implement the Department responsibilities in meeting these challenges and managing the Department's uranium materials. To support this effort, the Office of Nuclear Fuel Security and Uranium Technology within the ORO complex coordinates uranium management functions across the Department of Energy. This coordination provides DOE with a number of important benefits, among which are: consolidated management and storage of uranium; improved

  2. Heap leaching of clay ish uranium ores

    International Nuclear Information System (INIS)

    Gonzalez, E.; Sedano, A.

    1973-01-01

    This paper describes an experimental facility, built near El Lobo mine. In it we study the beneficiation of low-grade uranium ore. The mineral has a great amount of clay and fines. The flow-sheet used has four steps: head leaching, ph-ajustement, ion-exchange and participation. We show, also, the most interesting results. (Author)

  3. 76 FR 58049 - Atomic Safety and Licensing Board; Honeywell International, Inc.; Metropolis Works Uranium...

    Science.gov (United States)

    2011-09-19

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 40-3392-MLA; ASLBP No. 11-910-01-MLA-BD01] Atomic Safety and Licensing Board; Honeywell International, Inc.; Metropolis Works Uranium Conversion Facility... assurance for its Metropolis Works uranium conversion facility in Metropolis, Illinois. \\1\\ LBP-11-19, 74...

  4. 78 FR 23312 - Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National...

    Science.gov (United States)

    2013-04-18

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Inspection Reports Regarding Louisiana Energy Services, National Enrichment Facility, Eunice, New Mexico..., National Enrichment Facility in Eunice, New Mexico, and has authorized the introduction of uranium...

  5. Uranium production

    International Nuclear Information System (INIS)

    Jones, J.Q.

    1981-01-01

    The domestic uranium industry is in a state of stagflation. Costs continue to rise while the market for the product remains stagnant. During the last 12 months, curtailments and closures of mines and mills have eliminated over 5000 jobs in the industry, plus many more in those industries that furnish supplies and services. By January 1982, operations at four mills and the mines that furnish them ore will have been terminated. Other closures may follow, depending on cost trends, duration of current contracts, the degree to which mills have been amortized, the feasibility of placing mines on standby, the grade of the ore, and many other factors. Open-pit mines can be placed on standby without much difficulty, other than the possible cost of restoration before all the ore has been removed. There are a few small, dry, underground mines that could be mothballed; however, the major underground producers are wet sandstone mines that in most cases could not be reopened after a prolonged shutdown; mills can be mothballed for several years. Figure 8 shows the location of all the production centers in operation, as well as those that have operated or are on standby. Table 1 lists the same production centers plus those that have been deferred, showing nominal capacity of conventional mills in tons of ore per calendar day, and the industry production rate for those mills as of October 1, 1981

  6. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Known uranium deposits and the companies involved in uranium mining and exploration in Australia are listed. The status of the development of the deposits is outlined and reasons for delays to mining are given

  7. Uranium in Niger

    International Nuclear Information System (INIS)

    Gabelmann, E.

    1978-03-01

    This document presents government policy in the enhancement of uranium resources, existing mining companies and their productions, exploitation projects and economical outcome related to the uranium mining and auxiliary activities [fr

  8. Price of military uranium

    International Nuclear Information System (INIS)

    Klimenko, A.V.

    1998-01-01

    The theoretical results about optimum strategy of use of military uranium confirmed by systems approach accounts are received. The numerical value of the system approach price of the highly enriched military uranium also is given

  9. Uranium market and resources

    International Nuclear Information System (INIS)

    Capus, G.; Arnold, Th.

    2004-01-01

    The controversy about the extend of the uranium resources worldwide is still important, this article sheds some light on this topic. Every 2 years IAEA and NEA (nuclear energy agency) edit an inventory of uranium resources as reported by contributing countries. It appears that about 4.6 millions tons of uranium are available at a recovery cost less than 130 dollars per kg of uranium and a total of 14 millions tons of uranium can be assessed when including all existing or supposed resources. In fact there is enough uranium to sustain a moderate growth of the park of nuclear reactors during next decades and it is highly likely that the volume of uranium resources can allow a more aggressive development of nuclear energy. It is recalled that a broad use of the validated breeder technology can stretch the durability of uranium resources by a factor 50. (A.C.)

  10. Uranium from phosphate ores

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant

  11. Industrial realities: Uranium

    International Nuclear Information System (INIS)

    Thiron, H.

    1990-01-01

    In this special issue are examined ores and metals in France and in the world for 1988. The chapter on uranium gives statistical data on the uranium market: Demand, production, prices and reserves [fr

  12. Brazilian uranium deposits

    International Nuclear Information System (INIS)

    Santos, L.C.S. dos.

    1985-01-01

    Estimatives of uranium reserves carried out in Figueira, Itataia, Lagoa Real and Espinharas, in Brazil are presented. The samples testing allowed to know geological structures, and the characteristics of uranium mineralization. (M.C.F.) [pt

  13. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The mining of uranium in Australia is criticised in relation to it's environmental impact, economics and effects on mine workers and Aborigines. A brief report is given on each of the operating and proposed uranium mines in Australia

  14. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  15. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    International Nuclear Information System (INIS)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers

  16. Kvanefjeld uranium project

    International Nuclear Information System (INIS)

    1983-02-01

    This report contains a description and an investment estimate for the infrastructure connected with establishing uranium mining activities at Narssaq. The infrastructure comprises dwellings for employess, etc., personnel and cargo transport, incl. harbours, primary storage facilities and supply routes. The report does not cover the production plant, ore and tailings transport systems, energy supply, nor workshop and administration buildings. The report assumes that the Greenland mining enterprise will employ approx. 280 persons in mining and administration, and approx. 300 persons in processing plants, etc. An increased population will also provide increased demand for shops, institutions and facilities for leisure activities. It is expected that areas will be reserved for local shops, and one or two day-care institutions for children will be built. The increase in cargo transport to and from production plants and in connection with population growth will necessitate the construction of new harbours and/or extension of the existing harbour in Narssaq. The annual volumes of coal and chemical products in bulk for the processing plant will amount to approx. 160,000 t. Approx. 8,000 tons a year will be needed to satisfy the requirements of both mining and the increased population. The present volume passing through the harbour in Narssaq is approx. 7,000 t. (EG)

  17. Study of reactions for the production of uranium titrafluoride and uranium hexafluoride

    International Nuclear Information System (INIS)

    Guzella, M.F.R.

    1985-01-01

    The main production processes of uranium hexafluoride in pilot plants and industrial facilities are described. The known reactions confirmed in laboratory experiments that lead to Uf 6 or other intermediate fluorides are discussed. For the purpose of determining a thermodinamically feasible reaction involving the sulfur hexafluoride as fluorinating agent, a mock-up facility was designed and constructed as a part of the R and D work planned at the CDTN (Nuclebras Center for Nuclear Technology Development). IN the uranium tatrafluoride synthesis employing U 3 O 8 and SF 6 several experimental parameters are studied. The reaction time, gasflow, temperature and stoechiometic relations among reagents are described in detail. (Author) [pt

  18. Uranium mining in Australia

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    Western world requirements for uranium based on increasing energy consumption and a changing energy mix, will warrant the development of Australia's resources. By 1985 Australian mines could be producing 9500 tonnes of uranium oxide yearly and by 1995 the export value from uranium could reach that from wool. In terms of benefit to the community the economic rewards are considerable but, in terms of providing energy to the world, Australias uranium is vital

  19. Radiation damage of uranium

    International Nuclear Information System (INIS)

    Lazarevic, Dj.

    1966-11-01

    Study of radiation damage covered the following: Kinetics of electric resistance of uranium and uranium alloy with 1% of molybdenum dependent on the second phase and burnup rate; Study of gas precipitation and diffusion of bubbles by transmission electron microscopy; Numerical analysis of the influence of defects distribution and concentration on the rare gas precipitation in uranium; study of thermal sedimentation of uranium alloy with molybdenum; diffusion of rare gas in metal by gas chromatography method

  20. Bicarbonate leaching of uranium

    International Nuclear Information System (INIS)

    Mason, C.

    1998-01-01

    The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented

  1. Bicarbonate leaching of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.

    1998-12-31

    The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented.

  2. Uranium in fossil bones

    International Nuclear Information System (INIS)

    Koul, S.L.

    1978-01-01

    An attempt has been made to determine the uranium content and thus the age of certain fossil bones Haritalyangarh (Himachal Pradesh), India. The results indicate that bones rich in apatite are also rich in uranium, and that the radioactivity is due to radionuclides in the uranium series. The larger animals apparently have a higher concentration of uranium than the small. The dating of a fossil jaw (elephant) places it in the Pleistocene. (Auth.)

  3. Method for converting uranium oxides to uranium metal

    International Nuclear Information System (INIS)

    Duerksen, W.K.

    1988-01-01

    A method for converting uranium oxide to uranium metal is described comprising the steps of heating uranium oxide in the presence of a reducing agent to a temperature sufficient to reduce the uranium oxide to uranium metal and form a heterogeneous mixture of a uranium metal product and oxide by-products, heating the mixture in a hydrogen atmosphere at a temperature sufficient to convert uranium metal in the mixture to uranium hydride, cooling the resulting uranium hydride-containing mixture to a temperature sufficient to produce a ferromagnetic transition in the uranium hydride, magnetically separating the cooled uranium hydride from the mixture, and thereafter heating the separated uranium hydride in an inert atmosphere to a temperature sufficient to convert the uranium hydride to uranium metal

  4. Radiological safety training for uranium facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This handbook contains recommended training materials consistent with DOE standardized core radiological training material. These materials consist of a program management guide, instructor`s guide, student guide, and overhead transparencies.

  5. Uranium Mill and ISL Facility Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — An Excel database on NRC and Agreement State licensed mills providing status, locational/operational/restoration data, maps, and environmental reports including...

  6. Microbial accumulation of uranium

    International Nuclear Information System (INIS)

    Zhang Wei; Dong Faqin; Dai Qunwei

    2005-01-01

    The mechanism of microbial accumulation of uranium and the effects of some factors (including pH, initial uranium concentration, pretreatment of bacteria, and so on) on microbial accumulation of uranium are discussed briefly. The research direction and application prospect are presented. (authors)

  7. Uranium energy dependence

    International Nuclear Information System (INIS)

    Erkes, P.

    1981-06-01

    Uranium supply and demand as projected by the Uranium Institute is discussed. It is concluded that for the industrialized countries, maximum energy independence is a necessity. Hence it is necessary to achieve assurance of supply for uranium used in thermal power reactors in current programs and eventually to move towards breeders

  8. Australian uranium today

    International Nuclear Information System (INIS)

    Fisk, B.

    1978-01-01

    The subject is covered in sections, entitled: Australia's resources; Northern Territory uranium in perspective; the government's decision [on August 25, 1977, that there should be further development of uranium under strictly controlled conditions]; Government legislation; outlook [for the Australian uranium mining industry]. (U.K.)

  9. Uranium resources, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The specific character of uranium as energy resources, the history of development of uranium resources, the production and reserve of uranium in the world, the prospect regarding the demand and supply of uranium, Japanese activity of exploring uranium resources in foreign countries and the state of development of uranium resources in various countries are reported. The formation of uranium deposits, the classification of uranium deposits and the reserve quantity of each type are described. As the geological environment of uranium deposits, there are six types, that is, quartz medium gravel conglomerate deposit, the deposit related to the unconformity in Proterozoic era, the dissemination type magma deposit, pegmatite deposit and contact deposit in igneaus rocks and metamorphic rocks, vein deposit, sandstone type deposit and the other types of deposit. The main features of respective types are explained. The most important uranium resources in Japan are those in the Tertiary formations, and most of the found reserve belongs to this type. The geological features, the state of yield and the scale of the deposits in Ningyotoge, Tono and Kanmon Mesozoic formation are reported. Uranium minerals, the promising districts in the world, and the matters related to the exploration and mining of uranium are described. (Kako, I.)

  10. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  11. Selective leaching of uranium from uranium-contaminated soils: Progress report 1

    International Nuclear Information System (INIS)

    Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

    1993-02-01

    Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60 degree C) or long extraction times (23 h). Adding KMnO 4 in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium

  12. Nuclear Materials Management in a Recovery Facility for Unirradiated Enriched Uranium; Gestion des Matieres Nucleaires dans une Installation de Recuperation d'Uranium Enrichi Non Irradie; Administrativno-khozyajstvennyj uchet yadernykh materialov na ustanovke po regeneratsii neobluchennogo obogashchennogo urana; Administracion de Materiales Nucleares en una Planta de Recuperacion para Uranio Enriquecido No Irradiado

    Energy Technology Data Exchange (ETDEWEB)

    Jasny, G. R. [Union Carbide Corporation, Oak Ridge, TN (United States)

    1966-02-15

    The United States Atomic Energy Commission's Y-12 Plant, in Oak Ridge, Tennessee, has been processing and recovering various forms of unirradiated enriched uranium for over twenty years. Today, the Y-12 recovery facilities consist of a semi-continuous train of unit operations including dissolution, combustion, evaporation, extraction, denitration, and hydrofluorination. The processing and storage equipment is of restricted geometry and has a combined capacity of several hundred kilograms of enriched Uranium per month. Feed to the recovery operation comes both from the Plant and from other USAEC installations in the United States. This feed has included, at one time or another, practically every type of unirradiated enriched uranium scrap. Physical control is maintained successfully by the following techniques: 1. Careful design of equipment to permit cleaning and sampling and to minimize material trapping; 2. Continuous monitoring of all discards and waste streams including sewer and stack effluents and contaminated discards; 3. Periodic physical inventories; 4. Careful sampling and analysis of all external feed streams and product streams; 5. Stringent control of the quality of analytical measurements and of sampling; 6. Assignment of the responsibility for material control to operating personnel rather than to accounting personnel; 7. Careful indoctrination of operating personnel. Information input to the nuclear material accounting system is achieved by means of a paper flow closely paralleling the physical flow of material, i.e. batch identity is maintained by means of individual batch cards and batch disposition is signalled by transfer of the batch card to the nuclear material accounting department. Most accounting operations are performed on electronic data-processing equipment. In addition to the records and calculations required for material balances, historical records of hold-up and concentration are kept to detect anomalies in input-output or inventory

  13. World uranium production and demand: A review

    International Nuclear Information System (INIS)

    Tauchid, M.; Mueller Kahle, E.

    1993-01-01

    Despite the growing public concern on the use of nuclear energy, nuclear power generation capacity in the world is expected to follow a modest, but positive growth at least during the next two decades. Uranium production needed to fuel these reactors has been below demand since 1985. The WOCA production figure for 1991 is in the order of 27,000 tonnes U which is 39% below the peak production of 1980. With the exception of Australia, all other countries produced less uranium than in the previous year. It is expected that the production figure for 1992 will shrink even further to about 23,000 tonnes U. In-situ leaching uranium production contributed about 16% to the 1991 world production figure, most of which came from Eastern Europe and Central Asia. With the closing of a number of production facilities the relative contribution of in-situ leaching to the world uranium production is expected to grow. Only about 60% of WOCA's reactor related uranium demand for 1991 was supplied from its own production. The remaining 40% was filled from existing inventories and imports from the Russian Federation and China. The estimated gap between the world uranium production and reactor related demand for 1991 is in the order 10,900 tones U or 19.7%. The cumulative requirement for the world reactor related demand to the year 2010 has been estimated to be about 1,270,000 tonnes U. (author). 6 refs, 10 figs

  14. Microbial transformation of uranium in wastes

    International Nuclear Information System (INIS)

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.; Cline, J.E.

    1989-01-01

    Contamination of soils, water, and sediments by radionuclides and toxic metals from the disposal of uranium processing wastes is a major national concern. Although much is known about the physico- chemical aspects of U, we have little information on the effects of aerobic and anaerobic microbial activities on the mobilization or immobilization of U and other toxic metals in mixed wastes. In order to understand the mechanisms of microbial transformations of uranium, we examined a contaminated pond sediment and a sludge sample from the uranium processing facility at Y-12 Plant, Oak Ridge, TN. The uranium concentration in the sediment and sludge samples was 923 and 3080 ug/g dry wt, respectively. In addition to U, the sediment and sludge samples contained high levels of toxic metals such as Cd, Cr, Cu, Hg, Pb, Ni, and Zn. The association of uranium with the various mineral fractions of the sediment and sludge was determined by selective chemical extraction techniques. Uranium was associated to varying degrees with the exchangeable carbonate, iron oxide, organic, and inert fractions in both samples. Initial results in samples amended with carbon and nitrogen indicate immobilization of U due to enhanced indigenous microbial activity under anaerobic conditions. 23 refs., 4 figs., 5 tabs

  15. Uranium isotopic composition and uranium concentration in special reference material SRM A (uranium in KCl/LiCl salt matrix)

    International Nuclear Information System (INIS)

    Graczyk, D.G.; Essling, A.M.; Sabau, C.S.; Smith, F.P.; Bowers, D.L.; Ackerman, J.P.

    1997-07-01

    To help assure that analysis data of known quality will be produced in support of demonstration programs at the Fuel Conditioning Facility at Argonne National Laboratory-West (Idaho Falls, ID), a special reference material has been prepared and characterized. Designated SRM A, the material consists of individual units of LiCl/KCl eutectic salt containing a nominal concentration of 2.5 wt. % enriched uranium. Analyses were performed at Argonne National Laboratory-East (Argonne, IL) to determine the uniformity of the material and to establish reference values for the uranium concentration and uranium isotopic composition. Ten units from a batch of approximately 190 units were analyzed by the mass spectrometric isotope dilution technique to determine their uranium concentration. These measurements provided a mean value of 2.5058 ± 0.0052 wt. % U, where the uncertainty includes estimated limits to both random and systematic errors that might have affected the measurements. Evidence was found of a small, apparently random, non-uniformity in uranium content of the individual SRM A units, which exhibits a standard deviation of 0.078% of the mean uranium concentration. Isotopic analysis of the uranium from three units, by means of thermal ionization mass spectrometry with a special, internal-standard procedure, indicated that the uranium isotopy is uniform among the pellets with a composition corresponding to 0.1115 ± 0.0006 wt. % 234 U, 19.8336 ± 0.0059 wt. % 235 U, 0.1337 ± 0.0006 wt. % 236 U, and 79.9171 ± 0.0057 wt. % 238 U

  16. Facility effluent monitoring plan determinations for the 200 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-11-01

    The following facility effluent monitoring plan determinations document the evaluations conducted for the Westinghouse Hanford Company 200 Area facilities (chemical processing, waste management, 222-S Laboratory, and laundry) on the Hanford Site in south central Washington State. These evaluations determined the need for facility effluent monitoring plans for the 200 Area facilities. The facility effluent monitoring plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438 (WHC 1991). The Plutonium/Uranium Extraction Plant and UO 3 facility effluent monitoring plan determinations were prepared by Los Alamos Technical Associates, Richland, Washington. The Plutonium Finishing Plant, Transuranic Waste Storage and Assay Facility, T Plant, Tank Farms, Low Level Burial Grounds, and 222-S Laboratory determinations were prepared by Science Applications International Corporation of Richland, Washington. The B Plant Facility Effluent Monitoring Plan Determination was prepared by ERCE Environmental Services of Richland, Washington

  17. Radiological aspects of in situ uranium recovery

    International Nuclear Information System (INIS)

    BROWN, STEVEN H.

    2007-01-01

    In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium in situ leaching in situ recovery (ISL / ISR), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and may make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since 1975. Solution mining involves the pumping of groundwater, fortified with oxidizing and complexing agents into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant. Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which Radon gas is evolved in

  18. Uranium ore processing in Spain

    International Nuclear Information System (INIS)

    Josa, J.M.

    1976-01-01

    The paper presents a review of the Spanish needs of uranium concentrates and uranium ore processing technology and trends in Spain. Spain produces approximately 200t U 3 O 8 /a at two facilities. One plant in the south (Andujar, Jaen) can obtain 70t U 3 O 8 /a and uses a conventional acid leaching process with countercurrent solvent extraction. A second plant, situated in the west (Ciudad Rodrigo, Salamanca) has started in 1975 and has a capacity of 120-130t U 3 O 8 /a, using acid heap leaching and solvent extraction. There is another experimental facility (Don Benito, Badajoz) scheduled to start in 1976 and expected to produce about 25-35t U 3 O 8 /a as a by-product of the research work. For the near future (1978) it is hoped to increase the production with: (a) A new conventional acid leaching/solvent extraction plant in Ciudad Rodrigo; its tentative capacity is fixed at 550t U 3 O 8 /a. (b) A facility in the south, to recover about 130t U 3 O 8 /a from phosphoric acid. (c) Several small mobile plants (30t U 3 O 8 /a per plant); these will be placed near small and isolated mines. The next production increase (1979-1980) will come with the treatment of sandstones (Guadalajara and Cataluna) and lignites(Cataluna); this is being studied. There are also research programmes to study the recovery of uranium from low-grade ores (heap, in-situ and bacterial leaching) and from other industries. (author)

  19. Continued Multicolumns Bioleaching for Low Grade Uranium Ore at a Certain Uranium Deposit

    Directory of Open Access Journals (Sweden)

    Gongxin Chen

    2016-01-01

    Full Text Available Bioleaching has lots of advantages compared with traditional heap leaching. In industry, bioleaching of uranium is still facing many problems such as site space, high cost of production, and limited industrial facilities. In this paper, a continued column bioleaching system has been established for leaching a certain uranium ore which contains high fluoride. The analysis of chemical composition of ore shows that the grade of uranium is 0.208%, which is lower than that of other deposits. However, the fluoride content (1.8% of weight is greater than that of other deposits. This can be toxic for bacteria growth in bioleaching progress. In our continued multicolumns bioleaching experiment, the uranium recovery (89.5% of 4th column is greater than those of other columns in 120 days, as well as the acid consumption (33.6 g/kg. These results indicate that continued multicolumns bioleaching technology is suitable for leaching this type of ore. The uranium concentration of PLS can be effectively improved, where uranium recovery can be enhanced by the iron exchange system. Furthermore, this continued multicolumns bioleaching system can effectively utilize the remaining acid of PLS, which can reduce the sulfuric acid consumption. The cost of production of uranium can be reduced and this benefits the environment too.

  20. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    Judge, Elizabeth J. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Barefield, James E., E-mail: jbarefield@lanl.gov [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Berg, John M. [Manufacturing Engineering and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Clegg, Samuel M.; Havrilla, George J.; Montoya, Velma M.; Le, Loan A.; Lopez, Leon N. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines. - Highlights: • LIBS analysis of mixed actinide samples: depleted uranium oxide and thorium oxide • LIBS analysis of actinide samples in powder form on carbon adhesive discs • Detection of uranium in a complex matrix (uranium ore) as a precursor to analyzing uranium in environmental samples.

  1. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  2. PROCESS OF RECOVERING URANIUM

    Science.gov (United States)

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  3. Physico-chemical and radiological characterization of uranium tailings from Tummalapalle uranium mining site

    International Nuclear Information System (INIS)

    Patra, A.C.; Sahoo, S.K.; Lenka, P.; Gupta, Anil; Jha, S.K.; Tripathi, R.M.; Molla, S.; Rana, B.K.

    2018-01-01

    Mining of uranium bearing minerals is essential for the extraction of uranium to meet the power requirements of India. Mining and milling activities produce large quantities of low active tailings, as wastes, which are contained in Tailings Ponds. The nature of tailings depends on the mineralogy of ore and host rock and their quantity depends on the configuration of the ore body and mining methods. The mobility of an element from these tailings depends on elemental concentration, pH, particle size, cation exchange capacity, bulk density and porosity of the tailings etc. This necessitates complete characterisation of the tailings. In this paper we aim to characterize the uranium mill tailings generated from Tummalapalle uranium mining facility in Kadappa district, Andhra Pradesh, India

  4. Safety of uranium enrichment plant

    International Nuclear Information System (INIS)

    Yonekawa, Shigeru; Morikami, Yoshio; Morita, Minoru; Takahashi, Tsukasa; Tokuyasu, Takashi.

    1991-01-01

    With respect to safety evaluation of the gas centrifuge enrichment facility, several characteristic problems are described as follows. Criticality safety in the cascade equipments can be obtained to maintain the enrichment of UF 6 below 5 %. External radiation dose equivalent rate of the 30B cylinder is low enough, the shield is not necessary. Penetration ratio of the two-stage HEPA filters for UF 6 aerosol is estimated at 10 -9 . From the experimental investigation, vacuum tightness is not damaged by destruction of gas centrifuge rotor. Carbon steel can be used for uranium enrichment equipments under the condition below 100degC. (author)

  5. Method for converting uranium oxides to uranium metal

    Science.gov (United States)

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  6. Uranium speciation in plants

    International Nuclear Information System (INIS)

    Guenther, A.; Bernhard, G.; Geipel, G.; Reich, T.; Rossberg, A.; Nitsche, H.

    2003-01-01

    Detailed knowledge of the nature of uranium complexes formed after the uptake by plants is an essential prerequisite to describe the migration behavior of uranium in the environment. This study focuses on the determination of uranium speciation after uptake of uranium by lupine plants. For the first time, time-resolved laser-induced fluorescence spectroscopy and X-ray absorption spectroscopy were used to determine the chemical speciation of uranium in plants. Differences were detected between the uranium speciation in the initial solution (hydroponic solution and pore water of soil) and inside the lupine plants. The oxidation state of uranium did not change and remained hexavalent after it was taken up by the lupine plants. The chemical speciation of uranium was identical in the roots, shoot axis, and leaves and was independent of the uranium speciation in the uptake solution. The results indicate that the uranium is predominantly bound as uranyl(VI) phosphate to the phosphoryl groups. Dandelions and lamb's lettuce showed uranium speciation identical to lupine plants. (orig.)

  7. Review of experience gained in fabricating nuclear grade uranium and thorium compounds and their analytical quality control at the Instituto de Energia Atomica, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Abrao, A.; Franca Junior, J.M.; Ikuta, A.

    1977-01-01

    The main activities developed at 'Instituto de Energia Atomica' Sao Paulo, Brazil, on the recovery of uranium from ores, the purification of uranium and thorium raw concentrates and their transformation in nuclear grade compounds, are reviewed. The design and assemble of pilot facilities for ammonium diuranate (ADV) uranium tetrafluoride, uranium trioxide, uranium oxide microspheres, uranyl nitrate denitration, uranim hexafluoride and thorium compounds are discussed. The establishment of analytical procedures are emphasized [pt

  8. The uranium production cycle and the environment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    issues and performance in several countries; problems of acid rock drainage at uranium mine sites; national examples of environmental impact assessment in the uranium industry; natural background radioactivity of the earth's surface at and away from uranium production facilities; technology and the uranium industry; environmental design aspects of uranium mines and mills; design, management and closure of uranium tailings facilities; national experience with management and disposal of liquid and solid wastes from uranium mining and milling; national experience with treatment and restoration of waste water from both conventional and in situ leach uranium mining; safe management of radioactive waste from mining and milling activities; evolving regulation and rehabilitation standards for uranium recovery operations; national experience with regulation of uranium production. This publication contains 71 individual papers presented at the symposium. Each of the papers was indexed separately.

  9. The uranium production cycle and the environment. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    and performance in several countries; problems of acid rock drainage at uranium mine sites; national examples of environmental impact assessment in the uranium industry; natural background radioactivity of the earth's surface at and away from uranium production facilities; technology and the uranium industry; environmental design aspects of uranium mines and mills; design, management and closure of uranium tailings facilities; national experience with management and disposal of liquid and solid wastes from uranium mining and milling; national experience with treatment and restoration of waste water from both conventional and in situ leach uranium mining; safe management of radioactive waste from mining and milling activities; evolving regulation and rehabilitation standards for uranium recovery operations; national experience with regulation of uranium production. This publication contains 71 individual papers presented at the symposium. Each of the papers was indexed separately

  10. Environmental assessment in the uranium industry

    International Nuclear Information System (INIS)

    Frost, S.E.

    2000-01-01

    The paper examines the subject matter to be dealt with in environmental impact assessments for uranium production facilities, the development of environmental impact statements and the processes used for assessing projects. Different types of regulatory process used to assess projects are described, using Canadian and Australian examples. Some of the techniques used in developing environmental assessments are described. Public participation, including that of special interest groups, is discussed. Some examples of assessments are examined, particularly looking at recent assessments for uranium mining projects in Canada. Trends in environmental assessment are described, using examples from a number of different projects over the past 25 years. Some recommendations for the future are offered. (author)

  11. Environmental assessment in the uranium industry

    International Nuclear Information System (INIS)

    Frost, S.E.

    2002-01-01

    The paper examines the subject matter to be dealt with in environmental impact assessments for uranium production facilities, the development of environmental impact statements and the processes used for assessing projects. Different types of regulatory process used to assess projects are described, using Canadian and Australian examples. Some of the techniques used in developing environmental assessments are described. Public participation, including that of special interest groups, is discussed. Some examples of assessments are examined, particularly looking at recent assessments for uranium mining projects in Canada. Trends in environmental assessment are described, using examples from a number of different projects over the past 25 years. Some recommendations for the future are offered. (author)

  12. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...

  13. Uranium-mill appraisal program

    International Nuclear Information System (INIS)

    Everett, R.J.; Cain, C.L.

    1982-08-01

    The results of special team appraisals at NRC-licensed uranium mills in the period May to November 1981 are reported. Since the Three Mile Island accident, NRC management has instituted a program of special team appraisals of radiation protection programs at certain NRC-licensed facilities. These appraisals were designed to identify weaknesses and strengths in NRC-licensed programs, including those areas not covered by explicit regulatory requirements. The regulatory requirements related to occupational radiation protection and environmental monitoring at uranium mills have been extensively upgraded in the past few years. In addition, there was some NRC staff concern with respect to the effectiveness of NRC licensing and inspection programs. In response to this concern and to changes in mill requirements, the NRC staff recommended that team appraisals be conducted at mills to determine the adequacy of mill programs, the effectiveness of the new requirements, and mill management implementation of programs and requirements. This report describes the appraisal scope and methodology as well as summary findings and conclusions. Significant weaknesses identified during the mill appraisals are discussed as well as recommendations for improvements in uranium mill programs and mill licensing and inspection

  14. Uranium enrichment. Technology, economics, capacity

    International Nuclear Information System (INIS)

    Voigt, W.R. Jr.; Saire, D.E.; Gestson, D.K.; Peske, S.E.; Vanstrum, P.R.

    1983-01-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R+D efforts on various processes. (author)

  15. Plutonium in depleted uranium penetrators

    International Nuclear Information System (INIS)

    McLaughlin, J.P.; Leon-Vintro, L.; Smith, K.; Mitchell, P.I.; Zunic, Z.S.

    2002-01-01

    Depleted Uranium (DU) penetrators used in the recent Balkan conflicts have been found to be contaminated with trace amounts of transuranic materials such as plutonium. This contamination is usually a consequence of DU fabrication being carried out in facilities also using uranium recycled from spent military and civilian nuclear reactor fuel. Specific activities of 239+240 Plutonium generally in the range 1 to 12 Bq/kg have been found to be present in DU penetrators recovered from the attack sites of the 1999 NATO bombardment of Kosovo. A DU penetrator recovered from a May 1999 attack site at Bratoselce in southern Serbia and analysed by University College Dublin was found to contain 43.7 +/- 1.9 Bq/kg of 239+240 Plutonium. This analysis is described. An account is also given of the general population radiation dose implications arising from both the DU itself and from the presence of plutonium in the penetrators. According to current dosimetric models, in all scenarios considered likely ,the dose from the plutonium is estimated to be much smaller than that due to the uranium isotopes present in the penetrators. (author)

  16. Uranium enrichment: technology, economics, capacity

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Jr., W. R.; Vanstrum, P. R.; Saire, D. E.; Gestson, D. K.; Peske, S. E.

    1982-08-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R and D efforts on various processes.

  17. Uranium enrichment: technology, economics, capacity

    International Nuclear Information System (INIS)

    Voigt, W.R. Jr.; Vanstrum, P.R.; Saire, D.E.; Gestson, D.K.; Peske, S.E.

    1982-01-01

    Large-scale enrichment of uranium has now been carried out for 40 years. While the gaseous diffusion process was the original choice of several countries and continues today to provide the major component of the world production of separative work, the last two decades have witnessed the development of a number of alternative processes for enrichment. These processes, which are being studied and deployed around the world, offer a wide range of technical and economic characteristics which will be useful in assuring adequate capacity to meet projected reactor fuel market needs through the rest of this century at competitive prices. With present uncertainties in future enriched uranium needs, it is apparent that flexibility in the deployment and operation of any enrichment process will be one of the prime considerations for the future. More economical production of separative work not only can have a beneficial impact on reactor fuel costs, but also tends to conserve natural uranium resources. This paper reviews the world scene in the enrichment component of the fuel cycle, including existing or planned commercial-scale facilities and announced R and D efforts on various processes

  18. Licensed-fuel-facility status report: inventory difference data, July 1982-December 1982. Vol. 3, No. 2

    International Nuclear Information System (INIS)

    1983-07-01

    NRC is committed to the periodic publication of licensed fuel facilities inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233

  19. Radiation monitoring of uranium workers

    International Nuclear Information System (INIS)

    1998-12-01

    In order to manage radiological hazards in the workplace, it is necessary to have reliable measurements of workplace radiation levels and estimates of exposures and doses to workers. Over the past several years there have been many changes not only to the science of monitoring and dose assessment, but also to the regulatory framework. New International Commission on Radiological Protection (ICRP) recommendations on dose in ICRP Publication 60 (1991) and the implications of the ICRP's new respiratory tract model in ICRP Publication 66 (1994) are of particular importance. In addition, triggered by the act establishing the Canadian Nuclear Safety Commission (CNSC), which will replace the Atomic Energy Control Board (AECB), there is considerable activity in the review and development of regulatory guidance. Concurrent with these activities is the introduction of innovative mining procedures in Saskatchewan in order to extract uranium ore of particularly high grade. In view of these developments, the ACRP considered that a formal review of current monitoring practices would benefit both the CNSC and its licensees. In this report, 'uranium workers' refers to workers at uranium mines and mills, and workers at natural-uranium refineries, conversion, and fuel fabrication facilities; issues relating to long-term tailings management and to the handling of enriched materials are not addressed in this document. The report will have some relevance to workers in non-uranium mines and in industries handling naturally occurring radioactive materials (NORM) since, in some circumstances, these activities can present similar workplace radiation hazards. The report outlines the radiological hazards encountered in the Canadian uranium industry, and reviews current radiological monitoring practices and options; appendices include a glossary, a more technical discussion of monitoring methods, and an examination of errors and uncertainties in measurements of radon progeny and long

  20. Facility transition instruction

    International Nuclear Information System (INIS)

    Morton, M.R.

    1997-01-01

    The Bechtel Hanford, Inc. facility transition instruction was initiated in response to the need for a common, streamlined process for facility transitions and to capture the knowledge and experience that has accumulated over the last few years. The instruction serves as an educational resource and defines the process for transitioning facilities to long-term surveillance and maintenance (S and M). Generally, these facilities do not have identified operations missions and must be transitioned from operational status to a safe and stable configuration for long-term S and M. The instruction can be applied to a wide range of facilities--from process canyon complexes like the Plutonium Uranium Extraction Facility or B Plant, to stand-alone, lower hazard facilities like the 242B/BL facility. The facility transition process is implemented (under the direction of the US Department of Energy, Richland Operations Office [RL] Assistant Manager-Environmental) by Bechtel Hanford, Inc. management, with input and interaction with the appropriate RL division and Hanford site contractors as noted in the instruction. The application of the steps identified herein and the early participation of all organizations involved are expected to provide a cost-effective, safe, and smooth transition from operational status to deactivation and S and M for a wide range of Hanford Site facilities

  1. SIGMA Experimental Facility

    International Nuclear Information System (INIS)

    Rivarola, Martin; Florido, Pablo; Gonzalez, Jose; Brasnarof, Daniel; Orellano, Pablo; Bergallo, Juan

    2000-01-01

    The SIGMA ( Separacion Isotopica Gaseosa por Metodos Avanzados) concept is outlined.The old gaseous diffusion process to enrich uranium has been updated to be economically competitive for small production volumes.Major innovations have been introduced in the membrane design and in the integrated design of compressors and diffusers.The use of injectors and gas turbines has been also adopted.The paper describes the demonstration facility installed by the Argentine Atomic Energy Commission

  2. Uranium of Kazakhstan

    International Nuclear Information System (INIS)

    Tsalyuk, Yu.; Gurevich, D.

    2000-01-01

    Over 25 % of the world's uranium reserves are concentrated in Kazakhstan. So, the world's largest Shu-Sarysu uranium province is situated on southern Kazakhstan, with resources exceeding 1 billion tonnes of uranium. No less, than 3 unique deposits with resources exceeding 100,000 tonnes are situated here. From the economic point of view the most important thing is that these deposits are suitable for in-situ leaching, which is the cheapest, environmentally friendly and most efficient method available for uranium extracting. In 1997 the Kazatomprom National Joint-Stock Company united all Kazakhstan's uranium enterprises (3 mine and concentrating plants, Volkovgeologiya Joint-Stock Company and the Ulbinskij Metallurgical plant). In 1998 uranium production came to 1,500 tonnes (860 kg in 1997). In 1999 investment to the industry were about $ 30 million. Plans for development of Kazakhstan's uranium industry provide a significant role for foreign partners. At present, 2 large companies (Comeco (Canada), Cogema (France) working in Kazakhstan. Kazakatomprom continues to attract foreign investors. The company's administration announced that in that in next year they have plan to make a radical step: to sell 67 % of stocks to strategic investors (at present 100 % of stocks belongs to state). Authors of the article regard, that the Kazakhstan's uranium industry still has significant reserves to develop. Even if the scenario for the uranium industry could be unfavorable, uranium production in Kazakhstan may triple within the next three to four years. The processing of uranium by the Ulbinskij Metallurgical Plant and the production of some by-products, such as rhenium, vanadium and rare-earth elements, may provide more profits. Obviously, the sale of uranium (as well as of any other reserves) cannot make Kazakhstan a prosperous country. However, country's uranium industry has a god chance to become one of the most important and advanced sectors of national economy

  3. Decommissioning of an uranium hexafluoride pilot plant

    International Nuclear Information System (INIS)

    Santos, Ivan; Abrao, Alcidio; Carvalho, Fatima M.S.; Ayoub, Jamil M.S.

    2009-01-01

    The Institute of Nuclear and Energetic Researches has completed fifty years of operation, belongs to the National Commission for Nuclear Energy, it is situated inside the city of Sao Paulo. The IPEN-CNEN/SP is a Brazilian reference in the nuclear fuel cycle, researches in this field began in 1970, having dominance in the cycle steps from Yellow Cake to Uranium Hexafluoride technology. The plant of Uranium Hexafluoride produced 35 metric tonnes of this gas by year, had been closed in 1992, due to domain and total transference of know-how for industrial scale, demand of new facilities for the improvement of recent researches projects. The Institute initiates decommissioning in 2002. Then, the Uranium Hexafluoride pilot plant, no doubt the most important unit of the fuel cycle installed at IPEN-CNEN/SP, beginning decommissioning and dismantlement (D and D) in 2005. Such D and D strategies, planning, assessment and execution are described, presented and evaluated in this paper. (author)

  4. Depleted uranium plasma reduction system study

    International Nuclear Information System (INIS)

    Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

    1994-12-01

    A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF 6 , of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF 6 processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete

  5. Elemental characterization of Tummalapalle uranium mill tailing

    International Nuclear Information System (INIS)

    Patra, A.C.; Sahoo, S.K.; Thakur, V.K.; Dubey, J.S.; Jha, S.K.; Tripathi, R.M.; Sharma, D.B.

    2018-01-01

    Elements are present in environmental matrices at varying concentrations. Their levels may increase due to anthropogenic activities like transportation, industrial activities, agriculture, urbanization and human activities. Trace elements can be classified as potentially toxic (eg. cadmium, arsenic, mercury, lead, nickel), probably essential (eg. cobalt, vanadium) and essential (eg. iron, zinc, copper, selenium, manganese). Due to the expansion of the Indian Nuclear Power Programme, new uranium mining sites are coming up. Mining and milling produce large quantities of low active mill tailings contained in engineered Tailings Ponds. The tailings are amenable for interaction with the geochemical forces and can act as potential sources of contamination. Thus it is necessary to ascertain the concentrations of elements that are present therein. In this paper we aim to characterize the uranium tailings generated from Tummalapalle uranium mining facility in Kadappa district, Andhra Pradesh, India

  6. Spain's uranium industry

    International Nuclear Information System (INIS)

    Ferguson, M.P.

    1992-01-01

    Spain currently operates nine nuclear reactors totalling over 7,100 MWe of capacity, contributing about one-third of all electricity generated in Spain. Four reactors at advanced stages of construction remain mothballed as the result of a government-imposed moratorium, and a fire at Vandellos 1 in 1989 led to its premature closure and to a revival of anti-nuclear sentiment in the country. In the new national energy plan, which was sent to the Spanish Parliament on July 25, 1991, Spain opted to continue the nuclear moratorium that began in 1984 and rely upon conservation measures, additional natural gas imports, and electricity imports to meet expected demand. Under the new plan, nuclear power's share of Spain's total installed electrical generating capacity will fall from about 17 percent in 1990, to approximately 14 percent by the end of the century, as only the current nuclear facilities will continue to operate and no new nuclear plants will be built. Spain's integration into the European Community also is affecting the country's energy plans, prompting consolidation within the Spanish electricity sector in order to be more competitive in Europe. To supply the existing reactors, the government is supporting a major expansion of the country's domestic uranium industry

  7. Titrimetric determination of uranium

    International Nuclear Information System (INIS)

    Florence, T.M.

    1989-01-01

    Titrimetric methods are almost invariably used for the high precision assay of uranium compounds, because gravimetric methods are nonselective, and not as reliable. Although precipitation titrations have been used, for example with cupferron and ferrocyanide, and chelate titrations with EDTA and oxine give reasonable results, in practice only redox titrations find routine use. With all redox titration methods for uranium a precision of 01 to 02 percent can be achieved, and precisions as high as 0.003 percent have been claimed for the more refined techniques. There are two types of redox titrations for uranium in common use. The first involves the direct titration of uranium (VI) to uranium (IV) with a standard solution of a strong reductant, such as chromous chloride or titanous chloride, and the second requires a preliminary reduction of uranium to the (IV) or (III) state, followed by titration back to the (VI) state with a standard oxidant. Both types of redox titrations are discussed. 4 figs

  8. Politics of Uranium

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Uranium is the most political of all the elements, the material for the production of both the large amounts of electricity and the most destructive weapons in the world. The problems that its dual potential creates are only now beginning to become evident. Author Norman Moss looks at this situation and sheds light on many of the questions that emerge. The nuclear issue always comes back to how much uranium there is, what can be done with it, and which countries have it. Starting with a concise history of uranium and explaining its technology in terms the nonspecialist can understand, The Politics of Uranium considers the political issues that technical arguments obscure. It tells the little-known story of the international uranium cartel, explains the entanglements of governments with the uranium trade, and describes the consequences of wrong decisions and blunders-especially the problems of nuclear waste. It also examines the intellectual and emotional roots of the anti-nuclear movement

  9. Uranium resources and supply

    International Nuclear Information System (INIS)

    Cameron, J.

    1973-01-01

    The future supply of uranium has to be considered against a background of forecasts of uranium demand over the next decades which show increases of a spectacular nature. It is not necessary to detail these forecasts, they are well known. A world survey by the Joint NEA/IAEA Working Party on 'Uranium Resources, Production and Demand', completed this summer, indicates that from a present production level of just over 19,000 tonnes uranium per year, the demand will rise to the equivalent of an annual production requirement of 50,000 tonnes uranium by 1980, 100,000 by 1985 and 180,000 by 1990. Few, if any, mineral production industries have been called upon to plan for a near tenfold increase in production in a space of about 15 years as these forecasts imply. This might possibly mean that, perhaps, ten times the present number of uranium mines will have to be planned and engineered by 1990

  10. How much uranium

    International Nuclear Information System (INIS)

    Kenward, M.

    1976-01-01

    Comment is made on the latest of a series of reports on world uranium resources from the OECD's Nuclear Energy Agency and the UN's International Atomic Energy Agency (Uranium resources, production and demand (including other nuclear fuel cycle data), published by the Organisation for Economic Cooperation and Development, Paris). The report categories uranium reserves by their recovery cost and looks at power demand and the whole of the nuclear fuel cycle, including uranium enrichment and spent fuel reprocessing. The effect that fluctuations in uranium prices have had on exploration for new uranium resources is considered. It is stated that increased exploration is essential considering the long lead times involved but that thanks to today's higher prices there are distinct signs that prospecting activities are increasing again. (U.K.)

  11. Uranium Mill Tailings Management

    International Nuclear Information System (INIS)

    Nelson, J.D.

    1982-01-01

    This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements)

  12. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    This Technical Report is designed mainly to introduce the methods and techniques of uranium geochemical exploration to exploration geologists who may not have had experience with geochemical exploration methods in their uranium programmes. The methods presented have been widely used in the uranium exploration industry for more than two decades. The intention has not been to produce an exhaustive, detailed manual, although detailed instructions are given for a field and laboratory data recording scheme and a satisfactory analytical method for the geochemical determination of uranium. Rather, the intention has been to introduce the concepts and methods of uranium exploration geochemistry in sufficient detail to guide the user in their effective use. Readers are advised to consult general references on geochemical exploration to increase their understanding of geochemical techniques for uranium

  13. Classification of Uranium deposits

    International Nuclear Information System (INIS)

    Dahlkamp, F.J.

    1978-01-01

    A listing of the recognized types of uranium mineralization shows nineteen determinable types out of which only six can be classified as of economic significance at present: Oligomiitic quartz pebble conglomerates, sandstone types, calcretes, intra-intrusive types, hydrothermal veins, veinlike types. The different types can be genetically related to prevalent geological environments, i.e. 1. the primary uranium occurrences formed by endogenic processes, 2. the secondary derived from the primary by subsequent exogenic processes, 3. the tertiary occurrences are assumed to be formed by endogenic metamorphic processes, although little is known about the behaviour of the uranium during the metamorphosis and therefore the metallogenesis of this tertiary uranium generation is still vague. A metallotectonic-geochronologic correlation of the uranium deposits shows a distinct affinity of the uranium to certain geological epochs: The Upper Archean, Lower Proterozoic, the Hercynian and, in a less established stage, the Upper Proterozoic. (orig.) 891 HP/orig. 892 MKO [de

  14. Uranium Newsletter. No. 1

    International Nuclear Information System (INIS)

    1987-03-01

    The new Uranium Newsletter is presented as an IAEA annual newsletter. The organization of the IAEA and its involvement with uranium since its founding in 1957 is described. The ''Red Book'' (Uranium Resources, Production and Demand) is mentioned. The Technical Assistance Programme of the IAEA in this field is also briefly mentioned. The contents also include information on the following meetings: The Technical Committee Meeting on Uranium Deposits in Magmatic and Metamorphic Rocks, Advisory Group Meeting on the Use of Airborne Radiometric Data, and the Technical Committee Meeting on Metallogenesis. Recent publications are listed. Current research contracts in uranium exploration are mentioned. IAEA publications on uranium (in press) are listed also. Country reports from the following countries are included: Australia, Brazil, Canada, China (People's Republic of), Denmark, Finland, Germany (Federal Republic of), Malaysia, Philippines, Portugal, South Africa (Republic of), Spain, Syrian Arab Republic, United Kingdom, United States of America, Zambia, and Greece. There is also a report from the Commission of European Communities

  15. Uranium purchases report 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Data reported by domestic nuclear utility companies in their responses to the 1991 and 1992 ''Uranium Industry Annual Survey,'' Form EIA-858, Schedule B ''Uranium Marketing Activities,are provided in response to the requirements in the Energy Policy Act 1992. Data on utility uranium purchases and imports are shown on Table 1. Utility enrichment feed deliveries and secondary market acquisitions of uranium equivalent of US DOE separative work units are shown on Table 2. Appendix A contains a listing of firms that sold uranium to US utilities during 1992 under new domestic purchase contracts. Appendix B contains a similar listing of firms that sold uranium to US utilities during 1992 under new import purchase contracts. Appendix C contains an explanation of Form EIA-858 survey methodologies with emphasis on the processing of Schedule B data

  16. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  17. Process for continuous production of metallic uranium and uranium alloys

    Science.gov (United States)

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  18. Uranium hexafluoride purification; Purificacao de hexafluoreto de uranio

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Eneas F. de

    1986-07-01

    Uranium hexafluoride might contain a large amount of impurities after manufacturing or handling. Three usual methods of purification of uranium hexafluoride were presented: selective sorption, sublimation, and distillation. Since uranium hexafluoride usually is contaminated with hydrogen fluoride, a theoretical study of the phase equilibrium properties was performed for the binary system UF{sub 6}-HF. A large deviation from the ideal solution behaviour was observed. A purification unity based on a constant reflux batch distillation process was developed. A procedure was established in order to design the re boiler, condenser and packed columns for the UF{sub 6}-HF mixture separation. A bench scale facility for fractional distillation of uranium hexafluoride was described. Basic operations for that facility and results extracted from several batches were discussed. (author)

  19. The assisting system for uranium enrichment plant operation

    International Nuclear Information System (INIS)

    Nakazawa, Hiroaki; Yamamoto, Fumio

    1990-01-01

    We have been developing an operation assisting system, partially supported by AI system, for uranium enrichment plant. The AI system is a proto-type system aiming a final one which can be applied to any future large uranium enrichment plant and also not only to specific operational area but also to complex and multi-phenomenon operational area. An existing AI system, for example facility diagnostic system that utilizes the result of CCT analysis as knowledge base, has weakness in flexibility and potentiality. To build AI system, we have developed the most suitable knowledge representations using deep knowledge for each facility or operation of uranium enrichment plant. This paper describes our AI proto-type system adopting several knowledge representations that can represent an uranium enrichment plant's operation with deep knowledge. (author)

  20. U.S. forms uranium enrichment corporation

    International Nuclear Information System (INIS)

    Seltzer, R.

    1993-01-01

    After almost 40 years of operation, the federal government is withdrawing from the uranium enrichment business. On July 1, the Department of Energy turned over to a new government-owned entity--the US Enrichment Corp. (USEC)--both the DOE enrichment plants at Paducah, Ky., and Portsmouth, Ohio, and domestic and international marketing of enriched uranium from them. Pushed by the inability of DOE's enrichment operations to meet foreign competition, Congress established USEC under the National Energy Policy Act of 1992, envisioning the new corporation as the first step to full privatization. With gross revenues of $1.5 billion in fiscal 1992, USEC would rank 275th on the Fortune 500 list of top US companies. USEC will lease from DOE the Paducah and Portsmouth facilities, built in the early 1950s, which use the gaseous diffusion process for uranium enrichment. USEC's stock is held by the US Treasury, to which it will pay annual dividends. Martin Marietta Energy Systems, which has operated Paducah since 1984 and Portsmouth since 1986 for DOE, will continue to operate both plants for USEC. Closing one of the two facilities will be studied, especially in light of a 40% world surplus of capacity over demand. USEC also will consider other nuclear-fuel-related ventures. USEC will produce only low-enriched uranium, not weapons-grade material. Indeed, USEC will implement a contract now being completed under which the US will purchase weapons-grade uranium from dismantled Russian nuclear weapons and convert it into low-enriched uranium for power reactor fuel

  1. New french uranium mineral species

    International Nuclear Information System (INIS)

    Branche, G.; Chervet, J.; Guillemin, C.

    1952-01-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; β uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the α uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [fr

  2. Uranium demand. An exploration challenge

    Energy Technology Data Exchange (ETDEWEB)

    Roux, A J.A.

    1976-10-01

    The estimated world resources of uranium as well as the estimated consumption of uranium over the next 25 years are briefly discussed. Attention is also given to the prospecting for uranium in South Africa and elsewhere in the world.

  3. Uranium industry annual, 1988

    International Nuclear Information System (INIS)

    1989-01-01

    This report presents data on US uranium raw materials and marketing activities of the domestic uranium industry. It contains aggregated data reported by US companies on the ''Uranium Industry Annual Survey'' (1988), Form EIA-858, and historical data from prior data collections and other pertinent sources. The report was prepared by the Energy Information Administration (EIA), the independent agency for data collection and analysis with the US Department of Energy

  4. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  5. Uranium mine ventilation

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    Uranium mine ventilation system aimed basically to control and decreasing the air radioactivity in mine caused by the radon emanating from uranium ore. The control and decreasing the air ''age'' in mine, with adding the air consumption volume, increasing the air rate consumption, closing the mine-out area; using closed drainage system. Air consumption should be 60m 3 /minute for each 9m 2 uranium ore surfaces with ventilation rate of 15m/minute. (author)

  6. Pine Creek uranium province

    International Nuclear Information System (INIS)

    Bower, M.B.; Needham, R.S.; Page, R.W.; Stuart-Smith, P.G.; Wyborn, L.A.I.

    1985-01-01

    The objective of this project is to help establish a sound geological framework of the Pine Creek region through regional geological, geochemical and geophysical studies. Uranium ore at the Coronation Hill U-Au mine is confined to a wedge of conglomerate in faulted contact with altered volcanics. The uranium, which is classified as epigenetic sandstone type, is derived from a uranium-enriched felsic volcanic source

  7. Chemical thermodynamics of uranium

    International Nuclear Information System (INIS)

    Grenthe, I.; Fuger, J.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung Cregu, C.; Wanner, H.

    1992-01-01

    A comprehensive overview on the chemical thermodynamics of those elements that are of particular importance in the safety assessment of radioactive waste disposal systems is provided. This is the first volume in a series of critical reviews to be published on this subject. The book provides an extensive compilation of chemical thermodynamic data for uranium. A description of procedures for activity corrections and uncertainty estimates is given. A critical discussion of data needed for nuclear waste management assessments, including areas where significant gaps of knowledge exist is presented. A detailed inventory of chemical thermodynamic data for inorganic compounds and complexes of uranium is listed. Data and their uncertainty limits are recommended for 74 aqueous complexes and 199 solid and 31 gaseous compounds containing uranium, and on 52 aqueous and 17 solid auxiliary species containing no uranium. The data are internally consistent and compatible with the CODATA Key Values. The book contains a detailed discussion of procedures used for activity factor corrections in aqueous solution, as well as including methods for making uncertainty estimates. The recommended data have been prepared for use in environmental geochemistry. Containing contributions written by experts the chapters cover various subject areas such a s: oxide and hydroxide compounds and complexes, the uranium nitrides, the solid uranium nitrates and the arsenic-containing uranium compounds, uranates, procedures for consistent estimation of entropies, gaseous and solid uranium halides, gaseous uranium oxides, solid phosphorous-containing uranium compounds, alkali metal uranates, uncertainties, standards and conventions, aqueous complexes, uranium minerals dealing with solubility products and ionic strength corrections. The book is intended for nuclear research establishments and consulting firms dealing with uranium mining and nuclear waste disposal, as well as academic and research institutes

  8. Uranium in Canada

    International Nuclear Information System (INIS)

    1985-09-01

    In 1974 the Minister of Energy, Mines and Resources (EMR) established a Uranium Resource Appraisal Group (URAG) within EMR to audit annually Canada's uranium resources for the purpose of implementing the federal government's uranium export policy. A major objective of this policy was to ensure that Canadian uranium supplies would be sufficient to meet the needs of Canada's nuclear power program. As projections of installed nuclear power growth in Canada over the long term have been successively revised downwards (the concern about domestic security of supply is less relevant now than it was 10 years ago) and as Canadian uranium supply capabilities have expanded significantly. Canada has maintained its status as the western world's leading exporter of uranium and has become the world's leading producer. Domestic uranium resource estimates have increased to 551 000 tonnes U recoverable from mineable ore since URAG completed its last formal assessment (1982). In 1984, Canada's five primary uranium producers employed some 5800 people at their mining and milling operations, and produced concentrates containing some 11 170 tU. It is evident from URAG's 1984 assessment that Canada's known uranium resources, recoverable at uranium prices of $150/kg U or less, are more than sufficient to meet the 30-year fuelling requirements of those reactors that are either in opertaion now or committed or expected to be in-service by 1995. A substantial portion of Canada's identified uranium resources, recoverable within the same price range, is thus surplus to Canadian needs and available for export. Sales worth close to $1 billion annually are assured. Uranium exploration expenditures in Canada in 1983 and 1984 were an estimated $41 million and $35 million, respectively, down markedly from the $128 million reported for 1980. Exploration drilling and surface development drilling in 1983 and 1984 were reported to be 153 000 m and 197 000 m, respectively, some 85% of which was in

  9. Modelling of the underwater disposal of uranium mine tailings in Elliot Lake

    International Nuclear Information System (INIS)

    Halbert, B.E.; Scharer, J.M.; Chakravatti, J.L.; Barnes, E.

    1982-01-01

    Underwater disposal of uranium mine tailings from the Elliot Lake area operations offers potential advantages in controlling radon gas release, emission of airborne particulate matter, and acid production from pyrites in the tailings. In addition, the proximity of the three active properties, one owned by Denison Mines Limited and two by Rio Algom Limited, to a large deep lake has spurred interest in the concept. It has been estimated that the placement of approximately 150 million tonnes of tailings from future planned production would occupy less than 20% of the lake volume. To assess the applicability of the underwater tailings disposal concept, a multi-stage study was developed in conjunction with the regulatory agencies. The most important facet identified for investigation during the first-stage investigations was an assessment of the effects of underwater disposal on water quality in the Serpent River Basin watershed. To simulate the effects of underwater disposal, a computer simulation routine was developed and integrated with a water quality model previously developed for the Basin which predicts levels of total dissolved solids, ammonia, dissolved radium-226 and pH. The underwater disposal model component reflects the effects of direct input of tailings into the hypolimnion, the chemical/biological transformation of dissolved constituents in the water column, the reactions of pyritic tailings deposited on the bottom, and the flux of dissolved constituents from the tailings into the water column. To establish site-specific values for the underwater disposal model, field and laboratory experiments were utilized to evaluate rates of pyrite and ammonia oxidation, and pH-alkalinity relationships. The results of these studies and their use in the water quality model are discussed. In addition, the results of two model run simulations are presented. (author)

  10. Design of the PRIDE Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, Won Myung; Lee, Eun Pyo; Cho, Il Je; Kwon, Kie Chan; Hong, Dong Hee; Lee, Won Kyung; Ku, Jeong Hoe

    2009-01-01

    From 2007, KAERI is developing a PyRoprocess Integrated inactive DEmonstration facility (the PRIDE facility). The maximum annual treatment capacity of this facility will be a 10 ton-HM. The process will use a natural uranium feed material or a natural uranium mixed with some surrogate material for a simulation of a spent fuel. KAERI has also another plan to construct a demonstration facility which can treat a real spent fuel by pyroprocessing. This facility is called by ESPF, Engineering Scale Pyroprocess Facility. The ESPF will have the same treatment capability of spent fuel with the PRIDE facility. The only difference between the PRIDE and the ESPF is a radiation shielding capability. From the PRIDE facility designing works and demonstration with a simulated spent fuel after construction, it will be able to obtain the basic facility requirements, remote operability, interrelation properties between process equipment for designing of the ESPF. The flow sheet of the PRIDE processes is composed of five main processes, such as a decladding and voloxidation, an electro-reduction, an electrorefining, an electro-winning, and a salt waste treatment. The final products from the PRIDE facility are a simulated TRU metal and U metal ingot

  11. Childhood leukemia around nuclear facilities

    International Nuclear Information System (INIS)

    1991-01-01

    This Information Bulletin highlights the conclusion made from an Atomic Energy Control Board of Canada (AECB) study on the incidence of childhood leukemia near nuclear facilities. All of the locations with the nuclear facilities are located in Ontario, the nuclear generating stations at Pickering and Bruce; the uranium mines and mills in Elliot Lake; the uranium refining facility in Port Hope; and nuclear research facilities located at Chalk River plus the small nuclear power plant in Rolphton. Two conclusions are drawn from the study: 1) while the rate of childhood leukemias made be higher or lower than the provincial average, there is no statistical evidence that the difference is due to anything but the natural variation in the occurrence of the disease; and 2) the rate of occurrence of childhood leukemia around the Pickering nuclear power station was slightly greater than the Ontario average both before and after the plant opened, but this, too , could be due to the natural variation

  12. Phospholyl-uranium complexes

    International Nuclear Information System (INIS)

    Gradoz, Philippe

    1993-01-01

    After having reported a bibliographical study on penta-methylcyclopentadienyl uranium complexes, and a description of the synthesis and radioactivity of uranium (III) and (IV) boron hydrides compounds, this research thesis reports the study of mono and bis-tetramethyl-phospholyl uranium complexes comprising chloride, boron hydride, alkyl and alkoxide ligands. The third part reports the comparison of structures, stabilities and reactions of homologue complexes in penta-methylcyclopentadienyl and tetramethyl-phospholyl series. The last part addresses the synthesis of tris-phospholyl uranium (III) and (IV) complexes. [fr

  13. International trade in uranium

    International Nuclear Information System (INIS)

    Two reports are presented; one has been prepared by the Uranium Institute and is submitted by the United Kingdom delegation, the other by the United States delegation. The report of the Uranium Institute deals with the influence of the government on international trade in uranium. This influence becomes apparent predominantly by export and import restrictions, as well as by price controls. The contribution submitted by the United States is a uranium market trend analysis, with pricing methods and contracting modes as well as the effect of government policies being investigated in the light of recent developments

  14. Uranium concentration in fossils

    International Nuclear Information System (INIS)

    Okano, J.; Uyeda, C.

    1988-01-01

    Recently it is known that fossil bones tend to accumulate uranium. The uranium concentration, C u in fossils has been measured so far by γ ray spectroscopy or by fission track method. The authors applied secondary ion mass spectrometry, SIMS, to detect the uranium in fossil samples. The purpose of this work is to investigate the possibility of semi-quantitative analyses of uranium in fossils, and to study the correlation between C u and the age of fossil bones. The further purpose of this work is to apply SIMS to measure the distribution of C u in fossil teeth

  15. METHOD OF ROLLING URANIUM

    Science.gov (United States)

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  16. The potential for an Australian uranium industry

    International Nuclear Information System (INIS)

    Silver, J.M.

    1982-06-01

    The production of uranium and its part upgrading to enriched uranium for export could be equivalent to 20-25 per cent of Australia's future export income from coal. Australia could be supplying 15,000 tonnes U/yr. and enrichment services of 2.5 million SWU/yr. by 2000. The principles of nuclear energy, nuclear power reactors and the nuclear fuel cycle are described and the relationship between nuclear power and the requirements for uranium and the other steps in the fuel cycle is discussed. Estimates are given of the future world supply-demand balance for each step in the fuel cycle. A survey is made of world uranium resources and fuel cycle upgrading facilities. The costs of production and pricing are assessed in relation to the potential for an Australian industry. Comments are made on the possibility that Australia could provide the repository for both low-level radioactive waste from small countries and the bulk of the world's high level waste. The impact of a uranium industry on the Australian economy is discussed

  17. Recovery of uranium in mine waters

    International Nuclear Information System (INIS)

    Sugier, P.

    1967-01-01

    In a brief introductory survey the author indicates the date on which leaching was first observed in the CEA mines and lists the main factors necessary for, or favourable to, the solubilization of uranium in mines. Information is given on the various sources of this type at present identified in France and the methods used to recover uranium in mines situated near ore-concentration plants. An explanation is given for the use of the calcium precipitation technique in connection with waters produced in mines not situated near ore-concentration plants. Data are given on the results of laboratory tests carried out on waters containing uranium, together with a description of an industrial-scale facility built in consequence of these tests. Details are given of the statistical results obtained. The author concludes by outlining the programme which will be implemented in the near future with a view to increasing the tonnage of uranium produced by in situ leaching and indicates that the CEA engineers are very optimistic about the prospects of this new low-cost method of producing uranium. (author) [fr

  18. Fundamental study on recovery uranium oxide from HEPA filters

    International Nuclear Information System (INIS)

    Izumida, T.; Noguchi, Y.

    1993-01-01

    Large numbers of spent HEPA filters are produced at uranium fuel fabrication facilities. Uranium oxide particles have been collected on these filters. Then, a spent HEPA filter treatment system was developed from the viewpoint of recovering the UO 2 and minimizing the volume. The system consists of a mechanical separation process and a chemical dissolution process. This paper describes the results of fundamental experiments on recovering UO 2 from HEPA filters

  19. Aquifer restoration techniques for in-situ leach uranium mines

    International Nuclear Information System (INIS)

    Deutsch, W.J.; Bell, N.E.; Mercer, B.W.; Serne, R.J.; Shade, J.W.; Tweeton, D.R.

    1984-02-01

    In-situ leach uranium mines and pilot-scale test facilities are currently operating in the states of Wyoming, Texas, New Mexico and Colorado. This report summarizes the technical considerations involved in restoring a leached ore zone and its aquifer to the required level. Background information is provided on the geology and geochemistry of mineralized roll-front deposits and on the leaching techniques used to extract the uranium. 13 references, 13 figures, 4 tables

  20. Occupational exposures to uranium: processes, hazards, and regulations

    International Nuclear Information System (INIS)

    Stoetzel, G.A.; Fisher, D.R.; McCormack, W.D.; Hoenes, G.R.; Marks, S.; Moore, R.H.; Quilici, D.G.; Breitenstein, B.D.

    1981-04-01

    The United States Uranium Registry (USUR) was formed in 1978 to investigate potential hazards from occupational exposure to uranium and to assess the need for special health-related studies of uranium workers. This report provides a summary of Registry work done to date. The history of the uranium industry is outlined first, and the current commercial uranium industry (mining, milling, conversion, enrichment, and fuel fabrication) is described. This description includes information on basic processes and areas of greatest potential radiological exposure. In addition, inactive commercial facilities and other uranium operations are discussed. Regulation of the commercial production industry for uranium fuel is reported, including the historic development of regulations and the current regulatory agencies and procedures for each phase of the industry. A review of radiological health practices in the industry - facility monitoring, exposure control, exposure evaluation, and record-keeping - is presented. A discussion of the nonradiological hazards of the industry is provided, and the final section describes the tissue program developed as part of the Registry

  1. Adsorption and exhaustion device for gaseoue uranium fluorides

    International Nuclear Information System (INIS)

    Kida, Yasuo; Nakamura, Yuichi.

    1984-01-01

    Purpose: To prevent gaseous uranium fluorides from passing through the adsorption layer upon exhausting the gaseous uranium, fluorides from a uranium fluoride processing facility through adsorption traps, by controlling the flow rate of the gaseous uranium fluorides passing through the layer constant. Constitution: An adsorption trap is connected by way of pipeways to a uranium fluoride processing facility, and a flow rate detector for detecting the flow rate of gaseous uranium fluorides and a pressure gauge for detecting the pressure at the inlet of the adsorption trap are disposed to the pipeways. The setting value for the pressure control is calculated from the detection value of the flow rate detector by the pressure control gage. Then, an operation amount for the pressure control valve is calculated based on the deviatoin between the setting value for the pressure control and the inlet pressure at the adsorption trap. This enables to control the flow rate of the gaseous uranium fluorides passing through the adsorption layer always constant thereby enabling to prevent excess increase in the flow rate which results in damages in the adsorption layer. (Moriyama, K.)

  2. URANIUM LEACHING AND RECOVERY PROCESS

    Science.gov (United States)

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  3. Discussion for management of ventilation system in uranium mines

    International Nuclear Information System (INIS)

    Li Xianjie; Ren Jianjun; Hu Penghua

    2014-01-01

    Radon exhaustion and ventilation are surely regarded as key links for safety production and radiation protection in underground uranium mines, and the crucial point to achieve safety production goals lies in timely and accurately adjusting and controlling of ventilation technical measures and ventilation system management with the changing operation conditions of mines. This paper proposes corresponding countermeasures based on the respectively systematical analysis of daily ventilation management, ventilation facilities and structures management, and ventilation system information management in uranium mines. Furthermore, standardized management approaches and suggestions are put forward to realize standardization of uranium mines' ventilation management and radon exhaustion technique. (authors)

  4. Red River Below Denison Dam, Texas, Oklahoma, Arkansas, and Louisiana

    National Research Council Canada - National Science Library

    Copeland, Ronald

    2002-01-01

    A numerical model study was conducted to evaluate the effect that reducing bank erosion between Arthur City, TX, and Index, AR, would have on deposition rates in the J. Bennett Johnston (Red River) Waterway...

  5. 77 FR 14838 - General Electric-Hitachi Global Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment...

    Science.gov (United States)

    2012-03-13

    ... Laser Enrichment LLC, Commercial Laser-Based Uranium Enrichment Facility, Wilmington, North Carolina... a license to General Electric-Hitachi Global Laser Enrichment LLC (GLE or the applicant) to authorize construction of a laser-based uranium enrichment facility and possession and use of byproduct...

  6. Environmental monitoring program design for uranium refining and conversion operations

    International Nuclear Information System (INIS)

    1984-08-01

    The objective of this study was to develop recommendations for the design of environmental monitoring programs at Canadian uranium refining and conversion operations. In order to develop monitoring priorities, chemical and radioactive releases to the air and water were developed for reference uranium refining and conversion facilities. The relative significance of the radioactive releases was evaluated through a pathways analysis which estimated dose to individual members of the critical receptor group. The effects of chemical releases to the environment were assessed by comparing predicted air and water contaminant levels to appropriate standards or guidelines. For the reference facilities studied, the analysis suggested that environmental effects are likely to be dominated by airborne release of both radioactive and nonradioactive contaminants. Uranium was found to be the most important radioactive species released to the air and can serve as an overall indicator of radiological impacts for any of the plants considered. The most important nonradioactive air emission was found to be fluoride (as hydrogen fluoride) from the uranium hexafluoride plant. For the uranium trioxide and uranium dioxide plants, air emissions of oxides of nitrogen were considered to be most important. The study recommendations for the design of an environmental monitoring program are based on consideration of those factors most likely to affect local air and water quality, and human radiation exposure. Site- and facility-specific factors will affect monitoring program design and the selection of components such as sampling media, locations and frequency, and analytical methods

  7. Trends in uranium supply

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M [International Atomic Energy Agency, Division of Nuclear Power and Reactors, Nuclear Materials and Fuel Cycle Section, Vienna (Austria)

    1976-07-01

    Prior to the development of nuclear power, uranium ores were used to a very limited extent as a ceramic colouring agent, as a source of radium and in some places as a source of vanadium. Perhaps before that, because of the bright orange and yellow colours of its secondary ores, it was probably used as ceremonial paint by primitive man. After the discovery of nuclear fission a whole new industry emerged, complete with its problems of demand, resources and supply. Spurred by special incentives in the early years of this new nuclear industry, prospectors discovered over 20 000 occurrences of uranium in North America alone, and by 1959 total world production reached a peak of 34 000 tonnes uranium from mines in South Africa, Canada and United States. This rapid growth also led to new problems. As purchases for military purposes ended, government procurement contracts were not renewed, and the large reserves developed as a result of government purchase incentives, in combination with lack of substantial commercial market, resulted in an over-supply of uranium. Typically, an over-supply of uranium together with national stockpiling at low prices resulted in depression of prices to less than $5 per pound by 1971. Although forecasts made in the early 1970's increased confidence in the future of nuclear power, and consequently the demand for uranium, prices remained low until the end of 1973 when OPEC announced a very large increase in oil prices and quite naturally, prices for coal also rose substantially. The economics of nuclear fuel immediately improved and prices for uranium began to climb in 1974. But the world-wide impact of the OPEC decision also produced negative effects on the uranium industry. Uranium production costs rose dramatically, as did capital costs, and money for investment in new uranium ventures became more scarce and more expensive. However, the uranium supply picture today offers hope of satisfactory development in spite of the many problems to be

  8. Trends in uranium supply

    International Nuclear Information System (INIS)

    Hansen, M.

    1976-01-01

    Prior to the development of nuclear power, uranium ores were used to a very limited extent as a ceramic colouring agent, as a source of radium and in some places as a source of vanadium. Perhaps before that, because of the bright orange and yellow colours of its secondary ores, it was probably used as ceremonial paint by primitive man. After the discovery of nuclear fission a whole new industry emerged, complete with its problems of demand, resources and supply. Spurred by special incentives in the early years of this new nuclear industry, prospectors discovered over 20 000 occurrences of uranium in North America alone, and by 1959 total world production reached a peak of 34 000 tonnes uranium from mines in South Africa, Canada and United States. This rapid growth also led to new problems. As purchases for military purposes ended, government procurement contracts were not renewed, and the large reserves developed as a result of government purchase incentives, in combination with lack of substantial commercial market, resulted in an over-supply of uranium. Typically, an over-supply of uranium together with national stockpiling at low prices resulted in depression of prices to less than $5 per pound by 1971. Although forecasts made in the early 1970's increased confidence in the future of nuclear power, and consequently the demand for uranium, prices remained low until the end of 1973 when OPEC announced a very large increase in oil prices and quite naturally, prices for coal also rose substantially. The economics of nuclear fuel immediately improved and prices for uranium began to climb in 1974. But the world-wide impact of the OPEC decision also produced negative effects on the uranium industry. Uranium production costs rose dramatically, as did capital costs, and money for investment in new uranium ventures became more scarce and more expensive. However, the uranium supply picture today offers hope of satisfactory development in spite of the many problems to be

  9. Uranium geochemistry, mineralogy, geology, exploration and resources

    International Nuclear Information System (INIS)

    De Vivo, B.

    1984-01-01

    This book comprises papers on the following topics: history of radioactivity; uranium in mantle processes; transport and deposition of uranium in hydrothermal systems at temperatures up to 300 0 C: Geological implications; geochemical behaviour of uranium in the supergene environment; uranium exploration techniques; uranium mineralogy; time, crustal evolution and generation of uranium deposits; uranium exploration; geochemistry of uranium in the hydrographic network; uranium deposits of the world, excluding Europe; uranium deposits in Europe; uranium in the economics of energy; role of high heat production granites in uranium province formation; and uranium deposits

  10. 304 Concretion facility closure plan

    International Nuclear Information System (INIS)

    1990-04-01

    The Hanford Site, located northwest of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium Zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/Zircaloy-2 alloy, and Zircaloy-2 chips and fines were secured in concrete billets in the 304 Concretion Facility, located in the 300 Area. The beryllium/Zircaloy-2 alloy and Zircaloy-2 chips and fines are designated as low-level radioactive mixed waste (LLRMW) with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Concretion Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act of 1976 (RCRA). This closure plan presents a description of the facility, the history of materials and wastes managed, and the procedures that will be followed to close the 304 Concretion Facility (304 Facility). Clean closure of the 304 Facility is the proposed method for closure of the facility. Justification for this proposal is presented. 15 refs., 22 figs., 4 tabs

  11. Sequoyah Uranium Hexafluoride Plant (Docket No. 40-8027): Final environmental statement

    International Nuclear Information System (INIS)

    1975-02-01

    The proposed action is the continuation of Source Material License SUB-1010 issued to Kerr-McGee Nuclear Corporation authorizing the operation of a uranium hexafluoride manufacturing facility located in Sequoyah County, Oklahoma, close to the confluence of the Illinois and Arkansas Rivers. The plant produces high purity uranium hexafluoride using uranium concentrates (yellowcake) as the starting material. It is currently designed to produce 5000 tons of uranium per year as uranium hexafluoride and has been in operation since February 1970 without significant environmental incident or discernible offsite effect. The manufacturing process being used includes wet chemical purification to convert yellowcake to pure uranium trioxide followed by dry chemical reduction, hydrofluorination, and fluorination technique to produce uranium hexafluoride. 8 figs, 12 tabs

  12. Uranium enrichment techniques

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    This article includes an introduction about the isotopes of natural uranium, their existence and the difficulty of the separation between them. Then it goes to the details of a number of methods used to enrich uranium: Gaseous Diffusion method, Electromagnetic method, Jet method, Centrifugal method, Chemical method, Laser method and Plasma method.

  13. Uranium dioxide pellets

    International Nuclear Information System (INIS)

    Zawidzki, T.W.

    1979-01-01

    Sintered uranium dioxide pellets composed of particles of size > 50 microns suitable for power reactor use are made by incorporating a small amount of sulphur into the uranium dioxide before sintering. The increase in grain size achieved results in an improvement in overall efficiency when such pellets are used in a power reactor. (author)

  14. Uranium's scientific history

    International Nuclear Information System (INIS)

    Goldschmidt, B.

    1990-01-01

    The bicentenary of the discovery of uranium coincides with the fiftieth anniversary of the discovery of fission, an event of worldwide significance and the last episode in the uranium -radium saga which is the main theme of this paper. Uranium was first identified by the German chemist Martin Klaproth in 1789. He extracted uranium oxide from the ore pitchblende which was a by-product of the silver mines at Joachimsthal in Bohemia. For over a century after its discovery, the main application for uranium derived from the vivid colours of its oxides and salts which are used in glazes for ceramics, and porcelain. In 1896, however, Becquerel discovered that uranium emitted ionizing radiation. The extraction by Pierre and Marie Curie of the more radioactive radium from uranium in the early years of the twentieth century and its application to the treatment of cancer shifted the chief interest to radium production. In the 1930s the discovery of the neutron and of artificial radioactivity stimulated research in a number of European laboratories which culminated in the demonstration of fission by Otto Frisch in January 1939. The new found use of uranium for the production of recoverable energy, and the creation of artificial radioelements in nuclear reactors, eliminated the radium industry. (author)

  15. Uranium: biokinetics and toxicity

    International Nuclear Information System (INIS)

    Menetrier, F.; Renaud-Salis, V.; Flury-Herard, A.

    2000-01-01

    This report was achieved as a part of a collaboration with the Fuel Cycle Direction. Its aim was to give the state of the art about: the behaviour of uranium in the human organism (biokinetics) after ingestion, its toxicity (mainly renal) and the current regulation about its incorporation. Both in the upstream and in the downstream of the fuel cycle, uranium remains, quantitatively, the first element in the cycle which is, at the present time, temporarily disposed or recycled. Such a considerable quantity of uranium sets the problem of its risk on the health. In the long term, the biosphere may be affected and consequently the public may ingest water or food contaminated with uranium. In this way, radiological and chemical toxicity risk may be activated. This report emphasizes: the necessity of confirming some experimental and epidemiological biokinetic data used or not in the ICRP models. Unsolved questions remain about the gastrointestinal absorption according to chemical form (valency state, mixtures...), mass and individual variations (age, disease) further a chronic ingestion of uranium. It is well established that uranium is mainly deposited in the skeleton and the kidney. But the skeleton kinetics following a chronic ingestion and especially in some diseases has to be more elucidated; the necessity of taking into account uranium at first as a chemical toxic, essentially in the kidney and determining the threshold of functional lesion. In this way, it is important to look for some specific markers; the problem of not considering chemical toxicity of uranium in the texts regulating its incorporation

  16. Rheinbraun's Australian uranium business

    International Nuclear Information System (INIS)

    Kirschbaum, S.

    1989-01-01

    The leaflet argues against the mining activities of the Rheinische Braunkohlenwerke AG in Germany and especially against uranium mining in Australia. The ethno-ecological impact on flora and fauna, aborigines and miners are pointed out. Uranium mining and lignite mining are compared. (HSCH) [de

  17. Australia and uranium

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A brief justification of the Australian Government's decision to mine and export Australian Uranium is presented along with a description of the Alligator River Region in the Northern Territory where the major mines are to be located. Aboriginal interests and welfare in the region, the proposed Kakadu National Park and the economic benefits resulting from uranium development are also briefly covered. (J.R.)

  18. Nuclear and uranium policies

    International Nuclear Information System (INIS)

    MacNabb, G.M.; Uranium Canada Ltd., Ottawa, Ontario)

    The background of the uranium industry in Canada is described. Government policies with respect to ownership of the uranium mining industry, price stabilization, and especially reservation of sufficient supplies of nuclear fuels for domestic utilities, are explained. Canadian policy re nuclear exports and safeguards is outlined. (E.C.B.)

  19. Uranium and transuranium analysis

    International Nuclear Information System (INIS)

    Regnaud, F.

    1989-01-01

    Analytical chemistry of uranium, neptunium, plutonium, americium and curium is reviewed. Uranium and neptunium are mainly treated and curium is only briefly evoked. Analysis methods include coulometry, titration, mass spectrometry, absorption spectrometry, spectrofluorometry, X-ray spectrometry, nuclear methods and radiation spectrometry [fr

  20. Preparation of uranium tetrafluoride

    International Nuclear Information System (INIS)

    Wirths, G.

    1981-01-01

    Uranium dioxide is converted to uranium tetrafluoride under stoichiometric excess of hydrogen fluoride. The water formed in the process and the unreacted hydrogen fluoride are cooled and the condensate fractionally distilled into water and approx. 40% hydrofluoric acid. The hydrofluoric acid and water-free hydrogen fluoride are fed back into the process. (WI) [de