WorldWideScience

Sample records for dengue virus ns1

  1. Dengue NS1 Antigen - for Early Detection of Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Amol Hartalkar

    2015-08-01

    Full Text Available Objectives: To evaluate the efficacy of NS1 antigen assay for early diagnosis of dengue virus infection in a tertiary care hospital. Methods: This cross sectional study was carried out in department of Medicine from August to December 2013. Total 100 patients with dengue fever were included. Complete blood count, alanine aminotransferase (ALT, aspartate aminotransferase (AST, Dengue NS1 antigen and IgM and IgG antibodies of dengue virus were done in all cases. Results: Of the 100 sera tested, 75% were positive for dengue virus infection based on dengue NS1 antigen, IgM antibody and IgG antibody. Dengue NS1 antigen and IgM, IgG antibody were able to detect dengue virus infection between day 1 to day 8 in 92% of samples, 86.7% of samples and 82.6% of samples respectively. Sixty nine percent (69% were found positive for dengue NS1 antigen, 65% were IgM positive and 62% were IgG positive. Based on the dengue NS1 antigen and IgM antibody combination, 74% were positive for dengue virus infections. Sensitivity of Dengue NS1 antigen was 92.3% and specificity of 74.28% in comparison to IgM antibody. Detection rate increased to 75%, based on the antigen and IgG antibody combination. Sensitivity of dengue NS1 antigen was 90.3% and specificity of 65.8% in comparison to IgG antibody. Conclusion: Dengue NS1 antigen is a useful, sensitive and specific test for early diagnosis of dengue virus infection and it improves diagnostic efficiency in combination with antibody test. Key words: Dengue fever, NS1 antigen. Introduction: Dengue fever (DF is the most common arboviral illness in humans. Each year, an estimated 50-100 million cases of dengue fever and 500,000 cases of dengue hemorrhagic fever occur worldwide, with 30000 deaths (mainly in children. Globally 2.5-3 billion people in approximately 112 tropical and subtropical countries are at risk of dengue.of samples respectively. Sixty nine percent (69% were found positive for dengue NS1 antigen, 65% were Ig

  2. Performance of commercial dengue NS1 ELISA and molecular analysis of NS1 gene of dengue viruses obtained during surveillance in Indonesia.

    Science.gov (United States)

    Aryati, Aryati; Trimarsanto, Hidayat; Yohan, Benediktus; Wardhani, Puspa; Fahri, Sukmal; Sasmono, R Tedjo

    2013-12-29

    Early diagnosis of dengue infection is crucial for better management of the disease. Diagnostic tests based on the detection of dengue virus (DENV) Non Structural Protein 1 (NS1) antigen are commercially available with different sensitivities and specificities observed in various settings. Dengue is endemic in Indonesia and clinicians are increasingly using the NS1 detection for dengue confirmation. This study described the performance of Panbio Dengue Early NS1 and IgM Capture ELISA assays for dengue detection during our surveillance in eight cities in Indonesia as well as the genetic diversity of DENV NS1 genes and its relationship with the NS1 detection. The NS1 and IgM/IgG ELISA assays were used for screening and confirmation of dengue infection during surveillance in 2010-2012. Collected serum samples (n = 440) were subjected to RT-PCR and virus isolation, in which 188 samples were confirmed for dengue infection. The positivity of the ELISA assays were correlated with the RT-PCR results to obtain the sensitivity of the assays. The NS1 genes of 48 Indonesian virus isolates were sequenced and their genetic characteristics were studied. Using molecular data as gold standard, the sensitivity of NS1 ELISA assay for samples from Indonesia was 56.4% while IgM ELISA was 73.7%. When both NS1 and IgM results were combined, the sensitivity increased to 89.4%. The NS1 sensitivity varied when correlated with city/geographical origins and DENV serotype, in which the lowest sensitivity was observed for DENV-4 (19.0%). NS1 sensitivity was higher in primary (67.6%) compared to secondary infection (48.2%). The specificity of NS1 assay for non-dengue samples were 100%. The NS1 gene sequence analysis of 48 isolates revealed the presence of polymorphisms of the NS1 genes which apparently did not influence the NS1 sensitivity. We observed a relatively low sensitivity of NS1 ELISA for dengue detection on RT-PCR-positive dengue samples. The detection rate increased significantly

  3. Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

    International Nuclear Information System (INIS)

    Noisakran, Sansanee; Sengsai, Suchada; Thongboonkerd, Visith; Kanlaya, Rattiyaporn; Sinchaikul, Supachok; Chen, Shui-Tein; Puttikhunt, Chunya

    2008-01-01

    Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells

  4. Production of recombinant dengue non-structural 1 (NS1) proteins from clinical virus isolates.

    Science.gov (United States)

    Yohan, Benediktus; Wardhani, Puspa; Aryati; Trimarsanto, Hidayat; Sasmono, R Tedjo

    2017-01-01

    Dengue is a febrile disease caused by infection of dengue virus (DENV). Early diagnosis of dengue infection is important for better management of the disease. The DENV Non-Structural Protein 1 (NS1) antigen has been routinely used for the early dengue detection. In dengue epidemic countries such as Indonesia, clinicians are increasingly relying on the NS1 detection for confirmation of dengue infection. Various NS1 diagnostic tests are commercially available, however different sensitivities and specificities were observed in various settings. This study was aimed to generate dengue NS1 recombinant protein for the development of dengue diagnostic tests. Four Indonesian DENV isolates were used as the source of the NS1 gene cloning, expression, and purification in bacterial expression system. Recombinant NS1 proteins were successfully purified and their antigenicities were assessed. Immunization of mice with recombinant proteins observed the immunogenicity of the NS1 protein. The generated recombinant proteins can be potentially used in the development of NS1 diagnostic test. With minimal modifications, this method can be used for producing NS1 recombinant proteins from isolates obtained from other geographical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Therapeutic Effects of Monoclonal Antibody against Dengue Virus NS1 in a STAT1 Knockout Mouse Model of Dengue Infection.

    Science.gov (United States)

    Wan, Shu-Wen; Chen, Pei-Wei; Chen, Chin-Yu; Lai, Yen-Chung; Chu, Ya-Ting; Hung, Chia-Yi; Lee, Han; Wu, Hsuan Franziska; Chuang, Yung-Chun; Lin, Jessica; Chang, Chih-Peng; Wang, Shuying; Liu, Ching-Chuan; Ho, Tzong-Shiann; Lin, Chiou-Feng; Lee, Chien-Kuo; Wu-Hsieh, Betty A; Anderson, Robert; Yeh, Trai-Ming; Lin, Yee-Shin

    2017-10-15

    Dengue virus (DENV) is the causative agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome and is endemic to tropical and subtropical regions of the world. Our previous studies showed the existence of epitopes in the C-terminal region of DENV nonstructural protein 1 (NS1) which are cross-reactive with host Ags and trigger anti-DENV NS1 Ab-mediated endothelial cell damage and platelet dysfunction. To circumvent these potentially harmful events, we replaced the C-terminal region of DENV NS1 with the corresponding region from Japanese encephalitis virus NS1 to create chimeric DJ NS1 protein. Passive immunization of DENV-infected mice with polyclonal anti-DJ NS1 Abs reduced viral Ag expression at skin inoculation sites and shortened DENV-induced prolonged bleeding time. We also investigated the therapeutic effects of anti-NS1 mAb. One mAb designated 2E8 does not recognize the C-terminal region of DENV NS1 in which host-cross-reactive epitopes reside. Moreover, mAb 2E8 recognizes NS1 of all four DENV serotypes. We also found that mAb 2E8 caused complement-mediated lysis in DENV-infected cells. In mouse model studies, treatment with mAb 2E8 shortened DENV-induced prolonged bleeding time and reduced viral Ag expression in the skin. Importantly, mAb 2E8 provided therapeutic effects against all four serotypes of DENV. We further found that mAb administration to mice as late as 1 d prior to severe bleeding still reduced prolonged bleeding time and hemorrhage. Therefore, administration with a single dose of mAb 2E8 can protect mice against DENV infection and pathological effects, suggesting that NS1-specific mAb may be a therapeutic option against dengue disease. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Epitope Sequences in Dengue Virus NS1 Protein Identified by Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Leticia Barboza Rocha

    2017-10-01

    Full Text Available Dengue nonstructural protein 1 (NS1 is a multi-functional glycoprotein with essential functions both in viral replication and modulation of host innate immune responses. NS1 has been established as a good surrogate marker for infection. In the present study, we generated four anti-NS1 monoclonal antibodies against recombinant NS1 protein from dengue virus serotype 2 (DENV2, which were used to map three NS1 epitopes. The sequence 193AVHADMGYWIESALNDT209 was recognized by monoclonal antibodies 2H5 and 4H1BC, which also cross-reacted with Zika virus (ZIKV protein. On the other hand, the sequence 25VHTWTEQYKFQPES38 was recognized by mAb 4F6 that did not cross react with ZIKV. Lastly, a previously unidentified DENV2 NS1-specific epitope, represented by the sequence 127ELHNQTFLIDGPETAEC143, is described in the present study after reaction with mAb 4H2, which also did not cross react with ZIKV. The selection and characterization of the epitope, specificity of anti-NS1 mAbs, may contribute to the development of diagnostic tools able to differentiate DENV and ZIKV infections.

  7. A thiophene-modified screen printed electrode for detection of dengue virus NS1 protein.

    Science.gov (United States)

    Silva, M M S; Dias, A C M S; Cordeiro, M T; Marques, E; Goulart, M O F; Dutra, R F

    2014-10-01

    A thiophene-modified screen printed electrode (SPE) for detection of the Dengue virus non-structural protein 1 (NS1), an important marker for acute phase diagnosis, is described. A sulfur-containing heterocyclic compound, the thiophene was incorporated to a carbon ink to prepare reproducible screen printed electrodes. After cured, the thiophene SPE was coated by gold nanoparticles conjugated to Protein A to form a nanostrutured surface. The Anti-NS1 antibodies immobilized via their Fc portions via Protein A, leaving their antigen specific sites free circumventing the problem of a random antibodies immobilization. Amperometric responses to the NS1 protein of dengue virus were obtained by cyclic voltammetries performed in presence of ferrocyanide/ferricyanide as redox probe. The calibration curve of immunosensor showed a linear response from 0.04 µg mL(-1) to 0.6 µg mL(-1) of NS1 with a good linear correlation (r=0.991, pink enhanced the electroanalytical properties of the SPEs, increasing their reproducibility and sensitivity. This point-of-care testing represents a great potential for use in epidemic situations, facilitating the early diagnosis in acute phase of dengue virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    Energy Technology Data Exchange (ETDEWEB)

    D’Arcy, Allan, E-mail: allan.darcy@novartis.com; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic [Novartis Institutes of Biomedical Research, Protease Platform, Klybeckstrasse 144, CH 4002 Basel (Switzerland); Lim, Siew Pheng [Novartis Institutes of Tropical Diseases (Singapore); Lefeuvre, Peggy [Novartis Institutes of Biomedical Research, Protease Platform, Klybeckstrasse 144, CH 4002 Basel (Switzerland); Erbel, Paul [Novartis Institutes of Biomedical Research, Protease Platform, Klybeckstrasse 144, CH 4002 Basel (Switzerland); Novartis Institutes of Tropical Diseases (Singapore)

    2006-02-01

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.

  9. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    International Nuclear Information System (INIS)

    D’Arcy, Allan; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic; Lim, Siew Pheng; Lefeuvre, Peggy; Erbel, Paul

    2006-01-01

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained

  10. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum.

    Science.gov (United States)

    Dussart, Philippe; Petit, Laure; Labeau, Bhety; Bremand, Laetitia; Leduc, Alexandre; Moua, David; Matheus, Séverine; Baril, Laurence

    2008-08-20

    We compared the performance of two new commercial tests for the detection of dengue NS1 protein during the clinical phase of dengue virus (DENV) infection-an immunochromatographic test allowing rapid detection of the NS1 antigen, Dengue NS1 Ag STRIP (Bio-Rad Laboratories - Marnes La Coquette, France), and a two-step sandwich-format microplate enzyme-linked immunosorbent assay (ELISA), pan-E Dengue Early ELISA (Panbio - Brisbane, Australia)-with a one-step sandwich-format microplate ELISA, the Platelia Dengue NS1 Ag test (Bio-Rad). We tested 272 serum samples from patients with dengue disease. Of these, 222 were from patients with acute infection of one of the four dengue serotypes, detected by RT-PCR and/or virus isolation. Forty-eight acute-phase serum samples from patients not infected with dengue virus were also included. The sensitivity of the Platelia Dengue NS1 Ag test on acute serum samples (n = 222) was 87.4% (95% confidence interval: 82.3% to 91.5%); that of Dengue NS1 Ag STRIP was 81.5% (95% CI: 75.8% to 86.4%) after 15 minutes and 82.4% (95% CI: 76.8% to 87.2%) after 30 minutes. Both tests had a specificity of 100% (97.5% CI, one-sided test: 92.6% to 100.0%). The pan-E Dengue Early ELISA had a sensitivity of 60.4% (95% CI: 53.4% to 66.8%) and a specificity of 97.9% (95% CI: 88.9% to 99.9%). Our findings support the use of diagnostic tools based on the NS1 antigen detection for the diagnosis of acute DENV infection. The immunochromatographic test, Dengue NS1 Ag STRIP-the first rapid diagnostic test for DENV infection-was highly sensitive and specific, and would therefore be a suitable first-line test in the field. The pan-E Dengue Early ELISA was less sensitive than the Platelia test; this two-step ELISA should be combined with DENV IgM antibody detection for the diagnosis of DENV infection.

  11. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum.

    Directory of Open Access Journals (Sweden)

    Philippe Dussart

    Full Text Available BACKGROUND: We compared the performance of two new commercial tests for the detection of dengue NS1 protein during the clinical phase of dengue virus (DENV infection-an immunochromatographic test allowing rapid detection of the NS1 antigen, Dengue NS1 Ag STRIP (Bio-Rad Laboratories - Marnes La Coquette, France, and a two-step sandwich-format microplate enzyme-linked immunosorbent assay (ELISA, pan-E Dengue Early ELISA (Panbio - Brisbane, Australia-with a one-step sandwich-format microplate ELISA, the Platelia Dengue NS1 Ag test (Bio-Rad. METHODS: We tested 272 serum samples from patients with dengue disease. Of these, 222 were from patients with acute infection of one of the four dengue serotypes, detected by RT-PCR and/or virus isolation. Forty-eight acute-phase serum samples from patients not infected with dengue virus were also included. RESULTS: The sensitivity of the Platelia Dengue NS1 Ag test on acute serum samples (n = 222 was 87.4% (95% confidence interval: 82.3% to 91.5%; that of Dengue NS1 Ag STRIP was 81.5% (95% CI: 75.8% to 86.4% after 15 minutes and 82.4% (95% CI: 76.8% to 87.2% after 30 minutes. Both tests had a specificity of 100% (97.5% CI, one-sided test: 92.6% to 100.0%. The pan-E Dengue Early ELISA had a sensitivity of 60.4% (95% CI: 53.4% to 66.8% and a specificity of 97.9% (95% CI: 88.9% to 99.9%. CONCLUSION: Our findings support the use of diagnostic tools based on the NS1 antigen detection for the diagnosis of acute DENV infection. The immunochromatographic test, Dengue NS1 Ag STRIP-the first rapid diagnostic test for DENV infection-was highly sensitive and specific, and would therefore be a suitable first-line test in the field. The pan-E Dengue Early ELISA was less sensitive than the Platelia test; this two-step ELISA should be combined with DENV IgM antibody detection for the diagnosis of DENV infection.

  12. Designing cyclopentapeptide inhibitor as potential antiviral drug for dengue virus ns5 methyltransferase.

    Science.gov (United States)

    Idrus, Syarifuddin; Tambunan, Usman Sumo Friend; Zubaidi, Ahmad Ardilla

    2012-01-01

    NS5 methyltransferase (Mtase) has a crucial role in the replication of dengue virus. There are two active sites on NS5 Mtase i.e., SAM and RNA-cap binding sites. Inhibition of the NS5 Mtase activity is expected to prevent the propagation of dengue virus. This study was conducted to design cyclic peptide ligands as enzyme inhibitors of dengue virus NS5 Mtase through computational approach. Cyclopentapeptides were designed as ligand of SAM binding site as much as 1635 and 736 cyclopentpeptides were designed as ligand of RNA-cap binding site. Interaction between ligand and NS5 Mtase has been conducted on the Docking simulation. The result shows that cyclopentapeptide CTWYC was the best peptide candidate on SAM binding site, with estimated free binding energy -30.72 kca/mol. Cyclopentapeptide CYEFC was the best peptide on RNA-cap binding site with estimated free binding energy -22.89 kcal/mol. Both peptides did not have tendency toward toxicity properties. So it is expected that both CTWYC and CYEFC ligands could be used as a potential antiviral drug candidates, which can inhibit the SAM and RNA-cap binding sites of dengue virus NS5 Mtase.

  13. Detection of Immune-Complex Dissociated Nonstructural-1 (NS-1) Antigen in Patients with Acute Dengue Virus Infections

    NARCIS (Netherlands)

    P. Koraka (Penelope); C.P. Burghoorn-Maas; A. Falconar; T.E. Setiati (Tatty); K. Djamiatun; J. Groen (Jan); A.D.M.E. Osterhaus (Albert)

    2003-01-01

    textabstractAccurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot

  14. A sensor tip based on carbon nanotube-ink printed electrode for the dengue virus NS1 protein.

    Science.gov (United States)

    Dias, Ana Carolina M S; Gomes-Filho, Sérgio L R; Silva, Mízia M S; Dutra, Rosa F

    2013-06-15

    An immunosensor for the non-structural protein 1 (NS1) of the dengue virus based on carbon nanotube-screen printed electrodes (CNT-SPE) was successfully developed. A homogeneous mixture containing carboxylated carbon nanotubes was dispersed in carbon ink to prepare a screen printed working electrode. Anti-NS1 antibodies were covalently linked to CNT-SPE by an ethylenediamine film strategy. Amperometrical responses were generated at -0.5 V vs. Ag/AgCl by hydrogen peroxide reaction with peroxidase (HRP) conjugated to the anti-NS1. An excellent detection limit (in the order of 12 ng mL(-1)) and a sensitivity of 85.59 μA mM(-1)cm(-2) were achieved permitting dengue diagnostic according to the clinical range required. The matrix effect, as well as the performance of the assays, was successfully evaluated using spiked blood serum sample obtaining excellent recovery values in the results. Carbon nanotubes incorporated to the carbon ink improved the reproducibility and sensitivity of the CNT-SPE immunosensor. This point-of-care approach represents a great potential value for use in epidemic situations and can facilitate the early screening of patients in acute phase of dengue virus. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Evaluation of dengue NS1 antigen rapid tests and ELISA kits using clinical samples.

    Directory of Open Access Journals (Sweden)

    Subhamoy Pal

    Full Text Available Early diagnosis of dengue virus (DENV infection can improve clinical outcomes by ensuring close follow-up, initiating appropriate supportive therapies and raising awareness to the potential of hemorrhage or shock. Non-structural glycoprotein-1 (NS1 has proven to be a useful biomarker for early diagnosis of dengue. A number of rapid diagnostic tests (RDTs and enzyme-linked immunosorbent assays (ELISAs targeting NS1 antigen (Ag are now commercially available. Here we evaluated these tests using a well-characterized panel of clinical samples to determine their effectiveness for early diagnosis.Retrospective samples from South America were used to evaluate the following tests: (i "Dengue NS1 Ag STRIP" and (ii "Platelia Dengue NS1 Ag ELISA" (Bio-Rad, France, (iii "Dengue NS1 Detect Rapid Test (1st Generation" and (iv "DENV Detect NS1 ELISA" (InBios International, United States, (v "Panbio Dengue Early Rapid (1st generation" (vi "Panbio Dengue Early ELISA (2nd generation" and (vii "SD Bioline Dengue NS1 Ag Rapid Test" (Alere, United States. Overall, the sensitivity of the RDTs ranged from 71.9%-79.1% while the sensitivity of the ELISAs varied between 85.6-95.9%, using virus isolation as the reference method. Most tests had lower sensitivity for DENV-4 relative to the other three serotypes, were less sensitive in detecting secondary infections, and appeared to be most sensitive on Day 3-4 post symptom onset. The specificity of all evaluated tests ranged from 95%-100%.ELISAs had greater overall sensitivity than RDTs. In conjunction with other parameters, the performance data can help determine which dengue diagnostics should be used during the first few days of illness, when the patients are most likely to present to a clinic seeking care.

  16. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    Science.gov (United States)

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  17. In Vitro Evaluation of Novel Inhibitors against the NS2B-NS3 Protease of Dengue Fever Virus Type 4

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hanh Nguyen

    2013-12-01

    Full Text Available The discovery of potent therapeutic compounds against dengue virus is urgently needed. The NS2B-NS3 protease (NS2B-NS3pro of dengue fever virus carries out all enzymatic activities needed for polyprotein processing and is considered to be amenable to antiviral inhibition by analogy. Virtual screening of 300,000 compounds using Autodock 3 on the GVSS platform was conducted to identify novel inhibitors against the NS2B-NS3pro. Thirty-six compounds were selected for in vitro assay against NS2B-NS3pro expressed in Pichia pastoris. Seven novel compounds were identified as inhibitors with IC50 values of 3.9 ± 0.6–86.7 ± 3.6 μM. Three strong NS2B-NS3pro inhibitors were further confirmed as competitive inhibitors with Ki values of 4.0 ± 0.4, 4.9 ± 0.3, and 3.4 ± 0.1 μM, respectively. Hydrophobic and hydrogen bond interactions between amino acid residues in the NS3pro active site with inhibition compounds were also identified.

  18. A Global Interactome Map of the Dengue Virus NS1 Identifies Virus Restriction and Dependency Host Factors

    Directory of Open Access Journals (Sweden)

    Mohamed Lamine Hafirassou

    2017-12-01

    Full Text Available Dengue virus (DENV infections cause the most prevalent mosquito-borne viral disease worldwide, for which no therapies are available. DENV encodes seven non-structural (NS proteins that co-assemble and recruit poorly characterized host factors to form the DENV replication complex essential for viral infection. Here, we provide a global proteomic analysis of the human host factors that interact with the DENV NS1 protein. Combined with a functional RNAi screen, this study reveals a comprehensive network of host cellular processes involved in DENV infection and identifies DENV host restriction and dependency factors. We highlight an important role of RACK1 and the chaperonin TRiC (CCT and oligosaccharyltransferase (OST complexes during DENV replication. We further show that the OST complex mediates NS1 and NS4B glycosylation, and pharmacological inhibition of its N-glycosylation function strongly impairs DENV infection. In conclusion, our study provides a global interactome of the DENV NS1 and identifies host factors targetable for antiviral therapies.

  19. The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication.

    Science.gov (United States)

    de Chassey, Benoît; Aublin-Gex, Anne; Ruggieri, Alessia; Meyniel-Schicklin, Laurène; Pradezynski, Fabrine; Davoust, Nathalie; Chantier, Thibault; Tafforeau, Lionel; Mangeot, Philippe-Emmanuel; Ciancia, Claire; Perrin-Cocon, Laure; Bartenschlager, Ralf; André, Patrice; Lotteau, Vincent

    2013-01-01

    Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.

  20. The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication.

    Directory of Open Access Journals (Sweden)

    Benoît de Chassey

    Full Text Available Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1 appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.

  1. Development and characterization of serotype-specific monoclonal antibodies against the dengue virus-4 (DENV-4) non-structural protein (NS1).

    Science.gov (United States)

    Gelanew, Tesfaye; Hunsperger, Elizabeth

    2018-02-06

    Dengue, caused by one of the four serologically distinct dengue viruses (DENV-1 to - 4), is a mosquito-borne disease of serious global health significance. Reliable and cost-effective diagnostic tests, along with effective vaccines and vector-control strategies, are highly required to reduce dengue morbidity and mortality. Evaluation studies revealed that many commercially available NS1 antigen (Ag) tests have limited sensitivity to DENV-4 serotype compared to the other three serotypes. These studies indicated the need for development of new NS1 Ag detection test with improved sensitivity to DENV-4. An NS1 capture enzyme linked immunoassay (ELISA) specific to DENV-4 may improve the detection of DENV-4 cases worldwide. In addition, a serotype-specific NS1 Ag test identifies both DENV and the infecting serotype. In this study, we used a small-ubiquitin-like modifier (SUMO*) cloning vector to express a SUMO*-DENV-4 rNS1 fusion protein to develop NS1 DENV-4 specific monoclonal antibodies (MAbs). These newly developed MAbs were then optimized for use in an anti-NS1 DENV-4 capture ELISA. The serotype specificity and sensitivity of this ELISA was evaluated using (i) supernatants from DENV (1-4)-infected Vero cell cultures, (ii) rNS1s from all the four DENV (1-4) and, (iii) rNS1s of related flaviviruses (yellow fever virus; YFV and West Nile virus; WNV). From the evaluation studies of the newly developed MAbs, we identified three DENV-4 specific anti-NS1 MAbs: 3H7A9, 8A6F2 and 6D4B10. Two of these MAbs were optimal for use in a DENV-4 serotype-specific NS1 capture ELISA: MAb 8A6F2 as the capture antibody and 6D4B10 as a detection antibody. This ELISA was sensitive and specific to DENV-4 with no cross-reactivity to other three DENV (1-3) serotypes and other heterologous flaviviruses. Taken together these data indicated that our MAbs are useful reagents for the development of DENV-4 immunodiagnostic tests.

  2. Discovery of Dengue Virus NS4B Inhibitors

    Science.gov (United States)

    Wang, Qing-Yin; Dong, Hongping; Zou, Bin; Karuna, Ratna; Wan, Kah Fei; Zou, Jing; Susila, Agatha; Yip, Andy; Shan, Chao; Yeo, Kim Long; Xu, Haoying; Ding, Mei; Chan, Wai Ling; Gu, Feng; Seah, Peck Gee; Liu, Wei; Lakshminarayana, Suresh B.; Kang, CongBao; Lescar, Julien; Blasco, Francesca; Smith, Paul W.

    2015-01-01

    ABSTRACT The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50, >20 μM). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. IMPORTANCE Dengue virus (DENV) threatens up to 2.5 billion people and is now spreading in many regions in the world where it was not previously endemic. While there are several promising vaccine candidates in clinical trials, approved vaccines or antivirals are not yet available. Here we describe the identification and characterization of a spiropyrazolopyridone as a novel inhibitor of DENV by targeting the viral NS4B protein. The compound potently inhibits two of the four serotypes of DENV (DENV-2 and -3) both in vitro and in vivo. Our

  3. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production.

    Science.gov (United States)

    Gebhard, Leopoldo G; Iglesias, Néstor G; Byk, Laura A; Filomatori, Claudia V; De Maio, Federico A; Gamarnik, Andrea V

    2016-06-01

    Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly. A thorough site-directed mutagenesis study based on solvent-accessible surface areas of NS3 revealed that, in addition to being essential for RNA replication, different domains of dengue virus NS3 are critically required for production of infectious viral particles. Unexpectedly, point mutations in the protease, interdomain linker, or helicase domain were sufficient to abolish infectious particle formation without affecting translation, polyprotein processing, or RNA replication. In particular, we identified a novel proline-rich N-terminal unstructured region of NS3 that contains several amino acid residues involved in infectious particle formation. We also showed a new role for the interdomain linker of NS3 in virion assembly. In conclusion, we present a comprehensive genetic map of novel NS3 determinants for viral particle assembly. Importantly, our results provide evidence of a central role of NS3 in the coordination of both dengue virus RNA replication and particle formation. Dengue virus is an important human pathogen, and its prominence is expanding globally; however, basic aspects of its biology are still unclear, hindering the development of effective therapeutic and prophylactic treatments. Little is known about the initial steps of dengue and other flavivirus particle assembly. This process involves a complex interplay between viral and cellular components, making it an attractive antiviral target. Unpredictably, we identified spatially separated regions of the large NS3 viral protein as determinants for

  4. Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein

    Science.gov (United States)

    Amelia, F.; Iryani; Sari, P. Y.; Parikesit, A. A.; Bakri, R.; Toepak, E. P.; Tambunan, U. S. F.

    2018-04-01

    Every year an endemic dengue fever estimated to affect over 390 million cases in over 128 countries occurs. However, the antigen types which stimulate the human immune response are variable, as a result, neither effective vaccines nor antiviral treatments have been successfully developed for this disease. The NS2B/NS3 protease of the dengue virus (DENV) responsible for viral replication is a potential drug target. The ligand-enzyme binding site determination is a key role in the success of virtual screening of new inhibitors. The NS2B/NS3 protease of DENV (PDB ID: 2FOM) has two pockets consisting of 37 (Pocket 1) and 27 (Pocket 2) amino acid residues in each pocket. In this research, we characterized the amino acid residues for binding sites in NS3/NS2B based on the hydrophobicity, the percentage of charged residues, volume, depth, ΔGbinding, hydrogen bonding and bond length. The hydrophobic percentages of both pockets are high, 59 % (Pocket 1) and 41% (Pocket 2) and the percentage of charged residues in Pocket 1 and 2 are 22% and 48%, and the pocket volume is less than 700 Å3. An interaction analysis using molecular docking showed that interaction between the ligand complex and protein in Pocket 1 is more negative than Pocket 2. As a result, Pocket 1 is the better potential target for a ligand to inhibit the action of NS2B/NS3 DENV.

  5. A new approach to dengue fatal cases diagnosis: NS1 antigen capture in tissues.

    Directory of Open Access Journals (Sweden)

    Monique da Rocha Queiroz Lima

    Full Text Available UNLABELLED: / BACKGROUND: Dengue is the most important arthropod borne viral disease worldwide in terms of morbidity and mortality and is caused by any of the four serotypes of dengue virus (DENV-1 to 4. Brazil is responsible for approximately 80% of dengue cases in the Americas, and since the introduction of dengue in 1986, a total of 5,944,270 cases have been reported including 21,596 dengue hemorrhagic fever and 874 fatal cases. DENV can infect many cell types and cause diverse clinical and pathological effects. The goal of the study was to investigate the usefulness of NS1 capture tests as an alternative tool to detect DENV in tissue specimens from previously confirmed dengue fatal cases (n = 23 that occurred in 2002 in Brazil. METHODOLOGY/PRINCIPAL FINDINGS: A total of 74 tissue specimens were available: liver (n = 23, lung (n = 14, kidney (n = 04, brain (n = 10, heart (n = 02, skin (n = 01, spleen (n = 15, thymus (n = 03 and lymph nodes (n = 02. We evaluated three tests for NS1 antigen capture: first generation Dengue Early ELISA (PanBio Diagnostics, Platelia NS1 (BioRad Laboratories and the rapid test NS1 Ag Strip (BioRad Laboratories. The overall dengue fatal case diagnosis based on the tissues analyzed by Dengue Early ELISA, Platelia NS1 and the NS1 Ag Strip was 34.7% (08/23, 60.8% (14/23 and 91.3% (21/23, respectively. The Dengue Early ELISA detected NS1 in 22.9% (17/74 of the specimens analyzed and the Platelia NS1 in 45.9% (34/74. The highest sensitivity (78.3%; 58/74 was achieved by the NS1 Ag Strip, and the differences in the sensitivities were statistically significant (p<0.05. The NS1 Ag Strip was the most sensitive in liver (91.3%; 21/23, lung (71.4%; 10/14, kidney (100%; 4/4, brain (80%; 8/10, spleen (66.6%, 10/15 and thymus (100%, 3/3 when compared to the other two ELISA assays. CONCLUSIONS/SIGNIFICANCE: This study shows the DENV NS1 capture assay as a rapid and valuable approach to postmortem dengue confirmation. With an

  6. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Hugo de Almeida

    Full Text Available Dengue fever is caused by four distinct serotypes of the dengue virus (DENV1-4, and is estimated to affect over 500 million people every year. Presently, there are no vaccines or antiviral treatments for this disease. Among the possible targets to fight dengue fever is the viral NS3 protease (NS3PRO, which is in part responsible for viral processing and replication. It is now widely recognized that virtual screening campaigns should consider the flexibility of target protein by using multiple active conformational states. The flexibility of the DENV NS3PRO could explain the relatively low success of previous virtual screening studies. In this first work, we explore the DENV NS3PRO conformational states obtained from molecular dynamics (MD simulations to take into account protease flexibility during the virtual screening/docking process. To do so, we built a full NS3PRO model by multiple template homology modeling. The model comprised the NS2B cofactor (essential to the NS3PRO activation, a glycine flexible link and the proteolytic domain. MD simulations had the purpose to sample, as closely as possible, the ligand binding site conformational landscape prior to inhibitor binding. The obtained conformational MD sample was clustered into four families that, together with principal component analysis of the trajectory, demonstrated protein flexibility. These results allowed the description of multiple binding modes for the Bz-Nle-Lys-Arg-Arg-H inhibitor, as verified by binding plots and pair interaction analysis. This study allowed us to tackle protein flexibility in our virtual screening campaign against the dengue virus NS3 protease.

  7. Targeting Dengue Virus NS-3 Helicase by Ligand based Pharmacophore Modeling and Structure based Virtual Screening

    Science.gov (United States)

    Halim, Sobia A.; Khan, Shanza; Khan, Ajmal; Wadood, Abdul; Mabood, Fazal; Hussain, Javid; Al-Harrasi, Ahmed

    2017-10-01

    Dengue fever is an emerging public health concern, with several million viral infections occur annually, for which no effective therapy currently exist. Non-structural protein 3 (NS-3) Helicase encoded by the dengue virus (DENV) is considered as a potential drug target to design new and effective drugs against dengue. Helicase is involved in unwinding of dengue RNA. This study was conducted to design new NS-3 Helicase inhibitor by in silico ligand- and structure based approaches. Initially ligand-based pharmacophore model was generated that was used to screen a set of 1201474 compounds collected from ZINC Database. The compounds matched with the pharmacophore model were docked into the active site of NS-3 helicase. Based on docking scores and binding interactions, twenty five compounds are suggested to be potential inhibitors of NS3 Helicase. The pharmacokinetic properties of these hits were predicted. The selected hits revealed acceptable ADMET properties. This study identified potential inhibitors of NS-3 Helicase in silico, and can be helpful in the treatment of Dengue.

  8. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    Science.gov (United States)

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Utility of dengue NS1 antigen rapid diagnostic test for use in difficult to reach areas and its comparison with dengue NS1 ELISA and qRT-PCR.

    Science.gov (United States)

    Shukla, Mohan K; Singh, Neeru; Sharma, Ravendra K; Barde, Pradip V

    2017-07-01

    The objective of this study was to demonstrate the utility of dengue virus (DENV) non structural protein 1 (NS1) based rapid diagnostic test (RDT) for use in tribal and difficult to reach areas for early dengue (DEN) diagnosis in acute phase patients and evaluate its sensitivity and specificity against DENV NS1 enzyme linked immune sorbent assay (ELISA) and real time reverse transcriptase polymerase chain reaction (qRT-PCR). The DENV NS1 RDT was used for preliminary diagnosis during outbreaks in difficult to reach rural and tribal areas. The diagnosis was confirmed by DENV NS1 ELISA in the laboratory. The samples were also tested and serotyped by qRT-PCR. The results were evaluated using statistical tests. The DENV NS1 RDT showed 99.2% sensitivity and 96.0% specificity when analyzed using DENV NS1 ELISA as standard. The specificity and sensitivity of the RDT when compared with qRT-PCR was 93.6% and 91.1%, respectively. The serotype specific evaluation showed more than 90% sensitivity and specificity for DENV-1, 2, and 3. The RDT proved a good diagnostic tool in difficult to reach rural and tribal areas. Further evaluation studies with different commercially available RDTs in different field conditions are essential, that will help clinicians and patients for treatment and programme managers for timely intervention. © 2017 Wiley Periodicals, Inc.

  10. Mutagenesis of Dengue Virus Protein NS2A Revealed a Novel Domain Responsible for Virus-Induced Cytopathic Effect and Interactions between NS2A and NS2B Transmembrane Segments.

    Science.gov (United States)

    Wu, Ren-Huang; Tsai, Ming-Han; Tsai, Kuen-Nan; Tian, Jia Ni; Wu, Jian-Sung; Wu, Su-Ying; Chern, Jyh-Haur; Chen, Chun-Hong; Yueh, Andrew

    2017-06-15

    The NS2A protein of dengue virus (DENV) has eight predicted transmembrane segments (pTMS1 to -8) and participates in RNA replication, virion assembly, and host antiviral response. However, the roles of specific amino acid residues within the pTMS regions of NS2A during the viral life cycle are not clear. Here, we explore the function of DENV NS2A by introducing a series of alanine substitutions into the N-terminal half (pTMS1 to -4) of the protein in the context of a DENV infectious clone or subgenomic replicon. Six NS2A mutants (NM5, -7, -9, and -17 to -19) around pTMS1 and -2 displayed a novel phenotype showing a >1,000-fold reduction in virus yield, an absence of plaque formation despite wild-type-like replicon activity, and infectious-virus-like particle yields. HEK-293 cells infected with the six NS2A mutant viruses failed to cause a virus-induced cytopathic effect (CPE) by MitoCapture staining, cell proliferation, and lactate dehydrogenase release assays. Sequencing analyses of pseudorevertant viruses derived from lethal-mutant viruses revealed two consensus reversion mutations, leucine to phenylalanine at codon 181 (L181F) within pTMS7 of NS2A and isoleucine to threonine at codon 114 (I114T) within NS2B. The introduction of an NS2A-L181F mutation into the lethal (NM15, -16, -25, and -33) and CPE-defective (NM7, -9, and -19) mutants substantially rescued virus infectivity and virus-induced CPE, respectively, whereas the NS2B-L114T mutation rescued the NM16, -25, and -33 mutants. In conclusion, the results revealed the essential roles of the N-terminal half of NS2A in RNA replication and virus-induced CPE. Intramolecular interactions between pTMSs of NS2A and intermolecular interactions between the NS2A and NS2B proteins were also implicated. IMPORTANCE The characterization of the N-terminal (current study) and C-terminal halves of DENV NS2A is the most comprehensive mutagenesis study to date to investigate the function of NS2A during the flaviviral life cycle

  11. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme.

    Directory of Open Access Journals (Sweden)

    Brittney R Henderson

    Full Text Available Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM. Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.

  12. Nine year trends of dengue virus infection in Mumbai, Western India

    Directory of Open Access Journals (Sweden)

    Jayanthi Shastri

    2017-01-01

    Methods and Results: During the nine year period of this study analysis, 6767 strongly suspected cases were tested by RT-PCR. 1685 (24.9% were Dengue PCR positive and confirmed as Dengue cases. Observations on the seasonality were based on the nine year's data as the intensity of sampling was at its maximum during monsoon season. Dengue typing was done on 100 positive samples after storage of Dengue RNA at – 80°C. Dengue serotypes were detected in 69 samples of which Dengue 2 was most predominant. 576 samples were processed for NS1 antigen and PCR simultaneously. 19/576 were positive (3.3 % for NS1 as well as by PCR . 23/576 samples were negative for NS1 antigen, but were positive by RT-PCR. The remaining 534 samples which were negative for NS1 antigen were also negative by Dengue RT-PCR. Conclusion: In this study we sought to standardize rapid, sensitive, and specific fluorogenic probe-based RT-PCR assay to screen and serotype a representative range of Dengue viruses that are found in and around Mumbai. Qualitative Dengue virus TaqMan assays could have tremendous utility for the epidemiological investigation of Dengue illness and especially for the study of the viremic response with candidate live-attenuated dengue virus vaccines.

  13. Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase.

    Science.gov (United States)

    Byrd, Chelsea M; Grosenbach, Douglas W; Berhanu, Aklile; Dai, Dongcheng; Jones, Kevin F; Cardwell, Kara B; Schneider, Christine; Yang, Guang; Tyavanagimatt, Shanthakumar; Harver, Chris; Wineinger, Kristin A; Page, Jessica; Stavale, Eric; Stone, Melialani A; Fuller, Kathleen P; Lovejoy, Candace; Leeds, Janet M; Hruby, Dennis E; Jordan, Robert

    2013-04-01

    Dengue virus (DENV) is the predominant mosquito-borne viral pathogen that infects humans with an estimated 50 to 100 million infections per year worldwide. Over the past 50 years, the incidence of dengue disease has increased dramatically and the virus is now endemic in more than 100 countries. Moreover, multiple serotypes of DENV are now found in the same geographic region, increasing the likelihood of more severe forms of disease. Despite extensive research, there are still no approved vaccines or therapeutics commercially available to treat DENV infection. Here we report the results of a high-throughput screen of a chemical compound library using a whole-virus assay that identified a novel small-molecule inhibitor of DENV, ST-610, that potently and selectively inhibits all four serotypes of DENV replication in vitro. Sequence analysis of drug-resistant virus isolates has identified a single point mutation, A263T, in the NS3 helicase domain that confers resistance to this compound. ST-610 inhibits DENV NS3 helicase RNA unwinding activity in a molecular-beacon-based helicase assay but does not inhibit nucleoside triphosphatase activity based on a malachite green ATPase assay. ST-610 is nonmutagenic, is well tolerated (nontoxic) in mice, and has shown efficacy in a sublethal murine model of DENV infection with the ability to significantly reduce viremia and viral load compared to vehicle controls.

  14. Nine year trends of dengue virus infection in Mumbai, Western India.

    Science.gov (United States)

    Shastri, Jayanthi; Williamson, Manita; Vaidya, Nilima; Agrawal, Sachee; Shrivastav, Om

    2017-01-01

    Dengue virus (DENV) causes a wide range of diseases in humans, from acute febrile illness Dengue fever (DF) to life-threatening Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Factors believed to be responsible for spread of Dengue virus infection include explosive population growth, unplanned urban overpopulation with inadequate public health systems, poor standing water and vector control, climate changes and increased international recreational, business, military travel to endemic areas. All of these factors must be addressed to control the spread of Dengue and other mosquito-borne infections. The detection of Dengue virus RNA by reverse transcriptase PCR (RT-PCR) in human serum or plasma samples is highly indicative of acute Dengue fever. Moreover, the method is able to identify the Dengue virus serotype by demonstrating defined sequence homologies in the viral genomic RNA. During the nine year period of this study analysis, 6767 strongly suspected cases were tested by RT-PCR. 1685 (24.9%) were Dengue PCR positive and confirmed as Dengue cases. Observations on the seasonality were based on the nine year's data as the intensity of sampling was at its maximum during monsoon season. Dengue typing was done on 100 positive samples after storage of Dengue RNA at - 80°C. Dengue serotypes were detected in 69 samples of which Dengue 2 was most predominant. 576 samples were processed for NS1 antigen and PCR simultaneously. 19/576 were positive (3.3 %) for NS1 as well as by PCR. 23/576 samples were negative for NS1 antigen, but were positive by RT-PCR. The remaining 534 samples which were negative for NS1 antigen were also negative by Dengue RT-PCR. In this study we sought to standardize rapid, sensitive, and specific fluorogenic probe-based RT-PCR assay to screen and serotype a representative range of Dengue viruses that are found in and around Mumbai. Qualitative Dengue virus TaqMan assays could have tremendous utility for the epidemiological

  15. Dynamic Nucleolar Targeting of Dengue Virus Polymerase NS5 in Response to Extracellular pH

    Science.gov (United States)

    Fraser, Johanna E.; Rawlinson, Stephen M.; Heaton, Steven M.

    2016-01-01

    ABSTRACT The nucleolar subcompartment of the nucleus is increasingly recognized as an important target of RNA viruses. Here we document for the first time the ability of dengue virus (DENV) polymerase, nonstructural protein 5 (NS5), to accumulate within the nucleolus of infected cells and to target green fluorescent protein (GFP) to the nucleolus of live transfected cells. Intriguingly, NS5 exchange between the nucleus and nucleolus is dynamically modulated by extracellular pH, responding rapidly and reversibly to pH change, in contrast to GFP alone or other nucleolar and non-nucleolar targeted protein controls. The minimal pH-sensitive nucleolar targeting region (pHNTR), sufficient to target GFP to the nucleolus in a pH-sensitive fashion, was mapped to NS5 residues 1 to 244, with mutation of key hydrophobic residues, Leu-165, Leu-167, and Val-168, abolishing pHNTR function in NS5-transfected cells, and severely attenuating DENV growth in infected cells. This is the first report of a viral protein whose nucleolar targeting ability is rapidly modulated by extracellular stimuli, suggesting that DENV has the ability to detect and respond dynamically to the extracellular environment. IMPORTANCE Infections by dengue virus (DENV) threaten 40% of the world's population yet there is no approved vaccine or antiviral therapeutic to treat infections. Understanding the molecular details that govern effective viral replication is key for the development of novel antiviral strategies. Here, we describe for the first time dynamic trafficking of DENV nonstructural protein 5 (NS5) to the subnuclear compartment, the nucleolus. We demonstrate that NS5's targeting to the nucleolus occurs in response to acidic pH, identify the key amino acid residues within NS5 that are responsible, and demonstrate that their mutation severely impairs production of infectious DENV. Overall, this study identifies a unique subcellular trafficking event and suggests that DENV is able to detect and respond

  16. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina; Subramanian Manimekalai, Malathy Sony; Zhao, Yongqian; Chandramohan, Arun; Srinivasan Anand, Ganesh; Matsui, Tsutomu; Weiss, Thomas M.; Vasudevan, Subhash G.; Grüber, Gerhard

    2015-10-31

    Infection by the four serotypes ofDengue virus(DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all fourDengue virusserotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1 to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase–RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented.

  17. Structural features of NS3 of Dengue virus serotypes 2 and 4 in solution and insight into RNA binding and the inhibitory role of quercetin.

    Science.gov (United States)

    Pan, Ankita; Saw, Wuan Geok; Subramanian Manimekalai, Malathy Sony; Grüber, Ardina; Joon, Shin; Matsui, Tsutomu; Weiss, Thomas M; Grüber, Gerhard

    2017-05-01

    Dengue virus (DENV), which has four serotypes (DENV-1 to DENV-4), is the causative agent of the viral infection dengue. DENV nonstructural protein 3 (NS3) comprises a serine protease domain and an RNA helicase domain which has nucleotide triphosphatase activities that are essential for RNA replication and viral assembly. Here, solution X-ray scattering was used to provide insight into the overall structure and flexibility of the entire NS3 and its recombinant helicase and protease domains for Dengue virus serotypes 2 and 4 in solution. The DENV-2 and DENV-4 NS3 forms are elongated and flexible in solution. The importance of the linker residues in flexibility and domain-domain arrangement was shown by the compactness of the individual protease and helicase domains. Swapping of the 174 PPAVP 179 linker stretch of the related Hepatitis C virus (HCV) NS3 into DENV-2 NS3 did not alter the elongated shape of the engineered mutant. Conformational alterations owing to RNA binding are described in the protease domain, which undergoes substantial conformational alterations that are required for the optimal catalysis of bound RNA. Finally, the effects of ATPase inhibitors on the enzymatically active DENV-2 and DENV-4 NS3 and the individual helicases are presented, and insight into the allosteric effect of the inhibitor quercetin is provided.

  18. Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection.

    Directory of Open Access Journals (Sweden)

    Jincheng Chen

    2015-07-01

    Full Text Available Dengue virus (DV infection is the most prevalent mosquito-borne viral disease and its manifestation has been shown to be contributed in part by the host immune responses. In this study, pathogen recognition receptors, Toll-like receptor (TLR 2 and TLR6 were found to be up-regulated in DV-infected human PBMC using immunofluorescence staining, flow cytometry and Western blot analyses. Using ELISA, IL-6 and TNF-α, cytokines downstream of TLR2 and TLR6 signaling pathways were also found to be up-regulated in DV-infected PBMC. IL-6 and TNF-α production by PBMC were reduced when TLR2 and TLR6 were blocked using TLR2 and TLR6 neutralizing antibodies during DV infection. These results suggested that signaling pathways of TLR2 and TLR6 were activated during DV infection and its activation contributed to IL-6 and TNF-α production. DV NS1 protein was found to significantly increase the production of IL-6 and TNF-α when added to PBMC. The amount of IL-6 and TNF-α stimulated by DV NS1 protein was reduced when TLR2 and TLR6 were blocked, suggesting that DV NS1 protein is the viral protein responsible for the activation of TLR2 and TLR6 during DV infection. Secreted alkaline phosphatase (SEAP reporter assay was used to further confirm activation of TLR2 and TLR6 by DV NS1 protein. In addition, DV-infected and DV NS1 protein-treated TLR6-/- mice have higher survivability compared to DV-infected and DV NS1 protein-treated wild-type mice. Hence, activation of TLR6 via DV NS1 protein could potentially play an important role in the immunopathogenesis of DV infection.

  19. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E.

    Directory of Open Access Journals (Sweden)

    Panisadee Avirutnan

    2007-11-01

    Full Text Available Dengue virus (DENV nonstructural protein-1 (NS1 is a secreted glycoprotein that is absent from viral particles but accumulates in the supernatant and on the plasma membrane of cells during infection. Immune recognition of cell surface NS1 on endothelial cells has been hypothesized as a mechanism for the vascular leakage that occurs during severe DENV infection. However, it has remained unclear how NS1 becomes associated with the plasma membrane, as it contains no membrane-spanning sequence motif. Using flow cytometric and ELISA-based binding assays and mutant cell lines lacking selective glycosaminoglycans, we show that soluble NS1 binds back to the surface of uninfected cells primarily via interactions with heparan sulfate and chondroitin sulfate E. DENV NS1 binds directly to the surface of many types of epithelial and mesenchymal cells yet attaches poorly to most peripheral blood cells. Moreover, DENV NS1 preferentially binds to cultured human microvascular compared to aortic or umbilical cord vein endothelial cells. This binding specificity was confirmed in situ as DENV NS1 bound to lung and liver but not intestine or brain endothelium of mouse tissues. Differential binding of soluble NS1 by tissue endothelium and subsequent recognition by anti-NS1 antibodies could contribute to the selective vascular leakage syndrome that occurs during severe secondary DENV infection.

  20. Potential of plant alkaloids as dengue ns3 protease inhibitors: Molecular docking and simulation approach

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir ul Qamar

    2014-08-01

    Full Text Available Dengue infection has become a worldwide health problem and infection rate is increasing each year. Alkaloids are important phytochemicals of medicinal plant and can be used as vaccine candidates for viruses. Therefore, present study was designed to find potential alkaloids inhibitors against the Dengue virus NS2B/NS3 protease which can inhibit the viral replication inside the host cell. Through molecular docking it was investigated that most of the alkaloids bound deeply in the binding pocket of Dengue virus NS2B/NS3 protease and had potential interactions with catalytic triad. Five alkaloids (6’-desmethylthalifaboramin; 3,5-dihydroxythalifaboramine; Betanin; Reserpic acid and Tubulosine successfully blocked the catalytic triad of NS2B/NS3 protease and these alkaloids can serve as a potential drug candidate to stop viral replication. It can be concluded from this study that these alkaloids could serve as important inhibitors to inhibit the replication of DENV and need further in-vitro investigations to confirm their efficacy and drug ability.

  1. Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection

    DEFF Research Database (Denmark)

    Antunes, Paula Soares Martins; Watterson, Daniel; Parmvi, Mattias

    2015-01-01

    Dengue is a tropical vector-borne disease without cure or vaccine that progressively spreads into regions with temperate climates. Diagnostic tools amenable to resource-limited settings would be highly valuable for epidemiologic control and containment during outbreaks. Here, we present a novel low......-cost automated biosensing platform for detection of dengue fever biomarker NS1 and demonstrate it on NS1 spiked in human serum. Magnetic nanoparticles (MNPs) are coated with high-affinity monoclonal antibodies against NS1 via bio-orthogonal Cu-free 'click' chemistry on an anti-fouling surface molecular...... method. The resulting automated dengue fever assay takes just 8 minutes, requires 6 μL of serum sample and shows a limit of detection of 25 ng/mL with an upper detection range of 20000 ng/mL. The technology holds a great potential to be applied to NS1 detection in patient samples. As the assay...

  2. Early diagnosis of dengue in travelers: comparison of a novel real-time RT-PCR, NS1 antigen detection and serology.

    Science.gov (United States)

    Huhtamo, Eili; Hasu, Essi; Uzcátegui, Nathalie Y; Erra, Elina; Nikkari, Simo; Kantele, Anu; Vapalahti, Olli; Piiparinen, Heli

    2010-01-01

    The increased traveling to dengue endemic regions and the numerous epidemics have led to a rise in imported dengue. The laboratory diagnosis of acute dengue requires several types of tests and often paired samples are needed for obtaining reliable results. Although several diagnostic methods are available, proper comparative data on their performance are lacking. To compare the performance of novel methods including a novel pan-DENV real-time RT-PCR and a commercially available NS1 capture-EIA in regard to IgM detection for optimizing the early diagnosis of DENV in travelers. A panel of 99 selected early phase serum samples of dengue patients was studied by real-time RT-PCR, NS1 antigen ELISA, IgM-EIA, IgG-IFA and cell culture virus isolation. The novel real-time RT-PCR was shown specific and sensitive for detection of DENV-1-4 RNA and suitable for diagnostic use. The diagnostic rate using combination of RNA and IgM detection was 99% and using NS1 and IgM detection 95.9%. The results of RNA and NS1 antigen detection disagreed in 15.5% of samples that had only RNA or NS1 antigen detected. The diagnostic rates of early samples are higher when either RNA or NS1 antigen detection is combined with IgM detection. Besides the differences in the RNA and NS1 detection assays, the observed discrepancy of results could suggest individual variation or differences in timing of these markers in patient serum. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. Elevated Dengue Virus Nonstructural Protein 1 Serum Levels and Altered Toll-Like Receptor 4 Expression, Nitric Oxide, and Tumor Necrosis Factor Alpha Production in Dengue Hemorrhagic Fever Patients

    Directory of Open Access Journals (Sweden)

    Denise Maciel Carvalho

    2014-01-01

    Full Text Available Background. During dengue virus (DV infection, monocytes produce tumor necrosis factor alpha (TNF-α and nitric oxide (NO which might be critical to immunopathogenesis. Since intensity of DV replication may determine clinical outcomes, it is important to know the effects of viral nonstructural protein 1 (NS1 on innate immune parameters of infected patients. The present study investigates the relationships between dengue virus nonstructural protein 1 (NS1 serum levels and innate immune response (TLR4 expression and TNF-α/NO production of DV infected patients presenting different clinical outcomes. Methodology/Principal Findings. We evaluated NO, NS1 serum levels (ELISA, TNF-α production by peripheral blood mononuclear cells (PBMCs, and TLR4 expression on CD14+ cells from 37 dengue patients and 20 healthy controls. Early in infection, increased expression of TLR4 in monocytes of patients with dengue fever (DF was detected compared to patients with dengue hemorrhagic fever (DHF. Moreover, PBMCs of DHF patients showed higher NS1 and lower NO serum levels during the acute febrile phase and a reduced response to TLR4 stimulation by LPS (with a reduced TNF-α production when compared to DF patients. Conclusions/Significance. During DV infection in humans, some innate immune parameters change, depending on the NS1 serum levels, and phase and severity of the disease which may contribute to development of different clinical outcomes.

  4. Amino Terminal Region of Dengue Virus NS4A Cytosolic Domain Binds to Highly Curved Liposomes

    Directory of Open Access Journals (Sweden)

    Yu-Fu Hung

    2015-07-01

    Full Text Available Dengue virus (DENV is an important human pathogen causing millions of disease cases and thousands of deaths worldwide. Non-structural protein 4A (NS4A is a vital component of the viral replication complex (RC and plays a major role in the formation of host cell membrane-derived structures that provide a scaffold for replication. The N-terminal cytoplasmic region of NS4A(1–48 is known to preferentially interact with highly curved membranes. Here, we provide experimental evidence for the stable binding of NS4A(1–48 to small liposomes using a liposome floatation assay and identify the lipid binding sequence by NMR spectroscopy. Mutations L6E;M10E were previously shown to inhibit DENV replication and to interfere with the binding of NS4A(1–48 to small liposomes. Our results provide new details on the interaction of the N-terminal region of NS4A with membranes and will prompt studies of the functional relevance of the curvature sensitive membrane anchor at the N-terminus of NS4A.

  5. Dengue Virus Glycosylation: What Do We Know?

    Directory of Open Access Journals (Sweden)

    Sally S. L. Yap

    2017-07-01

    Full Text Available In many infectious diseases caused by either viruses or bacteria, pathogen glycoproteins play important roles during the infection cycle, ranging from entry to successful intracellular replication and host immune evasion. Dengue is no exception. Dengue virus glycoproteins, envelope protein (E and non-structural protein 1 (NS1 are two popular sub-unit vaccine candidates. E protein on the virion surface is the major target of neutralizing antibodies. NS1 which is secreted during DENV infection has been shown to induce a variety of host responses through its binding to several host factors. However, despite their critical role in disease and protection, the glycosylated variants of these two proteins and their biological importance have remained understudied. In this review, we seek to provide a comprehensive summary of the current knowledge on protein glycosylation in DENV, and its role in virus biogenesis, host cell receptor interaction and disease pathogenesis.

  6. Identification of natural antimicrobial agents to treat dengue infection: In vitro analysis of latarcin peptide activity against dengue virus.

    Science.gov (United States)

    Rothan, Hussin A; Bahrani, Hirbod; Rahman, Noorsaadah Abd; Yusof, Rohana

    2014-05-31

    Although there have been considerable advances in the study of dengue virus, no vaccines or anti-dengue drugs are currently available for humans. Therefore, new approaches are necessary for the development of potent anti-dengue drugs. Natural antimicrobial peptides (AMPs) with potent antiviral activities are potential hits-to-leads for antiviral drug discovery. We performed this study to identify and characterise the inhibitory potential of the latarcin peptide (Ltc 1, SMWSGMWRRKLKKLRNALKKKLKGE) against dengue virus replication in infected cells. The Ltc 1 peptide showed a significantly inhibitory effect against the dengue protease NS2B-NS3pro at 37°C, a physiological human temperature, (IC50, 12.68 ± 3.2 μM), and greater inhibitory effect was observed at 40°C, a temperature similar to a high fever (IC50, 6.58 ± 4.1 μM). A greater reduction in viral load (p.f.u./ml) was observed at simultaneous (0.7 ± 0.3 vs. 7.2 ± 0.5 control) and post-treatment (1.8 ± 0.7 vs. 6.8 ± 0.6 control) compared to the pre-treatment (4.5 ± 0.6 vs. 6.9 ± 0.5 control). Treatment with the Ltc 1 peptide reduced the viral RNA in a dose-dependent manner with EC50 values of 8.3 ± 1.2, 7.6 ± 2.7 and 6.8 ± 2.5 μM at 24, 48 and 72 h, respectively. The Ltc 1 peptide exhibited significant inhibitory effects against dengue NS2B-NS3pro and virus replication in the infected cells. Therefore, further investigation is necessary to develop the Ltc 1 peptide as a new anti-dengue therapeutic.

  7. NMR analysis of the dynamic exchange of the NS2B cofactor between open and closed conformations of the West Nile virus NS2B-NS3 protease.

    Directory of Open Access Journals (Sweden)

    Xun-Cheng Su

    Full Text Available BACKGROUND: The two-component NS2B-NS3 proteases of West Nile and dengue viruses are essential for viral replication and established targets for drug development. In all crystal structures of the proteases to date, the NS2B cofactor is located far from the substrate binding site (open conformation in the absence of inhibitor and lining the substrate binding site (closed conformation in the presence of an inhibitor. METHODS: In this work, nuclear magnetic resonance (NMR spectroscopy of isotope and spin-labeled samples of the West Nile virus protease was used to investigate the occurrence of equilibria between open and closed conformations in solution. FINDINGS: In solution, the closed form of the West Nile virus protease is the predominant conformation irrespective of the presence or absence of inhibitors. Nonetheless, dissociation of the C-terminal part of the NS2B cofactor from the NS3 protease (open conformation occurs in both the presence and the absence of inhibitors. Low-molecular-weight inhibitors can shift the conformational exchange equilibria so that over 90% of the West Nile virus protease molecules assume the closed conformation. The West Nile virus protease differs from the dengue virus protease, where the open conformation is the predominant form in the absence of inhibitors. CONCLUSION: Partial dissociation of NS2B from NS3 has implications for the way in which the NS3 protease can be positioned with respect to the host cell membrane when NS2B is membrane associated via N- and C-terminal segments present in the polyprotein. In the case of the West Nile virus protease, discovery of low-molecular-weight inhibitors that act by breaking the association of the NS2B cofactor with the NS3 protease is impeded by the natural affinity of the cofactor to the NS3 protease. The same strategy can be more successful in the case of the dengue virus NS2B-NS3 protease.

  8. Detection of immune-complex-dissociated nonstructural-1 antigen in patients with acute dengue virus infections

    NARCIS (Netherlands)

    P. Koraka (Penelope); C.P. Burghoorn-Maas; A. Falconar; T.E. Setiati (Tatty); K. Djamiatun; J. Groen (Jan); A.D.M.E. Osterhaus (Albert)

    2003-01-01

    textabstractAccurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot

  9. Detection of immune-complex-dissociated nonstructural-1 antigen in patients with acute dengue virus infections.

    NARCIS (Netherlands)

    Koraka, P.; Burghoorn-Maas, C.P.; Falconar, A.; Setiati, T.E.; Djamiatun, K.; Groen, J.; Osterhaus, A.D.

    2003-01-01

    Accurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot blot

  10. Molecular surveillance of dengue in Semarang, Indonesia revealed the circulation of an old genotype of dengue virus serotype-1.

    Directory of Open Access Journals (Sweden)

    Sukmal Fahri

    Full Text Available Dengue disease is currently a major health problem in Indonesia and affects all provinces in the country, including Semarang Municipality, Central Java province. While dengue is endemic in this region, only limited data on the disease epidemiology is available. To understand the dynamics of dengue in Semarang, we conducted clinical, virological, and demographical surveillance of dengue in Semarang and its surrounding regions in 2012. Dengue cases were detected in both urban and rural areas located in various geographical features, including the coastal and highland areas. During an eight months' study, a total of 120 febrile patients were recruited, of which 66 were serologically confirmed for dengue infection using IgG/IgM ELISA and/or NS1 tests. The cases occurred both in dry and wet seasons. Majority of patients were under 10 years old. Most patients were diagnosed as dengue hemorrhagic fever, followed by dengue shock syndrome and dengue fever. Serotyping was performed in 31 patients, and we observed the co-circulation of all four dengue virus (DENV serotypes. When the serotypes were correlated with the severity of the disease, no direct correlation was observed. Phylogenetic analysis of DENV based on Envelope gene sequence revealed the circulation of DENV-2 Cosmopolitan genotype and DENV-3 Genotype I. A striking finding was observed for DENV-1, in which we found the co-circulation of Genotype I with an old Genotype II. The Genotype II was represented by a virus strain that has a very slow mutation rate and is very closely related to the DENV strain from Thailand, isolated in 1964 and never reported in other countries in the last three decades. Moreover, this virus was discovered in a cool highland area with an elevation of 1,001 meters above the sea level. The discovery of this old DENV strain may suggest the silent circulation of old virus strains in Indonesia.

  11. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil.

    Science.gov (United States)

    Drumond, Betania Paiva; Fagundes, Luiz Gustavo da Silva; Rocha, Raissa Prado; Fumagalli, Marcilio Jorge; Araki, Carlos Shigueru; Colombo, Tatiana Elisa; Nogueira, Mauricio Lacerda; Castilho, Thiago Elias; da Silveira, Nelson José Freitas; Malaquias, Luiz Cosme Cotta; Coelho, Luiz Felipe Leomil

    2016-01-01

    Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients who experience secondary infection with a different serotype can progress to a more severe form of the disease, called dengue hemorrhagic fever. The four Dengue virus serotypes (1-4) are antigenically and genetically distinct and each serotype is composed of multiple genotypes. In this study we isolated one Dengue virus 1 serotype, named BR/Alfenas/2012, from a patient with dengue hemorrhagic fever in Alfenas, South Minas Gerais, Brazil and molecular identification was performed based on the analysis of NS5 gene. Swiss mice were infected with this isolate to verify its potential to induce histopathological alterations characteristic of dengue. Liver histopathological analysis of infected animals showed the presence of inflammatory infiltrates, hepatic steatosis, as well as edema, hemorrhage and necrosis focal points. Phylogenetic and evolutionary analyses based on the envelope gene provided evidence that the isolate BR/Alfenas/2012 belongs to genotype V, lineage I and it is probably derived from isolates of Rio de Janeiro, Brazil. The isolate BR/Alfenas/2012 showed two unique amino acids substitutions (SER222THRE and PHE306SER) when compared to other Brazilian isolates from the same genotype/lineage. Molecular models were generated for the envelope protein indicating that the amino acid alteration PHE 306 SER could contribute to a different folding in this region located within the domain III. Further genetic and animal model studies using BR/Alfenas/2012 and other isolates belonging to the same lineage/genotype could help determine the relation of these genetic alterations and dengue hemorrhagic fever in a susceptible population. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by

  12. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Betania Paiva Drumond

    2016-03-01

    Full Text Available Abstract Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients who experience secondary infection with a different serotype can progress to a more severe form of the disease, called dengue hemorrhagic fever. The four Dengue virus serotypes (1–4 are antigenically and genetically distinct and each serotype is composed of multiple genotypes. In this study we isolated one Dengue virus 1 serotype, named BR/Alfenas/2012, from a patient with dengue hemorrhagic fever in Alfenas, South Minas Gerais, Brazil and molecular identification was performed based on the analysis of NS5 gene. Swiss mice were infected with this isolate to verify its potential to induce histopathological alterations characteristic of dengue. Liver histopathological analysis of infected animals showed the presence of inflammatory infiltrates, hepatic steatosis, as well as edema, hemorrhage and necrosis focal points. Phylogenetic and evolutionary analyses based on the envelope gene provided evidence that the isolate BR/Alfenas/2012 belongs to genotype V, lineage I and it is probably derived from isolates of Rio de Janeiro, Brazil. The isolate BR/Alfenas/2012 showed two unique amino acids substitutions (SER222THRE and PHE306SER when compared to other Brazilian isolates from the same genotype/lineage. Molecular models were generated for the envelope protein indicating that the amino acid alteration PHE 306 SER could contribute to a different folding in this region located within the domain III. Further genetic and animal model studies using BR/Alfenas/2012 and other isolates belonging to the same lineage/genotype could help determine the relation of these genetic alterations and dengue hemorrhagic fever in a susceptible population.

  13. STRUKTUR PROTEOMIK VIRUS DENGUE DAN MANFAATNYA SEBAGAI TARGET ANTIVIRUS

    Directory of Open Access Journals (Sweden)

    Novia Rachmayanti

    2014-09-01

    Full Text Available AbstrakVirus dengue (DENV telah menyebabkan sekitar 50 juta kasus infeksi demam berdarah setiap tahunnya, akan tetapi hingga saat ini belum terdapat vaksin maupun antivirus yang mampu mencegah atau mengobati penyakit tersebut. Selama pengembangan vaksin dan antivirus, diperoleh berbagai informasi tentang struktur protein DENV yang dapat dimanfaatkan sebagai target obat. Makalah membahas tentang struktur proteomik pada DENV, yaitu glikoprotein pada envelope, NS3 protease, NS3 helikase, NS5 metiltransferase, dan NS5 RNA-dependent RNA polimerase.AbstractDengue virus (DENV has caused over 50 millions infection every year. However, to date neither vaccine nor medicine could be used to prevent or cure the illness. During researches in finding the vaccine or antiviral for DENV, information on DENV protein structure has been obtained which is potentially used as drug target. This paper disscuss DENV proteomic structure that consist of envelope glicoprotein, NS3 protease, NS3 helicase, NS5 methyl-transferase, and NS5 RNA-dependent RNA polymerase.

  14. Immunopathogenesis of Dengue Virus-Induced Redundant Cell Death: Apoptosis and Pyroptosis.

    Science.gov (United States)

    Suwanmanee, San; Luplertlop, Natthanej

    Dengue virus infection is a self-limited condition, which is of particular importance in tropical and subtropical regions and for which no specific treatment or effective vaccine is available. There are several hypotheses explaining dengue pathogenesis. These usually refer to host immune responses, including antibody-dependent enhancement, cytokine expression, and dengue virus particles including NS1 protein, which lead to cell death by both apoptosis and pyroptosis. A clear understanding of the pathogenesis should facilitate the development of vaccines and therapies. This review focuses on the immunopathogenesis in relation to clinical manifestations and patterns of cell death, focusing on the pathogenesis of severe dengue.

  15. Some epitopes conservation in non structural 3 protein dengue virus serotype 4

    Directory of Open Access Journals (Sweden)

    Tegar A. P. Siregar

    2016-03-01

    Full Text Available AbstrakLatar belakang: Protein Non Struktural 3 (NS3 virus dengue menginduksi respon antibodi netralisasidan respon sel T CD4+ dan CD8+, serta berperan dalam replikasi virus. Protein NS3 memiliki epitopepitopsel T dan B yang terdapat perbedaan kelestarian pada berbagai strain virus dengue serotipe 4(DENV-4. Penelitian ini bertujuan untuk mengetahui kelestarian epitop sel T dan B pada protein NS3DENV-4 strain-strain dunia dan keempat serotipe virus dengue strain Indonesia.Metode: Penelitian ini dilakukan di Departemen Mikrobiologi Fakultas Kedokteran UI sejak Juni 2013 - April2014. Sekuens asam amino NS3 DENV-4 strain 081 didapatkan setelah produk PCR gen NS3 DENV-4 081disekuensing. Epitop-epitop sel T dan sel B protein NS3 DENV-4 081 dianalisis dan dibandingkan dengansekuens asam amino protein NS3 dari 124 strain DENV-4 di dunia dan keempat serotipe DENV strain Indonesia.Strain-strain dunia merupakan strain yang ada di benua Amerika (Venezuela, Colombia, dll dan Asia (Cina,Singapura, dll. Referensi posisi epitop sel T dan B protein NS3 diperoleh dari laporan penelitian terdahulu.Hasil: Delapan epitop sel T dan 2 epitop sel B dari protein NS3 DENV-4 081 ternyata identik dan lestaripada protein NS3 dari 124 strain DENV-4 dunia. Epitop sel B di posisi asam amino 537-544 pada proteinNS3 DENV-4 081 ternyata identik dan lestari dengan epitop sel B protein NS3 dari keempat serotipeDENV strain Indonesia.Kesimpulan: Kelestarian yang luas dari epitop sel T dan B pada hampir seluruh strain DENV-4 dunia danserotipe-serotipe DENV strain Indonesia. (Health Science Journal of Indonesia 2015;6:126-31Kata kunci: virus dengue, protein NS3, epitop sel T, epitop sel B AbstractBackground: Non Structural 3 (NS3 protein of dengue virus (DENV is known to induce antibody, CD4+and CD8+ T cell responses, and playing role in viral replication. NS3 protein has T and B cell epitopes,which has conservation difference between DENV-4 strains. This study aimed to identify

  16. A crystal structure of the Dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication.

    Directory of Open Access Journals (Sweden)

    Yongqian Zhao

    2015-03-01

    Full Text Available Flavivirus RNA replication occurs within a replication complex (RC that assembles on ER membranes and comprises both non-structural (NS viral proteins and host cofactors. As the largest protein component within the flavivirus RC, NS5 plays key enzymatic roles through its N-terminal methyltransferase (MTase and C-terminal RNA-dependent-RNA polymerase (RdRp domains, and constitutes a major target for antivirals. We determined a crystal structure of the full-length NS5 protein from Dengue virus serotype 3 (DENV3 at a resolution of 2.3 Å in the presence of bound SAH and GTP. Although the overall molecular shape of NS5 from DENV3 resembles that of NS5 from Japanese Encephalitis Virus (JEV, the relative orientation between the MTase and RdRp domains differs between the two structures, providing direct evidence for the existence of a set of discrete stable molecular conformations that may be required for its function. While the inter-domain region is mostly disordered in NS5 from JEV, the NS5 structure from DENV3 reveals a well-ordered linker region comprising a short 310 helix that may act as a swivel. Solution Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS analysis reveals an increased mobility of the thumb subdomain of RdRp in the context of the full length NS5 protein which correlates well with the analysis of the crystallographic temperature factors. Site-directed mutagenesis targeting the mostly polar interface between the MTase and RdRp domains identified several evolutionarily conserved residues that are important for viral replication, suggesting that inter-domain cross-talk in NS5 regulates virus replication. Collectively, a picture for the molecular origin of NS5 flexibility is emerging with profound implications for flavivirus replication and for the development of therapeutics targeting NS5.

  17. Proteomic analysis reveals the enhancement of human serum apolipoprotein A-1(APO A-1) in individuals infected with multiple dengue virus serotypes.

    Science.gov (United States)

    Manchala, Nageswar Reddy; Dungdung, Ranjeet; Pilankatta, Rajendra

    2017-10-01

    Human serum protein profiling of the individual infected with multiple dengue virus serotypes for identifying the potential biomarkers and to investigate the cause for the severity of dengue virus infection. Dengue virus NS1-positive serum samples were pooled into two groups (S2 and S3) based on the molecular serotyping and number of heterotypic infections. The pooled serum samples were subjected to two-dimensional gel electrophoresis (2DGE) to identify the differentially expressed proteins. The peptide masses of upregulated protein were detected by matrix-assisted laser desorption-ionisation time-of-flight MALDI-TOF mass spectrometry and analysed by MASCOT search engine. The results were compared with the control group (S1). The commonly upregulated protein was validated by quantitative ELISA and compared with control as well as single serotypic infected samples. Based on 2DGE, total thirteen proteins were differentially upregulated in S2 and S3 groups as compared to control. Some of the upregulated proteins were involved in mediating the complement activation of immune response. The apolipoprotein A-1 (APO A-1) was upregulated in S2 and S3 groups. Upon validation, APO A-1 levels were increased in line with the number of heterotypic infection of dengue viruses. Heterotypic infection of dengue viruses upregulate the serum proteins involved in the complement pathway in the early phase of infection. There was a significant increase in the level of APO A-1 in three different serotypic infections of dengue virus as compared to control. Further, the role of APO-A1 can be explored in elucidating the mechanism of dengue pathogenesis. © 2017 John Wiley & Sons Ltd.

  18. Construction of dengue virus protease expression plasmid and in vitro protease assay for screening antiviral inhibitors.

    Science.gov (United States)

    Lai, Huiguo; Teramoto, Tadahisa; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus serotypes 1-4 (DENV1-4) are mosquito-borne human pathogens of global significance causing ~390 million cases annually worldwide. The virus infections cause in general a self-limiting disease, known as dengue fever, but occasionally also more severe forms, especially during secondary infections, dengue hemorrhagic fever and dengue shock syndrome causing ~25,000 deaths annually. The DENV genome contains a single-strand positive sense RNA, approximately 11 kb in length. The 5'-end has a type I cap structure. The 3'-end has no poly(A) tail. The viral RNA has a single long open reading frame that is translated by the host translational machinery to yield a polyprotein precursor. Processing of the polyprotein precursor occurs co-translationally by cellular proteases and posttranslationally by the viral serine protease in the endoplasmic reticulum (ER) to yield three structural proteins (capsid (C), precursor membrane (prM), and envelope (E) and seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The active viral protease consists of both NS2B, an integral membrane protein in the ER, and the N-terminal part of NS3 (180 amino acid residues) that contains the trypsin-like serine protease domain having a catalytic triad of H51, D75, and S135. The C-terminal part of NS3, ~170-618 amino acid residues, encodes an NTPase/RNA helicase and 5'-RNA triphosphatase activities; the latter enzyme is required for the first step in 5'-capping. The cleavage sites of the polyprotein by the viral protease consist of two basic amino acid residues such as KR, RR, or QR, followed by short chain amino acid residues, G, S, or T. Since the cleavage of the polyprotein by the viral protease is absolutely required for assembly of the viral replicase, blockage of NS2B/NS3pro activity provides an effective means for designing dengue virus (DENV) small-molecule therapeutics. Here we describe the screening of small-molecule inhibitors against DENV2 protease.

  19. A trade-off in replication in mosquito versus mammalian systems conferred by a point mutation in the NS4B protein of dengue virus type 4

    International Nuclear Information System (INIS)

    Hanley, Kathryn A.; Manlucu, Luella R.; Gilmore, Lara E.; Blaney, Joseph E.; Hanson, Christopher T.; Murphy, Brian R.; Whitehead, Stephen S.

    2003-01-01

    An acceptable live-attenuated dengue virus vaccine candidate should have low potential for transmission by mosquitoes. We have identified and characterized a mutation in dengue virus type 4 (DEN4) that decreases the ability of the virus to infect mosquitoes. A panel of 1248 mutagenized virus clones generated previously by chemical mutagenesis was screened for decreased replication in mosquito C6/36 cells but efficient replication in simian Vero cells. One virus met these criteria and contained a single coding mutation: a C-to-U mutation at nucleotide 7129 resulting in a Pro-to-Leu change in amino acid 101 of the nonstructural 4B gene (NS4B P101L). This mutation results in decreased replication in C6/36 cells relative to wild-type DEN4, decreased infectivity for mosquitoes, enhanced replication in Vero and human HuH-7 cells, and enhanced replication in SCID mice implanted with HuH-7 cells (SCID-HuH-7 mice). A recombinant DEN4 virus (rDEN4) bearing this mutation exhibited the same set of phenotypes. Addition of the NS4B P101L mutation to rDEN4 bearing a 30 nucleotide deletion (Δ30) decreased the ability of the double-mutant virus to infect mosquitoes but increased its ability to replicate in SCID-HuH-7 mice. Although the NS4B P101L mutation decreases infectivity of DEN4 for mosquitoes, its ability to enhance replication in SCID-HuH-7 mice suggests that it might not be advantageous to include this specific mutation in an rDEN4 vaccine. The opposing effects of the NS4B P101L mutation in mosquito and vertebrate systems suggest that the NS4B protein is involved in maintaining the balance between efficient replication in the mosquito vector and the human host

  20. Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease.

    Science.gov (United States)

    Qamar, Tahir Ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia

    2014-01-01

    Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy.

  1. Performance Evaluation of Commercial Dengue Diagnostic Tests for Early Detection of Dengue in Clinical Samples

    Directory of Open Access Journals (Sweden)

    Tuan Nur Akmalina Mat Jusoh

    2017-01-01

    Full Text Available The shattering rise in dengue virus infections globally has created a need for an accurate and validated rapid diagnostic test for this virus. Rapid diagnostic test (RDT and reverse transcription-polymerase chain reaction (RT-PCR diagnostic detection are useful tools for diagnosis of early dengue infection. We prospectively evaluated the diagnostic performance of nonstructural 1 (NS1 RDT and real-time RT-PCR diagnostic kits in 86 patient serum samples. Thirty-six samples were positive for dengue NS1 antigen while the remaining 50 were negative when tested with enzyme-linked immunosorbent assay (ELISA. Commercially available RDTs for NS1 detection, RTK ProDetect™, and SD Bioline showed high sensitivity of 94% and 89%, respectively, compared with ELISA. GenoAmp® Trioplex Real-Time RT-PCR and RealStar® Dengue RT-PCR tests presented a comparable kappa agreement with 0.722. The result obtained from GenoAmp® Real-Time RT-PCR Dengue test showed that 14 samples harbored dengue virus type 1 (DENV-1, 8 samples harbored DENV-2, 2 samples harbored DENV-3, and 1 sample harbored DENV-4. 1 sample had a double infection with DENV-1 and DENV-2. The NS1 RDTs and real-time RT-PCR tests were found to be a useful diagnostic for early and rapid diagnosis of acute dengue and an excellent surveillance tool in our battle against dengue.

  2. Isolation of Ancestral Sylvatic Dengue Virus Type 1, Malaysia

    Science.gov (United States)

    Teoh, Boon-Teong; Sam, Sing-Sin; Abd-Jamil, Juraina

    2010-01-01

    Ancestral sylvatic dengue virus type 1, which was isolated from a monkey in 1972, was isolated from a patient with dengue fever in Malaysia. The virus is neutralized by serum of patients with endemic DENV-1 infection. Rare isolation of this virus suggests a limited spillover infection from an otherwise restricted sylvatic cycle. PMID:21029545

  3. Predicción de epítopos T y B de la proteína NS4b del virus dengue tipo 3

    Directory of Open Access Journals (Sweden)

    Nevis Amin

    2013-12-01

    Full Text Available El dengue se considera una enfermedad emergente y la principal de las afecciones virales transmitidas por artrópodos en términos de morbilidad y mortalidad. A pesar de los múltiples esfuerzos realizados por la comunidad científica internacional, aún no existe una vacuna licenciada contra esta entidad. La NS4b, una de las más pequeñas proteínas del virus del dengue induce respuesta de anticuerpo y de inmunomediadores en pacientes infectados por este virus. Sin embargo, poco es conocido sobre su estructura antigénica. En el campo de diseño de vacunas es muy útil la aplicación de las técnicas in silico, tanto para el descubrimiento y desarrollo de vacunas nuevas como para las existentes. Numerosos epítopos predichos se han verificado experimentalmente, lo que demostró la utilidad de tales predicciones. En este trabajo fueron aplicados los programas de predicción: BcePred, ABCpred, HLApred, ProPred y Proped1, para la búsqueda de nuevos epítopos de la proteína NS4b del virus dengue tipo 3. Se identificaron 27 epítopos de células B y 126 de la T. La secuencia de aminoácidos del mimotopo de la proteína NS4b (FEKQLGQV fue predicha como epítopo B por el servidor Bcepred, con la puntuación más alta. El análisis teórico de la potencialidad del epítopo T-FEKQLGQV tuvo una alta cobertura para ser presentado por una muestra de la población cubana. Del total de epítopos T predichos, 13 resultaron promiscuos, que pudieran ser potenciales candidatos vacunales. La importancia de estos resultados radica en sentar las bases moleculares para el desarrollo de una vacuna profiláctica de subunidades.

  4. AN APPROPRIATE DIAGNOSIS OF DENGUE VIRUS INFECTION IN SOME CASES WHO HAD AND WERE BEING TREATED IN SOERYA HOSPITAL SEPANJANG – INDONESIA

    Directory of Open Access Journals (Sweden)

    Soegeng Soegijanto

    2015-09-01

    Full Text Available Since January 2014, Soerya Hospital has found many cases with positive result of NS or IgM and IgG Dengue. The clinical manifestations mostly were high fever with headache, vomiting and also malaise convulsion and unconsciousness. Aim of the study is to find out an appropriate diagnosis of Dengue Virus Infection. Observasional study had been done since January–April 2014 with 50 cases of dengue Virus Infection. The diagnostic procedure was made based on the WHO 2011 criteria. Result Many cases had come with fever within couple days, some of them showed convulsions. Therefore, it should be made a differential diagnosis with other disease, such as acute tonsilopharingitis, etc. The patient also had to be tested with NS1 if the patient come in the first, second and third day of fever and followed by IgM/IgG dengue on the fourth, fifth or sixth days of fever. The diagnosis of Dengue Virus Infection was made based on the WHO criteria 2011. This study showed that not all cases showed positive result of NS1 or IgM/IgG dengue on the first or second test. For the negative result, we should not think that the case is not a case of Dengue Virus Infection, especially if it happens at Aedes aegypti breeding season, the patient should be observed and performed the test again to get a proper diagnosis for Dengue Virus Infection. Monitoring clinical manifestation should always be done, to predict the appropriate diagnosis of Dengue Virus Infection.

  5. Evolution and heterogeneity of multiple serotypes of Dengue virus in Pakistan, 2006–2011

    Science.gov (United States)

    2013-01-01

    Background Even though dengue has been recognized as one of the major public health threats in Pakistan, the understanding of its molecular epidemiology is still limited. The genotypic diversity of Dengue virus (DENV) serotypes involved in dengue outbreaks since 2005 in Pakistan is not well studied. Here, we investigated the origin, diversity, genetic relationships and geographic distribution of DENV to understand virus evolution during the recent expansion of dengue in Pakistan. Methods The study included 200 sera obtained from dengue-suspected patients from 2006 to 2011. DENV infection was confirmed in 94 (47%) sera by a polymerase chain reaction assay. These included 36 (38.3%) DENV-2, 57 DENV-3 (60.6%) and 1 DENV-4 (1.1%) cases. Sequences of 13 whole genomes (6 DENV-2, 6 DENV-3 and 1 DENV-4) and 49 envelope genes (26 DENV-2, 22 DENV-3 and 1 DENV-4) were analysed to determine the origin, phylogeny, diversity and selection pressure during virus evolution. Results DENV-2, DENV-3 and DENV-4 in Pakistan from 2006 to 2011 shared 98.5-99.6% nucleotide and 99.3-99.9% amino acid similarity with those circulated in the Indian subcontinent during the last decade. Nevertheless, Pakistan DENV-2 and DENV-3 strains formed distinct clades characterized by amino acid signatures of NS2A-I116T + NS5-K861R and NS3-K590R + NS5-S895L respectively. Each clade consisted of a heterogenous virus population that circulated in Southern (2006–2009) and Northern Pakistan (2011). Conclusions DENV-2, DENV-3 and DENV-4 that circulated during 2006–2011 are likely to have first introduced via the southern route of Pakistan. Both DENV-2 and DENV-3 have undergone in-situ evolution to generate heterogenous populations, possibly driven by sustained local DENV transmission during 2006–2011 periods. While both DENV-2 and DENV-3 continued to circulate in Southern Pakistan until 2009, DENV-2 has spread in a Northern direction to establish in Punjab Province, which experienced a massive dengue

  6. Improving dengue viral antigens detection in dengue patient serum specimens using a low pH glycine buffer treatment.

    Science.gov (United States)

    Shen, Wen-Fan; Galula, Jedhan Ucat; Chang, Gwong-Jen J; Wu, Han-Chung; King, Chwan-Chuen; Chao, Day-Yu

    2017-04-01

    Early diagnosis of dengue virus (DENV) infection to monitor the potential progression to hemorrhagic fever can influence the timely management of dengue-associated severe illness. Nonstructural protein 1 (NS1) antigen detection in acute serum specimens has been widely accepted as an early diagnostic assay for dengue infection; however, lower sensitivity of the NS1 antigen-capture enzyme-linked immunosorbent assay (Ag-ELISA) in secondary dengue viral infection has been reported. In this study, we developed two forms of Ag-ELISA capable of detecting E-Ag containing virion and virus-like particles, and secreted NS1 (sNS1) antigens, respectively. The temporal kinetics of viral RNA, sNS1, and E-Ag were evaluated based on the in vitro infection experiment. Meanwhile, a panel of 62 DENV-2 infected patients' sera was tested. The sensitivity was 3.042 ng/mL and 3.840 ng/mL for sNS1 and E, respectively. The temporal kinetics of the appearance of viral RNA, E, NS1, and infectious virus in virus-infected tissue culture media suggested that viral RNAs and NS1 antigens could be detected earlier than E-Ag and infectious virus. Furthermore, a panel of 62 sera from patients infected by DENV Serotype 2 was tested. Treating clinical specimens with the dissociation buffer increased the detectable level of E from 13% to 92% and NS1 antigens from 40% to 85%. Inclusion of a low-pH glycine buffer treatment step in the commercially available Ag-ELISA is crucial for clinical diagnosis and E-containing viral particles could be a valuable target for acute DENV diagnosis, similar to NS1 detection. Copyright © 2015. Published by Elsevier B.V.

  7. Dengue Virus NS1 Protein as a Diagnostic Marker: Commercially Available ELISA and Comparison to qRT-PCR and Serological Diagnostic Assays Currently Used by the State of Florida

    Directory of Open Access Journals (Sweden)

    Jason H. Ambrose

    2017-01-01

    Full Text Available Background. The proper management of patients infected with dengue virus requires early detection. Here, real-time molecular assays have proven useful but have limitations, whereas ELISAs that detect antibodies are still favored but results are obtained too late to be of clinical value. The production of DENV NS1 peaks early during infection and its detection can combine the advantages of both diagnostic approaches. Methods. This study compared assays currently used for detecting DENV infection at the Florida Department of Health including anti-DENV IgM and IgG ELISAs as well as qRT-PCR, against a commercially available DENV NS1 ELISA. These comparisons were made among a group of 21 human sera. Results. Nine of 14 (64.3% DENV qRT-PCR+ samples were also DENV NS1+. Interestingly, the 5 NS1− samples that were qRT-PCR+ were additionally IgM− and IgG+ suggesting a nonprimary infection. Compared to qRT-PCR, the NS1 assay had a sensitivity of 64.3%, specificity 100%, PPV of 100%, and NPV of 58.3%. Conclusions. The NS1 ELISA performed as expected in known DENV qRT-PCR+ samples; however negative NS1 results for qRT-PCR+ and IgG+ sera seemingly reduced the usefulness of the NS1 ELISA for nonprimary cases. We therefore conclude that diagnosis obtained via DENV NS1 ELISA deserves further investigation.

  8. Laser-cut paper-based device for the detection of dengue non-structural NS1 protein and specific IgM in human samples.

    Science.gov (United States)

    Theillet, G; Rubens, A; Foucault, F; Dalbon, P; Rozand, C; Leparc-Goffart, I; Bedin, F

    2018-03-10

    The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical areas worldwide, affecting hundreds of millions of people each year. Dengue viruses are typically transmitted by mosquitoes and can cause a wide range of symptoms from flu-like fever to organ impairment and death. Although conventional diagnostic tests can provide early diagnosis of acute dengue infections, access to these tests is often limited in developing countries. Consequently, there is an urgent need to develop affordable, simple, rapid, and robust diagnostic tools that can be used at 'Point of Care' settings. Early diagnosis is crucial to improve patient management and reduce the risk of complications. In the present study, a novel laser-cut device made of glass-fiber paper was designed and tested for the detection of the dengue Non Structural 1 (NS1) viral protein and specific IgM in blood and plasma. The device, called PAD, was able to detect around 25 ng/mL of NS1 protein in various sample types in 8 minutes, following a few simple steps. The PAD was also able to detect specific IgM in human plasmas in less than 10 minutes. The PAD appears to have all the potential to assist health workers in early diagnosis of dengue fever or other tropical fevers caused by flaviviruses.

  9. Dengue virus receptor

    OpenAIRE

    Hidari, Kazuya I.P.J.; Suzuki, Takashi

    2011-01-01

    Dengue virus is an arthropod-borne virus transmitted by Aedes mosquitoes. Dengue virus causes fever and hemorrhagic disorders in humans and non-human primates. Direct interaction of the virus introduced by a mosquito bite with host receptor molecule(s) is crucial for virus propagation and the pathological progression of dengue diseases. Therefore, elucidation of the molecular mechanisms underlying the interaction between dengue virus and its receptor(s) in both humans and mosquitoes is essent...

  10. Coinfection with influenza A(H1N1)pdm09 and dengue virus in fatal cases.

    Science.gov (United States)

    Perdigão, Anne Carolinne Bezerra; Ramalho, Izabel Letícia Cavalcante; Guedes, Maria Izabel Florindo; Braga, Deborah Nunes Melo; Cavalcanti, Luciano Pamplona Góes; Melo, Maria Elisabeth Lisboa de; Araújo, Rafael Montenegro de Carvalho; Lima, Elza Gadelha; Silva, Luciene Alexandre Bié da; Araújo, Lia de Carvalho; Araújo, Fernanda Montenegro de Carvalho

    2016-09-01

    We report on four patients with fatal influenza A(H1N1)pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses' epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4). Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998). As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015). In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm), caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010). In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013). The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1)pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013). The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1)pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará.

  11. Coinfection with influenza A(H1N1pdm09 and dengue virus in fatal cases

    Directory of Open Access Journals (Sweden)

    Anne Carolinne Bezerra Perdigão

    2016-01-01

    Full Text Available Abstract We report on four patients with fatal influenza A(H1N1pdm09 and dengue virus coinfections. Clinical, necropsy and histopathologic findings presented in all cases were characteristic of influenza-dengue coinfections, and all were laboratory-confirmed for both infections. The possibility of influenza and dengue coinfection should be considered in locations where these two viruses’ epidemic periods coincide to avoid fatal outcomes. Dengue is a mosquito-borne viral infection caused by one of the four dengue viruses (DENV-1 to 4. Each of these viruses is capable of causing nonspecific febrile illnesses, classic dengue fever and dengue haemorrhagic fever (Gubler 1998. As a result, dengue is often difficult to diagnose clinically, especially because peak dengue season often coincides with that of other common febrile illnesses in tropical regions (Chacon et al. 2015. In April 2009, a new virus, influenza A/H1N1/pandemic (FluA/H1N1/09pdm, caused a severe outbreak in Mexico. The virus quickly spread throughout the world, and in June 2009, the World Health Organization declared a pandemic (WHO 2010. In Brazil, the first laboratory confirmed case of FluA/H1N1/09pdm was in July 2009 (Pires Neto et al. 2013. The state of Ceará, in Northeast Brazil, is a dengue endemic area. In this state, the virus influenza A(H1N1pdm09 has circulated since 2009, and through the first half of 2012, 11 deaths caused by the virus were confirmed (Pires Neto et al. 2013. The influenza and dengue seasons in Ceará overlap, which led to diagnostic difficulties. We report four cases of laboratory-confirmed coinfection of deadly influenza A(H1N1pdm09 with DENV, which occurred during the dengue and influenza season in 2012 and 2013 in Ceará.

  12. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling.

    Directory of Open Access Journals (Sweden)

    Siew Pheng Lim

    2016-08-01

    Full Text Available Flaviviruses comprise major emerging pathogens such as dengue virus (DENV or Zika virus (ZIKV. The flavivirus RNA genome is replicated by the RNA-dependent-RNA polymerase (RdRp domain of non-structural protein 5 (NS5. This essential enzymatic activity renders the RdRp attractive for antiviral therapy. NS5 synthesizes viral RNA via a "de novo" initiation mechanism. Crystal structures of the flavivirus RdRp revealed a "closed" conformation reminiscent of a pre-initiation state, with a well ordered priming loop that extrudes from the thumb subdomain into the dsRNA exit tunnel, close to the "GDD" active site. To-date, no allosteric pockets have been identified for the RdRp, and compound screening campaigns did not yield suitable drug candidates. Using fragment-based screening via X-ray crystallography, we found a fragment that bound to a pocket of the apo-DENV RdRp close to its active site (termed "N pocket". Structure-guided improvements yielded DENV pan-serotype inhibitors of the RdRp de novo initiation activity with nano-molar potency that also impeded elongation activity at micro-molar concentrations. Inhibitors exhibited mixed inhibition kinetics with respect to competition with the RNA or GTP substrate. The best compounds have EC50 values of 1-2 μM against all four DENV serotypes in cell culture assays. Genome-sequencing of compound-resistant DENV replicons, identified amino acid changes that mapped to the N pocket. Since inhibitors bind at the thumb/palm interface of the RdRp, this class of compounds is proposed to hinder RdRp conformational changes during its transition from initiation to elongation. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors. Given the evolutionary conservation of residues lining the N pocket, these molecules offer insights to treat other serious conditions caused by flaviviruses.

  13. Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins.

    Science.gov (United States)

    Turkington, Hannah L; Juozapaitis, Mindaugas; Tsolakos, Nikos; Corrales-Aguilar, Eugenia; Schwemmle, Martin; Hale, Benjamin G

    2018-03-01

    Recently, two influenza A virus (FLUAV) genomes were identified in Central and South American bats. These sequences exhibit notable divergence from classical FLUAV counterparts, and functionally, bat FLUAV glycoproteins lack canonical receptor binding and destroying activity. Nevertheless, other features that distinguish these viruses from classical FLUAVs have yet to be explored. Here, we studied the viral nonstructural protein NS1, a virulence factor that modulates host signaling to promote efficient propagation. Like all FLUAV NS1 proteins, bat FLUAV NS1s bind double-stranded RNA and act as interferon antagonists. Unexpectedly, we found that bat FLUAV NS1s are unique in being unable to bind host p85β, a regulatory subunit of the cellular metabolism-regulating enzyme, phosphoinositide 3-kinase (PI3K). Furthermore, neither bat FLUAV NS1 alone nor infection with a chimeric bat FLUAV efficiently activates Akt, a PI3K effector. Structure-guided mutagenesis revealed that the bat FLUAV NS1-p85β interaction can be reengineered (in a strain-specific manner) by changing two to four NS1 residues (96L, 99M, 100I, and 145T), thereby creating a hydrophobic patch. Notably, ameliorated p85β-binding is insufficient for bat FLUAV NS1 to activate PI3K, and a chimeric bat FLUAV expressing NS1 with engineered hydrophobic patch mutations exhibits cell-type-dependent, but species-independent, propagation phenotypes. We hypothesize that bat FLUAV hijacking of PI3K in the natural bat host has been selected against, perhaps because genes in this metabolic pathway were differentially shaped by evolution to suit the unique energy use strategies of this flying mammal. These data expand our understanding of the enigmatic functional divergence between bat FLUAVs and classical mammalian and avian FLUAVs. IMPORTANCE The potential for novel influenza A viruses to establish infections in humans from animals is a source of continuous concern due to possible severe outbreaks or pandemics. The

  14. Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins.

    Directory of Open Access Journals (Sweden)

    Pietro Scaturro

    Full Text Available Non-structural protein 1 (NS1 is one of the most enigmatic proteins of the Dengue virus (DENV, playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E and precursor Membrane (prM. Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the β-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles.

  15. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimeng; Zhou, Jianhong; Du, Yuchun, E-mail: ydu@uark.edu

    2014-01-20

    The NS1 protein of influenza viruses is a major virulence factor and exerts its function through interacting with viral/cellular RNAs and proteins. In this study, we identified heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as an interacting partner of NS1 proteins by a proteomic method. Knockdown of hnRNP A2/B1 by small interfering RNA (siRNA) resulted in higher levels of NS vRNA, NS1 mRNA, and NS1 protein in the virus-infected cells. In addition, we demonstrated that hnRNP A2/B1 proteins are associated with NS1 and NS2 mRNAs and that knockdown of hnRNP A2/B1 promotes transport of NS1 mRNA from the nucleus to the cytoplasm in the infected cells. Lastly, we showed that knockdown of hnRNP A2/B1 leads to enhanced virus replication. Our results suggest that hnRNP A2/B1 plays an inhibitory role in the replication of influenza A virus in host cells potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nucleocytoplasmic translocation. - Highlights: • Cellular protein hnRNP A2/B1 interacts with influenza viral protein NS1. • hnRNP A2/B1 suppresses the levels of NS1 protein, vRNA and mRNA in infected cells. • hnRNP A2/B1 protein is associated with NS1 and NS2 mRNAs. • hnRNP A2/B1 inhibits the nuclear export of NS1 mRNAs. • hnRNP A2/B1 inhibits influenza virus replication.

  16. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    Science.gov (United States)

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  17. Spatiotemporal dynamics and epistatic interaction sites in dengue virus type 1: a comprehensive sequence-based analysis.

    Directory of Open Access Journals (Sweden)

    Pei-Yu Chu

    Full Text Available The continuing threat of dengue fever necessitates a comprehensive characterisation of its epidemiological trends. Phylogenetic and recombination events were reconstructed based on 100 worldwide dengue virus (DENV type 1 genome sequences with an outgroup (prototypes of DENV2-4. The phylodynamic characteristics and site-specific variation were then analysed using data without the outgroup. Five genotypes (GI-GV and a ladder-like structure with short terminal branch topology were observed in this study. Apparently, the transmission of DENV1 was geographically random before gradual localising with human activity as GI-GIII in South Asia, GIV in the South Pacific, and GV in the Americas. Genotypes IV and V have recently shown higher population densities compared to older genotypes. All codon regions and all tree branches were skewed toward a negative selection, which indicated that their variation was restricted by protein function. Notably, multi-epistatic interaction sites were found in both PrM 221 and NS3 1730. Recombination events accumulated in regions E, NS3-NS4A, and particularly in region NS5. The estimated coevolution pattern also highlights the need for further study of the biological role of protein PrM 221 and NS3 1730. The recent transmission of emergent GV sublineages into Central America and Europe mandates closely monitoring of genotype interaction and succession.

  18. Cloning and expression of NS3 gene of Pakistani isolate type 2 dengue virus

    Directory of Open Access Journals (Sweden)

    Yasmin Farkhanda

    2018-03-01

    Full Text Available Introduction: Dengue is one of the major emerging viral diseases in the world, with dramatic increases in reported cases in the last few decades and annual worldwide occurrence of approximately 390 million infections. It is a highly important mosquito-vectored disease and is a problem in tropical and subtropical areas of the world. The major aim of this study was to clone and express the dengue NS3 gene, in service to its therapeutic importance for the development of stable cell lines.

  19. Design of New Competitive Dengue Ns2b/Ns3 Protease Inhibitors—A Computational Approach

    Directory of Open Access Journals (Sweden)

    Noorsaadah Abd. Rahman

    2011-02-01

    Full Text Available Dengue is a serious disease which has become a global health burden in the last decade. Currently, there are no approved vaccines or antiviral therapies to combat the disease. The increasing spread and severity of the dengue virus infection emphasizes the importance of drug discovery strategies that could efficiently and cost-effectively identify antiviral drug leads for development into potent drugs. To this effect, several computational approaches were applied in this work. Initially molecular docking studies of reference ligands to the DEN2 NS2B/NS3 serine protease were carried out. These reference ligands consist of reported competitive inhibitors extracted from Boesenbergia rotunda (i.e., 4-hydroxypanduratin A and panduratin A and three other synthesized panduratin A derivative compounds (i.e., 246DA, 2446DA and 20H46DA. The design of new lead inhibitors was carried out in two stages. In the first stage, the enzyme complexed to the reference ligands was minimized and their complexation energies (i.e., sum of interaction energy and binding energy were computed. New compounds as potential dengue inhibitors were then designed by putting various substituents successively on the benzyl ring A of the reference molecule. These substituted benzyl compounds were then computed for their enzyme-ligand complexation energies. New enzyme-ligand complexes, exhibiting the lowest complexation energies and closest to the computed energy for the reference compounds, were then chosen for the next stage manipulation and design, which involved substituting positions 4 and 5 of the benzyl ring A (positions 3 and 4 for 2446DA with various substituents.

  20. Molecular characterization of dengue viruses isolated from patients in Central Java, Indonesia.

    Science.gov (United States)

    Kusmintarsih, Endang S; Hayati, Rahma F; Turnip, Oktaviani N; Yohan, Benediktus; Suryaningsih, Suhestri; Pratiknyo, Hery; Denis, Dionisius; Sasmono, R Tedjo

    2017-10-19

    Dengue is hyper-endemic in Indonesia. Purwokerto city in Central Java province is routinely ravaged by the disease. Despite the endemicity of dengue in this city, there is still no data on the virological aspects of dengue in the city. We conducted a molecular surveillance study of the circulating dengue viruses (DENV) in Purwokerto city to gain information on the virus origin, serotype and genotype distribution, and phylogenetic characteristics of DENV. A cross-sectional dengue molecular surveillance study was conducted in Purwokerto. Sera were collected from dengue-suspected patients attending three hospitals in the city. Diagnosis was performed using dengue NS1 antigen and IgG/IgM antibodies detection. DENV serotyping was performed using Simplexa Dengue real-time RT-PCR. Sequencing was conducted to obtain full-length DENV Envelope (E) gene sequences, which were then used in phylogenetic and genotypic analyses. Patients' clinical and demographic data were collected and analyzed. A total of 105 dengue-suspected patients' sera were collected, in which 80 (76.2%) were positive for IgM and/or IgG, and 57 (54.2%) were confirmed as dengue by NS1 antigen and/or DENV RNA detection using RT-PCR. Serotyping was successful for 47 isolates. All four serotypes circulated in the area with DENV-3 as the predominant serotype. Phylogenetic analyses grouped the isolates into Genotype I for DENV-1, Cosmopolitan genotype for DENV-2, and Genotype I and II for DENV-3 and -4, respectively. The analyses also revealed the close relatedness of Purwokerto isolates to other DENV strains from Indonesia and neighboring countries. We reveal the molecular and virological characteristics of DENV in Purwokerto, Banyumas regency, Central Java. The genotype and phylogenetic analyses indicate the endemicity of the circulating DENV in the city. Our serotype and genotype data provide references for future dengue molecular epidemiology studies and disease management in the region. Copyright © 2017 The

  1. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses.

    Science.gov (United States)

    Clark, Amelia M; Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-09-01

    In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis. IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up

  2. Looking for inhibitors of the dengue virus NS5 RNA-dependent RNA-polymerase using a molecular docking approach

    Directory of Open Access Journals (Sweden)

    Galiano V

    2016-10-01

    Full Text Available Vicente Galiano,1 Pablo Garcia-Valtanen,2 Vicente Micol,3,4 José Antonio Encinar3 1Physics and Computer Architecture Department, Miguel Hernández University (UMH, Elche, Spain; 2Experimental Therapeutics Laboratory, Hanson and Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia; 3Molecular and Cell Biology Institute, Miguel Hernández University (UMH, Elche, Spain; 4CIBER: CB12/03/30038, Physiopathology of the Obesity and Nutrition, CIBERobn, Instituto de Salud Carlos III, Palma de Mallorca, Spain Abstract: The dengue virus (DENV nonstructural protein 5 (NS5 contains both an N-terminal methyltransferase domain and a C-terminal RNA-dependent RNA polymerase domain. Polymerase activity is responsible for viral RNA synthesis by a de novo initiation mechanism and represents an attractive target for antiviral therapy. The incidence of DENV has grown rapidly and it is now estimated that half of the human population is at risk of becoming infected with this virus. Despite this, there are no effective drugs to treat DENV infections. The present in silico study aimed at finding new inhibitors of the NS5 RNA-dependent RNA polymerase of the four serotypes of DENV. We used a chemical library comprising 372,792 nonnucleotide compounds (around 325,319 natural compounds to perform molecular docking experiments against a binding site of the RNA template tunnel of the virus polymerase. Compounds with high negative free energy variation (ΔG <-10.5 kcal/mol were selected as putative inhibitors. Additional filters for favorable druggability and good absorption, distribution, metabolism, excretion, and toxicity were applied. Finally, after the screening process was completed, we identified 39 compounds as lead DENV polymerase inhibitor candidates. Potentially, these compounds could act as efficient DENV polymerase inhibitors in vitro and in vivo. Keywords: virtual screening, molecular

  3. Dengue Virus 1 Outbreak in Buenos Aires, Argentina, 2016.

    Science.gov (United States)

    Tittarelli, Estefanía; Lusso, Silvina B; Goya, Stephanie; Rojo, Gabriel L; Natale, Mónica I; Viegas, Mariana; Mistchenko, Alicia S; Valinotto, Laura E

    2017-10-01

    The largest outbreak of dengue in Buenos Aires, Argentina, occurred during 2016. Phylogenetic, phylodynamic, and phylogeographic analyses of 82 samples from dengue patients revealed co-circulation of 2 genotype V dengue virus lineages, suggesting that this virus has become endemic to the Buenos Aires metropolitan area.

  4. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil

    OpenAIRE

    Drumond, Betania Paiva; Fagundes, Luiz Gustavo da Silva; Rocha, Raissa Prado; Fumagalli, Marcilio Jorge; Araki, Carlos Shigueru; Colombo, Tatiana Elisa; Nogueira, Mauricio Lacerda; Castilho, Thiago Elias; Silveira, Nelson José Freitas da; Malaquias, Luiz Cosme Cotta; Coelho, Luiz Felipe Leomil

    2016-01-01

    Abstract Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients who experience secondary infection with a different serotype can progress to a more severe form of the disease, called dengue hemorrhagic fever. The four Dengue virus serotypes (1–4) are antigenically and genetically...

  5. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Masaya [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp [Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Hasegawa, Hideki [Department of Pathology, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo (Japan); Tashiro, Masato [Influenza Virus Research Center, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo (Japan); Wang, Lei [Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Kimura, Taichi; Tanino, Mishie; Tsuda, Masumi [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Tanaka, Shinya [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan)

    2013-11-29

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.

  6. Screen Printed Carbon Electrode Based Electrochemical Immunosensor for the Detection of Dengue NS1 Antigen

    Directory of Open Access Journals (Sweden)

    Om Parkash

    2014-11-01

    Full Text Available An electrochemical immunosensor modified with the streptavidin/biotin system on screen printed carbon electrodes (SPCEs for the detection of the dengue NS1 antigen was developed in this study. Monoclonal anti-NS1 capture antibody was immobilized on streptavidin-modified SPCEs to increase the sensitivity of the assay. Subsequently, a direct sandwich enzyme linked immunosorbent assay (ELISA format was developed and optimized. An anti-NS1 detection antibody conjugated with horseradish peroxidase enzyme (HRP and 3,3,5,5'-tetramethybezidine dihydrochloride (TMB/H2O2 was used as an enzyme mediator. Electrochemical detection was conducted using the chronoamperometric technique, and electrochemical responses were generated at −200 mV reduction potential. The calibration curve of the immunosensor showed a linear response between 0.5 µg/mL and 2 µg/mL and a detection limit of 0.03 µg/mL. Incorporation of a streptavidin/biotin system resulted in a well-oriented antibody immobilization of the capture antibody and consequently enhanced the sensitivity of the assay. In conclusion, this immunosensor is a promising technology for the rapid and convenient detection of acute dengue infection in real serum samples.

  7. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L., E-mail: cmedin.uri@gmail.com

    2017-01-15

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  8. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    International Nuclear Information System (INIS)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L.

    2017-01-01

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  9. Outbreak of viral hemorrhagic fever caused by dengue virus type 3 in Al-Mukalla, Yemen.

    Science.gov (United States)

    Madani, Tariq A; Abuelzein, El-Tayeb M E; Al-Bar, Hussein M S; Azhar, Esam I; Kao, Moujahed; Alshoeb, Haj O; Bamoosa, Alabd R

    2013-03-14

    Investigations were conducted by the authors to explore an outbreak of viral hemorrhagic fever (VHF) reported in 2010 from Al-Mukalla city, the capital of Hadramout in Yemen. From 15-17 June 2010, the outbreak investigation period, specimens were obtained within 7 days after onset of illness of 18 acutely ill patients hospitalized with VHF and 15 household asymptomatic contacts of 6 acute cases. Additionally, 189 stored sera taken from acutely ill patients with suspected VHF hospitalized in the preceding 12 months were obtained from the Ministry of Health of Yemen. Thus, a total of 222 human specimens were collected; 207 specimens from acute cases and 15 specimens from contacts. All samples were tested with RT-PCR for dengue (DENV), Alkhumra (ALKV), Rift Valley Fever (RVFV), Yellow Fever (YFV), and Chikungunya (CHIKV) viruses. Samples were also tested for DENV IgM, IgG, and NS1-antigen. Medical records of patients were reviewed and demographic, clinical, and laboratory data was collected. Of 207 patients tested, 181 (87.4%) patients were confirmed to have acute dengue with positive dengue NS1-antigen (97 patients, 46.9%) and/or IgM (163 patients, 78.7%). Of the 181 patients with confirmed dengue, 100 (55.2%) patients were IgG-positive. DENV RNA was detected in 2 (1%) patients with acute symptoms; both samples were molecularly typed as DENV type 3. No other VHF viruses were detected. For the 15 contacts tested, RT-PCR tests for the five viruses were negative, one contact was dengue IgM positive, and another one was dengue IgG positive. Of the 181 confirmed dengue patients, 120 (66.3%) patients were males and the median age was 24 years. The most common manifestations included fever (100%), headache (94.5%), backache (93.4%), malaise (88.4%), arthralgia (85.1%), myalgia (82.3%), bone pain (77.9%), and leukopenia (76.2%). Two (1.1%) patients died. DENV-3 was confirmed to be the cause of an outbreak of VHF in Al-Mukalla. It is important to use both IgM and NS1-antigen

  10. Outbreak of viral hemorrhagic fever caused by dengue virus type 3 in Al-Mukalla, Yemen

    Science.gov (United States)

    2013-01-01

    Background Investigations were conducted by the authors to explore an outbreak of viral hemorrhagic fever (VHF) reported in 2010 from Al-Mukalla city, the capital of Hadramout in Yemen. Methods From 15–17 June 2010, the outbreak investigation period, specimens were obtained within 7 days after onset of illness of 18 acutely ill patients hospitalized with VHF and 15 household asymptomatic contacts of 6 acute cases. Additionally, 189 stored sera taken from acutely ill patients with suspected VHF hospitalized in the preceding 12 months were obtained from the Ministry of Health of Yemen. Thus, a total of 222 human specimens were collected; 207 specimens from acute cases and 15 specimens from contacts. All samples were tested with RT-PCR for dengue (DENV), Alkhumra (ALKV), Rift Valley Fever (RVFV), Yellow Fever (YFV), and Chikungunya (CHIKV) viruses. Samples were also tested for DENV IgM, IgG, and NS1-antigen. Medical records of patients were reviewed and demographic, clinical, and laboratory data was collected. Results Of 207 patients tested, 181 (87.4%) patients were confirmed to have acute dengue with positive dengue NS1-antigen (97 patients, 46.9%) and/or IgM (163 patients, 78.7%). Of the 181 patients with confirmed dengue, 100 (55.2%) patients were IgG-positive. DENV RNA was detected in 2 (1%) patients with acute symptoms; both samples were molecularly typed as DENV type 3. No other VHF viruses were detected. For the 15 contacts tested, RT-PCR tests for the five viruses were negative, one contact was dengue IgM positive, and another one was dengue IgG positive. Of the 181 confirmed dengue patients, 120 (66.3%) patients were males and the median age was 24 years. The most common manifestations included fever (100%), headache (94.5%), backache (93.4%), malaise (88.4%), arthralgia (85.1%), myalgia (82.3%), bone pain (77.9%), and leukopenia (76.2%). Two (1.1%) patients died. Conclusions DENV-3 was confirmed to be the cause of an outbreak of VHF in Al

  11. Cleavage preference distinguishes the two-component NS2B-NS3 serine proteinases of Dengue and West Nile viruses.

    Science.gov (United States)

    Shiryaev, Sergey A; Kozlov, Igor A; Ratnikov, Boris I; Smith, Jeffrey W; Lebl, Michal; Strongin, Alex Y

    2007-02-01

    Regulated proteolysis of the polyprotein precursor by the NS2B-NS3 protease is required for the propagation of infectious virions. Unless the structural and functional parameters of NS2B-NS3 are precisely determined, an understanding of its functional role and the design of flaviviral inhibitors will be exceedingly difficult. Our objectives were to define the substrate recognition pattern of the NS2B-NS3 protease of West Nile and Dengue virises (WNV and DV respectively). To accomplish our goals, we used an efficient, 96-well plate format, method for the synthesis of 9-mer peptide substrates with the general P4-P3-P2-P1-P1'-P2'-P3'-P4'-Gly structure. The N-terminus and the constant C-terminal Gly of the peptides were tagged with a fluorescent tag and with a biotin tag respectively. The synthesis was followed by the proteolytic cleavage of the synthesized, tagged peptides. Because of the strict requirement for the presence of basic amino acid residues at the P1 and the P2 substrate positions, the analysis of approx. 300 peptide sequences was sufficient for an adequate representation of the cleavage preferences of the WNV and DV proteinases. Our results disclosed the strict substrate specificity of the WNV protease for which the (K/R)(K/R)R/GG amino acid motifs was optimal. The DV protease was less selective and it tolerated well the presence of a number of amino acid residue types at either the P1' or the P2' site, as long as the other position was occupied by a glycine residue. We believe that our data represent a valuable biochemical resource and a solid foundation to support the design of selective substrates and synthetic inhibitors of flaviviral proteinases.

  12. In silico targeting of non-structural 4B protein from dengue virus 4 with spiropyrazolopyridone: study of molecular dynamics simulation, ADMET and virtual screening.

    Science.gov (United States)

    Hussain, Waqar; Qaddir, Iqra; Mahmood, Sajid; Rasool, Nouman

    2018-06-01

    Dengue fever is one of the most prevalent disease in tropical and sub-tropical regions of the world. According to the World Health Organisation (WHO), approximately 3.5 billion people have been affected with dengue fever. Four serotypes of dengue virus (DENV) i.e. DENV1, DENV2, DENV3 and DENV4 have up to 65% genetic variations among themselves. dengue virus 4 (DENV4) was first reported from Amazonas, Brazil and is spreading perilously due to lack of awareness of preventive measures, as it is the least targeted serotype. In this study, non-structural protein 4B of dengue virus 4 (DENV4-NS4B) is computationally characterised and simulations are performed including solvation, energy minimizations and neutralisation for the refinement of predicted model of the protein. The spiropyrazolopyridone is considered as an effective drug against NS4B of DENV2, therefore, a total of 91 different analogues of spiropyrazolopyridone are used to analyse their inhibitory action against DENV4-NS4B. These compounds are docked at the binding site with various binding affinities, representing their efficacy to block the binding pocket of the protein. Pharmacological and pharmacokinetic assessment performed on these inhibitors shows that these are suitable candidates to be used as a drug against the dengue fever. Among all these 91 compounds, Analogue-I and Analogue-II are analysed to be the most effective inhibitor having potential to be used as drugs against dengue virus.

  13. Discovery of novel dengue virus NS5 methyltransferase non-nucleoside inhibitors by fragment-based drug design.

    Science.gov (United States)

    Benmansour, Fatiha; Trist, Iuni; Coutard, Bruno; Decroly, Etienne; Querat, Gilles; Brancale, Andrea; Barral, Karine

    2017-01-05

    With the aim to help drug discovery against dengue virus (DENV), a fragment-based drug design approach was applied to identify ligands targeting a main component of DENV replication complex: the NS5 AdoMet-dependent mRNA methyltransferase (MTase) domain, playing an essential role in the RNA capping process. Herein, we describe the identification of new inhibitors developed using fragment-based, structure-guided linking and optimization techniques. Thermal-shift assay followed by a fragment-based X-ray crystallographic screening lead to the identification of three fragment hits binding DENV MTase. We considered linking two of them, which bind to proximal sites of the AdoMet binding pocket, in order to improve their potency. X-ray crystallographic structures and computational docking were used to guide the fragment linking, ultimately leading to novel series of non-nucleoside inhibitors of flavivirus MTase, respectively N-phenyl-[(phenylcarbamoyl)amino]benzene-1-sulfonamide and phenyl [(phenylcarbamoyl)amino]benzene-1-sulfonate derivatives, that show a 10-100-fold stronger inhibition of 2'-O-MTase activity compared to the initial fragments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    International Nuclear Information System (INIS)

    Khunchai, Sasiprapa; Junking, Mutita; Suttitheptumrong, Aroonroong; Yasamut, Umpa; Sawasdee, Nunghathai; Netsawang, Janjuree; Morchang, Atthapan; Chaowalit, Prapaipit; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2012-01-01

    Highlights: ► For the first time how DENV NS5 increases RANTES production. ► DENV NS5 physically interacts with human Daxx. ► Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called ‘cytokine storm’, is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  15. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    International Nuclear Information System (INIS)

    Yap, Thai Leong; Chen, Yen Liang; Xu, Ting; Wen, Daying; Vasudevan, Subhash G.; Lescar, Julien

    2007-01-01

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents an interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration

  16. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Thai Leong [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Chen, Yen Liang; Xu, Ting; Wen, Daying; Vasudevan, Subhash G. [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); Lescar, Julien, E-mail: julien@ntu.edu.sg [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)

    2007-02-01

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents an interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration.

  17. FEVER AS INDICATOR TO SECONDARY INFECTION IN DENGUE VIRAL INFECTION

    Directory of Open Access Journals (Sweden)

    Soegeng Soegijanto

    2018-04-01

    Full Text Available Dengue Virus Infections are distributed in tropical and sub-tropical regions and transmitted by the mosquitoes such as Aedes aegypti and Aedes albopictus. Dengue virus can cause dengue fever, dengue hemorrhagic fever and dengue shock syndrome or dengue and severe dengue classified by World Health Organization. Beside it concurrent infection virus salmonella had been found some cases who showed fever more than 7 days. Concurrent infection with two agents can result in an illness having overlapping symptoms creating a diagnostic dilemma for treating physician, such as dengue fever with typhoid fever. The aim of this research is detection of dengue virus and secondary infection with Salmonella typhi in patients suspected dengue virus infection. Detection of dengue virus and Salmonella typhi using immunochromatography test such as NS1, IgG/IgM for dengue virus infection, and IgM/IgG Salmonella and blood culture. The fifty children with dengue virus infection came to Soerya hospital and 17 cases suspected dengue virus infection, five cases showed a positive NS1 on the second day of fever and one case concurrent with clinical manifestation of convulsi on the third days of fever there were five cases only showed positive. It was showed in this study that on the fourth to six day of fever in dengue virus infection accompanied by antibody IgM & IgG dengue. There were 12 cases showed the clinical manifestation of concurrent dengue viral infection and Salmonella, all of them showed a mild clinical manifestation and did not show plasma leakage and shock. In this study we found the length of stay of concurrent Dengue Virus Infection and Salmonella infection is more than 10 days. These patients were also more likely to have co-existing haemodynamic disturbances and bacterial septicaemia which would have required treatment with inotropes and antibiotics. This idea is very important to make update dengue viral management to decrease mortality in outbreak try to

  18. Dengue in Bali: Clinical characteristics and genetic diversity of circulating dengue viruses.

    Science.gov (United States)

    Megawati, Dewi; Masyeni, Sri; Yohan, Benediktus; Lestarini, Asri; Hayati, Rahma F; Meutiawati, Febrina; Suryana, Ketut; Widarsa, Tangking; Budiyasa, Dewa G; Budiyasa, Ngurah; Myint, Khin S A; Sasmono, R Tedjo

    2017-05-01

    A high number of dengue cases are reported annually in Bali. Despite the endemicity, limited data on dengue is available for Bali localities. Molecular surveillance study was conducted to explore the clinical and virological characteristics of dengue patients in urban Denpasar and rural Gianyar areas in Bali during the peak season in 2015. A total of 205 adult dengue-suspected patients were recruited in a prospective cross-sectional study. Demographic and clinical information were obtained, and dengue screening was performed using NS1 and IgM/IgG ELISAs. Viral RNA was subsequently extracted from patients' sera for serotyping using conventional RT-PCR and Simplexa Dengue real-time RT-PCR, followed by genotyping with sequencing method. We confirmed 161 patients as having dengue by NS1 and RT-PCR. Among 154 samples successfully serotyped, the DENV-3 was predominant, followed by DENV-1, DENV-2, and DENV-4. Serotype predominance was different between Denpasar and Gianyar. Genotyping results classify DENV-1 isolates into Genotype I and DENV-2 as Cosmopolitan Genotype. The classification grouped isolates into Genotype I and II for DENV-3 and DENV-4, respectively. Clinical parameters showed no relationship between infecting serotypes and severity. We observed the genetic diversity of circulating DENV isolates and their relatedness with historical data and importation to other countries. Our data highlights the role of this tourist destination as a potential source of dengue transmission in the region.

  19. High affinity human antibody fragments to dengue virus non-structural protein 3.

    Directory of Open Access Journals (Sweden)

    Nicole J Moreland

    Full Text Available BACKGROUND: The enzyme activities catalysed by flavivirus non-structural protein 3 (NS3 are essential for virus replication. They are distributed between the N-terminal protease domain in the first one-third and the C-terminal ATPase/helicase and nucleoside 5' triphosphatase domain which forms the remainder of the 618-aa long protein. METHODOLOGY/PRINCIPAL FINDINGS: In this study, dengue full-length NS3 protein with residues 49 to 66 of NS2B covalently attached via a flexible linker, was used as bait in biopanning with a naïve human Fab phage-display library. Using a range of truncated constructs spanning the NS2B cofactor region and the full-length NS3, 10 unique Fab were identified and characterized. Of these, monoclonal Fab 3F8 was shown to bind α3″ (residues 526 through 531 within subdomain III of the helicase domain. The antibody inhibits the ATPase and helicase activites of NS3 in biochemical assays and reduces DENV replication in HEK293 cells that were previously transfected with Fab 3F8 compared with mock transfected cells. CONCLUSIONS/SIGNIFICANCE: Antibodies such as 3F8 are valuable tools for studying the molecular mechanisms of flaviviral replication and for the monospecific detection of replicating dengue virus in vivo.

  20. Dengue viruses in Brazil, 1986-2006 Virus del dengue en Brasil, 1986-2006

    Directory of Open Access Journals (Sweden)

    Rita Maria Ribeiro Nogueira

    2007-11-01

    Full Text Available A total of 4 243 049 dengue cases have been reported in Brazil between 1981 and 2006, including 5 817 cases of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS and a total of 338 fatal cases. Although all Brazilian regions have been affected, the Northeast and Southeast regions have registered the highest number of notifications. DENV-1 and DENV-4 were isolated for the first time in the Amazon region of Brazil in 1981 and 1982. The disease became a nationwide public health problem following outbreaks of DENV-1 and DENV-2 in the state of Rio de Janeiro in 1986 and 1990, respectively. The introduction of DENV-3 in 2000, also in the state of Rio de Janeiro, led to a severe epidemic with 288 245 reported dengue cases, including 91 deaths. Virus strains that were typed during the 2002 epidemic show that DENV-3 has displaced other dengue virus serotypes and entered new areas, a finding that warrants closer evaluation. Unusual clinical symptoms, including central nervous system involvement, have been observed in dengue patients in at least three regions of the country.En Brasil se han notificado 4 243 049 casos de dengue entre 1981 y 2006, de ellos 5 817 casos de dengue hemorrágico/síndrome de choque por dengue (DH/SCD y un total de 338 casos mortales. A pesar de que la enfermedad ha afectado a todas las regiones brasileñas, el mayor número de casos se ha notificado en las regiones nororiental y suroriental. Los virus del dengue (DENV 1 y 4 se aislaron por primera vez en la región amazónica de Brasil en 1981 y 1982. La enfermedad se convirtió en un problema nacional de salud pública después de los brotes de DENV-1 y DENV-2 en el Estado de Río de Janeiro en 1986 y 1990, respectivamente. La introducción del DENV-3 en 2000, también en el Estado de Río de Janeiro, llevó a una grave epidemia con 288 245 casos notificados de dengue y 91 muertes. Las cepas del virus identificadas durante la epidemia de 2002 demostraron que el DENV-3 ha

  1. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  2. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    Energy Technology Data Exchange (ETDEWEB)

    Khunchai, Sasiprapa [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Junking, Mutita [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Suttitheptumrong, Aroonroong; Yasamut, Umpa [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Sawasdee, Nunghathai [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Morchang, Atthapan [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Chaowalit, Prapaipit [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); and others

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer For the first time how DENV NS5 increases RANTES production. Black-Right-Pointing-Pointer DENV NS5 physically interacts with human Daxx. Black-Right-Pointing-Pointer Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  3. Clinical Features and Laboratory Findings of Travelers Returning to South Australia with Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Emma J. Quinn

    2018-01-01

    Full Text Available Reported cases of dengue are rising in South Australia (SA in travellers returning from dengue-endemic regions. We have undertaken a retrospective analysis to identify the clinical and laboratory characteristics of patients returning to SA with suspected dengue virus (DENV infection. From 488 requests, 49 (10% were defined by serology as acute dengue, with the majority of patients (75% testing as non-structural protein 1 (NS1 and/or IgM positive. Dengue was most commonly acquired in Indonesia (42.9% with clinical features of fever (95%, headache (41% and myalgia/arthralgia (56%. The presence of rash (36% and laboratory findings of neutropenia, leukopenia, thrombocytopenia, but not elevated C-reactive protein, were distinct from findings in DENV-seronegative patients. Available dengue seropositive samples were analysed by RT-PCR, with 14/32 (43.8% positive by a serotype non-specific DENV assay, but 28/32 positive (87.5% when also assessed by serotype-specific RT-PCR. Serotype analysis revealed the predominance of DENV-1 and DENV-2 and the presence of DENV-3, but not DENV-4 or Zika virus (ZIKV. Thus, dengue in returned travellers in SA presents in a manner consistent with World Health Organization (WHO definitions, with symptoms, travel history and laboratory results useful in prioritising the likelihood of dengue. This definition will assist the future management in DENV-non-endemic regions, such as SA.

  4. Docking, synthesis and bioassay studies of imine derivatives as potential inhibitors for dengue NS2B/ NS3 serine protease

    Directory of Open Access Journals (Sweden)

    Neni Frimayanti

    2017-11-01

    Full Text Available Objective: To search imine derivatives as new active agents against dengue type 2 NS2B/NS3 using molecular docking, since there is no effective vaccine against flaviviral infections. Methods: In this research, molecular docking was performed for a series of imine derivatives and the information obtained from the docking studies was used to explore the binding modes of these imine derivatives with dengue type 2 NS2B/NS3 serine protease. A set of imine were synthesized and bioassay study of the inhibitory activities of these compounds was then performed. Results: The results indicated that MY8 and MY4 have the ability to inhibit DEN2 NS2B/NS3 proteolytic activity. Conclusions: These two compounds were chosen as the reference for the next stage in drug design as new inhibitor agents against NS2B/NS3.

  5. Microparticles provide a novel biomarker to predict severe clinical outcomes of dengue virus infection.

    Science.gov (United States)

    Punyadee, Nuntaya; Mairiang, Dumrong; Thiemmeca, Somchai; Komoltri, Chulaluk; Pan-Ngum, Wirichada; Chomanee, Nusara; Charngkaew, Komgrid; Tangthawornchaikul, Nattaya; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida; Avirutnan, Panisadee

    2015-02-01

    Shedding of microparticles (MPs) is a consequence of apoptotic cell death and cellular activation. Low levels of circulating MPs in blood help maintain homeostasis, whereas increased MP generation is linked to many pathological conditions. Herein, we investigated the role of MPs in dengue virus (DENV) infection. Infection of various susceptible cells by DENV led to apoptotic death and MP release. These MPs harbored a viral envelope protein and a nonstructural protein 1 (NS1) on their surfaces. Ex vivo analysis of clinical specimens from patients with infections of different degrees of severity at multiple time points revealed that MPs generated from erythrocytes and platelets are two major MP populations in the circulation of DENV-infected patients. Elevated levels of red blood cell-derived MPs (RMPs) directly correlated with DENV disease severity, whereas a significant decrease in platelet-derived MPs was associated with a bleeding tendency. Removal by mononuclear cells of complement-opsonized NS1-anti-NS1 immune complexes bound to erythrocytes via complement receptor type 1 triggered MP shedding in vitro, a process that could explain the increased levels of RMPs in severe dengue. These findings point to the multiple roles of MPs in dengue pathogenesis. They offer a potential novel biomarker candidate capable of differentiating dengue fever from the more serious dengue hemorrhagic fever. Dengue is the most important mosquito-transmitted viral disease in the world. No vaccines or specific treatments are available. Rapid diagnosis and immediate treatment are the keys to achieve a positive outcome. Dengue virus (DENV) infection, like some other medical conditions, changes the level and composition of microparticles (MPs), tiny bag-like structures which are normally present at low levels in the blood of healthy individuals. This study investigated how MPs in culture and patients' blood are changed in response to DENV infection. Infection of cells led to programmed

  6. Characterization of Dengue Virus Resistance to Brequinar in Cell Culture▿

    Science.gov (United States)

    Qing, Min; Zou, Gang; Wang, Qing-Yin; Xu, Hao Ying; Dong, Hongping; Yuan, Zhiming; Shi, Pei-Yong

    2010-01-01

    Brequinar is an inhibitor of dihydroorotate dehydrogenase, an enzyme that is required for de novo pyrimidine biosynthesis. Here we report that brequinar has activity against a broad spectrum of viruses. The compound not only inhibits flaviviruses (dengue virus, West Nile virus, yellow fever virus, and Powassan virus) but also suppresses a plus-strand RNA alphavirus (Western equine encephalitis virus) and a negative-strand RNA rhabdovirus (vesicular stomatitis virus). Using dengue virus serotype 2 (DENV-2) as a model, we found that brequinar suppressed the viral infection cycle mainly at the step of RNA synthesis. Supplementing the culture medium with pyrimidines (cytidine or uridine) but not purines (adenine or guanine) could be used to reverse the inhibitory effect of the compound. Continuous culturing of DENV-2 in the presence of brequinar generated viruses that were partially resistant to the inhibitor. Sequencing of the resistant viruses revealed two amino acid mutations: one mutation (M260V) located at a helix in the domain II of the viral envelope protein and another mutation (E802Q) located at the priming loop of the nonstructural protein 5 (NS5) polymerase domain. Functional analysis of the mutations suggests that the NS5 mutation exerts resistance through enhancement of polymerase activity. The envelope protein mutation reduced the efficiency of virion assembly/release; however, the mutant virus became less sensitive to brequinar inhibition at the step of virion assembly/release. Taken together, the results indicate that (i) brequinar blocks DENV RNA synthesis through depletion of intracellular pyrimidine pools and (ii) the compound may also exert its antiviral activity through inhibition of virion assembly/release. PMID:20606073

  7. Transmission of dengue virus from deceased donors to solid organ transplant recipients: case report and literature review.

    Science.gov (United States)

    Rosso, Fernando; Pineda, Juan C; Sanz, Ana M; Cedano, Jorge A; Caicedo, Luis A

    Dengue fever is a vector-transmitted viral infection. Non-vectorial forms of transmission can occur through organ transplantation. We reviewed medical records of donors and recipients with suspected dengue in the first post-transplant week. We used serologic and molecular analysis to confirm the infection. Herein, we describe four cases of dengue virus transmission through solid organ transplantation. The recipients had positive serology and RT-PCR. Infection in donors was detected through serology. All cases presented with fever within the first week after transplantation. There were no fatal cases. After these cases, we implemented dengue screening with NS1 antigen detection in donors during dengue outbreaks, and no new cases were detected. In the literature review, additional cases had been published through August 2017. Transmission of Dengue virus can occur through organ donation. In endemic regions, it is important to suspect and screen for dengue in febrile and thrombocytopenic recipients in the postoperative period. Copyright © 2018 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. Imported dengue virus serotype 1 from Madeira to Finland 2012.

    Science.gov (United States)

    Huhtamo, E; Korhonen, Em; Vapalahti, O

    2013-02-21

    Imported dengue cases originating from the Madeiran outbreak are increasingly reported. In 2012 five Finnish travellers returning from Madeira were diagnosed with dengue fever. Viral sequence data was obtained from two patients. The partial C-preM sequences (399 and 396 bp respectively) were found similar to that of an autochthonous case from Madeira. The partial E-gene sequence (933 bp) which was identical among the two patients grouped phylogenetically with South American strains of dengue virus serotype 1.

  9. A new paradigm for Aedes spp. surveillance using gravid ovipositing sticky trap and NS1 antigen test kit.

    Science.gov (United States)

    Lau, Sai Ming; Chua, Tock H; Sulaiman, Wan-Yussof; Joanne, Sylvia; Lim, Yvonne Ai-Lian; Sekaran, Shamala Devi; Chinna, Karuthan; Venugopalan, Balan; Vythilingam, Indra

    2017-03-21

    Dengue remains a serious public health problem in Southeast Asia and has increased 37-fold in Malaysia compared to decades ago. New strategies are urgently needed for early detection and control of dengue epidemics. We conducted a two year study in a high human density dengue-endemic urban area in Selangor, where Gravid Ovipositing Sticky (GOS) traps were set up to capture adult Aedes spp. mosquitoes. All Aedes mosquitoes were tested using the NS1 dengue antigen test kit. All dengue cases from the study site notified to the State Health Department were recorded. Weekly microclimatic temperature, relative humidity (RH) and rainfall were monitored. Aedes aegypti was the predominant mosquito (95.6%) caught in GOS traps and 23% (43/187 pools of 5 mosquitoes each) were found to be positive for dengue using the NS1 antigen kit. Confirmed cases of dengue were observed with a lag of one week after positive Ae. aegypti were detected. Aedes aegypti density as analysed by distributed lag non-linear models, will increase lag of 2-3 weeks for temperature increase from 28 to 30 °C; and lag of three weeks for increased rainfall. Proactive strategy is needed for dengue vector surveillance programme. One method would be to use the GOS trap which is simple to setup, cost effective (below USD 1 per trap) and environmental friendly (i.e. use recyclable plastic materials) to capture Ae. aegypti followed by a rapid method of detecting of dengue virus using the NS1 dengue antigen kit. Control measures should be initiated when positive mosquitoes are detected.

  10. Lyso-myristoyl phosphatidylcholine micelles sustain the activity of Dengue non-structural (NS) protein 3 protease domain fused with the full-length NS2B.

    Science.gov (United States)

    Huang, Qiwei; Li, Qingxin; Joy, Joma; Chen, Angela Shuyi; Ruiz-Carrillo, David; Hill, Jeffrey; Lescar, Julien; Kang, Congbao

    2013-12-01

    Dengue virus (DENV), a member of the flavivirus genus, affects 50-100 million people in tropical and sub-tropical regions. The DENV protease domain is located at the N-terminus of the NS3 protease and requires for its enzymatic activity a hydrophilic segment of the NS2B that acts as a cofactor. The protease is an important antiviral drug target because it plays a crucial role in virus replication by cleaving the genome-coded polypeptide into mature functional proteins. Currently, there are no drugs to inhibit DENV protease activity. Most structural and functional studies have been conducted using protein constructs containing the NS3 protease domain connected to a soluble segment of the NS2B membrane protein via a nine-residue linker. For in vitro structural and functional studies, it would be useful to produce a natural form of the DENV protease containing the NS3 protease domain and the full-length NS2B protein. Herein, we describe the expression and purification of a natural form of DENV protease (NS2BFL-NS3pro) containing the full-length NS2B protein and the protease domain of NS3 (NS3pro). The protease was expressed and purified in detergent micelles necessary for its folding. Our results show that this purified protein was active in detergent micelles such as lyso-myristoyl phosphatidylcholine (LMPC). These findings should facilitate further structural and functional studies of the protease and will facilitate drug discovery targeting DENV. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Co-circulation and co-infections of all dengue virus serotypes in Hyderabad, India 2014.

    Science.gov (United States)

    Vaddadi, K; Gandikota, C; Jain, P K; Prasad, V S V; Venkataramana, M

    2017-09-01

    The burden of dengue virus infections increased globally during recent years. Though India is considered as dengue hyper-endemic country, limited data are available on disease epidemiology. The present study includes molecular characterization of dengue virus strains occurred in Hyderabad, India, during the year 2014. A total of 120 febrile cases were recruited for this study, which includes only children and 41 were serologically confirmed for dengue positive infections using non-structural (NS1) and/or IgG/IgM ELISA tests. RT-PCR, nucleotide sequencing and evolutionary analyses were carried out to identify the circulating serotypes/genotypes. The data indicated a high percent of severe dengue (63%) in primary infections. Simultaneous circulation of all four serotypes and co-infections were observed for the first time in Hyderabad, India. In total, 15 patients were co-infected with more than one dengue serotype and 12 (80%) of them had severe dengue. One of the striking findings of the present study is the identification of serotype Den-1 as the first report from this region and this strain showed close relatedness to the Thailand 1980 strains but not to any of the strains reported from India until now. Phylogenetically, all four strains of the present study showed close relatedness to the strains, which are reported to be high virulent.

  12. Dengue virus markers of virulence and pathogenicity

    OpenAIRE

    Rico-Hesse, Rebeca

    2009-01-01

    The increased spread of dengue fever and its more severe form, dengue hemorrhagic fever, have made the study of the mosquito-borne dengue viruses that cause these diseases a public health priority. Little is known about how or why the four different (serotypes 1–4) dengue viruses cause pathology in humans only, and there have been no animal models of disease to date. Therefore, there are no vaccines or antivirals to prevent or treat infection and mortality rates of dengue hemorrhagic fever pa...

  13. Anticuerpos policlonales contra la proteína recombinante NS3 del virus del dengue

    OpenAIRE

    Liliana Morales; Myriam L. Velandia; María Angélica Calderon; Jaime E. Castellanos; Jacqueline Chaparro-Olaya

    2017-01-01

    Introducción. El dengue es una enfermedad causada por uno de los cuatro serotipos del virus del dengue (DENV) y es endémica en, aproximadamente, 130 países. Su incidencia ha aumentado notablemente en las últimas décadas, así como la frecuencia y la magnitud de los brotes. A pesar de los esfuerzos, no existen tratamientos profilácticos ni terapéuticos contra la enfermedad y, en ese contexto, el estudio de los procesos que gobiernan el ciclo de infección del DENV es esencial para desarrollar...

  14. New Inhibitors of the DENV-NS5 RdRp from Carpolepis laurifolia as Potential Antiviral Drugs for Dengue Treatment

    Directory of Open Access Journals (Sweden)

    Paul Coulerie

    2014-05-01

    Full Text Available Since a few decades the dengue virus became a major public health concern and no treatment is available yet. In order to propose potential antidengue compounds for chemotherapy we focused on DENV RNA polymerase (DENV-NS5 RdRp which is specific and essential for the virus replication. Carpolepis laurifolia belongs to the Myrtaceae and is used as febrifuge in traditional kanak medicine. Leaf extract of this plant has been identified as a hit against the DENV-NS5 RdRp. Here we present a bioguided fractionation of the leaf extract of C. laurifolia which is also the first phytochemical evaluation of this plant. Five flavonoids, namely quercetin (1, 6-methyl-7-methoxyapigenin (2, avicularin (3, quercitrin (4 and hyperoside (5, together with betulinic acid (6, were isolated from the leaf extract of C. laurifolia. All isolated compounds were tested individually against the DENV-NS5 RdRp and compared with four other commercial flavonoids: isoquercitrin (7, spiraeoside (8, quercetin-3,4’-di-O-glucoside (9 and rutine (10. Compounds 3, 4, 6, 8 and 10 displayed IC 50 ranging from 1.7 to 2.1 µM, and were the most active against the DENV-NS5 RdRp.

  15. Rab5 Enhances Classical Swine Fever Virus Proliferation and Interacts with Viral NS4B Protein to Facilitate Formation of NS4B Related Complex

    Directory of Open Access Journals (Sweden)

    Jihui Lin

    2017-08-01

    Full Text Available Classical swine fever virus (CSFV is a fatal pig pestivirus and causes serious financial losses to the pig industry. CSFV NS4B protein is one of the most important viral replicase proteins. Rab5, a member of the small Rab GTPase family, is involved in infection and replication of numerous viruses including hepatitis C virus and dengue virus. Until now, the effects of Rab5 on the proliferation of CSFV are poorly defined. In the present study, we showed that Rab5 could enhance CSFV proliferation by utilizing lentivirus-mediated constitutive overexpression and eukaryotic plasmid transient overexpression approaches. On the other hand, lentivirus-mediated short hairpin RNA knockdown of Rab5 dramatically inhibited virus production. Co-immunoprecipitation, glutathione S-transferase pulldown and laser confocal microscopy assays further confirmed the interaction between Rab5 and CSFV NS4B protein. In addition, intracellular distribution of NS4B-Red presented many granular fluorescent signals (GFS in CSFV infected PK-15 cells. Inhibition of basal Rab5 function with Rab5 dominant negative mutant Rab5S34N resulted in disruption of the GFS. These results indicate that Rab5 plays a critical role in facilitating the formation of the NS4B related complexes. Furthermore, it was observed that NS4B co-localized with viral NS3 and NS5A proteins in the cytoplasm, suggesting that NS3 and NS5A might be components of the NS4B related complex. Taken together, these results demonstrate that Rab5 positively modulates CSFV propagation and interacts with NS4B protein to facilitate the NS4B related complexes formation.

  16. An In-Silico Investigation of Phytochemicals as Antiviral Agents Against Dengue Fever.

    Science.gov (United States)

    Powers, Chelsea N; Setzer, William N

    2016-01-01

    A virtual screening analysis of our library of phytochemical structures with dengue virus protein targets has been carried out using a molecular docking approach. A total of 2194 plant-derived secondary metabolites have been docked. This molecule set comprised of 290 alkaloids (68 indole alkaloids, 153 isoquinoline alkaloids, 5 quinoline alkaloids, 13 piperidine alkaloids, 14 steroidal alkaloids, and 37 miscellaneous alkaloids), 678 terpenoids (47 monoterpenoids, 169 sesquiterpenoids, 265 diterpenoids, 81 steroids, and 96 triterpenoids), 20 aurones, 81 chalcones, 349 flavonoids, 120 isoflavonoids, 74 lignans, 58 stilbenoids, 169 miscellaneous polyphenolic compounds, 100 coumarins, 28 xanthones, 67 quinones, and 160 miscellaneous phytochemicals. Dengue virus protein targets examined included dengue virus protease (NS2B-NS3pro), helicase (NS3 helicase), methyltransferase (MTase), RNA-dependent RNA polymerase (RdRp), and the dengue virus envelope protein. Polyphenolic compounds, flavonoids, chalcones, and other phenolics were the most numerous of the strongly docking ligands for dengue virus protein targets.

  17. RNAi: antiviral therapy against dengue virus.

    Science.gov (United States)

    Idrees, Sobia; Ashfaq, Usman A

    2013-03-01

    Dengue virus infection has become a global threat affecting around 100 countries in the world. Currently, there is no licensed antiviral agent available against dengue. Thus, there is a strong need to develop therapeutic strategies that can tackle this life threatening disease. RNA interference is an important and effective gene silencing process which degrades targeted RNA by a sequence specific process. Several studies have been conducted during the last decade to evaluate the efficiency of siRNA in inhibiting dengue virus replication. This review summarizes siRNAs as a therapeutic approach against dengue virus serotypes and concludes that siRNAs against virus and host genes can be next generation treatment of dengue virus infection.

  18. THE CHANGING CLINICAL PERFORMANCE OF DENGUE VIRUS INFECTION IN THE YEAR 2009

    Directory of Open Access Journals (Sweden)

    Soegeng Soegijanto

    2012-01-01

    Full Text Available Background: Dengue (DEN virus, the most important arthropod-borne human pathogen, represents a serious public health threat. DEN virus is transmitted to humans by the bite of the domestic mosquito, Aedes aegypti, and circulates in nature as four distinct serological types DEN-1 to 4. The aim of Study: To identify Dengue Virus Serotype I which showed mild clinical performance in five years before and afterward showed severe clinical performance. Material and Method: Prospective and analytic observational study had been done in Dr. Soetomo Hospital and the ethical clearance was conduct on January 01, 2009. The population of this research is all cases of dengue virus infection. Diagnosis were done based on WHO 1997. All of these cases were examined for IgM & IgG anti Dengue Virus and then were followed by PCR examination to identify Dengue Virus serotype. Result and Discussion: DEN 2 was predominant virus serotype with produced a spectrum clinical illness from asymptomatic, mild illness to classic dengue fever (DF to the most severe form of illness (DHF. But DEN 1 usually showed mild illness. Helen at al (2009–2010 epidemiologic study of Dengue Virus Infection in Health Centre Surabaya and Mother and Child Health Soerya Sidoarjo found many cases of Dengue Hemorrhagic Fever were caused by DEN 1 Genotype IV. Amor (2009 study in Dr. Soetomo Hospital found DEN 1 showed severe clinical performance of primary Dengue Virus Infection as Dengue Shock Syndrome two cases and one unusual case. Conclusion: The epidemiologic study of Dengue Virus Infection in Surabaya and Sidoarjo; in the year 2009 found changing predominant Dengue Virus Serotype from Dengue Virus II to Dengue Virus 1 Genotype IV which showed a severe clinical performance coincident with primary infection.

  19. Suppression of Rac1 Signaling by Influenza A Virus NS1 Facilitates Viral Replication

    Science.gov (United States)

    Jiang, Wei; Sheng, Chunjie; Gu, Xiuling; Liu, Dong; Yao, Chen; Gao, Shijuan; Chen, Shuai; Huang, Yinghui; Huang, Wenlin; Fang, Min

    2016-01-01

    Influenza A virus (IAV) is a major human pathogen with the potential to become pandemic. IAV contains only eight RNA segments; thus, the virus must fully exploit the host cellular machinery to facilitate its own replication. In an effort to comprehensively characterize the host machinery taken over by IAV in mammalian cells, we generated stable A549 cell lines with over-expression of the viral non-structural protein (NS1) to investigate the potential host factors that might be modulated by the NS1 protein. We found that the viral NS1 protein directly interacted with cellular Rac1 and facilitated viral replication. Further research revealed that NS1 down-regulated Rac1 activity via post-translational modifications. Therefore, our results demonstrated that IAV blocked Rac1-mediated host cell signal transduction through the NS1 protein to facilitate its own replication. Our findings provide a novel insight into the mechanism of IAV replication and indicate new avenues for the development of potential therapeutic targets. PMID:27869202

  20. Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar.

    Science.gov (United States)

    Aye, Khin Saw; Charngkaew, Komgrid; Win, Ne; Wai, Kyaw Zin; Moe, Kyaw; Punyadee, Nuntaya; Thiemmeca, Somchai; Suttitheptumrong, Aroonroong; Sukpanichnant, Sanya; Prida, Malasit; Halstead, Scott B

    2014-06-01

    Vascular permeability, thrombocytopenia, liver pathology, complement activation, and altered hemostasis accompanying a febrile disease are the hallmarks of the dengue hemorrhagic fever/dengue shock syndrome, a major arthropod-borne viral disease that causes significant morbidity and mortality throughout tropical countries. We studied tissues from 13 children who died of acute dengue hemorrhagic fever/dengue shock syndrome at the Childrens' Hospital, Yangon, Myanmar. Dengue viral RNA from each of the 4 dengue viruses (DENVs) was detected by reverse transcriptase polymerase chain reaction in 11 cases, and dengue viral proteins (envelope, NS1, or NS3) were detected in 1 or more tissues from all 13 cases. Formalin-fixed and frozen tissues were studied for evidence of virus infection using monoclonal antibodies against DENV structural and nonstructural antigens (E, NS1, and nonsecreting NS3). In the liver, DENV infection occurred in hepatocytes and Kupffer cells but not in endothelial cells. Liver damage was associated with deposition on hepatocytes of complement components of both classical and alternative pathways. Evidence of dengue viral replication was observed in macrophage-like cells in spleens and lymph nodes. No dengue antigens were detected in endothelial cells in any organ. Germinal centers of the spleen and lymph nodes showed a marked reduction in the number of lymphocytes that were replaced by eosinophilic deposits, which contained dengue antigens as well as immunoglobulins, and complement components (C3, C1q, and C9). The latter findings had previously been reported but overlooked as a diagnostic feature. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Efficient, trans-complementing packaging systems for chimeric, pseudoinfectious dengue 2/yellow fever viruses

    International Nuclear Information System (INIS)

    Shustov, Alexandr V.; Frolov, Ilya

    2010-01-01

    In our previous studies, we have stated to build a new strategy for developing defective, pseudoinfectious flaviviruses (PIVs) and applying them as a new type of vaccine candidates. PIVs combined the efficiency of live vaccines with the safety of inactivated or subunit vaccines. The results of the present work demonstrate further development of chimeric PIVs encoding dengue virus 2 (DEN2V) glycoproteins and yellow fever virus (YFV)-derived replicative machinery as potential vaccine candidates. The newly designed PIVs have synergistically functioning mutations in the prM and NS2A proteins, which abolish processing of the latter proteins and make the defective viruses capable of producing either only noninfectious, immature and/or subviral DEN2V particles. The PIV genomes can be packaged to high titers into infectious virions in vitro using the NS1-deficient YFV helper RNAs, and both PIVs and helpers can then be passaged as two-component genome viruses at an escalating scale.

  2. The neurovirulence and neuroinvasiveness of chimeric tick-borne encephalitis/dengue virus can be attenuated by introducing defined mutations into the envelope and NS5 protein genes and the 3' non-coding region of the genome

    International Nuclear Information System (INIS)

    Engel, Amber R.; Rumyantsev, Alexander A.; Maximova, Olga A.; Speicher, James M.; Heiss, Brian; Murphy, Brian R.; Pletnev, Alexander G.

    2010-01-01

    Tick-borne encephalitis (TBE) is a severe disease affecting thousands of people throughout Eurasia. Despite the use of formalin-inactivated vaccines in endemic areas, an increasing incidence of TBE emphasizes the need for an alternative vaccine that will induce a more durable immunity against TBE virus (TBEV). The chimeric attenuated virus vaccine candidate containing the structural protein genes of TBEV on a dengue virus genetic background (TBEV/DEN4) retains a high level of neurovirulence in both mice and monkeys. Therefore, attenuating mutations were introduced into the envelope (E 315 ) and NS5 (NS5 654,655 ) proteins, and into the 3' non-coding region (Δ30) of TBEV/DEN4. The variant that contained all three mutations (vΔ30/E 315 /NS5 654,655 ) was significantly attenuated for neuroinvasiveness and neurovirulence and displayed a reduced level of replication and virus-induced histopathology in the brains of mice. The high level of safety in the central nervous system indicates that vΔ30/E 315 /NS5 654,655 should be further evaluated as a TBEV vaccine.

  3. Introducing dengue vaccine: Implications for diagnosis in dengue vaccinated subjects.

    Science.gov (United States)

    Alagarasu, Kalichamy

    2016-05-27

    Diagnosis of dengue virus infections is complicated by preference for different diagnostic tests in different post onset days of illness and the presence of multiple serotypes leading to secondary and tertiary infections. The sensitivity of the most commonly employed diagnostic assays such as anti dengue IgM capture (MAC) ELISA and non structural protein (NS) 1 capture ELISA are lower in secondary and subsequent infections. Introduction of dengue vaccine in endemic regions will affect the way how dengue is diagnosed in vaccinated subjects. This viewpoint article discusses implications of introduction of dengue vaccine on the diagnosis of dengue infections in vaccinated subjects and the strategies that are needed to tackle the issue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Optimization of a method for the detection of immunopotentiating antibodies against serotype 1 of dengue virus

    International Nuclear Information System (INIS)

    Soto Garita, Claudio

    2014-01-01

    An immunopotentiation trial has used sera from dengue seropositive patients from Costa Rica's endemic areas. The detection and semi-quantification of immunopotentiating antibodies were optimized against dengue virus serotype 1. The cell line K562 (human erythromyeloblastoid leukemia cells) has been more efficient than the U937 (human histiocytic lymphoma cells). A more adequate detection of immunopotentiating antibodies was determined. The optimal infection and virus-antibody incubation parameters are demonstrated for the detection of immunopotentiating antibodies with the immunostaining technique. The immuno-optimized assay has allowed the detection and semi-quantification of immunopotentiating antibodies against serotype 1 of dengue virus. Samples of strong positive, weak positive and dengue negative sera are analyzed. The end has been to evaluate the usefulness in the detection and semi-quantification of immunopotentiating antibodies. The presence of immunopotentiating antibodies was demonstrated against dengue virus serotype 1 in endemic zones of Costa Rica, to complement with the evaluation of the other existing serotypes is recommended [es

  5. Expression of plasmid-based shRNA against the E1 and nsP1 genes effectively silenced Chikungunya virus replication.

    Directory of Open Access Journals (Sweden)

    Shirley Lam

    Full Text Available BACKGROUND: Chikungunya virus (CHIKV is a re-emerging alphavirus that causes chikungunya fever and persistent arthralgia in humans. Currently, there is no effective vaccine or antiviral against CHIKV infection. Therefore, this study evaluates whether RNA interference which targets at viral genomic level may be a novel antiviral strategy to inhibit the medically important CHIKV infection. METHODS: Plasmid-based small hairpin RNA (shRNA was investigated for its efficacy in inhibiting CHIKV replication. Three shRNAs designed against CHIKV Capsid, E1 and nsP1 genes were transfected to establish stable shRNA-expressing cell clones. Following infection of stable shRNA cells clones with CHIKV at M.O.I. 1, viral plaque assay, Western blotting and transmission electron microscopy were performed. The in vivo efficacy of shRNA against CHIKV replication was also evaluated in a suckling murine model of CHIKV infection. RESULTS: Cell clones expressing shRNAs against CHIKV E1 and nsP1 genes displayed significant inhibition of infectious CHIKV production, while shRNA Capsid demonstrated a modest inhibitory effect as compared to scrambled shRNA cell clones and non-transfected cell controls. Western blot analysis of CHIKV E2 protein expression and transmission electron microscopy of shRNA E1 and nsP1 cell clones collectively demonstrated similar inhibitory trends against CHIKV replication. shRNA E1 showed non cell-type specific anti-CHIKV effects and broad-spectrum silencing against different geographical strains of CHIKV. Furthermore, shRNA E1 clones did not exert any inhibition against Dengue virus and Sindbis virus replication, thus indicating the high specificity of shRNA against CHIKV replication. Moreover, no shRNA-resistant CHIKV mutant was generated after 50 passages of CHIKV in the stable cell clones. More importantly, strong and sustained anti-CHIKV protection was conferred in suckling mice pre-treated with shRNA E1. CONCLUSION: Taken together, these

  6. Analysis of the PDZ binding specificities of Influenza A Virus NS1 proteins

    Directory of Open Access Journals (Sweden)

    Nagasaka Kazunori

    2011-01-01

    Full Text Available Abstract The Influenza A virus non-structural protein 1 (NS1 is a multifunctional virulence factor with several protein-protein interaction domains, involved in preventing apoptosis of the infected cell and in evading the interferon response. In addition, the majority of influenza A virus NS1 proteins have a class I PDZ-binding motif at the C-terminus, and this itself has been shown to be a virulence determinant. In the majority of human influenza NS1 proteins the consensus motif is RSxV: in avian NS1 it is ESxV. Of the few human strains that have the avian motif, all were from very high mortality outbreaks of the disease. Previous work has shown that minor differences in PDZ-binding motifs can have major effects on the spectrum of cellular proteins targeted. In this study we analyse the effect of these differences upon the binding of Influenza A virus NS1 protein to a range of cellular proteins involved in polarity and signal transduction.

  7. Complete genome analysis of dengue virus type 3 isolated from the 2013 dengue outbreak in Yunnan, China.

    Science.gov (United States)

    Wang, Xiaodan; Ma, Dehong; Huang, Xinwei; Li, Lihua; Li, Duo; Zhao, Yujiao; Qiu, Lijuan; Pan, Yue; Chen, Junying; Xi, Juemin; Shan, Xiyun; Sun, Qiangming

    2017-06-15

    In the past few decades, dengue has spread rapidly and is an emerging disease in China. An unexpected dengue outbreak occurred in Xishuangbanna, Yunnan, China, resulting in 1331 patients in 2013. In order to obtain the complete genome information and perform mutation and evolutionary analysis of causative agent related to this largest outbreak of dengue fever. The viruses were isolated by cell culture and evaluated by genome sequence analysis. Phylogenetic trees were then constructed by Neighbor-Joining methods (MEGA6.0), followed by analysis of nucleotide mutation and amino acid substitution. The analysis of the diversity of secondary structure for E and NS1 protein were also performed. Then selection pressures acting on the coding sequences were estimated by PAML software. The complete genome sequences of two isolated strains (YNSW1, YNSW2) were 10,710 and 10,702 nucleotides in length, respectively. Phylogenetic analysis revealed both strain were classified as genotype II of DENV-3. The results indicated that both isolated strains of Xishuangbanna in 2013 and Laos 2013 stains (KF816161.1, KF816158.1, LC147061.1, LC147059.1, KF816162.1) were most similar to Bangladesh (AY496873.2) in 2002. After comparing with the DENV-3SS (H87) 62 amino acid substitutions were identified in translated regions, and 38 amino acid substitutions were identified in translated regions compared with DENV-3 genotype II stains Bangladesh (AY496873.2). 27(YNSW1) or 28(YNSW2) single nucleotide changes were observed in structural protein sequences with 7(YNSW1) or 8(YNSW2) non-synonymous mutations compared with AY496873.2. Of them, 4 non-synonymous mutations were identified in E protein sequences with (2 in the β-sheet, 2 in the coil). Meanwhile, 117(YNSW1) or 115 (YNSW2) single nucleotide changes were observed in non-structural protein sequences with 31(YNSW1) or 30 (YNSW2) non-synonymous mutations. Particularly, 14 single nucleotide changes were observed in NS1 sequences with 4/14 non

  8. Strand-like structures and the nonstructural proteins 5, 3 and 1 are present in the nucleus of mosquito cells infected with dengue virus.

    Science.gov (United States)

    Reyes-Ruiz, José M; Osuna-Ramos, Juan F; Cervantes-Salazar, Margot; Lagunes Guillen, Anel E; Chávez-Munguía, Bibiana; Salas-Benito, Juan S; Del Ángel, Rosa M

    2018-02-01

    Dengue virus (DENV) is an arbovirus, which replicates in the endoplasmic reticulum. Although replicative cycle takes place in the cytoplasm, some viral proteins such as NS5 and C are translocated to the nucleus during infection in mosquitoes and mammalian cells. To localized viral proteins in DENV-infected C6/36 cells, an immunofluorescence (IF) and immunoelectron microscopy (IEM) analysis were performed. Our results indicated that C, NS1, NS3 and NS5 proteins were found in the nucleus of DENV-infected C6/36 cells. Additionally, complex structures named strand-like structures (Ss) were observed in the nucleus of infected cells. Interestingly, the NS5 protein was located in these structures. Ss were absent in mock-infected cells, suggesting that DENV induces their formation in the nucleus of infected mosquito cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Phylogenetic analysis of dengue virus types 1 and 3 isolated in Jakarta, Indonesia in 1988.

    Science.gov (United States)

    Sjatha, Fithriyah; Takizawa, Yamato; Yamanaka, Atsushi; Konishi, Eiji

    2012-12-01

    Dengue viruses are mosquito-borne viruses that cause dengue fever and dengue hemorrhagic fever, both of which are globally important diseases. These viruses have evolved in a transmission cycle between human hosts and mosquito vectors in various tropical and subtropical environments. We previously isolated three strains of dengue type 1 virus (DENV1) and 14 strains of dengue type 3 virus (DENV3) during an outbreak of dengue fever and dengue hemorrhagic fever in Jakarta, Indonesia in 1988. Here, we compared the nucleotide sequences of the entire envelope protein-coding region among these strains. The isolates were 97.6-100% identical for DENV1 and 98.8-100% identical for DENV3. All DENV1 isolates were included in two different clades of genotype IV and all DENV3 isolates were included in a single clade of genotype I. For DENV1, three Yap Island strains isolated in 2004 were the only strains closely related to the present isolates; the recently circulated Indonesian strains were in different clades. Molecular clock analyses estimated that ancestors of the genotype IV strains of DENV1 have been indigenous in Indonesia since 1948. We predict that they diverged frequently around 1967 and that their offspring distributed to Southeast Asia, the Western Pacific, and Africa. For DENV3, the clade containing all the present isolates also contained strains isolated from other Indonesian regions and other countries including Malaysia, Singapore, China, and East Timor from 1985-2010. Molecular clock analyses estimated that the common ancestor of the genotype I strains of DENV3 emerged in Indonesia around 1967 and diverged frequently until 1980, and that their offspring distributed mainly in Southeast Asia. The first dengue outbreak in 1968 and subsequent outbreaks in Indonesia might have influenced the divergence and distribution of the DENV1 genotype IV strains and the DENV3 genotype I strains in many countries. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Increasing usage of rapid diagnostics for Dengue virus detection in Pakistan

    International Nuclear Information System (INIS)

    Hasan, Z.; Razzak, S.; Farhan, M.; Rahim, M.; Islam, N.; Samreen, A.; Khan, E.

    2017-01-01

    To evaluate the trends in usage of dengue virus diagnostics in Pakistan. Methods: This retrospective study was conducted at the Aga Khan University Hospital, Karachi, and comprised data for specimens tested for dengue virus from January 2012 to December 2015. Test for dengue virus ribonucleic acid by reverse transcription polymerase chain reaction, dengue virus antigen by immunochromatic assay and for human immunoglobulin M against dengue virus by enzyme-linked immunosorbent assay were reviewed. SPSS 17 was used for data analysis. Results: Overall, 33,577 specimens tested for dengue virus. Of them, 11,995 (35.7%) were positive. among them, 1,039(8.66%) were reported in 2012; 5,791(48.28%) in 2013; 1,027(8.56%) in 2014; and 4,138(34.49%) in 2015. In 2012, 966(93%) of the positive samples were diagnosed by immunoglobulin M-based method and 73(7%) by non-structural protein-1 antigen. In 2013, 4,401(76%) samples were tested positive by immunoglobulin M, 1,332(23%) by antigen and 58(1%) by polymerase chain reaction. The trend continued in 2014, but in 2015, 2,111(51%) of all dengue positive tests were determined by antigen testing, 1,969(47.6%) by immunoglobulin M and 58(1.4%) by polymerase chain reaction. Conclusion: There was a shift in usage of direct virus identification for rapid diagnosis of dengue virus compared with host immunoglobulin M testing. (author)

  11. El citoesqueleto en la infección con virus dengue

    Directory of Open Access Journals (Sweden)

    Francisco Javier Díaz Castrillón

    2004-03-01

    criterios de laboratorio son necesarios para ayudar a los médicos a dar un diagnóstico preciso. El objetivo de este estudio es buscar alteraciones características de las variantes hemorrágicas en el citoesqueleto que permitan diferenciar los cuadros severos y de esta forma permitan alertar sobre posibles brotes hemorrágicos o sobre la severidad de los serotipos circulantes.

    Para ello, líneas celulares de primate (VERO y/o humanas (HeLa, son infectadas con Virus Dengue (DV aislado de muestras clínicas, en células de insecto (C6/36 HT. Después de 5 días post-infección, las células infectadas son fijadas bajo condiciones de preservación de citoesqueleto y después son incubadas con una solución de anticuerpos y fluoróforos conjugados a FITC (para filamentos de actina, anticuerpos anti-vimentina conjugados a Cy3 (para filamentos intermedios, y suero policlonal contra microtúbulos, con una incubación secundaria de suero policlonal anti conejo conjugado a Alexa Fluor-488. La infección con el DV es detectada con anticuerpos monoclonales específicos contra la envoltura (E y proteína no estructural (NS-1 y un anticuerpo secundario conjugado a Alexa Fluor-594.

    Debido a que el citoesqueleto controla las rutas endo y exocítica, en condiciones normales y en la infección viral, éste debe estar implicado en la entrada y ensamblaje del DV. Si nosotros encontramos un marcador celular de severidad, estos datos podrán ser útiles en la vigilancia epidemiológica del dengue.

    Actualmente hemos detectado una reorganización del citoesqueleto de actina y filamentos intermedios de vimentina después de infecciones con el DV. Hay pérdida de fibras de estrés (actina en células epiteliales, generándose una reorganización distinta. Los filamentos

  12. Roles for Endothelial Cells in Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Nadine A. Dalrymple

    2012-01-01

    Full Text Available Dengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. The endothelium is the primary fluid barrier of the vasculature and ultimately the effects of dengue virus infection that cause capillary leakage impact endothelial cell (EC barrier functions. The ability of dengue virus to infect the endothelium provides a direct means for dengue to alter capillary permeability, permit virus replication, and induce responses that recruit immune cells to the endothelium. Recent studies focused on dengue virus infection of primary ECs have demonstrated that ECs are efficiently infected, rapidly produce viral progeny, and elicit immune enhancing cytokine responses that may contribute to pathogenesis. Furthermore, infected ECs have also been implicated in enhancing viremia and immunopathogenesis within murine dengue disease models. Thus dengue-infected ECs have the potential to directly contribute to immune enhancement, capillary permeability, viremia, and immune targeting of the endothelium. These effects implicate responses of the infected endothelium in dengue pathogenesis and rationalize therapeutic targeting of the endothelium and EC responses as a means of reducing the severity of dengue virus disease.

  13. Dengue virus transovarial transmission by Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Monica Dwi Hartanti

    2016-02-01

    Full Text Available Dengue is a disease that is caused by dengue virus and transmitted to humans through the bite of infected Aedes mosquitoes, especially Aedes aegypti. The disease is hyper-endemic in Southeast Asia, where a more severe form, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS, is a major public health concern. The purpose of the present study was to find evidence of dengue virus transovarial transmision in local vectors in Jakarta. Fifteen Aedes larvae were collected in 2009 from two areas in Tebet subdistrict in South Jakarta, namely one area with the highest and one with the lowest DHF prevalence. All mosquitoes were reared inside two cages in the laboratory, eight mosquitoes in one cage and seven mosquitoes in another cage and given only sucrose solution as their food. The results showed that 20% of the mosquitoes were positive for dengue virus. Dengue virus detection with an immunohistochemical method demonstrated the occurrence of transovarial transmission in local DHF vectors in Tebet subdistrict. Transovarial dengue infection in Ae.aegypti larvae appeared to maintain or enhance epidemics. Further research is needed to investigate the relation of dengue virus transovarial transmission with DHF endemicity in Jakarta.

  14. Dengue virus transovarial transmission by Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Monica Dwi Hartanti

    2010-08-01

    Full Text Available Dengue is a disease that is caused by dengue virus and transmitted to humans through the bite of infected Aedes mosquitoes, especially Aedes aegypti. The disease is hyper-endemic in Southeast Asia, where a more severe form, dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS, is a major public health concern. The purpose of the present study was to find evidence of dengue virus transovarial transmision in local vectors in Jakarta. Fifteen Aedes larvae were collected in 2009 from two areas in Tebet subdistrict in South Jakarta, namely one area with the highest and one with the lowest DHF prevalence. All mosquitoes were reared inside two cages in the laboratory, eight mosquitoes in one cage and seven mosquitoes in another cage and given only sucrose solution as their food. The results showed that 20% of the mosquitoes were positive for dengue virus. Dengue virus detection with an immunohistochemical method demonstrated the occurrence of transovarial transmission in local DHF vectors in Tebet subdistrict. Transovarial dengue infection in Ae.aegypti larvae appeared to maintain or enhance epidemics. Further research is needed to investigate the relation of dengue virus transovarial transmission with DHF endemicity in Jakarta.

  15. Dengue Virus Genome Uncoating Requires Ubiquitination.

    Science.gov (United States)

    Byk, Laura A; Iglesias, Néstor G; De Maio, Federico A; Gebhard, Leopoldo G; Rossi, Mario; Gamarnik, Andrea V

    2016-06-28

    The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process. Dengue is the most significant arthropod-borne viral infection in humans. Although the number of cases increases every year, there are no approved therapeutics available for the treatment of dengue infection, and many basic aspects of the viral biology remain elusive. After entry, the viral membrane must fuse with the endosomal membrane to deliver the viral genome into the cytoplasm for translation and replication. A great deal of information has been obtained in the last decade

  16. Comparative study and grouping of nonstructural (NS1)proteins of influenza A viruses by the method of oligopeptide mapping

    International Nuclear Information System (INIS)

    Sokolov, B.P.; Rudneva, I.A.; Zhdanov, V.M.

    1983-01-01

    Oligopeptide mapping of 35 S-methionine labeled non-stuctural (NS1) proteins of 23 influenza A virus strains showed the presence of both common and variable oligopeptides. Analysis of the oligopeptide maps revealed at least four groups of NS1 proteins. The first group includes NS1 proteins of several human H1N1 influenza viruses (that were designated as H0N1 according to the old classification). The second group is composed of NS1 proteins of H1N1 and H2N2 viruses. The third group includes NS1 proteins of H3N2 human influenza viruses. The fourth group is composed of NS1 proteins of five avian influenza viruses and an equine (H3N8) influenza virus. Two animal influenza viruses A/equi/Prague/56 (H7N7) and A/duck/England/56 (H11N6) contain NS1 proteins that belong to the second group. (Author)

  17. Serotype-specific Differences in Dengue Virus Non-structural Protein 5 Nuclear Localization*

    Science.gov (United States)

    Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D.

    2013-01-01

    The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes. PMID:23770669

  18. Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization.

    Science.gov (United States)

    Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D

    2013-08-02

    The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes.

  19. Functionality of Dengue Virus Specific Memory T Cell Responses in Individuals Who Were Hospitalized or Who Had Mild or Subclinical Dengue Infection

    Science.gov (United States)

    Jeewandara, Chandima; Adikari, Thiruni N.; Gomes, Laksiri; Fernando, Samitha; Fernando, R. H.; Perera, M. K. T.; Ariyaratne, Dinuka; Kamaladasa, Achala; Salimi, Maryam; Prathapan, Shamini

    2015-01-01

    Background Although antibody responses to dengue virus (DENV) in naturally infected individuals have been extensively studied, the functionality of DENV specific memory T cell responses in relation to clinical disease severity is incompletely understood. Methodology/Principal findings Using ex vivo IFNγ ELISpot assays, and by determining cytokines produced in ELISpot supernatants, we investigated the functionality of DENV-specific memory T cell responses in a large cohort of individuals from Sri Lanka (n=338), who were naturally infected and were either hospitalized due to dengue or had mild or sub clinical dengue infection. We found that T cells of individuals with both past mild or sub clinical dengue infection and who were hospitalized produced multiple cytokines when stimulated with DENV-NS3 peptides. However, while DENV-NS3 specific T cells of those with mild/sub clinical dengue infection were more likely to produce only granzyme B (p=0.02), those who were hospitalized were more likely to produce both TNFα and IFNγ (p=0.03) or TNFα alone. We have also investigated the usefulness of a novel T cell based assay, which can be used to determine the past infecting DENV serotype. 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Individuals who were seronegative, but had received the Japanese encephalitis vaccine too made no responses, suggesting that the peptides used in this assay did not cross react with the Japanese encephalitis virus. Conclusions/significance The types of cytokines produced by DENV-specific memory T cells appear to influence the outcome of clinical disease severity. The novel T cell based assay, is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials. PMID:25875020

  20. Virus del dengue de serotipo 1 (DENV-1 de Colombia: su contribución a la presentación del dengue en el departamento de Santander

    Directory of Open Access Journals (Sweden)

    Raquel E. Ocazionez-Jiménez

    2013-08-01

    Full Text Available Introducción. Los cuatro serotipos del virus del dengue circularon en el departamento de Santander entre 1998 y 2008. No existe información sobre el papel del serotipo 1 (DENV-1 en la epidemiología de la enfermedad. Objetivo. Analizar la relación entre el cambio de predominancia del (DENV-1 con su diversificación genética, predominancia de los otros serotipos y presentación del dengue grave. Materiales y métodos. La diversificación genética se estudió por análisis filogenético usando la secuencia del gen E de 12 cepas del virus. Para el análisis se utilizaron datos sobre predominancia delos serotipos obtenidos en estudios previos y datos oficiales de incidencia del dengue. Resultados. Los virus seleccionados se agruparon en el genotipo V junto a (DENV-1 de países de Latinoamérica y se evidenció segregación en cuatro linajes. Los cambios en la predominancia del virus coincidieron con el reemplazo de linaje y esto, a su vez, con incremento en la prevalencia de DENV-2y DENV-3, e incremento del dengue grave. Conclusión. La diversificación genética podría contribuir a cambios de predominancia de (DENV-1, y la relación del virus con el DENV-2 y DENV-3 en situaciones que favorecen la presentación de casos graves. Se necesitan más estudios para precisar el papel de los serotipos en la epidemiología del dengue. doi: http://dx.doi.org/10.7705/biomedica.v33i0.717

  1. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen

    Directory of Open Access Journals (Sweden)

    Canard Bruno

    2011-10-01

    Full Text Available Abstract Background The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4. Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. Results We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. Conclusions We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy.

  2. Cells in Dengue Virus Infection In Vivo

    Directory of Open Access Journals (Sweden)

    Sansanee Noisakran

    2010-01-01

    Full Text Available Dengue has been recognized as one of the most important vector-borne emerging infectious diseases globally. Though dengue normally causes a self-limiting infection, some patients may develop a life-threatening illness, dengue hemorrhagic fever (DHF/dengue shock syndrome (DSS. The reason why DHF/DSS occurs in certain individuals is unclear. Studies in the endemic regions suggest that the preexisting antibodies are a risk factor for DHF/DSS. Viremia and thrombocytopenia are the key clinical features of dengue virus infection in patients. The amounts of virus circulating in patients are highly correlated with severe dengue disease, DHF/DSS. Also, the disturbance, mainly a transient depression, of hematological cells is a critical clinical finding in acute dengue patients. However, the cells responsible for the dengue viremia are unresolved in spite of the intensive efforts been made. Dengue virus appears to replicate and proliferate in many adapted cell lines, but these in vitro properties are extremely difficult to be reproduced in primary cells or in vivo. This paper summarizes reports on the permissive cells in vitro and in vivo and suggests a hematological cell lineage for dengue virus infection in vivo, with the hope that a new focus will shed light on further understanding of the complexities of dengue disease.

  3. Molecular epidemiology of type 1 and 2 dengue viruses in Brazil from 1988 to 2001.

    Science.gov (United States)

    Pires Neto, R J; Lima, D M; de Paula, S O; Lima, C M; Rocco, I M; Fonseca, B A L

    2005-06-01

    Dengue is a mosquito-borne viral infection that in recent decades has become a major international public health concern. Epidemic dengue fever reemerged in Brazil in 1981. Since 1990 more than one dengue virus serotype has been circulating in this tropical country and increasing rates of dengue hemorrhagic fever and dengue shock syndrome have been detected every year. Some evidence supports the association between the introduction of a new serotype and/or genotype in a region and the appearance of dengue hemorrhagic fever. In order to study the evolutionary relationships and possible detection of the introduction of new dengue virus genotypes in Brazil in the last years, we analyzed partial nucleotide sequences of 52 Brazilian samples of both dengue type 1 and dengue type 2 isolated from 1988 to 2001 from highly endemic regions. A 240-nucleotide-long sequence from the envelope/nonstructural protein 1 gene junction was used for phylogenetic analysis. After comparing the nucleotide sequences originally obtained in this study to those previously studied by others, and analyzing the phylogenetic trees, we conclude that, after the initial introduction of the currently circulating dengue-1 and dengue-2 genotypes in Brazil, there has been no evidence of introduction of new genotypes since 1988. The increasing number of dengue hemorrhagic fever cases seen in Brazil in the last years is probably associated with secondary infections or with the introduction of new serotypes but not with the introduction of new genotypes.

  4. Molecular epidemiology of type 1 and 2 dengue viruses in Brazil from 1988 to 2001

    Directory of Open Access Journals (Sweden)

    Pires Neto R.J.

    2005-01-01

    Full Text Available Dengue is a mosquito-borne viral infection that in recent decades has become a major international public health concern. Epidemic dengue fever reemerged in Brazil in 1981. Since 1990 more than one dengue virus serotype has been circulating in this tropical country and increasing rates of dengue hemorrhagic fever and dengue shock syndrome have been detected every year. Some evidence supports the association between the introduction of a new serotype and/or genotype in a region and the appearance of dengue hemorrhagic fever. In order to study the evolutionary relationships and possible detection of the introduction of new dengue virus genotypes in Brazil in the last years, we analyzed partial nucleotide sequences of 52 Brazilian samples of both dengue type 1 and dengue type 2 isolated from 1988 to 2001 from highly endemic regions. A 240-nucleotide-long sequence from the envelope/nonstructural protein 1 gene junction was used for phylogenetic analysis. After comparing the nucleotide sequences originally obtained in this study to those previously studied by others, and analyzing the phylogenetic trees, we conclude that, after the initial introduction of the currently circulating dengue-1 and dengue-2 genotypes in Brazil, there has been no evidence of introduction of new genotypes since 1988. The increasing number of dengue hemorrhagic fever cases seen in Brazil in the last years is probably associated with secondary infections or with the introduction of new serotypes but not with the introduction of new genotypes.

  5. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Lalime, Erin N.; Pekosz, Andrew, E-mail: apekosz@jhsph.edu

    2014-06-15

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.

  6. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    International Nuclear Information System (INIS)

    Lalime, Erin N.; Pekosz, Andrew

    2014-01-01

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function

  7. Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities.

    Science.gov (United States)

    Pelliccia, Sveva; Wu, Yu-Hsuan; Coluccia, Antonio; La Regina, Giuseppe; Tseng, Chin-Kai; Famiglini, Valeria; Masci, Domiziana; Hiscott, John; Lee, Jin-Ching; Silvestri, Romano

    2017-12-01

    Dengue virus (DENV) is the leading mosquito-transmitted viral infection in the world. With more than 390 million new infections annually, and up to 1 million clinical cases with severe disease manifestations, there continues to be a need to develop new antiviral agents against dengue infection. In addition, there is no approved anti-DENV agents for treating DENV-infected patients. In the present study, we identified new compounds with anti-DENV replication activity by targeting viral replication enzymes - NS5, RNA-dependent RNA polymerase (RdRp) and NS3 protease, using cell-based reporter assay. Subsequently, we performed an enzyme-based assay to clarify the action of these compounds against DENV RdRp or NS3 protease activity. Moreover, these compounds exhibited anti-DENV activity in vivo in the ICR-suckling DENV-infected mouse model. Combination drug treatment exhibited a synergistic inhibition of DENV replication. These results describe novel prototypical small anti-DENV molecules for further development through compound modification and provide potential antivirals for treating DENV infection and DENV-related diseases.

  8. Dengue Virus Genome Uncoating Requires Ubiquitination

    Directory of Open Access Journals (Sweden)

    Laura A. Byk

    2016-06-01

    Full Text Available The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process.

  9. Occurrence of concurrent infections with multiple serotypes of dengue viruses during 2013–2015 in northern Kerala, India

    Directory of Open Access Journals (Sweden)

    Manchala Nageswar Reddy

    2017-03-01

    Full Text Available Background Dengue is a global human public health threat, causing severe morbidity and mortality. The occurrence of sequential infection by more than one serotype of dengue virus (DENV is a major contributing factor for the induction of Dengue Hemorrhagic Fever (DHF and Dengue Shock Syndrome (DSS, two major medical conditions caused by DENV infection. However, there is no specific drug or vaccine available against dengue infection. There are reports indicating the increased incidence of concurrent infection of dengue in several tropical and subtropical regions. Recently, increasing number of DHF and DSS cases were reported in India indicating potential enhancement of concurrent DENV infections. Therefore, accurate determination of the occurrence of DENV serotype co-infections needs to be conducted in various DENV prone parts of India. In this context, the present study was conducted to analyse the magnitude of concurrent infection in northern Kerala, a southwest state of India, during three consecutive years from 2013 to 2015. Methods A total of 120 serum samples were collected from the suspected dengue patients. The serum samples were diagnosed for the presence of dengue NS1 antigen followed by the isolation of dengue genome from NS1 positive samples. The isolated dengue genome was further subjected to RTPCR based molecular serotyping. The phylogenetic tree was constructed based on the sequence of PCR amplified products. Results Out of the total number of samples collected, 100 samples were positive for dengue specific antigen (NS1 and 26 of them contained the dengue genome. The RTPCR based molecular serotyping of the dengue genome revealed the presence of all four serotypes with different combinations. However, serotypes 1 and 3 were predominant combinations of concurrent infection. Interestingly, there were two samples with all four serotypes concurrently infected in 2013. Discussion All samples containing dengue genome showed the presence of

  10. The NS1 glycoprotein can generate dramatic antibody-enhanced dengue viral replication in normal out-bred mice resulting in lethal multi-organ disease.

    Directory of Open Access Journals (Sweden)

    Andrew K I Falconar

    Full Text Available Antibody-enhanced replication (AER of dengue type-2 virus (DENV-2 strains and production of antibody-enhanced disease (AED was tested in out-bred mice. Polyclonal antibodies (PAbs generated against the nonstructural-1 (NS1 glycoprotein candidate vaccine of the New Guinea-C (NG-C or NSx strains reacted strongly and weakly with these antigens, respectively. These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E glycoprotein of the DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcγ-receptor classes. Indeed, when these mice were challenged with a low dose (<0.5 LD₅₀ of the DENV-2 NSx strain, but not the NG-C strain, they all generated dramatic and lethal DENV-2 AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS, displayed by diffuse alveolar damage (DAD resulting from i dramatic interstitial alveolar septa-thickening with mononuclear cells, ii some hyperplasia of alveolar type-II pneumocytes, iii copious intra-alveolar protein secretion, iv some hyaline membrane-covered alveolar walls, and v DENV-2 antigen-positive alveolar macrophages. These mice also developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis, apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal human "severe dengue" cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1 glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines

  11. TRANSMISI TRANSOVARIAL VIRUS DENGUE PADA TELUR NYAMUK AEDES AEGYPTI(L.

    Directory of Open Access Journals (Sweden)

    Magdalena Desiree Seran

    2013-03-01

    sebelumnya sudah diinfeksi dengan virus DEN-2 secara oral dan terbukti terinfeksi virus DEN-2 secara transovarial (Fl. Sampel penelitian adalah telur Ae. aegypti betina dewasa (imago generasi F2 hasil kolonisasi sampel telur dari nyamuk Ae. aegypti (F 1 yang terbukti terinfeksi virus DEN-2 secara transovarial yang diperlakukan dalam penelitian ini. Jumlah telur nyamuk Ae. aegypti yang dibuat sediaan egg squash sebanyak 50 sampel yang berasal dari 5 induk nyamuk berbeda. Keberadaan antigen virus dengue pada nyamuk FO dan F 1 diperiksa menggunakan metode imunositokimia SBPC dengan antibodi monoklonal DSSC7 (1: 50 sebagai antibodi primer yang dibakukan. Hasil penelitian menunjukan adanya transmisi transovarial virus dengue pada telur Ae. aegypti (F2 yang terlihat pada sediaan egg squash berupa warna kecoklatan yang menyebar pada jaringan embrio, dengan TIR sebesar 52%. Virus dengue mampu ditransmisikan lewat telur dengan TIR sebesar 52%. Kata kunci: transmisi transovarial, egg squash, Aedes aegypti, transovarial infection rate (TIR

  12. Structural Basis for dsRNA Recognition by NS1 Protein of Influenza A Virus

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, A.; Wong, S; Yuan, Y

    2009-01-01

    Influenza A viruses are important human pathogens causing periodic pandemic threats. Nonstructural protein 1 (NS1) protein of influenza A virus (NS1A) shields the virus against host defense. Here, we report the crystal structure of NS1A RNA-binding domain (RBD) bound to a double-stranded RNA (dsRNA) at 1.7A. NS1A RBD forms a homodimer to recognize the major groove of A-form dsRNA in a length-independent mode by its conserved concave surface formed by dimeric anti-parallel alpha-helices. dsRNA is anchored by a pair of invariable arginines (Arg38) from both monomers by extensive hydrogen bonds. In accordance with the structural observation, isothermal titration calorimetry assay shows that the unique Arg38-Arg38 pair and two Arg35-Arg46 pairs are crucial for dsRNA binding, and that Ser42 and Thr49 are also important for dsRNA binding. Agrobacterium co-infiltration assay further supports that the unique Arg38 pair plays important roles in dsRNA binding in vivo.

  13. Dengue neonatal en el Perú: Reporte de un caso Neonatal dengue in Peru: a case report

    Directory of Open Access Journals (Sweden)

    Hermann Silva Delgado

    2011-03-01

    Full Text Available Se presenta el caso de un neonato de sexo femenino, a término, producto de madre fallecida al séptimo día de su puerperio, por falla multiorgánica debido a dengue grave confirmado por detección de antígeno NS1 e IgM. La recién nacida (RN no tuvo complicaciones, pero a partir del cuarto día de vida desarrolló fiebre, ictericia, manifestaciones de extravasación de plasma, hepatomegalia, ascitis, plaquetopenia y otros signos de síndrome de respuesta inflamatoria sistémica. Su evolución final fue favorable con tratamiento instaurado. Se demuestra con PCR en tiempo real, la presencia del virus dengue serotipo 2 en sangre de la RN, confirmándose el primer caso de dengue neonatal reportado en el Perú.We present the case of a full-term female newborn, whose mother died seven days postpartum from multi-organ failure due to severe dengue confirmed by NS1 antigen detection and positive IgM. The newborn did not have any complication, but at the fourth day of life she developed fever, jaundice, signs of plasma leakage, thrombocytopenia, hepatomegaly, ascitis, and others signs of systemic inflammation response syndrome. She fully recovered with supportive treatment. The RT-PCR test of a peripheral blood sample revealed a positive result for the dengue virus serotype 2, confirming the first case of neonatal dengue reported in Peru.

  14. Hemoterapia e febre Dengue Blood banking e Dengue fever

    Directory of Open Access Journals (Sweden)

    Estácio F. Ramos

    2008-02-01

    Full Text Available Dengue is an endemic/epidemic arboviral disease with a variable symptomatic benign course, but potentially fatal. Once in an inhabited area, the disease will exist forever, with the best achievement being to keep vectors suppressed and the disease under control. Tiger mosquitoes (aedes aegypti, aedes albopictus are active breeders and urban hunters, becoming resistant to pesticides. Global warming and population growth are propelling the disease worldwide at tropical and subtropical regions, victimizing new populations. Dengue virus is very infective, and has been transmitted by needlestick, intrapartum, through blood transfusion and mucosal contact with blood. One patient got dengue while undergoing bone marrow transplantation. We address the growing dengue epidemics in Brazil, with more than half a million official cases in 2007, to estimate the risks of transfusion transmitted dengue. Calculations however were surpassed by reality: the major Blood Center in Brazil (FHSP-USP has found dengue virus in one out of each thousand blood units. In 2007, industry sold 2,6 million disposable blood bags in Brazil. Plotting data from FHSP-USP to the whole country, 2600 blood units would have been infective. Through blood components, around 5000 patients must have received dengue virus intravenously. Beatty et al. estimated to be 1:1300 the risk for dengue transmission through blood transfusion in Puerto Rico, close to what has been demonstrated in Sao Paulo. Throughout Brazil, the average risk may be lower, but the epidemics grows towards a worst scenario. Whatever the risk is, it imposes that all blood units in Brazil (and wherever dengue is endemic must be EIA tested for dengue NS1 antigen. This marker appears early after infection, and the EIA testing platform is available at all blood banks. Also, donors must report febrile states up to two weeks after donation. Morbidity from dengue virus injected in hospitalized patients is unknown, but it may lead

  15. Dengue Fever/Dengue Haemorrhagic Fever : Case Management

    OpenAIRE

    Nimmannitya, Suchitra

    1995-01-01

    Dengue infections caused by the four antigenically distinct dengue virus serotypes (dengue virus 1, dengue virus 2, dengue virus 3, dengue virus 4) of the family Flavivindae, are the most important arbovirus disease in man, both in terms of morbidity and mortality. The infection is transmitted from man to man by Aedes mosquitoes. Since 1956, dengue virus infection has resulted in more than 3 million hospital admissions and more than 50,000 deaths in Southeast Asia, Western Pacific countries, ...

  16. Towards antiviral therapies for treating dengue virus infections.

    Science.gov (United States)

    Kaptein, Suzanne Jf; Neyts, Johan

    2016-10-01

    Dengue virus is an emerging human pathogen that poses a huge public health burden by infecting annually about 390 million individuals of which a quarter report with clinical manifestations. Although progress has been made in understanding dengue pathogenesis, a licensed vaccine or antiviral therapy against this virus is still lacking. Treatment of patients is confined to symptomatic alleviation and supportive care. The development of dengue therapeutics thus remains of utmost importance. This review focuses on the few molecules that were evaluated in dengue virus-infected patients: balapiravir, chloroquine, lovastatin, prednisolone and celgosivir. The lessons learned from these clinical trials can be very helpful for the design of future trials for the next generation of dengue virus inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Humidity control as a strategy for lattice optimization applied to crystals of HLA-A*1101 complexed with variant peptides from dengue virus

    International Nuclear Information System (INIS)

    Chotiyarnwong, Pojchong; Stewart-Jones, Guillaume B.; Tarry, Michael J.; Dejnirattisai, Wanwisa; Siebold, Christian; Koch, Michael; Stuart, David I.; Harlos, Karl; Malasit, Prida; Screaton, Gavin; Mongkolsapaya, Juthathip; Jones, E. Yvonne

    2007-01-01

    Crystals of an MHC class I molecule bound to naturally occurring peptide variants from the dengue virus NS3 protein contained high levels of solvent and required optimization of cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process facilitated by the use of a free-mounting system. T-cell recognition of the antigenic peptides presented by MHC class I molecules normally triggers protective immune responses, but can result in immune enhancement of disease. Cross-reactive T-cell responses may underlie immunopathology in dengue haemorrhagic fever. To analyze these effects at the molecular level, the functional MHC class I molecule HLA-A*1101 was crystallized bound to six naturally occurring peptide variants from the dengue virus NS3 protein. The crystals contained high levels of solvent and required optimization of the cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process that was facilitated by the use of a free-mounting system

  18. Humidity control as a strategy for lattice optimization applied to crystals of HLA-A*1101 complexed with variant peptides from dengue virus

    Energy Technology Data Exchange (ETDEWEB)

    Chotiyarnwong, Pojchong [Department of Immunology, Division of Medicine, Hammersmith Hospital, Imperial College, London (United Kingdom); Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University (Thailand); Stewart-Jones, Guillaume B.; Tarry, Michael J. [Division of Structural Biology and Oxford Protein Production Facility (OPPF), The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford OX3 7BN (United Kingdom); Dejnirattisai, Wanwisa [Department of Immunology, Division of Medicine, Hammersmith Hospital, Imperial College, London (United Kingdom); Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University (Thailand); Siebold, Christian; Koch, Michael; Stuart, David I.; Harlos, Karl [Division of Structural Biology and Oxford Protein Production Facility (OPPF), The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford OX3 7BN (United Kingdom); Malasit, Prida [Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Bangkok (Thailand); Screaton, Gavin [Department of Immunology, Division of Medicine, Hammersmith Hospital, Imperial College, London (United Kingdom); Mongkolsapaya, Juthathip, E-mail: j.mongkolsapaya@imperial.ac.uk [Department of Immunology, Division of Medicine, Hammersmith Hospital, Imperial College, London (United Kingdom); Medical Molecular Biology Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University (Thailand); Jones, E. Yvonne, E-mail: j.mongkolsapaya@imperial.ac.uk [Division of Structural Biology and Oxford Protein Production Facility (OPPF), The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Headington, Oxford OX3 7BN (United Kingdom); Department of Immunology, Division of Medicine, Hammersmith Hospital, Imperial College, London (United Kingdom)

    2007-05-01

    Crystals of an MHC class I molecule bound to naturally occurring peptide variants from the dengue virus NS3 protein contained high levels of solvent and required optimization of cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process facilitated by the use of a free-mounting system. T-cell recognition of the antigenic peptides presented by MHC class I molecules normally triggers protective immune responses, but can result in immune enhancement of disease. Cross-reactive T-cell responses may underlie immunopathology in dengue haemorrhagic fever. To analyze these effects at the molecular level, the functional MHC class I molecule HLA-A*1101 was crystallized bound to six naturally occurring peptide variants from the dengue virus NS3 protein. The crystals contained high levels of solvent and required optimization of the cryoprotectant and dehydration protocols for each complex to yield well ordered diffraction, a process that was facilitated by the use of a free-mounting system.

  19. Fusion of protegrin-1 and plectasin to MAP30 shows significant inhibition activity against dengue virus replication.

    Directory of Open Access Journals (Sweden)

    Hussin A Rothan

    Full Text Available Dengue virus (DENV broadly disseminates in tropical and sub-tropical countries and there are no vaccine or anti-dengue drugs available. DENV outbreaks cause serious economic burden due to infection complications that requires special medical care and hospitalization. This study presents a new strategy for inexpensive production of anti-DENV peptide-fusion protein to prevent and/or treat DENV infection. Antiviral cationic peptides protegrin-1 (PG1 and plectasin (PLSN were fused with MAP30 protein to produce recombinant antiviral peptide-fusion protein (PG1-MAP30-PLSN as inclusion bodies in E. coli. High yield production of PG1-MAP30-PLSN protein was achieved by solubilization of inclusion bodies in alkaline buffer followed by the application of appropriate refolding techniques. Antiviral PG1-MAP30-PLSN protein considerably inhibited DENV protease (NS2B-NS3pro with half-maximal inhibitory concentration (IC50 0.5±0.1 μM. The real-time proliferation assay (RTCA and the end-point proliferation assay (MTT assay showed that the maximal-nontoxic dose of the peptide-fusion protein against Vero cells is approximately 0.67±0.2 μM. The cell-based assays showed considerable inhibition of the peptide-fusion protein against binding and proliferating stages of DENV2 into the target cells. The peptide-fusion protein protected DENV2-challeged mice with 100% of survival at the dose of 50 mg/kg. In conclusion, producing recombinant antiviral peptide-fusion protein by combining short antiviral peptide with a central protein owning similar activity could be useful to minimize the overall cost of short peptide production and take advantage of its synergistic antiviral activities.

  20. PATHOGENESIS OF HEMORRHAGIC DUE TO DENGUE VIRUS

    Directory of Open Access Journals (Sweden)

    Arief Suseno

    2015-01-01

    Full Text Available Dengue is a viral disease that is mediated by a mosquito, which causes morbidity and mortality. Viruses can increase vascular permeability which can lead to hemorrhagic diathesis or disseminated intravascular coagulation (DIC known as dengue hemorrhagic fever (DHF. In Indonesia, dengue hemorrhagic fever (DHF are caused by dengue virus infection which was found to be endemic accompanied by an explosion of extraordinary events that appear at various specified period. The diagnosis of dengue is determined based on the criteria of the World Health Organization (WHO, 1999, which are sudden high fever accompanied by a marked tendency to hemorrhage positive tourniquet test, petechiae, ecchymosis, purpura, mucosal hemorrhagic, hematemesis or melena and thrombocytopenia. The problem that still exists today is the mechanism of thrombocytopenia in patients with varying degrees of dengue involving levels of vWF (von Willebrand factor and prostaglandin I2 (PGI2 can not be explained. The mechanism of hemorrhagic in dengue virus infections acquired as a result of thrombocytopenia, platelet disfunction decreased coagulation factors, vasculopathy with endothelial injury and disseminated intravascular coagulation (DIC.

  1. Peptides as Therapeutic Agents for Dengue Virus.

    Science.gov (United States)

    Chew, Miaw-Fang; Poh, Keat-Seong; Poh, Chit-Laa

    2017-01-01

    Dengue is an important global threat caused by dengue virus (DENV) that records an estimated 390 million infections annually. Despite the availability of CYD-TDV as a commercial vaccine, its long-term efficacy against all four dengue virus serotypes remains unsatisfactory. There is therefore an urgent need for the development of antiviral drugs for the treatment of dengue. Peptide was once a neglected choice of medical treatment but it has lately regained interest from the pharmaceutical industry following pioneering advancements in technology. In this review, the design of peptide drugs, antiviral activities and mechanisms of peptides and peptidomimetics (modified peptides) action against dengue virus are discussed. The development of peptides as inhibitors for viral entry, replication and translation is also described, with a focus on the three main targets, namely, the host cell receptors, viral structural proteins and viral non-structural proteins. The antiviral peptides designed based on these approaches may lead to the discovery of novel anti-DENV therapeutics that can treat dengue patients.

  2. Selection of suitable detergents for obtaining an active dengue protease in its natural form from E. coli.

    Science.gov (United States)

    Liew, Lynette Sin Yee; Lee, Michelle Yueqi; Wong, Ying Lei; Cheng, Jinting; Li, Qingxin; Kang, CongBao

    2016-05-01

    Dengue protease is a two-component enzyme and is an important drug target against dengue virus. The protease activity and protein stability of dengue nonstructural protein 3 (NS3) require a co-factor region from a four-span membrane protein NS2B. A natural form of dengue protease containing full-length NS2B and NS3 protease domain NS2BFL-NS3pro will be useful for dengue drug discovery. In current study, detergents that can be used for protease purification were tested. Using a water soluble protease construct, 39 detergents were selected for both NS2B and NS2BFL-NS3pro purification. The results showed that 18 detergents were able to sustain the activity of the natural dengue protease and 11 detergents could be used for NS2B purification. The results obtained in this study will be useful for biochemical and biophysical studies on dengue protease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Losartan and enalapril decrease viral absorption and interleukin 1 beta production by macrophages in an experimental dengue virus infection.

    Science.gov (United States)

    Hernández-Fonseca, Juan Pablo; Durán, Anyelo; Valero, Nereida; Mosquera, Jesús

    2015-11-01

    The role of angiotensin II (Ang II) in dengue virus infection remains unknown. The aim of this study was to determine the effect of losartan, an antagonist of the angiotensin II type 1 receptor (AT1 receptor), and enalapril, an inhibitor of angiotensin I-converting enzyme (ACE), on viral antigen expression and IL-1β production in peritoneal macrophages infected with dengue virus type 2. Mice treated with losartan or enalapril and untreated controls were infected intraperitoneally with the virus, and macrophages were analyzed. Infection resulted in increased IL-1β production and a high percentage of cells expressing viral antigen, and this was decreased by treatment with anti-Ang II drugs, suggesting a role for Ang II in dengue virus infection.

  4. Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA.

    Science.gov (United States)

    Pereira, Carina F; Read, Eliot K C; Wise, Helen M; Amorim, Maria J; Digard, Paul

    2017-08-01

    Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as

  5. Cissampelos pareira Linn: Natural Source of Potent Antiviral Activity against All Four Dengue Virus Serotypes.

    Directory of Open Access Journals (Sweden)

    Ruchi Sood

    2015-12-01

    Full Text Available Dengue, a mosquito-borne viral disease, poses a significant global public health risk. In tropical countries such as India where periodic dengue outbreaks can be correlated to the high prevalence of the mosquito vector, circulation of all four dengue viruses (DENVs and the high population density, a drug for dengue is being increasingly recognized as an unmet public health need.Using the knowledge of traditional Indian medicine, Ayurveda, we developed a systematic bioassay-guided screening approach to explore the indigenous herbal bio-resource to identify plants with pan-DENV inhibitory activity. Our results show that the alcoholic extract of Cissampelos pariera Linn (Cipa extract was a potent inhibitor of all four DENVs in cell-based assays, assessed in terms of viral NS1 antigen secretion using ELISA, as well as viral replication, based on plaque assays. Virus yield reduction assays showed that Cipa extract could decrease viral titers by an order of magnitude. The extract conferred statistically significant protection against DENV infection using the AG129 mouse model. A preliminary evaluation of the clinical relevance of Cipa extract showed that it had no adverse effects on platelet counts and RBC viability. In addition to inherent antipyretic activity in Wistar rats, it possessed the ability to down-regulate the production of TNF-α, a cytokine implicated in severe dengue disease. Importantly, it showed no evidence of toxicity in Wistar rats, when administered at doses as high as 2g/Kg body weight for up to 1 week.Our findings above, taken in the context of the human safety of Cipa, based on its use in Indian traditional medicine, warrant further work to explore Cipa as a source for the development of an inexpensive herbal formulation for dengue therapy. This may be of practical relevance to a dengue-endemic resource-poor country such as India.

  6. Seroepidemiology of Asymptomatic Dengue Virus Infection in Jeddah, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ghazi A. Jamjoom

    2016-01-01

    Full Text Available Background Although virologically confirmed dengue fever has been recognized in Jeddah, Saudi Arabia, since 1994, causing yearly outbreaks, no proper seroepidemiologic studies on dengue virus have been conducted in this region. Such studies can define the extent of infection by this virus and estimate the proportion that may result in disease. The aim of this study was to measure the seroprevalence of past dengue virus infection in healthy Saudi nationals from different areas in the city of Jeddah and to investigate demographic and environmental factors that may increase exposure to infection. Methods Sera were collected from 1984 Saudi subjects attending primary health care centers in six districts of Jeddah. These included general patients of various ages seeking routine vaccinations, antenatal care or treatment of different illnesses excluding fever or suspected dengue. A number of blood donors were also tested. Serum samples were tested by enzyme immunoassay (EIA for IgG antibodies to dengue viruses 1, 2, 3, 4. A questionnaire was completed for each patient recording various anthropometric data and factors that may indicate possible risk of exposure to mosquito bites and dengue infection. Patients with missing data and those who reported a history of dengue fever were excluded from analysis, resulting in a sample of 1939 patients to be analyzed. Results The overall prevalence of dengue virus infection as measured by anti-dengue IgG antibodies from asymptomatic residents in Jeddah was 47.8% (927/1939 and 37% (68/184 in blood donors. Infection mostly did not result in recognizable disease, as only 19 of 1956 subjects with complete information (0.1% reported having dengue fever in the past. Anti dengue seropositivity increased with age and was higher in males than females and in residents of communal housing and multistory buildings than in villas. One of the six districts showed significant increase in exposure rate as compared to the others

  7. Activity of andrographolide against dengue virus.

    Science.gov (United States)

    Panraksa, Patcharee; Ramphan, Suwipa; Khongwichit, Sarawut; Smith, Duncan R

    2017-03-01

    Dengue is the most prevalent arthropod-transmitted viral illness of humans, with an estimated 100 million symptomatic infections occurring each year and more than 2.5 billion people living at risk of infection. There are no approved antiviral agents against dengue virus, and there is only limited introduction of a dengue vaccine in some countries. Andrographolide is derived from Andrographis paniculata, a medicinal plant traditionally used to treat a number of conditions including infections. The antiviral activity of andrographolide against dengue virus (DENV) serotype 2 was evaluated in two cell lines (HepG2 and HeLa) while the activity against DENV 4 was evaluated in one cell line (HepG2). Results showed that andrographolide had significant anti-DENV activity in both cell lines, reducing both the levels of cellular infection and virus output, with 50% effective concentrations (EC 50 ) for DENV 2 of 21.304 μM and 22.739 μM for HepG2 and HeLa respectively. Time of addition studies showed that the activity of andrographolide was confined to a post-infection stage. These results suggest that andrographolide has the potential for further development as an anti-viral agent for dengue virus infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Development, characterization and application of monoclonal antibodies against Brazilian Dengue virus isolates.

    Directory of Open Access Journals (Sweden)

    Camila Zanluca

    Full Text Available Dengue is the most prevalent human arboviral disease. The morbidity related to dengue infection supports the need for an early, quick and effective diagnostic test. Brazil is a hotspot for dengue, but no serological diagnostic test has been produced using Brazilian dengue virus isolates. This study aims to improve the development of immunodiagnostic methods for dengue virus (DENV detection through the production and characterization of 22 monoclonal antibodies (mAbs against Brazilian isolates of DENV-1, -2 and -3. The mAbs include IgG2bκ, IgG2aκ and IgG1κ isotypes, and most were raised against the envelope or the pre-membrane proteins of DENV. When the antibodies were tested against the four DENV serotypes, different reactivity patterns were identified: group-specific, subcomplex specific (DENV-1, -3 and -4 and DENV-2 and -3 and dengue serotype-specific (DENV-2 or -3. Additionally, some mAbs cross-reacted with yellow fever virus (YFV, West Nile virus (WNV and Saint Louis encephalitis virus (SLEV. None of the mAbs recognized the alphavirus Venezuelan equine encephalitis virus (VEEV. Furthermore, mAbs D3 424/8G, D1 606/A12/B9 and D1 695/12C/2H were used to develop a capture enzyme-linked immunosorbent assay (ELISA for anti-dengue IgM detection in sera from patients with acute dengue. To our knowledge, these are the first monoclonal antibodies raised against Brazilian DENV isolates, and they may be of special interest in the development of diagnostic assays, as well as for basic research.

  9. Genetic analysis of imported dengue virus strains by Iranian travelers

    Directory of Open Access Journals (Sweden)

    Nariman Shahhosseini

    2016-11-01

    Full Text Available Dengue virus sequences used in this study were obtained from two Iranian patients who were both with a history of traveling to Malaysia. The maximum likelihood phylogenetic tree demonstrated that two sequences were grouped into dengue virus 1. Specifically, strains IranDF1 and Iran-DF2 clustered in genotype I and III, respectively.

  10. Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus.

    Science.gov (United States)

    Soto-Acosta, Rubén; Bautista-Carbajal, Patricia; Syed, Gulam H; Siddiqui, Aleem; Del Angel, Rosa M

    2014-09-01

    Dengue is the most common mosquito borne viral disease in humans. The infection with any of the 4 dengue virus serotypes (DENV) can either be asymptomatic or manifest in two clinical forms, the mild dengue fever or the more severe dengue hemorrhagic fever that may progress into dengue shock syndrome. A DENV replicative cycle relies on host lipid metabolism; specifically, DENV infection modulates cholesterol and fatty acid synthesis, generating a lipid-enriched cellular environment necessary for viral replication. Thus, the aim of this work was to evaluate the anti-DENV effect of the Nordihydroguaiaretic acid (NDGA), a hypolipidemic agent with antioxidant and anti-inflammatory properties. A dose-dependent inhibition in viral yield and NS1 secretion was observed in supernatants of infected cells treated for 24 and 48 h with different concentrations of NDGA. To evaluate the effect of NDGA in DENV replication, a DENV4 replicon transfected Vero cells were treated with different concentrations of NDGA. NDGA treatment significantly reduced DENV replication, reiterating the importance of lipids in viral replication. NDGA treatment also led to reduction in number of lipid droplets (LDs), the neutral lipid storage organelles involved in DENV morphogenesis that are known to increase in number during DENV infection. Furthermore, NDGA treatment resulted in dissociation of the C protein from LDs. Overall our results suggest that NDGA inhibits DENV infection by targeting genome replication and viral assembly. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The Influenza NS1 Protein: What Do We Know in Equine Influenza Virus Pathogenesis?

    Directory of Open Access Journals (Sweden)

    Marta Barba

    2016-08-01

    Full Text Available Equine influenza virus remains a serious health and potential economic problem throughout most parts of the world, despite intensive vaccination programs in some horse populations. The influenza non-structural protein 1 (NS1 has multiple functions involved in the regulation of several cellular and viral processes during influenza infection. We review the strategies that NS1 uses to facilitate virus replication and inhibit antiviral responses in the host, including sequestering of double-stranded RNA, direct modulation of protein kinase R activity and inhibition of transcription and translation of host antiviral response genes such as type I interferon. Details are provided regarding what it is known about NS1 in equine influenza, especially concerning C-terminal truncation. Further research is needed to determine the role of NS1 in equine influenza infection, which will help to understand the pathophysiology of complicated cases related to cytokine imbalance and secondary bacterial infection, and to investigate new therapeutic and vaccination strategies.

  12. First round of external quality assessment of dengue diagnostics in the WHO Western Pacific Region, 2013

    Directory of Open Access Journals (Sweden)

    Kwoon Yong Pok

    2015-06-01

    Full Text Available Objective: Accurate laboratory testing is a critical component of dengue surveillance and control. The objective of this programme was to assess dengue diagnostic proficiency among national-level public health laboratories in the World Health Organization (WHO Western Pacific Region. Methods: Nineteen national-level public health laboratories performed routine dengue diagnostic assays on a proficiency testing panel consisting of two modules: one containing commercial serum samples spiked with cultured dengue viruses for the detection of nucleic acid and non-structural protein 1 (NS1 (Module A and one containing human serum samples for the detection of anti-dengue virus antibodies (Module B. A review of logistics arrangements was also conducted. Results: All 16 laboratories testing Module A performed reverse transcriptase polymerase chain reaction (RT-PCR for both RNA and serotype detection. Of these, 15 had correct results for RNA detection and all 16 correctly serotyped the viruses. All nine laboratories performing NS1 antigen detection obtained the correct results. Sixteen of the 18 laboratories using IgM assays in Module B obtained the correct results as did the 13 laboratories that performed IgG assays. Detection of ongoing/recent dengue virus infection by both molecular (RT-PCR and serological methods (IgM was available in 15/19 participating laboratories. Discussion: This first round of external quality assessment of dengue diagnostics was successfully conducted in national-level public health laboratories in the WHO Western Pacific Region, revealing good proficiency in both molecular and serological testing. Further comprehensive diagnostic testing for dengue virus and other priority pathogens in the Region will be assessed during future rounds.

  13. Specific Mutations in the PB2 Protein of Influenza A Virus Compensate for the Lack of Efficient Interferon Antagonism of the NS1 Protein of Bat Influenza A-Like Viruses.

    Science.gov (United States)

    Aydillo, Teresa; Ayllon, Juan; Pavlisin, Amzie; Martinez-Romero, Carles; Tripathi, Shashank; Mena, Ignacio; Moreira-Soto, Andrés; Vicente-Santos, Amanda; Corrales-Aguilar, Eugenia; Schwemmle, Martin; García-Sastre, Adolfo

    2018-04-01

    Recently, two new influenza A-like viruses have been discovered in bats, A/little yellow-shouldered bat/Guatemala/060/2010 (HL17NL10) and A/flat-faced bat/Peru/033/2010 (HL18NL11). The hemagglutinin (HA)-like (HL) and neuraminidase (NA)-like (NL) proteins of these viruses lack hemagglutination and neuraminidase activities, despite their sequence and structural homologies with the HA and NA proteins of conventional influenza A viruses. We have now investigated whether the NS1 proteins of the HL17NL10 and HL18NL11 viruses can functionally replace the NS1 protein of a conventional influenza A virus. For this purpose, we generated recombinant influenza A/Puerto Rico/8/1934 (PR8) H1N1 viruses containing the NS1 protein of the PR8 wild-type, HL17NL10, and HL18NL11 viruses. These viruses (r/NS1PR8, r/NS1HL17, and r/NS1HL18, respectively) were tested for replication in bat and nonbat mammalian cells and in mice. Our results demonstrate that the r/NS1HL17 and r/NS1HL18 viruses are attenuated in vitro and in vivo However, the bat NS1 recombinant viruses showed a phenotype similar to that of the r/NS1PR8 virus in STAT1 -/- human A549 cells and mice, both in vitro and in vivo systems being unable to respond to interferon (IFN). Interestingly, multiple mouse passages of the r/NS1HL17 and r/NS1HL18 viruses resulted in selection of mutant viruses containing single amino acid mutations in the viral PB2 protein. In contrast to the parental viruses, virulence and IFN antagonism were restored in the selected PB2 mutants. Our results indicate that the NS1 protein of bat influenza A-like viruses is less efficient than the NS1 protein of its conventional influenza A virus NS1 counterpart in antagonizing the IFN response and that this deficiency can be overcome by the influenza virus PB2 protein. IMPORTANCE Significant gaps in our understanding of the basic features of the recently discovered bat influenza A-like viruses HL17NL10 and HL18NL11 remain. The basic biology of these unique

  14. Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication

    NARCIS (Netherlands)

    Cleef, K.W.R. van; Overheul, G.J.; Thomassen, M.C.; Kaptein, S.J.; Davidson, A.D.; Jacobs, M.; Neyts, J.; Kuppeveld, F.J.M. van; Rij, R.P. van

    2013-01-01

    Dengue virus (DENV) is an important human arthropod-borne virus with a major impact on public health. Nevertheless, a licensed vaccine or specific treatment is still lacking. We therefore screened the NIH Clinical Collection (NCC), a library of drug-like small molecules, for inhibitors of DENV

  15. First isolation of dengue virus from the 2010 epidemic in Nepal.

    Science.gov (United States)

    Pandey, Basu D; Nabeshima, Takeshi; Pandey, Kishor; Rajendra, Saroj P; Shah, Yogendra; Adhikari, Bal R; Gupta, Govinda; Gautam, Ishan; Tun, Mya M N; Uchida, Reo; Shrestha, Mahendra; Kurane, Ichiro; Morita, Kouichi

    2013-09-01

    Dengue is an emerging disease in Nepal and was first observed as an outbreak in nine lowland districts in 2006. In 2010, however, a large epidemic of dengue occurred with 4,529 suspected and 917 serologically-confirmed cases and five deaths reported in government hospitals in Nepal. The collection of demographic information was performed along with an entomological survey and clinical evaluation of the patients. A total of 280 serum samples were collected from suspected dengue patients. These samples were subjected to routine laboratory investigations and IgM-capture ELISA for dengue serological identification, and 160 acute serum samples were used for virus isolation, RT-PCR, sequencing and phylogenetic analysis. The results showed that affected patients were predominately adults, and that 10% of the cases were classified as dengue haemorrhagic fever/ dengue shock syndrome. The genetic characterization of dengue viruses isolated from patients in four major outbreak areas of Nepal suggests that the DENV-1 strain was responsible for the 2010 epidemic. Entomological studies identified Aedes aegypti in all epidemic areas. All viruses belonged to a monophyletic single clade which is phylogenetically close to Indian viruses. The dengue epidemic started in the lowlands and expanded to the highland areas. To our knowledge, this is the first dengue isolation and genetic characterization reported from Nepal.

  16. A novel indirect ELISA for diagnosis of dengue fever

    Directory of Open Access Journals (Sweden)

    Rohan Narayan

    2016-01-01

    Full Text Available Background & objectives: Dengue fever (DF is associated with significant morbidity and mortality in the tropical and sub-tropical regions of the world. Since there are no effective antiviral drugs for treatment, clinicians often rely on the accurate diagnosis of dengue fever to begin supportive therapy at early stages of the illness. The objective of this study was to develop an in-house dengue virus serotype 2 (DENV-2 non-structural protein- 5 (NS5 based indirect ELISA. Methods: DENV-2 was raised in Vero cells and the viral proteins were separated and subsequently the NS5 protein was eluted. Serum samples from primary and secondary dengue fever patients; and acute and convalescent samples from Japanese encephalitis (JE and West Nile virus (WNV cases were used to validate the ELISA. Results: The assay was found to be 100 per cent specific in detecting DENV-2 specific antibodies from patient′s serum. However, in terms of sensitivity, the assay could detect IgM antibodies only from 90 per cent of the primary dengue samples. The IgM/IgG ratio of the primary and secondary samples was 7.24 and 0.64, respectively. Interpretation & conclusions: The results indicate that the DENV-2 NS5 ELISA is dengue group specific and can be used to differentiate dengue infection from other circulating Flavivirus infections. This NS5 ELISA can also be used to distinguish between primary and secondary dengue fever on the basis of IgM/IgG ratios. Further studies with larger sample sizes and different DENV serotypes are required to validate the ELISA.

  17. Pathogenesis of vascular leak in dengue virus infection.

    Science.gov (United States)

    Malavige, Gathsaurie Neelika; Ogg, Graham S

    2017-07-01

    Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease. © 2017 John Wiley & Sons Ltd.

  18. Identification of specific regions in hepatitis C virus core, NS2 and NS5A that genetically interact with p7 and co-ordinate infectious virus production.

    Science.gov (United States)

    Gouklani, H; Beyer, C; Drummer, H; Gowans, E J; Netter, H J; Haqshenas, G

    2013-04-01

    The p7 protein of hepatitis C virus (HCV) is a small, integral membrane protein that plays a critical role in virus replication. Recently, we reported two intergenotypic JFH1 chimeric viruses encoding the partial or full-length p7 protein of the HCV-A strain of genotype 1b (GT1b; Virology; 2007; 360:134). In this study, we determined the consensus sequences of the entire polyprotein coding regions of the wild-type JFH1 and the revertant chimeric viruses and identified predominant amino acid substitutions in core (K74M), NS2 (T23N, H99P) and NS5A (D251G). Forward genetic analysis demonstrated that all single mutations restored the infectivity of the defective chimeric genomes suggesting that the infectious virus production involves the association of p7 with specific regions in core, NS2 and NS5A. In addition, it was demonstrated that the NS2 T23N facilitated the generation of infectious intergenotypic chimeric virus encoding p7 from GT6 of HCV. © 2012 Blackwell Publishing Ltd.

  19. Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence

    Directory of Open Access Journals (Sweden)

    Ping Jihui

    2011-01-01

    Full Text Available Abstract Background To understand the evolutionary steps required for a virus to become virulent in a new host, a human influenza A virus (IAV, A/Hong Kong/1/68(H3N2 (HK-wt, was adapted to increased virulence in the mouse. Among eleven mutations selected in the NS1 gene, two mutations F103L and M106I had been previously detected in the highly virulent human H5N1 isolate, A/HK/156/97, suggesting a role for these mutations in virulence in mice and humans. Results To determine the selective advantage of these mutations, reverse genetics was used to rescue viruses containing each of the NS1 mouse adapted mutations into viruses possessing the HK-wt NS1 gene on the A/PR/8/34 genetic backbone. Both F103L and M106I NS1 mutations significantly enhanced growth in vitro (mouse and canine cells and in vivo (BALB/c mouse lungs as well as enhanced virulence in the mouse. Only the M106I NS1 mutation enhanced growth in human cells. Furthermore, these NS1 mutations enhanced early viral protein synthesis in MDCK cells and showed an increased ability to replicate in mouse interferon β (IFN-β pre-treated mouse cells relative to rPR8-HK-NS-wt NS1. The double mutant, rPR8-HK-NS-F103L + M106I, demonstrated growth attenuation late in infection due to increased IFN-β induction in mouse cells. We then generated a rPR8 virus possessing the A/HK/156/97 NS gene that possesses 103L + 106I, and then rescued the L103F + I106M mutant. The 103L + 106I mutations increased virulence by >10 fold in BALB/c mice. We also inserted the avian A/Ck/Beijing/1/95 NS1 gene (the source lineage of the A/HK/156/97 NS1 gene that possesses 103L + 106I, onto the A/WSN/33 backbone and then generated the L103F + I106M mutant. None of the H5N1 and H9N2 NS containing viruses resulted in increased IFN-β induction. The rWSN-A/Ck/Beijing/1/95-NS1 gene possessing 103L and 106I demonstrated 100 fold enhanced growth and >10 fold enhanced virulence that was associated with increased tropism for lung

  20. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    Science.gov (United States)

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  1. Vector competence of Malaysian Aedes albopictus with and without Wolbachia to four dengue virus serotypes.

    Science.gov (United States)

    Joanne, Sylvia; Vythilingam, Indra; Teoh, Boon-Teong; Leong, Cherng-Shii; Tan, Kim-Kee; Wong, Meng-Li; Yugavathy, Nava; AbuBakar, Sazaly

    2017-09-01

    To determine the susceptibility status of Aedes albopictus with and without Wolbachia to the four dengue virus serotypes. Two newly colonised colonies of Ae. albopictus from the wild were used for the study. One colony was naturally infected with Wolbachia while in the other Wolbachia was removed by tetracycline treatment. Both colonies were orally infected with dengue virus-infected fresh blood meal. Dengue virus load was measured using quantitative RT-PCR at four-time intervals in the salivary glands, midguts and ovaries. Wolbachia did not significantly affect Malaysian Ae. albopictus dengue infection or the dissemination rate for all four dengue virus serotypes. Malaysian Ae. albopictus had the highest replication kinetics for DENV-1 and the highest salivary gland and midgut infection rate for DENV-4. Wolbachia, which naturally exists in Malaysian Ae. albopictus, does not significantly affect dengue virus replication. Malaysian Ae. albopictus is susceptible to dengue virus infections and capable of transmitting dengue virus, especially DENV-1 and DENV-4. Removal of Wolbachia from Malaysian Ae. albopictus would not reduce their susceptibility status. © 2017 John Wiley & Sons Ltd.

  2. Aedes albopictus (Skuse, 1894) infected with the American-Asian genotype of dengue type 2 virus in Medellín suggests its possible role as vector of dengue fever in Colombia.

    Science.gov (United States)

    Gómez-Palacio, Andrés; Suaza-Vasco, Juan; Castaño, Sandra; Triana, Omar; Uribe, Sandra

    2017-03-29

    Aedes aegypti and Ae. albopictus are recognized vectors of dengue, yellow fever, chikungunya and Zika arboviruses in several countries worldwide. In Colombia, Ae. albopictus geographical distribution has increased to include highly populated cities such as Cali and Medellín. Although this species has been frequently found in urban and semi-urban zones in the country, its role as vector of the dengue fever is poorly known. To identify the presence of Ae. albopictus specimens naturally infected with dengue virus collected in Medellín. Insects were collected in the Universidad Nacional de Colombia campus in Medellín. Individuals were classified as Ae. albopictus and confirmed by DNA barcode region analysis. Mosquitoes were processed for dengue virus identification, and a fragment of the NS3 gen was sequenced and compared with DENV-2 genotypes reported in the literature. Sequence analysis of COI indicated Ae. albopictus individuals were similar to those recently reported in Colombia, and genetically close to those from other regions worldwide. Among the pools tested one was positive for DENV-2, and the NS3 analysis indicated it belonged to the Asian-American clade. We report the presence Ae. albopictus naturally infected with the Asian-American genotype of DENV-2 in Colombia. The presence of Ae. albopictus specimens carrying the most common genotype infecting humans in a highly populated city such as Medellín indicates its potential role as dengue vector in Colombia and highlights the relevance of including it in current vector surveillance strategies.

  3. SERO-EPIDEMIOLOGY OF DENGUE VIRUS INFECTION IN CITIES OF INDONESIA

    Directory of Open Access Journals (Sweden)

    Soegeng Soegijanto

    2013-10-01

    Full Text Available Background: Dengue Virus Infektion is major public health problem in Indonesia. Aedesaegypti is widespread in both urban and rural areas, where multiple virus Serotype are circulating. On 2013 outbreak ofdengue virus infection occur in East Java. Therefore study seroepidemiology in Bangkalan and Lombok had been done. Aim:to find a mutated strain ofDengue Virus in 4 cities ofIndonesia. Method: On 2011 and 2012 seroepidemiology study had been done in Dr. Soetomo Surabaya and Soerya Sidoarjo Hospital; and on 2013 study had been done in Surabaya, Bangkalan and Lombok Hospital . Diagnosis ofDengue Virus Infection was based on Criteri WHO - 2009. Virus isolation in Surabaya, Sidoarjo, Bangkalan and Lombok had been done. Result:a total of349 isolate were obtained from dengue patients sera collected in Surabaya and Sidoarjo, 2011–2012 showed that Den V1 (182, Den V2 (20 Den V4 (1 were found in Surabaya on 2011 and Den V 1 (79 , Den V 2 (7 were found in Surabaya on 2012; Den V1 (40, Den V 2 (3 were found in Sidoarjo on 2011 and Den V 1 (17 were found in Sidoarjo on 2012; Virus isolation in Surabaya on 2013, January: 237 serum sample were collected, found Den V 1 (8, Den V 3 (2 and Den V 4 (5. And PCR stereotyping of isolated viruses in Madura found Den V 1 (1 and Den V 4 (23. In Lombok found Den V 4 (4.It is possible to shift predominant strain in Surabaya , Genotype or Serotype shift might increase the number ofdengue patients. Conclusion: there were shift predominant strain in Surabaya especially Den V 1. Therefore to continuous surveillance ofcirculating viruses is required to predict the risk ofDHF and DF

  4. Circulación de un linaje diferente del virus dengue 2 genotipo América / Asia en la región amazónica de Perú, 2010 Circulation of a different lineage of dengue virus serotype 2 American / Asian genotype in the Peruvian amazon, 2010

    Directory of Open Access Journals (Sweden)

    Enrique Mamani

    2011-03-01

    Full Text Available El objetivo del estudio fue determinar el genotipo del virus dengue tipo 2 (DENV-2 que circuló en la región Amazónica de Perú entre noviembre de 2010 y enero de 2011. Se analizaron ocho muestras de pacientes captados durante la vigilancia para dengue en las ciudades de Iquitos, Yurimaguas, Trujillo, Tarapoto y Lima entre noviembre de 2010 y enero de 2011 que fueron remitidas al Instituto Nacional de Salud. Se realizó el aislamiento viral en la línea C6/36 HT y la extracción del ARN viral. Se aplicaron técnicas de biología molecular para establecer el serotipo (RT - PCR múltiple y genotipo (RT-Nested PCR de la región E/NS1 seguidas de secuenciación y análisis filogenético. El análisis filogenético reveló la introducción de un linaje diferente que ingresó a Perú a finales del 2010. Estos aislamientos encontrados en Iquitos y otras ciudades de Perú están muy relacionados con aislamientos de DENV-2 que circularon en Brasil durante el 2007 y 2008 asociados con casos de dengue grave y muertes. En conclusión se detectó la introducción de un linaje diferente del DENV-2 genotipo América/Asia en Perú que podría estar asociado con la presencia de casos más graves de dengue.Our objective was to determine the genotype of the dengue virus type 2 (DENV-2 that circulated in the Amazon region of Peru between November 2010 and January 2011. We analyzed eight samples collected during dengue surveillance activities in the cities of Iquitos, Yurimaguas, Trujillo, Tarapoto and Lima between November 2010 and January 2011 that were sent to Insitituto Nacional de Salud. The viruses were isolated in C6/36 HT cell line. Viral RNA was extracted and the serotype (RT - PCR multiplex and genotype (RT-Nested PCR of the region E/NS1 were determined. Finally, the E/ NS1 amplicons were sequenced and analyzed by phylogeny. The phylogenetic analysis revealed the introduction of a different lineage which entered in Peru by the end of 2010. These isolates

  5. Molecular and biochemical characterization of the NS1 protein of non-cultured influenza B virus strains circulating in Singapore

    KAUST Repository

    Jumat, Muhammad; Sugrue, Richard J.; Tan, Boon Huan; Maurer-Stroh, Sebastian; Lee, Raphael Tze Chuen; Wong, Puisan

    2016-01-01

    In this study we compared the NS1 protein of Influenza B/Lee/40 and several non-cultured Influenza B virus clinical strains detected in Singapore. In B/Lee/40 virus-infected cells and in cells expressing the recombinant B/Lee/40 NS1 protein a full-length 35 kDa NS1 protein and a 23 kDa NS1 protein species (p23) were detected. Mutational analysis of the NS1 gene indicated that p23 was generated by a novel cleavage event within the linker domain between an aspartic acid and proline at amino acid residues at positions 92 and 93 respectively (DP92–93), and that p23 contained the first 92 amino acids of the NS1 protein. Sequence analysis of the Singapore strains indicated the presence of either DP92–93 or NP92–93 in the NS1 protein, but protein expression analysis showed that p23 was only detected in NS1 proteins with DP92–93.. An additional adjacent proline residue at position 94 (P94) was present in some strains and correlated with increased p23 levels, suggesting that P94 has a synergistic effect on the cleavage of the NS1 protein. The first 145 amino acids of the NS1 protein are required for inhibition of ISG15-mediated ubiquitination, and our analysis showed that Influenza B viruses circulating in Singapore with DP92–93 expressed truncated NS1 proteins and may differ in their capacity to inhibit ISG15 activity. Thus, DP92–93 in the NS1 protein may confer a disadvantage to Influenza B viruses circulating in the human population and interestingly the low frequency of DP92–93detection in the NS1 protein since 2004 is consistent with this suggestion.

  6. Molecular and biochemical characterization of the NS1 protein of non-cultured influenza B virus strains circulating in Singapore

    KAUST Repository

    Jumat, Muhammad Raihan

    2016-08-04

    In this study we compared the NS1 protein of Influenza B/Lee/40 and several non-cultured Influenza B virus clinical strains detected in Singapore. In B/Lee/40 virus-infected cells and in cells expressing the recombinant B/Lee/40 NS1 protein a full-length 35 kDa NS1 protein and a 23 kDa NS1 protein species (p23) were detected. Mutational analysis of the NS1 gene indicated that p23 was generated by a novel cleavage event within the linker domain between an aspartic acid and proline at amino acid residues at positions 92 and 93 respectively (DP92–93), and that p23 contained the first 92 amino acids of the NS1 protein. Sequence analysis of the Singapore strains indicated the presence of either DP92–93 or NP92–93 in the NS1 protein, but protein expression analysis showed that p23 was only detected in NS1 proteins with DP92–93.. An additional adjacent proline residue at position 94 (P94) was present in some strains and correlated with increased p23 levels, suggesting that P94 has a synergistic effect on the cleavage of the NS1 protein. The first 145 amino acids of the NS1 protein are required for inhibition of ISG15-mediated ubiquitination, and our analysis showed that Influenza B viruses circulating in Singapore with DP92–93 expressed truncated NS1 proteins and may differ in their capacity to inhibit ISG15 activity. Thus, DP92–93 in the NS1 protein may confer a disadvantage to Influenza B viruses circulating in the human population and interestingly the low frequency of DP92–93detection in the NS1 protein since 2004 is consistent with this suggestion.

  7. Virtual Screening for Potential Inhibitors of NS3 Protein of Zika Virus

    Directory of Open Access Journals (Sweden)

    Maheswata Sahoo

    2016-09-01

    Full Text Available Zika virus (ZIKV is a mosquito borne pathogen, belongs to Flaviviridae family having a positive-sense single-stranded RNA genome, currently known for causing large epidemics in Brazil. Its infection can cause microcephaly, a serious birth defect during pregnancy. The recent outbreak of ZIKV in February 2016 in Brazil realized it as a major health risk, demands an enhanced surveillance and a need to develop novel drugs against ZIKV. Amodiaquine, prochlorperazine, quinacrine, and berberine are few promising drugs approved by Food and Drug Administration against dengue virus which also belong to Flaviviridae family. In this study, we performed molecular docking analysis of these drugs against nonstructural 3 (NS3 protein of ZIKV. The protease activity of NS3 is necessary for viral replication and its prohibition could be considered as a strategy for treatment of ZIKV infection. Amongst these four drugs, berberine has shown highest binding affinity of –5.8 kcal/mol and it is binding around the active site region of the receptor. Based on the properties of berberine, more similar compounds were retrieved from ZINC database and a structure-based virtual screening was carried out by AutoDock Vina in PyRx 0.8. Best 10 novel drug-like compounds were identified and amongst them ZINC53047591 (2-(benzylsulfanyl-3-cyclohexyl-3H-spiro[benzo[h]quinazoline-5,1'-cyclopentan]-4(6H-one was found to interact with NS3 protein with binding energy of –7.1 kcal/mol and formed H-bonds with Ser135 and Asn152 amino acid residues. Observations made in this study may extend an assuring platform for developing anti-viral competitive inhibitors against ZIKV infection.

  8. Natural vertical transmission of dengue viruses by Aedes aegypti in Bolivia

    Science.gov (United States)

    Le Goff, G.; Revollo, J.; Guerra, M.; Cruz, M.; Barja Simon, Z.; Roca, Y.; Vargas Florès, J.; Hervé, J.P.

    2011-01-01

    The natural transmission of dengue virus from an infected female mosquito to its progeny, namely the vertical transmission, was researched in wild caught Aedes aegypti during an important outbreak in the town of Santa Cruz de la Sierra, Bolivia. Mosquitoes were collected at the preimaginal stages (eggs, larvae and pupae) then reared up to adult stage for viral detection using molecular methods. Dengue virus serotypes 1 and 3 were found to be co-circulating with significant higher prevalence in male than in female mosquitoes. Of the 97 pools of Ae. aegypti (n = 635 male and 748 female specimens) screened, 14 pools, collected in February-May in 2007, were found positive for dengue virus infection: five DEN-1 and nine DEN-3. The average true infection rate (TIR) and minimum infection rate (MIR) were respectively 1.08% and 1.01%. These observations suggest that vertical transmission of dengue virus may be detected in vectors at the peak of an outbreak as well as several months before an epidemic occurs in human population. PMID:21894270

  9. Disruption of predicted dengue virus type 3 major outbreak cycle coincided with switching of the dominant circulating virus genotype.

    Science.gov (United States)

    Tan, Kim-Kee; Zulkifle, Nurul-Izzani; Abd-Jamil, Juraina; Sulaiman, Syuhaida; Yaacob, Che Norainon; Azizan, Noor Syahida; Che Mat Seri, Nurul Asma Anati; Samsudin, Nur Izyan; Mahfodz, Nur Hidayana; AbuBakar, Sazaly

    2017-10-01

    Dengue is hyperendemic in most of Southeast Asia. In this region, all four dengue virus serotypes are persistently present. Major dengue outbreak cycle occurs in a cyclical pattern involving the different dengue virus serotypes. In Malaysia, since the 1980s, the major outbreak cycles have involved dengue virus type 3 (DENV3), dengue virus type 1 (DENV1) and dengue virus type 2 (DENV2), occurring in that order (DENV3/DENV1/DENV2). Only limited information on the DENV3 cycles, however, have been described. In the current study, we examined the major outbreak cycle involving DENV3 using data from 1985 to 2016. We examined the genetic diversity of DENV3 isolates obtained during the period when DENV3 was the dominant serotype and during the inter-dominant transmission period. Results obtained suggest that the typical DENV3/DENV1/DENV2 cyclical outbreak cycle in Malaysia has recently been disrupted. The last recorded major outbreak cycle involving DENV3 occurred in 2002, and the expected major outbreak cycle involving DENV3 in 2006-2012 did not materialize. DENV genome analyses revealed that DENV3 genotype II (DENV3/II) was the predominant DENV3 genotype (67%-100%) recovered between 1987 and 2002. DENV3 genotype I (DENV3/I) emerged in 2002 followed by the introduction of DENV3 genotype III (DENV3/III) in 2008. These newly emerged DENV3 genotypes replaced DENV3/II, but there was no major upsurge of DENV3 cases that accompanied the emergence of these viruses. DENV3 remained in the background of DENV1 and DENV2 until now. Virus genome sequence analysis suggested that intrinsic differences within the different dengue virus genotypes could have influenced the transmission efficiency of DENV3. Further studies and continuous monitoring of the virus are needed for better understanding of the DENV transmission dynamics in hyperendemic regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Virus isolation for diagnosing dengue virus infections in returning travelers

    NARCIS (Netherlands)

    Teichmann, D.; Göbels, K.; Niedrig, M.; Sim-Brandenburg, J.-W.; Làge-Stehr, J.; Grobusch, M. P.

    2003-01-01

    Dengue fever is recognized as one of the most frequent imported acute febrile illnesses affecting European tourists returning from the tropics. In order to assess the value of virus isolation for the diagnosis of dengue fever, 70 cases of dengue fever confirmed in German travelers during the period

  11. Progress in the Identification of Dengue Virus Entry/Fusion Inhibitors

    Directory of Open Access Journals (Sweden)

    Carolina De La Guardia

    2014-01-01

    Full Text Available Dengue fever, a reemerging disease, is putting nearly 2.5 billion people at risk worldwide. The number of infections and the geographic extension of dengue fever infection have increased in the past decade. The disease is caused by the dengue virus, a flavivirus that uses mosquitos Aedes sp. as vectors. The disease has several clinical manifestations, from the mild cold-like illness to the more serious hemorrhagic dengue fever and dengue shock syndrome. Currently, there is no approved drug for the treatment of dengue disease or an effective vaccine to fight the virus. Therefore, the search for antivirals against dengue virus is an active field of research. As new possible receptors and biological pathways of the virus biology are discovered, new strategies are being undertaken to identify possible antiviral molecules. Several groups of researchers have targeted the initial step in the infection as a potential approach to interfere with the virus. The viral entry process is mediated by viral proteins and cellular receptor molecules that end up in the endocytosis of the virion, the fusion of both membranes, and the release of viral RNA in the cytoplasm. This review provides an overview of the targets and progress that has been made in the quest for dengue virus entry inhibitors.

  12. Molecular surveillance of Dengue in Sukabumi, West Java province, Indonesia.

    Science.gov (United States)

    Nusa, Roy; Prasetyowati, Heni; Meutiawati, Febrina; Yohan, Benediktus; Trimarsanto, Hidayat; Setianingsih, Tri Yuli; Sasmono, R Tedjo

    2014-06-11

    Dengue is endemic and affects people in all Indonesian provinces. Increasing dengue cases have been observed every year in Sukabumi in West Java province. Despite the endemicity, limited data is available on the genetic of dengue viruses (DENV) circulating in the country. To understand the dynamics of dengue disease, we performed molecular and serological surveillance of dengue in Sukabumi. A total of 113 patients were recruited for this study. Serological data were obtained using anti-dengue IgM and IgG tests plus dengue NS1 antigen detection. Dengue detection and serotyping were performed using real-time RT-PCR. Viruses were isolated and the envelope genes were sequenced. Phylogenetic and evolutionary analyses were performed to determine the genotype of the viruses and their evolutionary rates. Real-time RT-PCR detected DENV in 25 (22%) of 113 samples. Serotyping revealed the predominance of DENV-2 (16 isolates, 64%), followed by DENV-1 (5 isolates, 20%), and DENV-4 (4 isolates, 16%). No DENV-3 was detected in the samples. Co-circulation of genotype I and IV of DENV-1 was observed. The DENV-2 isolates all belonged to the Cosmopolitan genotype, while DENV-4 isolates were grouped into genotype II. Overall, their evolutionary rates were similar to DENV from other countries. We revealed the distribution of DENV serotypes and genotypes in Sukabumi. Compared to data obtained from other cities in Indonesia, we observed the differing predominance of DENV serotypes but similar genotype distribution, where the infecting viruses were closely related with Indonesian endemic viruses isolated previously.

  13. Immature dengue virus: a veiled pathogen?

    Directory of Open Access Journals (Sweden)

    Izabela A Rodenhuis-Zybert

    2010-01-01

    Full Text Available Cells infected with dengue virus release a high proportion of immature prM-containing virions. In accordance, substantial levels of prM antibodies are found in sera of infected humans. Furthermore, it has been recently described that the rates of prM antibody responses are significantly higher in patients with secondary infection compared to those with primary infection. This suggests that immature dengue virus may play a role in disease pathogenesis. Interestingly, however, numerous functional studies have revealed that immature particles lack the ability to infect cells. In this report, we show that fully immature dengue particles become highly infectious upon interaction with prM antibodies. We demonstrate that prM antibodies facilitate efficient binding and cell entry of immature particles into Fc-receptor-expressing cells. In addition, enzymatic activity of furin is critical to render the internalized immature virus infectious. Together, these data suggest that during a secondary infection or primary infection of infants born to dengue-immune mothers, immature particles have the potential to be highly infectious and hence may contribute to the development of severe disease.

  14. Genomic analysis and growth characteristic of dengue viruses from Makassar, Indonesia.

    Science.gov (United States)

    Sasmono, R Tedjo; Wahid, Isra; Trimarsanto, Hidayat; Yohan, Benediktus; Wahyuni, Sitti; Hertanto, Martin; Yusuf, Irawan; Mubin, Halim; Ganda, Idham J; Latief, Rachmat; Bifani, Pablo J; Shi, Pei-Yong; Schreiber, Mark J

    2015-06-01

    Dengue fever is currently the most important mosquito-borne viral disease in Indonesia. In South Sulawesi province, most regions report dengue cases including the capital city, Makassar. Currently, no information is available on the serotypes and genotypes of the viruses circulating in the area. To understand the dynamic of dengue disease in Makassar, we carried out dengue fever surveillance study during 2007-2010. A total of 455 patients were recruited, in which antigen and serological detection revealed the confirmed dengue cases in 43.3% of patients. Molecular detection confirmed the dengue cases in 27.7% of patients, demonstrating that dengue places a significant disease burden on the community. Serotyping revealed that dengue virus serotype 1 (DENV-1) was the most predominant serotype, followed by DENV-2, -3, and -4. To determine the molecular evolution of the viruses, we conducted whole-genome sequencing of 80 isolates. Phylogenetic analysis grouped DENV-2, -3 and -4 to the Cosmopolitan genotype, Genotype I and Genotype II, respectively. Intriguingly, each serotype paints a different picture of evolution and transmission. DENV-1 appears to be undergoing a clade replacement with Genotype IV being supplanted by Genotype I. The Cosmopolitan DENV-2 isolates were found to be regionally endemic and is frequently being exchanged between countries in the region. By contrast, DENV-3 and DENV-4 isolates were related to strains with a long history in Indonesia although the DENV-3 strains appear to have been following a distinct evolutionary path since approximately 1998. To assess whether the various DENV serotypes/genotypes possess different growth characteristics, we performed growth kinetic assays on selected viruses. We observed the relatively higher rate of replication for DENV-1 and -2 compared to DENV-3 and -4. Within the DENV-1, viruses from Genotype I grow faster than that of Genotype IV. This higher replication rate may underlie their ability to replace the

  15. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame.

    Directory of Open Access Journals (Sweden)

    Marijke van Rikxoort

    Full Text Available Oncolytic influenza A viruses with deleted NS1 gene (delNS1 replicate selectively in tumour cells with defective interferon response and/or activated Ras/Raf/MEK/ERK signalling pathway. To develop a delNS1 virus with specific immunostimulatory properties, we used an optimised technology to insert the interleukin-15 (IL-15 coding sequence into the viral NS gene segment (delNS1-IL-15. DelNS1 and delNS1-IL-15 exerted similar oncolytic effects. Both viruses replicated and caused caspase-dependent apoptosis in interferon-defective melanoma cells. Virus replication was required for their oncolytic activity. Cisplatin enhanced the oncolytic activity of delNS1 viruses. The cytotoxic drug increased delNS1 replication and delNS1-induced caspase-dependent apoptosis. Interference with MEK/ERK signalling by RNAi-mediated depletion or the MEK inhibitor U0126 did not affect the oncolytic effects of the delNS1 viruses. In oncolysis sensitive melanoma cells, delNS1-IL-15 (but not delNS1 infection resulted in the production of IL-15 levels ranging from 70 to 1140 pg/mL in the cell culture supernatants. The supernatants of delNS1-IL-15-infected (but not of delNS1-infected melanoma cells induced primary human natural killer cell-mediated lysis of non-infected tumour cells. In conclusion, we constructed a novel oncolytic influenza virus that combines the oncolytic activity of delNS1 viruses with immunostimulatory properties through production of functional IL-15. Moreover, we showed that the oncolytic activity of delNS1 viruses can be enhanced in combination with cytotoxic anti-cancer drugs.

  16. Dengue virus in blood donations, Puerto Rico, 2005.

    Science.gov (United States)

    Mohammed, Hamish; Linnen, Jeffrey M; Muñoz-Jordán, Jorge L; Tomashek, Kay; Foster, Gregory; Broulik, Amy S; Petersen, Lyle; Stramer, Susan L

    2008-07-01

    A single instance of transfusion-transmitted dengue infection has been reported. The high incidence of dengue in endemic countries, the high proportion of asymptomatic infection, and the median 5-day viremia, however, suggest that transfusion-associated dengue transmission may be more widespread than documented. The prevalence of dengue virus (DENV) RNA was determined in all blood donations to the American Red Cross in Puerto Rico from September 20 to December 4, 2005, using a specific type of nucleic acid amplification test called transcription-mediated amplification (TMA). TMA-positive donations were defined as those having two repeatedly reactive TMA results. TMA-positive donations were tested by enzyme-linked immunosorbent assay for immunoglobulin M (IgM) antibodies, by reverse transcription-polymerase chain reaction (RT-PCR), and by viral culture. Twelve (0.07%) of 16,521 blood donations tested were TMA-positive. Four were positive by RT-PCR (DENV serotypes 2 and 3). Virus was cultured from 3 of 4 RT-PCR-positive donations. One of the 12 TMA-positive donations was IgM-positive. Only 5 donations remained TMA-positive when diluted 1:16, as is done for routine minipool screening for other transfusion-transmissible viral infections (hepatitis C, human immunodeficiency, West Nile viruses [WNVs]). Nearly 1 in 1000 blood donations contained DENV RNA, and virus could be cultured from TMA-positive donations, suggesting a transfusion transmission risk similar to that which existed in the United States for WNV before universal donation screening. Similar to WNV, IgM antibody screening is likely to be ineffective, and some potentially infectious donations will be missed by minipool screening. Transfusion transmission should be considered in patients with dengue after blood transfusion.

  17. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection.

    Science.gov (United States)

    Tan, Wei-Lian; Lee, Yean Kee; Ho, Yen Fong; Yusof, Rohana; Abdul Rahman, Noorsaadah; Karsani, Saiful Anuar

    2018-01-01

    Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV) infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda ) that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  18. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection

    Directory of Open Access Journals (Sweden)

    Wei-Lian Tan

    2018-01-01

    Full Text Available Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  19. Treatment Effectiveness of Amantadine Against Dengue Virus Infection.

    Science.gov (United States)

    Lin, Chieh-Cheng; Chen, Wen-Ching

    2016-12-05

    BACKGROUND About 400 million cases of dengue, a mosquito-borne disease, are reported annually, but no drug is yet available for treatment. In 1988, at Feng Lin Clinic, Taiwan, we encountered about 10,000 cases and tested various drugs before confirming an antiviral effect of amantadine against dengue virus in vitro. After we administered amantadine to patients for 1-2 days, most achieved full remission. None experienced potentially life-threatening dengue hemorrhagic fever or dengue shock syndrome. Herein, we present 34 cases from recent clinical experience that show amantadine's unusual effect against dengue virus infection. CASE REPORT We divided 34 patients with symptoms of dengue fever, confirmed by a screening test, into 3 groups: 6 Category 1 patients received amantadine at onset, 21 Category 2 patients received amantadine within 2-6 days, and 7 Contrast group patients received no amantadine because they visited other clinics or were admitted to a large hospital. When Category 1 patients were treated with amantadine 100 mg 3 times per day, all symptoms dramatically subsided within 1-2 days. In Category 2 patients, most symptoms diminished within 1-2 days after starting the same regimen. In the Contrast group, all symptoms persisted 7 days after onset. White blood cell and platelet counts in Category 1 and 2 patients recovered to normal range, but remained below low normal in the Contrast group. CONCLUSIONS Amantadine is effective and should be given as soon as possible to stop the disease course if dengue fever is confirmed through screening or clinical signs and symptoms. A well-designed larger sample study is warranted to test this effectiveness.

  20. Immune Activation in the Pathogenesis of Dengue Virus Infection

    NARCIS (Netherlands)

    C.A.M. van de Weg (Cornelia A.M.)

    2014-01-01

    markdownabstract__Abstract__ Dengue virus (DENV) is a positive-stranded RNA virus and belongs to the Flaviviridae family. The virus is transmitted by the bite of an infected Aedes-mosquito and circulates in tropical and subtropical areas around the world. The incidence of dengue has risen

  1. All Serotypes of Dengue Viruses Circulating in Kuala Lumpur, Malaysia

    OpenAIRE

    M.H. Chew; M.M. Rahman; J. Jelip; M.R. Hassan; I. Isahak

    2012-01-01

    Dengue is a severe disease caused by dengue virus (DENV), transmitted to human being by infected Aedes mosquitoes. It is a major public health concern in Southeast Asia due to its fatality in the form of hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The objective of the study was to isolate and identify dengue virus serotypes prevalent in endemic areas of Kuala Lumpur and Selangor in Malaysia by virus culture, indirect immunoflurecent assay and molecular techniques. A total number ...

  2. Molecular surveillance of dengue in Minas Gerais provides insights on dengue virus 1 and 4 circulation in Brazil.

    Science.gov (United States)

    Dutra, Karina Rocha; Drumond, Betânia Paiva; de Rezende, Izabela Maurício; Nogueira, Maurício Lacerda; de Oliveira Lopes, Débora; Calzavara Silva, Carlos Eduardo; Siqueira Ferreira, Jaqueline Maria; Dos Santos, Luciana Lara

    2017-06-01

    Dengue, caused by any of the four types of Dengue virus (DENV) is the most important arbovirus in the world. In this study we performed a molecular surveillance of dengue during the greatest dengue outbreak that took place in Divinópolis, Minas Gerais state, Southeast Brazil, in 2013. Samples from 100 patients with clinical symptoms of dengue were studied and 26 were positive. The capsid/premembrane (CprM) and envelope gene sequences of some samples were amplified and sequenced. Molecular analyses demonstrated that two DENV-1 lineages, belonging to genotype V were introduced and co-circulated in Divinópolis. When compared to each other, those lineages presented high genetic diversity and showed unique amino acids substitutions in the envelope protein, including in domains I, II, and III. DENV-4 strains from Divinópolis clustered within genotype IIb and the most recent common ancestor was probably introduced into the city three years before the 2013 epidemic. Here we demonstrated for the first time the circulation of DENV-4 and the co-circulation of two DENV-1 lineages in Midwest region of Minas Gerais, Brazil. Moreover our analysis indicated the introduction of five DENV-1 lineages, genotype V into Brazil, in different times. J. Med. Virol. 89:966-973, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Differential sensitivity of 5'UTR-NS5A recombinants of hepatitis C virus genotypes 1-6 to protease and NS5A inhibitors

    DEFF Research Database (Denmark)

    Li, Yi-Ping; Ramirez, Santseharay; Humes, Daryl

    2014-01-01

    BACKGROUND & AIMS: Hepatitis C virus (HCV) therapy will benefit from the preclinical evaluation of direct-acting antiviral (DAA) agents in infectious culture systems that test the effects on different virus genotypes. We developed HCV recombinants comprising the 5' untranslated region-NS5A (5-5A...... daclatasvir. The 1a(TN) 5-5A and JFH1-independent full-length viruses had similar levels of sensitivity to the DAA agents, validating the 5-5A recombinants as surrogates for full-length viruses in DAA testing. Compared with the 1a(TN) full-length virus, the 3a(S52) 5-5A recombinant was highly resistant to all...... protease inhibitors, and the 4a(ED43) recombinant was highly resistant to telaprevir and boceprevir, but most sensitive to other protease inhibitors. Compared with other protease inhibitors, MK-5172 had exceptional potency against all HCV genotypes. The NS5A inhibitor daclatasvir had the highest potency...

  4. Efficient hepatitis c virus genotype 1b core-NS5A recombinants permit efficacy testing of protease and NS5A inhibitors

    DEFF Research Database (Denmark)

    Pham, Long V.; Ramirez Almeida, Santseharay; Carlsen, Thomas H R

    2017-01-01

    Hepatitis C virus (HCV) strains belong to seven genotypes with numerous subtypes that respond differently to antiviral therapies. Genotype 1, and primarily subtype 1b, is the most prevalent genotype worldwide. The development of recombinant HCV infectious cell culture systems for different variants......, permitted by the high replication capacity of strain JFH1 (genotype 2a), has advanced efficacy and resistance testing of antivirals. However, efficient infectious JFH1-based cell cultures of subtype 1b are limited and comprise only the 5= untranslated region (5=UTR)-NS2, NS4A, or NS5A regions. Importantly...

  5. Estandarización del método de centrifugación en placa para el aislamiento del virus dengue Rapid centrifugation assay standarization for dengue virus isolation

    Directory of Open Access Journals (Sweden)

    Miryam Palomino

    2010-03-01

    Full Text Available Se estandarizó el método de centrifugación en placa, para el aislamiento del virus dengue a partir de muestras de suero humano. Se utilizó la línea celular C6/36-HT determinándose los valores óptimos de velocidad de centrifugación, volumen de inóculo, dilución de suero y tiempo de incubación. Posteriormente, 22 muestras de suero con aislamiento viral positivo y cepas referenciales de los cuatro serotipos del virus dengue, fueron procesadas simultáneamente por el método de centrifugación en placa y el método convencional de cultivo en tubo, los aislamientos fueron tipificados mediante inmunofluorescencia indirecta empleando anticuerpos monoclonales. Se optimizó el método de centrifugación en placa inoculando 200 μL de diluciσn de suero 1/20, centrifugaciσn a 1600 rpm/30 min, presentando sensibilidad de 95,5% a cinco dνas postinoculación. Se concluye que el método de centrifugación en placa mejora el porcentaje de aislamiento, con significativa reducción en tiempo de aislamiento del virus dengue.The plate centrifugation assay was standardized for dengue virus isolation from serum samples. C6/36-HT cells were used determining the optimal values for centrifugation spin speed, inoculum, sera dilution, and incubation time. Then, 22 positive serum samples with viral isolation and viral strains of the four reference dengue virus serotypes were tested simultaneously by the standardized plate centrifugation method and the conventional tube culture. The isolations were typified by indirect immunofluorescent test using monoclonal antibodies. The plate centrifugation method was optimized to 200 μL of inoculum, dilution of sera 1/20, centrifugation speed at 1600 rpm/30 min, and sensitivity of 95,5% after 5 days post-inoculation. We concluded that the plate centrifugation method increased dengue virus isolation, with a significant reduction of the time of isolation for dengue virus.

  6. NS Segment of a 1918 Influenza A Virus-Descendent Enhances Replication of H1N1pdm09 and Virus-Induced Cellular Immune Response in Mammalian and Avian Systems

    Science.gov (United States)

    Petersen, Henning; Mostafa, Ahmed; Tantawy, Mohamed A.; Iqbal, Azeem A.; Hoffmann, Donata; Tallam, Aravind; Selvakumar, Balachandar; Pessler, Frank; Beer, Martin; Rautenschlein, Silke; Pleschka, Stephan

    2018-01-01

    The 2009 pandemic influenza A virus (IAV) H1N1 strain (H1N1pdm09) has widely spread and is circulating in humans and swine together with other human and avian IAVs. This fact raises the concern that reassortment between H1N1pdm09 and co-circulating viruses might lead to an increase of H1N1pdm09 pathogenicity in different susceptible host species. Herein, we explored the potential of different NS segments to enhance the replication dynamics, pathogenicity and host range of H1N1pdm09 strain A/Giessen/06/09 (Gi-wt). The NS segments were derived from (i) human H1N1- and H3N2 IAVs, (ii) highly pathogenic- (H5- or H7-subtypes) or (iii) low pathogenic avian influenza viruses (H7- or H9-subtypes). A significant increase of growth kinetics in A549 (human lung epithelia) and NPTr (porcine tracheal epithelia) cells was only noticed in vitro for the reassortant Gi-NS-PR8 carrying the NS segment of the 1918-descendent A/Puerto Rico/8/34 (PR8-wt, H1N1), whereas all other reassortants showed either reduced or comparable replication efficiencies. Analysis using ex vivo tracheal organ cultures of turkeys (TOC-Tu), a species susceptible to IAV H1N1 infection, demonstrated increased replication of Gi-NS-PR8 compared to Gi-wt. Also, Gi-NS-PR8 induced a markedly higher expression of immunoregulatory and pro-inflammatory cytokines, chemokines and interferon-stimulated genes in A549 cells, THP-1-derived macrophages (dHTP) and TOC-Tu. In vivo, Gi-NS-PR8 induced an earlier onset of mortality than Gi-wt in mice, whereas, 6-week-old chickens were found to be resistant to both viruses. These data suggest that the specific characteristics of the PR8 NS segments can impact on replication, virus induced cellular immune responses and pathogenicity of the H1N1pdm09 in different avian and mammalian host species. PMID:29623073

  7. Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses

    International Nuclear Information System (INIS)

    Hu, H.-P.; Hsieh, S.-C.; King, C.-C.; Wang, W.-K.

    2007-01-01

    In this study, we successfully established retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope (PrM/E) proteins of each of the four serotypes of dengue viruses, which caused the most important arboviral diseases in this century. Co-sedimentation of the dengue E protein and HIV-1 core proteins by sucrose gradient analysis of the pseudotype reporter virus of dengue virus type 2, D2(HIVluc), and detection of HIV-1 core proteins by immunoprecipitation with anti-E monoclonal antibody suggested that dengue viral proteins were incorporated into the pseudotype viral particles. The infectivity in target cells, as assessed by the luciferase activity, can be inhibited by the lysosomotropic agents, suggesting a pH-dependent mechanism of entry. Amino acid substitutions of the leucine at position 107, a critical residue at the fusion loop of E protein, with lysine resulted in severe impairment in infectivity, suggesting that entry of the pseudotype reporter virus is mediated through the fusogenic properties of E protein. With more and more dengue viral sequences available from different outbreaks worldwide, this sensitive and convenient tool has the potential to facilitate molecular characterization of the PrM/E proteins of dengue field isolates

  8. Dengue death with evidence of hemophagocytic syndrome and dengue virus infection in the bone marrow.

    Science.gov (United States)

    Ab-Rahman, Hasliana Azrah; Wong, Pooi-Fong; Rahim, Hafiz; Abd-Jamil, Juraina; Tan, Kim-Kee; Sulaiman, Syuhaida; Lum, Chai-See; Syed-Omar, Syarifah-Faridah; AbuBakar, Sazaly

    2015-01-01

    HPS is a potentially life-threatening histiocytic disorder that has been described in various viral infections including dengue. Its involvement in severe and fatal dengue is probably more common but is presently under recognized. A 38-year-old female was admitted after 5 days of fever. She was deeply jaundiced, leukopenic and thrombocytopenic. Marked elevation of transaminases, hyperbilirubinemia and hypoalbuminemia were observed. She had deranged INR values and prolonged aPTT accompanied with hypofibrinogenemia. She also had splenomegaly. She was positive for dengue IgM. Five days later she became polyuric and CT brain image showed gross generalized cerebral edema. Her conditions deteriorated by day 9, became confused with GCS of 9/15. Her BMAT showed minimal histiocytes. Her serum ferritin level peaked at 13,670.00 µg/mL and her sCD163 and sCD25 values were markedly elevated at 4750.00 ng/mL and 4191.00 pg/mL, respectively. She succumbed to the disease on day 10 and examination of her tissues showed the presence of dengue virus genome in the bone marrow. It is described here, a case of fatal dengue with clinical features of HPS. Though BMAT results did not show the presence of macrophage hemophagocytosis, other laboratory features were consistent with HPS especially marked elevation of ferritin, sCD163 and sCD25. Detection of dengue virus in the patient's bone marrow, fifteen days after the onset of fever was also consistent with the suggestion that the HPS is associated with dengue virus infection. The findings highlight HPS as a possible complication leading to severe dengue and revealed persistent dengue virus infection of the bone marrow. Detection of HPS markers; ferritin, sCD163 and sCD25, therefore, should be considered for early recognition of HPS-associated dengue.

  9. Enhancing the sensitivity of Dengue virus serotype detection by RT-PCR among infected children in India.

    Science.gov (United States)

    Ahamed, Syed Fazil; Vivek, Rosario; Kotabagi, Shalini; Nayak, Kaustuv; Chandele, Anmol; Kaja, Murali-Krishna; Shet, Anita

    2017-06-01

    Dengue surveillance relies on reverse transcription-polymerase chain reaction (RT-PCR), for confirmation of dengue virus (DENV) serotypes. We compared efficacies of published and modified primer sets targeting envelope (Env) and capsid-premembrane (C-prM) genes for detection of circulating DENV serotypes in southern India. Acute samples from children with clinically-diagnosed dengue were used for RT-PCR testing. All samples were also subjected to dengue serology (NS1 antigen and anti-dengue-IgM/IgG rapid immunochromatographic assay). Nested RT-PCR was performed on viral RNA using three methods targeting 654bp C-prM, 511bp C-prM and 641bp Env regions, respectively. RT-PCR-positive samples were validated by population sequencing. Among 171 children with suspected dengue, 121 were dengue serology-positive and 50 were dengue serology-negative. Among 121 serology-positives, RT-PCR detected 91 (75.2%) by CprM654, 72 (59.5%) by CprM511, and 74 (61.1%) by Env641. Among 50 serology-negatives, 10 (20.0%) were detected by CprM654, 12 (24.0%) by CprM511, and 11 (22.0%) by Env641. Overall detection rate using three methods sequentially was 82.6% (100/121) among serology-positive and 40.0% (20/50) among serology-negative samples; 6.6% (8/120) had co-infection with multiple DENV serotypes. We conclude that detection of acute dengue was enhanced by a modified RT-PCR method targeting the 654bp C-prM region, and further improved by using all three methods sequentially. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Simultaneous detection of Zika, Chikungunya and Dengue viruses by a multiplex real-time RT-PCR assay.

    Science.gov (United States)

    Pabbaraju, Kanti; Wong, Sallene; Gill, Kara; Fonseca, Kevin; Tipples, Graham A; Tellier, Raymond

    2016-10-01

    In the recent past, arboviruses such as Chikungunya (CHIKV) and Zika (ZIKV) have increased their area of endemicity and presented as an emerging global public health threat. To design an assay for the simultaneous detection of ZIKV, CHIKV and Dengue (DENV) 1-4 from patients with symptoms of arboviral infection. This would be advantageous because of the similar clinical presentation typically encountered with these viruses and their co-circulation in endemic areas. In this study we have developed and validated a triplex real time reverse transcription PCR assay using hydrolysis probes targeting the non-structural 5 (NS5) region of ZIKV, non-structural protein 4 (nsP4) from CHIKV and 3' untranslated region (3'UTR) of DENV 1-4. The 95% LOD by the triplex assay was 15 copies/reaction for DENV-1 and less than 10 copies/reaction for all other viruses. The triplex assay was 100% specific and did not amplify any of the other viruses tested. The assay was reproducible and adaptable to testing different specimen types including serum, plasma, urine, placental tissue, brain tissue and amniotic fluid. This assay can be easily implemented for diagnostic testing of patient samples, even in a high throughput laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Molecular epidemiology of type 1 and 2 dengue viruses in Brazil from 1988 to 2001

    OpenAIRE

    Pires Neto,R.J.; Lima,D.M.; de Paula,S.O.; Lima,C.M.; Rocco,I.M.; Fonseca,B.A.L.

    2005-01-01

    Dengue is a mosquito-borne viral infection that in recent decades has become a major international public health concern. Epidemic dengue fever reemerged in Brazil in 1981. Since 1990 more than one dengue virus serotype has been circulating in this tropical country and increasing rates of dengue hemorrhagic fever and dengue shock syndrome have been detected every year. Some evidence supports the association between the introduction of a new serotype and/or genotype in a region and the appeara...

  12. Rational discovery of dengue type 2 non-competitive inhibitors.

    Science.gov (United States)

    Heh, Choon H; Othman, Rozana; Buckle, Michael J C; Sharifuddin, Yusrizam; Yusof, Rohana; Rahman, Noorsaadah A

    2013-07-01

    Various works have been carried out in developing therapeutics against dengue. However, to date, no effective vaccine or anti-dengue agent has yet been discovered. The development of protease inhibitors is considered as a promising option, but most previous works have involved competitive inhibition. In this study, we focused on rational discovery of potential anti-dengue agents based on non-competitive inhibition of DEN-2 NS2B/NS3 protease. A homology model of the DEN-2 NS2B/NS3 protease (using West Nile Virus NS2B/NS3 protease complex, 2FP7, as the template) was used as the target, and pinostrobin, a flavanone, was used as the standard ligand. Virtual screening was performed involving a total of 13 341 small compounds, with the backbone structures of chalcone, flavanone, and flavone, available in the ZINC database. Ranking of the resulting compounds yielded compounds with higher binding affinities compared with the standard ligand. Inhibition assay of the selected top-ranking compounds against DEN-2 NS2B/NS3 proteolytic activity resulted in significantly better inhibition compared with the standard and correlated well with in silico results. In conclusion, via this rational discovery technique, better inhibitors were identified. This method can be used in further work to discover lead compounds for anti-dengue agents. © 2013 John Wiley & Sons A/S.

  13. Early diagnosis of dengue virus infection in clinically suspected cases

    International Nuclear Information System (INIS)

    Afridi, N.K.; Ahmed, S.; Ali, N.; Khan, S.A.

    2016-01-01

    Objective: Comparison of real time reverse transcriptase polymerase chain reaction (RTPCR) and immunoglobulin M (IgM) capture enzyme linked immunosorbent assay (ELISA) for diagnosis of dengue virus infection in first week of illness in clinically suspected patients of dengue fever. Study Design: Cross sectional study. Place and Duration of Study: Department of haematology, Armed Forces Institute of Pathology (AFIP) Rawalpindi from Jan 2013 to Nov 2013. Material and Methods: A cross sectional study including 68 clinically suspected patients of dengue fever according to the World Health Organization (WHO) criteria. IgM capture ELISA and RT PCR for dengue virus ribonucleic acid (RNA) was performed on samples collected from patients having fever for 1 to 7 days. These were divided into two groups. Patients in group 1 presented with fever of 4 days or less, patients in group 2 had fever of 5 to 7 days duration. Results: In group 1, 72 percent of the patients were positive by RT PCR while 31 percent were positive by IgM capture ELISA. In group 2, 43 percent of the patients were positive by RT PCR while 97 percent were positive by ELISA. Conclusion: RT PCR can be used for early detection of dengue virus infection in the first few days of fever while IgM ELISA is diagnostic afterwards. (author)

  14. Multiple recombinants in two dengue virus, serotype-2 isolates from patients from Oaxaca, Mexico.

    Science.gov (United States)

    Perez-Ramirez, Gerardo; Diaz-Badillo, Alvaro; Camacho-Nuez, Minerva; Cisneros, Alejandro; Munoz, Maria de Lourdes

    2009-12-15

    Dengue (DEN) is a serious cause of mortality and morbidity in the world including Mexico, where the infection is endemic. One of the states with the highest rate of dengue cases is Oaxaca. The cause of DEN is a positive-sense RNA virus, the dengue virus (DENV) that evolves rapidly increasing its variability due to the absence of a repair mechanism that leads to approximately one mutational event per genome replication; which results in enhancement of viral adaptation, including the escape from host immune responses. Additionally, recombination may play a role in driving the evolution of DENV, which may potentially affect virulence and cause host tropism changes. Recombination in DENV has not been described in Mexican strains, neither has been described the relevance in virus evolution in an endemic state such as Oaxaca where the four serotypes of DENV are circulating. To study whether there are isolates from Oaxaca having recombination, we obtained the sequence of 6 different isolates of DENV-2 Asian/American genotype from the outbreak 2005-6, one clone of the C(91)-prM-E-NS1(2400) structural genes, and 10 clones of the E gene from the isolate MEX_OAX_1656_05. Evidence of recombination was found by using different methods along with two softwares: RDP3 and GARD. The Oaxaca MEX_OAX_1656_05 and MEX_OAX_1038_05 isolates sequenced in this study were recombinant viruses that incorporate the genome sequence from the Cosmopolitan genotype. Furthermore, the clone of the E gene namely MEX_OAX_165607_05 from this study was also recombinant, incorporating genome sequence from the American genotype. This is the first report of recombination in DENV-2 in Mexico. Given such a recombinant activity new genomic combinations were produced, this could play a significant role in the DENV evolution and must be considered as a potentially important mechanism generating genetic variation in this virus with serious implications for the vaccines and drugs formulation as occurs for other

  15. Multiple recombinants in two dengue virus, serotype-2 isolates from patients from Oaxaca, Mexico

    Directory of Open Access Journals (Sweden)

    Cisneros Alejandro

    2009-12-01

    Full Text Available Abstract Background Dengue (DEN is a serious cause of mortality and morbidity in the world including Mexico, where the infection is endemic. One of the states with the highest rate of dengue cases is Oaxaca. The cause of DEN is a positive-sense RNA virus, the dengue virus (DENV that evolves rapidly increasing its variability due to the absence of a repair mechanism that leads to approximately one mutational event per genome replication; which results in enhancement of viral adaptation, including the escape from host immune responses. Additionally, recombination may play a role in driving the evolution of DENV, which may potentially affect virulence and cause host tropism changes. Recombination in DENV has not been described in Mexican strains, neither has been described the relevance in virus evolution in an endemic state such as Oaxaca where the four serotypes of DENV are circulating. Results To study whether there are isolates from Oaxaca having recombination, we obtained the sequence of 6 different isolates of DENV-2 Asian/American genotype from the outbreak 2005-6, one clone of the C(91-prM-E-NS1(2400 structural genes, and 10 clones of the E gene from the isolate MEX_OAX_1656_05. Evidence of recombination was found by using different methods along with two softwares: RDP3 and GARD. The Oaxaca MEX_OAX_1656_05 and MEX_OAX_1038_05 isolates sequenced in this study were recombinant viruses that incorporate the genome sequence from the Cosmopolitan genotype. Furthermore, the clone of the E gene namely MEX_OAX_165607_05 from this study was also recombinant, incorporating genome sequence from the American genotype. Conclusions This is the first report of recombination in DENV-2 in Mexico. Given such a recombinant activity new genomic combinations were produced, this could play a significant role in the DENV evolution and must be considered as a potentially important mechanism generating genetic variation in this virus with serious implications for

  16. Anti-Dengue Virus Constituents from Formosan Zoanthid Palythoa mutuki

    Science.gov (United States)

    Lee, Jin-Ching; Chang, Fang-Rong; Chen, Shu-Rong; Wu, Yu-Hsuan; Hu, Hao-Chun; Wu, Yang-Chang; Backlund, Anders; Cheng, Yuan-Bin

    2016-01-01

    A new marine ecdysteroid with an α-hydroxy group attaching at C-4 instead of attaching at C-2 and C-3, named palythone A (1), together with eight known compounds (2–9) were obtained from the ethanolic extract of the Formosan zoanthid Palythoa mutuki. The structures of those compounds were mainly determined by NMR spectroscopic data analyses. The absolute configuration of 1 was further confirmed by comparing experimental and calculated circular dichroism (CD) spectra. Anti-dengue virus 2 activity and cytotoxicity of five isolated compounds were evaluated using virus infectious system and [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assays, respectively. As a result, peridinin (9) exhibited strong antiviral activity (IC50 = 4.50 ± 0.46 μg/mL), which is better than that of the positive control, 2′CMC. It is the first carotene-like substance possessing anti-dengue virus activity. In addition, the structural diversity and bioactivity of the isolates were compared by using a ChemGPS–NP computational analysis. The ChemGPS–NP data suggested natural products with anti-dengue virus activity locate closely in the chemical space. PMID:27517937

  17. Susceptibility and response of human blood monocyte subsets to primary dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Kok Loon Wong

    Full Text Available Human blood monocytes play a central role in dengue infections and form the majority of virus infected cells in the blood. Human blood monocytes are heterogeneous and divided into CD16(- and CD16(+ subsets. Monocyte subsets play distinct roles during disease, but it is not currently known if monocyte subsets differentially contribute to dengue protection and pathogenesis. Here, we compared the susceptibility and response of the human CD16(- and CD16(+ blood monocyte subsets to primary dengue virus in vitro. We found that both monocyte subsets were equally susceptible to dengue virus (DENV2 NGC, and capable of supporting the initial production of new infective virus particles. Both monocyte subsets produced anti-viral factors, including IFN-α, CXCL10 and TRAIL. However, CD16(+ monocytes were the major producers of inflammatory cytokines and chemokines in response to dengue virus, including IL-1β, TNF-α, IL-6, CCL2, 3 and 4. The susceptibility of both monocyte subsets to infection was increased after IL-4 treatment, but this increase was more profound for the CD16(+ monocyte subset, particularly at early time points after virus exposure. These findings reveal the differential role that monocyte subsets might play during dengue disease.

  18. Clinical and laboratory profile of different dengue sub types in dengue virus infection

    OpenAIRE

    Niloy Gan Chaudhuri; S. Vithyavathi; K. Sankar

    2016-01-01

    Background: Dengue infection, an arthropod-borne viral hemorrhagic fever is caused by Arbovirus of Flavivirus genus and transmitted by Aedes aegypti, Aedes albopictus. Liver involvement in dengue fever is manifested by the elevation of transaminases representing reactive hepatitis, due to direct attack of virus itself or the use of hepatotoxic drugs. The objective of the study was to investigate clinical and laboratory profile of different dengue sub type's patients admitted for dengue fever....

  19. The Aedes aegypti toll pathway controls dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Zhiyong Xi

    2008-07-01

    Full Text Available Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference-based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway-associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway.

  20. Nine year trends of dengue virus infection in Mumbai, Western India

    OpenAIRE

    Shastri, Jayanthi; Williamson, Manita; Vaidya, Nilima; Agrawal, Sachee; Shrivastav, Om

    2017-01-01

    Introduction: Dengue virus (DENV) causes a wide range of diseases in humans, from acute febrile illness Dengue fever (DF) to life-threatening Dengue hemorrhagic fever (DHF) or Dengue shock syndrome (DSS). Factors believed to be responsible for spread of Dengue virus infection include explosive population growth, unplanned urban overpopulation with inadequate public health systems, poor standing water and vector control, climate changes and increased international recreational, business, milit...

  1. Gamma interferon augments Fc gamma receptor-mediated dengue virus infection of human monocytic cells.

    OpenAIRE

    Kontny, U; Kurane, I; Ennis, F A

    1988-01-01

    It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexe...

  2. Pathogenesis of Dengue Vaccine Viruses in Mosquitoes.

    Science.gov (United States)

    1980-01-01

    1973). Sabin (1948) showed that attenuated dpngiie, passed through mosquitoes, did not revert to pathogenicity frnr man. -7- Thus even if the vaccine ...AD-A138 518 PATHOGENESIS OF DENGUE VACCINE YIRUSES IN MOSQUITOES 1/ (U) YALE UNIV NEW HAVEN CONN SCHOOL OF MEDICINE B J BEATY ET AL. 9i JAN 80 DRND7...34 ’ UNCLASSIFIED 0{) AD 0Pathogenesis of dengue vaccine viruses in mosquitoes -First Annual Report Barry I. Beaty, Ph.D. Thomas H. G

  3. Laboratory and Molecular Characterization of Dengue Viruses in a 2014 Outbreak in Guangfo Region, Southern China.

    Science.gov (United States)

    Luo, Zhao-Fan; Hu, Bo; Zhang, Feng-Yi; Lin, Xiang-Hua; Xie, Xiao-Ying; Pan, Kun-Yi; Li, Hong-Yu; Ren, Rui-Wen; Zhao, Wen-Zhong

    2017-09-25

    Non-specific symptoms and low viremia levels make early diagnosis of dengue virus (DENV) infection challenging. This study aimed to i) identify laboratory markers that can be used to predict a DENV-positive diagnosis and ii) perform a molecular characterization of DENVs from the 2014 Guangdong epidemic. This retrospective study analyzed 1,044 patients from the Guangdong epidemic who were clinically suspected cases of dengue. Viral RNA was detected by real-time RT-PCR, and viral-specific NS1 antigen was detected using enzyme-linked immuno sorbent assay. A molecular phylogenetic analysis was performed for the with the DENV C-prM gene junction. Patients with dengue infection had leukopenia (2.8 × 10 9 /L), thrombocytopenia (109.0 × 10 9 /L), elevated aspartate aminotransferase (56.0 IU/L) and alanine aminotransferase (43.5 IU/L), and prolonged activated partial thromboplastin time (APTT, 33.5 s) (all P < 0.001) compared to patients without dengue. The positive predictive value of leukopenia and thrombocytopenia for DENV infection were 96.9% and 93.0%, respectively. Leukopenia, thrombocytopenia, elevated aminotransferases, and prolonged APTT were useful predictive markers for an early diagnosis of DENV infection. Phylogenetic analysis indicated that the DENVs from the 2014 epidemic were closely related to a 2010 New Delhi strain and a 2013 Guangzhou strain. The 2014 epidemic consisted of co-circulating DENV-1 genotypes I and V from multiple origins. Efficient dengue surveillance can facilitate rapid response to future outbreaks.

  4. Competitive inhibitor of cellular alpha-glucosidases protects mice from lethal dengue virus infection

    OpenAIRE

    Chang, Jinhong; Schul, Wouter; Yip, Andy; Xu, Xiaodong; Guo, Ju-Tao; Block, Timothy M.

    2011-01-01

    Dengue virus infection causes diseases in people, ranging from the acute febrile illness Dengue fever, to life-threatening Dengue Hemorrhagic Fever/Dengue Shock Syndrome. We previously reported that a host cellular α-glucosidases I and II inhibitor, imino sugar CM-10-18, potently inhibited dengue virus replication in cultured cells, and significantly reduced viremia in dengue virus infected AG129 mice. In this report we show that CM-10-18 also significantly protects mice from death and/or dis...

  5. Dengue virus exposure among blood donors in Ghana | Narkwa ...

    African Journals Online (AJOL)

    Dengue is an urban arbovirus whose aetiologic agent is the flavivirus with four distinct antigen serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) that is transmitted to humans through the bite of the mosquito Aedes aegypti. Ghana is endemic for Aedes aegypti mosquitoes and probably dengue viruses. Due to limited data ...

  6. Design and synthesis of multiple antigenic peptides and their application for dengue diagnosis.

    Science.gov (United States)

    Rai, Reeta; Dubey, Sameer; Santosh, K V; Biswas, Ashutosh; Mehrotra, Vinit; Rao, D N

    2017-09-01

    Major difficulty in development of dengue diagnostics is availability of suitable antigens. To overcome this, we made an attempt to develop a peptide based diagnosis which offers significant advantage over other methods. With the help of in silico methods, two epitopes were selected from envelope protein and three from NS1 protein of dengue virus. These were synthesized in combination as three multiple antigenic peptides (MAPs). We have tested 157 dengue positive sera confirmed for NS1 antigen. MAP1 showed 96.81% sera positive for IgM and 68.15% positive for IgG. MAP2 detected 94.90% IgM and 59.23% IgG positive sera. MAP3 also detected 96.17% IgM and 59.87% IgG positive sera. To the best of our knowledge this is the first study describing the use of synthetic multiple antigenic peptides for the diagnosis of dengue infection. This study describes MAPs as a promising tool for the use in serodiagnosis of dengue. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  7. The seroprevalence and seroincidence of dengue virus infection in western Kenya.

    Science.gov (United States)

    Blaylock, Jason M; Maranich, Ashley; Bauer, Kristen; Nyakoe, Nancy; Waitumbi, John; Martinez, Luis J; Lynch, Julia

    2011-09-01

    Epidemics of dengue fever have been documented throughout the African continent over the past several decades, however little is known about the prevalence or incidence of dengue virus infection in the absence of an outbreak. No studies have analyzed the prevalence of dengue infection in western Kenya to date. This study describes the seroincidence and seroprevalence of dengue infection in western Kenya. Banked sera obtained from 354 healthy, afebrile children ages 12-47 months from Kisumu District, Kenya, were analyzed for antibodies to dengue virus using an IgG indirect ELISA. We found a seroprevalence of 1.1% (4 of 354 samples) and incidence of 8.5 seroconversions per 1000 persons per year in this study population. This appears to be similar to that previously reported in coastal regions of the country outside of known epidemic periods. Since there has never been a reported dengue epidemic in western Kenya, continued investigation and evaluation in a patient population presenting with fever is necessary to further confirm this finding. Published by Elsevier Ltd.

  8. Analysis of hepatitis C virus core/NS5A protein co-localization using novel cell culture systems expressing core-NS2 and NS5A of genotypes 1-7

    DEFF Research Database (Denmark)

    Galli, Andrea; Scheel, Troels K H; Prentoe, Jannick C

    2013-01-01

    Hepatitis C virus (HCV) is an important human pathogen infecting hepatocytes. With the advent of infectious cell culture systems, the HCV particle assembly and release processes are finally being uncovered. The HCV core and NS5A proteins co-localize on cytoplasmic lipid droplets (c......LDs) or on the endoplasmic reticulum (ER) at different stages of particle assembly. Current knowledge on assembly and release is primarily based on studies in genotype 2a cell culture systems; however, given the high genetic heterogeneity of HCV, variations might exist among genotypes. Here, we developed novel HCV strain...... JFH1-based recombinants expressing core-NS2 and NS5A from genotypes 1-7, and analysed core and NS5A co-localization in infected cells. Huh7.5 cells were transfected with RNA of core-NS2/NS5A recombinants and putative adaptive mutations were analysed by reverse genetics. Adapted core-NS2/NS5A...

  9. Diversity of dengue virus-3 genotype III in Jeddah, Saudi Arabia.

    Science.gov (United States)

    Hashem, Anwar M; Sohrab, Sayed S; El-Kafrawy, Sherif A; Abd-Alla, Adly M M; El-Ela, Saeid Abo; Abujamel, Turki S; Hassan, Ahmed M; Farraj, Suha A; Othman, Noura A; Charrel, Remi N; Azhar, Esam I

    2018-07-01

    Dengue is the most important arboviral disease in tropical and subtropical countries. Dispersal of the vector and an increase in migratory flow between countries have led to large epidemics and severe clinical outcomes. Over the past 20 years, dengue epidemics have become more wide-spread and frequent. Previous studies have shown that dengue is endemic in Jeddah, Makkah and Al-Madinah in western Saudi Arabia as well as in Jazan region in the southern part of the country. The four serotypes of dengue virus (DENV) have been reported from western Saudi Arabia. It has been suggested that pilgrims could play a significant and unique role in DENV-1 and DENV-2 introduction into Saudi Arabia, especially in the cities of Jeddah, Makkah and Al-Madinah during Hajj and Umrah seasons. However, only limited data on DENV-3 in Saudi Arabia are available. All available DENV-3 sequences published and unpublished from Saudi Arabia and other countries were retrieved from Genbank and gene sequence repository and phylogenetically analyzed to examine the diversity of DENV-3 into the city of Jeddah. Based on the analysis of the envelope gene and non-structural 1 (E/NS1) junction sequences, we show that there were at least four independent introductions of DENV-3, all from genotype III into Jeddah. The first introduction was most probably before 1997 as Saudi virus isolates from 1997 formed a cluster without any close relationship to other globally circulating isolates, suggesting their local circulation from previous introduction events. Two introductions were most probably in 2004 with isolates closely-related to isolates from Africa and India (Asia), in addition to another introduction in 2014 with isolates clustering with those from Singapore (Asia). Our data shows that only genotype III isolates of DENV-3 are circulating in Jeddah and highlights the potential role of pilgrims in DENV-3 importation into western Saudi Arabia and subsequent exportation to their home countries during Hajj

  10. Hepatitis C virus expressing reporter tagged NS5A protein

    DEFF Research Database (Denmark)

    2014-01-01

    Hepatitis C reporter viruses containing Core through NS2 of prototype isolates of all major HCV genotypes and the remaining genes of isolate JFH1, by insertion of reporter genes in domain III of HCV NS5A were developed. A deletion upstream of the inserted reporter gene sequence conferred favorable...... growth kinetics in Huh7.5 cells to these viruses. These reporter viruses can be used for high throughput analysis of drug and vaccine candidates as well as patient samples. JFH1-based intergenotypic recombinants with genotype specific homotypic 5'UTR, or heterotypic 5'UTR (either of genotype 1a (strain H...

  11. Antiviral activity of four types of bioflavonoid against dengue virus type-2

    Directory of Open Access Journals (Sweden)

    Zandi Keivan

    2011-12-01

    Full Text Available Abstract Background Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2 in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA and quantitative RT-PCR. Selectivity Index value (SI was determined as the ratio of cytotoxic concentration 50 (CC50 to inhibitory concentration 50 (IC50 for each compound. Results The half maximal inhibitory concentration (IC50 of quercetin against dengue virus was 35.7 μg mL-1 when it was used after virus adsorption to the cells. The IC50 decreased to 28.9 μg mL-1 when the cells were treated continuously for 5 h before virus infection and up to 4 days post-infection. The SI values for quercetin were 7.07 and 8.74 μg mL-1, respectively, the highest compared to all bioflavonoids studied. Naringin only exhibited anti-adsorption effects against DENV-2 with IC50 = 168.2 μg mL-1 and its related SI was 1.3. Daidzein showed a weak anti-dengue activity with IC50 = 142.6 μg mL-1 when the DENV-2 infected cells were treated after virus adsorption. The SI value for this compound was 1.03. Hesperetin did not exhibit any antiviral activity against DENV-2. The findings obtained from Foci Forming Unit Reduction Assay (FFURA were corroborated by findings of the qRT-PCR assays. Quercetin and daidzein (50 μg mL-1 reduced DENV-2 RNA levels by 67% and 25%, respectively. There was no significant inhibition of DENV-2 RNA levels with naringin and hesperetin. Conclusion Results from the study suggest that only quercetin demonstrated significant anti-DENV-2 inhibitory activities. Other

  12. Dengue viruses – an overview

    Directory of Open Access Journals (Sweden)

    Anne Tuiskunen Bäck

    2013-08-01

    Full Text Available Dengue viruses (DENVs cause the most common arthropod-borne viral disease in man with 50–100 million infections per year. Because of the lack of a vaccine and antiviral drugs, the sole measure of control is limiting the Aedes mosquito vectors. DENV infection can be asymptomatic or a self-limited, acute febrile disease ranging in severity. The classical form of dengue fever (DF is characterized by high fever, headache, stomach ache, rash, myalgia, and arthralgia. Severe dengue, dengue hemorrhagic fever (DHF, and dengue shock syndrome (DSS are accompanied by thrombocytopenia, vascular leakage, and hypotension. DSS, which can be fatal, is characterized by systemic shock. Despite intensive research, the underlying mechanisms causing severe dengue is still not well understood partly due to the lack of appropriate animal models of infection and disease. However, even though it is clear that both viral and host factors play important roles in the course of infection, a fundamental knowledge gap still remains to be filled regarding host cell tropism, crucial host immune response mechanisms, and viral markers for virulence.

  13. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Sujuan Chen

    2017-06-01

    Full Text Available H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128 were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.

  14. Molecular characterisation of dengue virus type 1 reveals lineage replacement during circulation in Brazilian territory

    Directory of Open Access Journals (Sweden)

    Adriana Ribeiro Carneiro

    2012-09-01

    Full Text Available Dengue fever is the most important arbovirus infection found in tropical regions around the world. Dispersal of the vector and an increase in migratory flow between countries have led to large epidemics and severe clinical outcomes, such as dengue haemorrhagic fever and dengue shock syndrome. This study analysed the genetic variability of the dengue virus serotype 1 (DENV-1 in Brazil with regard to the full-length structural genes C/prM/M/E among 34 strains isolated during epidemics that occurred in the country between 1994-2011. Virus phylogeny and time of divergence were also evaluated with only the E gene of the strains isolated from 1994-2008. An analysis of amino acid differences between these strains and the French Guiana strain (FGA/89 revealed the presence of important nonsynonymous substitutions in the amino acid sequences, including residues E297 (Met→Thr and E338 (Ser→Leu. A phylogenetic analysis of E proteins comparing the studied isolates and other strains selected from the GenBank database showed that the Brazilian DENV-1 strains since 1982 belonged to genotype V. This analysis also showed that different introductions of strains from the 1990s represented lineage replacement, with the identification of three lineages that cluster all isolates from the Americas. An analysis of the divergence time of DENV-1 indicated that the lineage circulating in Brazil emerged from an ancestral lineage that originated approximately 44.35 years ago.

  15. Molecular characterisation of dengue virus type 1 reveals lineage replacement during circulation in Brazilian territory.

    Science.gov (United States)

    Carneiro, Adriana Ribeiro; Cruz, Ana Cecília Ribeiro; Vallinoto, Marcelo; Melo, Diego de Vasconcelos; Ramos, Rommel Thiago J; Medeiros, Daniele Barbosa Almeida; Silva, Eliana Vieira Pinto da; Vasconcelos, Pedro Fernando da Costa

    2012-09-01

    Dengue fever is the most important arbovirus infection found in tropical regions around the world. Dispersal of the vector and an increase in migratory flow between countries have led to large epidemics and severe clinical outcomes, such as dengue haemorrhagic fever and dengue shock syndrome. This study analysed the genetic variability of the dengue virus serotype 1 (DENV-1) in Brazil with regard to the full-length structural genes C/prM/M/E among 34 strains isolated during epidemics that occurred in the country between 1994-2011. Virus phylogeny and time of divergence were also evaluated with only the E gene of the strains isolated from 1994-2008. An analysis of amino acid differences between these strains and the French Guiana strain (FGA/89) revealed the presence of important nonsynonymous substitutions in the amino acid sequences, including residues E297 (Met→Thr) and E338 (Ser→Leu). A phylogenetic analysis of E proteins comparing the studied isolates and other strains selected from the GenBank database showed that the Brazilian DENV-1 strains since 1982 belonged to genotype V. This analysis also showed that different introductions of strains from the 1990s represented lineage replacement, with the identification of three lineages that cluster all isolates from the Americas. An analysis of the divergence time of DENV-1 indicated that the lineage circulating in Brazil emerged from an ancestral lineage that originated approximately 44.35 years ago.

  16. Virus del dengue: estructura y ciclo viral Dengue virus: structure and viral cycle

    Directory of Open Access Journals (Sweden)

    Myriam L Velandia

    2011-03-01

    Full Text Available El virus del dengue (DENV es el agente causal de la enfermedad conocida como dengue, que es la principal enfermedad viral transmitida por artrópodos en el mundo. El DENV es un flavivirus que ingresa por endocitosis y se replica en el citoplasma de la célula infectada, originando tres proteínas estructurales y siete proteínas no estructurales, sobre las cuales se conocen sólo algunas de sus funciones en la replicación viral o en la infección. El ciclo viral que ocurre en las células infectadas hasta ahora está comenzando a aclararse y su conocimiento permitirá en el futuro próximo diseñar racionalmente moléculas que lo intervengan y eviten la replicación del virus. Durante la infección, el individuo puede presentar fiebre indiferenciada o, en otros casos, puede presentar un proceso generalizado de activación de la respuesta inmunitaria innata y adquirida, lo cual provoca la liberación de factores inflamatorios solubles que alteran la fisiología de los tejidos, principalmente el endotelio, conllevando al desarrollo de manifestaciones clínicas graves. Aunque se ha identificado un gran número de factores del individuo asociados al desarrollo de la enfermedad por DENV, queda por identificar el papel de las diferentes proteínas virales en la patogenia de la enfermedad. En la presente revisión, se presenta una breve actualización sobre la estructura y biología del DENV, de su ciclo viral intracelular y, finalmente, se introducen algunos conceptos sobre la inmunopatogenia de la enfermedad producida por este agente.Dengue virus (DENV is responsible for the clinical entity known as dengue that is a great concern for economy and public health of tropical countries. This flavivirus is a single strand RNA virus that after their translation and replication in host cells produces three structural and seven non-structural proteins with specific function in replication or cell binding process that we will describe here. Intracellular

  17. In Vitro Study of Eight Indonesian Natural Extracts as Antiviral Against Dengue Virus

    Directory of Open Access Journals (Sweden)

    Leli Saptawati

    2017-07-01

    Full Text Available 800x600 Background: Dengue hemorrhagic fever (DHF caused by a dengue viruses is still a major problem in tropical countries, including Indonesia. World Health Organization data showed that over 40% of world population are at risk of DHF.1In 2014 there were 71.668 of DHF cases in 34 provinces with 641 death.2 In Central Java in 2013, the incidence rate and fatality rate of DHF was 45.52 in 100.000 populations and 1.21% respectively.3 Until nowadays, there is no vaccine or effective therapy is available as yet.4 Thus research on discovering specific antiviral against dengue is needed. Indonesia is rich in indigenous herbal plants, which may has potential antiviral activity, such as Psidium guajava (Jambu biji, Euphorbia hirta (Patikn kerbau, Piper bettle L (Sirih, Carica papaya (Pepaya, Curcuma longa L(Kunyit/turmeric, Phyllanthus niruri L (meniran, Andrographis paniculata (Sambiloto, Cymbopogon citrates (Serai. Previous studies show that these plants have antiviral and antibacterial properties.5However, there is only limited study of these plants against dengue virus . Objective: This study aimed to know whether these plants have potential activity against dengue virus in vitro. Method: Leave extracts of eight indigenous herbal plants as mention before were originated from Solo, Central Java, the crude extracts were tested in vitro against dengue virus serotype 2 (DENV-2 strain NGC using Huh7it-1 cell line. Those crude extracts were screened for antiviral activity using doses of 20mg/ml. Candidates that showed inhibition activity were further tested in various doses to determine IC50 and CC50. Result: From eight leave extracts tested, one of them i.e Carica papaya (pepaya inhibited virus replication up to 89,5%. Dose dependent assay with C.papaya resulted in IC50, CC50 and selectivity index 6,57 μg/mL, 244,76 μg/mL and 37, 25 μg/mL respectively. Conclusion: C.papaya has potential antiviral activity against dengue virus in vitro. Further study

  18. Host cell responses to dengue virus infection

    NARCIS (Netherlands)

    Diosa Toro, Mayra

    2017-01-01

    Dengue (ook wel knokkelkoorts) is de meest voorkomende virale infectieziekte dat wordt overgedragen door muggen in de wereld met naar schatting 390 miljoen infecties per jaar. Ondanks de grote klinische impact en economische schade van het dengue virus is er nog steeds geen behandeling beschikbaar.

  19. Retrospective analysis of dengue specific IgM reactive serum samples

    Directory of Open Access Journals (Sweden)

    Nemai Bhattacharya

    2013-04-01

    Full Text Available Objective: To conduct a retrospective analysis of dengue cases in Kolkata, on the basis of presence of anti-dengue IgM in their sera and presence or absence of anti-dengue IgG and dengue specific Non structural 1 (NS1 antigen in each of the serum sample. Methods: Sample was tested quantitatively employing ELISA technique, using Biorad test kits, with a view to get a more comprehensive picture of dengue in an urban endemic area and also to evaluate individual cases. Results: This reconstructed study revealed that of those 91 dengue cases, 70.3% (64 and 29.7% (27 were suffering from secondary and primary dengue respectively, showing that number of secondary dengue cases were much more than that of primary dengue cases with a possibility of emergence of DHF. A small proportion of cases 18.7% (17 were reactive for NS1. The duration of fever in NS1 antigen positive cases varied between 5 and 7 days. Of 17 NS1 reactive cases, 10 (10.9% and 7 (7.7% were suffering from secondary and primary dengue respectively. Conclusions: Early detection of primary and secondary dengue cases would be facilitated by utilizing all three parameters (NS1 antigen, anti-dengue IgM and IgG helping to evaluate, monitor and treat a dengue case effectively.

  20. Complement-mediated neutralization of dengue virus requires mannose-binding lectin

    DEFF Research Database (Denmark)

    Avirutnan, Panisadee; Hauhart, Richard E; Marovich, Mary A

    2011-01-01

    -dependent activation of the complement cascade neutralized insect cell-derived West Nile virus (WNV) in cell culture and restricted pathogenesis in mice. Here, we investigated the antiviral activity of MBL in infection by dengue virus (DENV), a related flavivirus. Using a panel of naïve sera from mouse strains...... with lower levels. Our studies suggest that allelic variation of MBL in humans may impact complement-dependent control of DENV pathogenesis. IMPORTANCE Dengue virus (DENV) is a mosquito-transmitted virus that causes a spectrum of clinical disease in humans ranging from subclinical infection to dengue...... hemorrhagic fever and dengue shock syndrome. Four serotypes of DENV exist, and severe illness is usually associated with secondary infection by a different serotype. Here, we show that mannose-binding lectin (MBL), a pattern recognition molecule that initiates the lectin pathway of complement activation...

  1. NNDSS - Table II. Cryptosporidiosis to Dengue virus infection

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Cryptosporidiosis to Dengue virus infection - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during...

  2. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus.

    Science.gov (United States)

    Mutso, Margit; Morro, Ainhoa Moliner; Smedberg, Cecilia; Kasvandik, Sergo; Aquilimeba, Muriel; Teppor, Mona; Tarve, Liisi; Lulla, Aleksei; Lulla, Valeria; Saul, Sirle; Thaa, Bastian; McInerney, Gerald M; Merits, Andres; Varjak, Margus

    2018-04-27

    Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  3. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Zhang Quanfu

    2011-06-01

    Full Text Available Abstract Background The incidence of dengue, an infectious disease caused by dengue virus (DENV, has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated. Results By optimizing the expression plasmids, recombinant VLPs of four antigenically different DENV serotypes DENV1-4 were successfully produced in 293T cells. The vaccination effect of dengue VLPs in mice showed that monovalent VLPs of each serotype stimulated specific IgG responses and potent neutralizing antibodies against homotypic virus. Tetravalent VLPs efficiently enhanced specific IgG and neutralizing antibodies against all four serotypes of DENV. Moreover, vaccination with monovalent or tetravalent VLPs resulted in the induction of specific cytotoxic T cell responses. Conclusions Mammalian cell expressed dengue VLPs are capable to induce VLP-specific humoral and cellular immune responses in mice, and being a promising subunit vaccine candidate for prevention of dengue virus infection.

  4. Clinical and virological study of dengue cases and the members of their households: the multinational DENFRAME Project.

    Directory of Open Access Journals (Sweden)

    Philippe Dussart

    2012-01-01

    Full Text Available BACKGROUND: Dengue has emerged as the most important vector-borne viral disease in tropical areas. Evaluations of the burden and severity of dengue disease have been hindered by the frequent lack of laboratory confirmation and strong selection bias toward more severe cases. METHODOLOGY: A multinational, prospective clinical study was carried out in South-East Asia (SEA and Latin America (LA, to ascertain the proportion of inapparent dengue infections in households of febrile dengue cases, and to compare clinical data and biological markers from subjects with various dengue disease patterns. Dengue infection was laboratory-confirmed during the acute phase, by virus isolation and detection of the genome. The four participating reference laboratories used standardized methods. PRINCIPAL FINDINGS: Among 215 febrile dengue subjects-114 in SEA and 101 in LA-28 (13.0% were diagnosed with severe dengue (from SEA only using the WHO definition. Household investigations were carried out for 177 febrile subjects. Among household members at the time of the first home visit, 39 acute dengue infections were detected of which 29 were inapparent. A further 62 dengue cases were classified at early convalescent phase. Therefore, 101 dengue infections were found among the 408 household members. Adding these together with the 177 Dengue Index Cases, the overall proportion of dengue infections among the study participants was estimated at 47.5% (278/585; 95% CI 43.5-51.6. Lymphocyte counts and detection of the NS1 antigen differed significantly between inapparent and symptomatic dengue subjects; among inapparent cases lymphocyte counts were normal and only 20% were positive for NS1 antigen. Primary dengue infection and a specific dengue virus serotype were not associated with symptomatic dengue infection. CONCLUSION: Household investigation demonstrated a high proportion of household members positive for dengue infection, including a number of inapparent cases, the

  5. Infection of Mosquito Cells (C6/36) by Dengue-2 Virus Interferes with Subsequent Infection by Yellow Fever Virus.

    Science.gov (United States)

    Abrao, Emiliana Pereira; da Fonseca, Benedito Antônio Lopes

    2016-02-01

    Dengue is one of the most important diseases caused by arboviruses in the world. Yellow fever is another arthropod-borne disease of great importance to public health that is endemic to tropical regions of Africa and the Americas. Both yellow fever and dengue viruses are flaviviruses transmitted by Aedes aegypti mosquitoes, and then, it is reasonable to consider that in a given moment, mosquito cells could be coinfected by both viruses. Therefore, we decided to evaluate if sequential infections of dengue and yellow fever viruses (and vice-versa) in mosquito cells could affect the virus replication patterns. Using immunofluorescence and real-time PCR-based replication assays in Aedes albopictus C6/36 cells with single or sequential infections with both viruses, we demonstrated the occurrence of viral interference, also called superinfection exclusion, between these two viruses. Our results show that this interference pattern is particularly evident when cells were first infected with dengue virus and subsequently with yellow fever virus (YFV). Reduction in dengue virus replication, although to a lower extent, was also observed when C6/36 cells were initially infected with YFV followed by dengue virus infection. Although the importance that these findings have on nature is unknown, this study provides evidence, at the cellular level, of the occurrence of replication interference between dengue and yellow fever viruses and raises the question if superinfection exclusion could be a possible explanation, at least partially, for the reported lack of urban yellow fever occurrence in regions where a high level of dengue transmission occurs.

  6. Rapid Identification of Dengue Virus Serotypes Using Monoclonal Antibodies in an Indirect Immunofluorescence Test.

    Science.gov (United States)

    1982-06-18

    encephalitis(TBH-28), West Nile(E-101), Yellow fever(French neurotropic and 17D strains), and Zika . Two Sandfly Fever viruses (213452 and Candiru) were...were provided as first passage isolates ( Aedes pseudoscutellaris cells, AP-61) or human serum from recent dengue virus patients. African isolates... viruses of the Phlebovirus genus (Table 1). Several monoclonal antibody preparations reacted solely with dengue virus serotypes. Two preparations (13E7 and

  7. Co-circulation of Dengue and Chikungunya Viruses, Al Hudaydah, Yemen, 2012.

    Science.gov (United States)

    Rezza, Giovanni; El-Sawaf, Gamal; Faggioni, Giovanni; Vescio, Fenicia; Al Ameri, Ranya; De Santis, Riccardo; Helaly, Ghada; Pomponi, Alice; Metwally, Dalia; Fantini, Massimo; Qadi, Hussein; Ciccozzi, Massimo; Lista, Florigio

    2014-08-01

    We investigated 400 cases of dengue-like illness in persons hospitalized during an outbreak in Al Hudaydah, Yemen, in 2012. Overall, 116 dengue and 49 chikungunya cases were diagnosed. Dengue virus type 2 was the predominant serotype. The co-circulation of these viruses indicates that mosquitoborne infections represent a public health threat in Yemen.

  8. Drug repurposing of minocycline against dengue virus infection.

    Science.gov (United States)

    Leela, Shilpa Lekshmi; Srisawat, Chatchawan; Sreekanth, Gopinathan Pillai; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai; Limjindaporn, Thawornchai

    2016-09-09

    Dengue virus infection is one of the most common arthropod-borne viral diseases. A complex interplay between host and viral factors contributes to the severity of infection. The antiviral effects of three antibiotics, lomefloxacin, netilmicin, and minocycline, were examined in this study, and minocycline was found to be a promising drug. This antiviral effect was confirmed in all four serotypes of the virus. The effects of minocycline at various stages of the viral life cycle, such as during viral RNA synthesis, intracellular envelope protein expression, and the production of infectious virions, were examined and found to be significantly reduced by minocycline treatment. Minocycline also modulated host factors, including the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2). The transcription of antiviral genes, including 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 3 (OAS3), and interferon α (IFNA), was upregulated by minocycline treatment. Therefore, the antiviral activity of minocycline may have a potential clinical use against Dengue virus infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens.

    Science.gov (United States)

    Vergara-Alert, Júlia; Busquets, Núria; Ballester, Maria; Chaves, Aida J; Rivas, Raquel; Dolz, Roser; Wang, Zhongfang; Pleschka, Stephan; Majó, Natàlia; Rodríguez, Fernando; Darji, Ayub

    2014-01-25

    Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5-types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7-virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.

  10. Identification and Biochemical Characterization of Halisulfate 3 and Suvanine as Novel Inhibitors of Hepatitis C Virus NS3 Helicase from a Marine Sponge

    Directory of Open Access Journals (Sweden)

    Atsushi Furuta

    2014-01-01

    Full Text Available Hepatitis C virus (HCV is an important etiological agent that is responsible for the development of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV nonstructural protein 3 (NS3 helicase is a possible target for novel drug development due to its essential role in viral replication. In this study, we identified halisulfate 3 (hal3 and suvanine as novel NS3 helicase inhibitors, with IC50 values of 4 and 3 µM, respectively, from a marine sponge by screening extracts of marine organisms. Both hal3 and suvanine inhibited the ATPase, RNA binding, and serine protease activities of NS3 helicase with IC50 values of 8, 8, and 14 µM, and 7, 3, and 34 µM, respectively. However, the dengue virus (DENV NS3 helicase, which shares a catalytic core (consisting mainly of ATPase and RNA binding sites with HCV NS3 helicase, was not inhibited by hal3 and suvanine, even at concentrations of 100 µM. Therefore, we conclude that hal3 and suvanine specifically inhibit HCV NS3 helicase via an interaction with an allosteric site in NS3 rather than binding to the catalytic core. This led to the inhibition of all NS3 activities, presumably by inducing conformational changes.

  11. Complete genome sequencing and phylogenetic analysis of dengue type 1 virus isolated from Jeddah, Saudi Arabia.

    Science.gov (United States)

    Azhar, Esam I; Hashem, Anwar M; El-Kafrawy, Sherif A; Abol-Ela, Said; Abd-Alla, Adly M M; Sohrab, Sayed Sartaj; Farraj, Suha A; Othman, Norah A; Ben-Helaby, Huda G; Ashshi, Ahmed; Madani, Tariq A; Jamjoom, Ghazi

    2015-01-16

    Dengue viruses (DENVs) are mosquito-borne viruses which can cause disease ranging from mild fever to severe dengue infection. These viruses are endemic in several tropical and subtropical regions. Multiple outbreaks of DENV serotypes 1, 2 and 3 (DENV-1, DENV-2 and DENV-3) have been reported from the western region in Saudi Arabia since 1994. Strains from at least two genotypes of DENV-1 (Asia and America/Africa genotypes) have been circulating in western Saudi Arabia until 2006. However, all previous studies reported from Saudi Arabia were based on partial sequencing data of the envelope (E) gene without any reports of full genome sequences for any DENV serotypes circulating in Saudi Arabia. Here, we report the isolation and the first complete genome sequence of a DENV-1 strain (DENV-1-Jeddah-1-2011) isolated from a patient from Jeddah, Saudi Arabia in 2011. Whole genome sequence alignment and phylogenetic analysis showed high similarity between DENV-1-Jeddah-1-2011 strain and D1/H/IMTSSA/98/606 isolate (Asian genotype) reported from Djibouti in 1998. Further analysis of the full envelope gene revealed a close relationship between DENV-1-Jeddah-1-2011 strain and isolates reported between 2004-2006 from Jeddah as well as recent isolates from Somalia, suggesting the widespread of the Asian genotype in this region. These data suggest that strains belonging to the Asian genotype might have been introduced into Saudi Arabia long before 2004 most probably by African pilgrims and continued to circulate in western Saudi Arabia at least until 2011. Most importantly, these results indicate that pilgrims from dengue endemic regions can play an important role in the spread of new DENVs in Saudi Arabia and the rest of the world. Therefore, availability of complete genome sequences would serve as a reference for future epidemiological studies of DENV-1 viruses.

  12. Mathematical analysis of dengue virus antibody dynamics

    Science.gov (United States)

    Perera, Sulanie; Perera, SSN

    2018-03-01

    Dengue is a mosquito borne viral disease causing over 390 million infections worldwide per annum. Even though information on how infection is controlled and eradicated from the body is lacking, antibodies are thought to play a major role in clearing the virus. In this paper, a non-linear conceptual dynamical model with humoral immune response and absorption effect has been proposed for primary dengue infection. We have included the absorption of pathogens into uninfected cells since this effect causes the virus density in the blood to decrease. The time delay that arises in the production of antibodies was accounted and is introduced through a continuous function. The basic reproduction number R0 is computed and a detailed stability analysis is done. Three equilibrium states, namely the infection free equilibrium, no immune equilibrium and the endemic equilibrium were identified and the existence and the stability conditions of these steady states were obtained. Numerical simulations proved the results that were obtained. By establishing the characteristic equation of the model at infection free equilibrium, it was observed that the infection free equilibrium is locally asymptotically stable if R0 1. Stability regions are identified for infection free equilibrium state with respect to the external variables and it is observed as the virus burst rate increases, the stability regions would decrease. These results implied that for higher virus burst rates, other conditions in the body must be strong enough to eliminate the disease completely from the host. The effect of time delay of antibody production on virus dynamics is discussed. It was seen that as the time delay in production of antibodies increases, the time for viral decline also increased. Also it was observed that the virus count goes to negligible levels within 7 - 14 days after the onset of symptoms as seen in dengue infections.

  13. Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes.

    Science.gov (United States)

    Lecouturier, Valerie; Berry, Catherine; Saulnier, Aure; Naville, Sophie; Manin, Catherine; Girerd-Chambaz, Yves; Crowe, James E; Jackson, Nicholas; Guy, Bruno

    2018-04-26

    The recombinant yellow fever-17D-dengue virus, live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in several dengue-endemic countries. Although the vaccine provides protection against dengue, the level of protection differs by serotype and warrants further investigation. We characterized the antigenic properties of each vaccine virus serotype using highly neutralizing human monoclonal antibodies (hmAbs) that bind quaternary structure-dependent epitopes. Specifically, we monitored the binding of dengue virus-1 (DENV-1; 1F4), DENV-2 (2D22) or DENV-3 (5J7) serotype-specific or DENV-1-4 cross-reactive (1C19) hmAbs to the four chimeric yellow fever-dengue vaccine viruses (CYD-1-4) included in phase III vaccine formulations using a range of biochemical and functional assays (dot blot, ELISA, surface plasmon resonance and plaque reduction neutralization assays). In addition, we used the "classic" live, attenuated DENV-2 vaccine serotype, immature CYD-2 viruses and DENV-2 virus-like particles as control antigens for anti-serotype-2 reactivity. The CYD vaccine serotypes were recognized by each hmAbs with the expected specificity, moreover, surface plasmon resonance indicated a high functional affinity interaction with the CYD serotypes. In addition, the hmAbs provided similar protection against CYD and wild-type dengue viruses in the in vitro neutralization assay. Overall, these findings demonstrate that the four CYD viruses used in clinical trials display key conformational and functional epitopes targeted by serotype-specific and/or cross-reactive neutralizing human antibodies. More specifically, we showed that CYD-2 displays serotype- specific epitopes present only on the mature virus. This indicates that the CYD-TDV has the ability to elicit antibody specificities which are similar to those induced by the wild type DENV. Future investigations will be needed to address the nature of CYD-TDV-induced responses after vaccine administration, and how these

  14. Infection of Common Marmosets with GB Virus B Chimeric Virus Encoding the Major Nonstructural Proteins NS2 to NS4A of Hepatitis C Virus.

    Science.gov (United States)

    Zhu, Shaomei; Li, Tingting; Liu, Bochao; Xu, Yuxia; Sun, Yachun; Wang, Yilin; Wang, Yuanzhan; Shuai, Lifang; Chen, Zixuan; Allain, Jean-Pierre; Li, Chengyao

    2016-09-15

    A lack of immunocompetent-small-primate models has been an obstacle for developing hepatitis C virus (HCV) vaccines and affordable antiviral drugs. In this study, HCV/GB virus B (GBV-B) chimeric virus carrying the major nonstructural proteins NS2 to NS4A (HCV NS2 to -4A chimera) was produced and used to infect common marmosets, since HCV NS2 to NS4A proteins are critical proteases and major antigens. Seven marmosets were inoculated intrahepatically with HCV NS2 to -4A chimera RNA for primary infection or intravenously injected with chimera-containing serum for passage infection. Three animals used as controls were injected with phosphate-buffered saline (PBS) or GBV-B, respectively. Six of seven HCV NS2 to -4A chimera-infected marmosets exhibited consistent viremia and one showed transient viremia during the course of follow-up detection. All six infected animals with persistent circulating viremia presented characteristics typical of viral hepatitis, including viral RNA and proteins in hepatocytes and histopathological changes in liver tissue. Viremia was consistently detected for 5 to 54 weeks of follow-up. FK506 immunosuppression facilitated the establishment of persistent chimera infection in marmosets. An animal with chimera infection spontaneously cleared the virus in blood 7 weeks following the first inoculation, but viral-RNA persistence, low-level viral protein, and mild necroinflammation remained in liver tissue. The specific antibody and T-cell response to HCV NS3 in this viremia-resolved marmoset was boosted by rechallenging, but no viremia was detected during 57 weeks of follow-up. The chimera-infected marmosets described can be used as a suitable small-primate animal model for studying novel antiviral drugs and T-cell-based vaccines against HCV infection. HCV infection causes approximately 70% of chronic hepatitis and is frequently associated with primary liver cancer globally. Chimpanzees have been used as a reliable primate model for HCV infection

  15. Antiviral Activity of Novel Quinoline Derivatives against Dengue Virus Serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina de la Guardia

    2018-03-01

    Full Text Available Dengue virus causes dengue fever, a debilitating disease with an increasing incidence in many tropical and subtropical territories. So far, there are no effective antivirals licensed to treat this virus. Here we describe the synthesis and antiviral activity evaluation of two compounds based on the quinoline scaffold, which has shown potential for the development of molecules with various biological activities. Two of the tested compounds showed dose-dependent inhibition of dengue virus serotype 2 in the low and sub micromolar range. The compounds 1 and 2 were also able to impair the accumulation of the viral envelope glycoprotein in infected cells, while showing no sign of direct virucidal activity and acting possibly through a mechanism involving the early stages of the infection. The results are congruent with previously reported data showing the potential of quinoline derivatives as a promising scaffold for the development of new antivirals against this important virus.

  16. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus

    Directory of Open Access Journals (Sweden)

    Margit Mutso

    2018-04-01

    Full Text Available Infection by Chikungunya virus (CHIKV of the Old World alphaviruses (family Togaviridae in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP (nsP1, nsp2, nsP3 and nsP4 that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.

  17. NS1 of H7N9 Influenza A Virus Induces NO-Mediated Cellular Senescence in Neuro2a Cells

    OpenAIRE

    Yinxia Yan; Yongming Du; Huali Zheng; Gefei Wang; Rui Li; Jieling Chen; Kangsheng Li

    2017-01-01

    Background/Aims: The novel avian H7N9 influenza A virus has been detected in brain tissues and associated with central nervous system (CNS) symptoms in infected human and mice. Roles of its virulence factor, NS1 protein in influenza virus infected neuron has yet to be explored. Methods: Nitric oxide (NO) release and inducible nitric oxide synthase (iNOS) expression in H7N9/NS1-expressed Neuro2a cells were detected by Griess test and western blotting. Cell proliferation rate of H7N9/NS1-expres...

  18. Evidence of dengue virus transmission and factors associated with the presence of anti-dengue virus antibodies in humans in three major towns in Cameroon.

    Science.gov (United States)

    Demanou, Maurice; Pouillot, Régis; Grandadam, Marc; Boisier, Pascal; Kamgang, Basile; Hervé, Jean Pierre; Rogier, Christophe; Rousset, Dominique; Paupy, Christophe

    2014-07-01

    Dengue is not well documented in Africa. In Cameroon, data are scarce, but dengue infection has been confirmed in humans. We conducted a study to document risk factors associated with anti-dengue virus Immunoglobulin G seropositivity in humans in three major towns in Cameroon. A cross sectional survey was conducted in Douala, Garoua and Yaounde, using a random cluster sampling design. Participants underwent a standardized interview and were blood sampled. Environmental and housing characteristics were recorded. Randomized houses were prospected to record all water containers, and immature stages of Aedes mosquitoes were collected. Sera were screened for anti-dengue virus IgG and IgM antibodies. Risk factors of seropositivity were tested using logistic regression methods with random effects. Anti-dengue IgG were found from 61.4% of sera in Douala (n = 699), 24.2% in Garoua (n = 728) and 9.8% in Yaounde (n = 603). IgM were found from 0.3% of Douala samples, 0.1% of Garoua samples and 0.0% of Yaounde samples. Seroneutralization on randomly selected IgG positive sera showed that 72% (n = 100) in Douala, 80% (n = 94) in Garoua and 77% (n = 66) in Yaounde had antibodies specific for dengue virus serotype 2 (DENV-2). Age, temporary house walls materials, having water-storage containers, old tires or toilets in the yard, having no TV, having no air conditioning and having travelled at least once outside the city were independently associated with anti-dengue IgG positivity in Douala. Age, having uncovered water containers, having no TV, not being born in Garoua and not breeding pigs were significant risk factors in Garoua. Recent history of malaria, having banana trees and stagnant water in the yard were independent risk factors in Yaounde. In this survey, most identified risk factors of dengue were related to housing conditions. Poverty and underdevelopment are central to the dengue epidemiology in Cameroon.

  19. Evidence of dengue virus transmission and factors associated with the presence of anti-dengue virus antibodies in humans in three major towns in Cameroon.

    Directory of Open Access Journals (Sweden)

    Maurice Demanou

    2014-07-01

    Full Text Available Dengue is not well documented in Africa. In Cameroon, data are scarce, but dengue infection has been confirmed in humans. We conducted a study to document risk factors associated with anti-dengue virus Immunoglobulin G seropositivity in humans in three major towns in Cameroon.A cross sectional survey was conducted in Douala, Garoua and Yaounde, using a random cluster sampling design. Participants underwent a standardized interview and were blood sampled. Environmental and housing characteristics were recorded. Randomized houses were prospected to record all water containers, and immature stages of Aedes mosquitoes were collected. Sera were screened for anti-dengue virus IgG and IgM antibodies. Risk factors of seropositivity were tested using logistic regression methods with random effects. Anti-dengue IgG were found from 61.4% of sera in Douala (n = 699, 24.2% in Garoua (n = 728 and 9.8% in Yaounde (n = 603. IgM were found from 0.3% of Douala samples, 0.1% of Garoua samples and 0.0% of Yaounde samples. Seroneutralization on randomly selected IgG positive sera showed that 72% (n = 100 in Douala, 80% (n = 94 in Garoua and 77% (n = 66 in Yaounde had antibodies specific for dengue virus serotype 2 (DENV-2. Age, temporary house walls materials, having water-storage containers, old tires or toilets in the yard, having no TV, having no air conditioning and having travelled at least once outside the city were independently associated with anti-dengue IgG positivity in Douala. Age, having uncovered water containers, having no TV, not being born in Garoua and not breeding pigs were significant risk factors in Garoua. Recent history of malaria, having banana trees and stagnant water in the yard were independent risk factors in Yaounde.In this survey, most identified risk factors of dengue were related to housing conditions. Poverty and underdevelopment are central to the dengue epidemiology in Cameroon.

  20. Crystal structure of full-length Zika virus NS5 protein reveals a conformation similar to Japanese encephalitis virus NS5

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Anup K.; Cyr, Matthew; Longenecker, Kenton; Tripathi, Rakesh; Sun, Chaohong; Kempf, Dale J. (AbbVie)

    2017-02-21

    The rapid spread of the recentZika virus(ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 ofZika virus(ZIKV-NS5) is critical for ZIKV replication through the 5'-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively. The crystal structure of the full-length ZIKV-NS5 protein has been determined at 3.05 Å resolution from a crystal belonging to space groupP21212 and containing two protein molecules in the asymmetric unit. The structure is similar to that reported for the NS5 protein fromJapanese encephalitis virusand suggests opportunities for structure-based drug design targeting either its MTase or RdRp domain.

  1. Circulation of different lineages of dengue virus type 2 in Central America, their evolutionary time-scale and selection pressure analysis.

    Directory of Open Access Journals (Sweden)

    Germán Añez

    Full Text Available Dengue is caused by any of the four serotypes of dengue virus (DENV-1 to 4. Each serotype is genetically distant from the others, and each has been subdivided into different genotypes based on phylogenetic analysis. The study of dengue evolution in endemic regions is important since the diagnosis is often made by nucleic acid amplification tests, which depends upon recognition of the viral genome target, and natural occurring mutations can affect the performance of these assays. Here we report for the first time a detailed study of the phylogenetic relationships of DENV-2 from Central America, and report the first fully sequenced DENV-2 strain from Guatemala. Our analysis of the envelope (E protein and of the open reading frame of strains from Central American countries, between 1999 and 2009, revealed that at least two lineages of the American/Asian genotype of DENV-2 have recently circulated in that region. In occasions the co-circulation of these lineages may have occurred and that has been suggested to play a role in the observed increased severity of clinical cases. Our time-scale analysis indicated that the most recent common ancestor for Central American DENV-2 of the American/Asian genotype existed about 19 years ago. Finally, we report positive selection in DENV-2 from Central America in codons of the genes encoding for C, E, NS2A, NS3, and NS5 proteins. Some of these identified codons are novel findings, described for the first time for any of the DENV-2 genotypes.

  2. Seroprevalence of Anti-Dengue Virus 2 Serocomplex antibodies in ...

    African Journals Online (AJOL)

    Introduction: There has been a recent increase in the spread of dengue to rural areas. Rural parts of western kenya are naturally prone to mosquito-borne diseases, however, limited research has been documented on infections with dengue. This study therefore investigated the presence of antibodies against dengue virus ...

  3. Antigenicity of envelop and non-structural proteins of dengue serotypes and their potentiality to elicit specifi antibody

    Directory of Open Access Journals (Sweden)

    Ramesh Venkatachalam

    2015-06-01

    Full Text Available Objective: To find out the antigenic nature of envelop (E and non-structural (NS proteins and their ability to induce specific antibodies, and to investigate specific antibody produced by specific dengue virus (DENV serotypes. Methods: Amino acid sequences of E and NS proteins of dengue serotypes were analysed by using VaxiJen antigen predicition server. The transmembrane of topology analyses were conducted by using transmembrane prediction using hidden markov models. The Hex dock server was used for docking. Results: The antigenicity score and exomembrane potentiality of E and NS proteins were calculated. All those proteins were antigenic; these antigens were made to interact with antibodies such as immunoglobulin A, immunoglobulin G and immunoglobulin M. Higher energy values of immunoglobulin M were found in DENV-1 and DENV-2, and more energy values were found in immunoglobulin G of DENV-3, DENV-4, NS-1, NS-3 and NS-5. Conclusions: In the present study, DENV-1 and DENV-2 are positive to immunoglobulin M and involved in the primary infection. DENV 3, DENV 4 and all the NS proteins (NS-1, NS-3, NS-5 which elicit immunoglobulin G are involved in the secondary infection.

  4. Proteasome Inhibition Suppresses Dengue Virus Egress in Antibody Dependent Infection.

    Directory of Open Access Journals (Sweden)

    Milly M Choy

    2015-11-01

    Full Text Available The mosquito-borne dengue virus (DENV is a cause of significant global health burden, with an estimated 390 million infections occurring annually. However, no licensed vaccine or specific antiviral treatment for dengue is available. DENV interacts with host cell factors to complete its life cycle although this virus-host interplay remains to be fully elucidated. Many studies have identified the ubiquitin proteasome pathway (UPP to be important for successful DENV production, but how the UPP contributes to DENV life cycle as host factors remains ill defined. We show here that proteasome inhibition decouples infectious virus production from viral RNA replication in antibody-dependent infection of THP-1 cells. Molecular and imaging analyses in β-lactone treated THP-1 cells suggest that proteasome function does not prevent virus assembly but rather DENV egress. Intriguingly, the licensed proteasome inhibitor, bortezomib, is able to inhibit DENV titers at low nanomolar drug concentrations for different strains of all four serotypes of DENV in primary monocytes. Furthermore, bortezomib treatment of DENV-infected mice inhibited the spread of DENV in the spleen as well as the overall pathological changes. Our findings suggest that preventing DENV egress through proteasome inhibition could be a suitable therapeutic strategy against dengue.

  5. A Physical Interaction Network of Dengue Virus and Human Proteins*

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D.; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S.; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J.; Perera, Rushika; LaCount, Douglas J.

    2011-01-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection. PMID:21911577

  6. A physical interaction network of dengue virus and human proteins.

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J; Perera, Rushika; LaCount, Douglas J

    2011-12-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection.

  7. Satellite based hydroclimatic understanding of evolution of Dengue and Zika virus

    Science.gov (United States)

    Khan, R.; Jutla, A.; Colwell, R. R.

    2017-12-01

    Vector-borne diseases are prevalent in tropical and subtropical regions especially in Africa, South America, and Asia. Vector eradication is perhaps not possible since pathogens adapt to local environment. In absence of appropriate vaccinations for Dengue and Zika virus, burden of these two infections continue to increase in several geographical locations. Aedes spp. is one of the major vectors for Dengue and Zika viruses. Etiologies on Dengue and Zika viruses are evolving, however the key question remains as to how one species of mosquito can transmit two different infections? We argue that a set of conducive environmental condition, modulated by regional climatic and weather processes, may lead to abundance of a specific virus. Using satellite based rainfall (TRMM/GPM), land surface temperature (MODIS) and dew point temperature (AIRS/MERRA), we have identified appropriate thresholds that can provide estimate on risk of abundance of Dengue or Zika viruses at least few weeks in advance. We will discuss a framework coupling satellite derived hydroclimatic and societal processes to predict environmental niches of favorability of conditions of Dengue or Zika risk in human population on a global scale.

  8. Conservation of a crystallographic interface suggests a role for β-sheet augmentation in influenza virus NS1 multifunctionality

    International Nuclear Information System (INIS)

    Kerry, Philip S.; Long, Elizabeth; Taylor, Margaret A.; Russell, Rupert J. M.

    2011-01-01

    The structure of a monomeric effector domain from influenza A virus NS1 is presented from diffraction data extending to 1.8 Å resolution. Comparison of this and other NS1 effector-domain structures shows conformational changes at a strand–strand packing interface, hinting at a role for β-strand augmentation in NS1 function. The effector domain (ED) of the influenza virus virulence factor NS1 is capable of interaction with a variety of cellular and viral targets, although regulation of these events is poorly understood. Introduction of a W187A mutation into the ED abolishes dimer formation; however, strand–strand interactions between mutant NS1 ED monomers have been observed in two previous crystal forms. A new condition for crystallization of this protein [0.1 M Bis-Tris pH 6.0, 0.2 M NaCl, 22%(w/v) PEG 3350, 20 mM xylitol] was discovered using the hanging-drop vapour-diffusion method. Diffraction data extending to 1.8 Å resolution were collected from a crystal grown in the presence of 40 mM thieno[2,3-b]pyridin-2-ylmethanol. It was observed that there is conservation of the strand–strand interface in crystals of this monomeric NS1 ED in three different space groups. This observation, coupled with conformational changes in the interface region, suggests a potential role for β-sheet augmentation in NS1 function

  9. Evaluation of laboratory tests for dengue diagnosis in clinical specimens from consecutive patients with suspected dengue in Belo Horizonte, Brazil.

    Science.gov (United States)

    Ferraz, Fernanda Oliveira; Bomfim, Maria Rosa Quaresma; Totola, Antônio Helvécio; Ávila, Thiago Vinícius; Cisalpino, Daniel; Pessanha, José Eduardo Marques; da Glória de Souza, Danielle; Teixeira Júnior, Antônio Lúcio; Nogueira, Maurício Lacerda; Bruna-Romero, Oscar; Teixeira, Mauro Martins

    2013-09-01

    Dengue is a widely spread arboviral disease in tropical and subtropical regions of the world. Dengue fever presents clinical characteristics similar to other febrile illness. Thus laboratory diagnosis is important for adequate management of the disease. The present study was designed to evaluate the diagnostic performance of real-time PCR and serological methods for dengue in a real epidemic context. Clinical data and blood samples were collected from consecutive patients with suspected dengue who attended a primary health care unit in Belo Horizonte, Brazil. Serologic methods and real-time PCR were performed in serum samples to confirm dengue diagnosis. Among the 181 consecutive patients enrolled in this study with suspected dengue, 146 were considered positive by serological criteria (positive NS1 ELISA and/or anti-dengue IgM ELISA) and 138 were positive by real-time PCR. Clinical criteria were not sufficient for distinguishing between dengue and non-dengue febrile illness. The PCR reaction was pre-optimized using samples from patients with known viral infection. It had similar sensitivity compared to NS1 ELISA (88% and 89%, respectively). We also evaluated three commercial lateral flow immunochromatographic tests for NS1 detection (BIOEASY, BIORAD and PANBIO). All three tests showed high sensitivity (94%, 91% and 81%, respectively) for dengue diagnosis. According to our results it can be suggested that lateral flow tests for NS1 detection are the most feasible methods for early diagnosis of dengue. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  11. Phylogeny of Dengue and Chikungunya viruses in Al Hudayda governorate, Yemen.

    Science.gov (United States)

    Ciccozzi, Massimo; Lo Presti, Alessandra; Cella, Eleonora; Giovanetti, Marta; Lai, Alessia; El-Sawaf, Gamal; Faggioni, Giovanni; Vescio, Fenicia; Al Ameri, Ranya; De Santis, Riccardo; Helaly, Ghada; Pomponi, Alice; Metwally, Dalia; Fantini, Massimo; Qadi, Hussein; Zehender, Gianguglielmo; Lista, Florigio; Rezza, Giovanni

    2014-10-01

    Yemen, which is located in the southwestern end of the Arabian Peninsula, is one of countries most affected by recurrent epidemics caused by emerging vector-borne viruses. Dengue virus (DENV) outbreaks have been reported with increasing frequency in several governorates since the year 2000, and the Chikungunya virus (CHIKV) has been also responsible of large outbreaks and it is now a major public health problem in Yemen. We report the results of the phylogenetic analysis of DENV-2 and CHIKV isolates (NS1 and E1 genes, respectively) detected in an outbreak occurred in Al-Hudayda in 2012. Estimates of the introduction date of CHIKV and DENV-2, and the phylogeographic analysis of DENV-2 are also presented. Phylogenetic analysis showed that the Yemen isolates of DENV belonged to the lineage 2 Cosmopolitan subtype, whereas CHIKV isolates from Yemen belonged to the ECSA genotype. All the CHIKV isolates from Yemen were statistically supported and dated back to the year 2010 (95% HPD: 2009-2011); these sequences showed an alanine in the aminoacid position 226 of the E1 protein. Phylogeographic analysis of DENV-2 virus showed that cluster 1, which included Yemen isolates, dated back to 2003 Burkina Faso strains (95% HPD 1999-2007). The Yemen, cluster dated back to 2011 (95% HPD 2009-2012). Our study sheds light on the global spatiotemporal dynamics of DENV-2 and CHIKV in Yemen. This study reinforces both the need to monitor the spread of CHIKV and DENV, and to apply significant measures for vector control. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Distinct activation phenotype of a highly conserved novel HLA-B57-restricted epitope during dengue virus infection.

    Science.gov (United States)

    Townsley, Elizabeth; Woda, Marcia; Thomas, Stephen J; Kalayanarooj, Siripen; Gibbons, Robert V; Nisalak, Ananda; Srikiatkhachorn, Anon; Green, Sharone; Stephens, Henry A F; Rothman, Alan L; Mathew, Anuja

    2014-01-01

    Variation in the sequence of T-cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T-cell responses during second heterologous infections. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein. We predicted higher frequencies of B57-NS1(26-34) -specific CD8(+) T cells in peripheral blood mononuclear cells from individuals undergoing secondary rather than primary DENV infection. However, high tetramer-positive T-cell frequencies during acute infection were seen in only one of nine subjects with secondary infection. B57-NS1(26-34) -specific and other DENV epitope-specific CD8(+) T cells, as well as total CD8(+) T cells, expressed an activated phenotype (CD69(+) and/or CD38(+)) during acute infection. In contrast, expression of CD71 was largely limited to DENV epitope-specific CD8(+) T cells. In vitro stimulation of cell lines indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides. CD71 may represent a useful marker of antigen-specific T-cell activation. © 2013 John Wiley & Sons Ltd.

  13. External quality assessment of dengue and chikungunya diagnostics in the Asia Pacific region, 2015

    Directory of Open Access Journals (Sweden)

    Li Ting Soh

    2016-04-01

    Full Text Available Objective: To conduct an external quality assessment (EQA of dengue and chikungunya diagnostics among national-level public health laboratories in the Asia Pacific region following the first round of EQA for dengue diagnostics in 2013. Methods: Twenty-four national-level public health laboratories performed routine diagnostic assays on a proficiency testing panel consisting of two modules. Module A contained serum samples spiked with cultured dengue virus (DENV or chikungunya virus (CHIKV for the detection of nucleic acid and DENV non-structural protein 1 (NS1 antigen. Module B contained human serum samples for the detection of anti-DENV antibodies. Results: Among 20 laboratories testing Module A, 17 (85% correctly detected DENV RNA by reverse transcription polymerase chain reaction (RT-PCR, 18 (90% correctly determined serotype and 19 (95% correctly identified CHIKV by RT-PCR. Ten of 15 (66.7% laboratories performing NS1 antigen assays obtained the correct results. In Module B, 18/23 (78.3% and 20/20 (100% of laboratories correctly detected anti-DENV IgM and IgG, respectively. Detection of acute/recent DENV infection by both molecular (RT-PCR and serological methods (IgM was available in 19/24 (79.2% participating laboratories. Discussion: Accurate laboratory testing is a critical component of dengue and chikungunya surveillance and control. This second round of EQA reveals good proficiency in molecular and serological diagnostics of these diseases in the Asia Pacific region. Further comprehensive diagnostic testing, including testing for Zika virus, should comprise future iterations of the EQA.

  14. The Epidemiology, Virology and Clinical Findings of Dengue Virus Infections in a Cohort of Indonesian Adults in Western Java.

    Directory of Open Access Journals (Sweden)

    Herman Kosasih

    2016-02-01

    Full Text Available Dengue has emerged as one of the most important infectious diseases in the last five decades. Evidence indicates the expansion of dengue virus endemic areas and consequently the exponential increase of dengue virus infections across the subtropics. The clinical manifestations of dengue virus infection include sudden fever, rash, headache, myalgia and in more serious cases, spontaneous bleeding. These manifestations occur in children as well as in adults. Defining the epidemiology of dengue in a given area is critical to understanding the disease and devising effective public health strategies.Here, we report the results from a prospective cohort study of 4380 adults in West Java, Indonesia, from 2000-2004 and 2006-2009. A total of 2167 febrile episodes were documented and dengue virus infections were confirmed by RT-PCR or serology in 268 cases (12.4%. The proportion ranged from 7.6 to 41.8% each year. The overall incidence rate of symptomatic dengue virus infections was 17.3 cases/1,000 person years and between September 2006 and April 2008 asymptomatic infections were 2.6 times more frequent than symptomatic infections. According to the 1997 WHO classification guidelines, there were 210 dengue fever cases, 53 dengue hemorrhagic fever cases (including one dengue shock syndrome case and five unclassified cases. Evidence for sequential dengue virus infections was seen in six subjects. All four dengue virus serotypes circulated most years. Inapparent dengue virus infections were predominantly associated with DENV-4 infections.Dengue virus was responsible for a significant percentage of febrile illnesses in an adult population in West Java, Indonesia, and this percentage varied from year to year. The observed incidence rate during the study period was 43 times higher than the reported national or provincial rates during the same time period. A wide range of clinical severity was observed with most infections resulting in asymptomatic disease. The

  15. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    Directory of Open Access Journals (Sweden)

    Dhanasekaran Govindarajan

    Full Text Available Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  16. Phylogenetic history demonstrates two different lineages of dengue type 1 virus in Colombia

    Directory of Open Access Journals (Sweden)

    Mendez Jairo A

    2010-09-01

    Full Text Available Abstract Background Dengue Fever is one of the most important viral re-emergent diseases affecting about 50 million people around the world especially in tropical and sub-tropical countries. In Colombia, the virus was first detected in the earliest 70's when the disease became a major public health concern. Since then, all four serotypes of the virus have been reported. Although most of the huge outbreaks reported in this country have involved dengue virus serotype 1 (DENV-1, there are not studies about its origin, genetic diversity and distribution. Results We used 224 bp corresponding to the carboxyl terminus of envelope (E gene from 74 Colombian isolates in order to reconstruct phylogenetic relationships and to estimate time divergences. Analyzed DENV-1 Colombian isolates belonged to the formerly defined genotype V. Only one virus isolate was clasified in the genotype I, likely representing a sole introduction that did not spread. The oldest strains were closely related to those detected for the first time in America in 1977 from the Caribbean and were detected for two years until their disappearance about six years later. Around 1987, a split up generated 2 lineages that have been evolving separately, although not major aminoacid changes in the analyzed region were found. Conclusion DENV-1 has been circulating since 1978 in Colombia. Yet, the phylogenetic relationships between strains isolated along the covered period of time suggests that viral strains detected in some years, although belonging to the same genotype V, have different recent origins corresponding to multiple re-introduction events of viral strains that were circulating in neighbor countries. Viral strains used in the present study did not form a monophyletic group, which is evidence of a polyphyletic origin. We report the rapid spread patterns and high evolution rate of the different DENV-1 lineages.

  17. Elevated levels of total and dengue virus-specific immunoglobulin E in patients with varying disease severity

    NARCIS (Netherlands)

    Koraka, Penelopie; Murgue, Bernadette; Deparis, Xavier; Setiati, Tatty E.; Suharti, Catarina; van Gorp, Eric C. M.; Hack, C. E.; Osterhaus, Albert D. M. E.; Groen, Jan

    2003-01-01

    The kinetics of total and dengue virus-specific immunoglobulin E (IgE) were studied in serial serum samples obtained from 168 patients, 41 of whom suffered from primary dengue virus infection and 127 suffered from secondary dengue virus infection. Seventy-one patients were classified as dengue

  18. Elevated levels of total and dengue virus-specific immunoglobulin E in patients with varying disease severity.

    NARCIS (Netherlands)

    Koraka, P.; Murgue, B.; Deparis, X.; Setiati, T.E.; Suharti, C.; Gorp, E. van; Hack, C.E.; Osterhaus, A.D.; Groen, J.

    2003-01-01

    The kinetics of total and dengue virus-specific immunoglobulin E (IgE) were studied in serial serum samples obtained from 168 patients, 41 of whom suffered from primary dengue virus infection and 127 suffered from secondary dengue virus infection. Seventy-one patients were classified as dengue

  19. Lineage extinction and replacement in dengue type 1 virus populations are due to stochastic events rather than to natural selection

    International Nuclear Information System (INIS)

    Hlaing Myat Thu; Lowry, Kym; Jiang Limin; Thaung Hlaing; Holmes, Edward C.; Aaskov, John

    2005-01-01

    Between 1996 and 1998, two clades (B and C; genotype I) of dengue virus type 1 (DENV-1) appeared in Myanmar (Burma) that were new to that location. Between 1998 and 2000, a third clade (A; genotype III) of DENV-1, which had been circulating at that locality for at least 25 years, became extinct. These changes preceded the largest outbreak of dengue recorded in Myanmar, in 2001, in which more than 95% of viruses recovered from patients were DENV-1, but where the incidence of severe disease was much less than in previous years. Phylogenetic analyses of viral genomes indicated that the two new clades of DENV-1 did not arise from the, now extinct, clade A viruses nor was the extinction of this clade due to differences in the fitness of the viral populations. Since the extinction occurred during an inter-epidemic period, we suggest that it was due to a stochastic event attributable to the low rate of virus transmission in this interval

  20. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease.

    Directory of Open Access Journals (Sweden)

    Matthew Brecher

    2017-05-01

    Full Text Available The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2 in vitro, with IC50 values of 1.8 μM, 11.4 μM, and 4.8 μM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV, West Nile virus (WNV, and Yellow fever virus (YFV on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 μM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and

  1. Secretion of Galectin-9 as a DAMP during Dengue Virus Infection in THP-1 Cells.

    Science.gov (United States)

    Dapat, Isolde C; Pascapurnama, Dyshelly Nurkartika; Iwasaki, Hiroko; Labayo, Hannah Karen; Chagan-Yasutan, Haorile; Egawa, Shinichi; Hattori, Toshio

    2017-07-28

    Damage-associated molecular patterns (DAMPs) are endogenous cellular molecules released to the extracellular environment in response to stress conditions such as virus infection. Galectins are β-galactoside-binding proteins that are widely expressed in cells and tissues of the immune system, are localized in the cell cytoplasm, and have roles in inflammatory responses and immune responses against infection. Elevated levels of galectin-9 (Gal-9) in natural human infections have been documented in numerous reports. To investigate the effect of dengue virus (DENV) infection on expression of endogenous Gal-9, monocytic THP-1 cells were infected with varying doses of DENV-3 (multiplicity of infection (MOI) 0.01, 0.03 and 0.1) and incubated at varying time points (Day 1, Day 2, Day 3). Results showed augmentation of Gal-9 levels in the supernatant, reduction of Gal-9 levels in the cells and decreased expression of LGALS9 mRNA, while DENV-3 mRNA copies for all three doses remained stable through time. Dengue virus induced the secretion of Gal-9 as a danger response; in turn, Gal-9 and other inflammatory factors, and stimulated effector responses may have limited further viral replication. The results in this pilot experiment add to the evidence of Gal-9 as a potential DAMP.

  2. Application of clustering methods: Regularized Markov clustering (R-MCL) for analyzing dengue virus similarity

    Science.gov (United States)

    Lestari, D.; Raharjo, D.; Bustamam, A.; Abdillah, B.; Widhianto, W.

    2017-07-01

    Dengue virus consists of 10 different constituent proteins and are classified into 4 major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering against 30 protein sequences of dengue virus taken from Virus Pathogen Database and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL) algorithm and then we analyze the result. By using Python program 3.4, R-MCL algorithm produces 8 clusters with more than one centroid in several clusters. The number of centroid shows the density level of interaction. Protein interactions that are connected in a tissue, form a complex protein that serves as a specific biological process unit. The analysis of result shows the R-MCL clustering produces clusters of dengue virus family based on the similarity role of their constituent protein, regardless of serotypes.

  3. A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus.

    Science.gov (United States)

    Wasik, Daniel; Mulchandani, Ashok; Yates, Marylynn V

    2017-05-15

    Dengue virus is an arthropod-borne virus transmitted primarily by Aedes mosquitos and is major cause of disease in tropical and subtropical regions. Colloquially known as Dengue Fever, infection can cause hemorrhagic disorders and death in humans and non-human primates. We report a novel electronic biosensor based on a single-walled carbon nanotube network chemiresistive transducer that is functionalized with heparin for low-cost, label-free, ultra-sensitive, and rapid detection of whole dengue virus (DENV). Heparin, an analog of the heparan sulfate proteoglycans that are receptors for dengue virus during infection of Vero cells and hepatocytes, was used for the first time in a biosensor as a biorecognition element instead of traditional antibody. Detection of DENV in viral culture supernatant has similar sensitivity as the corresponding viral titer in phosphate buffer despite the presence of growth media and Vero cell lysate. The biosensor demonstrated sensitivity within the clinically relevant range for humans and infected Aedes aegypti. It has potential application in clinical diagnosis and can improve point-of-care diagnostics of dengue infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The citrus flavanone naringenin impairs dengue virus replication in human cells

    OpenAIRE

    Frabasile, Sandra; Koishi, Andrea Cristine; Kuczera, Diogo; Silveira, Guilherme Ferreira; Verri, Waldiceu Aparecido; Duarte dos Santos, Claudia Nunes; Bordignon, Juliano

    2017-01-01

    Dengue is one of the most significant health problems in tropical and sub-tropical regions throughout the world. Nearly 390 million cases are reported each year. Although a vaccine was recently approved in certain countries, an anti-dengue virus drug is still needed. Fruits and vegetables may be sources of compounds with medicinal properties, such as flavonoids. This study demonstrates the anti-dengue virus activity of the citrus flavanone naringenin, a class of flavonoid. Naringenin prevente...

  5. Evidence for the Inhibition of Dengue Virus Binding in the Presence of Silver Nanoparticles

    Science.gov (United States)

    2015-03-26

    with DENV are known to increase in severity from Dengue Fever to Dengue Hemorrhagic Fever or Dengue Shock Syndrome. Currently, no vaccines or...DENV is a member of the Flavivirus family, as is the yellow fever virus (the family’s prototype), West Nile, Japanese encephalitis virus, and many...perspective/2013/10/ researchers - identify-fifth-dengue-subtype. [20] C. Moore, “UTMB Galveston Researchers Discover First New Dengue Fever Serotype In 50

  6. Interferon lambda inhibits dengue virus replication in epithelial cells.

    Science.gov (United States)

    Palma-Ocampo, Helen K; Flores-Alonso, Juan C; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Flores-Mendoza, Lilian; Herrera-Camacho, Irma; Rosas-Murrieta, Nora H; Santos-López, Gerardo

    2015-09-28

    In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection. Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR. We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression. Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

  7. [Dengue, Zika and Chikungunya].

    Science.gov (United States)

    Kantor, Isabel N

    2016-01-01

    Arboviruses are transmitted by arthropods, including those responsible for the current pandemic: alphavirus (Chikungunya) and flaviviruses (dengue and Zika). Its importance increased in the Americas over the past 20 years. The main vectors are Aedes aegypti and A. albopictus. Dengue infection provides long lasting immunity against the specific serotype and temporary to the other three. Subsequent infection by another serotype determines more serious disease. There is a registered vaccine for dengue, Dengvaxia (Sanofi Pasteur). Other two (Butantan and Takeda) are in Phase III in 2016. Zika infection is usually asymptomatic or occurs with rash, conjunctivitis and not very high fever. There is no vaccine or specific treatment. It can be transmitted by parental, sexual and via blood transfusion. It has been associated with microcephaly. Chikungunya causes prolonged joint pain and persistent immune response. Two candidate vaccines are in Phase II. Dengue direct diagnosis is performed by virus isolation, RT-PCR and ELISA for NS1 antigen detection; indirect methods are ELISA-IgM (cross-reacting with other flavivirus), MAC-ELISA, and plaque neutralization. Zika is diagnosed by RT-PCR and virus isolation. Serological diagnosis cross-reacts with other flavivirus. For CHIKV culture, RT-PCR, MAC-ELISA and plaque neutralization are used. Against Aedes organophosphate larvicides (temephos), organophosphorus insecticides (malathion and fenitrothion) and pyrethroids (permethrin and deltamethrin) are usually employed. Resistance has been described to all these products. Vegetable derivatives are less expensive and biodegradable, including citronella oil, which microencapsulated can be preserved from evaporation.

  8. Understanding the Dengue Viruses and Progress towards Their Control

    Science.gov (United States)

    Gould, Ernest A.

    2013-01-01

    Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the context of dengue virus pathogenesis. We also examine some of the efforts currently underway to control this “scourge” of the tropical and subtropical world. PMID:23936833

  9. An epidemic of dengue-1 in a remote village in rural Laos.

    Directory of Open Access Journals (Sweden)

    Audrey Dubot-Pérès

    Full Text Available In the Lao PDR (Laos, urban dengue is an increasingly recognised public health problem. We describe a dengue-1 virus outbreak in a rural northwestern Lao forest village during the cool season of 2008. The isolated strain was genotypically "endemic" and not "sylvatic," belonging to the genotype 1, Asia 3 clade. Phylogenetic analyses of 37 other dengue-1 sequences from diverse areas of Laos between 2007 and 2010 showed that the geographic distribution of some strains remained focal overtime while others were dispersed throughout the country. Evidence that dengue viruses have broad circulation in the region, crossing country borders, was also obtained. Whether the outbreak arose from dengue importation from an urban centre into a dengue-naïve community or crossed into the village from a forest cycle is unknown. More epidemiological and entomological investigations are required to understand dengue epidemiology and the importance of rural and forest dengue dynamics in Laos.

  10. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    Science.gov (United States)

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-03-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result.

  11. Attenuation and immunogenicity of recombinant yellow fever 17D-dengue type 2 virus for rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Galler R.

    2005-01-01

    Full Text Available A chimeric yellow fever (YF-dengue serotype 2 (dengue 2 virus was constructed by replacing the premembrane and envelope genes of the YF 17D virus with those from dengue 2 virus strains of Southeast Asian genotype. The virus grew to high titers in Vero cells and, after passage 2, was used for immunogenicity and attenuation studies in rhesus monkeys. Subcutaneous immunization of naive rhesus monkeys with the 17D-D2 chimeric virus induced a neutralizing antibody response associated with the protection of 6 of 7 monkeys against viremia by wild-type dengue 2 virus. Neutralizing antibody titers to dengue 2 were significantly lower in YF-immune animals than in YF-naive monkeys and protection against challenge with wild-type dengue 2 virus was observed in only 2 of 11 YF-immune monkeys. An anamnestic response to dengue 2, indicated by a sharp increase of neutralizing antibody titers, was observed in the majority of the monkeys after challenge with wild-type virus. Virus attenuation was demonstrated using the standard monkey neurovirulence test. The 17D-D2 chimera caused significantly fewer histological lesions than the YF 17DD virus. The attenuated phenotype could also be inferred from the limited viremias compared to the YF 17DD vaccine. Overall, these results provide further support for the use of chimeric viruses for the development of a new live tetravalent dengue vaccine.

  12. Porcine Mx1 Protein Inhibits Classical Swine Fever Virus Replication by Targeting Nonstructural Protein NS5B.

    Science.gov (United States)

    Zhou, Jing; Chen, Jing; Zhang, Xiao-Min; Gao, Zhi-Can; Liu, Chun-Chun; Zhang, Yun-Na; Hou, Jin-Xiu; Li, Zhao-Yao; Kan, Lin; Li, Wen-Liang; Zhou, Bin

    2018-04-01

    Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S -transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B. IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo , but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities. Copyright © 2018 American Society for Microbiology.

  13. Co-circulating serotypes in a dengue fever outbreak: Differential hematological profiles and phylogenetic relationships among viruses.

    Science.gov (United States)

    Carmo, Andreia Moreira Dos Santos; Suzuki, Rodrigo Buzinaro; Cabral, Aline Diniz; Costa, Renata Torres da; Massari, Gabriela Pena; Riquena, Michele Marcondes; Fracasso, Helio Augusto Alves; Eterovic, Andre; Marcili, Arlei; Sperança, Márcia Aparecida

    2017-05-01

    Dengue virus, represented by four distinct, genetically diverse serotypes, is the etiologic agent of asymptomatic to severe hemorrhagic diseases. The spatiotemporal dynamics of dengue serotypes and its association to specific diseases vary among the different regions worldwide. By 2007, and in São Paulo State, Brazil, dengue-case concentration in urban centers had changed to increased incidence in small- and medium-sized towns, the case of Marília. The aim of this article was to distinguish dengue serotypes circulating during the 2007 Marília outbreak and define their association to demographic and hematological patient profiles, as well as the phylogenetic relationships among the different viruses. PCR amplicons corresponding to the junction of capsid and dengue pre-membrane encoding genes, obtained from dengue serologically positive patients, were sequenced. Hematological and demographic data of patients with different Dengue serotypes were evaluated by univariate and bivariate statistics. Dengue PCR sequences were used in phylogenetic relationships analyzed for maximum parsimony. Molecular typing confirmed co-circulation of the dengue serotypes 1 (DENV1) and 3 (DENV3), which presented divergent correlation patterns with regard to hematological descriptors. The increase in atypical lymphocytes, a likely indication of virus load, could be significantly associated to a decrease in leukocyte counts in the DENV3 group and platelet in the DENV1. Phylogenetic reconstitution revealed the introduction of DENV1 from northern Brazil and local divergence of DENV3 by either microevolution or viral introduction from other geographical regions or both. Dengue dynamics showed regional molecular-epidemiologic specificity, which has important implications for introduction of vaccines, disease management, and transmission control. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Phylogenetic and evolutionary analyses of dengue viruses isolated in Jakarta, Indonesia.

    Science.gov (United States)

    Lestari, C S Whinie; Yohan, Benediktus; Yunita, Anisa; Meutiawati, Febrina; Hayati, Rahma Fitri; Trimarsanto, Hidayat; Sasmono, R Tedjo

    2017-12-01

    Dengue has affected Indonesia for the last five decades and become a major health problem in many cities in the country. Jakarta, the capital of Indonesia, reports dengue cases annually, with several outbreaks documented. To gain information on the dynamic and evolutionary history of dengue virus (DENV) in Jakarta, we conducted phylogenetic and evolutionary analyses of DENV isolated in 2009. Three hundred thirty-three dengue-suspected patients were recruited. Our data revealed that dengue predominantly affected young adults, and the majority of cases were due to secondary infection. A total of 171 virus isolates were successfully serotyped. All four DENV serotypes were circulating in the city, and DENV-1 was the predominant serotype. The DENV genotyping of 17 isolates revealed the presence of Genotypes I and IV in DENV-1, while DENV-2 isolates were grouped into the Cosmopolitan genotype. The grouping of isolates into Genotype I and II was seen for DENV-3 and DENV-4, respectively. Evolutionary analysis revealed the relatedness of Jakarta isolates with other isolates from other cities in Indonesia and isolates from imported cases in other countries. We revealed the endemicity of DENV and the role of Jakarta as the potential source of imported dengue cases in other countries. Our study provides genetic information regarding DENV from Jakarta, which will be useful for upstream applications, such as the study of DENV epidemiology and evolution and transmission dynamics.

  15. Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses.

    Science.gov (United States)

    Chang, Hsiao-Han; Huber, Roland G; Bond, Peter J; Grad, Yonatan H; Camerini, David; Maurer-Stroh, Sebastian; Lipsitch, Marc

    2017-07-01

    To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains. We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid k -mers across the proteome, with k ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins. In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 k -mers) of protein fragments on the list. We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.

  16. Unusual dengue virus 3 epidemic in Nicaragua, 2009.

    Directory of Open Access Journals (Sweden)

    Gamaliel Gutierrez

    2011-11-01

    Full Text Available The four dengue virus serotypes (DENV1-4 cause the most prevalent mosquito-borne viral disease affecting humans worldwide. In 2009, Nicaragua experienced the largest dengue epidemic in over a decade, marked by unusual clinical presentation, as observed in two prospective studies of pediatric dengue in Managua. From August 2009-January 2010, 212 dengue cases were confirmed among 396 study participants at the National Pediatric Reference Hospital. In our parallel community-based cohort study, 170 dengue cases were recorded in 2009-10, compared to 13-65 cases in 2004-9. In both studies, significantly more patients experienced "compensated shock" (poor capillary refill plus cold extremities, tachycardia, tachypnea, and/or weak pulse in 2009-10 than in previous years (42.5% [90/212] vs. 24.7% [82/332] in the hospital study (p<0.001 and 17% [29/170] vs. 2.2% [4/181] in the cohort study (p<0.001. Signs of poor peripheral perfusion presented significantly earlier (1-2 days in 2009-10 than in previous years according to Kaplan-Meier survival analysis. In the hospital study, 19.8% of subjects were transferred to intensive care, compared to 7.1% in previous years - similar to the cohort study. DENV-3 predominated in 2008-9, 2009-10, and 2010-11, and full-length sequencing revealed no major genetic changes from 2008-9 to 2010-11. In 2008-9 and 2010-11, typical dengue was observed; only in 2009-10 was unusual presentation noted. Multivariate analysis revealed only "2009-10" as a significant risk factor for Dengue Fever with Compensated Shock. Interestingly, circulation of pandemic influenza A-H1N1 2009 in Managua was shifted such that it overlapped with the dengue epidemic. We hypothesize that prior influenza A H1N1 2009 infection may have modulated subsequent DENV infection, and initial results of an ongoing study suggest increased risk of shock among children with anti-H1N1-2009 antibodies. This study demonstrates that parameters other than serotype, viral

  17. Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Hitoshi Tsujimoto

    Full Text Available The Asian tiger mosquito, Aedes albopictus is currently an important vector for dengue, chikungunya and Zika virus, and its role in transmission of arthropod-borne viruses (arboviruses may increase in the future due to its ability to colonize temperate regions. In contrast to Aedes aegypti, the dominant vector of dengue, chikungunya and Zika virus, genetic responses of Ae. albopictus upon infection with an arbovirus are not well characterized. Here we present a study of the changes in transcript expression in Ae. albopictus exposed to dengue virus serotype 2 via feeding on an artificial bloodmeal.We isolated midguts and midgut-free carcasses of Ae. albopictus fed on bloodmeals containing dengue virus as well as controls fed on virus-free control meals at day 1 and day 5 post-feeding. We confirmed infection of midguts from mosquitoes sampled on day 5 post-feeding via RT-PCR. RNAseq analysis revealed dynamic modulation of the expression of several putative immunity and dengue virus-responsive genes, some of whose expression was verified by qRT-PCR. For example, a serine protease gene was up-regulated in the midgut at 1 day post infection, which may potentially enhance mosquito susceptibility to dengue infection, while 14 leucine-rich repeat genes, previously shown to be involved in mosquito antiviral defenses, were down-regulated in the carcass at 5 days post infection. The number of significantly modulated genes decreased over time in midguts and increased in carcasses.Dengue virus exposure results in the modulation of genes in a time- and site-specific manner. Previous literature on the interaction between mosquitoes and mosquito-borne pathogens suggests that most of the changes that occurred in Ae. albopictus exposed to DENV would favor virus infection. Many genes identified in this study warrant further characterization to understand their role in viral manipulation of and antiviral response of Ae. albopictus.

  18. Dengue virus 2 American-Asian genotype identified during the 2006/2007 outbreak in Piauí, Brazil reveals a Caribbean route of introduction and dissemination of dengue virus in Brazil.

    Directory of Open Access Journals (Sweden)

    Leandra Barcelos Figueiredo

    Full Text Available Dengue virus (DENV is the most widespread arthropod-borne virus, and the number and severity of outbreaks has increased worldwide in recent decades. Dengue is caused by DENV-1, DENV- 2, DENV-3 and DENV-4 which are genetically distant. The species has been subdivided into genotypes based on phylogenetic studies. DENV-2, which was isolated from dengue fever patients during an outbreak in Piaui, Brazil in 2006/2007 was analyzed by sequencing the envelope (E gene. The results indicated a high similarity among the isolated viruses, as well as to other DENV-2 from Brazil, Central America and South America. A phylogenetic and phylogeographic analysis based on DENV-2E gene sequences revealed that these viruses are grouped together with viruses of the American-Asian genotype in two distinct lineages. Our results demonstrate the co-circulation of two American-Asian genotype lineages in northeast Brazil. Moreover, we reveal that DENV-2 lineage 2 was detected in Piauí before it disseminated to other Brazilian states and South American countries, indicating the existence of a new dissemination route that has not been previously described.

  19. An in-depth analysis of original antigenic sin in dengue virus infection.

    Science.gov (United States)

    Midgley, Claire M; Bajwa-Joseph, Martha; Vasanawathana, Sirijitt; Limpitikul, Wannee; Wills, Bridget; Flanagan, Aleksandra; Waiyaiya, Emily; Tran, Hai Bac; Cowper, Alison E; Chotiyarnwong, Pojchong; Chotiyarnwon, Pojchong; Grimes, Jonathan M; Yoksan, Sutee; Malasit, Prida; Simmons, Cameron P; Mongkolsapaya, Juthathip; Screaton, Gavin R

    2011-01-01

    The evolution of dengue viruses has resulted in four antigenically similar yet distinct serotypes. Infection with one serotype likely elicits lifelong immunity to that serotype, but generally not against the other three. Secondary or sequential infections are common, as multiple viral serotypes frequently cocirculate. Dengue infection, although frequently mild, can lead to dengue hemorrhagic fever (DHF) which can be life threatening. DHF is more common in secondary dengue infections, implying a role for the adaptive immune response in the disease. There is currently much effort toward the design and implementation of a dengue vaccine but these efforts are made more difficult by the challenge of inducing durable neutralizing immunity to all four viruses. Domain 3 of the dengue virus envelope protein (ED3) has been suggested as one such candidate because it contains neutralizing epitopes and it was originally thought that relatively few cross-reactive antibodies are directed to this domain. In this study, we performed a detailed analysis of the anti-ED3 response in a cohort of patients suffering either primary or secondary dengue infections. The results show dramatic evidence of original antigenic sin in secondary infections both in terms of binding and enhancement activity. This has important implications for dengue vaccine design because heterologous boosting is likely to maintain the immunological footprint of the first vaccination. On the basis of these findings, we propose a simple in vitro enzyme-linked immunosorbent assay (ELISA) to diagnose the original dengue infection in secondary dengue cases.

  20. A Simple Reverse Transcription-Polymerase Chain Reaction for Dengue Type 2 Virus Identification

    Directory of Open Access Journals (Sweden)

    Luiz Tadeu M Figueiredo

    1997-05-01

    Full Text Available We show here a simplified reverse transcription-polymerase chain reaction (RT-PCR for identification of dengue type 2 virus. Three dengue type 2 virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD, as a negative control, were used in this study. C6/36 cells were infected with the virus, and tissue culture fluids were collected after 7 days of infection period. The RT-PCR, a combination of RT and PCR done after a single addition of reagents in a single reaction vessel was carried out following a digestion of virus with 1% Nonidet P-40. The 50ml assay reaction mixture included 50 pmol of a dengue type 2 specific primer pair amplifying a 210 base pair sequence of the envelope protein gene, 0.1 mM of the four deoxynucleoside triphosphates, 7.5U of reverse transcriptase, and 1U of thermostable Taq DNA polymerase. The reagent mixture was incubated for 15 min at 37oC for RT followed by a variable amount of cycles of two-step PCR amplification (92oC for 60 sec, 53oC for 60 sec with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized with UV light after gel incubation in ethidium bromide solution. DNA bands were observed after 25 and 30 cycles of PCR. Virus amount as low as 102.8 TCID50/ml was detected by RT-PCR. Specific DNA amplification was observed with the three dengue type 2 strains. This assay has advantages compared to other RT-PCRs: it avoids laborious extraction of virus RNA; the combination of RT and PCR reduces assay time, facilitates the performance and reduces risk of contamination; the two-step PCR cycle produces a clear DNA amplification, saves assay time and simplifies the technique

  1. Dengue Epidemiology

    Science.gov (United States)

    ... and dengue shock syndrome (DSS). Transmission of the Dengue Virus Dengue is transmitted between people by the ... the vectors is too infrequent to sustain transmission. Dengue is an Emerging Disease The four dengue viruses ...

  2. Properties and Functions of the Dengue Virus Capsid Protein.

    Science.gov (United States)

    Byk, Laura A; Gamarnik, Andrea V

    2016-09-29

    Dengue virus affects hundreds of millions of people each year around the world, causing a tremendous social and economic impact on affected countries. The aim of this review is to summarize our current knowledge of the functions, structure, and interactions of the viral capsid protein. The primary role of capsid is to package the viral genome. There are two processes linked to this function: the recruitment of the viral RNA during assembly and the release of the genome during infection. Although particle assembly takes place on endoplasmic reticulum membranes, capsid localizes in nucleoli and lipid droplets. Why capsid accumulates in these locations during infection remains unknown. In this review, we describe available data and discuss new ideas on dengue virus capsid functions and interactions. We believe that a deeper understanding of how the capsid protein works during infection will create opportunities for novel antiviral strategies, which are urgently needed to control dengue virus infections.

  3. Prior Exposure to Zika Virus Significantly Enhances Peak Dengue-2 Viremia in Rhesus Macaques

    OpenAIRE

    George, Jeffy; Valiant, William G.; Mattapallil, Mary J.; Walker, Michelle; Huang, Yan-Jang S.; Vanlandingham, Dana L.; Misamore, John; Greenhouse, Jack; Weiss, Deborah E.; Verthelyi, Daniela; Higgs, Stephen; Andersen, Hanne; Lewis, Mark G.; Mattapallil, Joseph J.

    2017-01-01

    Structural and functional homologies between the Zika and Dengue viruses? envelope proteins raise the possibility that cross-reactive antibodies induced following Zika virus infection might enhance subsequent Dengue infection. Using the rhesus macaque model we show that prior infection with Zika virus leads to a significant enhancement of Dengue-2 viremia that is accompanied by neutropenia, lympocytosis, hyperglycemia, and higher reticulocyte counts, along with the activation of pro-inflammat...

  4. Identification of dengue viruses in naturally infected Aedes aegypti females captured with BioGents (BG-Sentinel traps in Manaus, Amazonas, Brazil

    Directory of Open Access Journals (Sweden)

    Regina Maria Pinto de Figueiredo

    2013-04-01

    Full Text Available Introduction In Manaus, the first autochthonous cases of dengue fever were registered in 1998. Since then, dengue cases were diagnosed by the isolation of viruses 1, 2, 3, and 4. Methods One hundred eighty-seven mosquitoes were collected with BioGents (BG-Sentinel traps in 15 urban residential areas in the Northern Zone of Manaus and processed by molecular tests. Results Infections with dengue viruses 1, 2, 3, and 4 and a case of co-infection with dengue viruses 2 and 3 were identified. Conclusions These findings corroborate the detection of dengue in clinical samples and reinforce the need for epidemiological surveillance by the Health authorities.

  5. The Medicinal Chemistry of Dengue Virus.

    Science.gov (United States)

    Behnam, Mira A M; Nitsche, Christoph; Boldescu, Veaceslav; Klein, Christian D

    2016-06-23

    The dengue virus and related flaviviruses are an increasing global health threat. In this perspective, we comment on and review medicinal chemistry efforts aimed at the prevention or treatment of dengue infections. We include target-based approaches aimed at viral or host factors and results from phenotypic screenings in cellular assay systems for viral replication. This perspective is limited to the discussion of results that provide explicit chemistry or structure-activity relationship (SAR), or appear to be of particular interest to the medicinal chemist for other reasons. The discovery and development efforts discussed here may at least partially be extrapolated toward other emerging flaviviral infections, such as West Nile virus. Therefore, this perspective, although not aimed at flaviviruses in general, should also be able to provide an overview of the medicinal chemistry of these closely related infectious agents.

  6. Imported dengue from 2013 Angola outbreak: Not just serotype 1 was detected.

    Science.gov (United States)

    Abreu, Cândida; Silva-Pinto, André; Lazzara, Daniela; Sobrinho-Simões, Joana; Guimarães, João Tiago; Sarmento, António

    2016-06-01

    All the reports from Angola's 2013 dengue outbreak revealed serotype 1. However, previously dengue serotypes 1-4 have been reported in Africa and in 2014 serotype 4 was reported in Angola. To report dengue serotypes in patients returning from Angola during 2013 outbreak. Retrospective, cross-sectional study. We serotyped the dengue by an in house Polymerase Chain Reaction technique in randomly selected cases. From the 2013 Angola's dengue outbreak we treated 47 adult patients. None had history of past dengue. A combo kit test for dengue revealed positive NS1 antigen in 39 and IgM antibodies in 8. From 17 randomly patients tested by RNA Real Time-PCR, 11 were positive: 7 for DENV-1, 2 for DENV-2, 1 for DENV-3 (co-infected with DENV-1) and 1 for DENV-4. None had a complicated or fatal evolution. Unlike previous reports the 4 serotypes were detected, and this resulted in a different epidemiological situation, raising the risk of future outbreaks of severe dengue. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. VERTICAL TRANSMISSION OF DENGUE INFECTION: THE FIRST PUTATIVE CASE REPORTED IN CHINA

    Directory of Open Access Journals (Sweden)

    Xueru YIN

    Full Text Available SUMMARY Dengue is a systemic viral infection that is commonly transmitted between humans via mosquitoes. Other modes of transmission such as the vertical one are rare and have been infrequently reported in the literature. This report investigates one case of vertical transmission of dengue in Guangzhou, China. A G1P1 lady at 39 weeks of gestation was referred to the Huzhong Hospital presenting a fever for two days. She subsequently developed a skin rash on the back and lower limb and at that time she had already experienced five days of fever. She subsequently went into labor and delivered a female neonate weighting 3,500 g at birth. The neonate developed fever on the third day of life which was associated with a systemic erythematous skin rash. There was no report or evidence of mosquito bites after birth. A complete blood count showed leucopenia, thrombocytopenia and anemia and the liver function test showed elevated AST, GGT and bilirubin. Dengue was diagnosed in the mother and the neonate by the ELISA dengue virus NS1 antigen test (Wantai, Beijing, China and dengue virus fluorogenic quantitative PCR test (Liferiver, Shanghai, China.The case report illustrates the possibility of the vertical transmission of dengue. Clinicians should be alert to this possibility and institute early treatment. Further direct evidence and research are required.

  8. Detection and identification of dengue virus isolates from Brazil by a simplified reverse transcription - polymerase chain reaction (RT-PCR method

    Directory of Open Access Journals (Sweden)

    FIGUEIREDO Luiz Tadeu Moraes

    1997-01-01

    Full Text Available We show here a simplified RT-PCR for identification of dengue virus types 1 and 2. Five dengue virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD as a negative control, were used in this study. C6/36 cells were infected and supernatants were collected after 7 days. The RT-PCR, done in a single reaction vessel, was carried out following a 1/10 dilution of virus in distilled water or in a detergent mixture containing Nonidet P40. The 50 µl assay reaction mixture included 50 pmol of specific primers amplifying a 482 base pair sequence for dengue type 1 and 210 base pair sequence for dengue type 2. In other assays, we used dengue virus consensus primers having maximum sequence similarity to the four serotypes, amplifying a 511 base pair sequence. The reaction mixture also contained 0.1 mM of the four deoxynucleoside triphosphates, 7.5 U of reverse transcriptase, 1U of thermostable Taq DNA polymerase. The mixture was incubated for 5 minutes at 37ºC for reverse transcription followed by 30 cycles of two-step PCR amplification (92ºC for 60 seconds, 53ºC for 60 seconds with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized by UV light after staining with ethidium bromide solution. Low virus titer around 10 3, 6 TCID50/ml was detected by RT-PCR for dengue type 1. Specific DNA amplification was observed with all the Brazilian dengue strains by using dengue virus consensus primers. As compared to other RT-PCRs, this assay is less laborious, done in a shorter time, and has reduced risk of contamination

  9. Deeper understanding about the genetic structure of dengue virus using SVM

    Directory of Open Access Journals (Sweden)

    Choi Subin

    2016-01-01

    Full Text Available Dengue fever, mainly found in the tropical and subtropical regions, is carried by mosquitoes. With the help of greenhouse effect, places considered to be a Dengue safe-zone are becoming more and more dangerous. Dengue fever shows similar aspects to MERS, which caused heavy casualties in South Korea; Dengue virus does not have clear treatments nor vaccines like MERS. Development of Dengue vaccine is actively investigated lately. However, it is not easy to succeed; the fact that Dengue’s 4 serotypes have different properties and that repeated infections worsen the symptoms. This research aims to analyze the 4 serotypes (DENV1, DENV2, DENV3, DENV4 using SVM and ANN algorithms to investigate the constraints in the development of Dengue’s vaccines and treatments.

  10. Two complex, adenovirus-based vaccines that together induce immune responses to all four dengue virus serotypes.

    Science.gov (United States)

    Holman, David H; Wang, Danher; Raviprakash, Kanakatte; Raja, Nicholas U; Luo, Min; Zhang, Jianghui; Porter, Kevin R; Dong, John Y

    2007-02-01

    Dengue virus infections can cause hemorrhagic fever, shock, encephalitis, and even death. Worldwide, approximately 2.5 billion people live in dengue-infested regions with about 100 million new cases each year, although many of these infections are believed to be silent. There are four antigenically distinct serotypes of dengue virus; thus, immunity from one serotype will not cross-protect from infection with the other three. The difficulties that hamper vaccine development include requirements of the natural conformation of the envelope glycoprotein to induce neutralizing immune responses and the necessity of presenting antigens of all four serotypes. Currently, the only way to meet these requirements is to use a mixture of four serotypes of live attenuated dengue viruses, but safety remains a major problem. In this study, we have developed the basis for a tetravalent dengue vaccine using a novel complex adenovirus platform that is capable of expressing multiple antigens de novo. This dengue vaccine is constructed as a pair of vectors that each expresses the premembrane and envelope genes of two different dengue virus serotypes. Upon vaccination, the vaccine expressed high levels of the dengue virus antigens in cells to mimic a natural infection and induced both humoral and cellular immune responses against multiple serotypes of dengue virus in an animal model. Further analyses show the humoral responses were indeed neutralizing against all four serotypes. Our studies demonstrate the concept of mimicking infections to induce immune responses by synthesizing dengue virus membrane antigens de novo and the feasibility of developing an effective tetravalent dengue vaccine by vector-mediated expression of glycoproteins of the four serotypes.

  11. Antibody Recognition of the Dengue Virus Proteome and Implications for Development of Vaccines

    Science.gov (United States)

    2011-04-01

    Parvovirus B19 empty capsids as antigen carriers for presentation of antigenic detenninants of dengue 2 virus. J. Infect. Dis. 194:790-794. 3... reactiv - ity against other DENV serotypes (1, 35). In contrast to DF, dengue hemorrhagic fever (DHF) is an infrequent but far more serious consequence of...recipients of the tetrava- lent DENV vaccine or from dengue cases owing to antibody cross- reactivity among serotypes (29). Furthermore, as results from

  12. Vector competence of the Aedes aegypti population from Santiago Island, Cape Verde, to different serotypes of dengue virus.

    Science.gov (United States)

    da Moura, Aires Januário Fernandes; de Melo Santos, Maria Alice Varjal; Oliveira, Claudia Maria Fontes; Guedes, Duschinka Ribeiro Duarte; de Carvalho-Leandro, Danilo; da Cruz Brito, Maria Lidia; Rocha, Hélio Daniel Ribeiro; Gómez, Lara Ferrero; Ayres, Constância Flávia Junqueira

    2015-02-19

    Dengue is an arboviral disease caused by dengue virus (DENV), whose main vectors are the mosquitoes Aedes aegypti and Aedes albopictus. A. aegypti is the only DENV vector in Cape Verde, an African country that suffered its first outbreak of dengue in 2009. However, little is known about the variation in the level of vector competence of this mosquito population to the different DENV serotypes. This study aimed to evaluate the vector competence of A. aegypti from the island of Santiago, Cape Verde, to four DENV serotypes and to detect DENV vertical transmission. Mosquitoes were fed on blood containing DENV serotypes and were dissected at 7, 14 and 21 days post-infection (dpi) to detect the virus in the midgut, head and salivary glands (SG) using RT-PCR. Additionally, the number of copies of viral RNA present in the SG was determined by qRT-PCR. Furthermore, eggs were collected in the field and adult mosquitoes obtained were analyzed by RT-PCR and the platelia dengue NS1 antigen kit to detect transovarial transmission. High rates of SG infection were observed for DENV-2 and DENV-3 whereas for DENV-1, viral RNA was only detected in the midgut and head. DENV-4 did not spread to the head or SG, maintaining the infection only in the midgut. The number of viral RNA copies in the SG did not vary significantly between DENV-2 and DENV-3 or among the different periods of incubation and the various titers of DENV tested. With respect to DENV surveillance in mosquitoes obtained from the eggs collected in the field, no samples were positive. Although no DENV positive samples were collected from the field in 2014, it is important to highlight that the A. aegypti population from Santiago Islands exhibited different degrees of susceptibility to DENV serotypes. This population showed a high vector competence for DENV-2 and DENV-3 strains and a low susceptibility to DENV-1 and DENV-4. Viral RNA copies in the SG remained constant for at least 21 dpi, which may enhance the vector

  13. The NS1 Protein from Influenza Virus Stimulates Translation Initiation by Enhancing Ribosome Recruitment to mRNAs.

    Science.gov (United States)

    Panthu, Baptiste; Terrier, Olivier; Carron, Coralie; Traversier, Aurélien; Corbin, Antoine; Balvay, Laurent; Lina, Bruno; Rosa-Calatrava, Manuel; Ohlmann, Théophile

    2017-10-27

    The non-structural protein NS1 of influenza A viruses exerts pleiotropic functions during infection. Among these functions, NS1 was shown to be involved in the control of both viral and cellular translation; however, the mechanism by which this occurs remains to be determined. Thus, we have revisited the role of NS1 in translation by using a combination of influenza infection, mRNA reporter transfection, and in vitro functional and biochemical assays. Our data show that the NS1 protein is able to enhance the translation of virtually all tested mRNAs with the exception of constructs bearing the Dicistroviruses Internal ribosome entry segment (IRESes) (DCV and CrPV), suggesting a role at the level of translation initiation. The domain of NS1 required for translation stimulation was mapped to the RNA binding amino-terminal motif of the protein with residues R38 and K41 being critical for activity. Although we show that NS1 can bind directly to mRNAs, it does not correlate with its ability to stimulate translation. This activity rather relies on the property of NS1 to associate with ribosomes and to recruit them to target mRNAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking

    NARCIS (Netherlands)

    van der Schaar, Hilde M.; Rust, Michael J.; Waarts, Barry-Lee; van der Ende-Metselaarl, Heidi; Kuhn, Richard J.; Wilschut, Jan; Zhuang, Xiaowei; Smit, Jolanda M.

    In this study, we investigated the cell entry characteristics of dengue virus (DENV) type 2 strain SI on mosquito, BHK-15, and BS-C-1 cells. The concentration of virus particles measured by biochemical assays was found to be substantially higher than the number of infectious particles determined by

  15. Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking

    NARCIS (Netherlands)

    van der Schaar, Hilde M.; Rust, Michael J.; Waarts, Barry-Lee; van der Ende-Metselaarl, Heidi; Kuhn, Richard J.; Wilschut, Jan; Zhuang, Xiaowei; Smit, Jolanda M.

    2007-01-01

    In this study, we investigated the cell entry characteristics of dengue virus (DENV) type 2 strain SI on mosquito, BHK-15, and BS-C-1 cells. The concentration of virus particles measured by biochemical assays was found to be substantially higher than the number of infectious particles determined by

  16. Dengue Virus Uses a Non-Canonical Function of the Host GBF1-Arf-COPI System for Capsid Protein Accumulation on Lipid Droplets.

    Science.gov (United States)

    Iglesias, Nestor G; Mondotte, Juan A; Byk, Laura A; De Maio, Federico A; Samsa, Marcelo M; Alvarez, Cecilia; Gamarnik, Andrea V

    2015-09-01

    Dengue viruses cause the most important human viral disease transmitted by mosquitoes. In recent years, a great deal has been learned about molecular details of dengue virus genome replication; however, little is known about genome encapsidation and the functions of the viral capsid protein. During infection, dengue virus capsid progressively accumulates around lipid droplets (LDs) by an unknown mechanism. Here, we examined the process by which the viral capsid is transported from the endoplasmic reticulum (ER) membrane, where the protein is synthesized, to LDs. Using different methods of intervention, we found that the GBF1-Arf1/Arf4-COPI pathway is necessary for capsid transport to LDs, while the process is independent of both COPII components and Golgi integrity. The transport was sensitive to Brefeldin A, while a drug resistant form of GBF1 was sufficient to restore capsid subcellular distribution in infected cells. The mechanism by which LDs gain or lose proteins is still an open question. Our results support a model in which the virus uses a non-canonical function of the COPI system for capsid accumulation on LDs, providing new ideas for antiviral strategies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Elevation of soluble VCAM-1 plasma levels in children with acute dengue virus infection of varying severity.

    NARCIS (Netherlands)

    Koraka, P.; Murgue, B.; Deparis, X.; Gorp, E. van; Setiati, T.E.; Osterhaus, A.D.; Groen, J.

    2004-01-01

    Approximately 1,000 million infections with dengue viruses are estimated to occur annually. The majority of the cases develop mild disease, whereas only small proportion of the infected individuals develop severe hemorrhagic manifestations at the end of the acute phase of illness. In this study, the

  18. Differential oxidative stress induced by dengue virus in monocytes from human neonates, adult and elderly individuals.

    Directory of Open Access Journals (Sweden)

    Nereida Valero

    Full Text Available Changes in immune response during lifespan of man are well known. These changes involve decreased neonatal and elderly immune response. In addition, it has been shown a relationship between immune and oxidative mechanisms, suggesting that altered immune response could be associated to altered oxidative response. Increased expression of nitric oxide (NO has been documented in dengue and in monocyte cultures infected with different types of dengue virus. However, there is no information about the age-dependent NO oxidative response in humans infected by dengue virus. In this study, monocyte cultures from neonatal, elderly and adult individuals (n = 10 each group were infected with different dengue virus types (DENV- 1 to 4 and oxidative/antioxidative responses and apoptosis were measured at days 1 and 3 of culture. Increased production of NO, lipid peroxidation and enzymatic and nonenzymatic anti-oxidative responses in dengue infected monocyte cultures were observed. However, neonatal and elderly monocytes had lower values of studied parameters when compared to those in adult-derived cultures. Apoptosis was present in infected monocytes with higher values at day 3 of culture. This reduced oxidant/antioxidant response of neonatal and elderly monocytes could be relevant in the pathogenesis of dengue disease.

  19. Detection of dengue virus type 4 in Easter Island, Chile.

    Science.gov (United States)

    Fernández, J; Vera, L; Tognarelli, J; Fasce, R; Araya, P; Villagra, E; Roos, O; Mora, J

    2011-10-01

    We report the detection of dengue virus type 4 (DENV-4) for the first time in Easter Island, Chile. The virus was detected in serum samples of two patients treated at the Hospital in Easter Island. The two samples were IgM positive, and the infection was confirmed by RT-PCR and genetic sequencing; viral isolation was possible with one of them. The Easter Island isolates were most closely related to genotype II of dengue type 4.

  20. Detection of dengue virus from mosquito cell cultures inoculated with human serum in the presence of actinomycin D.

    Science.gov (United States)

    Ramos, C; Villaseca, J M; García, H; Hernández, D G; Ramos-Castañeda, J; Imbert, J L

    1995-01-01

    We report the use of cultures of mosquito cells (TRA-284) to detect dengue virus in serum from cases of dengue fever in the state of Puebla, México. Using the conventional procedure 56 of 171 samples (32.7%) were positive. The negative sera (67.3%) were passaged 'blind' in mosquito cell cultures but no virus was detected. However, when these sera were incubated in the presence of actinomycin D (an inhibitor of deoxyribonucleic acid transcription) 20 of the 115 samples (17.4%) became positive. This procedure increased the virus detection rate from 32.7% to 44.4%. Serotypes 1 and 4 were identified for the first time in the state of Puebla, where the transmission of dengue virus is increasing. The addition of actinomycin D to mosquito cell cultures may improve the detection of dengue virus and could be a useful tool for virological surveillance in endemic countries.

  1. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection.

    Science.gov (United States)

    Bonizzoni, Mariangela; Dunn, W Augustine; Campbell, Corey L; Olson, Ken E; Marinotti, Osvaldo; James, Anthony A

    2012-01-01

    Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV) are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1-4), each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes.

  2. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Mariangela Bonizzoni

    Full Text Available Dengue fever is the most important arboviral disease world-wide, with Aedes aegypti being the major vector. Interactions between the mosquito host and dengue viruses (DENV are complex and vector competence varies among geographically-distinct Ae. aegypti populations. Additionally, dengue is caused by four antigenically-distinct viral serotypes (DENV1-4, each with multiple genotypes. Each virus genotype interacts differently with vertebrate and invertebrate hosts. Analyses of alterations in mosquito transcriptional profiles during DENV infection are expected to provide the basis for identifying networks of genes involved in responses to viruses and contribute to the molecular-genetic understanding of vector competence. In addition, this knowledge is anticipated to support the development of novel disease-control strategies. RNA-seq technology was used to assess genome-wide changes in transcript abundance at 1, 4 and 14 days following DENV2 infection in carcasses, midguts and salivary glands of the Ae. aegypti Chetumal strain. DENV2 affected the expression of 397 Ae. aegypti genes, most of which were down-regulated by viral infection. Differential accumulation of transcripts was mainly tissue- and time-specific. Comparisons of our data with other published reports reveal conservation of functional classes, but limited concordance of specific mosquito genes responsive to DENV2 infection. These results indicate the necessity of additional studies of mosquito-DENV interactions, specifically those focused on recently-derived mosquito strains with multiple dengue virus serotypes and genotypes.

  3. Increased Levels of Txa₂ Induced by Dengue Virus Infection in IgM Positive Individuals Is Related to the Mild Symptoms of Dengue.

    Science.gov (United States)

    Oliveira, Eneida S; Colombarolli, Stella G; Nascimento, Camila S; Batista, Izabella C A; Ferreira, Jorge G G; Alvarenga, Daniele L R; de Sousa, Laís O B; Assis, Rafael R; Rocha, Marcele N; Alves, Érica A R; Calzavara-Silva, Carlos E

    2018-02-28

    The inflammatory process plays a major role in the prognosis of dengue. In this context, the eicosanoids may have considerable influence on the regulation of the Dengue virus -induced inflammatory process. To quantify the molecules involved in the cyclooxygenase and lipoxygenase pathways during Dengue virus infection, plasma levels of thromboxane A2, prostaglandin E2 and leukotriene B4; mRNA levels of thromboxane A2 synthase, prostaglandin E2 synthase, leukotriene A4 hydrolase, cyclooxygenase-2 and 5-lipoxygenase; and the levels of lipid bodies in peripheral blood leukocytes collected from IgM-positive and IgM-negative volunteers with mild dengue, and non-infected volunteers, were evaluated. Dengue virus infection increases the levels of thromboxane A2 in IgM-positive individuals as well as the amount of lipid bodies in monocytes in IgM-negative individuals. We suggest that increased levels of thromboxane A2 in IgM-positive individuals plays a protective role against the development of severe symptoms of dengue, such as vascular leakage.

  4. The impact of temperature and Wolbachia infection on vector competence of potential dengue vectors Aedes aegypti and Aedes albopictus in the transmission of dengue virus serotype 1 in southern Taiwan.

    Science.gov (United States)

    Tsai, Cheng-Hui; Chen, Tien-Huang; Lin, Cheo; Shu, Pei-Yun; Su, Chien-Ling; Teng, Hwa-Jen

    2017-11-07

    We evaluated the impact of temperature and Wolbachia infection on vector competence of the local Aedes aegypti and Ae. albopictus populations of southern Taiwan in the laboratory. After oral infection with dengue serotype 1 virus (DENV-1), female mosquitoes were incubated at temperatures of 10, 16, 22, 28 and 34 °C. Subsequently, salivary gland, head, and thorax-abdomen samples were analyzed for their virus titer at 0, 5, 10, 15, 20, 25 and 30 days post-infection (dpi) by real-time RT-PCR. The results showed that Ae. aegypti survived significantly longer and that dengue viral genome levels in the thorax-abdomen (10 3.25 ± 0.53 -10 4.09 ± 0.71 PFU equivalents/ml) and salivary gland samples (10 2.67 ± 0.33 -10 3.89 ± 0.58 PFU equivalents/ml) were significantly higher at high temperature (28-34 °C). The survival of Ae. albopictus was significantly better at 16 or 28 °C, but the virus titers from thorax-abdomen (10 0.70 -10 2.39 ± 1.31 PFU equivalents/ml) and salivary gland samples (10 0.12 ± 0.05 -10 1.51 ± 0.31 PFU equivalents/ml) were significantly higher at 22-28 °C. Within viable temperature ranges, the viruses were detectable after 10 dpi in salivary glands and head tissues in Ae. aegypti and after 5-10 dpi in Ae. albopictus. Vector competence was measured in Ae. albopictus with and without Wolbachia at 28 °C. Wolbachia-infected mosquitoes survived significantly better and carried lower virus titers than Wolbachia-free mosquitoes. Wolbachia coinfections (92.8-97.2%) with wAlbA and wAlbB strains were commonly found in a wild population of Ae. albopictus. In southern Taiwan, Ae. aegypti is the main vector of dengue and Ae. albopictus has a non-significant role in the transmission of dengue virus due to the high prevalence of Wolbachia infection in the local mosquito population of southern Taiwan.

  5. Evolutionary dynamics of hepatitis C virus NS3 protease domain during and following treatment with narlaprevir, a potent NS3 protease inhibitor

    NARCIS (Netherlands)

    de Bruijne, J.; Thomas, X. V.; Rebers, S. P.; Weegink, C. J.; Treitel, M. A.; Hughes, E.; Bergmann, J. F.; de Knegt, R. J.; Janssen, H. L. A.; Reesink, H. W.; Molenkamp, R.; Schinkel, J.

    2013-01-01

    Narlaprevir, a hepatitis C virus (HCV) NS3/4A serine protease inhibitor, has demonstrated robust antiviral activity in a placebo-controlled phase 1 study. To study evolutionary dynamics of resistant variants, the NS3 protease sequence was clonally analysed in thirty-two HCV genotype 1-infected

  6. Re-emergence of dengue virus serotype 2 strains in the 2013 outbreak in Nepal

    Science.gov (United States)

    Gupta, Birendra Prasad; Singh, Sneha; Kurmi, Roshan; Malla, Rajani; Sreekumar, Easwaran; Manandhar, Krishna Das

    2015-01-01

    Background & objectives: Epidemiological interventions and mosquito control are the available measures for dengue control. The former approach uses serotype and genetic information on the circulating virus strains. Dengue has been frequently reported from Nepal, but this information is mostly lacking. The present study was done to generate a comprehensive clinical and virological picture of a dengue outbreak in Nepal during 2013. Methods: A hospital-based study involving patients from five districts of Nepal was carried out. Demographic information, clinical details and dengue serological status were obtained. Viral RNA was characterized at the molecular level by reverse-transcription polymerase chain reaction (RT-PCR), nucleotide sequencing and phylogenetic analysis. Results: From among the 2340 laboratory-confirmed dengue cases during the study period, 198 patients consented for the study. Clinically they had fever (100%), headache (59.1%), rashes (18.2%), retro-orbital pain (30.3%), vomiting (15.1%), joint pain (28.8%) and thrombocytopenia (74.3%). Fifteen (7.5%) of them had mucosal bleeding manifestations, and the rest were uncomplicated dengue fever. The patients were mostly adults with a mean age of 45.75 ± 38.61 yr. Of the 52 acute serum samples tested, 15 were positive in RT-PCR. The causative virus was identified as DENV serotype 2 belonging to the Cosmopolitan genotype. Interpretations & conclusions: We report here the involvement of DENV serotype 2 in an outbreak in Nepal in 2013. Earlier outbreaks in the region in 2010 were attributed to serotype 1 virus. As serotype shifts are frequently associated with secondary infections and severe disease, there is a need for enhancing surveillance especially in the monsoon and post-monsoon periods to prevent large-scale, severe dengue outbreaks in the region. PMID:26905233

  7. Label-Free Electrochemical Detection of the Specific Oligonucleotide Sequence of Dengue Virus Type 1 on Pencil Graphite Electrodes

    Science.gov (United States)

    Souza, Elaine; Nascimento, Gustavo; Santana, Nataly; Ferreira, Danielly; Lima, Manoel; Natividade, Edna; Martins, Danyelly; Lima-Filho, José

    2011-01-01

    A biosensor that relies on the adsorption immobilization of the 18-mer single-stranded nucleic acid related to dengue virus gene 1 on activated pencil graphite was developed. Hybridization between the probe and its complementary oligonucleotides (the target) was investigated by monitoring guanine oxidation by differential pulse voltammetry (DPV). The pencil graphite electrode was made of ordinary pencil lead (type 4B). The polished surface of the working electrode was activated by applying a potential of 1.8 V for 5 min. Afterward, the dengue oligonucleotides probe was immobilized on the activated electrode by applying 0.5 V to the electrode in 0.5 M acetate buffer (pH 5.0) for 5 min. The hybridization process was carried out by incubating at the annealing temperature of the oligonucleotides. A time of five minutes and concentration of 1 μM were found to be the optimal conditions for probe immobilization. The electrochemical detection of annealing between the DNA probe (TS-1P) immobilized on the modified electrode, and the target (TS-1T) was achieved. The target could be quantified in a range from 1 to 40 nM with good linearity and a detection limit of 0.92 nM. The specificity of the electrochemical biosensor was tested using non-complementary sequences of dengue virus 2 and 3. PMID:22163916

  8. Aislamiento rápido del virus dengue 3 por el método de shell vial en el brote de dengue en Lima

    Directory of Open Access Journals (Sweden)

    Victoria Gutiérrez P

    2005-07-01

    Full Text Available El aislamiento de virus dengue con los métodos tradicionales demora hasta un mes, en situaciones de emergencia como el brote de dengue clásico en el distrito de Comas-Lima entre abril y mayo de 2005, es necesario un diagnóstico precoz. Se procesaron 117 muestras de sueros de pacientes con diagnóstico clínico de dengue clásico en fase virémica procedentes la zona del brote, mediante el método de shell vial para el aislamiento del virus dengue en la línea celular C6-36, se identificó el serotipo del virus mediante inmunofluorescencia indirecta (IFI empleando anticuerpos monoclonales. Se logró el aislamiento del virus DEN-3 al quinto día de cosecha en el 48,7% (57/117 de los sueros. Los resultados sugieren que el método de shell vial, por el menor tiempo de aislamiento que el método tradicional, puede ser implementado como método de diagnóstico y usado en la vigilancia epidemiológica del virus dengue.

  9. Identification of bioflavonoid as fusion inhibitor of dengue virus using molecular docking approach

    Directory of Open Access Journals (Sweden)

    Asif Mir

    Full Text Available Dengue virus with four distinct serotypes belongs to Flavivirus, poses a significant threat to human health and becomes an emerging global problem. Membrane fusion is a central molecular event during viral entry into host cell. To prevent viral infection it is necessary to interrupt the virus replication at an early stage of attachment. Dengue Virus (DENV envelope protein experiences conformational changes and it causes the virus to fuse with host cell. Hinge region movement of domain I and II in envelope protein facilitates the fusion process. Small molecules that bind in this pocket may have the ability to interrupt the conformational changes that trigger fusion process. We chose different flavonoids (baicalein, fisetin, hesperetin, naringenin/ naringin, quercetin and rutin that possess anti dengue activity. Molecular docking analysis was done to examine the inhibitory effect of flavonoids against envelope protein of DENV-2. Results manifest quercetin (flavonoid found in Carica papaya, apple and even in lemon as the only flavone that can interrupt the fusion process of virus by inhibiting the hinge region movement and by blocking the conformational rearrangement in envelope protein. These novel findings using computational approach are worthwhile and will be a bridge to check the efficacy of compounds using appropriate animal model under In vivo studies. This information can be used by new techniques and provides a way to control dengue virus infection. Keywords: Dengue virus, Inhibitor identification, Molecular docking, Interaction analysis

  10. Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a viruses

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Jensen, Sanne B; Li, Yi-Ping

    2013-01-01

    With the development of directly acting antivirals, hepatitis C virus (HCV) therapy entered a new era. However, rapid selection of resistance mutations necessitates combination therapy. To study combination therapy in infectious culture systems, we aimed at developing HCV semi-full-length (semi...... to single-drug treatment, combination treatment with relatively low concentrations of asunaprevir and daclatasvir suppressed infection with all five recombinants. Escaped viruses primarily had substitutions at amino acids in the NS3 protease and NS5A domain I reported to be genotype 1 resistance mutations...

  11. Dengue virus infection in renal allograft recipients: a case series during 2010 outbreak.

    Science.gov (United States)

    Prasad, N; Bhadauria, D; Sharma, R K; Gupta, A; Kaul, A; Srivastava, A

    2012-04-01

    Dengue virus infection is an emerging global threat caused by Arbovirus, a virus from Flaviridiae family, which is transmitted by mosquitoes, Aedes aegypti and Aedes albopictus. Renal transplant recipients who live in the endemic zones of dengue infection or who travel to an endemic zone could be at risk of this infection. Despite multiple epidemics and a high case fatality rate in the Southeast Asian region, only a few cases of dengue infection in renal transplant recipients have been reported. Here, we report a case series of 8 dengue viral infection in renal transplant recipients. Of the 8 patients, 3 developed dengue hemorrhagic shock syndrome and died. © 2011 John Wiley & Sons A/S.

  12. Identification of New Protein Interactions between Dengue Fever Virus and Its Hosts, Human and Mosquito

    Science.gov (United States)

    Mairiang, Dumrong; Zhang, Huamei; Sodja, Ann; Murali, Thilakam; Suriyaphol, Prapat; Malasit, Prida; Limjindaporn, Thawornchai; Finley, Russell L.

    2013-01-01

    The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host – dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies. PMID:23326450

  13. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito.

    Science.gov (United States)

    Mairiang, Dumrong; Zhang, Huamei; Sodja, Ann; Murali, Thilakam; Suriyaphol, Prapat; Malasit, Prida; Limjindaporn, Thawornchai; Finley, Russell L

    2013-01-01

    The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host - dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies.

  14. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito.

    Directory of Open Access Journals (Sweden)

    Dumrong Mairiang

    Full Text Available The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host - dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies.

  15. Spatial and temporal clustering of dengue virus transmission in Thai villages.

    Science.gov (United States)

    Mammen, Mammen P; Pimgate, Chusak; Koenraadt, Constantianus J M; Rothman, Alan L; Aldstadt, Jared; Nisalak, Ananda; Jarman, Richard G; Jones, James W; Srikiatkhachorn, Anon; Ypil-Butac, Charity Ann; Getis, Arthur; Thammapalo, Suwich; Morrison, Amy C; Libraty, Daniel H; Green, Sharone; Scott, Thomas W

    2008-11-04

    Transmission of dengue viruses (DENV), the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted. Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters) and without (negative clusters) acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1) define the spatial and temporal dimensions of DENV transmission, (2) correlate these factors with variation in DENV transmission, and (3) determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees) occurred in positive clusters (p availability of piped water in negative clusters (p < 0.01) and greater number of Ae. aegypti pupae per person in positive clusters (p = 0.04). During primarily DENV-4 transmission seasons, the ratio of inapparent to symptomatic infections was nearly 1:1 among child enrollees. Study limitations included inability to sample all children and mosquitoes within each cluster and our reliance on serologic rather than virologic evidence of interval infections in enrollees given restrictions on the frequency of blood collections in children. Our data reveal the remarkably focal nature of DENV transmission within a hyperendemic rural area of Thailand. These data suggest that active school-based dengue case detection

  16. Morphological studies in a model for dengue-2 virus infection in mice

    Directory of Open Access Journals (Sweden)

    Ortrud Monika Barth

    2006-12-01

    Full Text Available One of the main difficulties in studying dengue virus infection in humans and in developing a vaccine is the absence of a suitable animal model which develops the full spectrum of dengue fever, dengue haemorrhagic fever, and dengue shock syndrome. It is our proposal to present morphological aspects of an animal model which shows many similarities with the dengue infection in humans. BALB/c mice were intraperitoneally infected with non-neuroadapted dengue virus serotype 2 (DENV-2. Histopathological and morphometrical analyses of liver tissue revealed focal alterations along the infection, reaching wide-ranging portal and centrolobular veins congestion and sinusoidal cell death. Additional ultrastructural observations demonstrated multifocal endothelial injury, platelet recruitment, and alterated hepatocytes. Dengue virus antigen was detected in hepatocytes and in the capillar endothelium of the central lobular vein area. Liver function tests showed high levels of aspartate transaminase and alanine transaminase enzyme activity. Lung tissue showed interstitial pneumonia and mononuclear cells, interseptal oedema, hyperplasia, and hypertrophy of the bronchiolar epithelial cells. DENV-2 led to a transient inflammatory process, but caused focal alterations of the blood-exchange barrier. Viremia was observed from 2nd to 11th day p.i. by isolation of DENV-2 in C6/36 mosquito cell line inoculated with the supernatant of macerated liver, lung, kidney, and cerebellum tissues of the infected mice.

  17. Protein clustering and RNA phylogenetic reconstruction of the influenza A [corrected] virus NS1 protein allow an update in classification and identification of motif conservation.

    Science.gov (United States)

    Sevilla-Reyes, Edgar E; Chavaro-Pérez, David A; Piten-Isidro, Elvira; Gutiérrez-González, Luis H; Santos-Mendoza, Teresa

    2013-01-01

    The non-structural protein 1 (NS1) of influenza A virus (IAV), coded by its third most diverse gene, interacts with multiple molecules within infected cells. NS1 is involved in host immune response regulation and is a potential contributor to the virus host range. Early phylogenetic analyses using 50 sequences led to the classification of NS1 gene variants into groups (alleles) A and B. We reanalyzed NS1 diversity using 14,716 complete NS IAV sequences, downloaded from public databases, without host bias. Removal of sequence redundancy and further structured clustering at 96.8% amino acid similarity produced 415 clusters that enhanced our capability to detect distinct subgroups and lineages, which were assigned a numerical nomenclature. Maximum likelihood phylogenetic reconstruction using RNA sequences indicated the previously identified deep branching separating group A from group B, with five distinct subgroups within A as well as two and five lineages within the A4 and A5 subgroups, respectively. Our classification model proposes that sequence patterns in thirteen amino acid positions are sufficient to fit >99.9% of all currently available NS1 sequences into the A subgroups/lineages or the B group. This classification reduces host and virus bias through the prioritization of NS1 RNA phylogenetics over host or virus phenetics. We found significant sequence conservation within the subgroups and lineages with characteristic patterns of functional motifs, such as the differential binding of CPSF30 and crk/crkL or the availability of a C-terminal PDZ-binding motif. To understand selection pressures and evolution acting on NS1, it is necessary to organize the available data. This updated classification may help to clarify and organize the study of NS1 interactions and pathogenic differences and allow the drawing of further functional inferences on sequences in each group, subgroup and lineage rather than on a strain-by-strain basis.

  18. 78 FR 16505 - Prospective Grant of Exclusive License: Chimeric West Nile/Dengue Viruses

    Science.gov (United States)

    2013-03-15

    ... Grant of Exclusive License: Chimeric West Nile/Dengue Viruses AGENCY: Centers for Disease Control and.... Provisional Application 61/049,342, filed 4/30/2008, entitled ``Engineered, Chimeric West Nile/Dengue Viruses;'' PCT Application PCT/US2009/041824, filed 4/27/2009, entitled ``Engineered, Chimeric WN/Flavivirus as...

  19. Efektivitas Pentagamavunon-0 (PGV-0 pada fase awal infeksi virus Dengue-2

    Directory of Open Access Journals (Sweden)

    Dewi Marbawati

    2015-01-01

    Full Text Available Abstract. Dengue virus infects 50 to 100 million people every year, however, specific treatment or effective antiviral drugs to treat viral infections has not been found yet. Curcumin known has  perform the inhibition of ubiquitin-proteasome system that causes a decrease of Japanese encephalitis, one kind of flavivirus. Structural modifications was known to increase the biological activity of curcumin. Pentagamavunon-0 (PGV-0 is known have activity similar to or even better than curcumin. This study aims to determine the effect of PGV-0 in the early phase of infection of dengue- virus 2 (one day of infection. This study includes quasi-experimental study. The method used for the detection of Dengue-2 viruswas immunocytochemistry, whichpreviously tested by PGV-0 cytotoxic test against vero cells. Cytotoxic test results indicate safe concentrations (no toxic effects of PGV-0 against vero cells is 4.44 µM. Calculation of positive rate compared with the positive control(14.55 ± 7.25 showed that the value of positive rate due to one-day Dengue virus-2 infection with PGV-0 treatment was smaller(3.8 ± 3.89. It was concluded that the PGV-0 is able to decrease the positive rate due to Den-2 infection in the initial period of infection. Keywords: dengue, Pentagamavunon-0 (PGV-0,immunocytochemistry, vero cells Abstrak.Virus Dengue menginfeksi 50 sampai 100 juta orangper tahun, namun terapi yang spesifik atau obat antivirus yang efektif belum ditemukan. Kurkumin diketahui mampu melakukan penghambatan system ubiquitin-proteasome yang menyebabkan penurunan produksi salah satu jenis Flavivirus yaitu Japanese encephaitis. Modifikasi struktur kurkumin terbukti meningkatkan aktivitas biologisnya.  Pentagamavunon-0 (PGV-0 diketahui memiliki aktifitas mirip atau bahkan  lebih baik dari kurkumin. Tujuan dari penelitian ini adalah mengetahui pengaruh pemberian PGV-0 pada fase awal infeksi virus Dengue-2 (satu hari infeksi. Penelitian ini termasuk penelitian

  20. Synchrony of sylvatic dengue isolations: a multi-host, multi-vector SIR model of dengue virus transmission in Senegal.

    Directory of Open Access Journals (Sweden)

    Benjamin M Althouse

    Full Text Available Isolations of sylvatic dengue-2 virus from mosquitoes, humans and non-human primates in Senegal show synchronized multi-annual dynamics over the past 50 years. Host demography has been shown to directly affect the period between epidemics in other pathogen systems, therefore, one might expect unsynchronized multi-annual cycles occurring in hosts with dramatically different birth rates and life spans. However, in Senegal, we observe a single synchronized eight-year cycle across all vector species, suggesting synchronized dynamics in all vertebrate hosts. In the current study, we aim to explore two specific hypotheses: 1 primates with different demographics will experience outbreaks of dengue at different periodicities when observed as isolated systems, and that coupling of these subsystems through mosquito biting will act to synchronize incidence; and 2 the eight-year periodicity of isolations observed across multiple primate species is the result of long-term cycling in population immunity in the host populations. To test these hypotheses, we develop a multi-host, multi-vector Susceptible, Infected, Removed (SIR model to explore the effects of coupling multiple host-vector systems of dengue virus transmission through cross-species biting rates. We find that under small amounts of coupling, incidence in the host species synchronize. Long-period multi-annual dynamics are observed only when prevalence in troughs reaches vanishingly small levels (< 10(-10, suggesting that these dynamics are inconsistent with sustained transmission in this setting, but are consistent with local dengue virus extinctions followed by reintroductions. Inclusion of a constant introduction of infectious individuals into the system causes the multi-annual periods to shrink, while the effects of coupling remain the same. Inclusion of a stochastic rate of introduction allows for multi-annual periods at a cost of reduced synchrony. Thus, we conclude that the eight-year period

  1. Laboratory-Based Surveillance and Molecular Characterization of Dengue Viruses in Taiwan, 2014.

    Science.gov (United States)

    Chang, Shu-Fen; Yang, Cheng-Fen; Hsu, Tung-Chieh; Su, Chien-Ling; Lin, Chien-Chou; Shu, Pei-Yun

    2016-04-01

    We present the results of a laboratory-based surveillance of dengue in Taiwan in 2014. A total of 240 imported dengue cases were identified. The patients had arrived from 16 countries, and Malaysia, Indonesia, the Philippines, and China were the most frequent importing countries. Phylogenetic analyses showed that genotype I of dengue virus type 1 (DENV-1) and the cosmopolitan genotype of DENV-2 were the predominant DENV strains circulating in southeast Asia. The 2014 dengue epidemic was the largest ever to occur in Taiwan since World War II, and there were 15,492 laboratory-confirmed indigenous dengue cases. Phylogenetic analysis showed that the explosive dengue epidemic in southern Taiwan was caused by a DENV-1 strain of genotype I imported from Indonesia. There were several possible causes of this outbreak, including delayed notification of the outbreak, limited staff and resources for control measures, abnormal weather conditions, and a serious gas pipeline explosion in the dengue hot spot areas in Kaohsiung City. However, the results of this surveillance indicated that both active and passive surveillance systems should be strengthened so appropriate public health measures can be taken promptly to prevent large-scale dengue outbreaks. © The American Society of Tropical Medicine and Hygiene.

  2. Prevalencia de anticuerpos neutralizantes contra los serotipos del virus dengue en universitarios de Tabasco, México Prevalence of neutralizing antibodies to dengue virus serotypes in university students from Tabasco, Mexico

    Directory of Open Access Journals (Sweden)

    Gilma Guadalupe Sánchez-Burgos

    2008-10-01

    Full Text Available OBJETIVO: Determinar la seroprevalencia de anticuerpos neutralizantes de los serotipos del virus dengue en estudiantes universitarios de Tabasco, México, durante los meses de septiembre a noviembre del año 2005. MATERIAL Y MÉTODOS: Se determinó la presencia de IgG contra el virus en el suero de estudiantes que acudieron al centro clínico de la universidad; en los sueros positivos se determinaron los anticuerpos neutralizantes mediante el ensayo de reducción de placa lítica. RESULTADOS: La prevalencia de IgG contra el dengue fue de 9.1%; de esta proporción, los anticuerpos neutralizantes fueron DENV-1 (20%, DENV-2 (100%, DENV-3 (4% y DENV-4 (68%. CONCLUSIONES: Este estudio muestra que el serotipo transmitido con mayor frecuencia en el estado de Tabasco es el DENV-2, aunque no ha sido el aislado con más frecuencia. La elevada prevalencia de anticuerpos neutralizantes contra el DENV-4, al parecer de reacción cruzada, podría explicar la baja circulación de este serotipo en Tabasco.OBJECTIVE: Determine the seroprevalence of neutralizing antibodies to dengue virus in students from the state university of Tabasco, Mexico. MATERIAL AND METHODS: A transversal study was conducted of serum collected from students between September and November, 2005. The sera were screened for anti-dengue IgG and those that had evidence of dengue antibodies were analyzed by a plaque reduction neutralization test. RESULTS: Prevalence of anti-dengue IgG was 9.1%. The frequency of neutralizing antibodies was 100% for DENV-2, 68% for DENV-4, 20% for DENV-1, and 4 % for DENV-3. CONCLUSIONS: We found that in this population, DENV-2 circulates more than DENV-3 despite the fact that DENV-3 is more frequently isolated. Unexpectedly, neutralizing antibodies against DENV-4 were frequently found even though this serotype is almost extinct; thus, it is probable that cross-immunity could suppress DEN-4 transmission, as has been suggested.

  3. Increased Levels of Txa2 Induced by Dengue Virus Infection in IgM Positive Individuals Is Related to the Mild Symptoms of Dengue

    Science.gov (United States)

    Oliveira, Eneida S.; Colombarolli, Stella G.; Nascimento, Camila S.; Batista, Izabella C. A.; Ferreira, Jorge G. G.; Alvarenga, Daniele L. R.; de Sousa, Laís O. B.; Assis, Rafael R.; Rocha, Marcele N.; Alves, Érica A. R.; Calzavara-Silva, Carlos E.

    2018-01-01

    The inflammatory process plays a major role in the prognosis of dengue. In this context, the eicosanoids may have considerable influence on the regulation of the Dengue virus-induced inflammatory process. To quantify the molecules involved in the cyclooxygenase and lipoxygenase pathways during Dengue virus infection, plasma levels of thromboxane A2, prostaglandin E2 and leukotriene B4; mRNA levels of thromboxane A2 synthase, prostaglandin E2 synthase, leukotriene A4 hydrolase, cyclooxygenase-2 and 5-lipoxygenase; and the levels of lipid bodies in peripheral blood leukocytes collected from IgM-positive and IgM-negative volunteers with mild dengue, and non-infected volunteers, were evaluated. Dengue virus infection increases the levels of thromboxane A2 in IgM-positive individuals as well as the amount of lipid bodies in monocytes in IgM-negative individuals. We suggest that increased levels of thromboxane A2 in IgM-positive individuals plays a protective role against the development of severe symptoms of dengue, such as vascular leakage. PMID:29495587

  4. STATUS SEROLOGIS TIDAK MEMPENGARUHI PROFIL HEMATOLOGI ANAK TERINFEKSI VIRUS DENGUE

    Directory of Open Access Journals (Sweden)

    Safari Wahyu Jatmiko

    2017-06-01

    Full Text Available Antibodi anti dengue bersifat autoantibodi yang bisa merusak self antigen. Respon imun humoral terhadap DENV adalah terbentuknya IgM dan IgG yang spesifik terhadap sub tipe DENV penyebab. Jika IgG dan IgM anti degue bersifat autoantibodi maka secara teoritis pasien dengan status serologis IgM (+ dan IgG + akan mempunyai profil hematologi yang lebih buruk dari pada pasien dengan IgG (+.Penelitian ini bertjuan untuk mengetahui perbedaan profil hematologi menurut status serologi pada anak terinfeksi virus dengue. Penelitian menggunakan desian analitik dengan pendekatan cross sectional. Data diambil dari pasien anak di RSUD Surakarta dari bulan September 2016 – Januari 2017. Kriteria pasien yang diikutkan dalam penelitian adalah semua pasien anak dengan usia kurang dari 14 tahun dan memenuhi kriteria infeksi virus dengue menurut WHO 2009. Pasien dengan riwayat kelainan hematologi dan pasien dengan riwayat immunocompremised dikeluarkan dari penelitian.Hasil penelitian ditemukan 65 pasien dengan IVD yang memenuhi kriteria.Tujuh belas pasien dengan IgM dan IgG positif sedangkan sisanya hanya IgG positif Hasil penelitian perbedaan profil hematologi jumlah leukosit, trombosit, hematokrit, dan hemoglobin berdasarkan status IgM (+ IgG (+ dengan IgG (+ didapatkan nilai p masing-masing 0.833, 0,865, 0,137, 0,086, dan 0,223. Dapat disimpilkan bahwa tidak terdapat perbedaan profil hematologi antara pasien dengan IgM (+ IgG (+ dengan pasien IgG (+.   Kata Kunci: infeksi virus dengue, antibodi anti dengue, autoantibodi, profil hematologi.

  5. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin.

    Science.gov (United States)

    Peng, Minhua; Watanabe, Satoru; Chan, Kitti Wing Ki; He, Qiuyan; Zhao, Ya; Zhang, Zhongde; Lai, Xiaoping; Luo, Dahai; Vasudevan, Subhash G; Li, Geng

    2017-07-01

    In many countries afflicted with dengue fever, traditional medicines are widely used as panaceas for illness, and here we describe the systematic evaluation of a widely known natural product, luteolin, originating from the "heat clearing" class of herbs. We show that luteolin inhibits the replication of all four serotypes of dengue virus, but the selectivity of the inhibition was weak. In addition, ADE-mediated dengue virus infection of human cell lines and primary PBMCs was inhibited. In a time-of-drug-addition study, luteolin was found to reduce infectious virus particle formation, but not viral RNA synthesis, in Huh-7 cells. During the virus life cycle, the host protease furin cleaves the pr moiety from prM protein of immature virus particles in the trans-Golgi network to produce mature virions. Analysis of virus particles from luteolin-treated cells revealed that prM was not cleaved efficiently. Biochemical interrogation of human furin showed that luteolin inhibited the enzyme activity in an uncompetitive manner, with Ki value of 58.6 μM, suggesting that treatment may restrict the virion maturation process. Luteolin also exhibited in vivo antiviral activity in mice infected with DENV, causing reduced viremia. Given the mode of action of luteolin and its widespread source, it is possible that it can be tested in combination with other dengue virus inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Incidence of dengue virus infection among Japanese travellers, 2006 to 2010

    Directory of Open Access Journals (Sweden)

    Yuki Tada

    2012-06-01

    Full Text Available Introduction: Dengue continues to be a global public health concern. In Japan, although dengue cases are currently seen only among travellers returning from endemic areas, the number of reported cases is rising according to the national case-based surveillance system. We evaluated the characteristics of dengue cases imported into Japan and the relationship between the incidence of infection and season of travel to popular destinations.Methods: Dengue cases reported to the national surveillance system were retrospectively examined. The number of reported cases per number of Japanese travellers to a dengue-endemic country was calculated to estimate the country-specific incidence of imported dengue virus infection. The incidence of dengue infection among Japanese travellers was compared between dengue high season and low season in each country using relative risk (RR and associated 95% confidence intervals (CI.Results: Among 540 Japanese residents who were reported as dengue cases from 2006 to 2010, the majority had travelled to Indonesia, India, the Philippines and Thailand. The RR of dengue infection among Japanese travellers during dengue high season versus low season was 4.92 (95% CI: 3.01–8.04 for the Philippines, 2.76 (95% CI: 1.67–4.54 for Thailand and 0.37 (95% CI: 0.15–0.92 for Indonesia.Discussion: Overall, higher incidence of imported cases appeared to be related to historic dengue high seasons. Travellers planning to visit dengue-endemic countries should be aware of historic dengue seasonality and the current dengue situation.

  7. The effect of glycosylation on cytotoxicity of Ibaraki virus nonstructural protein NS3

    Science.gov (United States)

    URATA, Maho; WATANABE, Rie; IWATA, Hiroyuki

    2015-01-01

    The cytotoxicity of Ibaraki virus nonstructural protein NS3 was confirmed, and the contribution of glycosylation to this activity was examined by using glycosylation mutants of NS3 generated by site-directed mutagenesis. The expression of NS3 resulted in leakage of lactate dehydrogenase to the culture supernatant, suggesting the cytotoxicity of this protein. The lack of glycosylation impaired the transport of NS3 to the plasma membrane and resulted in reduced cytotoxicity. Combined with the previous observation that NS3 glycosylation was specifically observed in mammalian cells (Urata et al., Virus Research 2014), it was suggested that the alteration of NS3 cytotoxicity through modulating glycosylation is one of the strategies to achieve host specific pathogenisity of Ibaraki virus between mammals and vector arthropods. PMID:26178820

  8. Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection.

    Science.gov (United States)

    Zainal, Nurhafiza; Chang, Chih-Peng; Cheng, Yi-Lin; Wu, Yan-Wei; Anderson, Robert; Wan, Shu-Wen; Chen, Chia-Ling; Ho, Tzong-Shiann; AbuBakar, Sazaly; Lin, Yee-Shin

    2017-02-20

    Dengue is one of the most significant mosquito-borne virus diseases worldwide, particularly in tropical and subtropical regions. This study sought to examine the antiviral activity of resveratrol (RESV), a phytoalexin secreted naturally by plants, against dengue virus (DENV) infection. Our data showed that RESV inhibits the translocation of high mobility group box 1 (HMGB1), a DNA binding protein that normally resides in the nucleus, into the cytoplasm and extracellular milieu. HMGB1 migrates out of the nucleus during DENV infection. This migration is inhibited by RESV treatment and is mediated by induction of Sirt1 which leads to the retention of HMGB1 in the nucleus and consequently helps in the increased production of interferon-stimulated genes (ISGs). Nuclear HMGB1 was found to bind to the promoter region of the ISG and positively regulated the expression of ISG. The enhanced transcription of ISGs by nuclear HMGB1 thus contributes to the antiviral activity of RESV against DENV. To the best of our knowledge, this is the first report to demonstrate that RESV antagonizes DENV replication and that nuclear HMGB1 plays a role in regulating ISG production.

  9. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults.

    Directory of Open Access Journals (Sweden)

    Vianney Tricou

    2010-08-01

    Full Text Available There is currently no licensed antiviral drug for treatment of dengue. Chloroquine (CQ inhibits the replication of dengue virus (DENV in vitro.A double-blind, randomized, placebo-controlled trial of CQ in 307 adults hospitalized for suspected DENV infection was conducted at the Hospital for Tropical Diseases (Ho Chi Minh City, Vietnam between May 2007 and July 2008. Patients with illness histories of 72 hours or less were randomized to a 3-day course of CQ (n = 153 or placebo (n = 154. Laboratory-confirmation of DENV infection was made in 257 (84% patients. The primary endpoints were time to resolution of DENV viraemia and time to resolution of DENV NS1 antigenaemia. In patients treated with CQ there was a trend toward a longer duration of DENV viraemia (hazard ratio (HR = 0.80, 95% CI 0.62-1.05, but we did not find any difference for the time to resolution of NS1 antigenaemia (HR = 1.07, 95% CI 0.76-1.51. Interestingly, CQ was associated with a significant reduction in fever clearance time in the intention-to-treat population (HR = 1.37, 95% CI 1.08-1.74 but not in the per-protocol population. There was also a trend towards a lower incidence of dengue hemorrhagic fever (odds ratio = 0.60, PP 95% CI 0.34-1.04 in patients treated with CQ. Differences in levels of T cell activation or pro- or anti-inflammatory plasma cytokine concentrations between CQ- and placebo-treated patients did not explain the trend towards less dengue hemorrhagic fever in the CQ arm. CQ was associated with significantly more adverse events, primarily vomiting.CQ does not reduce the durations of viraemia and NS1 antigenaemia in dengue patients. Further trials, with appropriate endpoints, would be required to determine if CQ treatment has any clinical benefit in dengue.Current Controlled Trials number ISRCTN38002730.

  10. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults.

    Science.gov (United States)

    Tricou, Vianney; Minh, Nguyet Nguyen; Van, Toi Pham; Lee, Sue J; Farrar, Jeremy; Wills, Bridget; Tran, Hien Tinh; Simmons, Cameron P

    2010-08-10

    There is currently no licensed antiviral drug for treatment of dengue. Chloroquine (CQ) inhibits the replication of dengue virus (DENV) in vitro. A double-blind, randomized, placebo-controlled trial of CQ in 307 adults hospitalized for suspected DENV infection was conducted at the Hospital for Tropical Diseases (Ho Chi Minh City, Vietnam) between May 2007 and July 2008. Patients with illness histories of 72 hours or less were randomized to a 3-day course of CQ (n = 153) or placebo (n = 154). Laboratory-confirmation of DENV infection was made in 257 (84%) patients. The primary endpoints were time to resolution of DENV viraemia and time to resolution of DENV NS1 antigenaemia. In patients treated with CQ there was a trend toward a longer duration of DENV viraemia (hazard ratio (HR) = 0.80, 95% CI 0.62-1.05), but we did not find any difference for the time to resolution of NS1 antigenaemia (HR = 1.07, 95% CI 0.76-1.51). Interestingly, CQ was associated with a significant reduction in fever clearance time in the intention-to-treat population (HR = 1.37, 95% CI 1.08-1.74) but not in the per-protocol population. There was also a trend towards a lower incidence of dengue hemorrhagic fever (odds ratio = 0.60, PP 95% CI 0.34-1.04) in patients treated with CQ. Differences in levels of T cell activation or pro- or anti-inflammatory plasma cytokine concentrations between CQ- and placebo-treated patients did not explain the trend towards less dengue hemorrhagic fever in the CQ arm. CQ was associated with significantly more adverse events, primarily vomiting. CQ does not reduce the durations of viraemia and NS1 antigenaemia in dengue patients. Further trials, with appropriate endpoints, would be required to determine if CQ treatment has any clinical benefit in dengue. Current Controlled Trials number ISRCTN38002730.

  11. PEMERIKSAAN VIRUS DENGUE-3 PADA NYAMUK Aedes aegypti YANG DIINFEKSI SECARA INTRATHORAKAL DENGAN TEKNIK IMUNOSITOKIMIA MENGGUNAKAN ANTIBODI DSSE10

    Directory of Open Access Journals (Sweden)

    Dyah Widiastuti

    2013-09-01

    Full Text Available ABSTRACTDengue viruses, globally the most prevalent arboviruses, are transmitted to humans by persistently infectedAedes mosquitoes. The most important vector of Dengue virus is the mosquito Ae.aegypti, which should be the main targetof surveillance and control activities. Virologic surveillance for dengue viruses in its vector has been used as an earlywarning system to predict outbreaks. Detection of Dengue virus antigen in mosquito head squash usingimmunocytochemical streptavidin biotin peroxidase complex (SBPC assay is an alternative method for dengue vectorsurveillance. The study aimed to develope immunocytochemical SBPC assay to detect Dengue virus infection in headsquash of Ae.aegypti. The study design was experimental. Artificially-infected adult Ae. aegypti mosquitoes of DENV 3were used as infectious samples and non-infected adult Ae. aegypti mosquitoes were used as normal ones. Theimmunocytochemical SBPC assay using monoclonal antibody DSSE10 then was applied in mosquito head squash todetect Dengue virus antigen. The results were analyzed by descriptive analysis. The immunocytochemical SBPC assaycan detect Dengue virus antigen in mosquito head squash at day 2 postinfection. There are some false positive resultsfound in immunocytochemical SBPC assay.Key Word: Dengue, immunocytochemistry, DSSE10

  12. Mapping Protein Interactions between Dengue Virus and Its Human and Insect Hosts

    Science.gov (United States)

    Doolittle, Janet M.; Gomez, Shawn M.

    2011-01-01

    Background Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. Methodology/Principal Findings We implemented a computational approach to predict interactions between Dengue virus (DENV) and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9). Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. Conclusions/Significance Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets. PMID:21358811

  13. Mapping protein interactions between Dengue virus and its human and insect hosts.

    Directory of Open Access Journals (Sweden)

    Janet M Doolittle

    Full Text Available BACKGROUND: Dengue fever is an increasingly significant arthropod-borne viral disease, with at least 50 million cases per year worldwide. As with other viral pathogens, dengue virus is dependent on its host to perform the bulk of functions necessary for viral survival and replication. To be successful, dengue must manipulate host cell biological processes towards its own ends, while avoiding elimination by the immune system. Protein-protein interactions between the virus and its host are one avenue through which dengue can connect and exploit these host cellular pathways and processes. METHODOLOGY/PRINCIPAL FINDINGS: We implemented a computational approach to predict interactions between Dengue virus (DENV and both of its hosts, Homo sapiens and the insect vector Aedes aegypti. Our approach is based on structural similarity between DENV and host proteins and incorporates knowledge from the literature to further support a subset of the predictions. We predict over 4,000 interactions between DENV and humans, as well as 176 interactions between DENV and A. aegypti. Additional filtering based on shared Gene Ontology cellular component annotation reduced the number of predictions to approximately 2,000 for humans and 18 for A. aegypti. Of 19 experimentally validated interactions between DENV and humans extracted from the literature, this method was able to predict nearly half (9. Additional predictions suggest specific interactions between virus and host proteins relevant to interferon signaling, transcriptional regulation, stress, and the unfolded protein response. CONCLUSIONS/SIGNIFICANCE: Dengue virus manipulates cellular processes to its advantage through specific interactions with the host's protein interaction network. The interaction networks presented here provide a set of hypothesis for further experimental investigation into the DENV life cycle as well as potential therapeutic targets.

  14. Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    Jéssica Barreto Lopes Silva

    Full Text Available Dengue represents a serious threat to human health, with billions of people living at risk of the disease. Wolbachia pipientis is a bacterial endosymbiont common to many insect species. Wolbachia transinfections in mosquito disease vectors have great value for disease control given the bacterium's ability to spread into wild mosquito populations, and to interfere with infections of pathogens, such as dengue virus. Aedes fluviatilis is a mosquito with a widespread distribution in Latin America, but its status as a dengue vector has not been clarified. Ae. fluviatilis is also naturally infected by the wFlu Wolbachia strain, which has been demonstrated to enhance infection with the avian malarial parasite Plasmodium gallinaceum. We performed experimental infections of Ae. fluviatilis with DENV-2 and DENV-3 isolates from Brazil via injection or oral feeding to provide insight into its competence for the virus. We also examined the effect of the native Wolbachia infection on the virus using a mosquito line where the wFlu infection had been cleared by antibiotic treatment. Through RT-qPCR, we observed that Ae. fluviatilis could become infected with both viruses via either method of infection, although at a lower rate than Aedes aegypti, the primary dengue vector. We then detected DENV-2 and DENV-3 in the saliva of injected mosquitoes, and observed that injection of DENV-3-infected saliva produced subsequent infections in naïve Ae. aegypti. However, across our data we observed no difference in prevalence of infection and viral load between Wolbachia-infected and -uninfected mosquitoes, suggesting that there is no effect of wFlu on dengue virus. Our results highlight that Ae. fluviatilis could potentially serve as a dengue vector under the right circumstances, although further testing is required to determine if this occurs in the field.

  15. Acute neuromuscular weakness associated with dengue infection

    Directory of Open Access Journals (Sweden)

    Harmanjit Singh Hira

    2012-01-01

    Full Text Available Background: Dengue infections may present with neurological complications. Whether these are due to neuromuscular disease or electrolyte imbalance is unclear. Materials and Methods: Eighty-eight patients of dengue fever required hospitalization during epidemic in year 2010. Twelve of them presented with acute neuromuscular weakness. We enrolled them for study. Diagnosis of dengue infection based on clinical profile of patients, positive serum IgM ELISA, NS1 antigen, and sero-typing. Complete hemogram, kidney and liver functions, serum electrolytes, and creatine phosphokinase (CPK were tested. In addition, two patients underwent nerve conduction velocity (NCV test and electromyography. Results: Twelve patients were included in the present study. Their age was between 18 and 34 years. Fever, myalgia, and motor weakness of limbs were most common presenting symptoms. Motor weakness developed on 2 nd to 4 th day of illness in 11 of 12 patients. In one patient, it developed on 10 th day of illness. Ten of 12 showed hypokalemia. One was of Guillain-Barré syndrome and other suffered from myositis; they underwent NCV and electromyography. Serum CPK and SGOT raised in 8 out of 12 patients. CPK of patient of myositis was 5098 IU. All of 12 patients had thrombocytopenia. WBC was in normal range. Dengue virus was isolated in three patients, and it was of serotype 1. CSF was normal in all. Within 24 hours, those with hypokalemia recovered by potassium correction. Conclusions: It was concluded that the dengue virus infection led to acute neuromuscular weakness because of hypokalemia, myositis, and Guillain-Barré syndrome. It was suggested to look for presence of hypokalemia in such patients.

  16. Dengue Virus Type 2 in Travelers Returning to Japan from Sri Lanka, 2017.

    Science.gov (United States)

    Tsuboi, Motoyuki; Kutsuna, Satoshi; Maeki, Takahiro; Taniguchi, Satoshi; Tajima, Shigeru; Kato, Fumihiro; Lim, Chang-Kweng; Saijo, Masayuki; Takaya, Saho; Katanami, Yuichi; Kato, Yasuyuki; Ohmagari, Norio

    2017-11-01

    In June 2017, dengue virus type 2 infection was diagnosed in 2 travelers returned to Japan from Sri Lanka, where the country's largest dengue fever outbreak is ongoing. Travelers, especially those previously affected by dengue fever, should take measures to avoid mosquito bites.

  17. Neurological manifestations of dengue viral infection

    Directory of Open Access Journals (Sweden)

    Carod-Artal FJ

    2014-10-01

    Full Text Available Francisco Javier Carod-Artal1,21Neurology Department, Raigmore hospital, Inverness, UK; 2Universitat Internacional de Catalunya (UIC, Barcelona, Spain Abstract: Dengue is the most common mosquito-borne viral infection worldwide. There is increased evidence for dengue virus neurotropism, and neurological manifestations could make part of the clinical picture of dengue virus infection in at least 0.5%–7.4% of symptomatic cases. Neurological complications have been classified into dengue virus encephalopathy, dengue virus encephalitis, immune-mediated syndromes (acute disseminated encephalomyelitis, myelitis, Guillain–Barré syndrome, neuritis brachialis, acute cerebellitis, and others, neuromuscular complications (hypokalemic paralysis, transient benign muscle dysfunction and myositis, and dengue-associated stroke. Common neuro-ophthalmic complications are maculopathy and retinal vasculopathy. Pathogenic mechanisms include systemic complications and metabolic disturbances resulting in encephalopathy, direct effect of the virus provoking encephalitis, and postinfectious immune mechanisms causing immune-mediated syndromes. Dengue viruses should be considered as a cause of neurological disorders in endemic regions. Standardized case definitions for specific neurological complications are still needed. Keywords: encephalitis, encephalopathy, dengue fever, neurological complications

  18. Structure and Function of the Non-Structural Protein of Dengue Virus and its Applications in Antiviral Therapy.

    Science.gov (United States)

    Xie, Qian; Zhang, Bao; Yu, JianHai; Wu, Qinghua; Yang, Fangji; Cao, Hong; Zhao, Wei

    2017-01-01

    Dengue fever, a type of global and tropical infectious disease, and its prevention has become a challenging issue worldwide. Antibody-dependent enhancement effects and the virus pathogenic mechanism have not yet been fully elucidated, hindering the development of dengue fever prevention and suitable drug treatment. There is currently no specific prevention and therapy in clinical trials, however, in recent years, studies have focused on the pathogenesis and treatment of dengue. Research focusing on dengue virus nonstructural protein in special drugs for the prevention and control of dengue fever is a new progress leading to improved understanding regarding the prevention and control of dengue fever and suitable drugs for the treatment. The main challenges regarding the structure of dengue virus nonstructural protein and the drugs for antiviral therapy are summarized in this paper.

  19. The diagnostic sensitivity of dengue rapid test assays is significantly enhanced by using a combined antigen and antibody testing approach.

    Directory of Open Access Journals (Sweden)

    Scott R Fry

    2011-06-01

    Full Text Available BACKGROUND: Serological tests for IgM and IgG are routinely used in clinical laboratories for the rapid diagnosis of dengue and can differentiate between primary and secondary infections. Dengue virus non-structural protein 1 (NS1 has been identified as an early marker for acute dengue, and is typically present between days 1-9 post-onset of illness but following seroconversion it can be difficult to detect in serum. AIMS: To evaluate the performance of a newly developed Panbio® Dengue Early Rapid test for NS1 and determine if it can improve diagnostic sensitivity when used in combination with a commercial IgM/IgG rapid test. METHODOLOGY: The clinical performance of the Dengue Early Rapid was evaluated in a retrospective study in Vietnam with 198 acute laboratory-confirmed positive and 100 negative samples. The performance of the Dengue Early Rapid in combination with the IgM/IgG Rapid test was also evaluated in Malaysia with 263 laboratory-confirmed positive and 30 negative samples. KEY RESULTS: In Vietnam the sensitivity and specificity of the test was 69.2% (95% CI: 62.8% to 75.6% and 96% (95% CI: 92.2% to 99.8 respectively. In Malaysia the performance was similar with 68.9% sensitivity (95% CI: 61.8% to 76.1% and 96.7% specificity (95% CI: 82.8% to 99.9% compared to RT-PCR. Importantly, when the Dengue Early Rapid test was used in combination with the IgM/IgG test the sensitivity increased to 93.0%. When the two tests were compared at each day post-onset of illness there was clear differentiation between the antigen and antibody markers. CONCLUSIONS: This study highlights that using dengue NS1 antigen detection in combination with anti-glycoprotein E IgM and IgG serology can significantly increase the sensitivity of acute dengue diagnosis and extends the possible window of detection to include very early acute samples and enhances the clinical utility of rapid immunochromatographic testing for dengue.

  20. Dengue virus life cycle : viral and host factors modulating infectivity

    NARCIS (Netherlands)

    Rodenhuis-Zybert, Izabela A.; Wilschut, Jan; Smit, Jolanda M.

    Dengue virus (DENV 1-4) represents a major emerging arthropod-borne pathogen. All four DENV serotypes are prevalent in the (sub) tropical regions of the world and infect 50-100 million individuals annually. Whereas the majority of DENV infections proceed asymptomatically or result in self-limited

  1. A lethal model of disseminated dengue virus type 1 infection in AG129 mice.

    Science.gov (United States)

    Milligan, Gregg N; Sarathy, Vanessa V; White, Mellodee M; Greenberg, M Banks; Campbell, Gerald A; Pyles, Richard B; Barrett, Alan D T; Bourne, Nigel

    2017-10-01

    The mosquito-borne disease dengue is caused by four serologically and genetically related flaviviruses termed DENV-1 to DENV-4. Dengue is a global public health concern, with both the geographical range and burden of disease increasing rapidly. Clinically, dengue ranges from a relatively mild self-limiting illness to a severe life-threatening and sometimes fatal disease. Infection with one DENV serotype produces life-long homotypic immunity, but incomplete and short-term heterotypic protection. The development of small-animal models that recapitulate the characteristics of the disseminated disease seen clinically has been difficult, slowing the development of vaccines and therapeutics. The AG129 mouse (deficient in interferon alpha/beta and gamma receptor signalling) has proven to be valuable for this purpose, with the development of models of disseminated DENV-2,-3 and -4 disease. Recently, a DENV-1 AG129 model was described, but it requires antibody-dependent enhancement (ADE) to produce lethality. Here we describe a new AG129 model utilizing a non-mouse-adapted DENV-1 strain, West Pacific 74, that does not require ADE to induce lethal disease. Following high-titre intraperitoneal challenge, animals experience a virus infection with dissemination to multiple visceral tissues, including the liver, spleen and intestine. The animals also become thrombocytopenic, but vascular leakage is less prominent than in AG129 models with other DENV serotypes. Taken together, our studies demonstrate that this model is an important addition to dengue research, particularly for understanding the pathological basis of the disease between DENV serotypes and allowing the full spectrum of activity to test comparisons for putative vaccines and antivirals.

  2. Cross reactivity of commercial anti-dengue immunoassays in patients with acute Zika virus infection.

    Science.gov (United States)

    Felix, Alvina Clara; Souza, Nathalia C Santiago; Figueiredo, Walter M; Costa, Angela A; Inenami, Marta; da Silva, Rosangela M G; Levi, José Eduardo; Pannuti, Claudio Sergio; Romano, Camila Malta

    2017-08-01

    Several countries have local transmission of multiple arboviruses, in particular, dengue and Zika viruses, which have recently spread through many American countries. Cross reactivity among Flaviviruses is high and present a challenge for accurate identification of the infecting agent. Thus, we evaluated the level of cross reactivity of anti-dengue IgM/G Enzyme-Linked Immunosorbent Assays (ELISA) from three manufacturers against 122 serum samples obtained at two time-points from 61 patients with non-dengue confirmed Zika virus infection. All anti-dengue ELISAs cross reacted with serum from patients with acute Zika infection at some level and a worrisome number of seroconversion for dengue IgG and IgM was observed. These findings may impact the interpretation of currently standard criteria for dengue diagnosis in endemic regions. © 2017 Wiley Periodicals, Inc.

  3. High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells

    Science.gov (United States)

    Chiu, Han-Chen; Hannemann, Holger; Heesom, Kate J.; Matthews, David A.; Davidson, Andrew D.

    2014-01-01

    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection. PMID:24671231

  4. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells.

    Directory of Open Access Journals (Sweden)

    Han-Chen Chiu

    Full Text Available Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC in combination with high-throughput mass spectrometry (MS. Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.

  5. Phospholipase A2 isolated from the venom of Crotalus durissus terrificus inactivates dengue virus and other enveloped viruses by disrupting the viral envelope.

    Directory of Open Access Journals (Sweden)

    Vanessa Danielle Muller

    Full Text Available The Flaviviridae family includes several virus pathogens associated with human diseases worldwide. Within this family, Dengue virus is the most serious threat to public health, especially in tropical and sub-tropical regions of the world. Currently, there are no vaccines or specific antiviral drugs against Dengue virus or against most of the viruses of this family. Therefore, the development of vaccines and the discovery of therapeutic compounds against the medically most important flaviviruses remain a global public health priority. We previously showed that phospholipase A2 isolated from the venom of Crotalus durissus terrificus was able to inhibit Dengue virus and Yellow fever virus infection in Vero cells. Here, we present evidence that phospholipase A2 has a direct effect on Dengue virus particles, inducing a partial exposure of genomic RNA, which strongly suggests inhibition via the cleavage of glycerophospholipids at the virus lipid bilayer envelope. This cleavage might induce a disruption of the lipid bilayer that causes a destabilization of the E proteins on the virus surface, resulting in inactivation. We show by computational analysis that phospholipase A2 might gain access to the Dengue virus lipid bilayer through the pores found on each of the twenty 3-fold vertices of the E protein shell on the virus surface. In addition, phospholipase A2 is able to inactivate other enveloped viruses, highlighting its potential as a natural product lead for developing broad-spectrum antiviral drugs.

  6. Ficus septica plant extracts for treating Dengue virus in vitro

    Directory of Open Access Journals (Sweden)

    Nan-Chieh Huang

    2017-06-01

    Full Text Available Dengue virus types 1-4 (DENV-1-4 are positive-strand RNA viruses with an envelope that belongs to the Flaviviridae. DENV infection threatens human health worldwide. However, other than supportive treatments, no specific therapy is available for the infection. In order to discover novel medicine against DENV, we tested 59 crude extracts, without cytotoxicity, from 23 plants in vitro; immunofluorescence assay revealed that the methanol extracts of fruit, heartwood, leaves and stem from Ficus septica Burm. f. had a promising anti-DENV-1 and DENV-2 effect. However, infection with the non-envelope picornavirus, Aichi virus, was not inhibited by treatment with F. septica extracts. F. septica may be a candidate antiviral drug against an enveloped virus such as DENV.

  7. Chloroquine Inhibits Dengue Virus Type 2 Replication in Vero Cells but Not in C6/36 Cells

    OpenAIRE

    Farias, Kleber Juvenal Silva; Machado, Paula Renata Lima; da Fonseca, Benedito Antônio Lopes

    2013-01-01

    Dengue viruses are the most important arthropod-borne viruses in terms of morbidity and mortality in the world. Since there is no dengue vaccine available for human use, we have set out to investigate the use of chloroquine as an antiviral drug against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of Vero and C6/36 cells infected with dengue virus type 2 (DENV-2). Real-time RT-PCR a...

  8. Autophagic machinery activated by dengue virus enhances virus replication

    International Nuclear Information System (INIS)

    Lee, Y.-R.; Lei, H.-Y.; Liu, M.-T.; Wang, J.-R.; Chen, S.-H.; Jiang-Shieh, Y.-F.; Lin, Y.-S.; Yeh, T.-M.; Liu, C.-C.; Liu, H.-S.

    2008-01-01

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that is favorable for viral replication

  9. Sensitive luminescent reporter viruses reveal appreciable release of hepatitis C virus NS5A protein into the extracellular environment.

    Science.gov (United States)

    Eyre, Nicholas S; Aloia, Amanda L; Joyce, Michael A; Chulanetra, Monrat; Tyrrell, D Lorne; Beard, Michael R

    2017-07-01

    The HCV NS5A protein is essential for viral RNA replication and virus particle assembly. To study the viral replication cycle and NS5A biology we generated an infectious HCV construct with a NanoLuciferase (NLuc) insertion within NS5A. Surprisingly, beyond its utility as a sensitive reporter of cytoplasmic viral RNA replication, we also observed strong luminescence in cell culture fluids. Further analysis using assembly-defective viruses and subgenomic replicons revealed that infectious virus production was not required for extracellular NS5A-NLuc activity but was associated with enrichment of extracellular NS5A-NLuc in intermediate-density fractions similar to those of exosomes and virus particles. Additionally, BRET analysis indicated that intracellular and extracellular forms of NS5A may adopt differing conformations. Importantly, infection studies using a human liver chimeric mouse model confirmed robust infection in vivo and ready detection of NLuc activity in serum. We hypothesise that the presence of NS5A in extracellular fluids contributes to HCV pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Tracking Dengue Virus Intra-host Genetic Diversity during Human-to-Mosquito Transmission.

    Directory of Open Access Journals (Sweden)

    Shuzhen Sim

    Full Text Available Dengue virus (DENV infection of an individual human or mosquito host produces a dynamic population of closely-related sequences. This intra-host genetic diversity is thought to offer an advantage for arboviruses to adapt as they cycle between two very different host species, but it remains poorly characterized. To track changes in viral intra-host genetic diversity during horizontal transmission, we infected Aedes aegypti mosquitoes by allowing them to feed on DENV2-infected patients. We then performed whole-genome deep-sequencing of human- and matched mosquito-derived DENV samples on the Illumina platform and used a sensitive variant-caller to detect single nucleotide variants (SNVs within each sample. >90% of SNVs were lost upon transition from human to mosquito, as well as from mosquito abdomen to salivary glands. Levels of viral diversity were maintained, however, by the regeneration of new SNVs at each stage of transmission. We further show that SNVs maintained across transmission stages were transmitted as a unit of two at maximum, suggesting the presence of numerous variant genomes carrying only one or two SNVs each. We also present evidence for differences in selection pressures between human and mosquito hosts, particularly on the structural and NS1 genes. This analysis provides insights into how population drops during transmission shape RNA virus genetic diversity, has direct implications for virus evolution, and illustrates the value of high-coverage, whole-genome next-generation sequencing for understanding viral intra-host genetic diversity.

  11. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Ren, Jinhong; Nocadello, Salvatore; Rice, Amy J.; Ojeda, Isabel; Light, Samuel; Minasov, George; Vargas, Jason; Nagarathnam, Dhanapalan; Anderson, Wayne F.; Johnson, Michael E. (UIC); (NWU); (Novalex); (DNSK)

    2016-12-26

    Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain–Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activity (IC50) and binding affinity (KD) of ~5–10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a “pre-open conformation”, a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.

  12. Suppression of chikungunya virus replication and differential innate responses of human peripheral blood mononuclear cells during co-infection with dengue virus

    NARCIS (Netherlands)

    Silva, Mariana Ruiz; Briseno, Jose A. Aguilar; Upasani, Vinit; van der Ende-Metselaar, Heidi; Smit, Jolanda M.; Rodenhuis-Zybert, Izabela A.

    2017-01-01

    Dengue and chikungunya are viral diseases transmitted to humans by infected Aedes spp. mosquitoes. With an estimated 390 million infected people per year dengue virus (DENV) currently causes the most prevalent arboviral disease. During the last decade chikungunya virus (CHIKV) has caused large

  13. Dengue: a trilogy of people, mosquitoes and the virus. Current epidemiology and pathogenesis in (non-)endemic settings

    NARCIS (Netherlands)

    Thai, K.T.D.

    2012-01-01

    Dengue consists of a spectrum of disease manifestations caused by four serotypes of Dengue virus, the most prevalent arthropod-borne virus affecting humans in the tropics and subtropics. The incidence of dengue and its geographical distribution have increased dramatically in the past 6 decades.

  14. Prevention and Control Strategies to Counter Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Irfan A. Rather

    2017-07-01

    Full Text Available Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus.

  15. Prevention and Control Strategies to Counter Dengue Virus Infection.

    Science.gov (United States)

    Rather, Irfan A; Parray, Hilal A; Lone, Jameel B; Paek, Woon K; Lim, Jeongheui; Bajpai, Vivek K; Park, Yong-Ha

    2017-01-01

    Dengue is currently the highest and rapidly spreading vector-borne viral disease, which can lead to mortality in its severe form. The globally endemic dengue poses as a public health and economic challenge that has been attempted to suppress though application of various prevention and control techniques. Therefore, broad spectrum techniques, that are efficient, cost-effective, and environmentally sustainable, are proposed and practiced in dengue-endemic regions. The development of vaccines and immunotherapies have introduced a new dimension for effective dengue control and prevention. Thus, the present study focuses on the preventive and control strategies that are currently employed to counter dengue. While traditional control strategies bring temporary sustainability alone, implementation of novel biotechnological interventions, such as sterile insect technique, paratransgenesis, and production of genetically modified vectors, has improved the efficacy of the traditional strategies. Although a large-scale vector control strategy can be limited, innovative vaccine candidates have provided evidence for promising dengue prevention measures. The use of tetravalent dengue vaccine (CYD-TDV) has been the most effective so far in treating dengue infections. Nonetheless, challenges and limitation hinder the progress of developing integrated intervention methods and vaccines; while the improvement in the latest techniques and vaccine formulation continues, one can hope for a future without the threat of dengue virus.

  16. Sophoraflavenone G Restricts Dengue and Zika Virus Infection via RNA Polymerase Interference.

    Science.gov (United States)

    Sze, Alexandre; Olagnier, David; Hadj, Samar Bel; Han, Xiaoying; Tian, Xiao Hong; Xu, Hong-Tao; Yang, Long; Shi, Qingwen; Wang, Penghua; Wainberg, Mark A; Wu, Jian Hui; Lin, Rongtuan

    2017-10-03

    Flaviviruses including Zika, Dengue and Hepatitis C virus cause debilitating diseases in humans, and the former are emerging as global health concerns with no antiviral treatments. We investigated Sophora Flavecens , used in Chinese medicine, as a source for antiviral compounds. We isolated Sophoraflavenone G and found that it inhibited Hepatitis C replication, but not Sendai or Vesicular Stomatitis Virus. Pre- and post-infection treatments demonstrated anti-flaviviral activity against Dengue and Zika virus, via viral RNA polymerase inhibition. These data suggest that Sophoraflavenone G represents a promising candidate regarding anti-Flaviviridae research.

  17. Detection of Hepatitis C Virus Coinfection in Patients with Dengue Diagnosis

    Directory of Open Access Journals (Sweden)

    Carlos Machain-Williams

    2014-01-01

    Full Text Available Coinfection produced by dengue virus (DENV and hepatitis C virus (HCV is a serious problem of public health in Mexico, as they both circulate in tropical zones and may lead to masking or complicating symptoms. In this research, we detected active coinfected patients by HCV residing in the endemic city of Mérida, Yucatán, Mexico, with positive diagnosis to dengue during the acute phase. We performed a retrospective analysis of 240 serum samples from dengue patients. The IgM-ELISA serological test was used for dengue diagnosis, as well as viral isolation to confirm infection. DENV and HCV were detected by RT-PCR. Thus, 31 (12.9% samples showed DENV-HCV coinfection, but interestingly the highest frequency of coinfection cases was found in male patients presenting hemorrhagic dengue in 19/31 (61.29%, with a predominance of 12 : 7 in males. Firstly, coinfection of DENV-HCV in Mérida, Mexico, was detected in young dengue patients, between 11 and 20 years old (38.7%, followed by those between 21 and 30 years old (32%; only 16.13% were between 0 and 10 years of age. Diagnosis of HCV infection in patients with dengue is highly recommended in order to establish potential risk in clinical manifestations as well as dictate patients' special care.

  18. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin

    Science.gov (United States)

    2012-01-01

    Background Influenza A virus non-structural protein 1 (NS1) is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS) that also functions as a nucleolar localization signal (NoLS) and targets the protein into the nucleolus. Results Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP)-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. Conclusion NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin. PMID:22909121

  19. Emergence of Dengue virus serotype 3 on Mayotte Island, Indian ...

    African Journals Online (AJOL)

    A serosurvey carried out in 2006 in Mayotte, a French overseas collectivity in the Indian Ocean, confirmed previous circulation of dengue virus (DENV) on the island, but since the set up of a laboratory-based surveillance of dengue-like illness in 2007, no case of DENV has been confirmed. In response to an outbreak of ...

  20. Flavone Enhances Dengue Virus Type-2 (NGC Strain Infectivity and Replication in Vero Cells

    Directory of Open Access Journals (Sweden)

    Keivan Zandi

    2012-02-01

    Full Text Available This study investigates the effects of 2-phenyl-1-benzopyran-4-one (flavone on DENV-2 infectivity in Vero cells. Virus adsorption and attachment and intracellular virus replication were investigated using a foci forming unit assay (FFUA and quantitative RT-PCR, respectively. Addition of flavone (100 μg/mL significantly increased the number of DENV-2 foci by 35.66% ± 1.52 and 49.66% ± 2.51 when added during and after virus adsorption to the Vero cells, respectively. The average foci size after 4 days of infection increased by 33% ± 2.11 and 89% ± 2.13. The DENV-2 specific RNA copy number in the flavone-treated infected cells increased by 6.41- and 23.1-fold when compared to the mock-treated infected cells. Flavone (100 μg/mL did not promote or inhibit Vero cell proliferation. The CC50 value of flavone against Vero cells was 446 µg/mL. These results suggest that flavone might enhance dengue virus replication by acting antagonistically towards flavonoids known to inhibit dengue virus replication.

  1. Dengue Virus and Autophagy

    Directory of Open Access Journals (Sweden)

    Nicholas S. Heaton

    2011-08-01

    Full Text Available Several independent groups have published that autophagy is required for optimal RNA replication of dengue virus (DENV. Initially, it was postulated that autophagosomes might play a structural role in replication complex formation. However, cryo-EM tomography of DENV replication complexes showed that DENV replicates on endoplasmic reticulum (ER cisternae invaginations and not on classical autophagosomes. Recently, it was reported that autophagy plays an indirect role in DENV replication by modulating cellular lipid metabolism. DENV-induced autophagosomes deplete cellular triglycerides that are stored in lipid droplets, leading to increased β-oxidation and energy production. This is the first example of a virus triggering autophagy to modulate cellular physiology. In this review, we summarize these data and discuss new questions and implications for autophagy during DENV replication.

  2. Co-infections with Chikungunya and Dengue Viruses, Guatemala, 2015.

    Science.gov (United States)

    Edwards, Thomas; Signor, Leticia Del Carmen Castillo; Williams, Christopher; Donis, Evelin; Cuevas, Luis E; Adams, Emily R

    2016-11-01

    We screened serum samples referred to the national reference laboratory in Guatemala that were positive for chikungunya or dengue viruses in June 2015. Co-infection with both viruses was detected by reverse transcription PCR in 46 (32%) of 144 samples. Specimens should be tested for both arboviruses to detect co-infections.

  3. Gelatin nanoparticles enhance delivery of hepatitis C virus recombinant NS2 gene.

    Science.gov (United States)

    Sabet, Salwa; George, Marina A; El-Shorbagy, Haidan M; Bassiony, Heba; Farroh, Khaled Y; Youssef, Tareq; Salaheldin, Taher A

    2017-01-01

    Development of an effective non-viral vaccine against hepatitis C virus infection is of a great importance. Gelatin nanoparticles (Gel.NPs) have an attention and promising approach as a viable carrier for delivery of vaccine, gene, drug and other biomolecules in the body. The present study aimed to develop stable Gel.NPs conjugated with nonstructural protein 2 (NS2) gene of Hepatitis C Virus genotype 4a (HCV4a) as a safe and an efficient vaccine delivery system. Gel.NPs were synthesized and characterized (size: 150±2 nm and zeta potential +17.6 mv). NS2 gene was successfully cloned and expressed into E. coli M15 using pQE-30 vector. Antigenicity of the recombinant NS2 protein was confirmed by Western blotting to verify the efficiency of NS2 as a possible vaccine. Then NS2 gene was conjugated to gelatin nanoparticles and a successful conjugation was confirmed by labeling and imaging using Confocal Laser Scanning Microscope (CLSM). Interestingly, the transformation of the conjugated NS2/Gel.NPs complex into E. coli DH5-α was 50% more efficient than transformation with the gene alone. In addition, conjugated NS2/Gel.NPs with ratio 1:100 (w/w) showed higher transformation efficiency into E. coli DH5-α than the other ratios (1:50 and 2:50). Gel.NPs effectively enhanced the gene delivery in bacterial cells without affecting the structure of NS2 gene and could be used as a safe, easy, rapid, cost-effective and non-viral vaccine delivery system for HCV.

  4. Dengue viremia in blood donors in Northern India: Challenges of emerging dengue outbreaks to blood transfusion safety

    Directory of Open Access Journals (Sweden)

    Sadhana Mangwana

    2015-01-01

    Full Text Available Backdround: Emerging infectious diseases pose threats to the general human population; including recipients of blood transfusions. Dengue is spreading rapidly to new areas and with increasing frequency of major outbreaks. Screening blood for dengue antigens in dengue-endemic countries would be costly and should, therefore, be recommended only after careful assessment of risk for infection and cost. Aim: A prospective study was conducted to establish the magnitude of the threat that dengue poses to blood safety where it is sporadic with seasonal variations, to quantify risk and to assess that whether screening is feasible and cost-effective. Materials and Methods: Nonstructural protein 1 (NS1 antigen test was done on 1709 donations during dengue outbreak in the months August to November 2013 as an additional test using Bio-Rad Platelia Dengue NS1AG test kit which is one step sandwich format microplate enzyme immunoassay using murine monoclonal antibodies for capture and revelation. Chi-square test was used to find statistical significance. Results and Conclusions: Majority cases were whole blood, replacement, male donors with 76.10% donors in <35 years age group. About 17.85% were single donor platelet donations. NS1 antigen in all donors was negative. In the past, dengue affected mainly children who do not donate blood. With the changing trend, mean age of infection increased affecting the population that does donate blood, further reducing blood donation pool. Further studies need to be done in different geographic regions of the country during dengue transmission season to establish maximum incidence of viremic donations, rates of transfusion transmission and clinical consequences in recipients. If risk is found to be substantial, decision will be taken by the policymakers at what threshold screening should be instituted to ensure safe blood transfusion.

  5. Comparative Analysis of Dengue and Zika Outbreaks Reveals Differences by Setting and Virus.

    Directory of Open Access Journals (Sweden)

    Sebastian Funk

    2016-12-01

    Full Text Available The pacific islands of Micronesia have experienced several outbreaks of mosquito-borne diseases over the past decade. In outbreaks on small islands, the susceptible population is usually well defined, and there is no co-circulation of pathogens. Because of this, analysing such outbreaks can be useful for understanding the transmission dynamics of the pathogens involved, and particularly so for yet understudied pathogens such as Zika virus. Here, we compared three outbreaks of dengue and Zika virus in two different island settings in Micronesia, the Yap Main Islands and Fais, using a mathematical model of transmission dynamics and making full use of commonalities in disease and setting between the outbreaks. We found that the estimated reproduction numbers for Zika and dengue were similar when considered in the same setting, but that, conversely, reproduction number for the same disease can vary considerably by setting. On the Yap Main Islands, we estimated a reproduction number of 8.0-16 (95% Credible Interval (CI for the dengue outbreak and 4.8-14 (95% CI for the Zika outbreak, whereas for the dengue outbreak on Fais our estimate was 28-102 (95% CI. We further found that the proportion of cases of Zika reported was smaller (95% CI 1.4%-1.9% than that of dengue (95% CI: 47%-61%. We confirmed these results in extensive sensitivity analysis. They suggest that models for dengue transmission can be useful for estimating the predicted dynamics of Zika transmission, but care must be taken when extrapolating findings from one setting to another.

  6. Spatial and temporal clustering of dengue virus transmission in Thai villages.

    OpenAIRE

    Mammen P Mammen; Chusak Pimgate; Constantianus J M Koenraadt; Alan L Rothman; Jared Aldstadt; Ananda Nisalak; Richard G Jarman; James W Jones; Anon Srikiatkhachorn; Charity Ann Ypil-Butac; Arthur Getis; Suwich Thammapalo; Amy C Morrison; Daniel H Libraty; Sharone Green

    2008-01-01

    Editors' Summary Background. Every year, over 50 million people living in tropical and subtropical urban and semi-urban areas become infected with dengue (a mosquito-borne viral infection) and several hundred thousand develop a potentially lethal complication called dengue hemorrhagic fever. Dengue is caused by four closely related viruses that are transmitted to people through the bites of infected female Aedes aegypti mosquitoes. These day-biting insects, which breed in household water cont...

  7. Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-2-0032 TITLE: Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines PRINCIPAL INVESTIGATOR...CONTRACT NUMBER Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines 5b. GRANT NUMBER W81XWH-16-2-0032 5c. PROGRAM ELEMENT...cell) responses will be measured using molecular and cellular approaches and the data analyzed using a systems biology approach. During the first

  8. Spatial and temporal clustering of dengue virus transmission in Thai villages.

    Directory of Open Access Journals (Sweden)

    Mammen P Mammen

    2008-11-01

    Full Text Available Transmission of dengue viruses (DENV, the leading cause of arboviral disease worldwide, is known to vary through time and space, likely owing to a combination of factors related to the human host, virus, mosquito vector, and environment. An improved understanding of variation in transmission patterns is fundamental to conducting surveillance and implementing disease prevention strategies. To test the hypothesis that DENV transmission is spatially and temporally focal, we compared geographic and temporal characteristics within Thai villages where DENV are and are not being actively transmitted.Cluster investigations were conducted within 100 m of homes where febrile index children with (positive clusters and without (negative clusters acute dengue lived during two seasons of peak DENV transmission. Data on human infection and mosquito infection/density were examined to precisely (1 define the spatial and temporal dimensions of DENV transmission, (2 correlate these factors with variation in DENV transmission, and (3 determine the burden of inapparent and symptomatic infections. Among 556 village children enrolled as neighbors of 12 dengue-positive and 22 dengue-negative index cases, all 27 DENV infections (4.9% of enrollees occurred in positive clusters (p < 0.01; attributable risk [AR] = 10.4 per 100; 95% confidence interval 1-19.8 per 100]. In positive clusters, 12.4% of enrollees became infected in a 15-d period and DENV infections were aggregated centrally near homes of index cases. As only 1 of 217 pairs of serologic specimens tested in positive clusters revealed a recent DENV infection that occurred prior to cluster initiation, we attribute the observed DENV transmission subsequent to cluster investigation to recent DENV transmission activity. Of the 1,022 female adult Ae. aegypti collected, all eight (0.8% dengue-infected mosquitoes came from houses in positive clusters; none from control clusters or schools. Distinguishing features between

  9. Pharmacological intervention for dengue virus infection.

    Science.gov (United States)

    Lai, Jenn-Haung; Lin, Yi-Ling; Hsieh, Shie-Liang

    2017-04-01

    Dengue virus (DENV) infection has a considerable health impact in tropical and subtropical countries worldwide. Escalation of infection rates greatly increases morbidity and mortality, most commonly from deaths due to dengue hemorrhagic fever and dengue shock syndrome. Although the development of an effective, long-lasting vaccine has been a major aim for control and prevention of DENV infection, the currently licensed vaccine has limitations and is less than satisfactory. Thus, there remains an important need to identify effective and tolerable medications for treatment of DENV-infected patients both in the early phase, to prevent progression to fatal outcomes, and to minimize deaths after patients develop severe complications. This review will address several specific points, including (1) approaches to identify anti-DENV medications, (2) recent advances in the development of potential compounds targeting DENV infection, (3) experience with clinical trials of regimens for DENV infection, (4) some available medications of potential for clinical trials against DENV infection, (5) reasons for unsuccessful outcomes and challenges of anti-DENV treatments, and (6) directions for developing or selecting better anti-DENV strategies. This review provides useful guidance for clinicians selecting drugs for DENV-infected patients with severe manifestations or potential fatal disease progression, and for basic researchers seeking to develop effective anti-DENV regimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Use of insecticide-treated house screens to reduce infestations of dengue virus vectors, Mexico.

    Science.gov (United States)

    Manrique-Saide, Pablo; Che-Mendoza, Azael; Barrera-Perez, Mario; Guillermo-May, Guillermo; Herrera-Bojorquez, Josue; Dzul-Manzanilla, Felipe; Gutierrez-Castro, Cipriano; Lenhart, Audrey; Vazquez-Prokopec, Gonzalo; Sommerfeld, Johannes; McCall, Philip J; Kroeger, Axel; Arredondo-Jimenez, Juan I

    2015-02-01

    Dengue prevention efforts rely on control of virus vectors. We investigated use of insecticide-treated screens permanently affixed to windows and doors in Mexico and found that the screens significantly reduced infestations of Aedes aegypti mosquitoes in treated houses. Our findings demonstrate the value of this method for dengue virus vector control.

  11. Bioekologi vektor demam berdarah dengue (DBD serta deteksi virus dengue pada Aedes aegypti (Linnaeus dan Ae. albopictus (Skuse (Diptera: Culicidae di kelurahan endemik DBD Bantarjati, Kota Bogor

    Directory of Open Access Journals (Sweden)

    Zahara Fadilla

    2015-09-01

    Full Text Available Dengue hemorrhagic fever (DHF is a viral disease that threatened community health in Indonesia. As part of an eradication program, it is important to learn the behavioral aspect of the disease vector. The aims of this study were to detect the presence of dengue virus in Aedes spp., at Bantarjati Village, Bogor City and to learn to bioecology of. Aedes aegypti (Linnaeus. Detection of dengue virus in Aedes spp. were done by reverse transcription-polymerase chain reaction (RT-PCR technique that consist of two phase were synthesis phase and cDNA amplification and dengue virus serotipe characterization. The Ae. aegypti and Ae. albopictus (Skuse mosquitoes were collected using the landing and resting moquito collection technique booth indoors and outdoors. The highest density of Ae. aegypti and Ae. albopictus were found in April and the peak activity was occurred at 10:00-11:00 am. Dengue virus was not detected in female mosquitoes Aedes spp.

  12. Dengue-1 envelope protein domain III along with PELC and CpG oligodeoxynucleotides synergistically enhances immune responses.

    Directory of Open Access Journals (Sweden)

    Chen-Yi Chiang

    Full Text Available The major weaknesses of subunit vaccines are their low immunogenicity and poor efficacy. Adjuvants can help to overcome some of these inherent defects with subunit vaccines. Here, we evaluated the efficacy of the newly developed water-in-oil-in-water multiphase emulsion system, termed PELC, in potentiating the protective capacity of dengue-1 envelope protein domain III. Unlike aluminum phosphate, dengue-1 envelope protein domain III formulated with PELC plus CpG oligodeoxynucleotides induced neutralizing antibodies against dengue-1 virus and increased the splenocyte secretion of IFN-γ after in vitro re-stimulation. The induced antibodies contained both the IgG1 and IgG2a subclasses. A rapid anamnestic neutralizing antibody response against a live dengue virus challenge was elicited at week 26 after the first immunization. These results demonstrate that PELC plus CpG oligodeoxynucleotides broaden the dengue-1 envelope protein domain III-specific immune responses. PELC plus CpG oligodeoxynucleotides is a promising adjuvant for recombinant protein based vaccination against dengue virus.

  13. Evidence of HLA-DQB1 Contribution to Susceptibility of Dengue Serotype 3 in Dengue Patients in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Daniela Maria Cardozo

    2014-01-01

    Full Text Available Dengue infection (DI transmitted by arthropod vectors is the viral disease with the highest incidence throughout the world, an estimated 300 million cases per year. In addition to environmental factors, genetic factors may also influence the manifestation of the disease; as even in endemic areas, only a small proportion of people develop the most serious form. Immune-response gene polymorphisms may be associated with the development of cases of DI. The aim of this study was to determine allele frequencies in the HLA-A, B, C, DRB1, DQA1, and DQB1 loci in a Southern Brazil population with dengue virus serotype 3, confirmed by the ELISA serological method, and a control group. The identification of the HLA alleles was carried out using the SSO genotyping PCR program (One Lambda, based on Luminex technology. In conclusion, this study suggests that DQB1*06:11 allele could act as susceptible factors to dengue virus serotype 3, while HLA-DRB1*11 and DQA1*05:01 could act as resistance factors.

  14. Oral receptivity of Aedes aegypti from Cape Verde for yellow fever, dengue, and chikungunya viruses.

    Science.gov (United States)

    Vazeille, Marie; Yébakima, André; Lourenço-de-Oliveira, Ricardo; Andriamahefazafy, Barrysson; Correira, Artur; Rodrigues, Julio Monteiro; Veiga, Antonio; Moreira, Antonio; Leparc-Goffart, Isabelle; Grandadam, Marc; Failloux, Anna-Bella

    2013-01-01

    At the end of 2009, 21,313 cases of dengue-3 virus (DENV-3) were reported in the islands of Cape Verde, an archipelago located in the Atlantic Ocean 570 km from the coast of western Africa. It was the first dengue outbreak ever reported in Cape Verde. Mosquitoes collected in July 2010 in the city of Praia, on the island of Santiago, were identified morphologically as Aedes aegypti formosus. Using experimental oral infections, we found that this vector showed a moderate ability to transmit the epidemic dengue-3 virus, but was highly susceptible to chikungunya and yellow fever viruses.

  15. Phylogenetic Analysis of Dengue Virus in Bangkalan, Madura Island, East Java Province, Indonesia.

    Science.gov (United States)

    Sucipto, Teguh Hari; Kotaki, Tomohiro; Mulyatno, Kris Cahyo; Churrotin, Siti; Labiqah, Amaliah; Soegijanto, Soegeng; Kameoka, Masanori

    2018-01-01

    Dengue virus (DENV) infection is a major health issue in tropical and subtropical areas. Indonesia is one of the biggest dengue endemic countries in the world. In the present study, the phylogenetic analysis of DENV in Bangkalan, Madura Island, Indonesia, was performed in order to obtain a clearer understanding of its dynamics in this country. A total of 359 blood samples from dengue-suspected patients were collected between 2012 and 2014. Serotyping was conducted using a multiplex Reverse Transcriptase-Polymerase Chain Reaction and a phylogenetic analysis of E gene sequences was performed using the Bayesian Markov chain Monte Carlo (MCMC) method. 17 out of 359 blood samples (4.7%) were positive for the isolation of DENV. Serotyping and the phylogenetic analysis revealed the predominance of DENV-1 genotype I (9/17, 52.9%), followed by DENV-2 Cosmopolitan type (7/17, 41.2%) and DENV-3 genotype I (1/17, 5.9%) . DENV-4 was not isolated. The Madura Island isolates showed high nucleotide similarity to other Indonesian isolates, indicating frequent virus circulation in Indonesia. The results of the present study highlight the importance of continuous viral surveillance in dengue endemic areas in order to obtain a clearer understanding of the dynamics of DENV in Indonesia.

  16. Mosquito densonucleosis virus non-structural protein NS2 is necessary for a productive infection

    International Nuclear Information System (INIS)

    Azarkh, Eugene; Robinson, Erin; Hirunkanokpun, Supanee; Afanasiev, Boris; Kittayapong, Pattamaporn; Carlson, Jonathan; Corsini, Joe

    2008-01-01

    Mosquito densonucleosis viruses synthesize two non-structural proteins, NS1 and NS2. While NS1 has been studied relatively well, little is known about NS2. Antiserum was raised against a peptide near the N-terminus of NS2, and used to conduct Western blot analysis and immuno-fluorescence assays. Western blots revealed a prominent band near the expected size (41 kDa). Immuno-fluorescence studies of mosquito cells transfected with AeDNV indicate that NS2 has a wider distribution pattern than does NS1, and the distribution pattern appears to be a function of time post-infection. Nuclear localization of NS2 requires intact C-terminus but does not require additional viral proteins. Mutations ranging from complete NS2 knock-out to a single missense amino acid substitution in NS2 can significantly reduce viral replication and production of viable progeny

  17. The estimation of imported dengue virus from Thailand.

    Science.gov (United States)

    Polwiang, Sittisede

    2015-01-01

    Dengue fever is one of the important causes of illness among travelers returning from Thailand. The risk of infection depends on the length of stay, activities, and arrival time. Due to globalization, there is a concern that infected travelers may carry dengue virus (DENV) to their country of residence and cause an outbreak. To estimate the infective person-days of travelers returning from Thailand, we developed a model with the following parameters: the probability of travelers being infected, number of arrivals, length of stay of travelers, incubation period, and duration of the infective period. The data used in this study were the dengue incidences in Thailand during 2004-2013 and foreign traveler arrivals in 2013. We estimated the highest infective person-days for each country group. The highest value was from June to August during the rainy season in Thailand for all groups. Infective person-days ranged from 87 to 112 per 100,000 travelers each year. Our results provided a fundamental step toward estimation of the risk of the secondary transmission of DENV in non-epidemic countries via travelers, which can serve as an early warning of a dengue outbreak. The highest infective person-day is associated with the rainy season in Thailand. The increasing number of overseas travelers may increase the risk of global transmission of the DENV. Better understanding of the virus transmission dynamics will enable further quantitative predictions of epidemic risk. © 2015 International Society of Travel Medicine.

  18. Clinical and laboratory features of dengue virus-infected travellers previously vaccinated against yellow fever

    NARCIS (Netherlands)

    Teichmann, Dieter; Göbels, Klaus; Niedrig, Matthias; Grobusch, Martin P.

    2003-01-01

    Dengue is a mosquito-borne viral infection endemic throughout the tropics and subtropics. The global prevalence of dengue has grown dramatically in recent years and it has become a major international public health concern. The close taxonomic relationships between yellow fever and dengue viruses

  19. Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir.

    Science.gov (United States)

    Chen, Yen-Liang; Abdul Ghafar, Nahdiyah; Karuna, Ratna; Fu, Yilong; Lim, Siew Pheng; Schul, Wouter; Gu, Feng; Herve, Maxime; Yokohama, Fumiaki; Wang, Gang; Cerny, Daniela; Fink, Katja; Blasco, Francesca; Shi, Pei-Yong

    2014-02-01

    In a recent clinical trial, balapiravir, a prodrug of a cytidine analog (R1479), failed to achieve efficacy (reducing viremia after treatment) in dengue patients, although the plasma trough concentration of R1479 remained above the 50% effective concentration (EC(50)). Here, we report experimental evidence to explain the discrepancy between the in vitro and in vivo results and its implication for drug development. R1479 lost its potency by 125-fold when balapiravir was used to treat primary human peripheral blood mononuclear cells (PBMCs; one of the major cells targeted for viral replication) that were preinfected with dengue virus. The elevated EC(50) was greater than the plasma trough concentration of R1479 observed in dengue patients treated with balapiravir and could possibly explain the efficacy failure. Mechanistically, dengue virus infection triggered PBMCs to generate cytokines, which decreased their efficiency of conversion of R1479 to its triphosphate form (the active antiviral ingredient), resulting in decreased antiviral potency. In contrast to the cytidine-based compound R1479, the potency of an adenosine-based inhibitor of dengue virus (NITD008) was much less affected. Taken together, our results demonstrate that viral infection in patients before treatment could significantly affect the conversion of the prodrug to its active form; such an effect should be calculated when estimating the dose efficacious for humans.

  20. Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase*

    Science.gov (United States)

    Lim, Siew Pheng; Sonntag, Louis Sebastian; Noble, Christian; Nilar, Shahul H.; Ng, Ru Hui; Zou, Gang; Monaghan, Paul; Chung, Ka Yan; Dong, Hongping; Liu, Boping; Bodenreider, Christophe; Lee, Gladys; Ding, Mei; Chan, Wai Ling; Wang, Gang; Jian, Yap Li; Chao, Alexander Theodore; Lescar, Julien; Yin, Zheng; Vedananda, T. R.; Keller, Thomas H.; Shi, Pei-Yong

    2011-01-01

    Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crystal structure of dengue virus MTase with a bound SAH derivative revealed that its N6-substituent bound in this cavity and induced conformation changes in residues lining the pocket. These findings demonstrate that one of the major hurdles for the development of methyltransferase-based therapeutics, namely selectivity for disease-related methyltransferases, can be overcome. PMID:21147775

  1. Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics

    Directory of Open Access Journals (Sweden)

    George Savidis

    2016-06-01

    Full Text Available The flaviviruses dengue virus (DENV and Zika virus (ZIKV are severe health threats with rapidly expanding ranges. To identify the host cell dependencies of DENV and ZIKV, we completed orthologous functional genomic screens using RNAi and CRISPR/Cas9 approaches. The screens recovered the ZIKV entry factor AXL as well as multiple host factors involved in endocytosis (RAB5C and RABGEF, heparin sulfation (NDST1 and EXT1, and transmembrane protein processing and maturation, including the endoplasmic reticulum membrane complex (EMC. We find that both flaviviruses require the EMC for their early stages of infection. Together, these studies generate a high-confidence, systems-wide view of human-flavivirus interactions and provide insights into the role of the EMC in flavivirus replication.

  2. Dengue virus infection-enhancing antibody activities against Indonesian strains in inhabitants of central Thailand.

    Science.gov (United States)

    Yamanaka, Atsushi; Oddgun, Duangjai; Chantawat, Nantarat; Okabayashi, Tamaki; Ramasoota, Pongrama; Churrotin, Siti; Kotaki, Tomohiro; Kameoka, Masanori; Soegijanto, Soegeng; Konishi, Eiji

    2016-04-01

    Dengue virus (DENV) infection-enhancing antibodies are a hypothetic factor to increase the dengue disease severity. In this study, we investigated the enhancing antibodies against Indonesian strains of DENV-1-4 in 50 healthy inhabitants of central Thailand (Bangkok and Uthai Thani). Indonesia and Thailand have seen the highest dengue incidence in Southeast Asia. The infection history of each subject was estimated by comparing his/her neutralizing antibody titers against prototype DENV-1-4 strains. To resolve the difficulty in obtaining foreign live viruses for use as assay antigens, we used a recombinant system to prepare single-round infectious dengue viral particles based on viral sequence information. Irrespective of the previously infecting serotype(s), most serum samples showed significantly higher enhancement titers against Indonesian DENV-2 strains than against Thai DENV-2 strains, whereas the opposite effect was observed for the DENV-3 strains. Equivalent enhancing activities were observed against both DENV-1 and DENV-4. These results suggest that the genotype has an impact on enhancing antibody activities against DENV-2 and DENV-3, because the predominant circulating genotypes of each serotype differ between Indonesia and Thailand. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Dengue en Colombia

    Directory of Open Access Journals (Sweden)

    Jorge Boshell

    1986-12-01

    Full Text Available El Gobierno Colombiano estableció una campaña que erradicó el Aedes aegypti de su territorio en atención a las recomendaciones que hizo la Oficina Sanitaria Panamericana en 1947. Esta campaña consiguió desaparecer el dengue endémico durante aproximadamente 20 años, apareciendo de nuevo en forma explosiva con la epidemia de dengue 2 en la Costa Atlántica (1971-1972, seguida de dos epidemias bien documentadas de dengue 3 (1975-1977 y dengue 1 en 1978. Se hace un resumen de las actividades que desarrolla el Laboratorio de Virología del Instituto Nacional de Salud para apoyar el diagnóstico de esta enfermedad en el país incluyendo el primer aislamiento de dengue 4 en 1982, la actividad de los virus dengue 1, 2 y 4 detectada hasta la fecha, los hallazgos clínicos y virológicos en un caso fatal de enfermedad hemorrágica asociada a infección por virus del dengue y un breve recuento de la epidemia de Tumaco en la Costa Pacífica en la cual se comprobó actividad simultánea de dengue 1 y 2. Finalmente se informa sobre el estado de infestación que tiene el país actualmente con el Aedes aegypti y sobre la actividad del virus de fiebre amarilla en focos selváticos vecinos a ciudades altamente infestadas, detectada en el mes de enero de 1987 en Colombia.

  4. Dengue Virus Serotype 2 Established in Northern Mozambique (2015-2016).

    Science.gov (United States)

    Oludele, John; Lesko, Birgitta; Mahumane Gundane, Isabel; de Bruycker-Nogueira, Fernanda; Muianga, Argentina; Ali, Sadia; Mula, Flora; Chelene, Imelda; Falk, Kerstin I; Barreto Dos Santos, Flávia; Gudo, Eduardo Samo

    2017-11-01

    After the report of an outbreak of dengue virus serotype 2 in 2014 in Nampula and Pemba cities, northern Mozambique, a surveillance system was established by the National Institute of Health. A study was performed during 2015-2016 to monitor the trend of the outbreak and confirm the circulating serotype of dengue virus (DENV). After the inclusion of consenting patients who met the case definition, samples from 192 patients were tested for the presence of nonstructural protein 1 antigen, and 60/192 (31%) samples were positive. Further analysis included DENV IgM antibodies, with 39 (20%) IgM positive cases. Reverse transcriptase (RT) PCR was performed for identification of the prevailing DENV serotype; 21/23 tested samples were DENV-2 positive, with DENV-2 present in both affected cities. When sequencing DENV, phenotype Cosmopolitan was identified. The surveillance indicates ongoing spread of DENV-2 in northern Mozambique 2 years after the first report of the outbreak.

  5. Analysis of genotype diversity and evolution of Dengue virus serotype 2 using complete genomes

    Directory of Open Access Journals (Sweden)

    Vaishali P. Waman

    2016-08-01

    Full Text Available Background Dengue is one of the most common arboviral diseases prevalent worldwide and is caused by Dengue viruses (genus Flavivirus, family Flaviviridae. There are four serotypes of Dengue Virus (DENV-1 to DENV-4, each of which is further subdivided into distinct genotypes. DENV-2 is frequently associated with severe dengue infections and epidemics. DENV-2 consists of six genotypes such as Asian/American, Asian I, Asian II, Cosmopolitan, American and sylvatic. Comparative genomic study was carried out to infer population structure of DENV-2 and to analyze the role of evolutionary and spatiotemporal factors in emergence of diversifying lineages. Methods Complete genome sequences of 990 strains of DENV-2 were analyzed using Bayesian-based population genetics and phylogenetic approaches to infer genetically distinct lineages. The role of spatiotemporal factors, genetic recombination and selection pressure in the evolution of DENV-2 is examined using the sequence-based bioinformatics approaches. Results DENV-2 genetic structure is complex and consists of fifteen subpopulations/lineages. The Asian/American genotype is observed to be diversified into seven lineages. The Asian I, Cosmopolitan and sylvatic genotypes were found to be subdivided into two lineages, each. The populations of American and Asian II genotypes were observed to be homogeneous. Significant evidence of episodic positive selection was observed in all the genes, except NS4A. Positive selection operational on a few codons in envelope gene confers antigenic and lineage diversity in the American strains of Asian/American genotype. Selection on codons of non-structural genes was observed to impact diversification of lineages in Asian I, cosmopolitan and sylvatic genotypes. Evidence of intra/inter-genotype recombination was obtained and the uncertainty in classification of recombinant strains was resolved using the population genetics approach. Discussion Complete genome-based analysis

  6. AWARENESS OF USING RINGER LACTAT SOLUTION IN DENGUE VIRUS INFECTION CASES COULD INDUCE SEVERITY

    Directory of Open Access Journals (Sweden)

    Soegeng Soegijanto

    2013-10-01

    Full Text Available Background:In 2012, serotype ofDengue Virus had changed from Den-2 and Den-3 to Den-1. In 5–10 years ago, serotype ofDen-1 case showed a mild clinical manifestation; but now as a primary case it can also show severe clinical manifestation. One findicator is an increasing liver enzyme, AST and ALT, with level more than 100–200 U/L. Aim: To getting a better solutions for this problem. Method: Obsevasional Study had been done in medical faculty ofAirlangga University (Dr. Soetomo and Soerya hospital Surabaya on Mei–August 2012. There were 10 cases ofdengue virus infection were studied, 5 cases got Ringer Acetate solution (Group A and 5 cases got Ringer Lactate solution (Group B. The diagnosis was based on criteria WHO 2009. Result: Five cases ofDengue Virus Infection had showed a liver damage soon after using Ringer Lactate solution; AST and ALT were increasing more than 100–200 U/L; but the other 5 cases showed better condition. It might be due to use Ringer Acetate that did not have effect for inducing liver damage. By managing carefully, all of the cases had shown full recovery and healthy condition when being discharged. Conclusion: Using Ringer Acetate as fluid therapy in Dengue Virus Infection is better to prevent liver damage than using Ringer Lactate.

  7. Influenza virus sequence feature variant type analysis: evidence of a role for NS1 in influenza virus host range restriction.

    Science.gov (United States)

    Noronha, Jyothi M; Liu, Mengya; Squires, R Burke; Pickett, Brett E; Hale, Benjamin G; Air, Gillian M; Galloway, Summer E; Takimoto, Toru; Schmolke, Mirco; Hunt, Victoria; Klem, Edward; García-Sastre, Adolfo; McGee, Monnie; Scheuermann, Richard H

    2012-05-01

    Genetic drift of influenza virus genomic sequences occurs through the combined effects of sequence alterations introduced by a low-fidelity polymerase and the varying selective pressures experienced as the virus migrates through different host environments. While traditional phylogenetic analysis is useful in tracking the evolutionary heritage of these viruses, the specific genetic determinants that dictate important phenotypic characteristics are often difficult to discern within the complex genetic background arising through evolution. Here we describe a novel influenza virus sequence feature variant type (Flu-SFVT) approach, made available through the public Influenza Research Database resource (www.fludb.org), in which variant types (VTs) identified in defined influenza virus protein sequence features (SFs) are used for genotype-phenotype association studies. Since SFs have been defined for all influenza virus proteins based on known structural, functional, and immune epitope recognition properties, the Flu-SFVT approach allows the rapid identification of the molecular genetic determinants of important influenza virus characteristics and their connection to underlying biological functions. We demonstrate the use of the SFVT approach to obtain statistical evidence for effects of NS1 protein sequence variations in dictating influenza virus host range restriction.

  8. Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8+ T cell response.

    Science.gov (United States)

    Culshaw, Abigail; Ladell, Kristin; Gras, Stephanie; McLaren, James E; Miners, Kelly L; Farenc, Carine; van den Heuvel, Heleen; Gostick, Emma; Dejnirattisai, Wanwisa; Wangteeraprasert, Apirath; Duangchinda, Thaneeya; Chotiyarnwong, Pojchong; Limpitikul, Wannee; Vasanawathana, Sirijitt; Malasit, Prida; Dong, Tao; Rossjohn, Jamie; Mongkolsapaya, Juthathip; Price, David A; Screaton, Gavin R

    2017-11-01

    Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8 + T cell populations specific for variants of the nonstructural protein epitope NS3 133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3 133 -DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2 + TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2 + TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs.

  9. Efficacy of NS5A Inhibitors Against Hepatitis C Virus Genotypes 1–7 and Escape Variants

    DEFF Research Database (Denmark)

    Gottwein, Judith M.; Pham, Long V.; Mikkelsen, Lotte S.

    2018-01-01

    , or that contained RAS previously reported from patients. Results: NS5A inhibitors had varying levels of efficacy against original and resistant viruses. Only velpatasvir and pibrentasvir had uniform high activity against all HCV genotypes tested. RAS hotspots in NS5A were found at amino acids 28, 30, 31, and 93...

  10. Role of antibodies in controlling dengue virus infection

    NARCIS (Netherlands)

    van der Schaar, Hilde M.; Wilschut, Jan C.; Smit, Jolanda M.

    The incidence and disease burden of arthropod-borne flavivirus infections have dramatically increased during the last decades due to major societal and economic changes, including massive urbanization, lack of vector control, travel, and international trade. Specifically, in the case of dengue virus

  11. Formation of infectious dengue virus-antibody immune complex in vivo in marmosets (Callithrix jacchus) after passive transfer of anti-dengue virus monoclonal antibodies and infection with dengue virus.

    Science.gov (United States)

    Moi, Meng Ling; Ami, Yasushi; Shirai, Kenji; Lim, Chang-Kweng; Suzaki, Yuriko; Saito, Yuka; Kitaura, Kazutaka; Saijo, Masayuki; Suzuki, Ryuji; Kurane, Ichiro; Takasaki, Tomohiko

    2015-02-01

    Infection with a dengue virus (DENV) serotype induces cross-reactive, weakly neutralizing antibodies to different dengue serotypes. It has been postulated that cross-reactive antibodies form a virus-antibody immune complex and enhance DENV infection of Fc gamma receptor (FcγR)-bearing cells. We determined whether infectious DENV-antibody immune complex is formed in vivo in marmosets after passive transfer of DENV-specific monoclonal antibody (mAb) and DENV inoculation and whether infectious DENV-antibody immune complex is detectable using FcγR-expressing cells. Marmosets showed that DENV-antibody immune complex was exclusively infectious to FcγR-expressing cells on days 2, 4, and 7 after passive transfer of each of the mAbs (mAb 4G2 and mAb 6B6C) and DENV inoculation. Although DENV-antibody immune complex was detected, contribution of the passively transferred antibody to overall viremia levels was limited in this study. The results indicate that DENV cross-reactive antibodies form DENV-antibody immune complex in vivo, which is infectious to FcγR-bearing cells but not FcγR-negative cells. © The American Society of Tropical Medicine and Hygiene.

  12. Simultaneous circulation of genotypes I and III of dengue virus 3 in Colombia

    OpenAIRE

    Usme-Ciro, Jose A; Mendez, Jairo A; Tenorio, Antonio; Rey, Gloria J; Domingo, Cristina; Gallego-Gomez, Juan C

    2008-01-01

    Abstract Background Dengue is a major health problem in tropical and subtropical regions. In Colombia, dengue viruses (DENV) cause about 50,000 cases annually, 10% of which involve Dengue Haemorrhagic Fever/Dengue Shock Syndrome. The picture is similar in other surrounding countries in the Americas, with recent outbreaks of severe disease, mostly associated with DENV serotype 3, strains of the Indian genotype, introduced into the Americas in 1994. Results The analysis of the 3'end (224 bp) of...

  13. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope.

    Science.gov (United States)

    Metz, Stefan W; Thomas, Ashlie; White, Laura; Stoops, Mark; Corten, Markus; Hannemann, Holger; de Silva, Aravinda M

    2018-04-02

    The 4 dengue serotypes (DENV) are mosquito-borne pathogens that are associated with severe hemorrhagic disease. DENV particles have a lipid bilayer envelope that anchors two membrane glycoproteins prM and E. Two E-protein monomers form head-to-tail homodimers and three E-dimers align to form "rafts" that cover the viral surface. Some human antibodies that strongly neutralize DENV bind to quaternary structure epitopes displayed on E protein dimers or higher order structures forming the infectious virus. Expression of prM and E in cell culture leads to the formation of DENV virus-like particles (VLPs) which are smaller than wildtype virus particles and replication defective due to the absence of a viral genome. There is no data available that describes the antigenic landscape on the surface of flavivirus VLPs in comparison to the better studied infectious virion. A large panel of well characterized antibodies that recognize epitope of ranging complexity were used in biochemical analytics to obtain a comparative antigenic surface view of VLPs in respect to virus particles. DENV patient serum depletions were performed the show the potential of VLPs in serological diagnostics. VLPs were confirmed to be heterogeneous in size morphology and maturation state. Yet, we show that many highly conformational and quaternary structure-dependent antibody epitopes found on virus particles are efficiently displayed on DENV1-4 VLP surfaces as well. Additionally, DENV VLPs can efficiently be used as antigens to deplete DENV patient sera from serotype specific antibody populations. This study aids in further understanding epitopic landscape of DENV VLPs and presents a comparative antigenic surface view of VLPs in respect to virus particles. We propose the use VLPs as a safe and practical alternative to infectious virus as a vaccine and diagnostic antigen.

  14. Risk factors for the incidence of dengue virus infection in preschool children.

    Science.gov (United States)

    Teixeira, Maria G; Morato, Vanessa; Barreto, Florisneide R; Mendes, Carlos M C; Barreto, Maurício L; Costa, Maria da Conceição N

    2012-11-01

    To estimate the seroincidence of dengue in children living in Salvador, Bahia, Brazil and to evaluate the factors associated.   A prospective serological survey was carried out in a sample of children 0-3 years of age. A multilevel logistic model was used to identify the determinants of seroincidence. The seroprevalence of dengue was 26.6% in the 625 children evaluated. A second survey detected an incidence of 33.2%. Multilevel logistic regression showed a statistically significant association between the seroincidence of dengue and age and the premises index. In Salvador, the dengue virus is in active circulation during early childhood; consequently, children have heterotypic antibodies and run a high risk of developing dengue haemorrhagic fever, because the sequence and intensity of the three dengue virus serotypes currently circulating in this city are very similar to those that were circulating in Rio de Janeiro, Brazil, in 2008. Therefore, the authors strongly recommend that the health authorities in cities with a similar epidemiological scenario be aware of this risk and implement improvements in health care, particularly targeting the paediatric age groups. In addition, information should be provided to the population and actions should be implemented to combat this vector. © 2012 Blackwell Publishing Ltd.

  15. Adapted J6/JFH1-based Hepatitis C virus recombinants with genotype-specific NS4A show similar efficacies against lead protease inhibitors, alpha interferon, and a putative NS4A inhibitor

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Jensen, Sanne B; Serre, Stéphanie B N

    2013-01-01

    To facilitate studies of hepatitis C virus (HCV) NS4A, we aimed at developing J6/JFH1-based recombinants with genotype 1- to 7-specific NS4A proteins. We developed efficient culture systems expressing NS4A proteins of genotypes (isolates) 1a (H77 and TN), 1b (J4), 2a (J6), 4a (ED43), 5a (SA13), 6a...... (HK6a), and 7a (QC69), with peak infectivity titers of ∼3.5 to 4.5 log10 focus-forming units per ml. Except for genotype 2a (J6), growth depended on adaptive mutations identified in long-term culture. Genotype 1a, 1b, and 4a recombinants were adapted by amino acid substitutions F772S (p7) and V1663A...... (NS4A), while 5a, 6a, and 7a recombinants required additional substitutions in the NS3 protease and/or NS4A. We demonstrated applicability of the developed recombinants for study of antivirals. Genotype 1 to 7 NS4A recombinants showed similar responses to the protease inhibitors telaprevir (VX-950...

  16. Evolutionary Analysis of Dengue Serotype 2 Viruses Using Phylogenetic and Bayesian Methods from New Delhi, India.

    Directory of Open Access Journals (Sweden)

    Nazia Afreen

    2016-03-01

    Full Text Available Dengue fever is the most important arboviral disease in the tropical and sub-tropical countries of the world. Delhi, the metropolitan capital state of India, has reported many dengue outbreaks, with the last outbreak occurring in 2013. We have recently reported predominance of dengue virus serotype 2 during 2011-2014 in Delhi. In the present study, we report molecular characterization and evolutionary analysis of dengue serotype 2 viruses which were detected in 2011-2014 in Delhi. Envelope genes of 42 DENV-2 strains were sequenced in the study. All DENV-2 strains grouped within the Cosmopolitan genotype and further clustered into three lineages; Lineage I, II and III. Lineage III replaced lineage I during dengue fever outbreak of 2013. Further, a novel mutation Thr404Ile was detected in the stem region of the envelope protein of a single DENV-2 strain in 2014. Nucleotide substitution rate and time to the most recent common ancestor were determined by molecular clock analysis using Bayesian methods. A change in effective population size of Indian DENV-2 viruses was investigated through Bayesian skyline plot. The study will be a vital road map for investigation of epidemiology and evolutionary pattern of dengue viruses in India.

  17. Genetic signatures coupled with lineage shift characterise endemic evolution of Dengue virus serotype 2 during 2015 outbreak in Delhi, India.

    Science.gov (United States)

    Choudhary, Manish Chandra; Gupta, Ekta; Sharma, Shvetank; Hasnain, Nadeem; Agarwala, Pragya

    2017-07-01

    In 2015, New Delhi witnessed a massive outbreak of Dengue virus (DENV) resulting in high morbidity and mortality. We report the molecular characterisation of the dominant circulating DENV strain to understand its evolution and dispersal. DENV infections were diagnosed by detection of IgM/NS1 antigen, and serotyping was performed by C-PrM PCR. Envelope gene was amplified, and variation(s) in envelope gene were analysed. Phylogenetic tree construction, time-based phylogeny and origin of DENV were analysed. Site-specific selection pressure of envelope gene variants was analysed. Confirmed DENV infection was observed in 11.34% (32 of 282) cases, while PCR positivity for C-PrM region was observed in 54.16% (13 of 24) of NS1 antigen-positive cases. All samples belonged to serotype 2 and cosmopolitan genotype. Phylogenetic analysis using envelope gene revealed segregation of cosmopolitan genotype strains into specific lineages. The Indian strains clustered separately forming a distinct monophyletic lineage (lineage III) with a signature amino acid substitution viz., I162V and R288K. Selection pressure analysis revealed that 215D, 288R and 304K were positively selected sites. The rate of nucleotide substitution was 6.93 × 10 -4 substitutions site-1 year-1 with time to most common ancestor was around 10 years with JX475906 (Hyderabad strain) and JN030345 (Singapore strain) as its most probable ancestor. We observed evolution of a distinct lineage of DENV-2 strains on the Indian subcontinent with possible changes in endemic circulating dengue strains that might give rise to more pathogenic strains. © 2017 John Wiley & Sons Ltd.

  18. Survey of malaria and anti-dengue virus IgG among febrile HIV-infected patients attending a tertiary hospital in Abuja, Nigeria.

    Science.gov (United States)

    Mustapha, Jelili Olaide; Emeribe, Anthony Uchenna; Nasir, Idris Abdullahi

    2017-01-01

    Dengue and malaria are infections, of great public health concern, especially in sub-Saharan Africa where the burden of HIV infection is high. This study was conducted to determine the seroprevalence of dengue virus IgG antibodies and dengue/malaria coinfection among febrile HIV-infected patients attending the University of Abuja Teaching Hospital, Gwagwalada, Abuja. In this cross-sectional study, blood samples from 178 consenting HIV-infected patients receiving antiretroviral therapy were collected and tested for plasmodiasis and anti-Dengue virus IgG using malaria microscopy and ELISA, respectively. Interviewer-based questionnaires were used to assess subjects' sociodemographic variables and dengue risk factors. Of the 178 screened participants, 44.4% were seropositive for dengue virus IgG antibody, whereas 29.2% were positive for Plasmodium falciparum. About 44.2% were positive for both dengue virus and P. falciparum . There was a statistical association between anti-dengue IgG and occupation ( p =0.03) but not with age, residential area, educational level and patients' gender ( p >0.05). Seroprevalence of anti-dengue specific IgG was relatively higher in participants who adopted protective measures. There was a statistical association between seroprevalence of anti-dengue IgG and adoption of preventive measures ( p <0.05). The high prevalence of malaria and dengue virus IgG indicates the need to strengthen vector control and dengue surveillance programs.

  19. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    Directory of Open Access Journals (Sweden)

    Adriana S Azevedo

    Full Text Available The dengue envelope glycoprotein (E is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2 and a chimeric yellow fever/dengue 2 virus (YF17D-D2. The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  20. Dengue Outbreak in a Hilly State of Arunachal Pradesh in Northeast India

    Science.gov (United States)

    Khan, Siraj A.; Dutta, Prafulla; Topno, Rashmee; Soni, Monika; Mahanta, Jagadish

    2014-01-01

    Dengue has been reported from plains as well as hilly regions of India including some parts of Northeast India. In July-August 2012, outbreak of fever with unknown origin (FUO) indicative of Dengue was reported in Pasighat, East Siang district of Arunachal Pradesh (AP) state. Serum samples (n = 164) collected from patients from Health Training and Research Centre General Hospital, Pasighat, were tested for NS1 antigen and IgM antibodies. NS1-positive samples were analyzed by RT-PCR assay and entomological surveys were carried out. The majority of suspected cases reported NS1 antigen positivity. Females and young adults were mostly affected. The majority of the amplified NS1-positive samples showed Dengue serotype 3 infection. Aedes (Stegomyia) albopictus, known as semiurban breeding mosquitoes, was the only potential vector species identified from the affected areas of Pasighat which single handedly contributed to the outbreak. Thus, the present work identifies Dengue as an emerging arboviral infection in hilly state of AP along with a looming risk of its spread to neighbouring areas. PMID:24587732

  1. Dengue Outbreak in a Hilly State of Arunachal Pradesh in Northeast India

    Directory of Open Access Journals (Sweden)

    Siraj A. Khan

    2014-01-01

    Full Text Available Dengue has been reported from plains as well as hilly regions of India including some parts of Northeast India. In July-August 2012, outbreak of fever with unknown origin (FUO indicative of Dengue was reported in Pasighat, East Siang district of Arunachal Pradesh (AP state. Serum samples (n = 164 collected from patients from Health Training and Research Centre General Hospital, Pasighat, were tested for NS1 antigen and IgM antibodies. NS1-positive samples were analyzed by RT-PCR assay and entomological surveys were carried out. The majority of suspected cases reported NS1 antigen positivity. Females and young adults were mostly affected. The majority of the amplified NS1-positive samples showed Dengue serotype 3 infection. Aedes (Stegomyia albopictus, known as semiurban breeding mosquitoes, was the only potential vector species identified from the affected areas of Pasighat which single handedly contributed to the outbreak. Thus, the present work identifies Dengue as an emerging arboviral infection in hilly state of AP along with a looming risk of its spread to neighbouring areas.

  2. Highly pathogenic avian influenza virus H5N1 controls type I IFN induction in chicken macrophage HD-11 cells: a polygenic trait that involves NS1 and the polymerase complex

    Science.gov (United States)

    2012-01-01

    Background Influenza A viruses are well characterized to antagonize type I IFN induction in infected mammalian cells. However, limited information is available for avian cells. It was hypothesised that avian influenza viruses (AIV) with distinct virulence may interact differently with the avian innate immune system. Therefore, the type I IFN responses induced by highly virulent and low virulent H5N1 AIV and reassortants thereof were analysed in chicken cells. Results The highly pathogenic (HP) AIV A/chicken/Yamaguchi/7/04 (H5N1) (Yama) did not induce type I IFN in infected chicken HD-11 macrophage-like cells. This contrasted with an NS1 mutant Yama virus (Yama-NS1A144V) and with the attenuated H5N1 AIV A/duck/Hokkaido/Vac-1/04 (Vac) carrying the haemagglutinin (HA) of the Yama virus (Vac-Yama/HA), that both induced type I IFN in these cells. The substitution of the NS segment from Yama with that from Vac in the Yama backbone resulted in induction of type I IFN secretion in HD-11 cells. However, vice versa, the Yama NS segment did not prevent type I IFN induction by the Vac-Yama/HA virus. This was different with the PB1/PB2/PA segment reassortant Yama and Vac-Yama/HA viruses. Whereas the Yama virus with the Vac PB1/PB2/PA segments induced type I IFN in HD-11 cells, the Vac-Yama/HA virus with the Yama PB1/PB2/PA segments did not. As reported for mammalian cells, the expression of H5N1 PB2 inhibited the activation of the IFN-β promoter in chicken DF-1 fibroblast cells. Importantly, the Yama PB2 was more potent at inhibiting the IFN-β promoter than the Vac PB2. Conclusions The present study demonstrates that the NS1 protein and the polymerase complex of the HPAIV Yama act in concert to antagonize chicken type I IFN secretion in HD-11 cells. PB2 alone can also exert a partial inhibitory effect on type I IFN induction. In conclusion, the control of type I IFN induction by H5N1 HPAIV represents a complex phenotype that involves a particular viral gene constellation

  3. Decrease in Dengue virus-2 infection and reduction of cytokine/chemokine production by Uncaria guianensis in human hepatocyte cell line Huh-7

    Directory of Open Access Journals (Sweden)

    Cíntia da Silva Mello

    Full Text Available ABSTRACT BACKGROUND Dengue fever may present hemorrhages and cavitary effusions as result of exacerbated immune responses. We investigated hydro-alcoholic extracts from leaves (UGL and bark (UGB of the medicinal species Uncaria guinanensis with respect to antiviral effects in Dengue virus (DENV infection and in immunological parameters associated with in vivo physiopathological features. METHODS Chemical profiles from UGB or UGL were compared in thin layer chromatography and 1H nuclear magnetic resonance using flavonoid compounds and a pentacyclic oxindole alkaloid-enriched fraction as references. DENV-2-infected hepatocytes (Huh-7 were treated with extracts. Cell viability, DENV antigens and immunological factors were detected by enzyme-linked immunosorbent assay (ELISA or flow cytometry. FINDINGS The UGL mainly differed from UGB by selectively containing the flavonoid kaempferitrin. UGB and UGL improved hepatocyte viability. Both extracts reduced intracellular viral antigen and inhibited the secretion of viral non-structural protein (NS1, which is indicative of viral replication. Reduction in secretion of macrophage migration inhibitory factor was achieved by UGB, of interleukin-6 by UGL, and of interleukin-8 by both UGB and UGL. MAIN CONCLUSIONS The U. guianensis extracts presented, antiviral and immunomodulatory effects for DENV and possibly a hepatocyte-protective activity. Further studies may be performed to consider these products as potential candidates for the development of an herbal product for the future treatment of dengue.

  4. Decrease in Dengue virus-2 infection and reduction of cytokine/chemokine production by Uncaria guianensis in human hepatocyte cell line Huh-7.

    Science.gov (United States)

    Mello, Cíntia da Silva; Valente, Ligia Maria Marino; Wolff, Thiago; Lima-Junior, Raimundo Sousa; Fialho, Luciana Gomes; Marinho, Cintia Ferreira; Azeredo, Elzinandes Leal; Oliveira-Pinto, Luzia Maria; Pereira, Rita de Cássia Alves; Siani, Antonio Carlos; Kubelka, Claire Fernandes

    2017-06-01

    Dengue fever may present hemorrhages and cavitary effusions as result of exacerbated immune responses. We investigated hydro-alcoholic extracts from leaves (UGL) and bark (UGB) of the medicinal species Uncaria guinanensis with respect to antiviral effects in Dengue virus (DENV) infection and in immunological parameters associated with in vivo physiopathological features. Chemical profiles from UGB or UGL were compared in thin layer chromatography and 1H nuclear magnetic resonance using flavonoid compounds and a pentacyclic oxindole alkaloid-enriched fraction as references. DENV-2-infected hepatocytes (Huh-7) were treated with extracts. Cell viability, DENV antigens and immunological factors were detected by enzyme-linked immunosorbent assay (ELISA) or flow cytometry. The UGL mainly differed from UGB by selectively containing the flavonoid kaempferitrin. UGB and UGL improved hepatocyte viability. Both extracts reduced intracellular viral antigen and inhibited the secretion of viral non-structural protein (NS1), which is indicative of viral replication. Reduction in secretion of macrophage migration inhibitory factor was achieved by UGB, of interleukin-6 by UGL, and of interleukin-8 by both UGB and UGL. MAIN. The U. guianensis extracts presented, antiviral and immunomodulatory effects for DENV and possibly a hepatocyte-protective activity. Further studies may be performed to consider these products as potential candidates for the development of an herbal product for the future treatment of dengue.

  5. Nucleolar localization of influenza A NS1: striking differences between mammalian and avian cells

    Directory of Open Access Journals (Sweden)

    Mazel-Sanchez Beryl

    2010-03-01

    Full Text Available Abstract In mammalian cells, nucleolar localization of influenza A NS1 requires the presence of a C-terminal nucleolar localization signal. This nucleolar localization signal is present only in certain strains of influenza A viruses. Therefore, only certain NS1 accumulate in the nucleolus of mammalian cells. In contrast, we show that all NS1 tested in this study accumulated in the nucleolus of avian cells even in the absence of the above described C-terminal nucleolar localization signal. Thus, nucleolar localization of NS1 in avian cells appears to rely on a different nucleolar localization signal that is more conserved among influenza virus strains.

  6. Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-2-0031 TITLE: Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines PRINCIPAL...SUBTITLE 5a. CONTRACT NUMBER Systems Biology of the Immune Response to Live and Inactivated Dengue Virus Vaccines 5b. GRANT NUMBER W81XWH-16-2-0031 5c...adaptive (T and B cell) responses will be measured using molecular and cellular approaches and the data analyzed using a systems biology approach

  7. A Study of Clinical Spectrum of Dengue Fever in A Tertiary Care Centre.

    Directory of Open Access Journals (Sweden)

    Dr. Gargi Pathak

    2016-12-01

    Full Text Available Introduction: Dengue viruses, of the family Flaviviridae, are the most common cause of arboviral, disease in the world. We report a clinico-epidemiological study of the dengue fever from paediatric department of civil hospital Ahmedabad. This study was designed to document the presenting features, laboratory results and outcome of dengue infection in children. Methodology: A prospective study was carried from October 2014-october 2015 and total of 126 patients were studied from age group between 1 month to 12 years. A detailed history, careful clinical examination and laboratory investigations were done in all the patients. Results and Conclusions: We documented Leucopenia as an early marker than thrombocytopenia and were seen in more numbers (47% in our study which was not found in the previous studies. Most common symptom was fever with body ache (73%. Majority of patients had platelet count between 50000-1 lakh. 55% had tested positive for dengue IgM and 44.4% had tested positive for dengue NS1. Wide variety of complications like hepatitis (20.6%, myocarditis (14.2%, dengue shock (11.1%, encephalitis (4.7%, Dengue haemorrhagic fever (4.7%, ARDS (2.3% were seen, which might indicate a change in serotype and epidemiology of the Dengue. Interestingly Bradycardia was seen in increased frequency subsequent to myocarditis with simultaneously raised CPK-MB levels. There were increased cases of coinfections like malaria, enteric, hepatitis, UTI, not seen previously .Out of 126 patients 6 patients expired.

  8. Reemergence of Dengue in Southern Texas, 2013

    Science.gov (United States)

    Thomas, Dana L.; Santiago, Gilberto A.; Abeyta, Roman; Hinojosa, Steven; Torres-Velasquez, Brenda; Adam, Jessica K.; Evert, Nicole; Caraballo, Elba; Hunsperger, Elizabeth; Muñoz-Jordán, Jorge L.; Smith, Brian; Banicki, Alison; Tomashek, Kay M.; Gaul, Linda

    2016-01-01

    During a dengue epidemic in northern Mexico, enhanced surveillance identified 53 laboratory-positive cases in southern Texas; 26 (49%) patients acquired the infection locally, and 29 (55%) were hospitalized. Of 83 patient specimens that were initially IgM negative according to ELISA performed at a commercial laboratory, 14 (17%) were dengue virus positive by real-time reverse transcription PCR performed at the Centers for Disease Control and Prevention. Dengue virus types 1 and 3 were identified, and molecular phylogenetic analysis demonstrated close identity with viruses that had recently circulated in Mexico and Central America. Of 51 household members of 22 dengue case-patients who participated in household investigations, 6 (12%) had been recently infected with a dengue virus and reported no recent travel, suggesting intrahousehold transmission. One household member reported having a recent illness consistent with dengue. This outbreak reinforces emergence of dengue in southern Texas, particularly when incidence is high in northern Mexico. PMID:27191223

  9. Neutralizing activities of human immunoglobulin derived from donors in Japan against mosquito-borne flaviviruses, Japanese encephalitis virus, West Nile virus, and dengue virus

    Directory of Open Access Journals (Sweden)

    Yunoki M

    2016-07-01

    Full Text Available Mikihiro Yunoki,1-3 Takeshi Kurosu,2 Ritsuko Kubota Koketsu,2,4 Kazuo Takahashi,5 Yoshinobu Okuno,4 Kazuyoshi Ikuta2,4 1Research and Development Division, Japan Blood Products Organization, Tokyo, 2Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, 3Pathogenic Risk Evaluation, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, 4Research and Development Division, The Research Foundation for Microbial Diseases of Osaka University, Kagawa, 5Osaka Prefectural Institute of Public Health, Osaka, Japan Abstract: Japanese encephalitis virus (JEV, West Nile virus (WNV, and dengue virus (DenV are causal agents of Japanese encephalitis, West Nile fever, and dengue fever, respectively. JEV is considered to be indigenized and widespread in Japan, whereas WNV and DenV are not indigenized in Japan. Globulin products seem to reflect the status of the donor population according to antivirus neutralization activity. However, the anti-JEV, -WNV, and -DenV neutralization activities of globulin products derived from donors in Japan have not been clarified. Furthermore, potential candidates for the development of an effective immunotherapeutic drug for encephalitis caused by JEV, WNV, or DenV have also not been identified. Therefore, the aim of this study was to determine the overall status of the donor population in Japan based on globulin products by evaluating anti-JEV, -WNV, and -DenV neutralizing activities of intravenous immunoglobulin. Overall, intravenous immunoglobulin products showed stable neutralizing activity against JEV but showed no or only weak activity against WNV or DenV. These results suggest that the epidemiological level against WNV and DenV in the donor population of Japan is still low, suggesting that these viruses are not yet indigenized. In addition, JEV vaccinations and/or infections in the donor population do not induce a cross-reactive antibody against WNV. Keywords

  10. Antidiarrheal activity of extracts from Maytenus gonoclada and inhibition of Dengue virus by lupeol

    Directory of Open Access Journals (Sweden)

    FERNANDO C. SILVA

    Full Text Available ABSTRACT Diarrhea is an infectious disease caused by bacterial, virus, or protozoan, and dengue is caused by virus, included among the neglected diseases in several underdeveloped and developing countries, with an urgent demand for new drugs. Considering the antidiarrheal potential of species of Maytenus genus, a phytochemical investigation followed by antibacterial activity test with extracts of branches and heartwood and bark of roots from Maytenus gonoclada were conducted. Moreover, due the frequency of isolation of lupeol from Maytenus genus the antiviral activity against Dengue virus and cytotoxicity of lupeol and its complex with β-cyclodextrins were also tested. The results indicated the bioactivity of ethyl acetate extract from branches and ethanol extract from heartwood of roots of M. gonoclada against diarrheagenic bacteria. The lupeol showed potent activity against Dengue virus and low cytotoxicity in LLC-MK2 cells, but its complex with β-cyclodextrin was inactive. Considering the importance of novel and selective antiviral drug candidates the results seem to be promising.

  11. Dengue Virus Specific Immune Response: Implications for laboratory diagnosis and vaccine development

    NARCIS (Netherlands)

    P. Koraka (Penelope)

    2007-01-01

    textabstractDengue viruses (DENV 1-4) belong to the family Flaviviridae, genus Flavivirus. They are transmitted to humans through the bite of infected mosquitoes of the Aedes species. An estimated 100 million people are annually infected with DENV and over two billion people are at risk in

  12. Validation of the Pockit Dengue Virus Reagent Set for Rapid Detection of Dengue Virus in Human Serum on a Field-Deployable PCR System.

    Science.gov (United States)

    Tsai, Jih-Jin; Liu, Li-Teh; Lin, Ping-Chang; Tsai, Ching-Yi; Chou, Pin-Hsing; Tsai, Yun-Long; Chang, Hsiao-Fen Grace; Lee, Pei-Yu Alison

    2018-05-01

    Dengue virus (DENV) infection, a mosquito-borne disease, is a major public health problem in tropical countries. Point-of-care DENV detection with good sensitivity and specificity enables timely early diagnosis of DENV infection, facilitating effective disease management and control, particularly in regions of low resources. The Pockit dengue virus reagent set (GeneReach Biotech), a reverse transcription insulated isothermal PCR (RT-iiPCR), is available to detect all four serotypes of DENV on the field-deployable Pockit system, which is ready for on-site applications. In this study, analytical and clinical performances of the assay were evaluated. The index assay did not react with 14 non-DENV human viruses, indicating good specificity. Compared to the U.S. CDC DENV-1-4 real-time quantitative RT-PCR (qRT-PCR) assay, testing with serial dilutions of virus-spiked human sera demonstrated that the index assay had detection endpoints that were separately comparable with the 4 serotypes. Excellent reproducibility was observed among repeat tests done by six operators at three sites. In clinical performance, 195 clinical sera collected around Kaohsiung city in 2012 and 21 DENV-4-spiked sera were tested with the RT-iiPCR and qRT-PCR assays in parallel. The 121 (11 DENV-1, 78 DENV-2, 11 DENV-3, and 21 DENV-4) qRT-PCR-positive and 95 qRT-PCR-negative samples were all positive and negative by the RT-iiPCR reagent results, respectively, demonstrating high (100%) interrater agreement (95% confidence interval [CI 95% ], ∼98.81% to 100%; κ = 1). With analytical and clinical performance equivalent to those of the reference qRT-PCR assay, the index PCR assay on the field-deployable system can serve as a highly sensitive and specific on-site tool for DENV detection. Copyright © 2018 American Society for Microbiology.

  13. Specific genetic markers for detecting subtypes of dengue virus serotype-2 in isolates from the states of Oaxaca and Veracruz, Mexico

    Directory of Open Access Journals (Sweden)

    Camacho-Nuez Minerva

    2008-07-01

    Full Text Available Abstract Background Dengue (DEN is an infectious disease caused by the DEN virus (DENV, which belongs to the Flavivirus genus in the family Flaviviridae. It has a (+ sense RNA genome and is mainly transmitted to humans by the vector mosquito Aedes aegypti. Dengue fever (DF and dengue hemorrhagic fever (DHF are caused by one of four closely related virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4. Epidemiological and evolutionary studies have indicated that host and viral factors are involved in determining disease outcome and have proved the importance of viral genotype in causing severe epidemics. Host immune status and mosquito vectorial capacity are also important influences on the severity of infection. Therefore, an understanding of the relationship between virus variants with altered amino acids and high pathogenicity will provide more information on the molecular epidemiology of DEN. Accordingly, knowledge of the DENV serotypes and genotypes circulating in the latest DEN outbreaks around the world, including Mexico, will contribute to understanding DEN infections. Results 1. We obtained 88 isolates of DENV, 27 from Oaxaca and 61 from Veracruz. 2. Of these 88 isolates, 16 were serotype 1; 62 serotype 2; 7 serotype 3; and 2 serotype 4. One isolate had 2 serotypes (DENV-2 and -1. 3. Partial nucleotide sequences of the genes encoding C- prM (14 sequences, the NS3 helicase domain (7 sequences, the NS5 S-adenosyl methionine transferase domain (7 sequences and the RNA-dependent RNA polymerase (RdRp domain (18 sequences were obtained. Phylogenetic analysis showed that DENV-2 isolates belonged to the Asian/American genotype. In addition, the Asian/American genotype was divided into two clusters, one containing the isolates from 2001 and the other the isolates from 2005–2006 with high bootstrap support of 94%. Conclusion DENV-2 was the predominant serotype in the DF and DHF outbreak from 2005 to 2006 in Oaxaca State as well as in the 2006

  14. Serum Metabolomics Investigation of Humanized Mouse Model of Dengue Virus Infection.

    Science.gov (United States)

    Cui, Liang; Hou, Jue; Fang, Jinling; Lee, Yie Hou; Costa, Vivian Vasconcelos; Wong, Lan Hiong; Chen, Qingfeng; Ooi, Eng Eong; Tannenbaum, Steven R; Chen, Jianzhu; Ong, Choon Nam

    2017-07-15

    Dengue is an acute febrile illness caused by dengue virus (DENV) and a major cause of morbidity and mortality in tropical and subtropical regions of the world. The lack of an appropriate small-animal model of dengue infection has greatly hindered the study of dengue pathogenesis and the development of therapeutics. In this study, we conducted mass spectrometry-based serum metabolic profiling from a model using humanized mice (humice) with DENV serotype 2 infection at 0, 3, 7, 14, and 28 days postinfection (dpi). Forty-eight differential metabolites were identified, including fatty acids, purines and pyrimidines, acylcarnitines, acylglycines, phospholipids, sphingolipids, amino acids and derivatives, free fatty acids, and bile acid. These metabolites showed a reversible-change trend-most were significantly perturbed at 3 or 7 dpi and returned to control levels at 14 or 28 dpi, indicating that the metabolites might serve as prognostic markers of the disease in humice. The major perturbed metabolic pathways included purine and pyrimidine metabolism, fatty acid β-oxidation, phospholipid catabolism, arachidonic acid and linoleic acid metabolism, sphingolipid metabolism, tryptophan metabolism, phenylalanine metabolism, lysine biosynthesis and degradation, and bile acid biosynthesis. Most of these disturbed pathways are similar to our previous metabolomics findings in a longitudinal cohort of adult human dengue patients across different infection stages. Our analyses revealed the commonalities of host responses to DENV infection between humice and humans and suggested that humice could be a useful small-animal model for the study of dengue pathogenesis and the development of dengue therapeutics. IMPORTANCE Dengue virus is the most widespread arbovirus, causing an estimated 390 million dengue infections worldwide every year. There is currently no effective treatment for the disease, and the lack of an appropriate small-animal model of dengue infection has greatly

  15. Characteristics and predictors for gastrointestinal hemorrhage among adult patients with dengue virus infection: Emphasizing the impact of existing comorbid disease(s.

    Directory of Open Access Journals (Sweden)

    Wen-Chi Huang

    Full Text Available Gastrointestinal (GI bleeding is a leading cause of death in dengue. This study aims to identify predictors for GI bleeding in adult dengue patients, emphasizing the impact of existing comorbid disease(s.Of 1300 adults with dengue virus infection, 175 (mean age, 56.5±13.7 years patients with GI bleeding and 1,125 (mean age, 49.2±15.6 years without GI bleeding (controls were retrospectively analyzed.Among 175 patients with GI bleeding, dengue hemorrhagic fever was found in 119 (68% patients; the median duration from onset dengue illness to GI bleeding was 5 days. Gastric ulcer, erythematous gastritis, duodenal ulcer, erosive gastritis, and hemorrhagic gastritis were found in 52.3%, 33.3%, 28.6%, 28.6%, and 14.3% of 42 patients with GI bleeding who had undergone endoscopic examination, respectively. Overall, nine of the 175 patients with GI bleeding died, giving an in-hospital mortality rate of 5.1%. Multivariate analysis showed age ≥60 years (cases vs. controls: 48% vs. 28.3% (odds ratio [OR]: 1.663, 95% confidence interval [CI]: 1.128-2.453, end stage renal disease with additional comorbidities (cases vs. controls: 1.7% vs. 0.2% (OR: 9.405, 95% CI: 1.4-63.198, previous stroke with additional comorbidities (cases vs. controls: 7.4% vs. 0.6% (OR: 9.772, 95% CI: 3.302-28.918, gum bleeding (cases vs. controls: 27.4% vs. 11.5% (OR: 1.732, 95% CI: 1.1-2.727, petechiae (cases vs. controls: 56.6% vs. 29.1% (OR: 2.109, 95% CI: 1.411-3.153, and platelet count <50×109 cells/L (cases vs. controls: 53.1% vs. 25.8% (OR: 3.419, 95% CI: 2.103-5.558 were independent predictors of GI bleeding in patients with dengue virus infection.Our study is the first to disclose that end stage renal disease and previous stroke, with additional comorbidities, were strongly significant associated with the risk of GI bleeding in patients with dengue virus infection. Identification of these risk factors can be incorporated into the patient assessment and management protocol

  16. Dengue encephalitis–A rare manifestation of dengue fever

    OpenAIRE

    Madi, Deepak; Achappa, Basavaprabhu; Ramapuram, John T; Chowta, Nityananda; Laxman, Mridula; Mahalingam, Soundarya

    2014-01-01

    The clinical spectrum of dengue fever ranges from asymptomatic infection to dengue shock syndrome. Dengue is classically considered a non-neurotropic virus. Neurological complications are not commonly seen in dengue. The neurological manifestations seen in dengue are encephalitis, meningitis, encephalopathy, stroke and Guillain-Barré syndrome. Dengue encephalitis is a rare disease. We report an interesting case of dengue encephalitis from Southern India. A 49-year-old gentleman presented with...

  17. Vírus dengue em larvas de Aedes aegypti e sua dinâmica de infestação, Roraima, Brasil Virus dengue en larvas de Aedes aegypti y su dinámica de infestación, Roraima, Brasil Dengue virus in Aedes aegypti larvae and infestation dynamics in Roraima, Brazil

    Directory of Open Access Journals (Sweden)

    Julianna Dias Zeidler

    2008-12-01

    Full Text Available OBJETIVO: Identificar a presença do vírus dengue em formas larvais de Aedes aegypti e relacionar a presença do vetor com índice pluviométrico e número de casos de dengue. MÉTODOS: Dezoito domicílios foram selecionados aleatoriamente para coleta de ovos em um bairro da cidade de Boa Vista (RR. Foram instaladas duas ovitrampas por domicílio e removidas após uma semana, mensalmente, de novembro de 2006 a maio de 2007. Foram calculados o índice de positividade de ovitrampa e o índice de densidade dos ovos. Após eclosão de 1.422 ovos coletados, foram formados 44 pools de no máximo 30 larvas para teste de presença do vírus dengue por meio de RT-PCR e hemi-nested PCR. O índice de incidência de dengue no período foi correlacionado com a precipitação pluvial. A associação entre essas variáveis e número de ovos coletados foi analisada pelo coeficiente de Pearson. RESULTADOS: Nenhum dos pools apresentou positividade para o vírus dengue, apesar do bairro ter apresentado elevados índices de incidência de dengue no período estudado. A densidade da população de Ae. aegypti aumentou conforme a pluviosidade, mas não apresentou correlação com índices de incidência de casos de dengue. CONCLUSÕES: Os resultados sugerem que a transmissão transovariana do vírus em mosquitos ocorre a uma freqüência muito baixa e por isso sua persistência em meio urbano pode não depender desse fenômeno. A população do mosquito aumentou no período de chuvas devido à formação de criadouros; a não-correlação com o índice de incidência de dengue deve-se à possibilidade desse dado ser subestimado em períodos de epidemia.OBJETIVO: Identificar la presencia del virus dengue en forma larvales de Aedes aegypti y relacionar la presencia del vector con índice pluviométrico y número de casos de dengue en el período estudiado. MÉTODOS: Dieciocho domicilios fueron seleccionados al azar para colectar huevos en una urbanización de la

  18. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zheng

    2017-05-01

    Full Text Available Dengue virus (DV is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  19. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV) Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice.

    Science.gov (United States)

    Zheng, Xiaoyan; Chen, Hui; Wang, Ran; Fan, Dongying; Feng, Kaihao; Gao, Na; An, Jing

    2017-01-01

    Dengue virus (DV) is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  20. Circulating serotypes of dengue virus and their incursion into non-endemic areas of Pakistan; a serious threat.

    Science.gov (United States)

    Ali, Amjad; Ahmad, Habib; Idrees, Muhammad; Zahir, Fazli; Ali, Ijaz

    2016-08-26

    Dengue virus is circulating in Pakistan since 1994, which causes major and minor outbreaks in many areas of the country. The incidence of dengue in Pakistan in past years mainly restricted to parts of Sindh and Punjab provinces. As such, a severe dengue outbreak appeared in Pakistan in 2011, particularly in Punjab province with Lahore as the most hit city (290 deaths). In 2013, for the first time in the history of Pakistan, dengue outbreak erupted in Swat District, Khyber Pakhtunkhwa, which claimed more than 57 lives. Hence this study was conducted to document circulating serotypes of dengue virus in Pakistan in 2011 and 2013 dengue outbreaks in two different territories/areas of the country. In total, 1340 blood samples from people having dengue (ELISA positive) and/or dengue like symptoms from various cities/areas of Punjab and Swat, Khyber Pakhtunkhwa (KP) were collected and analyzed by reverse transcription polymerase chain reaction (RT-PCR) using serotype specific primers. The results indicated that all the four dengue virus serotypes were circulating in Punjab Province with highest frequency of DENV-2 (41.64 %) and DENV-3 (41.05 %). Similarly, DENV-2 (41.66 %) and DENV-3 (35.0 %) were dominant serotypes detected in KP-based people lived in Punjab. On the other hand only DENV-2 (40.0 %) and DENV-3 (60.0 %) were detected in Swat District. Furthermore an important observation noted in this study was mixed infection of DENV-2 and DENV-3 in Punjab in 2011 (3.81 %) and in people from KP infected in Punjab (8.33 %) which may account for the high mortality and morbidity rates as compared to previous outbreaks. Over all male population was mostly infected as compared to females and people in the age group between 15 to 45 was the highest infected group. The findings of this study indicate that all four serotypes of dengue virus are circulating in Punjab whereas serotypes 2 and 3 introduced for the first time into Swat, KP in 2013; about 600 km away from Lahore

  1. A small molecule fusion inhibitor of dengue virus

    NARCIS (Netherlands)

    Poh, Mee Kian; Yip, Andy; Zhang, Summer; Priestle, John P.; Ma, Ngai Ling; Smit, Jolanda M.; Wischut, Jan; Shi, Pei-Yong; Wenk, Markus R.; Schul, Wouter

    2009-01-01

    The dengue virus envelope protein plays an essential role in viral entry by mediating fusion between the viral and host membranes. The crystal structure of the envelope protein shows a pocket (located at a "hinge" between Domains I and II) that can be occupied by ligand n-octyl-beta-D-glucoside

  2. Seroprevalence of dengue virus antibodies in asymptomatic Costa Rican children, 2002-2003: a pilot study La seroprevalencia de anticuerpos contra el virus del dengue en niños costarricenses asintomáticos, 2002-2003: estudio piloto

    Directory of Open Access Journals (Sweden)

    Roberto Iturrino-Monge

    2006-07-01

    Full Text Available OBJECTIVES: Since 1993 dengue has become more frequent in Costa Rica. Adults have been the most affected population, while children have remained virtually unharmed. So far no studies have investigated how many asymptomatic children have been affected by this virus. This pilot study documents the seroprevalence, measured as the presence of IgG antibodies, of dengue virus in asymptomatic children from two different geographical areas. METHODS: This descriptive, prospective epidemiologic study compared the presence of antibodies in children who live in a coastal region of a tropical country where dengue is endemic, and an inland area where dengue is not endemic. An enzyme-linked immunosorbent assay was used to test the serum for dengue virus IgG antibodies. None of the children had a prior history of dengue, fever, immunosuppressive therapy or underlying disease. RESULTS: During the period from July 2002 to July 2003, 103 children were recruited from each area. In the costal region we found a seroprevalence of 36.9%. In the inland area seroprevalence was 2.9% CONCLUSIONS: We found a substantial number of asymptomatic infections in Costa Rican children. This greatly increases the risk of dengue hemorrhagic fever or dengue shock syndrome in these children, in whom previous dengue infection had gone undetected. Preventive efforts should be targeted at the costal region due to the higher prevalence in this area.OBJETIVOS: Desde 1993, la frecuencia de dengue en Costa Rica ha venido aumentando. La población de adultos ha sido la más afectada, mientras que en los niños apenas se han presentado casos. Hasta el momento no se han realizado estudios para determinar cuántos niños asintomáticos se han visto afectados por el virus de la enfermedad. Este estudio piloto documenta la seroprevalencia de anticuerpos de tipo IgG contra el virus del dengue en niños asintomáticos procedentes de dos zonas geográficas distintas. MÉTODOS: En este estudio

  3. Detection of dengue group viruses by fluorescence in situ hybridization

    Directory of Open Access Journals (Sweden)

    Raquin Vincent

    2012-10-01

    Full Text Available Abstract Background Dengue fever (DF and dengue hemorrhagic fever (DHF represent a global challenge in public health. It is estimated that 50 to 100 million infections occur each year causing approximately 20,000 deaths that are usually linked to severe cases like DHF and dengue shock syndrome. The causative agent of DF is dengue virus (genus Flavivirus that comprises four distinct serotypes (DENV-1 to DENV-4. Fluorescence in situ hybridization (FISH has been used successfully to detect pathogenic agents, but has not been implemented in detecting DENV. To improve our understanding of DENV infection and dissemination in host tissues, we designed specific probes to detect DENV in FISH assays. Methods Oligonucleotide probes were designed to hybridize with RNA from the broadest range of DENV isolates belonging to the four serotypes, but not to the closest Flavivirus genomes. Three probes that fit the criteria defined for FISH experiments were selected, targeting both coding and non-coding regions of the DENV genome. These probes were tested in FISH assays against the dengue vector Aedes albopictus (Diptera: Culicidae. The FISH experiments were led in vitro using the C6/36 cell line, and in vivo against dissected salivary glands, with epifluorescence and confocal microscopy. Results The three 60-nt oligonucleotides probes DENV-Probe A, B and C cover a broad range of DENV isolates from the four serotypes. When the three probes were used together, specific fluorescent signals were observed in C6/36 infected with each DENV serotypes. No signal was detected in either cells infected with close Flavivirus members West Nile virus or yellow fever virus. The same protocol was used on salivary glands of Ae. albopictus fed with a DENV-2 infectious blood-meal which showed positive signals in the lateral lobes of infected samples, with no significant signal in uninfected mosquitoes. Conclusion Based on the FISH technique, we propose a way to design and use

  4. Y-box-binding protein 1 interacts with hepatitis C virus NS3/4A and influences the equilibrium between viral RNA replication and infectious particle production.

    Science.gov (United States)

    Chatel-Chaix, Laurent; Melançon, Pierre; Racine, Marie-Ève; Baril, Martin; Lamarre, Daniel

    2011-11-01

    The hepatitis C virus (HCV) NS3/4A protein has several essential roles in the virus life cycle, most probably through dynamic interactions with host factors. To discover cellular cofactors that are co-opted by HCV for its replication, we elucidated the NS3/4A interactome using mass spectrometry and identified Y-box-binding protein 1 (YB-1) as an interacting partner of NS3/4A protein and HCV genomic RNA. Importantly, silencing YB-1 expression decreased viral RNA replication and severely impaired the propagation of the infectious HCV molecular clone JFH-1. Immunofluorescence studies further revealed a drastic HCV-dependent redistribution of YB-1 to the surface of the lipid droplets, an important organelle for HCV assembly. Core and NS3 protein-dependent polyprotein maturation were shown to be required for YB-1 relocalization. Unexpectedly, YB-1 knockdown cells showed the increased production of viral infectious particles while HCV RNA replication was impaired. Our data support that HCV hijacks YB-1-containing ribonucleoparticles and that YB-1-NS3/4A-HCV RNA complexes regulate the equilibrium between HCV RNA replication and viral particle production.

  5. A small molecule fusion inhibitor of dengue virus.

    Science.gov (United States)

    Poh, Mee Kian; Yip, Andy; Zhang, Summer; Priestle, John P; Ma, Ngai Ling; Smit, Jolanda M; Wilschut, Jan; Shi, Pei-Yong; Wenk, Markus R; Schul, Wouter

    2009-12-01

    The dengue virus envelope protein plays an essential role in viral entry by mediating fusion between the viral and host membranes. The crystal structure of the envelope protein shows a pocket (located at a "hinge" between Domains I and II) that can be occupied by ligand n-octyl-beta-D-glucoside (betaOG). Compounds blocking the betaOG pocket are thought to interfere with conformational changes in the envelope protein that are essential for fusion. Two fusion assays were developed to examine the anti-fusion activities of compounds. The first assay measures the cellular internalization of propidium iodide upon membrane fusion. The second assay measures the protease activity of trypsin upon fusion between dengue virions and trypsin-containing liposomes. We performed an in silico virtual screening for small molecules that can potentially bind to the betaOG pocket and tested these candidate molecules in the two fusion assays. We identified one compound that inhibits dengue fusion in both assays with an IC(50) of 6.8 microM and reduces viral titers with an EC(50) of 9.8 microM. Time-of-addition experiments showed that the compound was only active when present during viral infection but not when added 1h later, in agreement with a mechanism of action through fusion inhibition.

  6. Dengue virus activates polyreactive, natural IgG B cells after primary and secondary infection.

    Directory of Open Access Journals (Sweden)

    Thavamalar Balakrishnan

    Full Text Available BACKGROUND: Dengue virus is transmitted by mosquitoes and has four serotypes. Cross-protection to other serotypes lasting for a few months is observed following infection with one serotype. There is evidence that low-affinity T and/or B cells from primary infections contribute to the severe syndromes often associated with secondary dengue infections. such pronounced immune-mediated enhancement suggests a dengue-specific pattern of immune cell activation. This study investigates the acute and early convalescent B cell response leading to the generation of cross-reactive and neutralizing antibodies following dengue infection. METHODOLOGY/PRINCIPAL FINDINGS: We assayed blood samples taken from dengue patients with primary or secondary infection during acute disease and convalescence and compared them to samples from patients presenting with non-dengue related fever. Dengue induced massive early plasmablast formation, which correlated with the appearance of polyclonal, cross-reactive IgG for both primary and secondary infection. Surprisingly, the contribution of IgG to the neutralizing titer 4-7 days after fever onset was more than 50% even after primary infection. CONCLUSIONS/SIGNIFICANCE: Poly-reactive and virus serotype cross-reactive IgG are an important component of the innate response in humans during both primary and secondary dengue infection, and "innate specificities" seem to constitute part of the adaptive response in dengue. While of potential importance for protection during secondary infection, cross-reactive B cells will also compete with highly neutralizing B cells and possibly interfere with their development.

  7. First record in America of Aedes albopictus naturally infected with dengue virus during the 1995 outbreak at Reynosa, Mexico.

    Science.gov (United States)

    Ibáñez-Bernal, S; Briseño, B; Mutebi, J P; Argot, E; Rodríguez, G; Martínez-Campos, C; Paz, R; de la Fuente-San Román, P; Tapia-Conyer, R; Flisser, A

    1997-10-01

    Mosquito collections were conducted during a dengue outbreak in Reynosa, Tamaulipas, Mexico, July-December 1995. A total of 6694 adult mosquitoes (four genera and nine species) were captured, of which 2986 (78.3% females and 21.7% males) were Aedes albopictus and 2339 (39.7% females and 60.3% males) were Ae.aegypti. These two species comprised 84.2% of the total collection. Specimens were grouped into pools, nearly 50% of them processed for detection of virus by cythopathic effect in C6-36 and VERO cell cultures and by haemagglutination test. Five pools gave positive haemagglutination reactions and were examined by immunofluorescence using monoclonal antibodies to flavivirus and to dengue virus. One pool of ten Ae.albopictus males was positive for dengue virus: serotypes 2 and 3 were identified by serotype-specific monoclonal antibodies and confirmed by RT-PCR. This is the first report of Ae.albopictus naturally infected with dengue virus in America. Also, it is the very first time Ae.albopictus males have been found infected with dengue virus in the wild.

  8. [Investigation of dengue virus and yellow fever virus seropositivities in blood donors from Central/Northern Anatolia, Turkey].

    Science.gov (United States)

    Ergünay, Koray; Saygan, Mehmet B; Aydoğan, Sibel; Litzba, Nadine; Niedrig, Matthias; Pınar, Ahmet; Us, Dürdal

    2010-07-01

    Dengue virus (DENV) and yellow fever virus (YFV) are two of the globally prevalent vector-borne flaviviruses. Data on these viruses from Turkey is limited to a single study originating from the western, Aegean region of Turkey, where evidence for DENV exposure had been confirmed in residents and presence of hemagglutination inhibiting antibodies against YFV had been revealed. The aim of this study was to investigate the rates of seropositivity of DENV and YFV in blood donors from Central/Northern Anatolia, Turkey, for the demonstration of possible human exposure. Serum samples were collected by the Turkish Red Crescent Middle Anatolia Regional Blood Center from donation sites at Ankara, Konya, Eskişehir and Zonguldak provinces and included in the study after informed consent. Ankara is the capital and second most-populated city in Turkey. All samples were previously evaluated for West Nile and tick-borne encephalitis virus antibodies and found to be negative. A total of 2435 and 1502 sera have been evaluated for IgG antibodies against DENV and YFV, respectively. Commercial enzymelinked immunosorbent assays (ELISAs) and indirect immunofluorescence tests (IIFTs) were applied (Euroimmun, Germany) for DENV/YFV IgG surveillance. DENV IgG reactive sera were further evaluated for IgM by ELISA and a commercial mosaic IIFT to determine DENV subtypes. IgM positive samples were also analyzed by a commercial NS1 antigen detection assay (Bio-Rad Laboratories, France). YFV IgG reactive samples were evaluated by IIFT for IgM and via mosaic IIFT and antibody specificity were confirmed by plaque reduction neutralization test (PRNT). Anti-DENV IgGs were demonstrated in repeated assays in 0.9% (21/2435) of the sera. In two samples with borderline IgG results, presence of DENV IgM was detected, one of which was also borderline positive for DENV NS1 antigen. In 14.3% (3/21) of the IgG reactive sera, mosaic IIFT was evaluated as positive and displayed prominent reactivity for DENV-2 in

  9. Dengue

    Science.gov (United States)

    Dengue is an infection caused by a virus. You can get it if an infected mosquito bites you. Dengue does not spread from person to person. It ... the world. Outbreaks occur in the rainy season. Dengue is rare in the United States. Symptoms include ...

  10. Effects of cell culture and laboratory conditions on type 2 dengue virus infectivity.

    Science.gov (United States)

    Manning, J S; Collins, J K

    1979-01-01

    The stability of type 2 dengue virus to exposure to a variety of laboratory conditions was determined. Suckling mouse brain passage virus was adapted for growth in BHK-21 cells, and plaque assays were performed using a tragacanth gum overlay. A three- to fourfold increase in plaque size could be obtained if monolayers were subconfluent at time of inoculation. Incubation of virus for 24 h at 37 degrees C, pH 6.5, or in buffer containing 1 mM ethylenediaminetetraacetate considerably reduced virus infectivity as compared with virus incubated for the same period at 4 degrees C, pH 8.0, or in buffer with or without 1 mM CaCl2 and 1 mM MgCl2. Multiple freezing and thawing of virus tissue culture medium containing 10% fetal calf serum did not reduce virus infectivity. Images PMID:41848

  11. Aedes albopictus may not be vector of dengue virus in human epidemics in Brazil Aedes albopictus pode não ser vetor da dengue durante epidemias no Brasil

    Directory of Open Access Journals (Sweden)

    Nicolas Degallier

    2003-06-01

    Full Text Available Over 60,500 dengue cases were reported in the state of Espírito Santo (ES, Brazil, between 1995 and 1998. The study's purpose was to identify whether Aedes albopictus was transmitting the dengue virus during an epidemic in the locality of Vila Bethânia (Viana County,Vitória, ES. From April 3 to 9, 1998, blood and serum samples were collected daily for virus isolation and serological testing. Four autochthonous cases were confirmed through DEN 1 virus isolation and two autochthonous cases through MAC ELISA testing. Of 37 Ae. aegypti and 200 Ae. albopictus adult mosquitoes collected and inoculated, DEN1 virus was isolated only from a pool of two Ae. aegypti female mosquitoes. The study results suggest that Ae. albopictus still cannot be considered an inter-human vector in dengue epidemics in Brazil.Mais de 60.500 casos de dengue foram notificados no Espírito Santo, entre 1995 e 1998. Realizou-se estudo com o objetivo de averiguar se o mosquito Aedes albopictus estava transmitindo o vírus durante uma epidemia em Vila Bethânia (Viana, no sudeste de Vitória, capital capixaba. De 3 a 9 de abril de 1998, amostras de sangue e (ou soro de pacientes foram coletadas e os mosquitos foram capturados diariamente, tanto para isolamento viral como para testes sorológicos. Em onze casos autóctonos, quatro foram confirmados por isolamento do vírus DEN 1, e dois por reação MAC ELISA Dos 37 Ae. aegypti e 200 Ae. albopictus adultos capturados e inoculados, apenas uma amostra de vírus DEN 1 foi obtida de um lote de duas fêmeas de Ae. aegypti. Os resultados sugerem que a espécie Ae. albopictus ainda não pode ser considerada um vetor inter-humano durante epidemias de dengue no Brasil.

  12. Assessing Disparities of Dengue Virus Transmission Risk across the US-Mexican Border Using a Climate Driven Vector-Epidemiological Model

    Science.gov (United States)

    Morin, Cory; Monaghan, Andrew; Quattrochi, Dale; Crosson, William; Hayden, Mary; Ernst, Kacey

    2015-01-01

    Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Although transmission regularly occurs along the border region in Mexico, dengue virus transmission in bordering Arizona has not occurred. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input and Daymet for temperature and supplemental precipitation input, we modeled dengue transmission along a US-Mexico transect using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Model runs were performed for 5 cities in Sonora, Mexico and southern Arizona. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. For cities with reported dengue case data, the top model simulations that best reproduced dengue case numbers were retained and their parameter values were extracted for comparison. These parameter values were used to run simulations in areas where dengue virus transmission does not occur or where dengue fever case data was unavailable. Additional model runs were performed to reveal how changes in climate or parameter values could alter transmission risk along the transect. The relative influence of climate variability and model parameters on dengue virus transmission is assessed to help public health workers prepare location specific infection prevention strategies.

  13. Dengue virus type 3 adaptive changes during epidemics in São Jose de Rio Preto, Brazil, 2006-2007.

    Directory of Open Access Journals (Sweden)

    Christian Julian Villabona-Arenas

    Full Text Available Global dengue virus spread in tropical and sub-tropical regions has become a major international public health concern. It is evident that DENV genetic diversity plays a significant role in the immunopathology of the disease and that the identification of polymorphisms associated with adaptive responses is important for vaccine development. The investigation of naturally occurring genomic variants may play an important role in the comprehension of different adaptive strategies used by these mutants to evade the human immune system. In order to elucidate this role we sequenced the complete polyprotein-coding region of thirty-three DENV-3 isolates to characterize variants circulating under high endemicity in the city of São José de Rio Preto, Brazil, during the onset of the 2006-07 epidemic. By inferring the evolutionary history on a local-scale and estimating rates of synonymous (dS and nonsynonimous (dN substitutions, we have documented at least two different introductions of DENV-3 into the city and detected 10 polymorphic codon sites under significant positive selection (dN/dS > 1 and 8 under significant purifying selection (dN/dS < 1. We found several polymorphic amino acid coding sites in the envelope (15, NS1 (17, NS2A (11, and NS5 (24 genes, which suggests that these genes may be experiencing relatively recent adaptive changes. Furthermore, some polymorphisms correlated with changes in the immunogenicity of several epitopes. Our study highlights the existence of significant and informative DENV variability at the spatio-temporal scale of an urban outbreak.

  14. Dengue and Severe Dengue

    Science.gov (United States)

    ... all regions of WHO in recent years. Dengue virus is transmitted by female mosquitoes mainly of the species Aedes aegypti and, to a lesser extent, Ae. albopictus . This mosquito also transmits chikungunya, yellow fever and Zika infection. Dengue is widespread throughout the tropics, with ...

  15. Comprehensive Screening for Naturally Occurring Hepatitis C Virus Resistance to Direct-Acting Antivirals in the NS3, NS5A, and NS5B Genes in Worldwide Isolates of Viral Genotypes 1 to 6.

    Science.gov (United States)

    Patiño-Galindo, Juan Ángel; Salvatierra, Karina; González-Candelas, Fernando; López-Labrador, F Xavier

    2016-04-01

    There is no comprehensive study available on the natural hepatitis C virus (HCV) polymorphism in sites associated with resistance including all viral genotypes which may present variable susceptibilities to particular direct-acting antivirals (DAAs). This study aimed to analyze the frequencies, genetic barriers, and evolutionary histories of naturally occurring resistance-associated variants (RAVs) in the six main HCV genotypes. A comprehensive analysis of up to 103 RAVs was performed in 2,901, 2,216, and 1,344 HCV isolates for the NS3, NS5A, and NS5B genes, respectively. We report significant intergenotypic differences in the frequencies of natural RAVs for these three HCV genes. In addition, we found a low genetic barrier for the generation of new RAVs, irrespective of the viral genotype. Furthermore, in 1,126 HCV genomes, including sequences spanning the three genes, haplotype analysis revealed a remarkably high frequency of viruses carrying more than one natural RAV to DAAs (53% of HCV-1a, 28.5% of HCV-1b, 67.1% of HCV-6, and 100% of genotype 2, 3, 4, and 5 haplotypes). With the exception of HCV-1a, the most prevalent haplotypes showed RAVs in at least two different viral genes. Finally, evolutionary analyses revealed that, while most natural RAVs appeared recently, others have been efficiently transmitted over time and cluster in well-supported clades. In summary, and despite the observed high efficacy of DAA-based regimens, we show that naturally occurring RAVs are common in all HCV genotypes and that there is an overall low genetic barrier for the selection of resistance mutations. There is a need for natural DAA resistance profiling specific for each HCV genotype. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Cleft analysis of Zika virus non-structural protein 1

    Institute of Scientific and Technical Information of China (English)

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2017-01-01

    The non-strctural protein 1 is an important molecule of the viruses in flavivirus group including to Zika virus. Recently, the NS1 of Zika virus was discovered.There is still no complete information of the molecular interaction of NS1 of Zika virus which can be the clue for explanation for its pathogenesis and further drug search. Here the authors report the cleft analysis of NS1 of Zika virus and the result can be useful for future development of good diagnostic tool and antiviral drug finding for management of Zika virus.

  17. Cleft analysis of Zika virus non-structural protein 1

    Institute of Scientific and Technical Information of China (English)

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2017-01-01

    The non-structural protein 1 is an important molecule of the viruses in flavivirus group including to Zika virus. Recently, the NS1 of Zika virus was discovered. There is still no complete information of the molecular interaction of NS1 of Zika virus which can be the clue for explanation for its pathogenesis and further drug search. Here the authors report the cleft analysis of NS1 of Zika virus and the result can be useful for future development of good diagnostic tool and antiviral drug finding for management of Zika virus.

  18. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection.

    Science.gov (United States)

    Collins, Matthew H; McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A; Baric, Ralph S; Lazear, Helen M; de Silva, Aravinda M

    2017-05-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus-specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity.

  19. Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Shailendra Mani

    Full Text Available Dengue is a mosquito-borne viral disease with a global prevalence. It is caused by four closely-related dengue viruses (DENVs 1-4. A dengue vaccine that can protect against all four viruses is an unmet public health need. Live attenuated vaccine development efforts have encountered unexpected interactions between the vaccine viruses, raising safety concerns. This has emphasized the need to explore non-replicating dengue vaccine options. Virus-like particles (VLPs which can elicit robust immunity in the absence of infection offer potential promise for the development of non-replicating dengue vaccine alternatives. We have used the methylotrophic yeast Pichia pastoris to develop DENV envelope (E protein-based VLPs. We designed a synthetic codon-optimized gene, encoding the N-terminal 395 amino acid residues of the DENV-2 E protein. It also included 5' pre-membrane-derived signal peptide-encoding sequences to ensure proper translational processing, and 3' 6× His tag-encoding sequences to facilitate purification of the expressed protein. This gene was integrated into the genome of P. pastoris host and expressed under the alcohol oxidase 1 promoter by methanol induction. Recombinant DENV-2 protein, which was present in the insoluble membrane fraction, was extracted and purified using Ni(2+-affinity chromatography under denaturing conditions. Amino terminal sequencing and detection of glycosylation indicated that DENV-2 E had undergone proper post-translational processing. Electron microscopy revealed the presence of discrete VLPs in the purified protein preparation after dialysis. The E protein present in these VLPs was recognized by two different conformation-sensitive monoclonal antibodies. Low doses of DENV-2 E VLPs formulated in alum were immunogenic in inbred and outbred mice eliciting virus neutralizing titers >1,1200 in flow cytometry based assays and protected AG129 mice against lethal challenge (p<0.05. The formation of immunogenic DENV-2 E

  20. PBDE: Structure-Activity Studies for the Inhibition of Hepatitis C Virus NS3 Helicase

    Directory of Open Access Journals (Sweden)

    Kazi Abdus Salam

    2014-04-01

    Full Text Available The helicase portion of the hepatitis C virus nonstructural protein 3 (NS3 is considered one of the most validated targets for developing direct acting antiviral agents. We isolated polybrominated diphenyl ether (PBDE 1 from a marine sponge as an NS3 helicase inhibitor. In this study, we evaluated the inhibitory effects of PBDE (1 on the essential activities of NS3 protein such as RNA helicase, ATPase, and RNA binding activities. The structure-activity relationship analysis of PBDE (1 against the HCV ATPase revealed that the biphenyl ring, bromine, and phenolic hydroxyl group on the benzene backbone might be a basic scaffold for the inhibitory potency.

  1. Novel nucleotide and amino acid covariation between the 5'UTR and the NS2/NS3 proteins of hepatitis C virus: bioinformatic and functional analyses.

    Directory of Open Access Journals (Sweden)

    Hung-Yu Sun

    Full Text Available Molecular covariation of highly polymorphic viruses is thought to have crucial effects on viral replication and fitness. This study employs association rule data mining of hepatitis C virus (HCV sequences to search for specific evolutionary covariation and then tests functional relevance on HCV replication. Data mining is performed between nucleotides in the untranslated regions 5' and 3'UTR, and the amino acid residues in the non-structural proteins NS2, NS3 and NS5B. Results indicate covariance of the 243(rd nucleotide of the 5'UTR with the 14(th, 41(st, 76(th, 110(th, 211(th and 212(th residues of NS2 and with the 71(st, 175(th and 621(st residues of NS3. Real-time experiments using an HCV subgenomic system to quantify viral replication confirm replication regulation for each covariant pair between 5'UTR₂₄₃ and NS2-41, -76, -110, -211, and NS3-71, -175. The HCV subgenomic system with/without the NS2 region shows that regulatory effects vanish without NS2, so replicative modulation mediated by HCV 5'UTR₂₄₃ depends on NS2. Strong binding of the NS2 variants to HCV RNA correlates with reduced HCV replication whereas weak binding correlates with restoration of HCV replication efficiency, as determined by RNA-protein immunoprecipitation assay band intensity. The dominant haplotype 5'UTR₂₄₃-NS2-41-76-110-211-NS3-71-175 differs according to the HCV genotype: G-Ile-Ile-Ile-Gly-Ile-Met for genotype 1b and A-Leu-Val-Leu-Ser-Val-Leu for genotypes 1a, 2a and 2b. In conclusion, 5'UTR₂₄₃ co-varies with specific NS2/3 protein amino acid residues, which may have significant structural and functional consequences for HCV replication. This unreported mechanism involving HCV replication possibly can be exploited in the development of advanced anti-HCV medication.

  2. Detection of Dengue Virus in Bat Flies (Diptera: Streblidae) of Common Vampire Bats, Desmodus rotundus, in Progreso, Hidalgo, Mexico.

    Science.gov (United States)

    Abundes-Gallegos, Judith; Salas-Rojas, Monica; Galvez-Romero, Guillermo; Perea-Martínez, Leonardo; Obregón-Morales, Cirani Y; Morales-Malacara, Juan B; Chomel, Bruno B; Stuckey, Matthew J; Moreno-Sandoval, Hayde; García-Baltazar, Anahi; Nogueda-Torres, Benjamin; Zuñiga, Gerardo; Aguilar-Setién, Alvaro

    2018-01-01

    Blood-feeding arthropods play a major role in the transmission of several flaviviruses, which represent an important problem for human health. Currently, dengue is one of the most important arboviral emerging diseases worldwide. Furthermore, some previous studies have reported the presence of viral nucleic acids and antibodies against dengue virus (DENV) in wild animals. Our knowledge of the role played by wildlife reservoirs in the sylvatic transmission and maintenance of DENV remains limited. Our objective was to screen blood-feeding ectoparasites (bat flies) and their common vampire bat (Desmodus rotundus) hosts, for flaviviruses in Hidalgo, Mexico. We detected Flavivirus sequences in 38 pools of ectoparasites (Diptera: Streblidae, Strebla wiedemanni and Trichobius parasiticus) and 8 tissue samples of D. rotundus by RT-PCR and semi-nested PCR using FlaviPF1S, FlaviPR2bis, and FlaviPF3S primers specific for NS5, a gene highly conserved among flaviviruses. Phylogenetic inference analysis performed using the maximum likelihood algorithm implemented in PhyML showed that six sequences clustered with DENV (bootstrap value = 53.5%). Although this study supports other reports of DENV detection in bats and arthropods other than Aedes mosquitoes, the role of these ectoparasitic flies and of hematophagous bats in the epidemiology of DENV still warrants further investigation.

  3. Retrospective analysis of dengue specific IgM reactive serum samples

    OpenAIRE

    Nemai Bhattacharya; Bhaswati Bandyopadhyay; Indranil Bhattacharjee; Hiranmoy Mukherjee; Srabani Talukdar; Ruby Mondal; Netai Pramanick; Goutam Chandra; Amiya K. Hati

    2013-01-01

    Objective: To conduct a retrospective analysis of dengue cases in Kolkata, on the basis of presence of anti-dengue IgM in their sera and presence or absence of anti-dengue IgG and dengue specific Non structural 1 (NS1) antigen in each of the serum sample. Methods: Sample was tested quantitatively employing ELISA technique, using Biorad test kits, with a view to get a more comprehensive picture of dengue in an urban endemic area and also to evaluate individual cases. Results: Th...

  4. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    Science.gov (United States)

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  5. Molecular studies with Aedes (Stegomyia) aegypti (Linnaeus, 1762), mosquito transmitting the dengue virus.

    Science.gov (United States)

    Pereira, Luciana Patrícia Lima Alves; Brito, Maria Cristiane Aranha; Araruna, Felipe Bastos; de Andrade, Marcelo Souza; Moraes, Denise Fernandes Coutinho; Borges, Antônio Carlos Romão; do Rêgo Barros Pires Leal, Emygdia Rosa

    2017-08-01

    Dengue is an infectious viral disease, which can present a wide clinical picture, ranging from oligo or asymptomatic forms, to bleeding and shock, and can progress to death. The disease problem has increased in recent years, especially in urban and suburban areas of tropical and subtropical regions. There are five dengue viruses, called serotypes (DEN-1, DEN-2, DEN-3, DEN-4, and DEN-5), which belong to the Flaviviridae family and are transmitted to humans through infected mosquito bites, with the main vector the Aedes aegypti mosquito (Linnaeus, 1762). Studies performed with Ae. aegypti, aimed at their identification and analysis of their population structure, are fundamental to improve understanding of the epidemiology of dengue, as well for the definition of strategic actions that reduce the transmission of this disease. Therefore, considering the importance of such research to the development of programs to combat dengue, the present review considers the techniques used for the molecular identification, and evaluation of the genetic variability of Ae. aegypti.

  6. Conserved amino acids within the N-terminus of the West Nile virus NS4A protein contribute to virus replication, protein stability and membrane proliferation

    International Nuclear Information System (INIS)

    Ambrose, R.L.; Mackenzie, J.M.

    2015-01-01

    The West Nile virus strain Kunjin virus (WNV KUN ) NS4A protein is a multifunctional protein involved in many aspects of the virus life-cycle and is a major component of the WNV KUN replication complex (RC). Previously we identified a conserved region in the C-terminus of NS4A regulating proteolytic processing and RC assembly, and now investigate key conserved residues in the N-terminus of NS4A and their contribution to WNV KUN replication. Mutation of P13 completely ablated replication, whereas, mutation of P48 and D49, near the first transmembrane helix, and G66 within the helix, showed variable defects in replication, virion secretion and membrane proliferation. Intriguingly, the P48 and G66 NS4A mutants resulted in specific proteasome depletion of NS4A that could in part be rescued with a proteasome inhibitor. Our results suggest that the N-terminus of NS4A contributes to correct folding and stability, essential for facilitating the essential roles of NS4A during replication. - Highlights: • Mutation of Proline13 of the WNV NS4A protein is lethal to replication. • 1st TMB helix of NS4A contributes to protein stability and membrane remodelling. • Unstable mutants of NS4A can be rescued with a proteasome inhibitor. • This study (and of others) contributes to a functional mapping of the NS4A protein

  7. NS5A resistance-associated substitutions in patients with genotype 1 hepatitis C virus: Prevalence and effect on treatment outcome.

    Science.gov (United States)

    Zeuzem, Stefan; Mizokami, Masashi; Pianko, Stephen; Mangia, Alessandra; Han, Kwang-Hyub; Martin, Ross; Svarovskaia, Evguenia; Dvory-Sobol, Hadas; Doehle, Brian; Hedskog, Charlotte; Yun, Chohee; Brainard, Diana M; Knox, Steven; McHutchison, John G; Miller, Michael D; Mo, Hongmei; Chuang, Wan-Long; Jacobson, Ira; Dore, Gregory J; Sulkowski, Mark

    2017-05-01

    The efficacy of NS5A inhibitors for the treatment of patients chronically infected with hepatitis C virus (HCV) can be affected by the presence of NS5A resistance-associated substitutions (RASs). We analyzed data from 35 phase I, II, and III studies in 22 countries to determine the pretreatment prevalence of various NS5A RASs, and their effect on outcomes of treatment with ledipasvir-sofosbuvir in patients with genotype 1 HCV. NS5A gene deep sequencing analysis was performed on samples from 5397 patients in Gilead clinical trials. The effect of baseline RASs on sustained virologic response (SVR) rates was assessed in the 1765 patients treated with regimens containing ledipasvir-sofosbuvir. Using a 15% cut-off, pretreatment NS5A and ledipasvir-specific RASs were detected in 13% and 8% of genotype 1a patients, respectively, and in 18% and 16% of patients with genotype 1b. Among genotype 1a treatment-naïve patients, SVR rates were 91% (42/46) vs. 99% (539/546) for those with and without ledipasvir-specific RASs, respectively. Among treatment-experienced genotype 1a patients, SVR rates were 76% (22/29) vs. 97% (409/420) for those with and without ledipasvir-specific RASs, respectively. Among treatment-naïve genotype 1b patients, SVR rates were 99% for both those with and without ledipasvir-specific RASs (71/72 vs. 331/334), and among treatment-experienced genotype 1b patients, SVR rates were 89% (41/46) vs. 98% (267/272) for those with and without ledipasvir-specific RASs, respectively. Pretreatment ledipasvir-specific RASs that were present in 8-16% of patients have an impact on treatment outcome in some patient groups, particularly treatment-experienced patients with genotype 1a HCV. The efficacy of treatments using NS5A inhibitors for patients with chronic hepatitis C virus (HCV) infection can be affected by the presence of NS5A resistance-associated substitutions (RASs). We reviewed results from 35 clinical trials where patients with genotype 1 HCV infection

  8. Hirsutine, an Indole Alkaloid of Uncaria rhynchophylla, Inhibits Late Step in Dengue Virus Lifecycle

    OpenAIRE

    Hishiki, Takayuki; Kato, Fumihiro; Tajima, Shigeru; Toume, Kazufumi; Umezaki, Masahito; Takasaki, Tomohiko; Miura, Tomoyuki

    2017-01-01

    Dengue virus (DENV) is transmitted to humans by Aedes mosquitoes and is a public health issue worldwide. No antiviral drugs specific for treating dengue infection are currently available. To identify novel DENV inhibitors, we analyzed a library of 95 compounds and 120 extracts derived from crude drugs (herbal medicines). In the primary screening, A549 cells infected with DENV-1 were cultured in the presence of each compound and extract at a final concentration of 10 μM (compound) and 100 μg/m...

  9. Clinical and laboratory profile of Zika virus infection in dengue suspected patients: A case series.

    Science.gov (United States)

    Fernanda Estofolete, Cássia; Terzian, Ana Carolina Bernardes; Parreira, Ricardo; Esteves, Aida; Hardman, Lucas; Greque, Gilmar Valdir; Rahal, Paula; Nogueira, Maurício Lacerda

    2016-08-01

    The Zika virus (ZIKV) is an emerging arthropod-borne virus related to the dengue virus (DENV), and shows a similar clinical profile as other arboviral diseases, such as dengue and chikungunya virus (CHIKV). Historically, ZIKV has been associated with sporadic cases of human infection, but is now responsible for outbreaks worldwide. In Brazil, cases have been reported since 2015, with some cases causing severe disease. To identify clinical symptoms of Zika in patients in Dengue suspected patients. Description of a series of cases, wherein we analyzed 100 clinical samples collected from patients who exhibited acute febrile disease for ≤5days, from January to February 2016. In this study, we report 13 cases of ZIKV infection in adults presenting dengue-like symptoms in a DENV endemic area. All patients presented with fever, with myalgia being the second most frequently observed symptom. Two patients had rashes, but none of them had conjunctivitis. Other less frequent manifestations included headache, arthralgia, diarrhea, and nausea. The co-circulation of ZIKV and DENV is a serious public health concern, since it represents both a clinical and diagnostic challenge in endemic areas, as well as in the field of travel medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. H1-A, a compound isolated from Fusarium oxysporum inhibits hepatitis C virus (HCV) NS3 serine protease.

    Science.gov (United States)

    Yang, Li-Yuan; Lin, Jun; Zhou, Bin; Liu, Yan-Gang; Zhu, Bao-Quan

    2016-04-01

    The present study was aimed to isolate the active compounds from the fermentation products of Fusarium oxysporum, which had hepatitis C virus (HCV) NS3 protease inhibitory activity. A bioactive compound was isolated by reverse-phase silica-gel column chromatography, silica-gel column chromatography, semi-preparative reverse-phase High Performance Liquid Chromatography (HPLC), and then its molecular structure was elucidated based on the spectrosopic analysis. As a result, the compound (H1-A, 1) Ergosta-5, 8 (14), 22-trien-7-one, 3-hydroxy-,(3β, 22E) was isolated and identified. To the best of our knowledge, this was the first report on the isolation of H1-A from microorganisms with the inhibitory activity of NS3 protease. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  11. Chloroquine Inhibits Dengue Virus Type 2 Replication in Vero Cells but Not in C6/36 Cells

    Directory of Open Access Journals (Sweden)

    Kleber Juvenal Silva Farias

    2013-01-01

    Full Text Available Dengue viruses are the most important arthropod-borne viruses in terms of morbidity and mortality in the world. Since there is no dengue vaccine available for human use, we have set out to investigate the use of chloroquine as an antiviral drug against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of Vero and C6/36 cells infected with dengue virus type 2 (DENV-2. Real-time RT-PCR and plaque assays were used to quantify the DENV-2 load in infected Vero and C6/36 cells after chloroquine treatment. Our results showed that a dose of 50 μg/ml of chloroquine was not toxic to the cells and induced a statistically significant inhibition of virus production in infected Vero cells when compared to untreated cells. In C6/36 cells, chloroquine does not induce a statistically significant difference in viral replication when compared to untreated cells, showing that this virus uses an unlikely pathway of penetration in these cells, and results were also confirmed by the plaque assay (PFU. These data suggest that the inhibition of virus infection induced by chloroquine is due to interference with acidic vesicles in mammalian cells.

  12. Chloroquine inhibits dengue virus type 2 replication in Vero cells but not in C6/36 cells.

    Science.gov (United States)

    Farias, Kleber Juvenal Silva; Machado, Paula Renata Lima; da Fonseca, Benedito Antônio Lopes

    2013-01-01

    Dengue viruses are the most important arthropod-borne viruses in terms of morbidity and mortality in the world. Since there is no dengue vaccine available for human use, we have set out to investigate the use of chloroquine as an antiviral drug against dengue. Chloroquine, an amine acidotropic drug known to affect intracellular exocytic pathways by increasing endosomal pH, was used in the in vitro treatment of Vero and C6/36 cells infected with dengue virus type 2 (DENV-2). Real-time RT-PCR and plaque assays were used to quantify the DENV-2 load in infected Vero and C6/36 cells after chloroquine treatment. Our results showed that a dose of 50 μg/ml of chloroquine was not toxic to the cells and induced a statistically significant inhibition of virus production in infected Vero cells when compared to untreated cells. In C6/36 cells, chloroquine does not induce a statistically significant difference in viral replication when compared to untreated cells, showing that this virus uses an unlikely pathway of penetration in these cells, and results were also confirmed by the plaque assay (PFU). These data suggest that the inhibition of virus infection induced by chloroquine is due to interference with acidic vesicles in mammalian cells.

  13. Non-Canonical Roles of Dengue Virus Non-Structural Proteins

    Directory of Open Access Journals (Sweden)

    Julianna D. Zeidler

    2017-03-01

    Full Text Available The Flaviviridae family comprises a number of human pathogens, which, although sharing structural and functional features, cause diseases with very different outcomes. This can be explained by the plurality of functions exerted by the few proteins coded by viral genomes, with some of these functions shared among members of a same family, but others being unique for each virus species. These non-canonical functions probably have evolved independently and may serve as the base to the development of specific therapies for each of those diseases. Here it is discussed what is currently known about the non-canonical roles of dengue virus (DENV non-structural proteins (NSPs, which may account for some of the effects specifically observed in DENV infection, but not in other members of the Flaviviridae family. This review explores how DENV NSPs contributes to the physiopathology of dengue, evasion from host immunity, metabolic changes, and redistribution of cellular components during infection.

  14. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission.

    Directory of Open Access Journals (Sweden)

    Louis Lambrechts

    2010-05-01

    Full Text Available The dramatic global expansion of Aedes albopictus in the last three decades has increased public health concern because it is a potential vector of numerous arthropod-borne viruses (arboviruses, including the most prevalent arboviral pathogen of humans, dengue virus (DENV. Ae. aegypti is considered the primary DENV vector and has repeatedly been incriminated as a driving force in dengue's worldwide emergence. What remains unresolved is the extent to which Ae. albopictus contributes to DENV transmission and whether an improved understanding of its vector status would enhance dengue surveillance and prevention. To assess the relative public health importance of Ae. albopictus for dengue, we carried out two complementary analyses. We reviewed its role in past dengue epidemics and compared its DENV vector competence with that of Ae. aegypti. Observations from "natural experiments" indicate that, despite seemingly favorable conditions, places where Ae. albopictus predominates over Ae. aegypti have never experienced a typical explosive dengue epidemic with severe cases of the disease. Results from a meta-analysis of experimental laboratory studies reveal that although Ae. albopictus is overall more susceptible to DENV midgut infection, rates of virus dissemination from the midgut to other tissues are significantly lower in Ae. albopictus than in Ae. aegypti. For both indices of vector competence, a few generations of mosquito colonization appear to result in a relative increase of Ae. albopictus susceptibility, which may have been a confounding factor in the literature. Our results lead to the conclusion that Ae. albopictus plays a relatively minor role compared to Ae. aegypti in DENV transmission, at least in part due to differences in host preferences and reduced vector competence. Recent examples of rapid arboviral adaptation to alternative mosquito vectors, however, call for cautious extrapolation of our conclusion. Vector status is a dynamic

  15. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Badillo

    2014-04-01

    Full Text Available Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  16. Anticuerpos policlonales contra la proteína recombinante NS3 del virus del dengue

    Directory of Open Access Journals (Sweden)

    Liliana Morales

    2017-01-01

    Resultados. Los anticuerpos producidos fueron útiles en ensayos de Western blot e inmunofluorescencia y se reportó por primera vez un anticuerpo policlonal anti-NS3 que permitió la inmunoprecipitación de la proteína viral y la detecta con Western blot sin necesidad de inducir sobreexpresión de NS3 o de usar extractos de células marcados metabólicamente con radioisótopos. Conclusión. Las proteínas recombinantes expresadas y los anticuerpos producidos constituyen herramientas valiosas para estudiar procesos infecciosos del DENV que involucren a la proteína NS3 y evaluar pruebas dirigidas a interferir las funciones de esta proteína.

  17. Comparative Evaluation of Permissiveness to Dengue Virus Serotype 2 Infection in Primary Rodent Macrophages

    Directory of Open Access Journals (Sweden)

    Jeanette Prada-Arismendy

    2012-01-01

    Full Text Available Infection with dengue virus presents a broad clinical spectrum, which can range from asymptomatic cases to severe cases that are characterised by haemorrhagic syndrome and/or shock. The reason for such variability remains unknown. This work evaluated the in vitro permissiveness of mouse, rat, hamster and guinea pig macrophages to infection by dengue virus 2 (DENV2. The results established that macrophages derived from the BALB/c mouse strain showed higher permissiveness to DENV2 infection than macrophages from other rodent species, although all rodent species studied had the C820T mutation in the oligoadenylate synthetase 1b gene, indicating no relationship to the different in vitro susceptibilities of mouse cells at this locus. Other molecular mechanisms related to flavivirus susceptibility remain to be explored.

  18. Respiratory syncytial virus mechanisms to interfere with type 1 interferons.

    Science.gov (United States)

    Barik, Sailen

    2013-01-01

    Respiratory syncytial virus (RSV) is a member of the Paramyxoviridae family that consists of viruses with nonsegmented negative-strand RNA genome. Infection by these viruses triggers the innate antiviral response of the host, mainly type I interferon (IFN). Essentially all other viruses of this family produce IFN suppressor functions by co-transcriptional RNA editing. In contrast, RSV has evolved two unique nonstructural proteins, NS1 and NS2, to effectively serve this purpose. Together, NS1 and NS2 degrade or sequester multiple signaling proteins that affect both IFN induction and IFN effector functions. While the mechanism of action of NS1 and NS2 is a subject of active research, their effect on adaptive immunity is also being recognized. In this review, we discuss various aspects of NS1 and NS2 function with implications for vaccine design.

  19. Cleft analysis of Zika virus non-structural protein 1

    Directory of Open Access Journals (Sweden)

    Somsri Wiwanitkit

    2017-08-01

    Full Text Available The non-structural protein 1 is an important molecule of the viruses in flavivirus group including to Zika virus. Recently, the NS1 of Zika virus was discovered. There is still no complete information of the molecular interaction of NS1 of Zika virus which can be the clue for explanation for its pathogenesis and further drug search. Here the authors report the cleft analysis of NS1 of Zika virus and the result can be useful for future development of good diagnostic tool and antiviral drug finding for management of Zika virus.

  20. Cleft analysis of Zika virus non-structural protein 1

    OpenAIRE

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2017-01-01

    The non-structural protein 1 is an important molecule of the viruses in flavivirus group including to Zika virus. Recently, the NS1 of Zika virus was discovered. There is still no complete information of the molecular interaction of NS1 of Zika virus which can be the clue for explanation for its pathogenesis and further drug search. Here the authors report the cleft analysis of NS1 of Zika virus and the result can be useful for future development of good diagnostic tool and antiviral drug fin...

  1. Virus-Specific Differences in Rates of Disease during the 2010 Dengue Epidemic in Puerto Rico

    Science.gov (United States)

    Sharp, Tyler M.; Hunsperger, Elizabeth; Santiago, Gilberto A.; Muñoz-Jordan, Jorge L.; Santiago, Luis M.; Rivera, Aidsa; Rodríguez-Acosta, Rosa L.; Gonzalez Feliciano, Lorenzo; Margolis, Harold S.; Tomashek, Kay M.

    2013-01-01

    Background Dengue is a potentially fatal acute febrile illness (AFI) caused by four mosquito-transmitted dengue viruses (DENV-1–4) that are endemic in Puerto Rico. In January 2010, the number of suspected dengue cases reported to the passive dengue surveillance system exceeded the epidemic threshold and an epidemic was declared soon after. Methodology/Principal Findings To characterize the epidemic, surveillance and laboratory diagnostic data were compiled. A suspected case was a dengue-like AFI in a person reported by a health care provider with or without a specimen submitted for diagnostic testing. Laboratory-positive cases had: (i) DENV nucleic acid detected by reverse transcriptase-polymerase chain reaction (RT-PCR) in an acute serum specimen; (ii) anti-DENV IgM antibody detected by ELISA in any serum specimen; or (iii) DENV antigen or nucleic acid detected in an autopsy-tissue specimen. In 2010, a total of 26,766 suspected dengue cases (7.2 per 1,000 residents) were identified, of which 46.6% were laboratory-positive. Of 7,426 RT-PCR-positive specimens, DENV-1 (69.0%) and DENV-4 (23.6%) were detected more frequently than DENV-2 (7.3%) and DENV-3 (Puerto Rico in the late 1960's. This epidemic re-emphasizes the need for more effective primary prevention interventions to reduce the morbidity and mortality of dengue. PMID:23593526

  2. NS3 from Hepatitis C Virus Strain JFH-1 Is an Unusually Robust Helicase That Is Primed To Bind and Unwind Viral RNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ting; Ren, Xiaoming; Adams, Rebecca L.; Pyle, Anna Marie; Ou, J. -H. James

    2017-10-25

    Hepatitis C viruses (HCV) encode a helicase enzyme that is essential for viral replication and assembly (nonstructural protein 3 [NS3]). This helicase has become the focus of extensive basic research on the general helicase mechanism, and it is also of interest as a novel drug target. Despite the importance of this protein, mechanistic work on NS3 has been conducted almost exclusively on variants from HCV genotype 1. Our understanding of NS3 from the highly active HCV strains that are used to study HCV genetics and mechanism in cell culture (such as JFH-1) is lacking. We therefore set out to determine whether NS3 from the replicatively efficient genotype 2a strain JFH-1 displays novel functional or structural properties. Using biochemical assays for RNA binding and duplex unwinding, we show that JFH-1 NS3 binds RNA much more rapidly than the previously studied NS3 variants from genotype 1b. Unlike NS3 variants from other genotypes, JFH-1 NS3 binds RNA with high affinity in a functionally active form that is capable of immediately unwinding RNA duplexes without undergoing rate-limiting conformational changes that precede activation. Unlike other superfamily 2 (SF2) helicases, JFH-1 NS3 does not require long 3' overhangs, and it unwinds duplexes that are flanked by only a few nucleotides, as in the folded HCV genome. To understand the physical basis for this, we solved the crystal structure of JFH-1 NS3, revealing a novel conformation that contains an open, positively charged RNA binding cleft that is primed for productive interaction with RNA targets, potentially explaining robust replication by HCV JFH-1.

    IMPORTANCEGenotypes of HCV are as divergent as different types of flavivirus, and yet mechanistic features of HCV variants are presumed to be held in common. One of the most well-studied components of the HCV replication complex is a helicase known as nonstructural protein 3 (NS3). We set out to determine whether this important

  3. Virological confirmation of suspected dengue in a Phase 2 Latin American vaccine trial: Implications for vaccine efficacy evaluation

    Directory of Open Access Journals (Sweden)

    Mark Boaz

    2014-01-01

    Full Text Available The CYD tetravalent dengue vaccine candidate is being evaluated for protective efficacy against symptomatic dengue in Phase 3 efficacy trials. The laboratory test algorithm to confirm dengue cases was evaluated prior to Phase 3 trials. During a Phase 2 trial in Latin America a dengue epidemic occurred in the study countries. A total of 72 suspected dengue cases were reported and assessed: virological confirmation comprised qRT-PCR methods and a commercial ELISA kit for NS1 protein (Bio-Rad. The qRT-PCR included a screening assay targeting a conserved dengue region of the 3′-UTR (dengue screen assay followed by 4 individual serotype assays targeting the conserved dengue NS5 genomic region (WT dengue qRT-PCR assays. The NS1 and WT dengue qRT-PCR were endpoint assays for protocol virological confirmation (PVC. Of the 72 suspected cases, 14 were PVC. However, a unique pattern of dengue qRT-PCR results were observed in 5 suspected cases from Honduras: the dengue screen qRT-PCR assay was positive but WT dengue qRT-PCR and NS1 Ag ELISA were negative. To investigate these observations, additional molecular methods were applied: a SYBR® Green-based RT-PCR assay, sequencing assays directed at the genome regions covered by the WT dengue qRT-PCR, and a modified commercial dengue RT-PCR test (Simplexa™ Dengue, Focus Diagnostics. The exploratory data confirmed these additional cases as dengue and indicated the serotype 2 WT dengue qRT-PCR assay was unable to detect a circulating Latin American strain (DENV-2/NI/BID-V608/2006 due to a sequence variation in the isolate. The Simplexa Dengue RT-PCR test was able to detect and serotype dengue. Based on these findings an updated molecular test algorithm for the virological confirmation of dengue cases was developed and implemented in the Phase 3 efficacy trials.

  4. Elevated levels of cell-free circulating DNA in patients with acute dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Tran Thi Ngoc Ha

    Full Text Available BACKGROUND: Apoptosis is thought to play a role in the pathogenesis of severe dengue and the release of cell-free DNA into the circulatory system in several medical conditions. Therefore, we investigated circulating DNA as a potential biomarker for severe dengue. METHODS AND FINDINGS: A direct fluorometric degradation assay using PicoGreen was performed to quantify cell-free DNA from patient plasma. Circulating DNA levels were significantly higher in patients with dengue virus infection than with other febrile illnesses and healthy controls. Remarkably, the increase of DNA levels correlated with the severity of dengue. Additionally, multivariate logistic regression analysis showed that circulating DNA levels independently correlated with dengue shock syndrome. CONCLUSIONS: Circulating DNA levels were increased in dengue patients and correlated with dengue severity. Additional studies are required to show the benefits of this biomarker in early dengue diagnosis and for the prognosis of shock complication.

  5. Autoimmunity in dengue pathogenesis

    Directory of Open Access Journals (Sweden)

    Shu-Wen Wan

    2013-01-01

    Full Text Available Dengue is one of the most important vector-borne viral diseases. With climate change and the convenience of travel, dengue is spreading beyond its usual tropical and subtropical boundaries. Infection with dengue virus (DENV causes diseases ranging widely in severity, from self-limited dengue fever to life-threatening dengue hemorrhagic fever and dengue shock syndrome. Vascular leakage, thrombocytopenia, and hemorrhage are the major clinical manifestations associated with severe DENV infection, yet the mechanisms remain unclear. Besides the direct effects of the virus, immunopathogenesis is also involved in the development of dengue disease. Antibody-dependent enhancement increases the efficiency of virus infection and may suppress type I interferon-mediated antiviral responses. Aberrant activation of T cells and overproduction of soluble factors cause an increase in vascular permeability. DENV-induced autoantibodies against endothelial cells, platelets, and coagulatory molecules lead to their abnormal activation or dysfunction. Molecular mimicry between DENV proteins and host proteins may explain the cross-reactivity of DENV-induced autoantibodies. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development. For the development of a safe and effective dengue vaccine, the immunopathogenic complications of dengue disease need to be considered.

  6. DENGUE VACCINE, CHALLENGES, DEVELOPMENT AND STRATEGIES

    Directory of Open Access Journals (Sweden)

    Dewi Marbawati

    2014-08-01

    Full Text Available ABSTRAKPenyakit demam Dengue endemik di lebih dari 100 negara di dunia. Obat anti virus Dengue efektif belum ditemukan danpengendalian vektor dinilai kurang efektif, sehingga diperlukan upaya pencegahan dengan vaksinasi. Vaksin Dengue yangideal adalah murah, mencakup 4 serotipe, efektif dalam memberikan kekebalan, cukup diberikan sekali seumur hidup, aman,memberi kekebalan jangka panjang, stabil dalam penyimpanan dan stabil secara genetis (tidak bermutasi. Beberapakandidat vaksin yang telah dan sedang dikembangkan oleh para peneliti di seluruh dunia adalah tetravalent live attenuatedvaccine, vaksin Chimera (ChimeriVax, vaksin subunit dan vaksin DNA. Vaksin Dengue dipandang sebagai pendekatan yangefektif dan berkesinambungan dalam mengendalikan penyakit Dengue. Tahun 2003 telah terbentuk Pediatric DengueVaccine Initiative (PDVI, yaitu sebuah konsorsium internasional yang bergerak dalam advokasi untuk meyakinkanmasyarakat internasional akan penting dan mendesaknya vaksin Dengue. Konsorsium vaksin Dengue Indonesia saat iniberupaya mengembangkan vaksin Dengue dengan menggunakan strain virus lokal.Kata kunci: Dengue, virus, vaksinABSTRACTDengue fever is endemic in more than 100 countries in the world. The effective dengue antiviral drug has not been found yet,and vector control is considered less effective. Prevention program by vaccination is needed. An ideal dengue vaccine shouldbe inexpensive, covering four serotypes (tetravalent, effective in providing immunity, given once a lifetime, safe, stable instorage and genetically. Several vaccine candidates have been and are being developed included attenuated tetravalentvaccine, ChimeriVax, sub- unit vaccines and DNA vaccines. Dengue vaccine is seen as an effective and sustainable approachto controll Dengue infection. In 2003, Pediatric Dengue Vaccine Initiative (PDVI has been formed as an internationalconsortium involved in advocacy to convince the international community about the essence and urgency

  7. Characterization of antigenetic serotypes from the dengue virus in Venezuela by means of Grid Computing.

    Science.gov (United States)

    Isea, Raúl; Montes, Esther; Rubio-Montero, Antonio J; Rosales, José D; Rodríguez-Pascual, Manuel A; Mayo, Rafael

    2010-01-01

    This work determines the molecular epidemiology of dengue virus in Venezuela by means of phylogenetic calculations performed on the EELA-2 Grid infrastructure with the PhyloGrid application, an open source tool that allows users performing phylogeny reconstruction in their research. In this study, a total of 132 E nucleotide gene sequences of dengue virus from Venezuela recorded in GenBank(R) have been processed in order to reproduce and validate the topology described in the literature.

  8. Nitrocellulose membrane-based enzyme-linked immunoassay for dengue serotype-1 IgM detection

    International Nuclear Information System (INIS)

    Leon, S.; Guevara, C.; Chunga, A.

    1999-01-01

    To evaluate the sensitivity and specifity of a nitrocellulose membrane-based immunoassay for dengue IgM, with respect to capture enzyme immunoassay, for the diagnosis of dengue virus infection. 101 serum samples were processed and divided into 2 groups: 53 from dengue serotype 1 (DEN1) infected patients, and 48 from healthy subjects. Both groups were tested with a nitrocellulose membrane-based IgM capture enzyme immunoassay (NMB-EIA) and also with an ELISA as referential pattern. NMB-EIA testing detected IgM anti-DEN1 in 94,34% of samples from infected patients, and in 14,58% of control samples, whereas ELISA fails to report false positive or false negative results: NMB-EIA appears to be a good alternative for dengue infection diagnosis. (authors)

  9. Dengue infection and miscarriage: a prospective case control study.

    Directory of Open Access Journals (Sweden)

    Peng Chiong Tan

    Full Text Available BACKGROUND: Dengue is the most prevalent mosquito borne infection worldwide. Vertical transmissions after maternal dengue infection to the fetus and pregnancy losses in relation to dengue illness have been reported. The relationship of dengue to miscarriage is not known. METHOD: We aimed to establish the relationship of recent dengue infection and miscarriage. Women who presented with miscarriage (up to 22 weeks gestation to our hospital were approached to participate in the study. For each case of miscarriage, we recruited 3 controls with viable pregnancies at a similar gestation. A brief questionnaire on recent febrile illness and prior dengue infection was answered. Blood was drawn from participants, processed and the frozen serum was stored. Stored sera were thawed and then tested in batches with dengue specific IgM capture ELISA, dengue non-structural protein 1 (NS1 antigen and dengue specific IgG ELISA tests. Controls remained in the analysis if their pregnancies continued beyond 22 weeks gestation. Tests were run on 116 case and 341 control sera. One case (a misdiagnosed viable early pregnancy plus 45 controls (39 lost to follow up and six subsequent late miscarriages were excluded from analysis. FINDINGS: Dengue specific IgM or dengue NS1 antigen (indicating recent dengue infection was positive in 6/115 (5·2% cases and 5/296 (1·7% controls RR 3·1 (95% CI 1·0-10 P = 0·047. Maternal age, gestational age, parity and ethnicity were dissimilar between cases and controls. After adjustments for these factors, recent dengue infection remained significantly more frequently detected in cases than controls (AOR 4·2 95% CI 1·2-14 P = 0·023. INTERPRETATION: Recent dengue infections were more frequently detected in women presenting with miscarriage than in controls whose pregnancies were viable. After adjustments for confounders, the positive association remained.

  10. G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA.

    Science.gov (United States)

    Bidet, Katell; Dadlani, Dhivya; Garcia-Blanco, Mariano A

    2014-07-01

    Viral RNA-host protein interactions are critical for replication of flaviviruses, a genus of positive-strand RNA viruses comprising major vector-borne human pathogens including dengue viruses (DENV). We examined three conserved host RNA-binding proteins (RBPs) G3BP1, G3BP2 and CAPRIN1 in dengue virus (DENV-2) infection and found them to be novel regulators of the interferon (IFN) response against DENV-2. The three RBPs were required for the accumulation of the protein products of several interferon stimulated genes (ISGs), and for efficient translation of PKR and IFITM2 mRNAs. This identifies G3BP1, G3BP2 and CAPRIN1 as novel regulators of the antiviral state. Their antiviral activity was antagonized by the abundant DENV-2 non-coding subgenomic flaviviral RNA (sfRNA), which bound to G3BP1, G3BP2 and CAPRIN1, inhibited their activity and lead to profound inhibition of ISG mRNA translation. This work describes a new and unexpected level of regulation for interferon stimulated gene expression and presents the first mechanism of action for an sfRNA as a molecular sponge of anti-viral effectors in human cells.

  11. Analysis of Individuals from a Dengue-Endemic Region Helps Define the Footprint and Repertoire of Antibodies Targeting Dengue Virus 3 Type-Specific Epitopes.

    Science.gov (United States)

    Andrade, Daniela V; Katzelnick, Leah C; Widman, Doug G; Balmaseda, Angel; de Silva, Aravinda M; Baric, Ralph S; Harris, Eva

    2017-09-19

    The four dengue virus serotypes (DENV1 to 4) cause dengue, a major public health problem worldwide. Individuals exposed to primary DENV infections develop serotype-specific neutralizing antibodies, including strongly neutralizing antibodies targeting quaternary epitopes. To date, no studies have measured the levels and kinetics of serum antibodies directed to such epitopes among populations in regions where dengue is endemic. Here, we use a recombinant DENV4 (rDENV4/3-M14) displaying a major DENV3 type-specific quaternary epitope recognized by human monoclonal antibody 5J7 to measure the proportion, magnitude, and kinetics of DENV3 type-specific neutralizing antibody responses targeting this epitope. Primary DENV3 sera from 30 individuals in a dengue hospital-based study in Nicaragua were studied 3, 6, 12, and 18 months post-infection, alongside samples collected annually 1 to 4 years post-primary DENV3 infection from 10 individuals in a cohort study in Nicaragua. We found substantial individual variation in the proportion of DENV3 type-specific neutralizing antibody titers attributed to the 5J7 epitope (range, 0 to 100%), with the mean significantly increasing from 22.6% to 41.4% from 3 to 18 months. We extended the transplanted DENV3 5J7 epitope on the virion (rDENV4/3-M16), resulting in increased recognition in several individuals, helping define the footprint of the epitope. However, 37% and 13% of the subjects still showed little to no recognition of the 5J7 epitope at 3 and 18 months, respectively, indicating that one or more additional DENV3 type-specific epitopes exist. Overall, this study demonstrates how DENV-immune plasma from populations from areas of endemicity, when coupled with structurally guided recombinant viruses, can help characterize the epitope-specific neutralizing antibody response in natural DENV infections, with direct implications for design and evaluation of dengue vaccines. IMPORTANCE The four serotypes of dengue virus cause dengue

  12. Hepatitis C Virus Particle Assembly Involves Phosphorylation of NS5A by the c-Abl Tyrosine Kinase.

    Science.gov (United States)

    Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Sun, Xuedong; Honjoh, Chisato; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao

    2015-09-04

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is thought to regulate the replication of viral RNA and the assembly of virus particles in a serine/threonine phosphorylation-dependent manner. However, the host kinases that phosphorylate NS5A have not been fully identified. Here, we show that HCV particle assembly involves the phosphorylation of NS5A by the c-Abl tyrosine kinase. Pharmacological inhibition or knockdown of c-Abl reduces the production of infectious HCV (J6/JFH1) particles in Huh-7.5 cells without markedly affecting viral RNA translation and replication. NS5A is tyrosine-phosphorylated in HCV-infected cells, and this phosphorylation is also reduced by the knockdown of c-Abl. Mutational analysis reveals that NS5A tyrosine phosphorylation is dependent, at least in part, on Tyr(330) (Tyr(2306) in polyprotein numbering). Mutation of this residue to phenylalanine reduces the production of infectious HCV particles but does not affect the replication of the JFH1 subgenomic replicon. These findings suggest that c-Abl promotes HCV particle assembly by phosphorylating NS5A at Tyr(330). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Molecular models of NS3 protease variants of the Hepatitis C virus

    Directory of Open Access Journals (Sweden)

    Mello Isabel MVGC

    2005-01-01

    Full Text Available Abstract Background Hepatitis C virus (HCV currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. Results The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. Conclusions This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure

  14. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses

    Energy Technology Data Exchange (ETDEWEB)

    Terrier, Olivier; Moules, Vincent; Carron, Coralie; Cartet, Gaeelle [Equipe VirCell, Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Universite de Lyon, Universite Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculte de medecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon (France); Frobert, Emilie [Laboratoire de Virologie, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, F-69677 Bron Cedex, Lyon (France); Yver, Matthieu; Traversier, Aurelien [Equipe VirCell, Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Universite de Lyon, Universite Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculte de medecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon (France); Wolff, Thorsten [Division of Influenza/Respiratory Viruses, Robert Koch Institute, Nordufer 20, D-13353 Berlin (Germany); Riteau, Beatrice [Laboratoire de Virologie et Pathologie Humaine, VirPath EMR 4610, Universite de Lyon, Universite Claude Bernard Lyon 1, Hospices Civils de Lyon, Faculte de medecine RTH Laennec, rue Guillaume Paradin, F-69008 Lyon (France); Naffakh, Nadia [Institut Pasteur, Unite de Genetique Moleculaire des Virus Respiratoires, URA CNRS 3015, EA302 Universite Paris Diderot, Paris (France); and others

    2012-10-10

    Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus-host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.

  15. Dengue in the Americas and Southeast Asia: do they differ? El dengue en las Américas y el sudeste asiático: ¿son diferentes?

    Directory of Open Access Journals (Sweden)

    Scott B. Halstead

    2006-12-01

    Full Text Available The populations of Southeast Asia (SE Asia and tropical America are similar, and all four dengue viruses of Asian origin are endemic in both regions. Yet, during comparable 5-year periods, SE Asia experienced 1.16 million cases of dengue hemorrhagic fever (DHF, principally in children, whereas in the Americas there were 2.8 million dengue fever (DF cases, principally in adults, and only 65 000 DHF cases. This review aims to explain these regional differences. In SE Asia, World War II amplified Aedes aegypti populations and the spread of dengue viruses. In the Americas, efforts to eradicate A. aegypti in the 1940s and 1950s contained dengue epidemics mainly to the Caribbean Basin. Cuba escaped infections with the American genotype dengue-2 and an Asian dengue-3 endemic in the 1960s and 1970s. Successive infections with dengue-1 and an Asian genotype dengue-2 resulted in the 1981 DHF epidemic. When this dengue-2 virus was introduced in other Caribbean countries, it encountered populations highly immune to the American genotype dengue-2. During the 1980s and 1990s, rapidly expanding populations of A. aegypti in Brazil permitted successive epidemics of dengue-1, -2, and -3. These exposures, however, resulted mainly in DF, with surprisingly few cases of DHF. The absence of high rates of severe dengue disease in Brazil, as elsewhere in the Americas, may be partly explained by the widespread prevalence of human dengue resistance genes. Understanding the nature and distribution of these genes holds promise for containing severe dengue. Future research on dengue infections should emphasize population-based designs.Las poblaciones de Asia suroriental y de la América tropical son similares y los cuatro tipos de virus del dengue de origen asiático son endémicos en ambas regiones. Aun así, durante períodos quinquenales comparables ocurrieron 1,16 millones de casos de dengue hemorrágico (DH en Asia suroriental, principalmente en niños, mientras que en

  16. Acute disseminated encephalomyelitis in dengue viral infection.

    Science.gov (United States)

    Wan Sulaiman, Wan Aliaa; Inche Mat, Liyana Najwa; Hashim, Hasnur Zaman; Hoo, Fan Kee; Ching, Siew Mooi; Vasudevan, Ramachandran; Mohamed, Mohd Hazmi; Basri, Hamidon

    2017-09-01

    Dengue is the most common arboviral disease affecting many countries worldwide. An RNA virus from the flaviviridae family, dengue has four antigenically distinct serotypes (DEN-1-DEN-4). Neurological involvement in dengue can be classified into dengue encephalopathy immune-mediated syndromes, encephalitis, neuromuscular or dengue muscle dysfunction and neuro-ophthalmic involvement. Acute disseminated encephalomyelitis (ADEM) is an immune mediated acute demyelinating disorder of the central nervous system following recent infection or vaccination. This monophasic illness is characterised by multifocal white matter involvement. Many dengue studies and case reports have linked ADEM with dengue virus infection but the association is still not clear. Therefore, this article is to review and discuss concerning ADEM in dengue as an immune-medicated neurological complication; and the management strategy required based on recent literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Characterization of Dengue Virus Infections Among Febrile Children Clinically Diagnosed With a Non-Dengue Illness, Managua, Nicaragua.

    Science.gov (United States)

    Waggoner, Jesse J; Gresh, Lionel; Mohamed-Hadley, Alisha; Balmaseda, Angel; Soda, K James; Abeynayake, Janaki; Sahoo, Malaya K; Liu, Yuanyuan; Kuan, Guillermina; Harris, Eva; Pinsky, Benjamin A

    2017-06-15

    We sought to characterize dengue virus (DENV) infections among febrile children enrolled in a pediatric cohort study who were clinically diagnosed with a non-dengue illness ("C cases"). DENV infections were detected and viral load quantitated by real-time reverse transcription-polymerase chain reaction in C cases presenting between January 2007 and January 2013. One hundred forty-one of 2892 C cases (4.88%) tested positive for DENV. Of all febrile cases in the study, DENV-positive C cases accounted for an estimated 52.0% of patients with DENV viremia at presentation. Compared with previously detected, symptomatic dengue cases, DENV-positive C cases were significantly less likely to develop long-lasting humoral immune responses to DENV, as measured in healthy annual serum samples (79.7% vs 47.8%; P dengue. These findings have important implications for DENV transmission modeling, immunology, and epidemiologic surveillance. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  18. Experimental in vitro and in vivo systems for studying the innate immune response during dengue virus infections.

    Science.gov (United States)

    Kitab, Bouchra; Kohara, Michinori; Tsukiyama-Kohara, Kyoko

    2018-03-08

    Dengue is the most prevalent arboviral disease in humans and leads to significant morbidity and socioeconomic burden in tropical and subtropical areas. Dengue is caused by infection with any of the four closely related serotypes of dengue virus (DENV1-4) and usually manifests as a mild febrile illness, but may develop into fatal dengue hemorrhagic fever and shock syndrome. There are no specific antiviral therapies against dengue because understanding of DENV biology is limited. A tetravalent chimeric dengue vaccine, Dengvaxia, has finally been licensed for use, but its efficacy was significantly lower against DENV-2 infections and in dengue-naïve individuals. The identification of mechanisms underlying the interactions between DENV and immune responses will help to determine efficient therapeutic and preventive options. It has been well established how the innate immune system responds to DENV infection and how DENV overcomes innate antiviral defenses, however further progress in this field remains hampered by the absence of appropriate experimental dengue models. Herein, we review the available in vitro and in vivo approaches to study the innate immune responses to DENV.

  19. Response to Dengue virus infections altered by cytokine-like substances from mosquito cell cultures

    Directory of Open Access Journals (Sweden)

    Laosutthipong Chaowanee

    2010-11-01

    Full Text Available Abstract Background With both shrimp and commercial insects such as honey bees, it is known that stable, persistent viral infections characterized by absence of disease can sometimes shift to overt disease states as a result of various stress triggers and that this can result in serious economic losses. The main research interest of our group is to understand the dynamics of stable viral infections in shrimp and how they can be destabilized by stress. Since there are no continuous cell lines for crustaceans, we have used a C6/36 mosquito cell line infected with Dengue virus to test hypotheses regarding these interactions. As a result, we accidentally discovered two new cytokine-like substances in 5 kDa extracts from supernatant solutions of acutely and persistently infected mosquito cells. Results Naïve C6/36 cells were exposed for 48 h to 5 kDa membrane filtrates prepared from the supernatant medium of stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Subsequent challenge of naïve cells with a virulent stock of Dengue virus 2 (DEN-2 and analysis by confocal immunofluorescence microscopy using anti-DEN-2 antibody revealed a dramatic reduction in the percentage of DEN-2 infected cells when compared to control cells. Similar filtrates prepared from C6/36 cells with acute DEN-2 infections were used to treat stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Confocal immunofluorescence microscopy revealed destabilization in the form of an apoptosis-like response. Proteinase K treatment removed the cell-altering activities indicating that they were caused by small polypeptides similar to those previously reported from insects. Conclusions This is the first report of cytokine-like substances that can alter the responses of mosquito cells to Dengue virus. This simple model system allows detailed molecular studies on insect cytokine production and on cytokine activity in a standard insect cell line.

  20. Olive baboons: a non-human primate model for testing dengue virus type 2 replication.

    Science.gov (United States)

    Valdés, Iris; Gil, Lázaro; Castro, Jorge; Odoyo, Damián; Hitler, Rikoi; Munene, Elephas; Romero, Yaremis; Ochola, Lucy; Cosme, Karelia; Kariuki, Thomas; Guillén, Gerardo; Hermida, Lisset

    2013-12-01

    This study evaluated the use of a non-human primate, the olive baboon (Papio anubis), as a model of dengue infection. Olive baboons closely resemble humans genetically and physiologically and have been used extensively for assessing novel vaccine formulations. Two doses of dengue virus type 2 (DENV-2) were tested in baboons: 10(3) and 10(4) pfu. Similarly, African green monkeys received the same quantity of virus and acted as positive controls. Following exposure, high levels of viremia were detected in both animal species. There was a trend to detect more days of viremia and more homogeneous viral titers in animals receiving the low viral dose. In addition, baboons infected with the virus generally exhibited positive virus isolation 1 day later than African green monkeys. Humoral responses consisting of antiviral and neutralizing antibodies were detected in all animals after infection. We conclude that baboons provide an alternative non-human primate species for experimental DENV-2 infection and we recommend their use for further tests of vaccines, administering the lowest dose assayed: 10(3) pfu. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.