WorldWideScience

Sample records for dendritic growth experiment

  1. Isothermal Dendritic Growth Experiment Video

    Science.gov (United States)

    1997-01-01

    This video, captured during the Isothermal Dendritic Growth Experiment (IDGE) flown on STS-87 as a part of the fourth United States Microgravity payload, shows the growth of a dendrite, and the surface solidification that occurred on the front and back windows of the growth chamber. Dendrites are tiny, tree like structures that form as metals solidify.

  2. Isothermal Dendritic Growth Experiment - PVA Dendrites

    Science.gov (United States)

    1997-01-01

    The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. IDGE used transparent organic liquids that form dendrites (treelike structures) similar to those inside metal alloys. Comparing Earth-based and space-based dendrite growth velocity, tip size and shape provides a better understanding of the fundamentals of dentritic growth, including gravity's effects. Shalowgraphic images of pivalic acid (PVA) dendrites forming from the melt show the subtle but distinct effects of gravity-driven heat convection on dentritic growth. In orbit, the dendrite grows as its latent heat is liberated by heat conduction. This yields a blunt dendrite tip. On Earth, heat is carried away by both conduction and gravity-driven convection. This yields a sharper dendrite tip. In addition, under terrestrial conditions, the sidebranches growing in the direction of gravity are augmented as gravity helps carry heat out of the way of the growing sidebranches as opposed to microgravity conditions where no augmentation takes place. IDGE was developed by Rensselaer Polytechnic Institute and NASA/Glenn Research Center. Advanced follow-on experiments are being developed for flight on the International Space Station. Photo Credit: NASA/Glenn Research Center

  3. The Isothermal Dendritic Growth Experiment

    Science.gov (United States)

    Glicksman, M. E.; Koss, M. B.; Malarik, D. C.

    1998-01-01

    The growth of dendrites is one of the commonly observed forms of solidification encountered when metals and alloys freeze under low thermal gradients, as occurs in most casting and welding processes. In engineering alloys, the details of the dendritic morphology directly relates to important material responses and properties. Of more generic interest, dendritic growth is also an archetypical problem in morphogenesis, where a complex pattern evolves from simple starting conditions. Thus, the physical understanding and mathematical description of how dendritic patterns emerge during the growth process are of interest to both scientists and engineers. The Isothermal Dendritic Growth Experiment (IDGE) is a basic science experiment designed to measure, for a fundamental test of theory, the kinetics and morphology of dendritic growth without complications induced by gravity-driven convection. The IDGE, a collaboration between Rensselaer Polytechnic Institute, in Troy NY, and NASA's Lewis Research Center (LeRC) was developed over a ten year period from a ground-based research program into a space flight experiment. Important to the success of this flight experiment was provision of in situ near-real-time teleoperations during the spaceflight experiment.

  4. The Isothermal Dendritic Growth Experiment Archive

    Science.gov (United States)

    Koss, Matthew

    2009-03-01

    The growth of dendrites is governed by the interplay between two simple and familiar processes---the irreversible diffusion of energy, and the reversible work done in the formation of new surface area. To advance our understanding of these processes, NASA sponsored a project that flew on the Space Shuttle Columbia is 1994, 1996, and 1997 to record and analyze benchmark data in an apparent-microgravity ``laboratory.'' In this laboratory, energy transfer by gravity driven convection was essentially eliminated and one could test independently, for the first time, both components of dendritic growth theory. The analysis of this data shows that although the diffusion of energy can be properly accounted for, the results from interfacial physics appear to be in disagreement and alternate models should receive increased attention. Unfortunately, currently and for the foreseeable future, there is no access or financial support to develop and conduct additional experiments of this type. However, the benchmark data of 35mm photonegatives, video, and all supporting instrument data are now available at the IDGE Archive at the College of the Holy Cross. This data may still have considerable relevance to researchers working specifically with dendritic growth, and more generally those working in the synthesis, growth & processing of materials, multiscale computational modeling, pattern formation, and systems far from equilibrium.

  5. Free dendritic growth

    Science.gov (United States)

    Glicksman, M. E.

    1984-01-01

    Free dendritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical 'dendrite problem'. Great strides have been taken in recent years in both the theoretical understanding of dendritic growth and its experimental status. The development of this field will be sketched, showing that transport theory and interfacial thermodynamics (capillarity theory) were sufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of 'maximum velocity' was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip. The overall development of cast microstructures, such as equiaxed zone formation, rapidly solidified microstructures, etc., also seems to contain additional non-deterministic features which lie outside the current theories discussed here.

  6. Phase field modeling of dendrite growth

    Institute of Scientific and Technical Information of China (English)

    Yutuo ZHANG; Chengzhi WANG; Dianzhong LI; Yiyi LI

    2009-01-01

    Single dendrite and multi-dendrite growth for A1-2 mol pct Si alloy during isothermal solidification are simulated by phase field method. In the case of single equiaxed dendrite growth, the secondary and the necking phenomenon can be observed. For multi-dendrite growth, there exists the competitive growth among the dendrites dur-ing solidification. As solidification proceeds, growing and coarsening of the primary arms occurs, together with the branching and coarsening of the secondary arms.When the diffusion fields of dendrite tips come into contact with those of the branches growing from the neighboring dendrites, the dendrites stop growing and being to ripen and thicken.

  7. Numerical Simulations of Equiaxed Dendrite Growth Using Phase Field Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growthin a metallic system. In this paper, the equiaxed dendrite evolution during the solidification of a pure material wasnumerically simulated using the phase field model. The equiaxed dendrite growth in a two-dimensional square domainof undercooled melt (nickel) with four-fold anisotropy was simulated. The phase field model equations was solvedusing the explicit finite difference method on a uniform mesh. The formation of various equiaxed dendrite patternswas shown by a series of simulations, and the effect of anisotropy on equiaxed dendrite morphology was investigated.

  8. Numerical simulation of facet dendrite growth

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi; CHEN Chang-le; HAO Li-mei

    2008-01-01

    Numerical simulation based on phase field method was performed to describe the solidification of silicon. The effect of anisotropy, undercooling and coupling parameter on dendrite growth shape was investigated. It is indicated that the entire facet dendrite shapes are obtained by using regularized phase field model. Steady state tip velocity of dendrite drives to a fixed value when γ≤0.13. With further increasing the anisotropy value, steady state tip velocity decreases and the size is smaller. With the increase in the undercooling and coupling parameter, crystal grows from facet to facet dendrite. In addition, with increasing coupling parameter, the facet part of facet dendrite decreases gradually, which is in good agreement with Wulff theory.

  9. Dendrite growth characteristics within liquid Fe-Sb alloy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Bulk samples and small droplets of liquid Fe-10%Sb alloys are undercooled up to 429 K (0.24TL) and 568 K (0.32TL), respectively, with glass fluxing and free fall techniques. The high undercooling does not change the phase constitution, and only the αFe solid solution is found in the rapidly solidified alloy. The experimental results show that when the undercooling is below 296 K, the growth velocity of αFe dendrite rises exponentially with the increase of undercooling and reaches a maximum value 1.38 m/s. Subsequently, the growth velocity begins to decrease if undercooling further increases. The αFe phase grows into coarse dendrites under small undercooling conditions, whereas it becomes vermicular dendrites in highly undercooled melts. The solute trapping is closely related to the dendrite growth velocity and cooling rate rather than undercooling. Although the solute trapping can be remarkably suppressed by the rapid dendrite growth, the segregationless solidification is not observed in the present experiments due to the large solidification temperature range.

  10. Dendrite growth characteristics within liquid Fe-Sb alloy

    Institute of Scientific and Technical Information of China (English)

    WANG WeiLi; Lü YongJun; QIN HaiYan; WEI BingBo

    2009-01-01

    Bulk samples and small droplets of liquid Fe-10%Sb alloys are undercooled up to 429 K (0.24TL) and 568 K (0.32 TL), respectively, with glass fluxing and free fall techniques. The high undercooling does not change the phase constitution, and only the αFe solid solution is found in the rapidly solidified alloy.The experimental results show that when the undercooling is below 296 K, the growth velocity of αFe dendrite rises exponentially with the increase of undercooling and reaches a maximum value 1.38 m/s.Subsequently, the growth velocity begins to decrease if undercooling further increases. The αFe phase grows into coarse dendrites under small undercooling conditions, whereas it becomes vermicular dendrites in highly undercooled melts. The solute trapping is closely related to the dendrite growth velocity and cooling rate rather than undercooling. Although the solute trapping can be remarkably suppressed by the rapid dendrite growth, the segregationless solidification is not observed in the present experiments due to the large solidification temperature range.

  11. Convective heat transfer during dendritic growth

    Science.gov (United States)

    Glicksman, M. E.; Huang, S. C.

    1979-01-01

    Axial growth rate measurements were carried out at 17 levels of supercooling between 0.043 C and 2 C, a temperature range in which convection, instead of diffusion, becomes the controlling mechanism of heat transfer in the dentritic growth process. The growth velocity, normalized to that expected for pure diffusive heat transfer, displays a dependence on orientation. The ratio of the observed growth velocity to that for convection-free growth and the coefficients of supercooling are formulated. The dependence of normalized growth rate in supercooling is described for downward growing dendrites. These experimental correlations can be justified theoretically only to a limited extent.

  12. Phase field modeling of multiple dendrite growth of AI-Si binary alloy under isothermal solidification

    Institute of Scientific and Technical Information of China (English)

    Sun Qiang; Zhang Yutuo; Cui Haixia; Wang Chengzhi

    2008-01-01

    Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in Ai-2-mole-%-Si binary alloy under isothermal solidification was simulated using phase field model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidification. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.

  13. Containerless Undercooled Melts: Ordering, Nucleation, and Dendrite Growth

    Science.gov (United States)

    Herlach, Dieter M.; Binder, Sven; Galenko, Peter; Gegner, Jan; Holland-Moritz, Dirk; Klein, Stefan; Kolbe, Matthias; Volkmann, Thomas

    2015-11-01

    Electromagnetic and electrostatic levitation are applied to containerless undercool and solidify metallic melts. A large undercooling range becomes accessible with the extra benefit that the freely suspended drop is accessible directly for in situ observation. The short-range order in undercooled melts is investigated by combining levitation with elastic neutron scattering and X-ray scattering using synchrotron radiation. Muon Spin Rotation ( µSR) experiments show magnetic ordering in deeply undercooled Co80Pd20 alloys. The onset of magnetic ordering stimulates nucleation. Results on nucleation undercooling of zirconium are presented showing the limit of maximum undercoolability set by the onset of homogeneous nucleation. Metastable phase diagrams are determined by applying energy-dispersive X-ray diffraction of Ni-V alloys with varying concentration. Nucleation is followed by crystal growth. Rapid dendrite growth velocity is measured on levitation-processed samples as a function of undercooling ∆ T by using high-speed video camera technique. Solute trapping in dilute solid solutions and disorder trapping in intermetallic compounds are experimentally verified. Measurements of glass-forming Cu-Zr alloy show a maximum in the V(∆ T) relation that is indicative for diffusion-controlled growth. The influence of convection on dendrite growth of Al50Ni50 is shown by comparative measurements of dendrite growth velocity on Earth and in reduced gravity. Eventually, faceting of a rough interface by convection is presented as observed on Ni2B alloys.

  14. Dendritic growth model of multilevel marketing

    Science.gov (United States)

    Pang, James Christopher S.; Monterola, Christopher P.

    2017-02-01

    Biologically inspired dendritic network growth is utilized to model the evolving connections of a multilevel marketing (MLM) enterprise. Starting from agents at random spatial locations, a network is formed by minimizing a distance cost function controlled by a parameter, termed the balancing factor bf, that weighs the wiring and the path length costs of connection. The paradigm is compared to an actual MLM membership data and is shown to be successful in statistically capturing the membership distribution, better than the previously reported agent based preferential attachment or analytic branching process models. Moreover, it recovers the known empirical statistics of previously studied MLM, specifically: (i) a membership distribution characterized by the existence of peak levels indicating limited growth, and (ii) an income distribution obeying the 80 - 20 Pareto principle. Extensive types of income distributions from uniform to Pareto to a "winner-take-all" kind are also modeled by varying bf. Finally, the robustness of our dendritic growth paradigm to random agent removals is explored and its implications to MLM income distributions are discussed.

  15. Unsteady growth of ammonium chloride dendrites

    Science.gov (United States)

    Martyushev, L. M.; Terentiev, P. S.; Soboleva, A. S.

    2016-02-01

    Growth of ammonium chloride dendrites from aqueous solution is experimentally investigated. The growth rate υ and the radius ρ of curvature of branches are measured as a function of the relative supersaturation Δ for steady and unsteady growth conditions. It is shown that the experimental results are quantitatively described by the dependences ρ=a/Δ+b, υ=cΔ2, where the factors for primary branches are a=(1.3±0.2)·10-7 m, b=(2.5±0.4)·10-7 m, and c=(2.2±0.3)·10-4 m/s. The factor c is found to be approximately 7 times smaller for the side branches than that for the primary branches.

  16. Rapid dendrite growth in quaternary Ni-based alloys

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The high undercooling and rapid solidification of Ni-10%Cu-10%Fe-10%Co quaternary alloy were achieved by electromagnetic levitation and glass fluxing techniques. The maximum undercooling of 276 K (0.16TL) was obtained in the experiments. All the solidified samples are determined to be α-Ni single-phase solid solutions by DSC thermal analysis and X-ray diffraction analysis. The microstructure of the α-Ni solid solution phase transfers from dendrite to equiaxed grain with an increase in undercooling, accompanied by the grain refinement effect. When the undercooling is very large, the solute trapping effect becomes quite significant and the microsegregation is suppressed. The experimental measurement of α-Ni dendrite growth velocity indicates that it increases with undercooling according to the relation, V=8×10-2×△T1.2.

  17. Modeling of dendritic growth in the presence of convection

    Institute of Scientific and Technical Information of China (English)

    ZHU; Mingfang; DAI; Ting; LEE; Sungyoon; HONG; Chunpyo

    2005-01-01

    A two-dimensional coupling modified cellular automaton (MCA)-transport model has been employed to investigate the asymmetrical dendritic growth behavior in a flowing melt. In the present model, the cellular automaton method for crystal growth is incorporated with a transport model, for numerical calculating of the fluid flow and mass transport by both convection and diffusion. The MCA takes into account the effects of the thermal, the constitutional and the curvature undercoolings on dendritic growth. It also considers the preferred growth orientation of crystal and solute redistribution during solidification. In the transport model, the SIMPLE scheme and a fully implicit finite volume method are employed to solve the governing equations of momentum and species transfers. The present model was applied to simulating the evolution of a single dendrite and multi-dendrites of an Al-3mass%Cu alloy in a forced flow. The simulated results show that dendritic growth morphology is strongly influenced by melt convection.

  18. 3D Modeling and Simulation of Dendritic Growth during Solidification

    Institute of Scientific and Technical Information of China (English)

    Zuojian LIANG; Qingyan XU; Baicheng LIU

    2003-01-01

    A mathematical model for the three-dimensional simulation of free dendritic growth and microstructure evolutionwas developed based on the growth mechanism of crystal grains and basic transfer equations such as heat, massand momentum transfer equations. Ma

  19. Assessment of scaling factor in modified dendrite growth model

    Institute of Scientific and Technical Information of China (English)

    张瑞丰; 沈宁福; 曹文博

    2002-01-01

    A model for dendrite growth during rapid solidification was established on the basis of BCT model and marginal stability criterion through modified Peclet numbers. Taking into account the interaction of diffusion fields, including solute diffusion field and thermal diffusion field around the dendrite tip, the model obtain a satisfactory results to predict the dendrite velocity and the tip radius, which agrees well with the experimental data from references in Cu-Ni alloy.

  20. Phase field modeling of multiple dendrite growth of Al-Si binary alloy under isothermal solidifi cation

    Directory of Open Access Journals (Sweden)

    Sun Qiang

    2008-11-01

    Full Text Available Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in Al-2-mole-%-Si binary alloy under isothermal solidifi cation was simulated using phase fi eld model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidifi cation. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.

  1. Epigenetic regulation of axon and dendrite growth

    Directory of Open Access Journals (Sweden)

    Ephraim F Trakhtenberg

    2012-03-01

    Full Text Available Neuroregenerative therapies for central nervous system (CNS injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and reinnervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases (Yiu and He, 2006. CNS’ regenerative failure may be attributable to the development of an inhibitory CNS environment by glial-associated inhibitory molecules (Yiu and He, 2006, and by various cell-autonomous factors (Sun and He, 2010. Intrinsic axon growth ability also declines developmentally (Li et al., 1995; Goldberg et al., 2002; Bouslama-Oueghlani et al., 2003; Blackmore and Letourneau, 2006 and is dependent on transcription (Moore et al., 2009. Although neurons’ intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors (Moore and Goldberg, 2011, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.

  2. Numerical Modeling of Dendrite Growth in Al Alloys

    Institute of Scientific and Technical Information of China (English)

    许庆彦; 柳百成

    2004-01-01

    Dendritic grains are the most often observed microstructure in metals and alloys. In the past decade, more and more attention has been paid to the modeling and simulation of dendritic microstructures. This paper describes a modified diffusion-limited aggregation model to simulate the complex shape of the dendrite grains during metal solidification. The fractal model was used to simulate equiaxed dendrite growth. The fractal dimensions of simulated Al alloy structures range from 1.63-1.88 which compares well with the experimentally-measured fractal dimension of 1.85; therefore, the model accurately predicts not only the dendritic structure morphology, but also the fractal dimension of the dendrite structure formed during solidification.

  3. Dendrite Growth Kinetics in Undercooled Melts of Intermetallic Compounds

    Directory of Open Access Journals (Sweden)

    Dieter M. Herlach

    2015-09-01

    Full Text Available Solidification needs an undercooling to drive the solidification front. If large undercoolings are achieved, metastable solid materials are solidified from the undercooled melt. Containerless processing provides the conditions to achieve large undercoolings since heterogeneous nucleation on container walls is completely avoided. In the present contribution both electromagnetic and electrostatic levitation are applied. The velocity of rapidly advancing dendrites is measured as a function of undercooling by a High-Speed-Camera. The dendrite growth dynamics is investigated in undercooled melts of intermetallic compounds. The Al50Ni50 alloy is studied with respect to disorder trapping that leads to a disordered superlattice structure if the melt is undercooled beyond a critical undercooling. Disorder trapping is evidenced by in situ energy dispersive diffraction using synchrotron radiation of high intensity to record full diffraction pattern on levitated samples within a short time interval. Experiments on Ni2B using different processing techniques of varying the level of convection reveal convection-induced faceting of rapidly growing dendrites. Eventually, the growth velocity is measured in an undercooled melt of glass forming Cu50Zr50 alloy. A maximum in the growth velocity–undercooling relation is proved. This is understood by the fact that the temperature dependent diffusion coefficient counteracts the thermodynamic driving force for rapid growth if the temperature of the undercooled melt is approaching the temperature regime above the glass transition temperature. The analysis of this result allows for determining the activation energy of atomic attachment kinetics at the solid–liquid interface that is comparable to the activation energy of atomic diffusion as determined by independent measurements of the atomic diffusion in undercooled Cu50Zr50 alloy melt.

  4. Phase field simulation of dendrite growth under convection

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The phase-field model coupled with a flow field was used to simulate the solidification of pure materials by the finite difference method.The effects of initial crystal radius,the space step and the interface thickness on the dendrite growth were studied.Results indicate that the grain grows into an equiaxial dendrite during free flow and into a typical branched structure under forced flow.The radius of an initial crystal can affect the growth of side-branches but not the stability of the dendrite s tip whe...

  5. Interactions with Astroglia Influence the Shape of the Developing Dendritic Arbor and Restrict Dendrite Growth Independent of Promoting Synaptic Contacts

    Science.gov (United States)

    Farley, Jennifer R.; Sterritt, Jeffrey R.; Crane, Andrés B.; Wallace, Christopher S.

    2017-01-01

    Astroglia play key roles in the development of neurons, ranging from regulating neuron survival to promoting synapse formation, yet basic questions remain about whether astrocytes might be involved in forming the dendritic arbor. Here, we used cultured hippocampal neurons as a simple in vitro model that allowed dendritic growth and geometry to be analyzed quantitatively under conditions where the extent of interactions between neurons and astrocytes varied. When astroglia were proximal to neurons, dendrites and dendritic filopodia oriented toward them, but the general presence of astroglia significantly reduced overall dendrite growth. Further, dendritic arbors in partial physical contact with astroglia developed a pronounced pattern of asymmetrical growth, because the dendrites in direct contact were significantly smaller than the portion of the arbor not in contact. Notably, thrombospondin, the astroglial factor shown previously to promote synapse formation, did not inhibit dendritic growth. Thus, while astroglia promoted the formation of presynaptic contacts onto dendrites, dendritic growth was constrained locally within a developing arbor at sites where dendrites contacted astroglia. Taken together, these observations reveal influences on spatial orientation of growth as well as influences on morphogenesis of the dendritic arbor that have not been previously identified. PMID:28081563

  6. Observation of dendritic growth under the influence of forced convection

    Science.gov (United States)

    Roshchupkina, O.; Shevchenko, N.; Eckert, S.

    2015-06-01

    The directional solidification of Ga-25wt%In alloys within a Hele-Shaw cell was visualized by X-ray radioscopy. The investigations are focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected during crystallization. Forced convection was produced by a specific electromagnetic pump. The direction of forced melt flow is almost horizontal at the solidification front. Melt flow induces various effects on grain morphology primarily caused by convective transport of solute, such as a facilitation of the growth of primary trunks or lateral branches, dendrite remelting, fragmentation or freckle formation depending on the dendrite orientation, the flow direction and intensity. Forced flow eliminates solutal plumes and damps local fluctuations of solute. A preferential growth of the secondary arms occurs at the upstream side of the dendrites, whereas high solute concentration at the downstream side inhibits the formation of secondary branches.

  7. Ovariectomy attenuates dendritic growth in hormone-sensitive spinal motoneurons.

    Science.gov (United States)

    Hebbeler, S L; Verhovshek, T; Sengelaub, D R

    2001-09-15

    The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). Dendritic development of SNB motoneurons in male rats is biphasic, initially showing exuberant growth through 4 weeks of age followed by a retraction to mature lengths by 7 weeks of age. The initial growth is steroid dependent, attenuated by castration or aromatase inhibition, and supported by hormone replacement. Dendritic retraction is also steroid sensitive and can be prevented by testosterone treatment, but is unaffected by aromatase inhibition. Together, these results suggest a role for estrogens during the initial growth phase of SNB development. In this study, we tested whether ovarian hormones could support SNB somal and dendritic development. Motoneuron morphology was assessed in normal males and in females perinatally masculinized with dihydrotestosterone and then either ovariectomized or left intact. SNB motoneurons were retrogradely labeled with cholera toxin-HRP at 4 or 7 weeks of age and reconstructed in three dimensions. Initial growth of SNB dendrites was reduced after ovariectomy in masculinized females. However, no differences in dendritic length were seen at 7 weeks of age between intact and ovariectomized masculinized females, and lengths in both groups were significantly lower than those of normal males. Together with previous findings, these results suggest that estrogens are involved in the early growth of SNB dendrites, but not in their subsequent retraction.

  8. NUMERICAL SIMULATION OF SUCCINONITRITE DENDRITIC GROWTH IN A FORCED FLOW

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Numerical simulation based on phase field method is performed to describe solidifica-tion process of pure material in a free or forced flow. The evolution of the interface is showed, and the effects of mesh grid and flow velocity on succinonitrite shape are studied. These results indicate that crystal grows into an equiaxial dendrite in a free flow and into an asymmetrical dendritic in a forced flow. With increasing flow velo-city, the upstream dendritic arm tip grows faster and the downstream arm grows slower. However, the evolution of the perpendicular tip has no significant change. In addition, mesh grid has no influence on dendritic growth shape when mesh grid is above 300×300.

  9. Effect of heat source on the growth of dendritic drying patterns

    Indian Academy of Sciences (India)

    Kiran M Kolwankar; Pulkit Prakash; Shruthi Radhakrishnan; Swadhini Sahu; Aditya K Dharmadhikari; Jayashree A Dharmadhikari; Deepak Mathur

    2015-03-01

    Shining a tightly-focussed but low-powered laser beam on an absorber dispersed in a biological fluid gives rise to spectacular growth of dendritic patterns. These result from localized drying of the fluid because of efficient absorption and conduction of optical energy by the absorber. We have carried out experiments in several biologically relevant fluids and have analysed patterns generated by different types of absorbers. We observe that the growth velocity of branches in the dendritic patterns can decrease below the value expected for natural drying.

  10. A Transition from Eutectic Growth to Dendritic Growth Induced by High Undercooling Conditions

    Institute of Scientific and Technical Information of China (English)

    吕勇军; 魏炳波

    2003-01-01

    Cu-8 wt.%Al eutectic alloy was undercooled by up to 187K (0.14 TE) using a drop tube technique. The crystal growth and phase selection mechanisms were investigated during containerless rapid solidification. It is found that the microstructural morphology is characterized by lamellar eutectic growth at small undercoolings. However,if the liquid alloy is undercooled by more than 25K, eutectic growth will be suppressed completely and the dendritic growth of (Gu) solid solution dominates its solidification process. When the undercooling exceeds 153 K, a microstructural transition from coarse dendrite to equiaxed dendrite takes place.

  11. Rapid growth of primary dendrite in highly undercooled copper-antimany alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The droplets of Cu-11wt.%Sb hypoeutectic alloy have been rapidly solidified during containerless processing in a 3 m drop tube. The undercooling and cooling rates are estimated, and both play a dominant role in the dendritic growth of primary Cu phase. Undercoolings up to 200 K (0.16TL, where TL is the liquidus temperature) have been obtained in the experiment. With the increase of undercooling, the microstructural evolution of primary Cu phase proceeds from remelted dendrites to the equiaxed grains. A coarse dendritic grain microstructure can form in the undercooling range of 61~102 K and at cooling rates of 1.35×102~2.66×103 K/s. The segregationless solidification of Cu-11wt.%Sb hypoeutectic alloy occurs when undercooling is more than 176 K. The growth of primary Cu phase is mainly controlled by solute diffusion.

  12. Anisotropic corner diffusion as origin for dendritic growth on hexagonal substrates

    DEFF Research Database (Denmark)

    Brune, H.; Röder, H.; Bromann, K.

    1996-01-01

    and stick mechanism, form. Dendrites are characterized by preferential growth in the [2]-directions, i.e., perpendicular to A-steps. The key process for their formation has been found to be diffusion of one-fold comer atoms towards neighboring steps. Calculations with the effective medium...... theory show that this relaxation is highly asymmetric with respect to the two different kinds of close-packed steps. It leads to dendritic growth as verified by kinetic Monte-Carlo simulations which agree well with experiment.......Ag aggregation on Ag(111), Pt(111), and 1 ML Ag pseudomorphically grown on Pt(111), has been studied with variable temperature STM. These systems all have in common that dendritic patterns with trigonal symmetry rather than randomly ramified aggregates, which would be expected for a simple hit...

  13. In situ study on dendrite growth of metallic alloy by a synchrotron radiation imaging technology

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This study was trying to observe the real-time dendrite growth of Sn-Bi and Sn-Pb binary alloys by a synchrotron radiation imaging technology.The imaging system includes an intense and high brightness synchrotron radiation source,a high-resolution and fast-readout charge coupled device camera,an alloy sample and a Bridgman solidification system.The imaging experiments were done at Beijing Synchrotron Radiation Facility with an updated synchrotron radiation imaging technique,diffraction-enhanced imaging,which was firstly used to study the dendrite growth of metallic alloy.A series of growth behavior and morphology evolution of dendrite have been in situ observed,such as columnar-to-equiaxed transition,dendrite competition,dendrite fragmentation and floating,etc.,which can offer the direct proofs to verify or improve the solidification theories of metallic alloy.This research opens a novel window for the study of alloy solidification and enables the unambiguous understanding of solidification processes in optically opaque,metallic alloys.

  14. Growth and microstructure of AlN whiskers and dendrites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    AlN whiskers or dendrites were synthesized with a sublimation-recrystallization method by using Al, AlN powders and some additives as raw materials. Whiskers with different sizes that featured high purity and good crystallinity were obtained by controlling temperature and gas supersaturation in the reaction container. The whiskers were described as long and straight single crystals of approximately 1-30 (m in diameter by the centimeter range in length. However, AlN dendrites were about 1 mm in diameter by 0.5 cm in length, and showed an obviously preferential growth orientation, i.e., perpendicular to and planes. It is concluded that the whiskers or dendrites grow via the vapor-solid mechanism.

  15. Dendritic gold nanowire growth observed in liquid with transmission electron microscopy.

    Science.gov (United States)

    Kraus, Tobias; de Jonge, Niels

    2013-07-02

    The growth of nanoscale gold dendrites was studied in situ in a thin liquid film with transmission electron microscopy (TEM) using a liquid cell with silicon nitride (SiN) windows. Gold nanoparticle seeds were covered by a thin liquid layer containing precursor solution. Dendrite nucleation was induced by the electron beam leading to an initial burst of growth. The growth then settled at tip velocities between 0.1 and 2.0 nm/s for different dendrites. Tip velocities fluctuated as different dendrite geometries grew from the tips. Those dendrites showing granularities in their structure experienced the largest growth speed. Comparison of the observed velocities with diffusion-limited growth rates suggests that dendrite growth in thin films at this scale is limited by diffusion. The described method may find application in research on the mechanisms behind dendrite growth and also to study other types of anisotropic growth of nanomaterials driven by crystal and twin geometries.

  16. Selection Theory of Dendritic Growth with Anisotropic Diffusion

    Directory of Open Access Journals (Sweden)

    Martin von Kurnatowski

    2015-01-01

    Full Text Available Dendritic patterns frequently arise when a crystal grows into its own undercooled melt. Latent heat released at the two-phase boundary is removed by some transport mechanism, and often the problem can be described by a simple diffusion model. Its analytic solution is based on a perturbation expansion about the case without capillary effects. The length scale of the pattern is determined by anisotropic surface tension, which provides the mechanism for stabilizing the dendrite. In the case of liquid crystals, diffusion can be anisotropic too. Growth is faster in the direction of less efficient heat transport (inverted growth. Any physical solution should include this feature. A simple spatial rescaling is used to reduce the bulk equation in 2D to the case of isotropic diffusion. Subsequently, an eigenvalue problem for the growth mode results from the interface conditions. The eigenvalue is calculated numerically and the selection problem of dendritic growth with anisotropic diffusion is solved. The length scale is predicted and a quantitative description of the inverted growth phenomenon is given. It is found that anisotropic diffusion cannot take the stabilizing role of anisotropic surface tension.

  17. Analyzing dendritic growth in a population of immature neurons in the adult dentate gyrus using laminar quantification of disjointed dendrites

    Directory of Open Access Journals (Sweden)

    Shira eRosenzweig

    2011-03-01

    Full Text Available In the dentate gyrus of the hippocampus, new granule neurons are continuously produced throughout adult life. A prerequisite for the successful synaptic integration of these neurons is the sprouting and extension of dendrites into the molecular layer of the dentate gyrus. Thus, studies aimed at investigating the developmental stages of adult neurogenesis often use dendritic growth as an important indicator of neuronal health and maturity. Based on the known topography of the dentate gyrus, characterized by distinct laminar arrangement of granule neurons and their extensions, we have developed a new method for analysis of dendritic growth in immature adult-born granule neurons. The method is comprised of laminar quantification of cell bodies, primary, secondary and tertiary dendrites separately and independently from each other. In contrast to most existing methods, laminar quantification of dendrites does not require the use of exogenous markers and does not involve arbitrary selection of individual neurons. The new method relies on immonuhistochemical detection of endogenous markers such as doublecortin to perform a comprehensive analysis of a sub-population of immature neurons. Disjointed, orphan dendrites that often appear in the thin histological sections are taken into account. Using several experimental groups of rats and mice, we demonstrate here the suitable techniques for quantifying neurons and dendrites, and explain how the ratios between the quantified values can be used in a comparative analysis to indicate variations in dendritic growth and complexity.

  18. Characteristics of the Dendrite Growth in the Electrochemical Alane Production Process

    Directory of Open Access Journals (Sweden)

    Park Hyun-Kyu

    2016-01-01

    Full Text Available The electrochemical alane production process was proposed for a feasible production of alane. The operation of process was difficult because of short circuit by a dendrite growth in the reactor. Therefore, characteristics of the dendrite growth in the process were investigated. We conducted the electrochemical alane production process using Teflon block for inhibition of the dendrite growth. The obtained dendrite was characterized by XRD, SEM and ICP-AES. It was concluded that the dendrite growth was attributed to a melting and agglomeration of Al fine particles existed in the solution.

  19. Thalamus-derived molecules promote survival and dendritic growth of developing cortical neurons.

    Science.gov (United States)

    Sato, Haruka; Fukutani, Yuma; Yamamoto, Yuji; Tatara, Eiichi; Takemoto, Makoto; Shimamura, Kenji; Yamamoto, Nobuhiko

    2012-10-31

    The mammalian neocortex is composed of various types of neurons that reflect its laminar and area structures. It has been suggested that not only intrinsic but also afferent-derived extrinsic factors are involved in neuronal differentiation during development. However, the role and molecular mechanism of such extrinsic factors are almost unknown. Here, we attempted to identify molecules that are expressed in the thalamus and affect cortical cell development. First, thalamus-specific molecules were sought by comparing gene expression profiles of the developing rat thalamus and cortex using microarrays, and by constructing a thalamus-enriched subtraction cDNA library. A systematic screening by in situ hybridization showed that several genes encoding extracellular molecules were strongly expressed in sensory thalamic nuclei. Exogenous and endogenous protein localization further demonstrated that two extracellular molecules, Neuritin-1 (NRN1) and VGF, were transported to thalamic axon terminals. Application of NRN1 and VGF to dissociated cell culture promoted the dendritic growth. An organotypic slice culture experiment further showed that the number of primary dendrites in multipolar stellate neurons increased in response to NRN1 and VGF, whereas dendritic growth of pyramidal neurons was not promoted. These molecules also increased neuronal survival of multipolar neurons. Taken together, these results suggest that the thalamus-specific molecules NRN1 and VGF play an important role in the dendritic growth and survival of cortical neurons in a cell type-specific manner.

  20. High undercooling and rapid dendritic growth of Cu-Sb alloy in drop tube

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Droplets of Cu-20%Sb hypoeutectic alloy has been rapidly solidified in drop tube within the containerless condition. With the decrease of droplet diameter, undercooling increases and the microstructures of primary copper dendrite refines. Undercooling up to 207 K (0.17 TL) is obtained in experiment. Theoretic analysis indicated that, because of the broad temperature range of solidification, the rapid growth of primary copper dendrite is controlled by the solutal diffusion. Judging from the calculation of T0 curve in the phase diagram, it is shown that the critical undercooling of segregationless solidification is (T0 = 474 K. At the maximum undercooling of 207 K, the growth velocity of primary copper phase exceeds to 37 mm/s, and the distinct solute trapping occurs.

  1. Suppressing The Growth Of Dendrites In Secondary Li Cells

    Science.gov (United States)

    Davies, Evan D.; Perrone, David E.; Shen, David H.

    1996-01-01

    Proposed technique for suppressing growth of lithium dendrites in rechargeable lithium electrochemical power cells involves periodic interruption of steady charging current with short, high-current discharge pulses. Technique applicable to lithium cells of several different types, including Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/Vo(x), and Li/MnO(2). Cells candidates for use in spacecraft, military, communications, automotive, and other applications in which high-energy-density rechargeable batteries needed.

  2. Velocity selection in the symmetric model of dendritic crystal growth

    Science.gov (United States)

    Barbieri, Angelo; Hong, Daniel C.; Langer, J. S.

    1987-01-01

    An analytic solution of the problem of velocity selection in a fully nonlocal model of dendritic crystal growth is presented. The analysis uses a WKB technique to derive and evaluate a solvability condition for the existence of steady-state needle-like solidification fronts in the limit of small under-cooling Delta. For the two-dimensional symmetric model with a capillary anisotropy of strength alpha, it is found that the velocity is proportional to (Delta to the 4th) times (alpha exp 7/4). The application of the method in three dimensions is also described.

  3. Bimodal control of dendritic and axonal growth by the dual leucine zipper kinase pathway.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available Knowledge of the molecular and genetic mechanisms underlying the separation of dendritic and axonal compartments is not only crucial for understanding the assembly of neural circuits, but also for developing strategies to correct defective dendrites or axons in diseases with subcellular precision. Previous studies have uncovered regulators dedicated to either dendritic or axonal growth. Here we investigate a novel regulatory mechanism that differentially directs dendritic and axonal growth within the same neuron in vivo. We find that the dual leucine zipper kinase (DLK signaling pathway in Drosophila, which consists of Highwire and Wallenda and controls axonal growth, regeneration, and degeneration, is also involved in dendritic growth in vivo. Highwire, an evolutionarily conserved E3 ubiquitin ligase, restrains axonal growth but acts as a positive regulator for dendritic growth in class IV dendritic arborization neurons in the larva. While both the axonal and dendritic functions of highwire require the DLK kinase Wallenda, these two functions diverge through two downstream transcription factors, Fos and Knot, which mediate the axonal and dendritic regulation, respectively. This study not only reveals a previously unknown function of the conserved DLK pathway in controlling dendrite development, but also provides a novel paradigm for understanding how neuronal compartmentalization and the diversity of neuronal morphology are achieved.

  4. Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jinwang; Tartakovsky, Alexandre M.; Ferris, Kim F.; Ryan, Emily M.

    2016-01-01

    Dendrite formation on the electrode surface of high energy density lithium (Li) batteries causes safety problems and limits their applications. Suppressing dendrite growth could significantly improve Li battery performance. Dendrite growth and morphology is a function of the mixing in the electrolyte near the anode interface. Most research into dendrites in batteries focuses on dendrite formation in isotropic electrolytes (i.e., electrolytes with isotropic diffusion coefficient). In this work, an anisotropic diffusion reaction model is developed to study the anisotropic mixing effect on dendrite growth in Li batteries. The model uses a Lagrangian particle-based method to model dendrite growth in an anisotropic electrolyte solution. The model is verified by comparing the numerical simulation results with analytical solutions, and its accuracy is shown to be better than previous particle-based anisotropic diffusion models. Several parametric studies of dendrite growth in an anisotropic electrolyte are performed and the results demonstrate the effects of anisotropic transport on dendrite growth and morphology, and show the possible advantages of anisotropic electrolytes for dendrite suppression.

  5. Dendritic grain growth simulation in weld pool of nickel base alloy

    Institute of Scientific and Technical Information of China (English)

    Zhan Xiaohong; Wei Yanhong; Ma Rui; Dong Zhibo

    2008-01-01

    Dendritic grain growth at the edge of the weld pool is simulated using a stochastic numerical model of cellular automaton algorithm. The grain growth model is established based upon the balance of solute in the solid/liquid interface of the dendrite tip. Considering the complicated nucleation condition and competitive growth, the dendrite morphologies of different nucleation condition are simulated. The simulated results reproduced the dendrite grain evolution process at the edge of the weld pool. It is indicated that the nucleation condition is an important factor influencing the grain morphologies especially the morphologies of secondary and tertiary arms.

  6. Rapid dendritic growth of Al-Ge hypoeutectic alloy in a drop tube

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Dendritic growth in Al-45% Ge hypoeutectic alloy has been investigated during free fall in a 3 m drop tube. Calculations indicate that the undercooling obtained for the falling Al-45% Ge droplets ranges from 13 K to 201 K. The maximum undercooling attains 0.27TL. With the increase of undercooling, the primary (Al) phase undergoes a "columnar dendrite to equiaxed dendrite" structural transition. According to the current rapid dendritic growth theory, the growth of primary (Al) phase is always controlled by solute diffusion.

  7. Properties of mouse retinal ganglion cell dendritic growth during postnatal development

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The property of dendritic growth dynamics during development is a subject of intense interest.Here,we investigated the dendritic motility of retinal ganglion cells (RGCs) during different developmental stages,using ex vivo mouse retina explant culture,Semliki Forest Virus transfection and time-lapse observations.The results illustrated that during development,the dendritic motility underwent a change from rapid growth to a relatively stable state,i.e.,at P0 (day of birth),RGC dendrites were in a highly active state,whereas at postnatal 13 (P13) they were more stable,and at P3 and P8,the RGCs were in an intermediate state.At any given developmental stage,RGCs of different types displayed the same dendritic growth rate and extent.Since the mouse is the most popular mammalian model for genetic manipulation,this study provided a methodological foundation for further exploring the regulatory mechanisms of dendritic development.

  8. Phase-field-lattice Boltzmann studies for dendritic growth with natural convection

    Science.gov (United States)

    Takaki, Tomohiro; Rojas, Roberto; Sakane, Shinji; Ohno, Munekazu; Shibuta, Yasushi; Shimokawabe, Takashi; Aoki, Takayuki

    2017-09-01

    Simulating dendritic growth with natural convection is challenging because of the size of the computational domain required when compared to the dendrite scale. In this study, a phase-field-lattice Boltzmann model was used to simulate dendritic growth in the presence of natural convection due to a difference in solute concentration. To facilitate and accelerate the large-scale simulation, a parallel computing code with multiple graphics processing units was developed. The effects of the computational domain size as well as those of gravity on the dendritic morphologies were examined by performing two-dimensional free dendritic growth simulations with natural convection. The effects of the gravity direction on the dendrite spacing and morphology were also investigated by simulating unidirectional solidification from multiple seeds.

  9. Pattern selection in a boundary-layer model of dendritic growth in the presence of impurities

    Science.gov (United States)

    Karma, A.; Kotliar, B. G.

    1985-01-01

    Presently analyzed, in the context of a boundary-layer model, is the problem of pattern selection in dendritic growth in a situation where impurities are present in the undercooled liquid. It is found that the tip-velocity selection criterion that has been proposed recently for the geometrical model and the boundary-layer model of a pure substance can be extended, in a nontrivial way, to this more complex situation where two coupled diffusion fields (temperature and solute) determine the interface dynamics. This model predicts a sharp enhancement of tip velocity in good qualitative agreement with experiment. This agreement is consistent with the conjecture that a solvability condition can be used to determine the operating point of the dendrite in the full nonlocal problem.

  10. Measurements of Dendritic Growth Velocities in Undercooled Melts of Pure Nickel Under Static Magnetic Fields

    Science.gov (United States)

    Gao, Jianrong; Zhang, Zongning; Zhang, Yingjie

    2012-01-01

    Dendritic growth velocities in undercooled melts of pure Ni have been intensively studied over the past fifty years. However, the literature data are at marked variance with the prediction of the widely accepted model for rapid dendritic growth both at small and at large undercoolings. In the present work, bulk melts of pure Ni samples of high purity were undercooled by glass fluxing treatment under a static magnetic field. The recalescence processes of the samples at different undercoolings were recorded using a high-speed camera, and were modeled using a software to determine the dendritic growth velocities. The present data confirmed the effect of melt flow on dendritic growth velocities at undercoolings below 100 K. A comparison of the present data with previous measurements on a lower purity material suggested an effect of impurities on dendritic growth velocities at undercoolings larger than 200 K as well.

  11. Electroless Growth of Aluminum Dendrites in NaCl-AlCl3 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H.A.; Berg, Rolf W.

    1989-01-01

    The spontaneous growth of aluminum dendrites after deposition was observed and examined in sodium chloride-aluminumchloride melts. The concentration gradient of AlCl3 in the vicinity of the cathode surface resulting from electrolysisconstitutes a type of concentration cell with aluminum dendrites...... as electrodes. The short-circuit discharge of thecell is found to be the driving force for the growth of aluminum dendrites. Such a concentration gradient is proposed to beone of the causes for dendrite formation in the case of metal deposition....

  12. GPU phase-field lattice Boltzmann simulations of growth and motion of a binary alloy dendrite

    Science.gov (United States)

    Takaki, T.; Rojas, R.; Ohno, M.; Shimokawabe, T.; Aoki, T.

    2015-06-01

    A GPU code has been developed for a phase-field lattice Boltzmann (PFLB) method, which can simulate the dendritic growth with motion of solids in a dilute binary alloy melt. The GPU accelerated PFLB method has been implemented using CUDA C. The equiaxed dendritic growth in a shear flow and settling condition have been simulated by the developed GPU code. It has been confirmed that the PFLB simulations were efficiently accelerated by introducing the GPU computation. The characteristic dendrite morphologies which depend on the melt flow and the motion of the dendrite could also be confirmed by the simulations.

  13. Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons.

    Science.gov (United States)

    Chandrasekaran, Vidya; Lea, Charlotte; Sosa, Jose Carlo; Higgins, Dennis; Lein, Pamela J

    2015-07-01

    Previous studies have shown that bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, the downstream signaling molecules that mediate the dendrite promoting activity of BMPs are not well characterized. Here we test the hypothesis that reactive oxygen species (ROS)-mediated signaling links BMP receptor activation to dendritic growth. In cultured rat sympathetic neurons, exposure to any of the three mechanistically distinct antioxidants, diphenylene iodinium (DPI), nordihydroguaiaretic acid (NGA) or desferroxamine (DFO), blocked de novo BMP-induced dendritic growth. Addition of DPI to cultures previously induced with BMP to extend dendrites caused dendritic retraction while DFO and NGA prevented further growth of dendrites. The inhibition of the dendrite promoting activity of BMPs by antioxidants was concentration-dependent and occurred without altering axonal growth or neuronal cell survival. Antioxidant treatment did not block BMP activation of SMAD 1,5 as determined by nuclear localization of these SMADs. While BMP treatment did not cause a detectable increase in intracellular ROS in cultured sympathetic neurons as assessed using fluorescent indicator dyes, BMP treatment increased the oxygen consumption rate in cultured sympathetic neurons as determined using the Seahorse XF24 Analyzer, suggesting increased mitochondrial activity. In addition, BMPs upregulated expression of NADPH oxidase 2 (NOX2) and either pharmacological inhibition or siRNA knockdown of NOX2 significantly decreased BMP-7 induced dendritic growth. Collectively, these data support the hypothesis that ROS are involved in the downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that ROS-mediated signaling positively modulates dendritic complexity in peripheral neurons.

  14. Rapid growth of nickel dendrite in highly undercooled Ni-Mo alloys

    Institute of Scientific and Technical Information of China (English)

    姚文静; 魏炳波

    2003-01-01

    Ni-39.3%Mo, Ni-45%Mo hypoeutectic alloys and Ni-47.7%Mo eutectic alloy have been rapidly solidified with different droplet sizes by containerless processing in a drop tube. For Ni-39.3%Mo hypoeutectic alloy, which corresponds to the maximum solid solubility of nickel phase, the solidification microstructure is characterized by nickel dendrite plus (Ni+NiMo) eutectic structure. The undercooling of this alloy up to 182 K has been realized in the experiments. With an increase in undercooling, the dendritic microstructure is refined. The microstructural evolution of primary Ni phase in Ni-45%Mo hypoeutectic alloy evolves from remelted dendrite to equiaxed grains, whereas Ni-47.7%Mo eutectic alloy exhibits a structural transition from lamellar eutectic to anomalous eutectic. Theoretical analyses indicate that, for Ni-39.3%Mo, Ni-45%Mo and Ni-47.7%Mo alloys, the nickel phase shows a transition from solutal-diffusion-controlled growth to thermal-diffusion-controlled growth at undercoolings of 66.6, 81.9 and 85.0 K. The critical transition temperature decreases with a reduction in the nickel content.

  15. Numerical Simulation on Dendrite Growth During Solidification of Al-4%Cu Alloy

    Directory of Open Access Journals (Sweden)

    ZHANG Min

    2016-06-01

    Full Text Available A new two-dimensional cellular automata and finite difference (CA-FD model of dendritic growth was improved, which a perturbation function was introduced to control the growth of secondary and tertiary dendrite, the concentration of the solute was clearly defined as the liquid solute concentration and the solid-phase solute concentration in dendrite growth processes, and the eight moore calculations method was used to reduce the anisotropy caused by the shape of the grid in the process of redistribution and diffusion of solute. Single and multi equiaxed dendrites along different preferential direction, single and multi directions of columnar dendrites of Al-4% Cu alloy were simulated, as well as the distribution of liquid solute concentration and solid solute concentration. The simulation results show that the introduced perturbation function can promote the dendrite branching, liquid/solid phase solute calculation model is able to simulate the solute distribution of liquid/solid phase accurately in the process of dendritic growth, and the improved model can realize competitive growth of dendrite in any direction.

  16. Transcriptional responses of cultured rat sympathetic neurons during BMP-7-induced dendritic growth.

    Directory of Open Access Journals (Sweden)

    Michelle M Garred

    Full Text Available BACKGROUND: Dendrites are the primary site of synapse formation in the vertebrate nervous system; however, relatively little is known about the molecular mechanisms that regulate the initial formation of primary dendrites. Embryonic rat sympathetic neurons cultured under defined conditions extend a single functional axon, but fail to form dendrites. Addition of bone morphogenetic proteins (BMPs triggers these neurons to extend multiple dendrites without altering axonal growth or cell survival. We used this culture system to examine differential gene expression patterns in naïve vs. BMP-treated sympathetic neurons in order to identify candidate genes involved in regulation of primary dendritogenesis. METHODOLOGY/PRINCIPAL FINDINGS: To determine the critical transcriptional window during BMP-induced dendritic growth, morphometric analysis of microtubule-associated protein (MAP-2-immunopositive processes was used to quantify dendritic growth in cultures exposed to the transcription inhibitor actinomycin-D added at varying times after addition of BMP-7. BMP-7-induced dendritic growth was blocked when transcription was inhibited within the first 24 hr after adding exogenous BMP-7. Thus, total RNA was isolated from sympathetic neurons exposed to three different experimental conditions: (1 no BMP-7 treatment; (2 treatment with BMP-7 for 6 hr; and (3 treatment with BMP-7 for 24 hr. Affymetrix oligonucleotide microarrays were used to identify differential gene expression under these three culture conditions. BMP-7 significantly regulated 56 unique genes at 6 hr and 185 unique genes at 24 hr. Bioinformatic analyses implicate both established and novel genes and signaling pathways in primary dendritogenesis. CONCLUSIONS/SIGNIFICANCE: This study provides a unique dataset that will be useful in generating testable hypotheses regarding transcriptional control of the initial stages of dendritic growth. Since BMPs selectively promote dendritic growth in

  17. Phase-field simulation of dendritic growth for binary alloys with complicate solution models

    Institute of Scientific and Technical Information of China (English)

    LI Xin-zhong; GUO Jing-jie; SU Yan-qing; WU Shi-ping; FU Heng-zhi

    2005-01-01

    A phase-field method for simulation of dendritic growth in binary alloys with complicate solution models was studied. The free energy densities of solid and liquid used to construct the free energy of a solidification system in the phase-field model were derived from the Calphad thermodynamic modeling of phase diagram. The dendritic growth of Ti-Al alloy with a quasi-sub regular solution model was simulated in both an isothermal and a nonisothermal regime. In the isothermal one, different initial solute compositions and melt temperatures were chosen.And in the non-isothermal one, release of latent heat during solidification was considered. Realistic growth patterns of dendrite are derived. Both the initial compositions and melt temperatures affect isothermal dendritic morphology and solute distributions much, especially the latter. Release of latent heat will cause a less developed structure of dendrite and a lower interfacial composition.

  18. Dendritic and eutectic growth in Sb60Ag20Cu20 ternary alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The rapid solidification of Sb60Ag20Cu20 ternary alloy was realized by high undercooling method, and the maximum undercooling is up to 142 K (0.18TL). Within the wide undercooling range of 40-142 K, the solidified microstructures are composed of (Sb), θand ε phases. High undercooling enlarges the solute solubility of (Sb) phase, which causes its crystal lattice to expand and its crystal lattice constants to increase. Primary (Sb) phase grows in two modes: at small undercoolings non-faceted dendrite growth is the main growth form; whereas at large undercoolings faceted dendrite growth takes the dominant place. The remarkable difference of crystal structures between (Sb) and θphases leads to (θ+ Sb) pseudobinary eutectic hard to form, whereas strips of θform when the alloy melt reaches the (θ + Sb) pseudobinary eutectic line. The cooperative growth of θand ε phases contributes to the formation of (ε +θ) pseudobinary eutectic easily. In addition, the crystallization route has been determined via microstructural characteristic analysis and DSC experiment.

  19. Sidebranching in the Dendritic Crystal Growth of Ammonium Chloride

    Science.gov (United States)

    Dougherty, Andrew

    2012-02-01

    We report measurements of the dendritic crystal growth of NH4Cl from supersaturated aqueous solution at small supersaturations. Sidebranch growth in this regime is challenging to model well, and the origin of the sidebranches is not fully understood. The early detection of sidebranches requires measurements of small deviations from the smooth steady state shape, but that shape is not well known at the intermediate distances relevant for sidebranch measurements. One model is that sidebranches result from the selective amplification of microscopic noise. We compare measurements of the sidebranch envelope with predictions of the noise-induced sidebranching model of Gonz'alez-Cinca, Ram'irez-Piscina, Casademunt, and Hern'andez-Machado [Phys Rev. E, 63, 051602 (2001)]. We find that the measured amplitude is somewhat larger than predicted, and the shape of the sidebranch envelope is also different. A second model is that sidebranches result from small oscillations of the tip. We have observed no such oscillations, but very small ones can not be ruled out. No measurement of the tip region can be completely free of contamination from early sidebranches, so it can be challenging to distinguish between an oscillating tip and a smooth tip with sidebranches starting nearby.

  20. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  1. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    Science.gov (United States)

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  2. A three-dimensional cellular automaton model for simulation of dendritic growth of magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    Mengwu WU; Shoumei XIONG

    2012-01-01

    A numerical model based on the cellular automaton method for the three-dimensional simulation of dendritic growth of magnesium alloy was developed.The growth kinetics was calculated from the complete solution of the transport equations.By constructing a three-dimensional anisotropy model with the cubic CA cells,simulation of dendritic growth of magnesium alloy with six-fold symmetry in the basal plane was achieved.The model was applied to simulate the equiaxed dendritic growth and columnar dendritic growth under directional solidification,and its capability was addressed by comparing the simulated results to experimental results and those in the previously published works.Meanwhile,the three-dimensional simulated results were also compared with that of in two dimensions,offering a deep insight into the microstructure formation of magnesium alloy during solidification.

  3. Type I TARPs promote dendritic growth of early postnatal neocortical pyramidal cells in organotypic cultures.

    Science.gov (United States)

    Hamad, Mohammad I K; Jack, Alexander; Klatt, Oliver; Lorkowski, Markus; Strasdeit, Tobias; Kott, Sabine; Sager, Charlotte; Hollmann, Michael; Wahle, Petra

    2014-04-01

    The ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptors (AMPARs) have been implicated in the establishment of dendritic architecture. The transmembrane AMPA receptor regulatory proteins (TARPs) regulate AMPAR function and trafficking into synaptic membranes. In the current study, we employ type I and type II TARPs to modulate expression levels and function of endogenous AMPARs and investigate in organotypic cultures (OTCs) of rat occipital cortex whether this influences neuronal differentiation. Our results show that in early development [5-10 days in vitro (DIV)] only the type I TARP γ-8 promotes pyramidal cell dendritic growth by increasing spontaneous calcium amplitude and GluA2/3 expression in soma and dendrites. Later in development (10-15 DIV), the type I TARPs γ-2, γ-3 and γ-8 promote dendritic growth, whereas γ-4 reduced dendritic growth. The type II TARPs failed to alter dendritic morphology. The TARP-induced dendritic growth was restricted to the apical dendrites of pyramidal cells and it did not affect interneurons. Moreover, we studied the effects of short hairpin RNA-induced knockdown of endogenous γ-8 and showed a reduction of dendritic complexity and amplitudes of spontaneous calcium transients. In addition, the cytoplasmic tail (CT) of γ-8 was required for dendritic growth. Single-cell calcium imaging showed that the γ-8 CT domain increases amplitude but not frequency of calcium transients, suggesting a regulatory mechanism involving the γ-8 CT domain in the postsynaptic compartment. Indeed, the effect of γ-8 overexpression was reversed by APV, indicating a contribution of NMDA receptors. Our results suggest that selected type I TARPs influence activity-dependent dendritogenesis of immature pyramidal neurons.

  4. Involvement of α2-antiplasmin in dendritic growth of hippocampal neurons.

    Science.gov (United States)

    Kawashita, Eri; Kanno, Yosuke; Asayama, Haruka; Okada, Kiyotaka; Ueshima, Shigeru; Matsuo, Osamu; Matsuno, Hiroyuki

    2013-07-01

    The α2-Antiplasmin (α2AP) protein is known as a principal physiological inhibitor of plasmin, but we previously demonstrated that it acts as a regulatory factor for cellular functions independent of plasmin. α2AP is highly expressed in the hippocampus, suggesting a potential role for α2AP in hippocampal neuronal functions. However, the role for α2AP was unclear. This study is the first to investigate the involvement of α2AP in the dendritic growth of hippocampal neurons. The expression of microtubule-associated protein 2, which contributes to neurite initiation and neuronal growth, was lower in the neurons from α2AP⁻/⁻ mice than in the neurons from α2AP⁺/⁺ mice. Exogenous treatment with α2AP enhanced the microtubule-associated protein 2 expression, dendritic growth and filopodia formation in the neurons. This study also elucidated the mechanism underlying the α2AP-induced dendritic growth. Aprotinin, another plasmin inhibitor, had little effect on the dendritic growth of neurons, and α2AP induced its expression in the neurons from plaminogen⁻/⁻ mice. The activation of p38 MAPK was involved in the α2AP-induced dendritic growth. Therefore, our findings suggest that α2AP induces dendritic growth in hippocampal neurons through p38 MAPK activation, independent of plasmin, providing new insights into the role of α2AP in the CNS.

  5. Anomalous α-Mg Dendrite Growth During Directional Solidification of a Mg-Zn Alloy

    Science.gov (United States)

    Shuai, Sansan; Guo, Enyu; Wang, Mingyue; Callaghan, Mark D.; Jing, Tao; Zheng, Qiwei; Lee, Peter D.

    2016-09-01

    Dendritic morphology was investigated in a directionally solidified magnesium-zinc alloy using synchrotron X-ray tomography and electron backscattered diffraction. Unexpectedly, primary dendrites grew along {directions. Further, seven asymmetric sets of side branches formed, instead of six-fold symmetric arms, evolving with three coexisting morphologies per trunk of: traditional, seaweed structure, and free growth. The anomalous growth is attributed to the imposed thermal gradient and zinc-induced interfacial energy anisotropy variations.

  6. Three-dimensional interfacial wave theory of dendritic growth: (Ⅰ). multiple variables expansion solutions

    Institute of Scientific and Technical Information of China (English)

    Chen Yong-Qiang; Tang Xiong-Xin; Xu Jian-Jun

    2009-01-01

    Dendritic pattern formation at the interface between liquid and solid is a commonly observed phenomenon in crystal growth and solidification process. The theoretical investigation of dendritic growth is one of the most profound and highly challenging subjects in the broad areas of intcrfacial pattern formation, condensed matter physics and materials science, preoccupying many researchers from various areas. Some longstanding key issues on this subject finally gained a breakthrough in the late of last century, via the 'Interracial Wave (IFW) Theory' on the ground of systematical global stability analysis of the basic state of dendritic growth. The original form of the IFW theory mainly focus on the investigation of various axi-symmetric unsteady perturbed modes solutions around the axi-symmctric basic state of system of dendritic growth. In reality, the system may allow various non-axi-symmctric, unsteady perturbed states. Whether or not the system of dendritic growth allows some growing non-axi-symmetric modes? Will the stationary dendritic pattern be destroyed by some of such non-axi-symmetric modes? Or, in one word, what is the stability property of the system, once the non-axi-symmetric modes can be evoked? The answers for these questions are important for the solid foundation of IFW theory. The present work attempts to settle down these issues and develop a three-dimensional (3D) interracial wave theory of dendritic growth. Our investigations verify that dendritic growth indeed allows a discrete set of non-axi-symmetric unstable global wave modes, which gives rise to a set of multiple arms spiral waves propagating along the Ivantsov's paraboloid.

  7. Rapid Growth of Ice Dendrite in Acoustically Levitated and Highly Undercooled Water

    Institute of Scientific and Technical Information of China (English)

    吕勇军; 解文军; 魏炳波

    2002-01-01

    Water drops with diameters ranging from 2.5 to 4 mm are highly undercooled by up to 24 K with the acousticlevitation technique. Compared to the case of water contained in a tube, acoustic levitation has efficientlyavoided the heterogeneous nucleation from container walls and consequently increased the undercooling level.However, the cavitation effect induced by ultrasound may prematurely catalyse nucleation, which hinders thefurther achievement of bulk undercooling. The growth velocity of ice dendrite determined experimentally inhighly undercooled water is characteristic of rapid dendritic growth, which reaches 0.17m/s at the undercoolingof 24 K. The Lipton-Kurz-Trivedi dendritic growth model is used to predict the kinetic characteristics of rapidgrowth of ice dendrite under high undercooling conditions, which shows good agreement with the experimentalresults.

  8. Bone morphogenetic protein-5 (BMP-5 promotes dendritic growth in cultured sympathetic neurons

    Directory of Open Access Journals (Sweden)

    Higgins Dennis

    2001-09-01

    Full Text Available Abstract Background BMP-5 is expressed in the nervous system throughout development and into adulthood. However its effects on neural tissues are not well defined. BMP-5 is a member of the 60A subgroup of BMPs, other members of which have been shown to stimulate dendritic growth in central and peripheral neurons. We therefore examined the possibility that BMP-5 similarly enhances dendritic growth in cultured sympathetic neurons. Results Sympathetic neurons cultured in the absence of serum or glial cells do not form dendrites; however, addition of BMP-5 causes these neurons to extend multiple dendritic processes, which is preceded by an increase in phosphorylation of the Smad-1 transcription factor. The dendrite-promoting activity of BMP-5 is significantly inhibited by the BMP antagonists noggin and follistatin and by a BMPR-IA-Fc chimeric protein. RT-PCR and immunocytochemical analyses indicate that BMP-5 mRNA and protein are expressed in the superior cervical ganglia (SCG during times of initial growth and rapid expansion of the dendritic arbor. Conclusions These data suggest a role for BMP-5 in regulating dendritic growth in sympathetic neurons. The signaling pathway that mediates the dendrite-promoting activity of BMP-5 may involve binding to BMPR-IA and activation of Smad-1, and relative levels of BMP antagonists such as noggin and follistatin may modulate BMP-5 signaling. Since BMP-5 is expressed at relatively high levels not only in the developing but also the adult nervous system, these findings suggest the possibility that BMP-5 regulates dendritic morphology not only in the developing, but also the adult nervous system.

  9. Effect of strontium on columnar growth of dendritic α phase in near-eutectic Al-11.6%Si alloys

    Institute of Scientific and Technical Information of China (English)

    廖恒成; 丁毅; 孙国雄

    2004-01-01

    For Al-11.6 % Si alloy, the influence of the addition of Sr on the morphology of the dendrite α phase was investigated, and the characteristic parameters of the dendrite α phase, the primary dendrite spacing and the secondary dendrite arm spacing, were also measured. The addition of strontium promotes the columnar dendrite growth and leads to a decrease of both the primary dendrite spacing and secondary dendrite arm spacing with the increase of the content of strontium in the modified near-eutectic Al-Si alloys. It is thought that the addition of Sr leads to a reduction of the solid-liquid interfacial energy of the dendrite α phase, consequently resulting in a decrease of the growth undercooling of dendrite tips. And hence, the nucleation of the equiaxed grains in the liquid in front of the columnar dendrite tips is restrained, thus the addition of strontium in Al-Si alloys promotes the growth of the columnar dendrites. The reduction of the solid-liquid interfacial energy also leads to the decreases in the primary dendrite spacing and the secondary dendrite arm spacing.

  10. Simulation of fluctuation effect on dendrite growth by phase field method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The dendrite growth process was simulated with the phase field model coupling with the fluctuation.The effect of fluctuation intensity on the dendrite morphology and that of the thermal fluctuation together with the phase field fluctuation on the forming of side branches were investigated.The results indicate that with the decrease of thermal fluctuation amplitude.the furcation of dendrite tip also decreases,transverse dendrites become stronger,longitudinal dendrites become degenerated,Doublon structure disappears,and a quite symmetrical dendrite structure appears finally.Thermal fluctuation can result in the unsteadiness of dendrites side branches,and it is also the main reason for forming side branches.The phase field fluctuation has a little contribution to the side branches,and it is usually ignored in calculation.When the thermal fluctuation amplitude(Fu)is appropriate,the thermal noise can result in the side branches,but cannot change the steadY behavior of the dendrites tip.

  11. Numerical Simulation of Dendritic crystal growth using phase field method and investigating the effects of different physical parameter on the growth of the dendrite

    OpenAIRE

    Sanal, Rahul

    2014-01-01

    In this journal, we study the phase-field model of solidification for numerical simulation of dendritic crystal growth that occurs during the casting of metals and alloys based on the kobayashi [1] model. Qualitative relationships between shapes of the crystal and physical parameters are studied and visualized.

  12. The microRNA bantam regulates a developmental transition in epithelial cells that restricts sensory dendrite growth.

    Science.gov (United States)

    Jiang, Nan; Soba, Peter; Parker, Edward; Kim, Charles C; Parrish, Jay Z

    2014-07-01

    As animals grow, many early born structures grow by cell expansion rather than cell addition; thus growth of distinct structures must be coordinated to maintain proportionality. This phenomenon is particularly widespread in the nervous system, with dendrite arbors of many neurons expanding in concert with their substrate to sustain connectivity and maintain receptive field coverage as animals grow. After rapidly growing to establish body wall coverage, dendrites of Drosophila class IV dendrite arborization (C4da) neurons grow synchronously with their substrate, the body wall epithelium, providing a system to study how proportionality is maintained during animal growth. Here, we show that the microRNA bantam (ban) ensures coordinated growth of C4da dendrites and the epithelium through regulation of epithelial endoreplication, a modified cell cycle that entails genome amplification without cell division. In Drosophila larvae, epithelial endoreplication leads to progressive changes in dendrite-extracellular matrix (ECM) and dendrite-epithelium contacts, coupling dendrite/substrate expansion and restricting dendrite growth beyond established boundaries. Moreover, changes in epithelial expression of cell adhesion molecules, including the beta-integrin myospheroid (mys), accompany this developmental transition. Finally, endoreplication and the accompanying changes in epithelial mys expression are required to constrain late-stage dendrite growth and structural plasticity. Hence, modulating epithelium-ECM attachment probably influences substrate permissivity for dendrite growth and contributes to the dendrite-substrate coupling that ensures proportional expansion of the two cell types.

  13. Characterization of Optical Lenses to be Considered for the Imaging of Crystal Dendrite Growth

    Science.gov (United States)

    Wing, Frank M.

    1999-01-01

    Dynamic fracture is a phenomenon that is extremely sensitive to small perturbations in system parameters. This phenomenon is, in some ways, similar to that of dendritic crystal growth, although it is governed by different physical principles. Crystal dendrite growth patterns are affected by parameters such as temperature, pressure, and gravity. By studying the behavior of crystal dendrites in a controlled, microgravity environment, a greater understanding of dynamic fracture could be revealed. A sealed cubical container contains four stingers, which facilitate the growth of crystal dendrites. The container has five windows and is emersed in a liquid, for thermal isolation. The tip of a dendrite can advance in any direction, therefore three-dimensional images of the process are desired. Furthermore, because of the rapid growth rate, a fast image frame rate is required for accurate tracking of dendrite tip velocity. In addition, optical parameters such as field of view, depth of focus, and resolution are examined, as well as the working distance between a lens and the target of observation.

  14. Web-dendritic ribbon growth. Annual report, October 1, 1975--September 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Hilborn, Jr., R. B.; Faust, Jr., J. W.

    1976-10-01

    The web furnace has been set up, calibrated, and made operational for pulling dendritic-web samples. Considerable work has been completed in the investigation of the effect of changes in the furnace thermal geometry, as accomplished by variations in the number, size, shape, and location of thermal shields, on the growth of dendritic-web. Numerous growth runs were made to grow primitive dendrites for use as the dendritic seed crystals for the web growth. Some preliminary investigations were conducted to try and determine the optimum twin spacing in the dendritic seed crystal for web growth. Models were developed and computer programs applied to ascertain the thermal geometries present in the susceptor, crucible melt, meniscus, and web. A major result of this analysis has been the prediction of an upper limit on the pull rate of approximately 4 cms. per minute with the thermal geometry presented in our furnace. The facilities for obtaining characterization data were set-up and made operational. Data on twin spacings and number of twin planes in the dendritic seed crystals and resulting web samples was obtained. Resistivity and majority charge carrier type determinations were made on a few select web samples. All samples to date have been high resistivity, undoped, p-type. (WDM)

  15. Phase-field simulation of dendritic growth in a binary alloy with thermodynamics data

    Institute of Scientific and Technical Information of China (English)

    Long Wen-Yuan; Xia Chun; Xiong Bo-Wen; Fang Li-Gao

    2008-01-01

    This paper simulates the dendrite growth process during non-isothermal solidification in the A1-Cu binary alloy by using the phase-field model. The heat transfer equation is solved simultaneously. The thermodynamic and kinetic parameters are directly obtained from existing database by using the Calculation of Phase Diagram (CALPHAD)method. The effects of the latent heat and undercooling on the dendrite growth, solute and temperature profile during the solidification of binary alloy are investigated. The results indicate that the dendrite growing morphologies could be simulated realistically by linking the phase-field method to CALPHAD. The secondary arms of solidification dendritic are better developed with the increase of undercooling. Correspondingly, the tip speed and the solute segregation in solid-liquid interface increase, but the tip radius decreases.

  16. In-situ study of the dendritic growth in lithium/polymer electrolyte-salt/lithium cells; Etude in-situ de la croissance dendritique dans des cellules lithium/POE-sel/lithium

    Energy Technology Data Exchange (ETDEWEB)

    Brissot, C.; Rosso, M.; Chazalviel, J.N. [Ecole Polytechnique, 91 - Palaiseau (France); Baudry, P.; Lascaud, S. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1996-12-31

    The in-situ observation of dendritic growth in lithium/polymer electrolyte-LiTFSI/lithium battery cells shows that dendrites grow up with about the same rate as anion migration. Memory effects have been evidenced in cycling experiments and limit the dendrites length. An overall movement of the electrolyte due to variations of electrolyte concentration in the vicinity of the electrodes has been observed too. (J.S.) 13 refs.

  17. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus.

    Science.gov (United States)

    Pfister, Alexandra; Johnson, Amy; Ellers, Olaf; Horch, Hadley W

    2013-01-01

    Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system (CNS) sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2) send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5). Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 h, as well as at 3, 5, 7, 14, and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.

  18. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus

    Directory of Open Access Journals (Sweden)

    Alexandra ePfister

    2013-08-01

    Full Text Available Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2 send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5. Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 hours, as well as at 3, 5, 7, 14 and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.

  19. N-methyl-D-aspartate receptor blockade inhibits estrogenic support of dendritic growth in a sexually dimorphic rat spinal nucleus.

    Science.gov (United States)

    Hebbeler, Sara Louise; Verhovshek, Tom; Sengelaub, Dale Robert

    2002-09-16

    The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). Dendritic development of SNB motoneurons requires the action of both androgens and estrogens. Estrogenic effects are limited to the initial growth of SNB dendrites through 4 weeks of age. During this postnatal period, dendritic growth in other spinal motoneurons is regulated by N-methyl-D-aspartate (NMDA) receptor activation. In this study, we tested whether NMDA receptor activation was involved in SNB dendritic growth and whether the estrogenic support of SNB dendritic growth was dependent on the activation of NMDA receptors. Motoneuron morphology was assessed in normal males, intact males treated daily with the NMDA receptor antagonist MK-801, castrated males treated with estradiol benzoate (EB), and castrated males treated with both EB and MK-801. SNB motoneurons were retrogradely labeled with cholera toxin-horseradish peroxidase at 4 weeks of age (when dendritic length is normally maximal) and reconstructed in three dimensions. Somal area and dendritic length of SNB motoneurons in MK-801-treated, intact males were below those of normal males. Dendritic growth was partially supported in EB-treated castrates, but this growth was blocked by MK-801 treatment. These results suggest that, as in other motoneurons, dendritic development in the SNB involves NMDA receptors and, furthermore, that the estrogen-sensitive component of SNB dendritic development requires their activation. Copyright 2002 Wiley-Liss, Inc.

  20. Comparison of Cellular Automaton and Phase Field Models to Simulate Dendrite Growth in Hexagonal Crystals

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    A cellular automaton (CA)-finite element (FE) model and a phase field (PF)-FE model were used to simulate equiaxed dendritic growth during the solidification of hexagonal metals. In the CA-FE model, the conservation equations of mass and energy were solved in order to calculate the temperature field, solute concentration, and the dendritic growth morphology. CA-FE simulation results showed reasonable agreement with the previously reported experimental data on secondary dendrite arm spacing (SDAS) vs cooling rate. In the PF model, a PF variable was used to distinguish solid and liquid phases similar to the conventional PF models for solidification of pure materials. Another PF variable was considered to determine the evolution of solute concentration. Validation of both models was performed by comparing the simulation results with the analytical model developed by Lipton-Glicksman-Kurz (LGK), showing quantitatively good agreement in the tip growth velocity at a given melt undercooling. Application to magnesium alloy AZ91 (approximated with the binary Mg-8.9 wt% AI) illustrates the difficulty of modeling dendrite growth in hexagonal systems using CA-FE regarding mesh-induced anisotropy and a better performance of PF-FE in modeling multiple arbitrarily-oriented dendrites growth.

  1. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    Science.gov (United States)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  2. Phase-field simulation of dendrite growth in the presence of lateral constraints

    Directory of Open Access Journals (Sweden)

    Lifei Du

    2014-06-01

    Full Text Available The effect of a sudden change in the crossing section on the microstructural evolution as well as solute and heat diffusions during solidification of the Ni-40.8% Cu alloy was investigated by implementing a non-isothermal phase-field model. Simulations with lateral constraints of different sizes were carried out to study the changes of the dendritic growth manner. Significant changes in microstructures had been observed as the interface encountered a sharply reduced crossing section; a cellular–dendrite transition could be achieved with lateral constraints, and the tip velocity significantly changed during the development of dendrite microstructures, and also, lateral constraints of different sizes had different effects on changes of the tip positions as well as tip velocities during the dendritic growing through constraints, which agreed well with experimental results.

  3. Phase-field simulation of dendrite growth in the presence of lateral constraints

    Institute of Scientific and Technical Information of China (English)

    Lifei Du; Rong Zhang

    2014-01-01

    The effect of a sudden change in the crossing section on the microstructural evolution as well as solute and heat diffusions during solidification of the Ni-40.8%Cu alloy was investigated by implementing a non-isothermal phase-field model. Simulations with lateral constraints of different sizes were carried out to study the changes of the dendritic growth manner. Significant changes in microstructures had been observed as the interface encountered a sharply reduced crossing section; a cellular-dendrite transition could be achieved with lateral constraints, and the tip velocity significantly changed during the development of dendrite microstructures, and also, lateral constraints of different sizes had different effects on changes of the tip positions as well as tip velocities during the dendritic growing through constraints, which agreed well with experimental results.

  4. Phase field simulation of the columnar dendritic growth and microsegregation in a binary alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jun-Jie; Wang Jin-Cheng; Yang Gen-Cang

    2008-01-01

    This paper applies a phase field model for polycrystalline solidification in binary alloys to simulate the formation and growth of the columnar dendritic array under the isothermal and constant cooling conditions.The solidification process and microsegregation in the mushy zone are analysed in detail.It is shown that under the isothermal condition solidification will stop after the formation of the mushy zone,but dendritic coarsening will progress continuously,which results in the decrease of the total interface area.Under the constant cooling condition the mushy zone will solidify and coarsen simultaneously. For the constant cooling solidification,microsegregation predicted by a modified Brody Flemings model is compared with the simulation results.It is found that the Fourier number which characterizes microsegregation is different for regions with different microstructures.Dendritic coarsening and the larger area of interface should account for the enhanced Fourier number in the region with well developed second dendritic arms.

  5. Dynamic Characterization of Dendrite Deposition and Growth in Li-Surface by Electrochemical Impedance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Maya, R; Rosas, O; Saunders, J; Castaneda, H

    2015-01-13

    The evolution of dendrite formation is characterized by DC and AC electrochemical techniques. Interfacial mechanisms for lithium deposition are described and quantified by electrochemical impedance spectroscopy (EIS) between a lithium electrode and a graphite electrode. The initiation and growth of dendrites in the lithium surface due to the cathodic polarization conditions following anodic dissolution emulate long term cycling process occurring in the lithium electrodes. The dendrite initiation at the lithium/organic electrolyte interface is proposed to be performed through a combination of layering and interfacial reactions during different cathodic conditions. The growth is proposed to be performed by surface geometrical deposition. In this work, we use EIS in galvanostatic mode to assess the initiation and growth stages of dendrites by the accumulation of precipitates formed under different current conditions. The lithium/organic solvent experimental system using frequency domain techniques is validated by the theoretical approach using a deterministic model that accounts for the faradaic processes at the interface assuming a coverage fraction of the electrodic surface affected by the dendritic growth. (C) 2015 The Electrochemical Society. All rights reserved.

  6. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction

    Science.gov (United States)

    Liu, Yadong; Liu, Qi; Xin, Le; Liu, Yuzi; Yang, Fan; Stach, Eric A.; Xie, Jian

    2017-07-01

    The long-standing issue of Li-dendrite formation and growth during repeated plating or stripping processes prevents the practical application of Li-metal anodes for high-specific-energy batteries. Here we develop an approach to control dendrite growth by coating the separator with functionalized nanocarbon (FNC) with immobilized Li ions. During cycling, the Li dendrites grow toward each other simultaneously from both the FNC layer on the separator and the Li-metal anode; when the dendrites meet, the growth changes direction: rather than penetrating the separator, a dense Li layer is formed between the separator and the Li anode. This controlled growth alleviates the solid electrolyte interphase formation, reduces the decomposition of the electrolyte, and improves the cyclability of the Li-metal cell. In a Li/LiFePO4 coin cell with three different electrolytes, we show that this approach enables a long stable cycle life (>800 cycles with 80% retention of the initial capacity) and improved efficiency (>97%). Our method offers promise for application in practical Li-metal batteries, and it may also be useful for tackling dendrite issues for other metals.

  7. Determination of interface width value in phase-field simulation of dendritic growth into undercooled melt

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The influence of the interface width value on the simulation results and its dependence upon thermo-physical parameters in the phase-field simulation of dendritic growth into undercooled melt are investigated. After choosing the reasonable interface width value, the tip velocities of dendritic growth in Ni melt under different undercoolings are calculated and compared with the experimental data in order to benchmark our results. It is shown that the reasonable interface width value, which is determined by the undercooling, anisotropy, interface kinetic, and thermal diffusivity, has to be taken low enough, and the agreement of our results with experimental data verifies that the credible results can be achieved as long as the interface width value is adequately low. This paper provides the basis of determining interface width value in simulating dendritic growth into undercooled melt by phase-field approach.

  8. Heterogeneous nucleation and dendritic growth within undercooled liquid niobium under electrostatic levitation condition

    Science.gov (United States)

    Yang, S. J.; Hu, L.; Wang, L.; Wei, B.

    2017-09-01

    The physical mechanisms of crystal nucleation and dendritic growth within undercooled niobium were systematically studied by electrostatic levitation and molecular dynamics methods. The maximum undercooling was achieved as 454 K (0.16Tm), while the hypercooling limit was determined as 706 K (0.26Tm). The undercooling probability displayed Poisson distribution and indicated the occurrence of heterogeneous nucleation. The calculated critical nucleus size reduced rapidly with undercooling and the solid-liquid interface energy was deduced to be 0.367 J m-2. In addition, the dendritic growth velocity of pure niobium exhibited a power relation versus undercooling, and reached 41 m s-1 at the maximum undercooling.

  9. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jie; Wang, Bo [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhao, Shunli [Research Institute, Baoshan Iron & Steel Co., Ltd, Shanghai 201900 (China); Wu, Guangxin [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhang, Jieyu, E-mail: zjy6162@staff.shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Yang, Zhiliang [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China)

    2016-05-25

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  10. On the Origin of Grid Anisotropy in the Simulation of Dendrite Growth by a VFT Model

    Science.gov (United States)

    Djaraoui, Afaf; Nebti, Samia

    2016-10-01

    A virtual front tracking model, based on solute and heat diffusion in two dimensions, is chosen to capture the full microstructural behavior of dendritic solidification in a binary alloy. We use a simple method of calculation, easy to perform, with relatively high stable time step, to simulate the dendrite growth in an Al-8 wt pct Mg alloy for which no numerical simulation has been carried out in the past. Local equilibrium at the liquid solid interface and the buildup of solute ahead of the interface are solved, and the dendrite growth process is simulated in isothermal solidification conditions. We show that the artificial grid anisotropy originates from the four cell neighborhood method adopted for capturing the moving front. By a correct neighborhood configuration, a grid independent set of results and expected phenomena are reproduced for a free dendrite growing either aligned or inclined with the grid. The dendrite morphology and orientation, and the growth velocity are explored via physical simulation parameters such as undercooling and surface tension anisotropy.

  11. Sexual experience enhances cognitive flexibility and dendritic spine density in the medial prefrontal cortex.

    Science.gov (United States)

    Glasper, Erica R; LaMarca, Elizabeth A; Bocarsly, Miriam E; Fasolino, Maria; Opendak, Maya; Gould, Elizabeth

    2015-11-01

    The medial prefrontal cortex is important for cognitive flexibility, a capability that is affected by environmental conditions and specific experiences. Aversive experience, such as chronic restraint stress, is known to impair performance on a task of cognitive flexibility, specifically attentional set-shifting, in rats. Concomitant with this performance decrement, chronic stress reduces the number of dendritic spines on pyramidal neurons in the medial prefrontal cortex. No previous studies have examined whether a rewarding experience, namely mating, affects cognitive flexibility and dendritic spines in the medial prefrontal cortex of male rats. To test this possibility, we exposed adult male rats to sexual receptive females once daily for one week, assessed attentional set-shifting performance, and then analyzed their brains for changes in dendritic spines. We found that sexual experience improved performance on extradimensional set-shifting, which is known to require the medial prefrontal cortex. Additionally, we observed increased dendritic spine density on apical and basal dendrites of pyramidal neurons in the medial prefrontal cortex, but not the orbitofrontal cortex, after sexual experience. We also found that sexual experience enhanced dendritic spine density on granule neurons of the dentate gyrus. The ventral hippocampus sends a direct projection to the medial prefrontal cortex, raising the possibility that experience-dependent changes in the hippocampus are necessary for alterations in medial prefrontal cortex structure and function. As a first attempt at investigating this, we inactivated the ventral hippocampus with the GABA agonist muscimol, after each daily bout of sexual experience to observe whether the beneficial effects on cognitive flexibility were abolished. Contrary to our hypothesis, blocking hippocampal activity after sexual experience had no impact on enhanced cognitive flexibility. Taken together, these findings indicate that sexual

  12. Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores

    CERN Document Server

    Han, Ji-Hyung; Bai, Peng; Bazant, Martin Z

    2014-01-01

    Understanding over-limiting current (faster than diffusion) is a long-standing challenge in electrochemistry with applications in desalination and energy storage. Known mechanisms involve either chemical or hydrodynamic instabilities in unconfined electrolytes. Here, it is shown that over-limiting current can be sustained by surface conduction in nano pores, without any such instabilities, and used to control dendritic growth during electrodeposition. Copper electrode posits are grown in anodized aluminum oxide membranes with polyelectrolyte coatings to modify the surface charge. At low currents, uniform electroplating occurs, unaffected by surface modification due to thin electric double layers, but the morphology changes dramatically above the limiting current. With negative surface charge, growth is enhanced along the nanopore surfaces, forming surface dendrites and nanotubes behind a deionization shock. With positive surface charge, dendrites avoid the surfaces and are either guided along the nanopore cen...

  13. A critical examination of the dendrite growth models Comparison of theory with experimental data

    Science.gov (United States)

    Tewari, S. N.; Laxmanan, V.

    1987-01-01

    Three dendrite growth models for directionally solidified succinonitrile-acetone, succinonitrile-salol, aluminum-copper, and lead-paladium alloys are evaluated. The characteristics of the Burden and Hunt (1974) model, the Laxmanan (1985) model, and the Trivedi (1980) model are described. The dendrite tip temperature, tip radius, liquid composition, and primary arm spacing for the alloys are analyzed in terms of growth speed, alloy composition, and temperature gradient. It is observed that the Burden and Hunt model accurately predicts the proper behavior of the parameters, but does not provide good quantitative predictions. A good fit between the experimental data and the Trivedi and Laxmanan models is detected. The advantages of the Trivedi marginal stability analysis and the Laxmanan minimum dendrite tip undercooling approaches are discussed.

  14. Numerical simulation of dendrite growth and microsegregation formation of binary alloys during solidification process

    Institute of Scientific and Technical Information of China (English)

    Li Qiang; Guo Qiao-Yi; Li Rong-De

    2006-01-01

    The dendrite growth and solute microsegregation of Fe-C binary alloy are simulated during solidification process by using cellular automaton method.In the model the solid fraction is deduced from the relationship among the temperature,solute concentration and curvature of the solid/liquid interface unit,which can be expressed as a quadric equation,instead of assuming the interface position and calculating the solid fraction from the interface velocity.Then by using this model a dendrite with O and 45 degree of preferential growth direction are simulated respectively.Furthermore,a solidification microstructure and solute microsegregation are simulated by this method. Finally,different GibbsThomson coefficient and liquid solute diffusing coefficient are adopted to investigate their influences on the morphology of dendrite.

  15. Growth of NaBi(WO4)2 Dendrite and Mechanism

    Institute of Scientific and Technical Information of China (English)

    HONG Yong; AI Fei; PAN Xiu-Hong; JIN Wei-Qing; ZHONG Wei-Zhuo; SHINICHI Yoda

    2006-01-01

    @@ The solid-liquid interface motion of NaBi(WO4)2 (NBWO) melt crystal growth is observed in an in situ system,in which the whole processes of interface transition from flat interface and cellular to dendrite are visualized.

  16. Multi-GPUs parallel computation of dendrite growth in forced convection using the phase-field-lattice Boltzmann model

    Science.gov (United States)

    Sakane, Shinji; Takaki, Tomohiro; Rojas, Roberto; Ohno, Munekazu; Shibuta, Yasushi; Shimokawabe, Takashi; Aoki, Takayuki

    2017-09-01

    Melt flow drastically changes dendrite morphology during the solidification of pure metals and alloys. Numerical simulation of dendrite growth in the presence of the melt flow is crucial for the accurate prediction and control of the solidification microstructure. However, accurate simulations are difficult because of the large computational costs required. In this study, we develop a parallel computational scheme using multiple graphics processing units (GPUs) for a very large-scale three-dimensional phase-field-lattice Boltzmann simulation. In the model, a quantitative phase field model, which can accurately simulate the dendrite growth of a dilute binary alloy, and a lattice Boltzmann model to simulate the melt flow are coupled to simulate the dendrite growth in the melt flow. By performing very large-scale simulations using the developed scheme, we demonstrate the applicability of multi-GPUs parallel computation to the systematical large-scale-simulations of dendrite growth with the melt flow.

  17. Particle incorporation in metallic melts during dendritic solidification-undercooling experiments under reduced gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lierfeld, T. [Institute of Space Simulation, German Aerospace Center (DLR), D-51170 Cologne (Germany); Institute of Materials, Ruhr-University Bochum, D-44780 Bochum (Germany)], E-Mail: thomas.lierfeld@dlr.de; Gandham, P. [Institute of Space Simulation, German Aerospace Center (DLR), D-51170 Cologne (Germany); Department of Metallurgical and Materials Engineering, IITM, Chennai (India); Kolbe, M. [Institute of Space Simulation, German Aerospace Center (DLR), D-51170 Cologne (Germany); Schenk, T. [Experiments Division (ID19), ESRF, F-38043 Grenoble (France); Laboratoire de Physique des Materiaux, EdM de Nancy, F-54042 Nancy (France); Singer, H.M. [Laboratory for Solid State Physics, Swiss Federal Institute of Technology ETH, CH-8093 Zurich (Switzerland); Eggeler, G. [Institute of Materials, Ruhr-University Bochum, D-44780 Bochum (Germany); Herlach, D.M. [Institute of Space Simulation, German Aerospace Center (DLR), D-51170 Cologne (Germany)

    2007-03-25

    The interaction of ceramic particles with a dendritic solid/liquid-interface has been investigated by undercooling experiments with different levels of convection: (i) in a terrestrial electromagnetic levitation facility and (ii) in TEMPUS, a facility for containerless processing, under low gravity conditions during parabolic flights. Entrapment of particles in ground experiments and engulfment of a significant fraction of submicron particles under low gravity conditions are attributed to the lower level of convection in the latter experiments and to morphological features of dendritic solidification. X-ray radiography has been used for in situ observations of directional solidification in Al{sub 90}Cu{sub 10} with alumina particles.

  18. A model for grain growth based on the novel description of dendrite shape

    Directory of Open Access Journals (Sweden)

    O. Wodo

    2007-12-01

    Full Text Available We use novel description of dendritic shape in the micro solid phase growth model. The model describes evolution of both primary solid solution dendrite and eutectic that forms between arms and grains in the last stage of solidification. Obtained results show that our approach can be used in grain growth model to determine more reliable eutectic distribution. In the paper no kinetics connected with the eutectic transformation is taken into account. However, this does not affect the eutectic distribution because at the beginning of eutectic reaction all liquid phase was assumed to fully transform into eutectic. Results for solid phase growth model based on this description are presented. The obtained results of eutectic distribution are especially important in the hypoeutectic alloy solidification case, where the eutectic grains grow between formed solid solution grains. Thus, the distribution of solid solution grain becomes crucial due to its influence on the delay in solid fraction increase of eutectic grains.

  19. Direct observation of dendritic domain growth in perpendicular magnetic anisotropy CoFe/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Liu Haoliang [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); He Wei, E-mail: hewei@aphy.iphy.ac.cn [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Du Haifeng; Wu Qiong; Fang Yapeng [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhu Yun [College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387 (China); Cai Jianwang [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Cheng Zhaohua, E-mail: zhcheng@aphy.iphy.ac.cn [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-09-15

    We present the experimental results on thermally activated magnetization reversal for [Co{sub 0.9}Fe{sub 0.1}(5.0 A)/Pt(20 A)]{sub 4} multilayer. Direct domain observations show that magnetization reversal is initiated with rare nucleation and followed by dendritic growth of domain walls. Based on macroscopic magnetic parameters from experimental data, the dendritic domain growth mode is qualitatively interpreted by Monte Carlo simulations in terms of a simple uniaxial magnetic anisotropy model. Moreover, both time evolution of domain growth observation and magnetic relaxation measurements reveal that CoFe/Pt multilayer has a relatively large activation volume compared with Co/Pt multilayers. - Highlights: > We investigate magnetization reversal of [Co{sub 0.9}Fe{sub 0.1}(5.0 A)/Pt(20 A)]{sub 4} multilayer. > Magnetization reversal is governed by thermally activated mechanism. > Magnetic domains evolve in dendritic domain growth mode. > Relatively large activation volume is obtained for the multilayer. > Monte Carlo simulation reproduces the domain growth mode well.

  20. Bone marrow-derived dendritic cells.

    Science.gov (United States)

    Roney, Kelly

    2013-01-01

    While much is understood about dendritic cells and their role in the immune system, the study of these cells is critical to gain a more complete understanding of their function. Dendritic cell isolation from mouse body tissues can be difficult and the number of cells isolated small. This protocol describes the growth of large number of dendritic cells from the culture of mouse bone marrow cells. The dendritic cells grown in culture facilitate experiments that may require large number of dendritic cells without great expense or use of large number of mice.

  1. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth

    Energy Technology Data Exchange (ETDEWEB)

    Jäckle, Markus; Groß, Axel [Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany and Helmholtz Institut Ulm (HIU) Electrochemical Energy Storage, 89069 Ulm (Germany)

    2014-11-07

    Lithium and magnesium exhibit rather different properties as battery anode materials with respect to the phenomenon of dendrite formation which can lead to short-circuits in batteries. Diffusion processes are the key to understanding structure forming processes on surfaces. Therefore, we have determined adsorption energies and barriers for the self-diffusion on Li and Mg using periodic density functional theory calculations and contrasted the results to Na which is also regarded as a promising electrode material in batteries. According to our calculations, magnesium exhibits a tendency towards the growth of smooth surfaces as it exhibits lower diffusion barriers than lithium and sodium, and as an hcp metal it favors higher-coordinated configurations in contrast to the bcc metals Li and Na. These characteristic differences are expected to contribute to the unequal tendencies of these metals with respect to dendrite growth.

  2. 3D anisotropy simulation of dendrites growth with phase field method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The anisotropy problem of 3D phase-field model was studied,and various degrees of anisotropy were simulated by numerical calculation method.The results show that with the change of interface anisotropy coefficients,from smooth transition to the appearance of angle,equilibrium crystals shape morphology has a critical value,and 3D critical value is 0.3.The growth of dendrites is stable and the interface is smooth when it is less than critical value;the interface is unstable,rolling edge appears and the growth is discontinuous when it is more than critical value.With the increase of anisotropy coefficients,the dendrites grow faster under the same condition.

  3. Simulation of facet dendrite growth with strong interfacial energy anisotropy by phase field method

    Institute of Scientific and Technical Information of China (English)

    袁训锋; 刘宝盈; 李春; 周春生; 丁雨田

    2015-01-01

    Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the crystal grows into facet dendrites, displaying six-fold symmetry. The size of initial crystals has an effect on the branching-off of the principal branch tip along the direction, which is eliminated by setting the b/a (a and b are the semi-major and semi-minor sizes in the initial elliptical crystals, respectively) value to be less than or equal to 1. With an increase in the undercooling value, the equilibrium morphology of the crystal changes from a star-like shape to facet dendrites without side branches. The steady-state tip velocity increases exponentially when the dimensionless undercooling is below the critical value. With a further increase in the undercooling value, the equilibrium morphology of the crystal grows into a developed side-branch structure, and the steady-state tip velocity of the facet dendrites increases linearly. The facet dendrite growth has controlled diffusion and kinetics.

  4. Class 3 semaphorin mediates dendrite growth in adult newborn neurons through Cdk5/FAK pathway.

    Directory of Open Access Journals (Sweden)

    Teclise Ng

    Full Text Available Class 3 semaphorins are well-known axonal guidance cues during the embryonic development of mammalian nervous system. However, their activity on postnatally differentiated neurons in neurogenic regions of adult brains has not been characterized. We found that silencing of semaphorin receptors neuropilins (NRP 1 or 2 in neural progenitors at the adult mouse dentate gyrus resulted in newly differentiated neurons with shorter dendrites and simpler branching in vivo. Tyrosine phosphorylation (Tyr 397 and serine phosphorylation (Ser 732 of FAK were essential for these effects. Semaphorin 3A and 3F mediate serine phosphorylation of FAK through the activation of Cdk5. Silencing of either Cdk5 or FAK in newborn neurons phenocopied the defects in dendritic development seen upon silencing of NRP1 or NRP2. Furthermore, in vivo overexpression of Cdk5 or FAK rescued the dendritic phenotypes seen in NRP1 and NRP2 deficient neurons. These results point to a novel role for class 3 semaphorins in promoting dendritic growth and branching during adult hippocampal neurogenesis through the activation of Cdk5-FAK signaling pathway.

  5. FEB Growth Experiments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Short-term growth rates were estimated and compared for juvenile penaeid shrimps and other species held in field enclosures or laboratory microcosms located in...

  6. In situ observation of NaBi(WO4)2 dendrite growth and the study on microstructure of solidification

    Institute of Scientific and Technical Information of China (English)

    AI Fei; HONG Yong; JIN WeiQing; LUO HaoSu; LIU Yan; PAN XiuHong

    2007-01-01

    The dendrite growth process of transparent NaBi(WO4)2 with small prandtl and high melting point was studied by using the in-situ observation system. According to the dynamic images and detailed information, there are two kinds of restriction effect on the dendrite growth, the competition between arms and branches and the convection in the melt. The dendrite growth rate was time dependent, and the rate of arm growth reached the maximum 5.8 mm/s in the diffusive-advective region and rapidly decreased in the diffusive-convective region. The growth rate of branch had the same change trends as the arm's. Based on the EPMA-EDS data of solidification structure of quenched NaBi(WO4)2 melt, it was found that there were component differences from stoichiometric concentration in the melt near the interface during the growth process.

  7. In situ observation of NaBi(WO4)2 dendrite growth and the study on microstructure of solidification

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The dendrite growth process of transparent NaBi(WO4)2 with small prandtl and high melting point was studied by using the in-situ observation system. According to the dynamic images and detailed information, there are two kinds of restriction effect on the dendrite growth, the competition between arms and branches and the convection in the melt. The dendrite growth rate was time dependent, and the rate of arm growth reached the maximum 5.8 mm/s in the diffusive-advective region and rapidly decreased in the diffusive-convective region. The growth rate of branch had the same change trends as the arm’s. Based on the EPMA-EDS data of solidifica- tion structure of quenched NaBi(WO4)2 melt, it was found that there were compo- nent differences from stoichiometric concentration in the melt near the interface during the growth process.

  8. Web-dendritic ribbon growth. Quarterly report, 1 January 1976--31 March 1976. USC solar report No. Q-2

    Energy Technology Data Exchange (ETDEWEB)

    Hilborn, R.B. Jr.; Faust, J.W. Jr.

    1976-03-17

    The purpose of this investigation is to develop web-dendritic process methods that will: (1) minimize the cost of processing silicon into ribbons of solar cell quality with a terrestrial energy conversion efficiency greater than 10 percent, and (2) be suitable for large quantity production. The report for this second quarter describes the work of the program during this period and presents the plan for the program for the full length of the contract. Work is described on: (1) the procedures used to calibrate and operate the web-dendritic growth furnace; (2) use of the furnace to grow web-dendritic ribbon; (3) considerations applied for the thermal analysis and modeling of the web-dendritic growth system; and (4) procedures, facilities, and initial results for the structural and electrical characterization of web material. (WDM)

  9. Dendritic growth in the presence of convection. Ph.D. Thesis

    Science.gov (United States)

    Beaghton, Pantelis John

    1988-01-01

    The motion of the freezing front between a dendritic crystal and a supercooled liquid is studied using an interface evolution equation derived from a boundary integral transformation of the transient convective-diffusion equation. A new steady-state theory is introduced that incorporates the effects of convection in dendritic growth. It is shown that in the absence of capillary effects the shape of the crystal-melt interface is a paraboloid of revolution, similar to that found in situations where diffusion is the sole heat transfer mechanism. A relation between the supercooling, the product of the tip velocity and tip radius, and the strength of the flow is derived which reduces to the well-known Ivantsov theory in the absence of convection. A non-linear interface-tracking algorithm is developed and used to study the temporal and spatial evolution of the dendritic interface. The important role of capillarity and convection on the interface dynamics is established and the response of the interface to finite amplitude disturbances is examined for the first time. Tip splitting is identified as the dominant destabilization mechanism in the limit of zero surface tension. Finite surface tension leads to interface stabilization, irrespective of the magnitude and structure of the external perturbations. Finally, convection significantly decreases the magnitude of the freezing velocity.

  10. Enhancement of Amygdaloid Neuronal Dendritic Arborization by Fresh Leaf Juice of Centella asiatica (Linn during Growth Spurt Period in Rats

    Directory of Open Access Journals (Sweden)

    K. G. Mohandas Rao

    2009-01-01

    Full Text Available Centella asiatica (CeA is a creeping herb, growing in moist places in India and other Asian Countries. Ayurvedic system of medicine, an alternate system of medicine in India, uses leaves of CeA for memory enhancement. Here, we have investigated the role of CeA fresh leaf juice treatment during growth spurt period of rats on dendritic morphology of amygdaloid neurons, one of the regions concerned with learning and memory. The present study was conducted on neonatal rat pups. The rat pups (7-days-old were fed with 2, 4 and 6 ml/kg body of fresh leaf juice of CeA for 2, 4 and 6 weeks. After the treatment period, the rats were killed, brains removed and amygdaloid neurons impregnated with Silver nitrate (Golgi staining. Amygdaloid neurons were traced using camera lucida and dendritic branching points (a measure of dendritic arborization and intersections (a measure dendritic length quantified. These data were compared with those of age-matched control rats. The results showed a significant increase in dendritic length (intersections and dendritic branching points along the length of dendrites of the amygdaloid neurons of rats treated with 4 and 6 ml/kg body weight/day of CeA for longer periods of time (i.e. 4 and 6 weeks. We conclude that constituents/active principles present in CeA fresh leaf juice has neuronal dendritic growth stimulating property; hence it can be used for enhancing neuronal dendrites in stress and other neurodegenerative and memory disorders.

  11. Computer modeling of dendritic web growth processes and characterization of the material

    Science.gov (United States)

    Seidensticker, R. G.; Kothmann, R. E.; Mchugh, J. P.; Duncan, C. S.; Hopkins, R. H.; Blais, P. D.; Davis, J. R.; Rohatgi, A.

    1978-01-01

    High area throughput rate will be required for the economical production of silicon dendritic web for solar cells. Web width depends largely on the temperature distribution on the melt surface while growth speed is controlled by the dissipation of the latent heat of fusion. Thermal models were developed to investigate each of these aspects, and were used to engineer the design of laboratory equipment capable of producing crystals over 4 cm wide; growth speeds up to 10 cm/min were achieved. The web crystals were characterized by resistivity, lifetime and etch pit density data as well as by detailed solar cell I-V data. Solar cells ranged in efficiency from about 10 to 14.5% (AM-1) depending on growth conditions. Cells with lower efficiency displayed lowered bulk lifetime believed to be due to surface contamination.

  12. Computer modeling of dendritic web growth processes and characterization of the material

    Science.gov (United States)

    Seidensticker, R. G.; Kothmann, R. E.; Mchugh, J. P.; Duncan, C. S.; Hopkins, R. H.; Blais, P. D.; Davis, J. R.; Rohatgi, A.

    1978-01-01

    High area throughput rate will be required for the economical production of silicon dendritic web for solar cells. Web width depends largely on the temperature distribution on the melt surface while growth speed is controlled by the dissipation of the latent heat of fusion. Thermal models were developed to investigate each of these aspects, and were used to engineer the design of laboratory equipment capable of producing crystals over 4 cm wide; growth speeds up to 10 cm/min were achieved. The web crystals were characterized by resistivity, lifetime and etch pit density data as well as by detailed solar cell I-V data. Solar cells ranged in efficiency from about 10 to 14.5% (AM-1) depending on growth conditions. Cells with lower efficiency displayed lowered bulk lifetime believed to be due to surface contamination.

  13. Developmental exposure to polychlorinated biphenyls (PCBs) interferes with experience-dependent dendritic plasticity and ryanodine receptor expression in weanling rats.

    Science.gov (United States)

    BACKGROUND: Neurodevelopmental disorders are associated with altered patterns of neuronal connectivity. A critical determinant of neuronal connectivity is the dendritic morphology of individual neurons, which is shaped by experience. The identification of environmental exposures ...

  14. Brain-derived neurotrophic factor mediates activity-dependent dendritic growth in nonpyramidal neocortical interneurons in developing organotypic cultures.

    Science.gov (United States)

    Jin, Xiaoming; Hu, Hang; Mathers, Peter H; Agmon, Ariel

    2003-07-02

    Brain-derived neurotrophic factor (BDNF) promotes postnatal maturation of GABAergic inhibition in the cerebral and cerebellar cortices, and its expression and release are enhanced by neuronal activity, suggesting that it acts in a feedback manner to maintain a balance between excitation and inhibition during development. BDNF promotes differentiation of cerebellar, hippocampal, and neostriatal inhibitory neurons, but its effects on the dendritic development of neocortical inhibitory interneurons remain unknown. Here, we show that BDNF mediates depolarization-induced dendritic growth and branching in neocortical interneurons. To visualize inhibitory interneurons, we biolistically transfected organotypic cortical slice cultures from neonatal mice with green fluorescent protein (GFP) driven by the glutamic acid decarboxylase (GAD)67 promoter. Nearly all GAD67-GFP-expressing neurons were nonpyramidal, many contained GABA, and some expressed markers of neurochemically defined GABAergic subtypes, indicating that GAD67-GFP-expressing neurons were GABAergic. We traced dendritic trees from confocal images of the same GAD67-GFP-expressing neurons before and after a 5 d growth period, and quantified the change in total dendritic length (TDL) and total dendritic branch points (TDBPs) for each neuron. GAD67-GFP-expressing neurons growing in control medium exhibited a 20% increase in TDL, but in 200 ng/ml BDNF or 10 mm KCl, this increase nearly doubled and was accompanied by a significant increase in TDBPs. Blocking action potentials with TTX did not prevent the BDNF-induced growth, but antibodies against BDNF blocked the growth-promoting effect of KCl. We conclude that BDNF, released by neocortical pyramidal neurons in response to depolarization, enhances dendritic growth and branching in nearby inhibitory interneurons.

  15. Differential activation of dendritic cells by nerve growth factor and brain-derived neurotrophic factor.

    Science.gov (United States)

    Noga, O; Peiser, M; Altenähr, M; Knieling, H; Wanner, R; Hanf, G; Grosse, R; Suttorp, N

    2007-11-01

    Neurotrophins are involved in inflammatory reactions influencing several cells in health and disease including allergy and asthma. Dendritic cells (DCs) play a major role in the induction of inflammatory processes with an increasing role in allergic diseases as well. The aim of this study was to investigate the influence of neurotrophins on DC function. Monocyte-derived dendritic cells were generated from allergic and non-allergic donors. Neurotrophin receptors were demonstrated by western blotting, flow cytometry and fluorescence microscopy. Activation of small GTPases was evaluated by pull-down assays. DCs were incubated with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and supernatants were collected for measurement of IL-4, IL-6, IL-10, IL-12p70, TNF-alpha and TGF-beta. Receptor proteins were detectable by western blot, fluorescence activated cell sorting analysis and fluorescence microscopy. Signalling after neurotrophin stimulation occurred in a ligand-specific pattern. NGF led to decreased RhoA and increased Rac activation, while BDNF affected RhoA and Rac activity in a reciprocal fashion. Cells of allergics released a significantly increased amount of IL-6, while for healthy subjects a significantly higher amount of IL-10 was found. These data indicate that DCs are activated by the neurotrophins NGF and BDNF by different pathways in a receptor-dependant manner. These cells then may initiate inflammatory responses based on allergic sensitization releasing preferred cytokines inducing tolerance or a T-helper type 2 response.

  16. Thermal diffusion dominated dendritic growth — an analysis of the wall proximity effect

    Science.gov (United States)

    Pines, Vladimir; Chait, Arnon; Zlatkowski, Marianne

    1996-09-01

    It is demonstrated that using a simple correction to the original Ivantsov solution to account for wall proximity effects is sufficient to describe the Peclet number microgravity data of Glicksman et al. [M.E. Glicksman, M.B. Koss and E.A. Winsa, Phys. Rev. Lett. 73 (1994) 573; M.E. Glicksman, M.B. Koss, L.T. Bushnell, J.C. LaCombe and E.A. Winsa, ISLJ International 35 (1995) 1216; MRS Fall Meeting, Symp. P, Boston MA, 1995, in press] at low supercooling. The analytical correction provides for the enhanced diffusive heat transfer when the thermal diffusion length becomes comparable to the physical chamber dimension. The wall proximity effect is also responsible for the existence of a lower supercooling limit below which the dendrite cannot grow in a steady-state manner. It is concluded that Glicksman's USMP-2 microgravity data is thermal diffusion dominated and thus entirely appropriate for comparison with dendritic growth theories.

  17. A PKC-dependent recruitment of MMP-2 controls semaphorin-3A growth-promoting effect in cortical dendrites.

    Directory of Open Access Journals (Sweden)

    Bertrand Gonthier

    Full Text Available There is increasing evidence for a crucial role of proteases and metalloproteinases during axon growth and guidance. In this context, we recently described a functional link between the chemoattractive Sema3C and Matrix metalloproteinase 3 (MMP3. Here, we provide data demonstrating the involvement of MMP-2 to trigger the growth-promoting effect of Sema3A in cortical dendrites. The in situ analysis of MMP-2 expression and activity is consistent with a functional growth assay demonstrating in vitro that the pharmacological inhibition of MMP-2 reduces the growth of cortical dendrites in response to Sema3A. Hence, our results suggest that the selective recruitment and activation of MMP-2 in response to Sema3A requires a PKC alpha dependent mechanism. Altogether, we provide a second set of data supporting MMPs as effectors of the growth-promoting effects of semaphorins, and we identify the potential signalling pathway involved.

  18. Effect of growth hormone on the immune function of dendritic cells

    Institute of Scientific and Technical Information of China (English)

    LIU Qiu-liang; WANG Yi-sheng; WANG Jia-xiang

    2010-01-01

    Background Dendritic cells (DCs) are one of the most important antigen presenting cells in the human body, and DCs at various stages of maturation possess different or even opposite functions. The aim of this study was to investigate the influence of growth hormones on the functional status of cord blood-derived DCs encompassing immunophenotype, ability to excrete interleukin (IL)-12 and provoke autologous leukomonocyte.Methods Mononuclear cells were isolated from fresh cord blood, with IL-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF) used to induce and stimulate the mononuclear cells. Growth hormone at different concentrations was used to modify DCs, and then DCs morphology, number and growth status were observed. The immunophenotype of DCs was detected with a flow cytometer. The concentration of IL-12 in the DCs supernatant was determined by enzyme linked immunosorbent assay (ELISA) and DCs functional status was evaluated by autologous mixed lymphocyte reactions. Results Mononuclear cells from cord blood can be differentiated into DCs by cytokine induction and growth hormone modification. With the increase in growth hormone concentrations (5-100 μ g/L), the expression of DCs HLA-DR, CD1α, CD80 and CD83 were significantly increased (P<0.05). The ability of DCs to secrete IL-12 was significantly improved (P <0.05), and the ability of DCs to activate autologous lymphocytes was significantly enhanced (P <0.05). Pegvisomant was able to ablate the effects of growth hormone on DCs.Conclusions Growth hormone may facilitate DCs induction and maturation, and improve the reproductive activity of autologous lymphocytes in a dose-dependent manner. Growth hormone may serve as a factor of modifying DCs to achieving maturity.

  19. Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons

    Directory of Open Access Journals (Sweden)

    Sei-ichi Yoshihara

    2014-08-01

    Full Text Available Sensory experience regulates the development of various brain structures, including the cortex, hippocampus, and olfactory bulb (OB. Little is known about how sensory experience regulates the dendritic spine development of OB interneurons, such as granule cells (GCs, although it is well studied in mitral/tufted cells. Here, we identify a transcription factor, Npas4, which is expressed in OB GCs immediately after sensory input and is required for dendritic spine formation. Npas4 overexpression in OB GCs increases dendritic spine density, even under sensory deprivation, and rescues reduction of dendrite spine density in the Npas4 knockout OB. Furthermore, loss of Npas4 upregulates expression of the E3-ubiquitin ligase Mdm2, which ubiquitinates a microtubule-associated protein Dcx. This leads to reduction in the dendritic spine density of OB GCs. Together, these findings suggest that Npas4 regulates Mdm2 expression to ubiquitinate and degrade Dcx during dendritic spine development in newborn OB GCs after sensory experience.

  20. Numerical Simulation of Three-Dimensional Dendritic Growth of Alloy: Part I—Model Development and Test

    Science.gov (United States)

    Wang, Weiling; Luo, Sen; Zhu, Miaoyong

    2016-03-01

    To improve the computational efficiency of the three-dimensional (3D) cellular-automaton-finite-volume-method (CA-FVM) model for describing the dendritic growth of alloy, the block-correction technique (BCT) and the parallel computation approach are introduced. Accordingly, a serial of investigations on the efficiency of the optimized codes in dealing with the designed cases for the melt flow and the heat transfer problems is carried out. Moreover, the accuracy of the present codes is evaluated by the comparisons between the solution to the melt flow and the heat transfer problems and the results from analytical equations and the commercial software. Additionally, the capability of the present CA model is evaluated by comparing the steady growth parameters of the equiaxed dendritic tip and the morphology and the secondary dendrite arm spacing (SDAS) of columnar dendrites with the LGK analytical model and the experimental results of the unidirectional solidification of high-carbon steels. The results show that with the introduction of the 3D BCT, the iteration process of the serial tri-diagonal matrix algorithm (TDMA) code changes from the fluctuation type to the smooth one, and thus, the computational cost is reduced significantly. Moreover, the parallel Jacobi code with one two-dimensional (2D) iteration in 3D BCT is proved to be the most efficient one among the codes compiled in the present work, and therefore, accordingly it is employed to simulate the 3D dendritic growth of alloys. The calculated velocity distribution and temperature variation agree well with the results from the analytical equations and the commercial software. The predicted steady tip velocities agree with the LGK analytical model as the undercooling is 6 K to 7 K. Moreover, the predicted columnar dendritic morphology and SDAS of high-carbon Fe-C alloys during the unidirectional solidification agree with the experimental results.

  1. Growth kinetics of nanometric dendrites in metal-carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C., E-mail: corbella@ub.edu [FEMAN Research Group, Institute of Nanoscience and Nanotechnology of the Universitat de Barcelona, c/Marti i Franques 1, E-08028 Barcelona (Spain); Echebarria, B.; Ramirez-Piscina, L. [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Av. Doctor Maranon 44, E-08028 Barcelona (Spain); Pascual, E.; Andujar, J.L.; Bertran, E. [FEMAN Research Group, Institute of Nanoscience and Nanotechnology of the Universitat de Barcelona, c/Marti i Franques 1, E-08028 Barcelona (Spain)

    2009-10-15

    Tungsten-carbon films deposited by pulsed-DC reactive magnetron sputtering show the formation of a dendritic structure at the nanometric scale. The structure is formed by a combination of a polycrystalline {beta}-W phase together with a non-stoichiometric WC{sub 1-x} phase. The nanodendrites coincide with W-rich zones, whereas C-rich regions are located at the interstices. The characteristics of this nanostructure have been modulated by varying the metal concentration of the films. The composition, structure and morphology were characterized by X-ray photoelectron spectroscopy, electron probe microanalysis, transmission electron microscopy, X-ray diffraction and atomic force microscopy, and the mechanical and tribological properties were evaluated by profilometry, nanoindentation and microscratch. The observed growth pattern is interpreted as the result of nucleation and growth of a W phase into a W-C amorphous matrix, whose growth is controlled by diffusion of carbon. A simulation model based on phase field modelling and presenting similar morphologies is formulated. This special structure combines properties of W and diamond-like carbon films, which enlarges the scope of applications towards self-lubricating hard and low-friction coatings with improved stability.

  2. Control of dendrite growth by a magnetic field during directional solidification

    Science.gov (United States)

    Dai, Yanchao; Du, Dafan; Hou, Long; Gagnoud, Annie; Ren, Zhongming; Fautrelle, Yves; Moreau, Rene; Li, Xi

    2016-04-01

    In this work, the alignment behavior of three kinds of dendrites (Al3Ni, α-Al and Al2Cu dendrites) with a remarkable crystalline anisotropy during directional solidification under an axial magnetic field is studied by the EBSD technology. Experimental results reveal that the magnetic field is capable of tailoring the dendrite alignment during directional solidification. Further, based on the crystalline anisotropy, a method to control the dendrite alignment by adjusting the angle between the magnetic field and the solidification direction is proposed.

  3. Snapin Recruits Dynein to BDNF-TrkB Signaling Endosomes for Retrograde Axonal Transport and Is Essential for Dendrite Growth of Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Bing Zhou

    2012-07-01

    Full Text Available Neurotrophin signaling is crucial for neuron growth. While the “signaling endosomes” hypothesis is one of the accepted models, the molecular machinery that drives retrograde axonal transport of TrkB signaling endosomes is largely unknown. In particular, mechanisms recruiting dynein to TrkB signaling endosomes have not been elucidated. Here, using snapin deficient mice and gene rescue experiments combined with compartmentalized cultures of live cortical neurons, we reveal that Snapin, as a dynein adaptor, mediates retrograde axonal transport of TrkB signaling endosomes. Such a role is essential for dendritic growth of cortical neurons. Deleting snapin or disrupting Snapin-dynein interaction abolishes TrkB retrograde transport, impairs BDNF-induced retrograde signaling from axonal terminals to the nucleus, and decreases dendritic growth. Such defects were rescued by reintroducing the snapin gene. Our study indicates that Snapin-dynein coupling is one of the primary mechanisms driving BDNF-TrkB retrograde transport, thus providing mechanistic insights into the regulation of neuronal growth and survival.

  4. The steady-state solution of dendritic growth from the undercooled binary alloy melt with the far field flow

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The steady-state dendritic growth from the undercooled binary alloy melt with the far field flow is considered. By neglecting the interface energy, interface kinetics and buoyancy effects in the system, we obtaine the steady-state solution for the case of the large Schmidt number, in terms of the multiple variable expansion method. The changes of the temperature and concentration fields, the morphology of the interface, the normalization parameter and the Peclet number of the system induced by uniform external flow are derived. The results show that, compared with the system of dendritic growth from undercooled pure melt, the convective flow in the system of growth from undercooled binary alloy has stronger effects on the morphology of the interface. Nevertheless, the shape of the interface still remains nearly a paraboloid.

  5. The steady-state solution of dendritic growth from the undercooled binary alloy melt with the far field flow

    Institute of Scientific and Technical Information of China (English)

    CHEN MingWen; WANG ZiDong; XU JianJun

    2009-01-01

    The steady-state dendritic growth from the undercooled binary alloy melt with the far field flow is considered.By neglecting the interface energy,interface kinetics and buoyancy effects in the system,we obtaine the steady-state solution for the case of the large Schmidt number,in terms of the multiple variable expansion method.The changes of thtemperature and concentration fields,the morphology of the interface,the normalization parameter and the Peclet number of the system induced by uniform external flow are derived.The results show that,compared with the system of dendritic growth from undercooled pure melt,the convective flow in the system of growth from undercooled binary alloy has stronger effects on the morphology of the interface.Nevertheless,the shape of the interface still remains nearly a paraboloid.

  6. Postnatal Dendritic Growth and Spinogenesis of Layer-V Pyramidal Cells Differ between Visual, Inferotemporal, and Prefrontal Cortex of the Macaque Monkey

    Science.gov (United States)

    Oga, Tomofumi; Elston, Guy N.; Fujita, Ichiro

    2017-01-01

    Pyramidal cells in the primate cerebral cortex, particularly those in layer III, exhibit regional variation in both the time course and magnitude of postnatal growth and pruning of dendrites and spines. Less is known about the development of pyramidal cell dendrites and spines in other cortical layers. Here we studied dendritic morphology of layer-V pyramidal cells in primary visual cortex (V1, sensory), cytoarchitectonic area TE in the inferotemporal cortex (sensory association), and granular prefrontal cortex (Walker's area 12, executive) of macaque monkeys at the ages of 2 days, 3 weeks, 3.5 months, and 4.5 years. We found that changes in the basal dendritic field area of pyramidal cells were different across the three areas. In V1, field size became smaller over time (largest at 2 days, half that size at 4.5 years), in TE it did not change, and in area 12 it became larger over time (smallest at 2 days, 1.5 times greater at 4.5 years). In V1 and TE, the total number of branch points in the basal dendritic trees was similar between 2 days and 4.5 years, while in area 12 the number was greater in the adult monkeys than in the younger ones. Spine density peaked at 3 weeks and declined in all areas by adulthood, with V1 exhibiting a faster decline than area TE or area 12. Estimates of the total number of spines in the dendritic trees revealed that following the onset of visual experience, pyramidal cells in V1 lose more spines than they grow, whereas those in TE and area 12 grow more spines than they lose during the same period. These data provide further evidence that the process of synaptic refinement in cortical pyramidal cells differs not only according to time, but also location within the cortex. Furthermore, given the previous finding that layer-III pyramidal cells in all these areas exhibit the highest density and total number of spines at 3.5 months, the current results indicate that pyramidal cells in layers III and V develop spines at different rates.

  7. Effects of temperature boundary conditions on equiaxed dendritic growth in phase-field simulations of binary alloy

    Institute of Scientific and Technical Information of China (English)

    于艳梅; 杨根仓; 赵达文; 吕衣礼

    2002-01-01

    By the phase-field approach, the dendritic growth in binary alloy melt was simulated respectively using two types of temperature boundary conditions, i.e., the constant temperature boundary by which the boundary temperature was fixed at the initial temperature, and Zero-Neumann temperature boundary. The influences of the temperature boundary conditions on numerical results are investigated. How to choose appropriate temperature boundary conditions is proposed. The results show that: 1) when the computation region is limited to a changeless size, the Zero-Neumann and constant temperature boundary conditions lead to the different dendritic growth behaviors, and the Zero-Neumann condition is preferable to the constant temperature condition; 2) when the computation region is enlarged continually with the computational time according to the increasing thermal diffusion scale, the two types of temperature boundary conditions achieve the consistent tip velocities and tip radii, and they both are appropriate choices.

  8. Dendrite growth kinetics of βZr phase within highly undercooled liquid Zr-Si hypoeutectic alloys under electrostatic levitation condition

    Science.gov (United States)

    Hu, L.; Yang, S. J.; Wang, L.; Zhai, W.; Wei, B.

    2017-04-01

    The liquid Zr100-xSix (x = 1, 3, and 5) alloys were substantially undercooled by up to 392 K (0.19TL), 423 K (0.21TL), and 451 K (0.23TL), respectively, under the electrostatic levitation condition. The measured dendrite growth velocity of the primary βZr phase increased with the enhancement of liquid undercooling. Although the undercooling ability showed an increasing tendency with the increase in the Si content, dendrite growth was obviously depressed due to the dominance of solute diffusion controlled growth. Their critical undercoolings for kinetics transition from solute diffusion to thermal diffusion controlled growth were determined. It demonstrates a remarkable refinement of dendrites and an increasing trend of Si solubility in αZr dendrites with increasing undercooling.

  9. Coarsening of Dendrites in Solid-Liquid Mixtures under Microgravity: Experiments and Phase Field Simulations

    Science.gov (United States)

    Cool, Thomas

    The morphological and topological evolution of dendritic structures during coarsening remains poorly understood. In particular, predicting the fissioning of secondary arms from the main dendrite stem and coalescence and retraction events remains controversial. We perform experiments on the International Space Station (ISS) since arms that fission from the stem do not sediment and thus can be detected. In addition, it is also possible to follow the morphological evolution of the structure in the absence of convection. 30% Pb-Sn samples were coarsened for different lengths of time from 10 min to 48 hrs. The morphology of the structure and the number of fissioned arms were determined using three-dimensional reconstructions. The evolution of the microstructure, the change in length scale, the number of independent bodies, the evolution of the anisotropy of the structure and the interfacial shape distributions as a function of time during coarsening were studied. Key findings are that 1) the inverse of surface area per unit volume SV -1 increases with time as t1/3 that is almost identical to a sample coarsened on earth; 2) independent bodies were found in all samples; 3) the number of independent bodies per unit volume multiplied by SV-3 is independent of coarsening time. Thus it is possible to predict the number of fragments during coarsening by a measurement of SV; 4) the genus scaled by SV{-3}$ is independent of coarsening time. A 3D reconstruction of a PbSn sample, 30% solid, that was coarsened aboard the ISS was used as an initial condition in a phase-field model to study pinching (fisioning), retraction and coalescence (fusioning) of secondary dendrite arms. The overall simulation box was 472x496x248 voxels; the phase field model was coded in OpenCL to run on a D700 FirePro GPU. In spite of the high speed of the simulations, evolving the PbSn structure from 10 min to 1.6 hrs still required 23 days. Two variants were run of the model that differ along the length of

  10. Tocotrienol-adjuvanted dendritic cells inhibit tumor growth and metastasis: a murine model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Sitti Rahma Abdul Hafid

    Full Text Available Tocotrienol-rich fraction (TRF from palm oil is reported to possess anti-cancer and immune-enhancing effects. In this study, TRF supplementation was used as an adjuvant to enhance the anti-cancer effects of dendritic cells (DC-based cancer vaccine in a syngeneic mouse model of breast cancer. Female BALB/c mice were inoculated with 4T1 cells in mammary pad to induce tumor. When the tumor was palpable, the mice in the experimental groups were injected subcutaneously with DC-pulsed with tumor lysate (TL from 4T1 cells (DC+TL once a week for three weeks and fed daily with 1 mg TRF or vehicle. Control mice received unpulsed DC and were fed with vehicle. The combined therapy of using DC+TL injections and TRF supplementation (DC+TL+TRF inhibited (p<0.05 tumor growth and metastasis. Splenocytes from the DC+TL+TRF group cultured with mitomycin-C (MMC-treated 4T1 cells produced higher (p<0.05 levels of IFN-γ and IL-12. The cytotoxic T-lymphocyte (CTL assay also showed enhanced tumor-specific killing (p<0.05 by CD8(+ T-lymphocytes isolated from mice in the DC+TL+TRF group. This study shows that TRF has the potential to be used as an adjuvant to enhance effectiveness of DC-based vaccines.

  11. Cellular Automaton Study of Hydrogen Porosity Evolution Coupled with Dendrite Growth During Solidification in the Molten Pool of Al-Cu Alloys

    Science.gov (United States)

    Gu, Cheng; Wei, Yanhong; Yu, Fengyi; Liu, Xiangbo; She, Lvbo

    2017-09-01

    Welding porosity defects significantly reduce the mechanical properties of welded joints. In this paper, the hydrogen porosity evolution coupled with dendrite growth during solidification in the molten pool of Al-4.0 wt pct Cu alloy was modeled and simulated. Three phases, including a liquid phase, a solid phase, and a gas phase, were considered in this model. The growth of dendrites and hydrogen gas pores was reproduced using a cellular automaton (CA) approach. The diffusion of solute and hydrogen was calculated using the finite difference method (FDM). Columnar and equiaxed dendrite growth with porosity evolution were simulated. Competitive growth between different dendrites and porosities was observed. Dendrite morphology was influenced by porosity formation near dendrites. After solidification, when the porosities were surrounded by dendrites, they could not escape from the liquid, and they made pores that existed in the welded joints. With the increase in the cooling rate, the average diameter of porosities decreased, and the average number of porosities increased. The average diameter of porosities and the number of porosities in the simulation results had the same trend as the experimental results.

  12. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth.

    Science.gov (United States)

    Rauskolb, Stefanie; Zagrebelsky, Marta; Dreznjak, Anita; Deogracias, Rubén; Matsumoto, Tomoya; Wiese, Stefan; Erne, Beat; Sendtner, Michael; Schaeren-Wiemers, Nicole; Korte, Martin; Barde, Yves-Alain

    2010-02-03

    Although brain-derived neurotrophic factor (BDNF) is linked with an increasing number of conditions causing brain dysfunction, its role in the postnatal CNS has remained difficult to assess. This is because the bdnf-null mutation causes the death of the animals before BDNF levels have reached adult levels. In addition, the anterograde axonal transport of BDNF complicates the interpretation of area-specific gene deletion. The present study describes the generation of a new conditional mouse mutant essentially lacking BDNF throughout the CNS. It shows that BDNF is not essential for prolonged postnatal survival, but that the behavior of such mutant animals is markedly altered. It also reveals that BDNF is not a major survival factor for most CNS neurons and for myelination of their axons. However, it is required for the postnatal growth of the striatum, and single-cell analyses revealed a marked decreased in dendritic complexity and spine density. In contrast, BDNF is dispensable for the growth of the hippocampus and only minimal changes were observed in the dendrites of CA1 pyramidal neurons in mutant animals. Spine density remained unchanged, whereas the proportion of the mushroom-type spine was moderately decreased. In line with these in vivo observations, we found that BDNF markedly promotes the growth of cultured striatal neurons and of their dendrites, but not of those of hippocampal neurons, suggesting that the differential responsiveness to BDNF is part of a neuron-intrinsic program.

  13. Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn- 10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercool- ings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition "dendrite→monotectic cell" happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.

  14. Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys

    Institute of Scientific and Technical Information of China (English)

    ZHANG XueHua; RUAN Ying; WANG WeiLi; WEI BingBo

    2007-01-01

    The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn- 10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercoolings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition "dendrite→monotectic cell" happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.

  15. Transport Processes in Dendritic Crystallization

    Science.gov (United States)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  16. The Role of Si and Cu Alloying Elements on the Dendritic Growth and Microhardness in Horizontally Solidified Binary and Multicomponent Aluminum-Based Alloys

    Science.gov (United States)

    Araújo, Eugênio C.; Barros, André S.; Kikuchi, Rafael H.; Silva, Adrina P.; Gonçalves, Fernando A.; Moreira, Antonio L.; Rocha, Otávio L.

    2017-03-01

    Horizontal directional solidification (HDS) experiments were carried out with Al-3wtpctCu, Al-3wtpctSi, and Al- 3wtpctCu-5.5wtpctSi alloys in order to analyze the interrelation between the secondary dendrite arm spacing ( λ 2) and microhardness (HV). A water-cooled horizontal directional solidification device was applied. Microstructural characterization has been carried out using traditional techniques of metallography, optical, and SEM microscopy. The ThermoCalc software was used to generate the phase equilibrium diagrams as a function of Cu and Si for the analyzed alloys. The effects of Si and Cu elements on the λ 2 and HV evolution of the hypoeutectic binary Al-Cu and Al-Si alloys have been analyzed as well as the addition of Si in the formation of ternary Al-Cu-Si alloy. The secondary dendrite arm spacing was correlated with local solidification thermal parameters such as growth rate ( V L), cooling rate ( T R), and local solidification time ( t SL). This has allowed to observe that power experimental functions given by λ 2 = Constant ( V L)-2/3, λ 2 = Constant ( T R)-1/3 and λ 2 = Constant ( t SL)1/3 may represent growth laws of λ 2 with corresponding thermal parameters for investigated alloys. Hall-Petch equations have also been used to characterize the dependence of HV with λ 2. A comparative analysis is performed between λ 2 experimental values obtained in this study for Al-3wtpctCu-5.5wtpctSi alloy and the only theoretical model from the literature that has been proposed to predict the λ 2 growth in multicomponent alloys. Comparisons with literature results for upward directional solidification were also performed.

  17. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study

    Science.gov (United States)

    Xing, Hui; Dong, Xianglei; Wu, Hongjing; Hao, Guanhua; Wang, Jianyuan; Chen, Changle; Jin, Kexin

    2016-05-01

    We report the results of a phase-field study of degenerate seaweed to tilted dendrite transition and their growth dynamics during directional solidification of a binary alloy. Morphological selection maps in the planes of (G, Vp) and (ε4, Vp) show that lower pulling velocity, weaker anisotropic strength and higher thermal gradient can enhance the formation of the degenerate seaweed. The tip undercooling shows oscillations in seaweed growth, but it keeps at a constant value in dendritic growth. The M-S instability on the tips and the surface tension anisotropy of the solid-liquid interface are responsible for the formation of the degenerate seaweed. It is evidenced that the place where the interfacial instability occurs determines the morphological transition. The transient transition from degenerate seaweed to tilted dendrite shows that dendrites are dynamically preferred over seaweed. For the tilted dendritic arrays with a large tilted angle, primary spacing is investigated by comparing predicted results with the classical scaling power law, and the growth direction is found to be less sensitive to the pulling velocity and the primary spacing. Furthermore, the effect of the initial interface wavelength on the morphological transition is investigated to perform the history dependence of morphological selection.

  18. Phase-field simulation of formation of cellular dendrites and fine cellular structures at high growth velocities during directional solidification of Ti56Al44 alloy

    Institute of Scientific and Technical Information of China (English)

    LI Xin-zhong; GUO Jing-jie; SU Yan-qing; WU Shi-ping; FU Heng-zhi

    2005-01-01

    A phase-field model whose free energy of the solidification system derived from the Calphad thermodynamic modeling of phase diagram was used to simulate formation of cellular dendrites and fine cellular structures of Ti56Al44 alloy during directional solidification at high growth velocities. The liquid-solid phase transition of L→β was chosen. The dynamics of breakdown of initially planar interfaces into cellular dendrites and fine cellular structures were shown firstly at two growth velocities. Then the unidirectional free growths of two initial nucleations evolving to fine cellular dendrites were investigated. The tip splitting phenomenon is observed and the negative temperature gradient in the liquid represents its supercooling directional solidification. The simulation results show the realistic evolution of interfaces and microstructures and they agree with experimental one.

  19. Near-Death Experiences and Posttraumatic Growth.

    Science.gov (United States)

    Khanna, Surbhi; Greyson, Bruce

    2015-10-01

    Posttraumatic growth denotes positive psychological change after a traumatic experience that is an improvement over the state before the trauma. Inasmuch as it involves existential reevaluation, posttraumatic growth overlaps with spiritual change, although it also encompasses other domains of positive outcome. This study investigated posttraumatic growth and presence and depth of near-death experience at the time of the close brush with death among 251 survivors of a close brush with death, using the Posttraumatic Growth Inventory and the Near-Death Experience (NDE) Scale. Near-death experiences were associated with greater posttraumatic growth than were close brushes with death in the absence of such an experience, and scores on the NDE Scale were significantly correlated with scores on the Posttraumatic Growth Inventory. To the extent that NDEs are interpreted as spiritual events, these findings support prior research suggesting that spiritual factors make a significant contribution to posttraumatic growth and are consistent with the model that posits challenges to the assumptive worldview as a major stimulus to posttraumatic growth.

  20. Numerical simulation for isothermal dendritic growth of succinonitrile-acetone alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi; CHEN Chang-le; HAO Li-mei

    2008-01-01

    Numerical simulation based on phase field method was developed to describe the solidification of two-dimensional isothermal binary alloys.The evolution of the interface morphology was shown and the effects of phase field parameters were formulated for succinonitrile-acetone alloy.The results indicate that an anti-trapping current (ATC) can suppress many trapped molten packets,which is caused by the thickened interface.With increasing the anisotropy value from 0 to 0.05,a small circular seed grows to develope secondary dendritic,dendritic tip velocity increases monotonically,and the solute accumulation of solid/liquid interface is diminished distinctly.Furthermore,with the increase of the coupling parameter value,the interface becomes unstable and the side branches of crystals appear and grow gradually.

  1. Dendritic design as an archetype for growth patterns in Nature: fractal and constructal views

    Directory of Open Access Journals (Sweden)

    Antonio F. Miguel

    2014-02-01

    Full Text Available The occurrence of configuration (design, shape, structure, rhythm is a universal phenomenon that occurs in every flow system. Dendritic configuration (or tree-shaped configurations is ubiquitous in nature and likely to arise in both animate and inanimate flow systems. Why is it so important? Is there a principle from which this configuration can be deduced? In this review paper we show that these systems own two of the most important properties of fractals that are self-similarity and scaling. Their configuration do not develop by chance. It´s occurrence is a universal phenomenon of physics covered by a principle. Here we also show that the emergence of dendritic configuration in flow systems constitutes a basic supportive flow path along which order need to persist is propagated.

  2. Longleaf Pine Survival, Growth, and Recruitment Experiment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This experiment was to determine mean survivorship, growth rate, and recruitment rate of longleaf pine seedlings planted on different soil types on the refuge. Open...

  3. Study of protein and RNA in dendritic spines using multi-isotope imaging mass spectrometry (MIMS).

    Science.gov (United States)

    Brismar, H; Aperia, A; Westin, L; Moy, J; Wang, M; Guillermier, C; Poczatek, C; Lechene, C

    2014-11-01

    The classical view of neuronal protein synthesis is that proteins are made in the cell body and then transported to their functional sites in the dendrites and the dendritic spines. Indirect evidence, however, suggests that protein synthesis can directly occur in the distal dendrites, far from the cell body. We are developing protocols for dual labeling of RNA and proteins using (15)N-uridine and (18)O- or (13)C-leucine pulse chase in cultured neurons to identify and localize both protein synthesis and fate of newly synthesized proteins. Pilot experiments show discrete localization of both RNA and newly synthesized proteins in dendrites, close to dendritic spines. We have for the first time directly imaged and measured the production of proteins at the subcellular level in the neuronal dendrites, close to the functional sites, the dendritic spines. This will open a powerful way to study neural growth and synapse plasticity in health and disease.

  4. Self-organizing mechanism for development of space-filling neuronal dendrites.

    Directory of Open Access Journals (Sweden)

    Kaoru Sugimura

    2007-11-01

    Full Text Available Neurons develop distinctive dendritic morphologies to receive and process information. Previous experiments showed that competitive dendro-dendritic interactions play critical roles in shaping dendrites of the space-filling type, which uniformly cover their receptive field. We incorporated this finding in constructing a new mathematical model, in which reaction dynamics of two chemicals (activator and suppressor are coupled to neuronal dendrite growth. Our numerical analysis determined the conditions for dendritic branching and suggested that the self-organizing property of the proposed system can underlie dendritogenesis. Furthermore, we found a clear correlation between dendrite shape and the distribution of the activator, thus providing a morphological criterion to predict the in vivo distribution of the hypothetical molecular complexes responsible for dendrite elongation and branching.

  5. Reduced Insulin/Insulin-Like Growth Factor Receptor Signaling Mitigates Defective Dendrite Morphogenesis in Mutants of the ER Stress Sensor IRE-1

    Science.gov (United States)

    Salzberg, Yehuda; Cohen-Berkman, Moran; Biederer, Thomas; Bülow, Hannes E.

    2017-01-01

    Neurons receive excitatory or sensory inputs through their dendrites, which often branch extensively to form unique neuron-specific structures. How neurons regulate the formation of their particular arbor is only partially understood. In genetic screens using the multidendritic arbor of PVD somatosensory neurons in the nematode Caenorhabditis elegans, we identified a mutation in the ER stress sensor IRE-1/Ire1 (inositol requiring enzyme 1) as crucial for proper PVD dendrite arborization in vivo. We further found that regulation of dendrite growth in cultured rat hippocampal neurons depends on Ire1 function, showing an evolutionarily conserved role for IRE-1/Ire1 in dendrite patterning. PVD neurons of nematodes lacking ire-1 display reduced arbor complexity, whereas mutations in genes encoding other ER stress sensors displayed normal PVD dendrites, specifying IRE-1 as a selective ER stress sensor that is essential for PVD dendrite morphogenesis. Although structure function analyses indicated that IRE-1’s nuclease activity is necessary for its role in dendrite morphogenesis, mutations in xbp-1, the best-known target of non-canonical splicing by IRE-1/Ire1, do not exhibit PVD phenotypes. We further determined that secretion and distal localization to dendrites of the DMA-1/leucine rich transmembrane receptor (DMA-1/LRR-TM) is defective in ire-1 but not xbp-1 mutants, suggesting a block in the secretory pathway. Interestingly, reducing Insulin/IGF1 signaling can bypass the secretory block and restore normal targeting of DMA-1, and consequently normal PVD arborization even in the complete absence of functional IRE-1. This bypass of ire-1 requires the DAF-16/FOXO transcription factor. In sum, our work identifies a conserved role for ire-1 in neuronal branching, which is independent of xbp-1, and suggests that arborization defects associated with neuronal pathologies may be overcome by reducing Insulin/IGF signaling and improving ER homeostasis and function. PMID

  6. RAB-10 Regulates Dendritic Branching by Balancing Dendritic Transport.

    Directory of Open Access Journals (Sweden)

    Caitlin A Taylor

    2015-12-01

    Full Text Available The construction of a large dendritic arbor requires robust growth and the precise delivery of membrane and protein cargoes to specific subcellular regions of the developing dendrite. How the microtubule-based vesicular trafficking and sorting systems are regulated to distribute these dendritic development factors throughout the dendrite is not well understood. Here we identify the small GTPase RAB-10 and the exocyst complex as critical regulators of dendrite morphogenesis and patterning in the C. elegans sensory neuron PVD. In rab-10 mutants, PVD dendritic branches are reduced in the posterior region of the cell but are excessive in the distal anterior region of the cell. We also demonstrate that the dendritic branch distribution within PVD depends on the balance between the molecular motors kinesin-1/UNC-116 and dynein, and we propose that RAB-10 regulates dendrite morphology by balancing the activity of these motors to appropriately distribute branching factors, including the transmembrane receptor DMA-1.

  7. Effect of traveling magnetic field on solute distribution and dendritic growth in unidirectionally solidifying Sn-50 wt%Pb alloy: An in situ observation

    Science.gov (United States)

    Cao, Fei; Yang, Fenfen; Kang, Huijun; Zou, Cunlei; Xiao, Tiqiao; Huang, Wanxia; Wang, Tongmin

    2016-09-01

    Synchrotron X-ray radiography was used to in situ study the solute distribution and the dendritic growth during the bottom-up solidification of Sn-50 wt%Pb alloy under a traveling magnetic field (TMF) for the first time. The buoyance driven evolution and motion of the plumes containing Sn-rich melt are directly observed in the solidification front before the application of TMF. A forced melt flow from left to right is induced with the application of TMF, which results in the redistribution of the solute concentration (facilitate the solute transportation and reduce the local fluctuations considerably) and the change of the dendrite morphologies (promote/suppress the growth of the secondary arms, remelting and fragmentation of dendrites). Meanwhile, the concentration variations of Sn around the solidification front are quantitatively analyzed through the extraction of gray level from sequenced X-ray images.

  8. Autism-associated Dyrk1a truncation mutants impair neuronal dendritic and spine growth and interfere with postnatal cortical development.

    Science.gov (United States)

    Dang, T; Duan, W Y; Yu, B; Tong, D L; Cheng, C; Zhang, Y F; Wu, W; Ye, K; Zhang, W X; Wu, M; Wu, B B; An, Y; Qiu, Z L; Wu, B L

    2017-02-07

    Autism is a prevailing neurodevelopmental disorder with a large genetic/genomic component. Recently, the dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A (DYRK1A) gene was implicated as a risk factor for autism spectrum disorder (ASD). We identified five DYRK1A variants in ASD patients and found that the dose of DYRK1A protein has a crucial role in various aspects of postnatal neural development. Dyrk1a loss of function and gain of function led to defects in dendritic growth, dendritic spine development and radial migration during cortical development. Importantly, two autism-associated truncations, R205X and E239X, were shown to be Dyrk1a loss-of-function mutants. Studies of the truncated Dyrk1a mutants may provide new insights into the role of Dyrk1a in brain development, as well as the role of Dyrk1a loss of function in the pathophysiology of autism.Molecular Psychiatry advance online publication, 7 February 2017; doi:10.1038/mp.2016.253.

  9. Protracted dendritic growth in the typically developing human amygdala and increased spine density in young ASD brains.

    Science.gov (United States)

    Weir, R K; Bauman, M D; Jacobs, B; Schumann, C M

    2017-09-20

    The amygdala is a medial temporal lobe structure implicated in social and emotional regulation. In typical development (TD), the amygdala continues to increase volumetrically throughout childhood and into adulthood, while other brain structures are stable or decreasing in volume. In autism spectrum disorder (ASD), the amygdala undergoes rapid early growth, making it volumetrically larger in children with ASD compared to TD children. Here we explore: 1) if dendritic arborization in the amygdala follows the pattern of protracted growth in TD and early overgrowth in ASD and 2), if spine density in the amygdala in ASD cases differs from TD from youth to adulthood. The amygdala from 32 postmortem human brains (7-46 years of age) was stained using a Golgi-Kopsch impregnation. Ten principal neurons per case were selected in the lateral nucleus and traced using Neurolucida software in their entirety. We found that both ASD and TD individuals show a similar pattern of increasing dendritic length with age well into adulthood. However, spine density is i) greater in young ASD cases compared to age-matched TD controls (ASD age into adulthood, a phenomenon not found in typical development. Therefore, by adulthood, there is no observable difference in spine density in the amygdala between ASD and TD age-matched adults (≥18 years old). Our findings highlight the unique growth trajectory of the amygdala and suggest that spine density may contribute to aberrant development and function of the amygdala in children with ASD. This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  10. Altered sensory experience exacerbates stable dendritic spine and synapse loss in a mouse model of Huntington's disease.

    Science.gov (United States)

    Murmu, Reena Prity; Li, Wen; Szepesi, Zsuzsanna; Li, Jia-Yi

    2015-01-07

    A key question in Huntington's disease (HD) is what underlies the early cognitive deficits that precede the motor symptoms and the characteristic neuronal death observed in HD. The mechanisms underlying cognitive symptoms in HD remain unknown. Postmortem HD brain and animal model studies demonstrate pathologies in dendritic spines and abnormal synaptic plasticity before motor symptoms and neurodegeneration. Experience-dependent synaptic plasticity caused by mechanisms such as LTP or novel sensory experience potentiates synaptic strength, enhances new dendritic spine formation and stabilization, and may contribute to normal cognitive processes, such as learning and memory. We have previously reported that under baseline conditions (without any sensory manipulation) neuronal circuitry in HD (R6/2 mouse model) was highly unstable, which led to a progressive loss of persistent spines in these mice, and that mutant huntingtin was directly involved in the process. Here, we investigated whether pathological processes of HD interfere with the normal experience-dependent plasticity of dendritic spines in the R6/2 model. Six weeks of two-photon in vivo imaging before and after whisker trimming revealed that sensory deprivation exacerbates loss of persistent-type, stable spines in R6/2 mice compared with wild-type littermates. In addition, sensory deprivation leads to impaired transformation of newly generated spines into persistent spines in R6/2 mice. As a consequence, reduced synaptic density and decreased PSD-95 protein levels are evident in their barrel cortical neurons. These data suggest that mutant huntingtin is implicated in maladaptive synaptic plasticity, which could be one of the plausible mechanisms underlying early cognitive deficits in HD.

  11. Treatment of transplanted CT26 tumour with dendritic cell vaccine in combination with blockade of vascular endothelial growth factor receptor 2 and CTLA-4

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Buus, S; Claesson, M H

    2005-01-01

    We investigated the anti CT26 tumour effect of dendritic cell based vaccination with the MuLV gp70 envelope protein-derived peptides AH1 and p320-333. Vaccination lead to generation of AH1 specific cytotoxic lymphocytes (CTL) and some decrease in tumour growth of simultaneously inoculated CT26...

  12. Vapor Crystal Growth (VCG) experiment Cell

    Science.gov (United States)

    1992-01-01

    The image shows a test cell of Crystal Growth experiment inside the Vapor Crystal Growth System (VCGS) furnace aboard the STS-42, International Microgravity Laboratory-1 (IML-1), mission. The goal of IML-1, a pressurized marned Spacelab module, was to explore in depth the complex effects of weightlessness of living organisms and materials processing. More than 200 scientists from 16 countires participated in the investigations.

  13. Essential role for vav Guanine nucleotide exchange factors in brain-derived neurotrophic factor-induced dendritic spine growth and synapse plasticity.

    Science.gov (United States)

    Hale, Carly F; Dietz, Karen C; Varela, Juan A; Wood, Cody B; Zirlin, Benjamin C; Leverich, Leah S; Greene, Robert W; Cowan, Christopher W

    2011-08-31

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors through a novel TrkB-dependent mechanism. We find that Vav is required for BDNF-stimulated Rac-GTP production in cortical and hippocampal neurons. Vav is partially enriched at excitatory synapses in the postnatal hippocampus but does not appear to be required for normal dendritic spine density. Rather, we observe significant reductions in both BDNF-induced, rapid, dendritic spine head growth and in CA3-CA1 theta burst-stimulated long-term potentiation in Vav-deficient mouse hippocampal slices, suggesting that Vav-dependent regulation of dendritic spine morphological plasticity facilitates normal functional synapse plasticity.

  14. Convective heat transfer during dendritic solidification

    Science.gov (United States)

    Glicksman, M. E.; Huang, S. C.

    1978-01-01

    Experiments on succinonitrile are described in which the dependence of dendritic growth velocity is studied as a function of orientation with respect to gravity. Growth rate measurements were carried out at a relatively small supercooling, requiring high specimen purity as well as extreme thermal stability and precision temperature measurement. The normalized growth velocity showed a dependence on orientation described by the ratio of observed growth velocity to that expected for convection-free growth being equal to 3.52 times the n-th power of Cos half the orientation angle, where n lies between 0.5 and 0.75.

  15. Numerical Simulation of Three-Dimensional Dendritic Growth of Alloy: Part II—Model Application to Fe-0.82WtPctC Alloy

    Science.gov (United States)

    Wang, Weiling; Luo, Sen; Zhu, Miaoyong

    2016-03-01

    In the second part (Part II) of the present simulation work, the three-dimensional (3D) dendritic growth of Fe-0.82wtpctC alloy is investigated with the 3D CA-FVM cellular automaton-finite volume method model developed in Part I. The influences of the melt undercooling, the interfacial anisotropy, and the forced flow on the equiaxed dendritic growth, especially the formation of secondary arms, are discussed. The comparisons of equiaxed dendritic growth in 3D and two-dimensional (2D) are also carried out. Finally, the columnar dendritic growth under different cooling conditions is investigated including the morphology and the secondary dendrite arm spacing (SDAS). The results show that the high undercooling can promote the formation of secondary arms as the anisotropy parameter is 0.04. With the increase of the anisotropy parameter, the secondary arms first reduce and then well develop again; meanwhile the tertiary arms are gradually developed. However, the secondary arms vanish at the undercooling of 5 K as the anisotropy parameter increases to 0.04. With the introduction of the forced flow with the inlet velocity of 0.001 m/s along the x axis, the secondary arms at the left (upstream) arm become more developed. However, they become slightly less developed with the forced flow intensifying. Secondary arms at the left side (upstream) of the perpendicular arms and in the y-z symmetrical plane become more and more developed as the inlet velocity increases. The competition of the secondary arms at the right side (downstream) of the perpendicular arms and at the right (downstream) arm becomes significant as the undercooling increases from 10 to 15 K. The solute-enriched envelope in 2D is much thicker than in the 3D case, so that the dendritic growth in 2D is influenced more by the melt flow and the undercooling; moreover, the secondary arms in 2D are hard to form even at the undercooling of 15 K and with the forced convection in the present article. Meanwhile, the

  16. A Simple Mechanical Experiment on Exponential Growth

    Science.gov (United States)

    McGrew, Ralph

    2015-01-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the…

  17. Dendritic Cell

    OpenAIRE

    Sevda Söker

    2005-01-01

    Dendritic cells, a member of family of antigen presenting cells, are most effective cells in the primary immune response. Dendritic cells originated from dendron, in mean of tree in the Greek, because of their long and elaborate cytoplasmic branching processes. Dendritic cells constitute approximately 0.1 to 1 percent of the blood’s mononuclear cell. Dendritic cells are widely distributed, and specialized for antigen capture and T cell stimulation. In this article, structures and functions of...

  18. Diet-induced obesity alters dendritic cell function in the presence and absence of tumor growth.

    Science.gov (United States)

    James, Britnie R; Tomanek-Chalkley, Ann; Askeland, Eric J; Kucaba, Tamara; Griffith, Thomas S; Norian, Lyse A

    2012-08-01

    Obesity is a mounting health concern in the United States and is associated with an increased risk for developing several cancers, including renal cell carcinoma (RCC). Despite this, little is known regarding the impact of obesity on antitumor immunity. Because dendritic cells (DC) are critical regulators of antitumor immunity, we examined the combined effects of obesity and tumor outgrowth on DC function. Using a diet-induced obesity (DIO) model, DC function was evaluated in mice bearing orthotopic RCC and in tumor-free controls. Tumor-free DIO mice had profoundly altered serum cytokine and chemokine profiles, with upregulation of 15 proteins, including IL-1α, IL-17, and LIF. Tumor-free DIO mice had elevated percentages of conventional splenic DC that were impaired in their ability to stimulate naive T cell expansion, although they were phenotypically similar to normal weight (NW) controls. In DIO mice, intrarenal RCC tumor challenge in the absence of therapy led to increased local infiltration by T cell-suppressive DC and accelerated early tumor outgrowth. Following administration of a DC-dependent immunotherapy, established RCC tumors regressed in normal weight mice. The same immunotherapy was ineffective in DIO mice and was characterized by an accumulation of regulatory DC in tumor-bearing kidneys, decreased local infiltration by IFN-γ-producing CD8 T cells, and progressive tumor outgrowth. Our results suggest that the presence of obesity as a comorbidity can impair the efficacy of DC-dependent antitumor immunotherapies.

  19. TGF-β Signaling in Dopaminergic Neurons Regulates Dendritic Growth, Excitatory-Inhibitory Synaptic Balance, and Reversal Learning

    Directory of Open Access Journals (Sweden)

    Sarah X. Luo

    2016-12-01

    Full Text Available Neural circuits involving midbrain dopaminergic (DA neurons regulate reward and goal-directed behaviors. Although local GABAergic input is known to modulate DA circuits, the mechanism that controls excitatory/inhibitory synaptic balance in DA neurons remains unclear. Here, we show that DA neurons use autocrine transforming growth factor β (TGF-β signaling to promote the growth of axons and dendrites. Surprisingly, removing TGF-β type II receptor in DA neurons also disrupts the balance in TGF-β1 expression in DA neurons and neighboring GABAergic neurons, which increases inhibitory input, reduces excitatory synaptic input, and alters phasic firing patterns in DA neurons. Mice lacking TGF-β signaling in DA neurons are hyperactive and exhibit inflexibility in relinquishing learned behaviors and re-establishing new stimulus-reward associations. These results support a role for TGF-β in regulating the delicate balance of excitatory/inhibitory synaptic input in local microcircuits involving DA and GABAergic neurons and its potential contributions to neuropsychiatric disorders.

  20. 3D dendritic gold nanostructures: seeded growth of a multi-generation fractal architecture.

    Science.gov (United States)

    Pan, Ming; Xing, Shuangxi; Sun, Ting; Zhou, Wenwen; Sindoro, Melinda; Teo, Hui Hian; Yan, Qingyu; Chen, Hongyu

    2010-10-14

    In this report, we focus on the synthetic challenges for nanoscale 3D fractal architectures, namely the multi-generation growth with control in both size uniformity and colloidal stability; by directing the simultaneous growth of Au and polyaniline on Au seeds, fractal nanoparticles can be achieved with a topology distinctively different from those of spheres, cubes or rods.

  1. Phase field modeling of dendritic coarsening during isothermal

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo

    2011-08-01

    Full Text Available Dendritic coarsening in Al-2mol%Si alloy during isothermal solidification at 880K was investigated by phase field modeling. Three coarsening mechanisms operate in the alloy: (a melting of small dendrite arms; (b coalescence of dendrites near the tips leading to the entrapment of liquid droplets; (c smoothing of dendrites. Dendrite melting is found to be dominant in the stage of dendritic growth, whereas coalescence of dendrites and smoothing of dendrites are dominant during isothermal holding. The simulated results provide a better understanding of dendrite coarsening during isothermal solidification.

  2. A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection

    Science.gov (United States)

    Rojas, Roberto; Takaki, Tomohiro; Ohno, Munekazu

    2015-10-01

    In this study, a combination of the lattice Boltzmann method (LBM) and the phase-field method (PFM) is used for modeling simultaneous growth and motion of a dendrite during solidification. PFM is used as a numerical tool to simulate the morphological changes of the solid phase, and the fluid flow of the liquid phase is described by using LBM. The no-slip boundary condition at the liquid-solid interface is satisfied by adding a diffusive-forcing term in the LBM formulation. The equations of motion are solved for tracking the translational and rotational motion of the solid phase. The proposed method is easily implemented on a single Cartesian grid and is suitable for parallel computation. Two-dimensional benchmark computations show that the no-slip boundary condition and the shape preservation condition are satisfied in this method. Then, the present method is applied to the calculation of dendritic growth of a binary alloy under melt convection. Initially, the solid is stationary, and then, the solid moves freely due to the influence of fluid flow. Simultaneous growth and motion are effectively simulated. As a result, it is found that motion and melt convection enhance dendritic growth along the flow direction.

  3. The brain-specific RasGEF very-KIND is required for normal dendritic growth in cerebellar granule cells and proper motor coordination

    Science.gov (United States)

    Hayashi, Kanehiro; Furuya, Asako; Sakamaki, Yuriko; Akagi, Takumi; Shinoda, Yo; Sadakata, Tetsushi; Hashikawa, Tsutomu; Shimizu, Kazuki; Minami, Haruka; Sano, Yoshitake; Nakayama, Manabu

    2017-01-01

    Very-KIND/Kndc1/KIAA1768 (v-KIND) is a brain-specific Ras guanine nucleotide exchange factor carrying two sets of the kinase non-catalytic C-lobe domain (KIND), and is predominantly expressed in cerebellar granule cells. Here, we report the impact of v-KIND deficiency on dendritic and synaptic growth in cerebellar granule cells in v-KIND knockout (KO) mice. Furthermore, we evaluate motor function in these animals. The gross anatomy of the cerebellum, including the cerebellar lobules, layered cerebellar cortex and densely-packed granule cell layer, in KO mice appeared normal, and was similar to wild-type (WT) mice. However, KO mice displayed an overgrowth of cerebellar granule cell dendrites, compared with WT mice, resulting in an increased number of dendrites, dendritic branches and terminals. Immunoreactivity for vGluT2 (a marker for excitatory presynapses of mossy fiber terminals) was increased in the cerebellar glomeruli of KO mice, compared with WT mice. The postsynaptic density around the terminals of mossy fibers was also increased in KO mice. Although there were no significant differences in locomotor ability between KO and WT animals in their home cages or in the open field, young adult KO mice had an increased grip strength and a tendency to exhibit better motor performance in balance-related tests compared with WT animals. Taken together, our results suggest that v-KIND is required for compact dendritic growth and proper excitatory synaptic connections in cerebellar granule cells, which are necessary for normal motor coordination and balance. PMID:28264072

  4. Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees.

    Science.gov (United States)

    Dobrin, Scott E; Herlihy, J Daniel; Robinson, Gene E; Fahrbach, Susan E

    2011-09-01

    The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells.

  5. A THREE-DIMENSIONAL CELLULAR AUTOMATON SIMULATION FOR DENDRITIC GROWTH%枝晶生长的三维元胞自动机模拟

    Institute of Scientific and Technical Information of China (English)

    江鸿翔; 赵九洲

    2011-01-01

    Perhaps dendrite is the most observed solidification microstructure of many metallic materials. The dendritic morphologies show a dominating effect on the performance of casting products. A lot of work has been carried out to investigate the formation mechanism of dendritic microstructure. It is found that the development of dendritic microstructures is a complicated process controlled by the interplay of many factors such as thermal and solute transfer, capillary etc. Cellular automaton (CA) can simulate the solidification process with a high computational efficiency, thus, attracts great attentions. In recent years, progress has been made on the two dimensional CA models for the solidification microstructure formation. But up to date researches on three dimensional CA model are very limited. A combined cellular automaton-finite difference (CA-FD) model for the three dimensional simulation of dendritic growth was developed in this paper. Simulations were performed to investigate the dendritic growth in an undercooled Al-Cu alloy as well as in a directionally solidified Al-Cu alloy. The numerical results showed clearly the development of the free dendrite in the under-cooled melt and the microstructure evolution in the directionally solidified alloy and agreed well with the theoretical predictions and the experimental results.%通过将元胞自动机和有限差分方法相耦合,建立了立方体系金属和合金枝晶生长的三维模型.应用该模型,模拟了Al-Cu合金过冷熔体中自由枝晶的生长和定向凝固条件下Al-Cu合金凝固组织演变过程.模拟结果清楚展现了过冷熔体中自由枝晶的生长过程和定向凝固过程中枝晶的形成与淹没,与理论预测和实验结果相吻合,表明所发展的模型能够较准确地描述立方体系金属和合金的凝固组织演变过程.

  6. Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function

    OpenAIRE

    Wang, Yanyan; Huang, Gonghua; Vogel, Peter; Neale, Geoffrey; Reizis, Boris; Chi, Hongbo

    2012-01-01

    Homeostatic control of dendritic cell (DC) survival is crucial for adaptive immunity, but the molecular mechanism is not well defined. Moreover, how DCs influence immune homeostasis under steady state remains unclear. Combining DC-specific and -inducible deletion systems, we report that transforming growth factor beta-activated kinase 1 (TAK1) is an essential regulator of DC survival and immune system homeostasis and function. Deficiency of TAK1 in CD11c+ cells induced markedly elevated apopt...

  7. Chronic Lead Exposure and Mixed Factors of Gender×Age×Brain Regions Interactions on Dendrite Growth, Spine Maturity and NDR Kinase.

    Directory of Open Access Journals (Sweden)

    Yang Du

    Full Text Available NDR1/2 kinase is essential in dendrite morphology and spine formation, which is regulated by cellular Ca2+. Lead (Pb is a potent blocker of L-type calcium channel and our recent work showed Pb exposure impairs dendritic spine outgrowth in hippocampal neurons in rats. But the sensitivity of Pb-induced spine maturity with mixed factors (gender×age×brain regions remains unknown. This study aimed to systematically investigate the effect of Pb exposure on spine maturity in rat brain with three factors (gender×age×brain regions, as well as the NDR1/2 kinase expression. Sprague-Dawley rats were exposed to Pb from parturition to postnatal day 30, 60, 90, respectively. Golgi-Cox staining was used to examine spine maturity. Western blot assay was applied to measure protein expression and real-time fluorescence quantitative PCR assay was used to examine mRNA levels. The results showed chronic Pb exposure significantly decreased dendritic length and impaired spine maturity in both rat hippocampus and medial prefrontal cortex. The impairment of dendritic length induced by Pb exposure tended to adolescence > adulthood, hippocampus > medial prefrontal cortex and female > male. Pb exposure induced significant damage in spine maturity during adolescence and early adult while little damage during adult in male rat brain and female medial prefrontal cortex. Besides, there was sustained impairment from adolescence to adulthood in female hippocampus. Interestingly, impairment of spine maturity followed by Pb exposure was correlated with NDR1/2 kinase. The reduction of NDR1/2 kinase protein expression after Pb exposure was similar to the result of spine maturity. In addition, NDR2 and their substrate Rabin3 mRNA levels were significantly decreased by Pb exposure in developmental rat brain. Taken together, Pb exposure impaired dendrite growth and maturity which was subject to gender×age×brain regions effects and related to NDR1/2 signal expression.

  8. Essential Role for Vav GEFs in Brain-derived Neurotrophic Factor (BDNF)-induced Dendritic Spine Growth and Synapse Plasticity

    OpenAIRE

    Hale, Carly F.; Dietz, Karen C.; Varela, Juan A.; Wood, Cody B.; Zirlin, Benjamin C.; Leah S. Leverich; Greene, Robert W.; Cowan, Christopher W.

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors (GEFs) through a no...

  9. Dependence of crack growth kinetics on dendrite orientation and water chemistry for Alloy 182 weld metal in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhanpeng, E-mail: zplu@shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan); Chen, Junjie [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shoji, Tetsuo [New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579 (Japan); Meng, Fanjiang [Shanghai Nuclear Engineering Research & Design Institute, Shanghai 200233 (China)

    2015-03-15

    Highlights: • SCC paths along dendrite directions in both T–S and T–L specimens of Alloy 182. • Higher SCC growth rates in T–S orientation specimen than in T–L orientation specimen. • CGR increased with increasing dissolved oxygen. • Apparently negative da/dt curve by ACPD in hydrogen saturated water. - Abstract: Stress corrosion cracking growth rates of Alloy 182 weld metals in T–S and T–L orientations in 288 °C pure water with various dissolved oxygen and hydrogen concentrations were measured. Extensive inter-dendritic stress corrosion cracking paths on the side surfaces and fracture surfaces were observed. The crack growth path in the T–S orientation specimen was perpendicular to the applied loading direction, and parallel to the loading direction in the T–L specimen. Crack growth rates of the T–S specimen were significantly higher than those of the T–L specimen under the same test conditions. The crack growth rate decreased significantly with decreasing dissolved oxygen concentration. Adding dissolved hydrogen in water caused an apparent decrease of the alternating current potential drop signal during crack growth monitoring.

  10. Dendritic cell vaccination for metastatic melanoma: a 14-year monoinstitutional experience.

    Science.gov (United States)

    de Rosa, Francesco; Ridolfi, Laura; Fiammenghi, Laura; Petrini, Massimiliano; Granato, Anna M; Ancarani, Valentina; Pancisi, Elena; Soldati, Valentina; Cassan, Serena; Bulgarelli, Jenny; Framarini, Massimo; Tauceri, Francesca; Migliori, Giuseppe; Brolli, Claudia; Gentili, Giorgia; Petracci, Elisabetta; Nanni, Oriana; Riccobon, Angela; Ridolfi, Ruggero; Guidoboni, Massimo

    2017-08-01

    Although immunomodulating antibodies are highly effective in metastatic melanoma, their toxicity, related to the activation of T lymphocytes, can be severe. Anticancer vaccines promote a fairly specific response and are very well tolerated, but their effectiveness has yet to be demonstrated. We have been treating patients with advanced melanoma with an autologous dendritic cell vaccine since 2001; to better characterize the safety and efficacy of our product, we designed a retrospective study on all of our patients treated with the vaccine to date. We retrospectively reviewed both case report forms of patients included in clinical trials and medical records of those treated within a compassionate use program. Response was assessed according to the Response Evaluation Criteria In Solid Tumors criteria and toxicity has been graded according to CTCAE 4.0. Although the response rate has been rather low, the median overall survival of 11.4 months and the 1-year survival rate of 46.9% are encouraging, especially considering the fact that data were obtained in a heavily pretreated population and only about one quarter of the patients had received ipilimumab and/or BRAF inhibitors. Multivariate analysis confirmed that the development of an immune response was significantly correlated with a better prognosis (hazard ratio 0.54; P=0.019). The adverse events observed were generally mild and self-limiting. Our analysis confirms the excellent tolerability of our vaccine, making it a potential candidate for combination therapies. As efficacy seems largely restricted to immunoresponsive patients, future strategies should aim to increase the number of these patients.

  11. Substrate effect on the growth of monolayer dendritic MoS2 on LaAlO3 (100) and its electrocatalytic applications

    Science.gov (United States)

    Li, Cong; Zhang, Yu; Ji, Qingqing; Shi, Jianping; Chen, Zhaolong; Zhou, Xiebo; Fang, Qiyi; Zhang, Yanfeng

    2016-09-01

    In accommodating the rapid development of two-dimensional (2D) nanomaterials, chemical vapor deposition (CVD) has become a powerful tool for their batch production with desirable characteristics, such as high crystal quality, large domain size, and tunable domain shape. The crystallinity and morphology of the growth substrates usually play a crucial role in the CVD synthesis of high-quality monolayer MoS2, a kind of 2D layered material which has ignited huge interest in nanoelectronics, optoelectronics and energy harvesting, etc. Herein, by utilizing a low-pressure chemical vapor deposition (LPCVD) system, we demonstrate a regioselective synthesis of monolayer MoS2 on the corrugated single-crystal LaAlO3 (100) with twin crystal domains induced by the second-order phase transition. Unique dendritic morphologies with tunable nucleation densities were obtained in different regions of the undulated substrate, presenting a strong substrate modulation effect. Interestingly, the exposure of abundant active edge sites along with the rather high nucleation density makes the monolayer dendritic MoS2 a good electrocatalyst for hydrogen evolution reaction (HER), particularly featured by a rather high exchange current density (70.4 μA cm-2). Furthermore, uniform monolayer MoS2 films can also be obtained and transferred to arbitrary substrates. We believe that this work provides a new growth system for the controllable synthesis of 2D layered materials with unique dendritic morphologies, as well as its great application potential in energy conversion and harvesting.

  12. Expression and clinical significance of dendritic cell and transforming growth factor-beta 1 in cervical cancer

    Institute of Scientific and Technical Information of China (English)

    Zhao; Shan; Rong; Fengnian

    2006-01-01

    Objective:To explore the density and mature status of Dendritic cell(DC) in cervical cancer and correlation with the expression of transforming growth factor-beta 1(TGF-β1).Methods:Streptavidin-peroxidase(SP) immunohistochemistry methods were used to detect S-100 DC and the expression of TGF-β1 in 20 normal cervical tissues and 53 cervical cancer tissues without any sort of chemotherapy or radiation therapy prior to resection.Medical records were reviewed,clinicopathological variables were retrieved and used for analysis.Results:Two types of DC were observed under the microscope.The expression of DC in cervical cancer was significantly higher than that in normal tissues(23.34 cells/mm2 vs 29.91 cells/mm2,P<0.05),and significantly higher in early stage than that in advanced stage(P<0.05).The expression of TGF-β1 was significantly higher in cervical cancer than that in normal tissues (P<0.025).However,there was no correaction between TGF-β1 and lymph nodes metastasis.The index of DC in cervical cancer was negatively correlated to the expression of TGF-β1 in tumor cells (r=-0.8875,P=0.0001).Conclusion:Maturation of DC in cervical cancer is inhibited.The decreased number of DC and the higher expression of TGF-β1 are due to the failure of the immunity,these may play an important role in the development of the cervical cancer.

  13. Marriage and Family Therapist Interns' Experiences of Growth

    Science.gov (United States)

    Paris, Eleni; Linville, Deanna; Rosen, Karen

    2006-01-01

    Few studies have investigated therapist interns' growth experiences, both personal and professional, and the interplay between them. This qualitative study explored the reciprocal process of growth during clinical training: the personal life experiences that affect professional growth and the professional/clinical experiences that affect personal…

  14. History-dependent Selection of Primary Dendritic Spacing in Directionally Solidified Alloy

    Institute of Scientific and Technical Information of China (English)

    Linlin WANG; Xin LIN; Guolu DING; Lilin WANG; Weidong HUANG

    2007-01-01

    Directional solidification experiments were carried out for succinonitrile-1.0 wt pct acetone alloy with the orientation of dendritic arrays being not parallel to the direction of the temperature gradient. Experimental results show that there exists an allowable range of primary dendritic spacing under a given growth condition.The average primary spacing depends not only on the current growth conditions but also on the way by which the conditions were achieved. The upper limit of the allowable range becomes smaller in comparison with that with direction of dendrite arrays parallel to the direction of the temperature gradient, which means that the history-dependence of dendritic growth is weaker under this condition. The lower limit obtained is compared with a self-consistent model, which shows a good agreement with experimental results.

  15. Deletion of the NMDA receptor GluN2A subunit significantly decreases dendritic growth in maturing dentate granule neurons.

    Directory of Open Access Journals (Sweden)

    Timal S Kannangara

    Full Text Available It is known that NMDA receptors can modulate adult hippocampal neurogenesis, but the contribution of specific regulatory GluN2 subunits has been difficult to determine. Here we demonstrate that mice lacking GluN2A (formerly NR2A do not show altered cell proliferation or neuronal differentiation, but present significant changes in neuronal morphology in dentate granule cells. Specifically, GluN2A deletion significantly decreased total dendritic length and dendritic complexity in DG neurons located in the inner granular zone. Furthermore, the absence of GluN2A also resulted in a localized increase in spine density in the middle molecular layer, a region innervated by the medial perforant path. Interestingly, alterations in dendritic morphology and spine density were never seen in dentate granule cells located in the outer granular zone, a region that has been hypothesized to contain older, more mature, neurons. These results indicate that although the GluN2A subunit is not critical for the cell proliferation and differentiation stages of the neurogenic process, it does appear to play a role in establishing synaptic and dendritic morphology in maturing dentate granule cells localized in the inner granular zone.

  16. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis.

    Science.gov (United States)

    Dong, Xintong; Liu, Oliver W; Howell, Audrey S; Shen, Kang

    2013-10-10

    Robust dendrite morphogenesis is a critical step in the development of reproducible neural circuits. However, little is known about the extracellular cues that pattern complex dendrite morphologies. In the model nematode Caenorhabditis elegans, the sensory neuron PVD establishes stereotypical, highly branched dendrite morphology. Here, we report the identification of a tripartite ligand-receptor complex of membrane adhesion molecules that is both necessary and sufficient to instruct spatially restricted growth and branching of PVD dendrites. The ligand complex SAX-7/L1CAM and MNR-1 function at defined locations in the surrounding hypodermal tissue, whereas DMA-1 acts as the cognate receptor on PVD. Mutations in this complex lead to dramatic defects in the formation, stabilization, and organization of the dendritic arbor. Ectopic expression of SAX-7 and MNR-1 generates a predictable, unnaturally patterned dendritic tree in a DMA-1-dependent manner. Both in vivo and in vitro experiments indicate that all three molecules are needed for interaction.

  17. Dendritic Growth, Solidification Thermal Parameters, and Mg Content Affecting the Tensile Properties of Al-Mg-1.5 Wt Pct Fe Alloys

    Science.gov (United States)

    Gomes, Leonardo F.; Silva, Bismarck L.; Garcia, Amauri; Spinelli, José E.

    2017-02-01

    Al-Mg-Fe alloys are appointed as favorable ones with respect to the costs and all the required properties for successful vessel service. However, the experimental inter-relations of solidification thermal parameters, microstructure, and mechanical strength are still undetermined. In the present research work, the dependences of tensile properties on the length scale of the dendritic morphology of ternary Al-1.2 wt pct Mg-1.5 wt pct Fe and Al-7 wt pct Mg-1.5 wt pct Fe alloys are examined. Transient heat flow conditions during solidification have been achieved by the use of a directional solidification system, thus permitting a comprehensive characterization of the dendritic microstructures to be performed. Thermo-Calc computations, X-ray diffraction, and scanning electron microscopy analyses are carried out to give support to the extensive microstructural evaluation performed with both ternary Al-Mg-Fe alloys. Experimental growth relations of primary, λ 1, and secondary, λ 2, dendrite arm spacings with cooling rate ( {dot T}_{{L}} ) and of tensile properties with λ 2 are proposed. For both alloys examined, Hall-Petch type formulas show that the tensile strength increases with the decrease in λ 2. The soundest strength-ductility balance is exhibited by the Al-7 wt pct Mg-1.5 wt pct Fe alloy specimen with refined microstructure. This is shown to be due to a more homogeneous distribution of intermetallic particles in connection with solid solution strengthening propitiated by Mg. Functional experimental inter-relations of tensile properties with growth (V L) and cooling rates ( {dot T}_{{L}} ) for both ternary Al-Mg-Fe alloys have also been derived.

  18. [Inflammatory dendritic cells].

    Science.gov (United States)

    Segura, Elodie; Amigorena, Sebastian

    2014-01-01

    Dendritic cells are a rare and heterogeneous population of professional antigen-presenting cells. Several murine dendritic cell subpopulations have been identified that differ in their phenotype and functional properties. In the steady state, committed dendritic cell precursors differentiate into lymphoid organ-resident dendritic cells and migratory tissue dendritic cells. During inflammation appears an additional dendritic cell subpopulation that has been termed « inflammatory dendritic cells ». Inflammatory dendritic cells differentiate in situ from monocytes recruited to the site of inflammation. Here, we discuss how mouse inflammatory dendritic cells differ from macrophages and from other dendritic cell populations. Finally, we review recent work on human inflammatory dendritic cells.

  19. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Science.gov (United States)

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  20. Dendritic web silicon for solar cell application

    Science.gov (United States)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  1. Recrystallization phenomena of solution grown paraffin dendrites

    NARCIS (Netherlands)

    Hollander, F.F.A.; Stasse, O.; Suchtelen, van J.; Enckevort, van W.J.P.

    2001-01-01

    Paraffin crystals were grown from decane solutions using a micro-Bridgman set up for in-situ observation of the morphology at the growth front. It is shown that for large imposed velocities, dendrites are obtained. After dendritic growth, aging or recrystallization processes set in rather quickly, c

  2. Experiences in home-based growth monitoring.

    Science.gov (United States)

    Suelan, F; Briones, H

    1992-01-01

    A growth monitoring project (GMP) of child weighing was implemented by the Philippines' Department of Health (DOH) through the Integrated Provincial Health Office to monitor either children's nutritional progress or their faltering of growth. Weaknesses, however, were found in the GMP. For example, only 31% of preschoolers included in the Nutrition Center of the Philippines (NCP) survey had growth charts. An 1990 UNICEF-DOH survey also found that the growth chart was used primarily by mothers and service providers to record infant immunization. Mothers brought their children to well-baby clinics in barangay health centers only when their children were sick. Conducted only once per year, weighing was not perceived as a tool in detecting and preventing sickness, and ensuring normal growth. Asked to help improve the GMP, the NCP consulted intended beneficiaries and cooperators to develop a plan to pilot an intensive monitoring project in four towns of Negros Occidental, starting in January 1991 and ending in December 1992. The resultant Home-Based Growth Monitoring (HBGM) project would place emphasis upon enabling rural mothers to become self-sustaining agents for child growth monitoring. A key feature was the establishment of a weighing post in a strategic place for every 2-3 family clusters. The HBGM project was piloted in 1991 in Calatrava, Toboso, Cauayan, and Sipalay. This paper describes project implementation, problems and solutions, and results.

  3. Electrochemical migration of tin in electronics and microstructure of the dendrites

    DEFF Research Database (Denmark)

    Minzari, Daniel; Grumsen, Flemming Bjerg; Jellesen, Morten Stendahl

    2011-01-01

    The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electron...... microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12V potential bias in 10ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have...... heterogeneous microstructure along the growth direction, which is attributed to unstable growth conditions inside the micro-volume of electrolyte. Selected area electron diffraction showed that the dendrites are metallic tin having sections of single crystal orientation and lead containing intermetallic...

  4. Growth of dendritic spines and its synapses in pyramidal neurons of visual cortex in mice%小鼠视皮质锥体神经元树突棘和突触的发育

    Institute of Scientific and Technical Information of China (English)

    赵凯冰; 崔占军; 陈文静; 牛艳丽

    2012-01-01

    目的:通过观察小鼠视皮质锥体神经元正常发育过程中树突棘的形态变化,研究树突棘与突触的发生及其可塑性的关系.方法:利用DiI散射方法标记小鼠视皮质锥体神经元树突棘,使用共聚焦显微镜对其进行观察分析;同时利用透射电子显微镜技术,对树突棘的超微结构进行分析.结果:树突棘的形态大小及其密度随发育而变化;成熟树突棘内部存在滑面内质网与棘器;树突棘参与了大部分突触后成分的构成.结论:树突棘的发育过程与突触的形成以及突触可塑性密切相关.%Objective:To explore the relationship among the synaptogenesis, synaptic plasticity and dendritic spines by observing the morphological changes of dendritic spines of pyramidal neurons in the visual cortex of mice during development Methods: The dendritic spines of the pyramidal neurons of mouse visual cortex were labeled with Dil and observed under a confocal microscope. The ultrastructures of dendritic spines were observed by means of transmission electron microscopy. Results:The morphology and density of dendritic spines were changing with mouse growth in response to neuronal activity. The smooth endoplasmic reticulum and spine apparatus were detectable in matured dendritic spines. And, dendritic spines offered most parts of the postsynaptic element. Conclusion :These findings suggest that dendritic spines be close related synaptogenesis and synaptic plasticity.

  5. In Situ Observation of Cell-to-Dendrite Transition

    Institute of Scientific and Technical Information of China (English)

    PAN Xiu-Hong; HONG Yong; JIN Wei-Qing

    2005-01-01

    @@ The cell-to-dendrite transition of succinonitrile melt suspended on a loop-shaped Pt heater is observed in real time by a differential interference microscope coupled with Schlieren technique. The transition is divided into two parts: a dendrite coalition process and a subsequent dendrite elimination process. Firstly the dendrites from the same cell are united into a single dendrite. Secondly the competitive growth of dendrites from different cells leads to the elimination of dendrites. The two processes can be understood when involving crystallographic orientation. In addition, the tip velocity and primary spacing of a cell/dendrite are also measured. It turns out that the primary spacing has a significant jump, whereas the growth velocity has no abrupt change during the cell-to-dendrite transition.

  6. Conditional overexpression of insulin-like growth factor-1 enhances hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury.

    Science.gov (United States)

    Carlson, Shaun W; Madathil, Sindhu K; Sama, Diana M; Gao, Xiang; Chen, Jinhui; Saatman, Kathryn E

    2014-08-01

    Traumatic brain injury (TBI) is associated with neuronal damage or neuronal death in the hippocampus, a region critical for cognitive function. Immature neurons within the hippocampal neurogenic niche are particularly susceptible to TBI. Therapeutic strategies that protect immature hippocampal neurons or enhance posttraumatic neurogenesis may be advantageous for promoting functional recovery after TBI. Insulin-like growth factor-1 (IGF-1) promotes neurogenesis in the adult brain, but its effects on neurogenesis after TBI are unknown. We used an astrocyte-specific conditional IGF-1-overexpressing mouse model to supplement IGF-1 in regions of neuronal damage and reactive astrocytosis after controlled cortical impact injury. Although early loss of immature neurons was not significantly attenuated, overexpression of IGF-1 resulted in a marked increase in immature neuron density in the subgranular zone at 10 days after injury. This delayed increase seemed to be driven by enhanced neuron differentiation rather than by increased cellular proliferation. In wild-type mice, dendrites of immature neurons exhibited significant decreases in total length and number of bifurcations at 10 days after injury versus neurons in sham-injured mice. In contrast, the morphology of immature neuron dendrites in brain-injured IGF-1-overexpressing mice was equivalent to that in sham controls. These data provide compelling evidence that IGF-1 promotes neurogenesis after TBI.

  7. In vivo dendrite regeneration after injury is different from dendrite development

    Science.gov (United States)

    Li, Tun; Jan, Lily Yeh; Jan, Yuh Nung

    2016-01-01

    Neurons receive information along dendrites and send signals along axons to synaptic contacts. The factors that control axon regeneration have been examined in many systems, but dendrite regeneration has been largely unexplored. Here we report that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites, including the number of dendrite branches that regenerate and responsiveness to sensory stimuli. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. We found that regenerated arbors cover much less territory than uninjured neurons, fail to avoid crossing over other branches from the same neuron, respond less strongly to mechanical stimuli, and are pruned precociously. Finally, silencing the electrical activity of the neurons specifically blocks injury-induced, but not developmental, dendrite growth. By elucidating the essential features of dendrites grown in response to acute injury, our work builds a framework for exploring dendrite regeneration in physiological and pathological conditions. PMID:27542831

  8. A Model of Dendritic Cell Therapy for Melanoma

    Directory of Open Access Journals (Sweden)

    Ami eRadunskaya

    2013-03-01

    Full Text Available Dendritic cells are a promising immunotherapy tool for boosting an individual's antigen specific immune response to cancer. We develop a mathematical model using differential and delay-differential equations to describe the interactions between dendritic cells, effector-immune cells and tumor cells. We account for the trafficking of immune cells between lymph, blood, and tumor compartments. Our model reflects experimental results both for dendritic-cell trafficking and for immune suppression of tumor growth in mice. In addition, in silico experiments suggest more effective immunotherapy treatment protocols can be achieved by modifying dose location and schedule. A sensitivity analysis of the model reveals which patient-specific parameters have the greatest impact on treatment efficacy.

  9. Frog egg growth, experiment S003

    Science.gov (United States)

    Young, R. S.; Tremor, J. W.

    1971-01-01

    The objective of experiment was to determine the effect of weightlessness on the ability of a fertilized frog egg to divide normally and to differentiate and form a normal embryo. This experiment was first attempted on the Gemini 8 mission and was completed only partially because of the early termination of that mission.

  10. Effect of Ultrasound on the Growth Velocity of Dendritic Ice in Sucrose Solution%超声波对蔗糖溶液中树枝冰晶生长速度的影响

    Institute of Scientific and Technical Information of China (English)

    余德洋; 刘宝林; 王伯春

    2011-01-01

    In order to clarify the mechanism of ultrasound inhibition of dendritic ice growth, the effect of ultrasonic waves on the growth of dendritic ice in degassed sucrose solutions and untreated solutions were investigated. A novel ultrasonic cold stage device was applied in the detection. The results show that ultrasound could inhibit the growth of dendritic ice in both untreated and degassed sucrose solution. But the growth velocity of dendritic ice in untreated sucrose solution is much less than that in degassed solution. It is concluded that cavitation is the major factor for the inhibition of dendritic ice growth.%为了阐明超声波抑制冰晶生长的机理,运用自制的超声波冷却实验台分别研究了超声波对脱气蔗糖稀溶液与未脱气蔗糖稀溶液中树枝冰晶生长的影响。结果显示:超声波对脱气蔗糖稀溶液与未脱气蔗糖稀溶液中树枝冰晶生长速度均有抑制作用,但未脱气蔗糖溶液中树枝冰晶的生长速度要大大低于脱气蔗糖溶液中树枝冰晶的生长速度。这表明超声波在溶液中引起的空化效应是抑制冰晶生长的主要因素。

  11. Rebalancing China's Economic Growth:Some Insights from Japan's Experience

    Institute of Scientific and Technical Information of China (English)

    Tomoyuki Fukumoto; Ichiro Muto

    2012-01-01

    One of the greatest challenges China faces is reshaping its heavily investment-driven mode of economic growth.By investigating how the rebalancing of Japan's economic growth mode was realized in the 1970s,we indicate that it is essential in rebalancing to correct the distortions in factor cost (labor cost and capital cost) in a harmonious way.In addition,we refer to Japan's experience to indicate that rebalancing of domestic growth does not necessarily lead to external rebalancing.

  12. Financial repression, money growth, and seignorage: The Polish experience

    NARCIS (Netherlands)

    Aarle, B. van; Budina, N.

    1997-01-01

    Financial Repression, Money Growth and Seignorage: The Polish Experience. — A small analytical framework is developed to analyze the relation between reserve requirements, base money growth and seignorage revenues. From the analysis, the authors can derive of steady-state seignorage revenues as a

  13. Financial repression, money growth, and seignorage: The Polish experience

    NARCIS (Netherlands)

    Aarle, B. van; Budina, N.

    1997-01-01

    Financial Repression, Money Growth and Seignorage: The Polish Experience. — A small analytical framework is developed to analyze the relation between reserve requirements, base money growth and seignorage revenues. From the analysis, the authors can derive of steady-state seignorage revenues as a fu

  14. Financial repression, money growth, and seignorage: The Polish experience

    NARCIS (Netherlands)

    Aarle, B. van; Budina, N.

    1997-01-01

    Financial Repression, Money Growth and Seignorage: The Polish Experience. — A small analytical framework is developed to analyze the relation between reserve requirements, base money growth and seignorage revenues. From the analysis, the authors can derive of steady-state seignorage revenues as a fu

  15. Differential emotional experience induces elevated spine densities on basal dendrites of pyramidal neurons in the anterior cingulate cortex of Octodon degus.

    Science.gov (United States)

    Helmeke, C; Poeggel, G; Braun, K

    2001-01-01

    It appears likely that, in analogy to the synaptic development of sensory and motor cortices, which critically depends on sensory or motor stimulation (Rosenzweig and Bennett, 1996), the synaptic development of limbic cortical regions are modulated by early postnatal cognitive and emotional experiences. The very first postnatal experience, which takes place in a confined and stable familial environment, is the interaction of the newborn individual with the parents and siblings (Gray, 1958). The aim of this quantitative morphological study was to analyze the impact of different degrees of juvenile emotional experience on the synaptic development in a limbic cortical area, the dorsal anterior cingulate cortex, a region which is involved in the perception and regulation of emotions. We study the precocious trumpet-tailed rat (Octodon degus) as the animal model, because, like human babies, this species is born with functional visual and acoustic systems and the pups are therefore capable of detecting even subtle environmental changes immediately after birth (Reynolds and Wright, 1979; Poeggel and Braun, 1996; Braun et al., 2000; Ovtscharoff and Braun, 2001). The results demonstrate that already a subtle disturbance of the familial environment such as handling induced significantly elevated spine densities on the basal dendrites of layer III cortical pyramidal neurons. More severe disturbances of the emotional environment, such as periodic parental deprivation with or without subsequent chronic social isolation, resulted in an elevation of spine densities of similar magnitude as seen after handling and in addition, altered spine densities confined to specific dendritic segments were observed in these groups. These observations unveil the remarkable sensitivity of the dorsal anterior cingulate cortex towards environmental influences and behavioral experiences during phases of postnatal development. The behavioral consequences of these experience-induced synaptic changes

  16. Visualization of Growth Curve Data from Phenotype MicroarrayExperiments

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Janet S.; Joyner, Dominique C.; Borglin, Sharon E.; Hazen, Terry C.; Arkin, Adam P.; Bethel, E. Wes

    2007-04-19

    Phenotype microarrays provide a technology to simultaneouslysurvey the response of an organism to nearly 2,000 substrates, includingcarbon, nitrogen and potassium sources; varying pH; varying saltconcentrations; and antibiotics. In order to more quickly and easily viewand compare the large number of growth curves produced by phenotypemicroarray experiments, we have developed software to produce and displaycolor images, each of which corresponds to a set of 96 growth curves.Using color images to represent growth curves data has proven to be avaluable way to assess experiment quality, compare replicates, facilitatecomparison of the responses of different organisms, and identifysignificant phenotypes. The color images are linked to traditional plotsof growth versus time, as well as to information about the experiment,organism, and substrate. In order to share and view information and dataproject-wide, all information, plots, and data are accessible using onlya Web browser.

  17. Visualization of Growth Curve Data from Phenotype MicroarrayExperiments

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Janet S.; Joyner, Dominique C.; Borglin, Sharon E.; Hazen, Terry C.; Arkin, Adam P.; Bethel, E. Wes

    2007-04-19

    Phenotype microarrays provide a technology to simultaneouslysurvey the response of an organism to nearly 2,000 substrates, includingcarbon, nitrogen and potassium sources; varying pH; varying saltconcentrations; and antibiotics. In order to more quickly and easily viewand compare the large number of growth curves produced by phenotypemicroarray experiments, we have developed software to produce and displaycolor images, each of which corresponds to a set of 96 growth curves.Using color images to represent growth curves data has proven to be avaluable way to assess experiment quality, compare replicates, facilitatecomparison of the responses of different organisms, and identifysignificant phenotypes. The color images are linked to traditional plotsof growth versus time, as well as to information about the experiment,organism, and substrate. In order to share and view information and dataproject-wide, all information, plots, and data are accessible using onlya Web browser.

  18. A study of the micro- and nanoscale deformation behavior of individual austenitic dendrites in a FeCrMoVC cast alloy using micro- and nanoindentation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zeisig, J., E-mail: j.zeisig@ifw-dresden.de; Hufenbach, J.; Wendrock, H.; Gemming, T.; Kühn, U. [Leibniz Institute for Solid State and Materials Research, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); Eckert, J. [Leibniz Institute for Solid State and Materials Research, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); TU Dresden, Institute of Materials Science, Helmholtzstraße 7, D-01069 Dresden (Germany)

    2016-04-04

    Micro- and nanoindentation experiments were conducted to investigate the deformation mechanisms in a Fe79.4Cr13Mo5V1C1.6 (wt. %) cast alloy. This alloy consists of an as cast microstructure mainly composed of austenite, martensite, and a complex carbide network. During microhardness testing, metastable austenite transforms partially into martensite confirmed by electron backscatter diffraction. For nanoindentation tests, two different indenter geometries were applied (Berkovich and cube corner type). Load-displacement curves of nanoindentation in austenitic dendrites depicted pop-ins after transition into plastic deformation for both nanoindenters. Characterizations of the region beneath a nanoindent by transmission electron microscopy revealed a martensitic transformation as an activated deformation mechanism and suggest a correlation with the pop-in phenomena of the load-displacement curves. Furthermore, due to an inhomogeneous chemical composition within the austenitic dendrites, more stabilized regions deform by mechanical twinning. This additional deformation mechanism was only observed for the cube corner indenter with the sharper geometry since higher shear stresses are induced beneath the contact area.

  19. Lentivirally engineered dendritic cells activate AFP-specific T cells which inhibit hepatocellular carcinoma growth in vitro and in vivo.

    Science.gov (United States)

    Liu, Yang; Butterfield, Lisa H; Fu, Xiaohui; Song, Zhenshun; Zhang, Xiaoping; Lu, Chongde; Ding, Guanghui; Wu, Mengchao

    2011-07-01

    α-fetoprotein (AFP), a tumor-associated antigen for hepatocellular carcinoma (HCC), is an established biomarker for HCC. In this study, we created a lentivirus expressing the AFP antigen and investigated the anti-tumor activity of AFP-specific CD8+ T cells, with and without CD4+ T cells, which were activated by either AFP peptide-pulsed or Lenti-AFP-engineered Dendritic cells (DCs) in vitro and in vivo. AFP-specific T cells could efficiently kill HepG2 HCC cells, and produced IL-2, IFN-γ, TNF-α, perforin and granzyme B, with minimal production of IL-10 (a negative regulator of T cell activation). Both strategies activated AFP-specific T cells, but the lentiviral strategy was superior by several measures. Data also support an impact of CD4+ T cells in supporting anti-tumor activity. In vivo studies in a xenograft HCC tumor model also showed that AFP-specific T cells could markedly suppress HCC tumor formation and morbidity in tumor-bearing nude mice, as well as regulate serum levels of related cytokines and anti-tumor molecules. In parallel with human in vitro T cell cultures, the in vivo model demonstrated superior anti-tumor effects and Th1-skewing with Lenti-AFP-DCs. This study supports the superiority of a full-length antigen lentivirus-based DCs vaccine strategy over peptides, and provides new insight into the design of DCs-based vaccines.

  20. High-surface step density on dendritic pd leads to exceptional catalytic activity for formic acid oxidation.

    Science.gov (United States)

    Patra, S; Viswanath, B; Barai, K; Ravishankar, N; Munichandraiah, N

    2010-11-01

    Dendritic Pd with corrugated surfaces, obtained by a novel AC technique, exhibits an exceptionally high catalytic activity for the oxidation of formic acid because of the presence of a high density of surface steps. The formation of twinned dendrites leads to a predominance of exposed 111 facets with a high density of surface steps as evident from high resolution electron microscopy investigations. These surface sites provide active sites for the adsorption of the formic acid molecules, thereby enhancing the reaction rate. Control experiments by varying the time of deposition reveal the formation of partially grown dendrites at shorter times indicating that the dendrites were formed by growth rather than particle attachment. Our deposition method opens up interesting possibilities to produce anisotropic nanostructures with corrugated surfaces by exploiting the perturbations involved in the growth process.

  1. Stress during development alters dendritic morphology in the nucleus accumbens and prefrontal cortex.

    Science.gov (United States)

    Muhammad, A; Carroll, C; Kolb, B

    2012-08-02

    The long-term effects of stress during development have been well characterized. However, the effects of developmental stress on the underlying neurological mechanisms related to the reward system are not well understood. The present report studied the long term effects of stress during development on the structural plasticity in the cortical and subcortical regions. Rats exposed to stress during embryonic development (prenatal stress; PS) or soon after birth (maternal separation; MS) were studied for structural alteration at the neuronal level in the nucleus accumbens (NAc), orbital frontal cortex (OFC), and medial prefrontal cortex (mPFC). The findings show that stress during development increased dendritic branching, length, and spine density in the NAc, and subregions of the PFC. PS experience increased dendritic branching and length in the mPFC apical and basilar dendrites. In contrast, a PS-associated decrease in dendritic branching and length was observed in the basilar branches of the OFC. MS resulted in an increase in dendritic growth and spine density in the subregions of the PFC. The effect of PS on neuroanatomy was more robust than MS despite the shorter duration and intensity. The altered dendritic growth and spine density associated with stress during development could have potential impact on NAc and PFC related behaviors.

  2. Investment, Macroeconomic Stability and Growth: The Latin American Experience Investment, Macroeconomic Stability and Growth: The Latin American Experience

    Directory of Open Access Journals (Sweden)

    Patricio Rojas

    1993-03-01

    Full Text Available The purpose of this paper is to explore the role of factor accumulation, economic policies, and economic and political uncertainties on growth performance of Latin American countries in the last three decades. We extend the work of Corbo and Rojas (1992 in two directions suggested by recent work in this area. First, we extend the model by considering term of trade effects and an additional measure of distortion, the black marker premium. Second, we provide further evidence of the channels through which economic policies affect growth by endogenizing the investment rate. The main conclusions are that the terms of trade affect growth directly, and indirectly through its effect in the investment rate: the black market premium is more a measure of macroeconomic instability than of the degree of oppenness; and stability of economic policies can affect growth directly through the law of motion for growth and indirectly through investment rates. Investment, Macroeconomic Stability and Growth: The Latin American Experience

  3. Statistical analysis of joint toxicity in biological growth experiments

    DEFF Research Database (Denmark)

    Spliid, Henrik; Tørslev, J.

    1994-01-01

    The authors formulate a model for the analysis of designed biological growth experiments where a mixture of toxicants is applied to biological target organisms. The purpose of such experiments is to assess the toxicity of the mixture in comparison with the toxicity observed when the toxicants...... are applied individually to the organisms. The analysis is based on a random differential equation describing the growth of the organisms. This model yields a natural measure of interaction between toxicants and the hypothesis of independent action from a mixture of toxicants can be tested. The proposed model...

  4. Skylab experiments on semiconductors and alkali halides. [single crystal growth

    Science.gov (United States)

    Lundquist, C. A.

    1974-01-01

    The space processing experiments performed during the Skylab missions included one on single crystal growth of germanium selenide and telluride, one on pure and doped germanium crystals, two on pure and doped indium antimonide, one on gallium-indium-antimony systems, and one on a sodium chloride-sodium fluoride eutectic. In each experiment, three ampoules of sample were processed in the multipurpose electric furnace within the Skylab Materials Processing Facility. All were successful in varying degrees and gave important information about crystal growth removed from the effects of earth surface gravity.

  5. Very-high-growth-factor Planar Ablative Rayleigh Taylor Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D K; Braun, D G; Glendinning, S G; Edwards, M J; Milovich, J L; Sorce, C M; Collins, G W; Haan, S W; Page, R H

    2006-10-30

    The Rayleigh-Taylor (RT) instability is an important factor in bounding the performance envelope of ignition targets. This paper describes an experiment for ablative RT instability that for the first time achieves growth factors close to those expected to occur in ignition targets at the National Ignition Facility (NIF). The large growth allows small seed perturbations to be detected and can be used to place an upper bound on perturbation growth at the ablation front resulting from microstructure in the preferred Be ablator. The experiments were performed on the Omega laser using a halfraum 1.2 mm long by 2 mm diameter with a 75% laser entrance hole. The halfraum was filled with {approx} 1 atm of neopentane to delay gold plasma from closing the diagnostic line of sight down the axis of the halfraum. The ablator was mounted at the base of the halfraum, and was accelerated by a two stepped X-ray pulse consisting of an early time section {approx} 100 eV to emulate the NIF foot followed by an approximately constant {approx} 150 eV drive sustained over an additional 5-7ns. It is this long pulse duration and late time observation that distinguishes the present work from previous experiments, and is responsible for the large growth that is achieved. The growth of a 2D sinusoidal perturbation machined on the drive side of the ablator was measured using face-on radiography. The diagnostic view remained open until {approx} 11 ns with maximum growth factors measured to be {approx} 200. The trajectory of the ablator was measured using streaked backlit radiography. The design and analysis of the experiments is described, and implications for experiments on ignition target ablators are discussed.

  6. Synthesis of Dendritic Silver Nanoparticles and Their Applications as SERS Substrates

    Directory of Open Access Journals (Sweden)

    Jinshan Yu

    2013-01-01

    Full Text Available The silver nanoparticles are synthesized by electrodeposition in ultradilute Ag+ concentration electrolyte under high overpotential. The as prepared Ag nanoparticles, with the sizes ranging from 20 to 30 nm, are arrayed orderly and formed dendritic morphology. The formation of this special dendritic nanoparticle structure can be contributed to the relatively high growth rate and the preferential growth directions along 111 due to the high overpotential, as well as the relative small number of Ag+ ions arriving at the Ag crystal surface per unit time due to the ultradilute Ag+ concentration. Surface enhanced Raman scattering (SERS experiments reveal that the as-prepared dendritic Ag nanoparticles possess high SERS properties and can be used as a candidate substrate for practical SERS applications to detect the Rhodamine 6G molecules.

  7. Facile synthesis of dendritic gold nanostructures with hyperbranched architectures and their electrocatalytic activity toward ethanol oxidation.

    Science.gov (United States)

    Huang, Jianshe; Han, Xinyi; Wang, Dawei; Liu, Dong; You, Tianyan

    2013-09-25

    Gold dendritic nanostructures with hyperbranched architectures were synthesized by the galvanic replacement reaction between nickel wire and HAuCl4 in aqueous solution. The study revealed that the morphology of the obtained nanostructures strongly depended on experimental parameters such as the HAuCl4 solution concentration, reaction temperature, and time, as well as stirring or not. According to the investigation of the growth process, it was proposed that gold nanoparticles with rough surfaces were first deposited on the nickel substrate and that subsequent growth preferentially occurred on the preformed gold nanoparticles, finally leading to the formation of hyperbranched gold dendrites via a self-organization process under nonequilibrium conditions. The electrochemical experiment results demonstrated that the as-obtained gold dendrites exhibited high catalytic activity toward ethanol electrooxidation in alkaline solution, indicating that this nanomaterial may be a potential catalyst for direct ethanol fuel cells.

  8. Steady-state dynamics and experience-dependent plasticity of dendritic spines of layer 4/5a pyramidal neurons in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Amaya Miquelajauregui

    2014-04-01

    Full Text Available The steady state dynamics and experience-dependent plasticity of dendritic spines of layer (L 2/3 and L5B cortical pyramidal neurons have recently been assessed using in vivo two-photon microscopy (Trachtenberg et al., 2002; Zuo et al., 2005; Holtmaat et al., 2006. In contrast, not much is known about spine dynamics in L4/5a neurons, regarded as direct recipients of thalamocortical input (Constantinople and Bruno, 2013. In the adult mouse somatosensory cortex (SCx, the transcription factor Ebf2 is enriched in excitatory neurons of L4/5a, including pyramidal neurons. We assessed the molecular and electrophysiological properties of these neurons as well as the morphology of their apical tufts (Scholl analysis and cortical outputs (optogenetics within the SCx. To test the hypothesis that L4/5a pyramidal neurons play an important role in sensory processing (given their key laminar position; soma depth ~450-480 µm, we successfully labeled them in Ebf2-Cre mice with EGFP by expressing recombinant rAAV vectors in utero. Using longitudinal in vivo two-photon microscopy through a craniotomy (Mostany and Portera-Cailliau, 2008, we repeatedly imaged spines in apical dendritic tufts of L4/5a neurons under basal conditions and after sensory deprivation. Under steady-state conditions in adults, the morphology of the apical tufts and the mean spine density were stable at 0.39 ± 0.05 spines/μm (comparable to L5B, Mostany et al., 2011. Interestingly, spine elimination increases 4-8 days after sensory deprivation, probably due to input loss. This suggests that Ebf2+ L4/5a neurons could be involved in early steps of processing of thalamocortical information.

  9. Growth disorders in type 1 diabetes: an Indian experience

    Directory of Open Access Journals (Sweden)

    Anju Virmani

    2015-01-01

    Full Text Available Though children with type 1 diabetes mellitus (T1DM are often tall at the time of diagnosis, they may experience growth retardation, pubertal delay or both, which may be due to poor glycemic control, associated diseases or chronic complications. Factors affecting growth include: gender, genetic environment, age at diagnosis, diabetes duration, puberty, metabolic control, and status of growth hormone (GH, insulin-like growth factors (IGFs, and IGF binding proteins (IGFBPs. Insulin regulates expression of hepatic GH receptors, affects IGFs and IGFBPs synthesis by modulating GH postreceptor events, and significantly increases IGF-I bioactivity. Low portal insulin seen in T1DM leads to GH hypersecretion, low circulating IGF-I and IGFBP-3, and high circulating IGFBP-1. Newly diagnosed T1DM patients have decreased GHBP which can be restored with insulin therapy. Growth velocity should be appropriate for the age of the child/adolescent, and the mid-parental height. Height, weight and blood pressure (BP should be measured and plotted on a growth chart at least 2-3 times a year. Puberty should also be assessed annually. Following precautions are to be taken in T1DM children: checking for pubertal onset and ensuring it is not delayed, testing early when growth falters (hypothyroidism/celiac disease/puberty/other conditions, aiming for best possible metabolic control (multidose regimens, regardless of type of insulin, and encouraging dietary calcium and protein, exposure to sunlight, Vitamin D supplements and exercise.

  10. LIN-44/Wnt directs dendrite outgrowth through LIN-17/Frizzled in C. elegans Neurons.

    Directory of Open Access Journals (Sweden)

    Leonie Kirszenblat

    2011-09-01

    Full Text Available Nervous system function requires proper development of two functional and morphological domains of neurons, axons and dendrites. Although both these domains are equally important for signal transmission, our understanding of dendrite development remains relatively poor. Here, we show that in C. elegans the Wnt ligand, LIN-44, and its Frizzled receptor, LIN-17, regulate dendrite development of the PQR oxygen sensory neuron. In lin-44 and lin-17 mutants, PQR dendrites fail to form, display stunted growth, or are misrouted. Manipulation of temporal and spatial expression of LIN-44, combined with cell-ablation experiments, indicates that this molecule is patterned during embryogenesis and acts as an attractive cue to define the site from which the dendrite emerges. Genetic interaction between lin-44 and lin-17 suggests that the LIN-44 signal is transmitted through the LIN-17 receptor, which acts cell autonomously in PQR. Furthermore, we provide evidence that LIN-17 interacts with another Wnt molecule, EGL-20, and functions in parallel to MIG-1/Frizzled in this process. Taken together, our results reveal a crucial role for Wnt and Frizzled molecules in regulating dendrite development in vivo.

  11. P/Q-type and T-type calcium channels, but not type 3 transient receptor potential cation channels, are involved in inhibition of dendritic growth after chronic metabotropic glutamate receptor type 1 and protein kinase C activation in cerebellar Purkinje cells.

    Science.gov (United States)

    Gugger, Olivia S; Hartmann, Jana; Birnbaumer, Lutz; Kapfhammer, Josef P

    2012-01-01

    The development of a neuronal dendritic tree is modulated both by signals from afferent fibers and by an intrinsic program. We have previously shown that chronic activation of either type 1 metabotropic glutamate receptors (mGluR1s) or protein kinase C (PKC) in organotypic cerebellar slice cultures of mice and rats severely inhibits the growth and development of the Purkinje cell dendritic tree. The signaling events linking receptor activation to the regulation of dendritic growth remain largely unknown. We have studied whether channels allowing the entry of Ca(2+) into Purkinje cells, in particular the type 3 transient receptor potential cation channels (TRPC3s), P/Q-type Ca(2+) channels, and T-type Ca(2+) channels, might be involved in signaling after mGluR1 or PKC stimulation. We show that the inhibition of dendritic growth seen after mGluR1 or PKC stimulation is partially rescued by pharmacological blockade of P/Q-type and T-type Ca(2+) channels, indicating that activation of these channels mediating Ca(2+) influx contributes to the inhibition of dendritic growth. In contrast, the absence of Ca(2+) -permeable TRPC3s in TRPC3-deficient mice or pharmacological blockade had no effect on mGluR1-mediated and PKC-mediated inhibition of Purkinje cell dendritic growth. Similarly, blockade of Ca(2+) influx through glutamate receptor δ2 or R-type Ca(2+) channels or inhibition of release from intracellular stores did not influence mGluR1-mediated and PKC-mediated inhibition of Purkinje cell dendritic growth. These findings suggest that both T-type and P/Q-type Ca(2+) channels, but not TRPC3 or other Ca(2+) -permeable channels, are involved in mGluR1 and PKC signaling leading to the inhibition of dendritic growth in cerebellar Purkinje cells.

  12. Fostering Growth in the Survivorship Experience: Investigating Breast Cancer Survivors' Lived Experiences Scaling Mt. Kilimanjaro from a Posttraumatic Growth Perspective

    Science.gov (United States)

    Burke, Shaunna M.; Sabiston, Catherine M.

    2012-01-01

    The aim of this study was to use an ethnographic case study approach to explore breast cancer survivors' experiences scaling Mt. Kilimanjaro from a posttraumatic growth perspective. Three breast cancer survivors who participated in interviews and observations during a nine-day climb on the mountain were included in this study. Findings are…

  13. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    You Kure Wu

    Full Text Available Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  14. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E

    2007-01-01

    at 4-5 weeks post injury. The somata of axotomized CINs were identified by the presence of immunoreactivity for the axonal growth-associated protein-43 (GAP-43). Nearly half of the CINs had de novo axons that emerged from distal dendrites. These axons lacked immunoreactivity for the dendritic protein......Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injury......, develop de novo axons. Our goal was to determine whether spinal commissural interneurons (CINs), axotomized by 3-4-mm midsagittal transection at C3, form de novo axons from distal dendrites. All experiments were performed on adult cats. CINs in C3 were stained with extracellular injections of Neurobiotin...

  15. The Deterministic Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    The Dendritic Cell Algorithm is an immune-inspired algorithm orig- inally based on the function of natural dendritic cells. The original instantiation of the algorithm is a highly stochastic algorithm. While the performance of the algorithm is good when applied to large real-time datasets, it is difficult to anal- yse due to the number of random-based elements. In this paper a deterministic version of the algorithm is proposed, implemented and tested using a port scan dataset to provide a controllable system. This version consists of a controllable amount of parameters, which are experimented with in this paper. In addition the effects are examined of the use of time windows and variation on the number of cells, both which are shown to influence the algorithm. Finally a novel metric for the assessment of the algorithms output is introduced and proves to be a more sensitive metric than the metric used with the original Dendritic Cell Algorithm.

  16. Primary and secondary dendrite spacing of Ni-based superalloy single crystals

    Directory of Open Access Journals (Sweden)

    SLOBODANKA KOSTIC

    2009-01-01

    Full Text Available Ni-based superalloy single crystals were grown by different methods (gradient method and Bridgman technique with spontaneous nucleation and with seed. In all crystal growth experiments using the Bridgman technique, the temperature gradient along the vertical furnace axes was constant (G = 33.5 °C/cm. The obtained single crystals were cut, mechanical and chemical polished, and chemically etched. Using a metallographic microscope, the spacing of the primary and secondary dendrites was investigated. The dendrite arm spacing (DAS was determined using a Quantimet 500 MC. The obtained results are discussed and compared with published data.

  17. Development of tolerogenic dendritic cells and regulatory T cells favors exponential bacterial growth and survival during early respiratory tularemia.

    Science.gov (United States)

    Periasamy, Sivakumar; Singh, Anju; Sahay, Bikash; Rahman, Tabassum; Feustel, Paul J; Pham, Giang H; Gosselin, Edmund J; Sellati, Timothy J

    2011-09-01

    Tularemia is a vector-borne zoonosis caused by Ft, a Gram-negative, facultative intracellular bacterium. Ft exists in two clinically relevant forms, the European biovar B (holarctica), which produces acute, although mild, self-limiting infections, and the more virulent United States biovar A (tularensis), which is often associated with pneumonic tularemia and more severe disease. In a mouse model of tularemia, respiratory infection with the virulence-attenuated Type B (LVS) or highly virulent Type A (SchuS4) strain engenders peribronchiolar and perivascular inflammation. Paradoxically, despite an intense neutrophilic infiltrate and high bacterial burden, T(h)1-type proinflammatory cytokines (e.g., TNF, IL-1β, IL-6, and IL-12) are absent within the first ∼72 h of pulmonary infection. It has been suggested that the bacterium has the capacity to actively suppress or block NF-κB signaling, thus causing an initial delay in up-regulation of inflammatory mediators. However, our previously published findings and those presented herein contradict this paradigm and instead, strongly support an alternative hypothesis. Rather than blocking NF-κB, Ft actually triggers TLR2-dependent NF-κB signaling, resulting in the development and activation of tDCs and the release of anti-inflammatory cytokines (e.g., IL-10 and TGF-β). In turn, these cytokines stimulate development and proliferation of T(regs) that may restrain T(h)1-type proinflammatory cytokine release early during tularemic infection. The highly regulated and overall anti-inflammatory milieu established in the lung is permissive for unfettered growth and survival of Ft. The capacity of Ft to evoke such a response represents an important immune-evasive strategy.

  18. The effects of early-life seizures on hippocampal dendrite development and later-life learning and memory.

    Science.gov (United States)

    Casanova, J R; Nishimura, Masataka; Swann, John W

    2014-04-01

    Severe childhood epilepsy is commonly associated with intellectual developmental disabilities. The reasons for these cognitive deficits are likely multifactorial and will vary between epilepsy syndromes and even among children with the same syndrome. However, one factor these children have in common is the recurring seizures they experience - sometimes on a daily basis. Supporting the idea that the seizures themselves can contribute to intellectual disabilities are laboratory results demonstrating spatial learning and memory deficits in normal mice and rats that have experienced recurrent seizures in infancy. Studies reviewed here have shown that seizures in vivo and electrographic seizure activity in vitro both suppress the growth of hippocampal pyramidal cell dendrites. A simplification of dendritic arborization and a resulting decrease in the number and/or properties of the excitatory synapses on them could help explain the observed cognitive disabilities. There are a wide variety of candidate mechanisms that could be involved in seizure-induced growth suppression. The challenge is designing experiments that will help focus research on a limited number of potential molecular events. Thus far, results suggest that growth suppression is NMDA receptor-dependent and associated with a decrease in activation of the transcription factor CREB. The latter result is intriguing since CREB is known to play an important role in dendrite growth. Seizure-induced dendrite growth suppression may not occur as a single process in which pyramidal cells dendrites simply stop growing or grow slower compared to normal neurons. Instead, recent results suggest that after only a few hours of synchronized epileptiform activity in vitro dendrites appear to partially retract. This acute response is also NMDA receptor dependent and appears to be mediated by the Ca(+2)/calmodulin-dependent phosphatase, calcineurin. An understanding of the staging of seizure-induced growth suppression and the

  19. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach.

    Science.gov (United States)

    Soema, Peter C; Willems, Geert-Jan; Jiskoot, Wim; Amorij, Jean-Pierre; Kersten, Gideon F

    2015-08-01

    In this study, the effect of liposomal lipid composition on the physicochemical characteristics and adjuvanticity of liposomes was investigated. Using a design of experiments (DoE) approach, peptide-containing liposomes containing various lipids (EPC, DOPE, DOTAP and DC-Chol) and peptide concentrations were formulated. Liposome size and zeta potential were determined for each formulation. Moreover, the adjuvanticity of the liposomes was assessed in an in vitro dendritic cell (DC) model, by quantifying the expression of DC maturation markers CD40, CD80, CD83 and CD86. The acquired data of these liposome characteristics were successfully fitted with regression models, and response contour plots were generated for each response factor. These models were applied to predict a lipid composition that resulted in a liposome with a target zeta potential. Subsequently, the expression of the DC maturation factors for this lipid composition was predicted and tested in vitro; the acquired maturation responses corresponded well with the predicted ones. These results show that a DoE approach can be used to screen various lipids and lipid compositions, and to predict their impact on liposome size, charge and adjuvanticity. Using such an approach may accelerate the formulation development of liposomal vaccine adjuvants.

  20. Simulation of dendritic growth for ternary alloys based on modified cellular automaton model%基于改进元胞自动机模型的三元合金枝晶生长的数值模拟

    Institute of Scientific and Technical Information of China (English)

    石玉峰; 许庆彦; 柳百成

    2012-01-01

    Based on the binary cellular automaton method, a modified cellular automaton model for temary alloys is developed to simulate dendrite growth controlled by solutal effects and microsegregation in the low Peclet number regime by coupling PanEngine, which is a multicomponent thermodynamic and equilibrium calculation engine. The model can be used to calculate the interfacial equilibrium composition by considering the influence of Gibbs-Thomson effect induced curvature undercooling, and multicomponents contributed constitutional undercooling. Meanwhile, the growth velocity of interface is determined by solving the solute conservation equation simultaneously with dimensionless solute supersaturation equation for each alloying element. Moreover, equilibrium liquidus temper- ature and equilibrium solid concentration at the interface are derived by PanEngine. Free dendrite growth of A1-7%Si-χMg temary alloys is simulated by the present model, which shows that the increase of solute Mg can suppress the growths of both primary and secondary dendrite arms. Meanwhile, constrained columnar dendrite growth of A1-7%Si-0.5%Mg with the increases of pulling veloc- ity and constant thermal gradient during directional solidification is calculated. The results reveal the competitive growth of columnar dendrites, and demonstrate that the primary dendrite arm spacing would decrease as the pulling velocity increases, which accords well with the Hunt model.%在二元合金元胞自动机模型的基础上,通过耦合多元合金热力学相平衡求解器PanEngine,建立了三元合金改进的元胞自动机模型,可模拟初生相枝晶的生长过程.模型考虑了曲率过冷和成分过冷对界面平衡溶质成分的影响,通过不同组元的无量纲溶质过饱和度方程和界面溶质守恒方程之间的耦合来求解界面生长速率,并通过PanEngine计算界面处的液相线温度.采用本模型模拟了A1—7%Si-χMg三元合金自由枝晶的

  1. The work of fault growth in laboratory sandbox experiments

    Science.gov (United States)

    Herbert, Justin W.; Cooke, Michele L.; Souloumiac, Pauline; Madden, Elizabeth H.; Mary, Baptiste C. L.; Maillot, Bertrand

    2015-12-01

    Contractional sandbox experiments that simulate crustal accretion and direct shear tests both provide direct data on the amount of work required to create faults (Wprop) in granular materials. Measurements of force changes associated with faulting reveal the work consumed by fault growth, which can be used to predict fault growth path and timing. Within the contractional experiments, the sequence and style of early faulting is consistent for the range of sand pack thicknesses tested, from 12 to 30 mm. Contrary to expectations that Wprop is only a material property, the experimental data show that for the same material, Wprop increases with sand pack thickness. This normal stress dependence stems from the frictional nature of granular materials. With the same static and sliding friction values, incipient faults initiated deeper in the sand pack have larger shear stress drops, due to increased normal compression, σn. For CV32 sand, the relationship between Wprop and σn, calculated from the force drop data as Wprop (J/m2) = 2.0 ×10-4 (m)σn (Pa), is consistent with the relationship calculated from direct shear test data as Wprop (J/m2) = 2.4 ×10-4 (m)σn (Pa). Testing of different materials within the contractional sandbox (fine sand and glass beads) shows the sensitivity of Wprop to material properties. Both material properties and normal stress should be considered in calculations of the work consumed by fault growth in both analog experiments and crustal fault systems.

  2. The Mars Plant Growth Experiment and Implications for Planetary Protection

    Science.gov (United States)

    Smith, Heather

    Plants are the ultimate and necessary solution for O2 production at a human base on Mars. Currently it is unknown if seeds can germinate on the Martian surface. The Mars Plant growth experiment (MPX) is a proposal for the first step in the development of a plant- based O2 production system by demonstrating plant germination and growth on the Martian surface. There is currently no planetary protection policy in place that covers plants on the Martian surface. We describe a planetary protection plan in compliance with NASA and COSPAR policy for a closed plant growth chamber on a Mars rover. We divide the plant growth chamber into two categories for planetary protection, the Outside: the outside of the chamber exposed to the Martian environment, and the Inside: the inside of the chamber which is sealed off from Mars atmosphere and contains the plant seeds and ancillary components for seed growth. We will treat outside surfaces of the chamber as other outside surfaces on the rover, wiped with a mixture of isopropyl alcohol and water as per Category IVb planetary protection requirements. All internal components of the MPX except the seeds and camera (including the water system, the plant growth stage and interior surface walls) will be sterilized by autoclave and subjected to sterilizing dry heat at a temperature of 125°C at an absolute humidity corresponding to a relative humidity of less than 25 percent referenced to the standard conditions of 0°C and 760 torr pressure. The seeds and internal compartments of the MPX in contact with the growth media will be assembled and tested to be free of viable microbes. MPX, once assembled, cannot survive Dry Heat Microbial Reduction. The camera with the radiation and CO2 sensors will be sealed in their own container and vented through HEPA filters. The seeds will be vernalized (microbe free) as per current Space Station methods described by Paul et al. 2001. Documentation of the lack of viable microbes on representative seeds

  3. D-Alanylation of Teichoic Acids and Loss of Poly-N-Acetyl Glucosamine in Staphylococcus aureus during Exponential Growth Phase Enhance IL-12 Production in Murine Dendritic Cells

    DEFF Research Database (Denmark)

    Lund, Lisbeth Drozd; Ingmer, Hanne; Frokiaer, Hanne

    2016-01-01

    Staphylococcus aureus is a major human pathogen that has evolved very efficient immune evading strategies leading to persistent colonization. During different stages of growth, S. aureus express various surface molecules, which may affect the immune stimulating properties, but very little is known...... about their role in immune stimulation and evasion. Depending on the growth phase, S. aureus may affect antigen presenting cells differently. Here, the impact of growth phases and the surface molecules lipoteichoic acid, peptidoglycan and poly-N-acetyl glucosamine on the induction of IL-12 imperative...... for an efficient clearance of S. aureus was studied in dendritic cells (DCs). Exponential phase (EP) S. aureus was superior to stationary phase (SP) bacteria in induction of IL-12, which required actin-mediated endocytosis and endosomal acidification. Moreover, addition of staphylococcal cell wall derived...

  4. Particle Nucleation and Growth During the NIFTy Experiment

    Science.gov (United States)

    Barthelmie, R. J.; Pryor, S. C.; Spaulding, A. M.; Rossner, A.; Crimmins, B.; Hopke, P. K.; Mauldin, L.; Jobson, T.; Petaja, T.

    2008-12-01

    The measurements presented herein are being collected in order to assess the frequency and characteristics of nucleation events and high ultra-fine particle concentrations in this rural (but regionally polluted) setting, including the chemical composition of the ultra-fine particles, the principal mechanisms of nucleation, limitations on nucleation and growth and the ultimate fate of the resulting ultra-fine particles. We present a year of data from continuous measurements of particle size distributions (6 to 400 nm) at three- levels above and within a deciduous forest in southern Indiana (in the Ohio River Valley). These data are collected using two SMPS and one FMPS, and are supplemented with data concerning the spatial extent and the composition of ultra-fine particles using samples collected during May 2008 as part of the Nucleation In ForesTs (NIFTY) campaign. The long-term measurements indicate evidence of class A nucleation events on approximately 1 day in 5, and lesser magnitude or less well defined events on another 15% of days. These data indicate nucleation is most frequently observed in spring, but occurs in all seasons and subsequent growth is more rapid during leaf-on. During the NIFTY field experiment we enhanced the ongoing data collection at the forest site to include sulfuric acid, ammonia and VOC concentrations, and particle composition using two MOUDI-nano-MOUDI combinations. Preliminary analyses of these data indicate that the sub-32 nm diameter particles are almost completely ammonium-sulfate or ammonium-bisulfate and associated water but there is evidence that continued growth is aided by the addition of condensable organics. We further instrumented two additional sites - one directly south of the forest in a relatively rural setting, and one to the north in the city of Indianapolis. Results from these sites indicate strong evidence that the events are regional but the sites differ in terms of the magnitude of the events and the relative

  5. 对流作用下镁合金凝固组织演变的数值模拟%Numerical simulation of dendritic growth of magnesium alloy with convection

    Institute of Scientific and Technical Information of China (English)

    杨满红; 郭志鹏; 熊守美

    2015-01-01

    A model, which is based on modified cellular automaton (CA) and momentum transport, was used to model equiaxed and columnar dendritic growth of magnesium alloys with convection. The CA model was used to simulate dendritic growth of Mg alloy (hexagonal close-packed structure). The modified projection method was used to solve the flow field transport model coupled mass conservation equation, momentum conservation equation and solute diffusion equation. The growth laws of the single dendrite, multiple dendrites and columnar grain in Mg alloy were simulated, and the solute distributions of dendritic solidification front with different inflow velocities were analyzed quantificationally. The simulation results show that the dendrite growth at the upstream tip is faster than that at downstream, and secondary arms stretches intensively on the primary arms at the upstream tip, rather than that at the downstream where only a few weak or no secondary arms stretches. The flow also changes the distribution of the diffusion layer, and the diffusion layer, which spreads heavily at the downstream. Therefore, the convection has a major impact on the evolution of solidification microstructure of Mg alloy.%基于改进元胞自动机模型和流场传输模型,模拟对流作用下的镁合金等轴晶和柱状晶组织演变过程。采用改进元胞自动机模型模拟具有密排六方结构的镁合金的枝晶生长;采用投影法求解流场传输模型耦合质量守恒方程、动量守恒方程和溶质扩散方程。不仅模拟了镁合金中单枝晶、多枝晶和柱状晶在对流作用下的生长规律,还对不同入流速度下枝晶凝固前沿的溶质分布进行定量分析。模拟结果表明:迎流端枝晶生长较快,二次枝晶臂较为发达;背流端生长缓慢,二次枝晶臂较细小或没有二次晶臂。对流作用还会改变等轴枝晶扩散层的分布,在背流端扩散层呈拖曳特性。因此,对流作用对镁合

  6. Dendritic polyurea polymers.

    Science.gov (United States)

    Tuerp, David; Bruchmann, Bernd

    2015-01-01

    Dendritic polymers, subsuming dendrimers as well as hyperbranched or highly branched polymers are well established in the field of polymer chemistry. This review article focuses on urea based dendritic polymers and summarizes their synthetic routes through both isocyanate and isocyanate-free processes. Furthermore, this article highlights applications where dendritic polyureas show their specific chemical and physical potential. For these purposes scientific publications as well as patent literature are investigated to generate a comprehensive overview on this topic.

  7. A general principle governs vision-dependent dendritic patterning of retinal ganglion cells.

    Science.gov (United States)

    Xu, Hong-Ping; Sun, Jin Hao; Tian, Ning

    2014-10-15

    Dendritic arbors of retinal ganglion cells (RGCs) collect information over a certain area of the visual scene. The coverage territory and the arbor density of dendrites determine what fraction of the visual field is sampled by a single cell and at what resolution. However, it is not clear whether visual stimulation is required for the establishment of branching patterns of RGCs, and whether a general principle directs the dendritic patterning of diverse RGCs. By analyzing the geometric structures of RGC dendrites, we found that dendritic arbors of RGCs underwent a substantial spatial rearrangement after eye-opening. Light deprivation blocked both the dendritic growth and the branch patterning, suggesting that visual stimulation is required for the acquisition of specific branching patterns of RGCs. We further showed that vision-dependent dendritic growth and arbor refinement occurred mainly in the middle portion of the dendritic tree. This nonproportional growth and selective refinement suggest that the late-stage dendritic development of RGCs is not a passive stretching with the growth of eyes, but rather an active process of selective growth/elimination of dendritic arbors of RGCs driven by visual activity. Finally, our data showed that there was a power law relationship between the coverage territory and dendritic arbor density of RGCs on a cell-by-cell basis. RGCs were systematically less dense when they cover larger territories regardless of their cell type, retinal location, or developmental stage. These results suggest that a general structural design principle directs the vision-dependent patterning of RGC dendrites.

  8. Theoretical - Experimental Analysis of Cellular and Primary Dendritic Spacings during Unidirectional Solidification of Sn-Pb Alloys

    Directory of Open Access Journals (Sweden)

    Otávio F.L. da Rocha

    2002-09-01

    Full Text Available Structural parameters as grain size, dendritic and cellular spacings, segregated products, porosity and other phases are strongly influenced by the thermal behavior of the metal/mold system during solidification, imposing a close correlation between this and the resulting microstructure. Several unidirectional solidification studies with the objective of characterizing cellular and dendritic spacings have been developed in large scale involving solidification in steady-state heat flow. The main objective of this work is to determine the thermal solidification parameters during the cellular/dendritic transition as well as to compare theoretical models that predict cellular and primary dendritic spacings with experimental results for solidification situations in unsteady-state heat flow. Experiments were carried out in a water cooled unidirectional solidification apparatus and dilute alloys of the Sn-Pb system were used (Sn 1.5wt%Pb, Sn 2.5wt%Pb and Sn 5wt%Pb. The upper limit of the Hunt-Lu cellular growth model closely matched the experimental spacings. The lower limit calculated with the Hunt-Lu dendritic model best generated the experimental results. The cellular/dendritic transition was observed to occur for the Sn 2.5wt%Pb alloy over a range of analytical cooling rates from 0.28 K/s to 1.8 K/s.

  9. Ampoule failure sensor development for semiconductor crystal growth experiments

    Science.gov (United States)

    Watring, Dale A.; Johnson, Martin

    1994-01-01

    Currently there are no devices to detect an ampoule failure in semiconductor crystal growth experiments. If an ampoule fails, it will go undetected until the containing cartridge is breached due to chemical degradation. The experiment will then be terminated resulting in a failed experiment and a loss of data. The objective of this research was to develop a reliable failure sensor that would detect a specific liquid or vapor material before the metallic cartridge is degraded and the processing furnace contaminated. The sensor is a chemical fuse made from a metal with which the semiconductor material reacts more rapidly than it does with the containing cartridge. Upon ampoule failure, the sensor is exposed to the vapor or liquid semiconductor and the chemical reaction causes a resistance change in the sensor material. The sensor shows a step change in resistance on the order of megohms when exposed to mercury zinc telluride (HgZnTe), mercury cadmium telluride (HgCdTe), or gallium arsenide (GaAs). This ampoule failure sensor is being tested for possible use on the second United States Microgravity Mission (USML-2) and is the subject of a NASA patent application.

  10. Modeling the dendritic evolution and micro-segregation of cast alloy with cellular automaton

    Institute of Scientific and Technical Information of China (English)

    Qiang Li; Dianzhong Li; Bainian Qian

    2004-01-01

    In order to precisely describe the dendritic morphology and micro-segregation during solidification process, a novel continuous model concerning the different physical properties in the solid phase, liquid phase and interface is developed. Coupling the heat and solute diffusion with the transition rules, the dendrite evolution is simulated by cellular automaton method. Then, the solidification microstructure evolution of a small ingot is simulated by using this method. The simulated results indicate that this model can simulate the dendrite growth, show the second dendrite arm and tertiary dendrite arm, and reveal the micro-segregation in the inter-dendritic zones. Furthermore, the columnar-to-equiaxed transition (CET) is predicted.

  11. Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation.

    Directory of Open Access Journals (Sweden)

    Megumi Kaneko

    Full Text Available Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.

  12. CTAB-Influenced Electrochemical Dissolution of Silver Dendrites.

    Science.gov (United States)

    O'Regan, Colm; Zhu, Xi; Zhong, Jun; Anand, Utkarsh; Lu, Jingyu; Su, Haibin; Mirsaidov, Utkur

    2016-04-19

    Dendrite formation on the electrodes of a rechargeable battery during the charge-discharge cycle limits its capacity and application due to short-circuits and potential ignition. However, understanding of the underlying dendrite growth and dissolution mechanisms is limited. Here, the electrochemical growth and dissolution of silver dendrites on platinum electrodes immersed in an aqueous silver nitrate (AgNO3) electrolyte solution was investigated using in situ liquid-cell transmission electron microscopy (TEM). The dissolution of Ag dendrites in an AgNO3 solution with added cetyltrimethylammonium bromide (CTAB) surfactant was compared to the dissolution of Ag dendrites in a pure aqueous AgNO3 solution. Significantly, when CTAB was added, dendrite dissolution proceeded in a step-by-step manner, resulting in nanoparticle formation and transient microgrowth stages due to Ostwald ripening. This resulted in complete dissolution of dendrites and "cleaning" of the cell of any silver metal. This is critical for practical battery applications because "dead" lithium is known to cause short circuits and high-discharge rates. In contrast to this, in a pure aqueous AgNO3 solution, without surfactant, dendrites dissolved incompletely back into solution, leaving behind minute traces of disconnected silver particles. Finally, a mechanism for the CTAB-influenced dissolution of silver dendrites was proposed based on electrical field dependent binding energy of CTA(+) to silver.

  13. Clinicopathologic Characteristics and Outcomes of Histiocytic and Dendritic Cell Neoplasms: The Moffitt Cancer Center Experience Over the Last Twenty Five Years

    Energy Technology Data Exchange (ETDEWEB)

    Dalia, Samir, E-mail: samir.dalia@mercy.net [Mercy Clinic Oncology and Hematology-Joplin, 3001 MC Clelland Park Blvd, Joplin, MO 64804 (United States); Jaglal, Michael; Chervenick, Paul [Department of Malignant Hematology, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33602 (United States); Cualing, Hernani [IHCFLOW Histopathology Laboratory, University of South Florida, 18804 Chaville Rd., Lutz, FL 33558 (United States); Sokol, Lubomir [Department of Malignant Hematology, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33602 (United States)

    2014-11-14

    Neoplasms of histiocytic and dendritic cells are rare disorders of the lymph node and soft tissues. Because of this rarity, the corresponding biology, prognosis and terminologies are still being better defined and hence historically, these disorders pose clinical and diagnostic challenges. These disorders include Langerhans cell histiocytosis (LCH), histiocytic sarcoma (HS), follicular dendritic cell sarcoma (FDCS), interdigtating cell sarcoma (IDCS), indeterminate cell sarcoma (INDCS), and fibroblastic reticular cell tumors (FRCT). In order to gain a better understanding of the biology, diagnosis, and treatment in these rare disorders we reviewed our cases of these neoplasms over the last twenty five years and the pertinent literature in each of these rare neoplasms. Cases of histiocytic and dendritic cell neoplasms diagnosed between 1989–2014 were identified using our institutional database. Thirty two cases were included in this analysis and were comprised of the following: Langerhans cell histiocytosis (20/32), histiocytic sarcoma (6/32), follicular dendritic cell sarcoma (2/32), interdigitating dendritic cell sarcoma (2/32), indeterminate dendritic cell sarcoma (1/32), and fibroblastic reticular cell tumor (1/32). Median overall survival was not reached in cases with LCH and showed 52 months in cases with HS, 12 months in cases with FDCS, 58 months in cases with IDCS, 13 months in the case of INDCS, and 51 months in the case of FRCT. The majority of patients had surgical resection as initial treatment (n = 18). Five patients had recurrent disease. We conclude that histiocytic and dendritic cell neoplasms are very rare and perplexing disorders that should be diagnosed with a combination of judicious morphology review and a battery of immunohistochemistry to rule out mimics such as carcinoma, lymphoma, neuroendocrine tumors and to better sub-classify these difficult to diagnose lesions. The mainstay of treatment for localized disease remains surgical resection

  14. Facile fabrication of dendritic silver structures and their surface enhanced Raman spectroscopic properties

    Indian Academy of Sciences (India)

    Jisheng Yang; Zhengdong Jiang

    2015-01-01

    A simple and efficient approach was developed to fabricate silver dendrites by Cu reducing Ag+ in AgNO3 solution. The growth speed, morphologies and structures of the silver dendrites strongly depend on AgNO3 concentration and reaction time. The silver dendrites were formed from nanosheets and the crystal structure is face-centered cubic. Rhodamine 6G was used as probe molecule to show that the silver dendrites have high sensitivity to surface enhanced Raman spectroscopy response.

  15. Probing synaptic function in dendrites with calcium imaging.

    Science.gov (United States)

    Siegel, Friederike; Lohmann, Christian

    2013-04-01

    Calcium imaging has become a widely used technique to probe neuronal activity on the cellular and subcellular levels. In contrast to standard electrophysiological methods, calcium imaging resolves sub- and suprathreshold activation patterns in structures as small as fine dendritic branches and spines. This review highlights recent findings gained on the subcellular level using calcium imaging, with special emphasis on synaptic transmission and plasticity in individual spines. Since imaging allows monitoring activity across populations of synapses, it has recently been adopted to investigate how dendrites integrate information from many synapses. Future experiments, ideally carried out in vivo, will reveal how the dendritic tree integrates and computes afferent signals. For example, it is now possible to directly test the concept that dendritic inputs are clustered and that single dendrites or dendritic stretches act as independent computational units.

  16. Structure simulation in unidirectionally solidified turbine blade by dendrite envelope tracking model(Ⅰ): numerical modeling

    Institute of Scientific and Technical Information of China (English)

    WANG Tong-min; I. Ohnaka; H.Yasuda; SU Yan-qing; GUO Jing-jie

    2006-01-01

    A 3D dendrite envelope tracking model was developed for estimating the solidification structure of unidirectionally solidified turbine blade. The normal vector of dendrite envelope was estimated by the gradient of dendrite volume fraction, and growth velocity of the dendrite envelope (dendrite tips) was calculated with considering the anisotropy of grain growth. The solute redistribution at dendrite envelope was calculated by introducing an effective solute partition coefficient(ke). Simulation results show that the solute-build-up due to the rejection at envelope affects grain competition and consequently the solidification structure. The lower value of ke leads to more waved dendrite growth front and higher solute rejection. The model was applied to predict the structure of turbine-blade-shape samples showing good ability to reproduce the columnar and single grain structures.

  17. NUMERICAL SIMULATION OF CELLULAR/DENDRITIC PRIMARY SPACING

    Institute of Scientific and Technical Information of China (English)

    W.Q.Zhang; L.Xiao

    2004-01-01

    A numerical model has been established to calculate the primary spacing of cellular or dendritic structure with fluid flow considered. The computing results show that the primary spacing depends on the growing velocity, the temperature gradient on the interface and fluid flow. There is a critical growing velocity for the cell-dendrite transition, which has a relationship with the temperature gradient: Rcr=(3-4)×10-9GT. Fluid flow leads to an increase of the primary spacing for dendritic growth but a decrease for cellular growth,resulting in an instability on the interface.

  18. Human Capital Development and Economic Growth: The Nigeria Experience

    OpenAIRE

    God’stime Osekhebhen Eigbiremolen; Uchechi Shirley Anaduaka

    2014-01-01

    This study employs the augmented Solow human-capital-growth model to investigate the impact of human capital development on national output, a proxy for economic growth, using quarterly time-series data from 1999-2012. Empirical results show that human capita development, in line with theory, exhibits significant positive impact on output level. This implies that human capital development is indispensable in the achievement of sustainable economic growth in Nigeria, as there is an increase in...

  19. Quantification of fungal growth: models, experiments, and observations

    NARCIS (Netherlands)

    Lamour, A.

    2002-01-01

    This thesis is concerned with the growth of microscopic mycelial fungi (Section I), and that of macroscopic fungi, which form specialised hyphal structures such as rhizomorphs (Section II). A growth model is developed in Section I in relation to soil organic matter decompos

  20. Optimization principles of dendritic structure

    Directory of Open Access Journals (Sweden)

    Borst Alexander

    2007-06-01

    Full Text Available Abstract Background Dendrites are the most conspicuous feature of neurons. However, the principles determining their structure are poorly understood. By employing cable theory and, for the first time, graph theory, we describe dendritic anatomy solely on the basis of optimizing synaptic efficacy with minimal resources. Results We show that dendritic branching topology can be well described by minimizing the path length from the neuron's dendritic root to each of its synaptic inputs while constraining the total length of wiring. Tapering of diameter toward the dendrite tip – a feature of many neurons – optimizes charge transfer from all dendritic synapses to the dendritic root while housekeeping the amount of dendrite volume. As an example, we show how dendrites of fly neurons can be closely reconstructed based on these two principles alone.

  1. Growth in Nephrops norvegicus from a tag-recapture experiment

    Science.gov (United States)

    Haynes, Paula S.; Browne, Patricia; Fullbrook, Liam; Graham, Conor T.; Hancox, Lee; Johnson, Mark P.; Lauria, Valentina; Power, Anne Marie

    2016-10-01

    Nephrops norvegicus is a commercially valuable fishery in the EU but management of stocks is challenging due to difficulties in aging individuals and calculating growth and biomass production. Growth of N. norvegicus was estimated by releasing 1177 tagged individuals in western Ireland in Summer 2013 and recapturing these in 2014 (n = 207, an average of 344 days later) and 2015 (n = 38, 654–665 days later). Moulting occurred twice per year in approximately half of the males and only once in females. Mean growth increments after approximately one year were 5.1 mm Carapace Length (CL) in males and 1.4 mm CL in females. After two years, males had grown by 12.0 mm CL and females by 4.6 mm CL, on average, across size classes. Low variation in growth increments was seen across female size classes, but significantly lower growth was observed in larger males, meeting an important assumption of the Von Bertalanffy Growth Function. Asymptotic carapace lengths were 70.8 mm (males) and 55.2 mm (females) with respective growth constants (k) of 0.161 yr‑1 and 0.077 yr‑1. The results suggest that this is a very productive fishery and that survivability of returns from creel fishing is high.

  2. Ternary eutectic dendrites: Pattern formation and scaling properties

    Energy Technology Data Exchange (ETDEWEB)

    Rátkai, László; Szállás, Attila; Pusztai, Tamás [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest (Hungary); Mohri, Tetsuo [Center for Computational Materials Science, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Gránásy, László, E-mail: granasy.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest (Hungary); Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendritesdendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.

  3. Fragile X astrocytes induce developmental delays in dendrite maturation and synaptic protein expression

    Directory of Open Access Journals (Sweden)

    Doering Laurie C

    2010-10-01

    Full Text Available Abstract Background Fragile X syndrome is the most common inherited form of mental impairment characterized by cognitive impairment, attention deficit and autistic behaviours. The mouse model of Fragile X is used to study the underlying neurobiology associated with behavioral deficiencies. The effect of Fragile X glial cells on the development of neurons has not been studied. We used a co-culture technique in combination with morphometrics on immunostained neurons to investigate the role of astrocytes in the development delays associated with hippocampal neuron development. Results We found that hippocampal neurons grown on Fragile X astrocytes exhibited a significant difference from the neurons grown with normal astrocytes after 7 days in vitro for many parameters including increases in dendritic branching and in area of the cell body. However, after 21 days in culture, the neurons grown on Fragile X astrocytes exhibited morphological characteristics that did not differ significantly from the neurons grown on normal astrocytes. With antibodies to the pre-synaptic protein, synapsin, and to the excitatory post-synaptic protein, PSD-95, we quantified the number of developing excitatory synapses on the dendrites. In addition to the delays in dendritic patterning, the development of excitatory synapses was also delayed in the hippocampal neurons. Conclusions These experiments are the first to establish a role for astrocytes in the delayed growth characteristics and abnormal morphological features in dendrites and synapses that characterize the Fragile X syndrome.

  4. Understanding Mozambique’s growth experience through an employment lens

    DEFF Research Database (Denmark)

    Jones, Edward Samuel; Tarp, Finn

    Over the past twenty years, Mozambique has achieved remarkable progress in promoting macroeconomic growth and stability. Nonetheless, poverty rates remain high and labour market activity is dominated by smallholder farming. We use recent household survey data to dig into these trends and provide...... an updated analysis of transformation in the labour market. We find that movement of labour out of agriculture has contributed to aggregate growth. But, this trend is slowing and is leading to a saturation of the services sector. Moreover, productivity growth is weakening within more labour-intensive sectors...

  5. Understanding Mozambique’s growth experience through an employment lens

    DEFF Research Database (Denmark)

    Jones, Edward Samuel; Tarp, Finn

    an updated analysis of transformation in the labour market. We find that movement of labour out of agriculture has contributed to aggregate growth. But, this trend is slowing and is leading to a saturation of the services sector. Moreover, productivity growth is weakening within more labour-intensive sectors......Over the past twenty years, Mozambique has achieved remarkable progress in promoting macroeconomic growth and stability. Nonetheless, poverty rates remain high and labour market activity is dominated by smallholder farming. We use recent household survey data to dig into these trends and provide...

  6. Dendritic Cells—Ontogeny—

    Directory of Open Access Journals (Sweden)

    Satoshi Takeuchi

    2007-01-01

    Full Text Available Dendritic cells (DC play key rolls in various aspects of immunity. The functions of DC depend on the subsets as well as their location or activation status. Understanding developmental lineages, precursors and inducing factors for various DC subsets would help their clinical application, but despite extensive efforts, the precise ontogeny of various DC, remain unclear and complex. Because of their many functional similarities to macrophages, DC were originally thought to be of myeloid-lineage, an idea supported by many in vitro studies where monocytes or GM-CSF (a key myeloid growth factor has been extensively used for generating DC. However, there has been considerable evidence which suggests the existence of lymphoid-lineage DC. After the confusion of myeloid-/lymphoid-DC concept regarding DC surface markers, we have now reached a consensus that each DC subset can differentiate through both myeloid- and lymphoid-lineages. The identification of committed populations (such as common myeloid- and lymphoid progenitors as precursors for every DC subsets and findings from various knockout (KO mice that have selected lymphoid- or myeloid-lineage deficiency appear to indicate flexibility of DC development rather than their lineage restriction. Why is DC development so flexible unlike other hematopoitic cells? It might be because there is developmental redundancy to maintain such important populations in any occasions, or such developmental flexibility would be advantageous for DC to be able to differentiate from any “available” precursors in situ irrespective of their lineages. This review will cover ontogeny of conventional (CD8+/- DC DC, plasmacytoid DC and skin Langerhans cells, and recently-identified many Pre-DC (immediate DC precursor populations, in addition to monocytes and plasmacytoid DC, will also be discussed.

  7. Effect of growth rate on characteristic lengths of microstructure in directionally solidified

    Directory of Open Access Journals (Sweden)

    Zhang Yuan

    2013-09-01

    Full Text Available The microstructure of TiAl based alloys is sensitive to growth rates. In this paper, Bridgman directional solidification of Ti-46Al-2Cr-2Nb-0.2B (at.% alloy was carried out at a constant temperature gradient (G to investigate the effects of various growth rates (v on characteristic lengths (primary dendritic arm spacing, secondary dendritic arm spacing and lamellar spacing of the microstructure. Results show that under the experimental conditions of G = 18 K·m-1 and v = 15 μm·s-1 to 70 μm·s-1, the primary phase of directionally solidified Ti-46Al-2Cr-2Nb-0.2B alloy is α phase, the values of primary dendritic arm spacing (λ1, secondary dendritic arm spacing (λ2 and lamellar spacing (λ1a decrease with the increase in growth rate. The results were compared with theoretical models and similar experimental results of TiAl based alloys. The Bouchard-Kirkaldy model agrees well with the relationship between primary dendritic arm spacing and growth rate obtained in the experiment; the relationship between them can be expressed by λ1 = 758.6v-0.39. The relationship between the secondary dendritic arm spacing and the growth rate can be expressed by λ2 = 113.9v-0.45, while the relationship between the lamellar spacing and growth rate can be expressed by λ1a = 22.88v-0.94.

  8. Growth and other physiological responses of bivalves in laboratory experiments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Milford lab maintains data sets relating to a variety of growth and physiology trials. These include husbandry techniques (i.e. stocking density, container size,...

  9. Detecting Danger: The Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Cayzer, Steve

    2010-01-01

    The Dendritic Cell Algorithm (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders in the form of pathogens. In this research, and abstract model of DC behaviour is developed and subsequently used to form an algorithm, the DCA. The abstraction process was facilitated through close collaboration with laboratory- based immunologists, who performed bespoke experiments, the results of which are used as an integral part of this algorithm. The DCA is a population based algorithm, with each agent in the system represented as an 'artificial DC'. Each DC has the ability to combine multiple data streams and can add context to data suspected as anomalous. In this chapter the abstraction process and details of the resultant algorithm are given. The algorithm is applied to numerous intrusion detection problems in computer security including the detection of p...

  10. Iron acquisition by Mycobacterium tuberculosis residing within myeloid dendritic cells.

    Science.gov (United States)

    Olakanmi, Oyebode; Kesavalu, Banurekha; Abdalla, Maher Y; Britigan, Bradley E

    2013-12-01

    The pathophysiology of Mycobacterium tuberculosis (M.tb) infection is linked to the ability of the organism to grow within macrophages. Lung myeloid dendritic cells are a newly recognized reservoir of M.tb during infection. Iron (Fe) acquisition is critical for M.tb growth. In vivo, extracellular Fe is chelated to transferrin (TF) and lactoferrin (LF). We previously reported that M.tb replicating in human monocyte-dervied macrophages (MDM) can acquire Fe bound to TF, LF, and citrate, as well as from the MDM cytoplasm. Access of M.tb to Fe may influence its growth in macrophages and dendritic cells. In the present work we confirmed the ability of different strains of M.tb to grow in human myeloid dendritic cells in vitro. Fe acquired by M.tb replicating within dendritic cells from externally added Fe chelates varied with the Fe chelate present in the external media: Fe-citrate > Fe-LF > Fe-TF. Fe acquisition rates from each chelate did not vary over 7 days. M.tb within dendritic cells also acquired Fe from the dendritic cell cytoplasm, with the efficiency of Fe acquisition greater from cytoplasmic Fe sources, regardless of the initial Fe chelate from which that cytoplasmic Fe was derived. Growth and Fe acquisition results with human MDM were similar to those with dendritic cells. M.tb grow and replicate within myeloid dendritic cells in vitro. Fe metabolism of M.tb growing in either MDM or dendritic cells in vitro is influenced by the nature of Fe available and the organism appears to preferentially access cytoplasmic rather than extracellular Fe sources. Whether these in vitro data extend to in vivo conditions should be examined in future studies.

  11. Active properties of neuronal dendrites.

    Science.gov (United States)

    Johnston, D; Magee, J C; Colbert, C M; Cristie, B R

    1996-01-01

    Dendrites of neurons in the central nervous system are the principal sites for excitatory synaptic input. Although little is known about their function, two disparate perspectives have arisen to describe the activity patterns inherent to these diverse tree-like structures. Dendrites are thus considered either passive or active in their role in integrating synaptic inputs. This review follows the history of dendritic research from before the turn of the century to the present, with a primary focus on the hippocampus. A number of recent techniques, including high-speed fluorescence imaging and dendritic patch clamping, have provided new information and perspectives about the active properties of dendrites. The results support previous notions about the dendritic propagation of action potentials and also indicate which types of voltage-gated sodium and calcium channels are expressed and functionally active in dendrites. Possible roles for the active properties of dendrites in synaptic plasticity and integration are also discussed.

  12. Statistical analysis of joint toxicity in biological growth experiments

    DEFF Research Database (Denmark)

    Spliid, Henrik; Tørslev, J.

    1994-01-01

    are applied individually to the organisms. The analysis is based on a random differential equation describing the growth of the organisms. This model yields a natural measure of interaction between toxicants and the hypothesis of independent action from a mixture of toxicants can be tested. The proposed model...

  13. Experiments on growth interactions between two invasive macrophyte species

    NARCIS (Netherlands)

    Barrat-Segretain, M-H.; Elger, A.F.

    2004-01-01

    The success of invasive species has been attributed to the ability to displace other species by direct competition. We studied growth and possible competition between the two macrophyte species Elodea nuttallii and E. canadensis, because the former has been observed to replace the latter in the

  14. PBX 9502 ratchet growth experiments on a dilatometer

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Darla Graff [Los Alamos National Laboratory; Brown, Geoff W [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Hagelberg, Stephanie [Los Alamos National Laboratory

    2009-01-01

    A Netzsch dilatometer has been used to probe the ratchet growth response of TATB-containing PBX 9502. Preliminary data are presented, showing test reproducibility and examining possible effects of density and/or the specific sequencing of different thermal ranges. We have also shown effects of thermal ramp rate on the test data, likely due to thermal equilibrium of the specimen environment.

  15. Understanding growth of East Africa highland banana: experiments and simulation

    NARCIS (Netherlands)

    Nyombi, K.

    2010-01-01

    Key words: leaf area; radiation interception; QUEFTS model; fertilizer recovery fractions; nutrient mass fractions; crop growth; calibration; validation; radiation use efficiency; sensitivity analysis East Africa Highland banana yields on smallholder farms in the Great Lakes region are small (11−2

  16. Dopaminergic regulation of dendritic calcium: fast multisite calcium imaging.

    Science.gov (United States)

    Zhou, Wen-Liang; Oikonomou, Katerina D; Short, Shaina M; Antic, Srdjan D

    2013-01-01

    Optimal dopamine tone is required for the normal cortical function; however it is still unclear how cortical-dopamine-release affects information processing in individual cortical neurons. Thousands of glutamatergic inputs impinge onto elaborate dendritic trees of neocortical pyramidal neurons. In the process of ensuing synaptic integration (information processing), a variety of calcium transients are generated in remote dendritic compartments. In order to understand the cellular mechanisms of dopaminergic modulation it is important to know whether and how dopaminergic signals affect dendritic calcium transients. In this chapter, we describe a relatively inexpensive method for monitoring dendritic calcium fluctuations at multiple loci across the pyramidal dendritic tree, at the same moment of time (simultaneously). The experiments have been designed to measure the amplitude, time course and spatial extent of action potential-associated dendritic calcium transients before and after application of dopaminergic drugs. In the examples provided here the dendritic calcium transients were evoked by triggering the somatic action potentials (backpropagation-evoked), and puffs of exogenous dopamine were applied locally onto selected dendritic branches.

  17. Noncrystallographic calcite dendrites from hot-spring deposits at Lake Bogoria, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Geology; Renaut, R.W. [Univ. of Saskatchewan, Saskatoon (Canada). Dept. of Geological Sciences

    1995-01-02

    Complex calcite crystals are an integral component of precipitates that form around the orifices of the Loburu and Mawe Moto hot springs on the shores of Lake bogoria, Kenya. Two types of large (up to 4 cm long) noncrystallographic dendrites are important components of these deposits. Feather dendrites are characterized by multiple levels of branching with individual branches developed through crystal splitting and spherulitic growth. Scandulitic (from Latin meaning shingle) dendrites are formed of stacked calcite crystals and are generally more compact than feather dendrites. These developed through the incremental stacking of rectangular-shaped calcite crystals that initially grew as skeletal crystals. Feather and scandulitic dendrites precipitated from the same waters in the same springs. The difference in morphology is therefore related to microenvironments in which they grew. Feather dendrites grew in any direction in pools of free-standing water provided that they were in constant contact with the solute. Conversely, scandulitic dendrites grew on rims of dams where water flowed over the surface in concert with the pulses of spring water. Thus, each calcite crystal in these dendrites represents one episode of crystal growth. The orientation of the component crystals in scandulitic dendrites is controlled by the topography of the dam or surface, not crystallographic criteria. The noncrystallographic dendrites formed from spring waters with initial temperatures of 90--99 C. Surficial water cooling, loss of CO{sub 2}, and presence of other elements that can interfere with crystal growth contributed to the formation of these unusual crystals.

  18. D-Alanylation of Teichoic Acids and Loss of Poly-N-Acetyl Glucosamine in Staphylococcus aureus during Exponential Growth Phase Enhance IL-12 Production in Murine Dendritic Cells.

    Science.gov (United States)

    Lund, Lisbeth Drozd; Ingmer, Hanne; Frøkiær, Hanne

    2016-01-01

    Staphylococcus aureus is a major human pathogen that has evolved very efficient immune evading strategies leading to persistent colonization. During different stages of growth, S. aureus express various surface molecules, which may affect the immune stimulating properties, but very little is known about their role in immune stimulation and evasion. Depending on the growth phase, S. aureus may affect antigen presenting cells differently. Here, the impact of growth phases and the surface molecules lipoteichoic acid, peptidoglycan and poly-N-acetyl glucosamine on the induction of IL-12 imperative for an efficient clearance of S. aureus was studied in dendritic cells (DCs). Exponential phase (EP) S. aureus was superior to stationary phase (SP) bacteria in induction of IL-12, which required actin-mediated endocytosis and endosomal acidification. Moreover, addition of staphylococcal cell wall derived peptidoglycan to EP S. aureus stimulated cells increased bacterial uptake but abrogated IL-12 induction, while addition of lipoteichoic acid increased IL-12 production but had no effect on the bacterial uptake. Depletion of the capability to produce poly-N-acetyl glucosamine increased the IL-12 inducing activity of EP bacteria. Furthermore, the mutant dltA unable to produce D-alanylated teichoic acids failed to induce IL-12 but like peptidoglycan and the toll-like receptor (TLR) ligands LPS and Pam3CSK4 the mutant stimulated increased macropinocytosis. In conclusion, the IL-12 response by DCs against S. aureus is highly growth phase dependent, relies on cell wall D-alanylation, endocytosis and subsequent endosomal degradation, and is abrogated by receptor induced macropinocytosis.

  19. A Rayleigh number based dendrite fragmentation criterion for detachment of solid crystals during solidification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arvind; Dutta, Pradip [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 (India)], E-mail: pradip@mecheng.iisc.ernet.in

    2008-08-07

    Movement of solid crystals in the form of dendrite fragments causes severe macro-segregation in solidified products. Dendrite fragmentation in the developing mushy zone occurs as a result of remelting (causing dissolution) and subsequent breakage of dendritic side arms from the dendritic stalks. An understanding of the mechanisms of dendrite fragmentation is essential for predicting the transport of fragmented solid crystals for possible control of macro-segregation. In this work, a Rayleigh number based fragmentation criterion is developed for detachment of dendrites from the developing mushy zone, which determines the conditions favourable for fragmentation of dendrites. The Rayleigh number, defined in this paper, measures the ratio of the driving buoyancy force for the flow in the mushy zone to the retarding frictional force associated with the permeability of the mush. The criterion developed is a function of the concentration difference, liquid fraction, permeability, growth rate of mushy layer and thermophysical properties of the material.

  20. Hydrodynamic growth and mix experiments at National Ignition Facility

    Science.gov (United States)

    Smalyuk, V. A.; Caggiano, J.; Casey, D.; Cerjan, C.; Clark, D. S.; Edwards, J.; Grim, G.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W.; Hurricane, O.; Kilkenny, J.; Kline, J.; Knauer, J.; Landen, O.; McNaney, J.; Mintz, M.; Nikroo, A.; Parham, T.; Park, H.-S.; Pino, J.; Raman, K.; Remington, B. A.; Robey, H. F.; Rowley, D.; Tipton, R.; Weber, S.; Yeamans, C.

    2016-03-01

    Hydrodynamic growth and its effects on implosion performance and mix were studied at the National Ignition Facility (NIF). Spherical shells with pre-imposed 2D modulations were used to measure Rayleigh-Taylor (RT) instability growth in the acceleration phase of implosions using in-flight x-ray radiography. In addition, implosion performance and mix have been studied at peak compression using plastic shells filled with tritium gas and imbedding localized CD diagnostic layer in various locations in the ablator. Neutron yield and ion temperature of the DT fusion reactions were used as a measure of shell-gas mix, while neutron yield of the TT fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits to yield degradation, with atomic ablator-gas mix playing a secondary role.

  1. GLOBAL RECESSION AND ASIAN GROWTH: EXPERIENCE AND PROSPECTS

    OpenAIRE

    Dowling, John Malcolm

    2015-01-01

    The paper outlines current macroeconomic developments in industrial countries and explains how slower growth in these economies is being transmitted to developing economies in Asia. The macroeconomic outlook for industrial countries in 2009 is discussed along with the transmission mechanism that has brought the global downturn tothe Asian economies. Monetary and fiscal policy adjustments in Asian economies have been implemented to address the downturn in economic activity and these policies a...

  2. Amphiphilic dendritic peptides: Synthesis and behavior as an organogelator and liquid crystal

    Directory of Open Access Journals (Sweden)

    Xinwu Ba

    2011-02-01

    Full Text Available New amphiphilic dendritic peptides on dendritic polyaspartic acid were designed and synthesized. The organogel and liquid crystal properties of these amphiphilic dendritic peptides were fully studied by field-emission SEM, temperature dependent FT-IR, differential scanning calorimetry, polarization optical microscopy and X-ray diffraction experiments. Amphiphilic dendritic peptides G3 show good organogel properties with a minimum gelation concentration as low as 1 wt %. Furthermore, amphiphilic dendritic peptides G3 can form a hexagonal columnar liquid crystal assembly over a wide temperature range.

  3. Phase-field-crystal investigation of the morphology of a steady-state dendrite tip on the atomic scale.

    Science.gov (United States)

    Tang, Sai; Wang, Jincheng; Li, Junjie; Wang, Zhijun; Guo, Yaolin; Guo, Can; Zhou, Yaohe

    2017-06-01

    Through phase-field-crystal (PFC) simulations, we investigated, on the atomic scale, the crucial role played by interface energy anisotropy and growth driving force during the morphological evolution of a dendrite tip at low growth driving force. In the layer-by-layer growth manner, the interface energy anisotropy drives the forefront of the dendrite tip to evolve to be highly similar to the corner of the corresponding equilibrium crystal from the aspects of atom configuration and morphology, and thus affects greatly the formation and growth of a steady-state dendrite tip. Meanwhile, the driving force substantially influences the part behind the forefront of the dendrite tip, rather than the forefront itself. However, as the driving force increases enough to change the layer-by-layer growth to the multilayer growth, the morphology of the dendrite tip's forefront is completely altered. Parabolic fitting of the dendrite tip reveals that an increase in the influence of interface energy anisotropy makes dendrite tips deviate increasingly from a parabolic shape. By quantifying the deviations under various interface energy anisotropies and growth driving forces, it is suggested that a perfect parabola is an asymptotic limit for the shape of the dendrite tips. Furthermore, the atomic scale description of the dendrite tip obtained in the PFC simulation is compatible with the mesoscopic results obtained in the phase-field simulation in terms of the dendrite tip's morphology and the stability criterion constant.

  4. Phase-field-crystal investigation of the morphology of a steady-state dendrite tip on the atomic scale

    Science.gov (United States)

    Tang, Sai; Wang, Jincheng; Li, Junjie; Wang, Zhijun; Guo, Yaolin; Guo, Can; Zhou, Yaohe

    2017-06-01

    Through phase-field-crystal (PFC) simulations, we investigated, on the atomic scale, the crucial role played by interface energy anisotropy and growth driving force during the morphological evolution of a dendrite tip at low growth driving force. In the layer-by-layer growth manner, the interface energy anisotropy drives the forefront of the dendrite tip to evolve to be highly similar to the corner of the corresponding equilibrium crystal from the aspects of atom configuration and morphology, and thus affects greatly the formation and growth of a steady-state dendrite tip. Meanwhile, the driving force substantially influences the part behind the forefront of the dendrite tip, rather than the forefront itself. However, as the driving force increases enough to change the layer-by-layer growth to the multilayer growth, the morphology of the dendrite tip's forefront is completely altered. Parabolic fitting of the dendrite tip reveals that an increase in the influence of interface energy anisotropy makes dendrite tips deviate increasingly from a parabolic shape. By quantifying the deviations under various interface energy anisotropies and growth driving forces, it is suggested that a perfect parabola is an asymptotic limit for the shape of the dendrite tips. Furthermore, the atomic scale description of the dendrite tip obtained in the PFC simulation is compatible with the mesoscopic results obtained in the phase-field simulation in terms of the dendrite tip's morphology and the stability criterion constant.

  5. Effect of strontium on primary dendrite and eutectic temperature of A357 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Chen Zhongwei

    2010-05-01

    Full Text Available Solidification process of A357 alloy with Sr addition was investigated in this paper. In particular, the effects of strontium and cooling rate on α-Al dendrite and Al-Si eutectic characteristic temperature were characterized by differential thermal analysis (DTA. Sr addition not only modifies the Al-Si eutectic, but also affects the morphology and structure of primary α-Al dendrite. Sr decreases the growth temperature of α-Al dendrite and Al-Si eutectic, and it also affects the dendrite growth mechanism. It has been found that such effect becomes more significant with higher cooling rate.

  6. Sleeping dendrites: fiber-optic measurements of dendritic calcium activity in freely moving and sleeping animals

    Directory of Open Access Journals (Sweden)

    Julie Seibt

    2014-03-01

    Full Text Available Dendrites are the post-synaptic sites of most excitatory and inhibitory synapses in the brain, making them the main location of cortical information processing and synaptic plasticity. Although current hypotheses suggest a central role for sleep in proper cognitive function and brain plasticity, virtually nothing is known about changes in dendritic activity across the sleep-wake cycle and how waking experience modifies this activity. To start addressing these questions, we developed a method that allows long-term recordings of EEGs/EMG combined with in vivo cortical calcium (Ca2+ activity in freely moving and sleeping rats. We measured Ca2+ activity from populations of dendrites of layer (L 5 pyramidal neurons (n = 13 rats that we compared with Ca2+ activity from populations of neurons in L2/3 (n = 11 rats. L5 and L2/3 neurons were labelled using bolus injection of OGB1-AM or GCaMP6 (1. Ca2+ signals were detected using a fiber-optic system (cannula diameter = 400µm, transmitting the changes in fluorescence to a photodiode. Ca2+ fluctuations could then be correlated with ongoing changes in brain oscillatory activity during 5 major brain states: active wake [AW], quiet wake [QW], NREM, REM and NREM-REM transition (or intermediate state, [IS]. Our Ca2+ recordings show large transients in L5 dendrites and L2/3 neurons that oscillate predominantly at frequencies In summary, we show that this technique is successful in monitoring fluctuations in ongoing dendritic Ca2+ activity during natural brain states and allows, in principle, to combine behavioral measurement with imaging from various brain regions (e.g. deep structures in freely behaving animals. Using this method, we show that Ca2+ transients from populations of L2/3 neurons and L5 dendrites are deferentially regulated across the sleep/wake cycle, with dendritic activity being the highest during the IS sleep. Our correlation analysis suggests that specific sleep EEG activity during NREM and IS

  7. Vancouver Experience of Recombinant Human Platelet-Derived Growth Factor.

    Science.gov (United States)

    Younger, Alistair; Penner, Murray; Montijo, Harvey E

    2016-12-01

    Joint arthrodesis utilizing autogenous bone graft remains the gold standard of treatment in fusion procedures of the foot and ankle. Graft harvest, however, has been associated with increased morbidity to patients as well as increased costs. With this in mind, multiple clinical studies have evaluated the efficacy of recombinant human platelet-derived growth factor (rh-PDGF-BB) with beta-tricalcium phosphate (B-TCP) to augment in foot and ankle arthrodesis with favorable results. These factors have led to the increased use of rh-PDGF-BB with B-TCP in Vancouver with good clinical results. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Understanding growth of East Africa highland banana: experiments and simulation

    OpenAIRE

    2010-01-01

    Key words: leaf area; radiation interception; QUEFTS model; fertilizer recovery fractions; nutrient mass fractions; crop growth; calibration; validation; radiation use efficiency; sensitivity analysis East Africa Highland banana yields on smallholder farms in the Great Lakes region are small (11−26 Mg ha−1 cycle−1 in Uganda, 21−43 Mg ha−1 cycle−1 in Burundi and 25−53 Mg ha−1 cycle−1 in Rwanda). The major causes of poor yields are declining soil fertility and soil moisture stress. In order to ...

  9. Modification of dendritic development.

    Science.gov (United States)

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  10. Plant Growth Experiments in Zeoponic Substrates: Applications for Advanced Life Support Systems

    Science.gov (United States)

    Ming, Douglas W.; Gruener, J. E.; Henderson, K. E.; Steinberg, S. L.; Barta, D. J.; Galindo, C.; Henninger, D. L.

    2001-01-01

    A zeoponic plant-growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component (Allen and Ming, 1995). Zeolites are crystalline, hydrated aluminosilicate minerals that have the ability to exchange constituent cations without major change of the mineral structure. Recently, zeoponic systems developed at the National Aeronautics and Space Administration (NASA) slowly release some (Allen et at., 1995) or all of the essential plant-growth nutrients (Ming et at., 1995). These systems have NH4- and K-exchanged clinoptilolite (a natural zeolite) and either natural or synthetic apatite (a calcium phosphate mineral). For the natural apatite system, Ca and P were made available to the plant by the dissolution of apatite. Potassium and NH4-N were made available by ion-exchange reactions involving Ca(2+) from apatite dissolution and K(+) and NH4(+) on zeolitic exchange sites. In addition to NH4-N, K, Ca, and P, the synthetic apatite system also supplied Mg, S, and other micronutrients during dissolution (Figure 1). The overall objective of this research task is to develop zeoponic substrates wherein all plant growth nutrients are supplied by the plant growth medium for several growth seasons with only the addition of water. The substrate is being developed for plant growth in Advanced Life Support (ALS) testbeds (i.e., BioPLEX) and microgravity plant growth experiments. Zeoponic substrates have been used for plant growth experiments on two Space Shuttle flight experiments (STS-60; STS-63; Morrow et aI., 1995). These substrates may be ideally suited for plant growth experiments on the International Space Station and applications in ALS testbeds. However, there are several issues that need to be resolved before zeoponics will be the choice substrate for plant growth experiments in space. The objective of this paper is to provide an overview on recent research directed toward the refinement of zeoponic plant growth substrates.

  11. Experiment 9: ASTROCULTURE: Growth and Starch Accumulation of Potato Tuber

    Science.gov (United States)

    Tibbitts, Theodore W.; Brown, Christopher S.; Croxdale, Judith G.; Wheeler, Raymond M.

    1998-01-01

    Potato explants (leaf, small stem section, and axillary bud) flown on STS-73 developed tubers of 1.5 cm diameter and 1.7 g mass during the 16-day period of space flight. The experiment was undertaken in the ASTROCULTURE(TM) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers that formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was similar in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in space flight and ground controls, but activity of ADP-glucose pyrophosphorylase was reduced in the space flight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in space flight as on the ground. Thus, this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  12. The "conscious pilot"-dendritic synchrony moves through the brain to mediate consciousness.

    Science.gov (United States)

    Hameroff, Stuart

    2010-01-01

    Cognitive brain functions including sensory processing and control of behavior are understood as "neurocomputation" in axonal-dendritic synaptic networks of "integrate-and-fire" neurons. Cognitive neurocomputation with consciousness is accompanied by 30- to 90-Hz gamma synchrony electroencephalography (EEG), and non-conscious neurocomputation is not. Gamma synchrony EEG derives largely from neuronal groups linked by dendritic-dendritic gap junctions, forming transient syncytia ("dendritic webs") in input/integration layers oriented sideways to axonal-dendritic neurocomputational flow. As gap junctions open and close, a gamma-synchronized dendritic web can rapidly change topology and move through the brain as a spatiotemporal envelope performing collective integration and volitional choices correlating with consciousness. The "conscious pilot" is a metaphorical description for a mobile gamma-synchronized dendritic web as vehicle for a conscious agent/pilot which experiences and assumes control of otherwise non-conscious auto-pilot neurocomputation.

  13. Transcriptional profiling of dendritic cells matured in different osmolarities

    Directory of Open Access Journals (Sweden)

    Federica Chessa

    2016-03-01

    Full Text Available Tissue-specific microenvironments shape the fate of mononuclear phagocytes [1–3]. Interstitial osmolarity is a tissue biophysical parameter which considerably modulates the phenotype and function of dendritic cells [4]. In the present report we provide a detailed description of our experimental workflow and bioinformatic analysis applied to our gene expression dataset (GSE72174, aiming to investigate the influence of different osmolarity conditions on the gene expression signature of bone marrow-derived dendritic cells. We established a cell culture system involving murine bone marrow cells, cultured under different NaCl-induced osmolarity conditions in the presence of the dendritic cell growth factor GM-CSF. Gene expression analysis was applied to mature dendritic cells (day 7 developed in different osmolarities, with and without prior stimulation with the TLR2/4 ligand LPS.

  14. RTA beam dynamics experiments: Limiting cumulative transverse instability growth in a linear periodic system

    Science.gov (United States)

    Houck, Tim; Lidia, Steve; Westenskow, Glen

    2001-05-01

    A critical issue for a Two-Beam accelerator based upon extended relativistic klystrons is controlling the cumulative dipole instability growth. We describe a theoretical scheme to reduce the growth from an exponential to a more manageable linear rate, and a new experiment to test this concept. The experiment utilizes a 1-MeV, 600-Amp, 200-ns electron beam and a short beamline of periodically spaced RF dipole pillbox cavities and solenoid magnets for transport. Descriptions of the RTA injector and the planned beamline are presented, followed by theoretical studies of the beam transport and dipole mode growth.

  15. The analysis of purkinje cell dendritic morphology in organotypic slice cultures.

    Science.gov (United States)

    Kapfhammer, Josef P; Gugger, Olivia S

    2012-03-21

    Purkinje cells are an attractive model system for studying dendritic development, because they have an impressive dendritic tree which is strictly oriented in the sagittal plane and develops mostly in the postnatal period in small rodents (3). Furthermore, several antibodies are available which selectively and intensively label Purkinje cells including all processes, with anti-Calbindin D28K being the most widely used. For viewing of dendrites in living cells, mice expressing EGFP selectively in Purkinje cells (11) are available through Jackson labs. Organotypic cerebellar slice cultures cells allow easy experimental manipulation of Purkinje cell dendritic development because most of the dendritic expansion of the Purkinje cell dendritic tree is actually taking place during the culture period (4). We present here a short, reliable and easy protocol for viewing and analyzing the dendritic morphology of Purkinje cells grown in organotypic cerebellar slice cultures. For many purposes, a quantitative evaluation of the Purkinje cell dendritic tree is desirable. We focus here on two parameters, dendritic tree size and branch point numbers, which can be rapidly and easily determined from anti-calbindin stained cerebellar slice cultures. These two parameters yield a reliable and sensitive measure of changes of the Purkinje cell dendritic tree. Using the example of treatments with the protein kinase C (PKC) activator PMA and the metabotropic glutamate receptor 1 (mGluR1) we demonstrate how differences in the dendritic development are visualized and quantitatively assessed. The combination of the presence of an extensive dendritic tree, selective and intense immunostaining methods, organotypic slice cultures which cover the period of dendritic growth and a mouse model with Purkinje cell specific EGFP expression make Purkinje cells a powerful model system for revealing the mechanisms of dendritic development.

  16. Statistical Physics of Neural Systems with Nonadditive Dendritic Coupling

    Directory of Open Access Journals (Sweden)

    David Breuer

    2014-03-01

    Full Text Available How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such nonadditive dendritic processing on single-neuron responses and the performance of associative-memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain network convergence and increase the robustness of memory performance against noise. Interestingly, an intermediate number of dendritic branches is optimal for memory functionality.

  17. Sensitivity of Dendritic Cells to Microenvironment Signals

    Science.gov (United States)

    Motta, Juliana Maria; Rumjanek, Vivian Mary

    2016-01-01

    Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies. PMID:27088097

  18. Sensitivity of Dendritic Cells to Microenvironment Signals

    Directory of Open Access Journals (Sweden)

    Juliana Maria Motta

    2016-01-01

    Full Text Available Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies.

  19. Phase-field simulation of dendritic sidebranching induced by thermal noise

    Institute of Scientific and Technical Information of China (English)

    朱昌盛; 王智平; 荆涛; 柳百成

    2004-01-01

    The influence of undercooling and noise magnitude on dendritic sidebranching during crystal growth was investigated by simulation of a phase-field model which incorporates thermal noise. It is shown that, the sidebranching is not influenced with inclusion of the nonconserved noise, therefore, in order to save the computational costs it is often neglected; while conserved noise drives the morphological instability and is dominant origin of sidebranching. The dependence of temperature field on magnitude of thermal noise is apparent, when Fu gets an appropriate value, noise can induce sidebranching but not influence the dendritic tip operating state. In the small undercooled melt, the thermal diffusion layer collected around the dendrite is thick, which suppresses the growth of its sidebranching and makes the dendrite take on the morphology of no sidebranching, but when the undercooling is great,the thermal diffusion layer is thin, which is advantageous to the growth of the sidebranching and the dendrite presents the morphology of the developed sidebranching.

  20. Children's Experience of Posttraumatic Growth: Distinguishing General from Domain-Specific Correlates.

    Directory of Open Access Journals (Sweden)

    Odilia M Laceulle

    Full Text Available Although the five domains of posttraumatic growth (new possibilities, relating to others, personal strength, spiritual change and appreciation of life have been studied extensively in adults, little is known about these domains and their correlates in children. We aimed to examine whether demographic and/or social characteristics are related to children's reports of overall posttraumatic growth and of growth in specific domains. In a general population study, children aged 8-12 years who had been exposed to adverse events (N = 1290 filled out questionnaires on their experiences, demographic characteristics (gender, age, time lag since event, stress reactions, peer support, religiosity and posttraumatic growth. All demographic and social characteristics were related to overall posttraumatic growth, except time lag. Associations varied across the five domains with the strongest effects being found for stress reactions and religiosity. A higher level of stress reactions was related to more growth in all domains (general effect, whereas religious children experienced more spiritual growth than non-religious children without differences on other domains (domain specific effect. Other effects were small, and some did not remain significant after Bonferroni corrections. These findings suggest the presence of both general and domain-specific correlates of child posttraumatic growth. Although effects were generally small, the current findings show the need to differentiate between the domains of posttraumatic growth in both further research and clinical practice. This will allow a better understanding of the mechanisms of posttraumatic growth in children as well as more tailored assessment and intervention.

  1. Children's Experience of Posttraumatic Growth: Distinguishing General from Domain-Specific Correlates.

    Science.gov (United States)

    Laceulle, Odilia M; Kleber, Rolf J; Alisic, Eva

    2015-01-01

    Although the five domains of posttraumatic growth (new possibilities, relating to others, personal strength, spiritual change and appreciation of life) have been studied extensively in adults, little is known about these domains and their correlates in children. We aimed to examine whether demographic and/or social characteristics are related to children's reports of overall posttraumatic growth and of growth in specific domains. In a general population study, children aged 8-12 years who had been exposed to adverse events (N = 1290) filled out questionnaires on their experiences, demographic characteristics (gender, age, time lag since event), stress reactions, peer support, religiosity and posttraumatic growth. All demographic and social characteristics were related to overall posttraumatic growth, except time lag. Associations varied across the five domains with the strongest effects being found for stress reactions and religiosity. A higher level of stress reactions was related to more growth in all domains (general effect), whereas religious children experienced more spiritual growth than non-religious children without differences on other domains (domain specific effect). Other effects were small, and some did not remain significant after Bonferroni corrections. These findings suggest the presence of both general and domain-specific correlates of child posttraumatic growth. Although effects were generally small, the current findings show the need to differentiate between the domains of posttraumatic growth in both further research and clinical practice. This will allow a better understanding of the mechanisms of posttraumatic growth in children as well as more tailored assessment and intervention.

  2. Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus.

    Science.gov (United States)

    Tanabe, Koji; Kani, Shuichi; Shimizu, Takashi; Bae, Young-Ki; Abe, Takaya; Hibi, Masahiko

    2010-12-15

    Neurons have highly polarized structures that determine what parts of the soma elaborate the axon and dendrites. However, little is known about the mechanisms that establish neuronal polarity in vivo. Cerebellar Purkinje cells extend a single primary dendrite from the soma that ramifies into a highly branched dendritic arbor. We used the zebrafish cerebellum to investigate the mechanisms by which Purkinje cells acquire these characteristics. To examine dendritic morphogenesis in individual Purkinje cells, we marked the cell membrane using a Purkinje cell-specific promoter to drive membrane-targeted fluorescent proteins. We found that zebrafish Purkinje cells initially extend multiple neurites from the soma and subsequently retract all but one, which becomes the primary dendrite. In addition, the Golgi apparatus specifically locates to the root of the primary dendrite, and its localization is already established in immature Purkinje cells that have multiple neurites. Inhibiting secretory trafficking through the Golgi apparatus reduces dendritic growth, suggesting that the Golgi apparatus is involved in the dendritic morphogenesis. We also demonstrated that in a mutant of an atypical protein kinase C (aPKC), Prkci, Purkinje cells retain multiple primary dendrites and show disrupted localization of the Golgi apparatus. Furthermore, a mosaic inhibition of Prkci in Purkinje cells recapitulates the aPKC mutant phenotype. These results suggest that the aPKC cell autonomously controls the Golgi localization and thereby regulates the specification of the primary dendrite of Purkinje cells.

  3. Core-Shell-structured Dendritic Mesoporous Silica Nanoparticles for Combined Photodynamic Therapy and Antibody Delivery.

    Science.gov (United States)

    Abbaraju, Prasanna Lakshmi; Yang, Yannan; Yu, Meihua; Fu, Jianye; Xu, Chun; Yu, Chengzhong

    2017-07-04

    Multifunctional core-shell-structured dendritic mesoporous silica nanoparticles with a fullerene-doped silica core, a dendritic silica shell and large pores have been prepared. The combination of photodynamic therapy and antibody therapeutics significantly inhibits the cancer cell growth by effectively reducing the level of anti-apoptotic proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Investigation of atom-attaching pro cess of three-dimensional b o dy-center-cubic dendritic growth by phase-field crystal mo del%BCC枝晶生长原子堆垛过程的晶体相场研究∗

    Institute of Scientific and Technical Information of China (English)

    郭灿; 王锦程; 王志军; 李俊杰; 郭耀麟; 唐赛

    2015-01-01

    通过在自由能泛函中引入各向异性参数得到了一个基于高斯内核的改进晶体相场模型,并采用该模型研究了体心立方结构(BCC)枝晶生长的原子堆垛过程。结果表明,在BCC由正十二面体平衡形貌演化为枝晶组织过程中,形核位置经历了由面心({110}面)到尖端(⟨100⟩取向)的转移,进而发生界面失稳形成枝晶组织;枝晶生长过程中,新的固相原子首先在枝晶尖端附近形核,并快速向尖端及根部生长,枝晶尖端被新原子完全包覆后将再次诱发液相原子附着形核及生长;随初始液相密度的增加,固-液界面移动速率增加,速率系数的各向异性也增强。%On the basis of the Gaussian kernel phase field crystal model (PFC), we propose a modified PFC model. The atom-attaching process of three-dimensional body-center-cubic (BCC) dendritic growth is examined by using the modified PFC model. Our simulations indicate that in the process of the morphology evolution from regular dodecahedron to dendrite shape, the nucleation position of new layer is transferred from the center of {110} planes into the region of{110}plane near the⟨100⟩tips, and then the BCC dendritic morphology is obtained. In the process of dendritic growth, first, new solid atom absorption takes place near dendrite tips, then liquid atoms start to grow up on the existing solid phase rapidly. After the dendrite tips are completely occupied by new atoms, new nuclei begin to form again. Increasing the initial atom density n will increase the velocity coefficient C and the anisotropy of C.

  5. Whisker/Cone growth on the thermal control surfaces experiment no. S0069

    Science.gov (United States)

    Zwiener, James M.; Coston, James E., Jr.; Miller, Edgar R.; Mell, Richard J.; Wilkes, Donald R.

    1995-01-01

    An unusual surface 'growth' was found during scanning electron microscope (SEM) investigations of the Thermal Control Surface Experiment (TCSE) S0069 front thermal cover. This 'growth' is similar to the cone type whisker growth phenomena as studied by G. K. Wehner beginning in the 1960's. Extensive analysis has identified the most probable composition of the whiskers to be a silicate type glass. Sources of the growth material are outgassing products from the experiment and orbital atomic oxygen, which occurs naturally at the orbital altitudes of the LDEF mission in the form of neutral atomic oxygen. The highly ordered symmetry and directionality of the whiskers are attributed to the long term (5.8 year) stable flight orientation of the LDEF.

  6. Phase-field modeling of dendritic growth under forced flow based on adaptive finite element method%基于自适应有限元相场模型模拟强制流动条件下的枝晶生长

    Institute of Scientific and Technical Information of China (English)

    朱昶胜; 雷鹏; 肖荣振; 冯力

    2015-01-01

    A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.%应用投影算法与相场法相结合的数学模型,采用基于非均匀网格的自适应有限元法求解该模型,并对强制流动作用下镍过冷熔体中枝晶生长行为进行模拟。模拟结果表明,强迫对流的引入导致枝晶生长的不对称性。当流速小于临界值时,流动对枝晶的不对称生长影响较小;当流速达到或超过临界值时,枝晶生长的控制因素逐渐从热扩散过渡到对流。随着流速的增大,流动法向的一次枝晶臂朝逆流方向倾斜角度增大。而枝晶生长对熔体流动具有明显的影响。随着枝晶尺寸的增大,在顺流区域产生涡流效应,涡流区逐渐扩大并在枝晶尖端出现重熔现

  7. Extending the Life of Lithium-Based Rechargeable Batteries by Reaction of Lithium Dendrites with a Novel Silica Nanoparticle Sandwiched Separator.

    Science.gov (United States)

    Liu, Kai; Zhuo, Denys; Lee, Hyun-Wook; Liu, Wei; Lin, Dingchang; Lu, Yingying; Cui, Yi

    2017-01-01

    A reaction-protective separator that slows the growth of lithium dendrites penetrating into the separator is produced by sandwiching silica nanoparticles between two polymer separators. The reaction between lithium dendrites and silica nanoparticles consumes the dendrites and can extend the life of the battery by approximately five times.

  8. 铸造多晶硅小平面枝晶生长机制的研究%Research on the small plane dendrite growth mechanism of cast polysilicon

    Institute of Scientific and Technical Information of China (English)

    罗大伟; 龙剑平; 李廷举

    2013-01-01

    In recent years,cast polycrystalline silicon had become a one of major photovoltaic because of its low cost,low energy consumption and less pollution and other advantages and it received wide attention.However, there were a lot of twins in the coarse columnar grain obtained by directional solidification process.We believed that twin was likely to play a leading role on the crystal growth.The vacuum melting furnace and directional so-lidification furnace which were designed by us were used to refine metallurgical grade silicon (MG-Si)under vacuum conditions.The growth mechanism of parallel twins and small plane dendritic growth mechanisms in casting polycrystalline silicon were analyzed and discussed in detail based on the observation and analysis of di-rectional solidification test of our group and the research in this area of other research institutions at home and abroad.%近些年来由于低成本、低耗能和少污染等特点,铸造多晶硅已成为主要的光伏材料之一,越来越受到人们的广泛关注。但通过定向凝固工艺获得的粗大的晶体中存在大量的孪晶,认为孪晶就有可能对晶体生长起着主导作用。采用自行设计的真空电磁感应熔炼炉及定向凝固炉对冶金级多晶硅进行了真空条件下的定向凝固实验,通过对定向凝固铸锭的观察和分析并结合国内外其它研究机构在此方面的研究,对铸造多晶硅中平行孪晶的生长机制和小平面枝晶的生长机制进行了详细的分析和讨论。

  9. When is Economic Growth Pro-Poor? Experiences in Malaysia and Pakistan

    OpenAIRE

    Mahmood Hasan Khan

    2002-01-01

    This paper focuses on two central issues related to the contrasting experiences of Malaysia and Pakistan regarding poverty reduction. First, it examines the structure of economic growth and its proximate determinants in the two countries, including the initial conditions, institutional changes, and macroeconomic policies. Second, it analyzes the links between economic growth and poverty reduction, particularly focusing on public policy mechanisms to reduce poverty and inequality. Malaysia, un...

  10. Biofilm growth in porous media: experiments, computational modeling at the porescale, and upscaling

    CERN Document Server

    Peszynska, Malgorzata; Iltis, Gabriel; Schlueter, Steffen; Wildenschild, Dorthe

    2015-01-01

    Biofilm growth changes many physical properties of porous media such as porosity, permeability and mass transport parameters. The growth depends on various environmental conditions, and in particular, on flow rates. Modeling the evolution of such properties is difficult both at the porescale where the phase morphology can be distinguished, as well as during upscaling to the corescale effective properties. Experimental data on biofilm growth is also limited because its collection can interfere with the growth, while imaging itself presents challenges. In this paper we combine insight from imaging, experiments, and numerical simulations and visualization. The experimental dataset is based on glass beads domain inoculated by biomass which is subjected to various flow conditions promoting the growth of biomass and the appearance of a biofilm phase. The domain is imaged and the imaging data is used directly by a computational model for flow and transport. The results of the computational flow model are upscaled to...

  11. MicroRNA-9 controls dendritic development by targeting REST

    Science.gov (United States)

    Giusti, Sebastian A; Vogl, Annette M; Brockmann, Marisa M; Vercelli, Claudia A; Rein, Martin L; Trümbach, Dietrich; Wurst, Wolfgang; Cazalla, Demian; Stein, Valentin; Deussing, Jan M; Refojo, Damian

    2014-01-01

    MicroRNAs (miRNAs) are conserved noncoding RNAs that function as posttranscriptional regulators of gene expression. miR-9 is one of the most abundant miRNAs in the brain. Although the function of miR-9 has been well characterized in neural progenitors, its role in dendritic and synaptic development remains largely unknown. In order to target miR-9 in vivo, we developed a transgenic miRNA sponge mouse line allowing conditional inactivation of the miR-9 family in a spatio-temporal-controlled manner. Using this novel approach, we found that miR-9 controls dendritic growth and synaptic transmission in vivo. Furthermore, we demonstrate that miR-9-mediated downregulation of the transcriptional repressor REST is essential for proper dendritic growth. DOI: http://dx.doi.org/10.7554/eLife.02755.001 PMID:25406064

  12. Growth of long fatigue cracks under non-proportional loadings – experiment and simulation

    Directory of Open Access Journals (Sweden)

    Y. Hos

    2016-07-01

    Full Text Available An experimental campaign was carried out on thin-walled tubes under tension and torsion. The results from experiments are measured and compared. It is observed that cracks follow a shear-dominated growth pattern with increasing crack length, instead of a tension-dominated one. The experiments are performed with high amplitudes applied to the specimens, resulting in large cyclic plastic deformations and crack growth rates up to 10-3 mm/cycle. Stress intensity factors were calculated for the proportional loading case.

  13. A novel approach for three dimensional dendrite spine segmentation and classification

    Science.gov (United States)

    He, Tiancheng; Xue, Zhong; Wong, Stephen T. C.

    2012-02-01

    Dendritic spines are small, bulbous cellular compartments that carry synapses. Biologists have been studying the biochemical and genetic pathways by examining the morphological changes of the dendritic spines at the intracellular level. Automatic dendritic spine detection from high resolution microscopic images is an important step for such morphological studies. In this paper, a novel approach to automated dendritic spine detection is proposed based on a nonlinear degeneration model. Dendritic spines are recognized as small objects with variable shapes attached to dendritic backbones. We explore the problem of dendritic spine detection from a different angle, i.e., the nonlinear degeneration equation (NDE) is utilized to enhance the morphological differences between the dendrite and spines. Using NDE, we simulated degeneration for dendritic spine detection. Based on the morphological features, the shrinking rate on dendrite pixels is different from that on spines, so that spines can be detected and segmented after degeneration simulation. Then, to separate spines into different types, Gaussian curvatures were employed, and the biomimetic pattern recognition theory was applied for spine classification. In the experiments, we compared quantitatively the spine detection accuracy with previous methods, and the results showed the accuracy and superiority of our methods.

  14. Identification of genes influencing dendrite morphogenesis in developing peripheral sensory and central motor neurons

    Directory of Open Access Journals (Sweden)

    Chwalla Barbara

    2008-07-01

    Full Text Available Abstract Background Developing neurons form dendritic trees with cell type-specific patterns of growth, branching and targeting. Dendrites of Drosophila peripheral sensory neurons have emerged as a premier genetic model, though the molecular mechanisms that underlie and regulate their morphogenesis remain incompletely understood. Still less is known about this process in central neurons and the extent to which central and peripheral dendrites share common organisational principles and molecular features. To address these issues, we have carried out two comparable gain-of-function screens for genes that influence dendrite morphologies in peripheral dendritic arborisation (da neurons and central RP2 motor neurons. Results We found 35 unique loci that influenced da neuron dendrites, including five previously shown as required for da dendrite patterning. Several phenotypes were class-specific and many resembled those of known mutants, suggesting that genes identified in this study may converge with and extend known molecular pathways for dendrite development in da neurons. The second screen used a novel technique for cell-autonomous gene misexpression in RP2 motor neurons. We found 51 unique loci affecting RP2 dendrite morphology, 84% expressed in the central nervous system. The phenotypic classes from both screens demonstrate that gene misexpression can affect specific aspects of dendritic development, such as growth, branching and targeting. We demonstrate that these processes are genetically separable. Targeting phenotypes were specific to the RP2 screen, and we propose that dendrites in the central nervous system are targeted to territories defined by Cartesian co-ordinates along the antero-posterior and the medio-lateral axes of the central neuropile. Comparisons between the screens suggest that the dendrites of peripheral da and central RP2 neurons are shaped by regulatory programs that only partially overlap. We focused on one common

  15. From burden to spritual growth: Korean students' experience in a spiritual care practicum.

    Science.gov (United States)

    So, Woi Sook; Shin, Hye Sook

    2011-01-01

    Little is known about how students learn spiritual caregiving. A phenomenological study was conducted to examine the experience of Korean nursing students in a spiritual care practicum. Interviews with 12 students were analyzed and organized into 40 themes, 17 theme clusters, and five categories describing their experience in the practicum. Students initially experienced burdens and helplessness,followed by improvement of coping skills, self-reflection, and spiritual growth.

  16. Study of the twinned dendrite tip shape II: Experimental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Salgado-Ordorica, M.A., E-mail: mario.salgado@novelis.com [Laboratoire de Simulation des Materiaux LSMX, Ecole Polytechnique Federale de Lausanne, Station 12, 1015 Lausanne (Switzerland); Burdet, P.; Cantoni, M. [Centre Interdisciplinaire de Microscopie Electronique CIME, Ecole Polytechnique Federale de Lausanne, Station 12, 1015 Lausanne (Switzerland); Rappaz, M. [Laboratoire de Simulation des Materiaux LSMX, Ecole Polytechnique Federale de Lausanne, Station 12, 1015 Lausanne (Switzerland)

    2011-08-15

    The favorable growth kinetics of twinned dendrites can be explained by their complex morphology, multiple side branching mechanisms, growth undercooling and tip morphology. Three models were proposed for the twinned dendrite tip shape: (i) a grooved tip satisfying the Smith condition at the triple line; (ii) a doublon , i.e. a double-tip dendrite that grows with a narrow and deep liquid channel in its center; and (iii) a pointed (or edgy) tip, with consideration of the solid-liquid interfacial energy anisotropy. In the first part of this work, phase field simulations of half a twinned dendrite with an appropriate boundary condition to reproduce the Smith condition supported the doublon conjecture, with a narrow liquid channel ending its solidification with the formation of small liquid droplets. In this part, experimental observations of twinned dendrite tips reveal the presence of a small, but well-defined, groove, thus definitely eliminating the edged tip hypothesis. Focused ion beam nanotomography and energy-dispersive spectroscopy chemical analysis in a transmission electron microscope reveal the existence of a positive solute gradient in a region localized within 2 {mu}m around the twin plane. In Al-Zn specimens, small particles aligned within the twin plane further support the doublon conjecture and the predicted formation of small liquid droplets below the doublon root.

  17. Spiny Neurons of Amygdala, Striatum and Cortex Use Dendritic Plateau Potentials to Detect Network UP States

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2014-09-01

    Full Text Available Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: [1] they are the most abundant cell type within their respective brain area, [2] covered by thousands of thorny protrusions (dendritic spines, [3] possess high levels of dendritic NMDA conductances, and [4] experience sustained somatic depolarizations in vivo and in vitro (UP states. In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (dendritic UP states characterized by (i fast rise, (ii plateau phase lasting several hundred milliseconds and (iii abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates towards the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200 – 800 ms steady depolarization (~20 mV amplitude, which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states. We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

  18. Statistical physics of neural systems with non-additive dendritic coupling

    CERN Document Server

    Breuer, David; Memmesheimer, Raoul-Martin

    2015-01-01

    How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such non-additive dendritic processing on single neuron responses and the performance of associative memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain net...

  19. Biofilm growth in porous media: Experiments, computational modeling at the porescale, and upscaling

    Science.gov (United States)

    Peszynska, Malgorzata; Trykozko, Anna; Iltis, Gabriel; Schlueter, Steffen; Wildenschild, Dorthe

    2016-09-01

    Biofilm growth changes many physical properties of porous media such as porosity, permeability and mass transport parameters. The growth depends on various environmental conditions, and in particular, on flow rates. Modeling the evolution of such properties is difficult both at the porescale where the phase morphology can be distinguished, as well as during upscaling to the corescale effective properties. Experimental data on biofilm growth is also limited because its collection can interfere with the growth, while imaging itself presents challenges. In this paper we combine insight from imaging, experiments, and numerical simulations and visualization. The experimental dataset is based on glass beads domain inoculated by biomass which is subjected to various flow conditions promoting the growth of biomass and the appearance of a biofilm phase. The domain is imaged and the imaging data is used directly by a computational model for flow and transport. The results of the computational flow model are upscaled to produce conductivities which compare well with the experimentally obtained hydraulic properties of the medium. The flow model is also coupled to a newly developed biomass-nutrient growth model, and the model reproduces morphologies qualitatively similar to those observed in the experiment.

  20. Advantages of ice crystal growth experiments in a low gravity environment

    Science.gov (United States)

    Anderson, B. J.; Keller, V. W.; Hallett, J.

    1979-01-01

    The effects of convective fluid motions and mechanical supports on ice crystal growth in experiments conducted on earth can be inferred from studies conducted in their absence in a low-gravity environment. Current experimental results indicate the effects may be significant.

  1. Characterizing the growth to detonation in PETN and HNS with small-scale PDV cutback experiments

    Science.gov (United States)

    Wixom, Ryan; Yarrington, Cole; Knepper, Robert; Tappan, Alexander; Olles, Joseph; Zelenok, Matthew; A-Team

    2015-06-01

    For many decades, cutback experiments have been used to characterize the equation of state and growth to steady detonation in explosive formulations. More recently, embedded gauges have been used to capture the growth to steady detonation in gas-gun impacted samples. Data resulting from these experiments are extremely valuable for parameterizing equation of state and reaction models used in hydrocode simulations. Due to the extremely fast growth to detonation in typical detonator explosives, cutback and embedded gauge experiments are extremely difficult, if not impossible. Using frequency shifted photonic Doppler velocimetry (PDV) we have measured particle velocity histories from explosive films impacted with electrically driven flyers. By varying the sample thickness and impact conditions we were able to capture the growth from inert shock to full detonation pressure within distances as short as 100 μm. These data were used to assess and improve burn-model parameterization and equations of state for simulating shock initiation. Additionally, we discuss details of the experiment and data analysis regarding the most accurate possible determination of the velocity spike.

  2. Growth of Inclined GaAs Nanowires by Molecular Beam Epitaxy: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Tchernycheva M

    2010-01-01

    Full Text Available Abstract The growth of inclined GaAs nanowires (NWs during molecular beam epitaxy (MBE on the rotating substrates is studied. The growth model provides explicitly the NW length as a function of radius, supersaturations, diffusion lengths and the tilt angle. Growth experiments are carried out on the GaAs(211A and GaAs(111B substrates. It is found that 20° inclined NWs are two times longer in average, which is explained by a larger impingement rate on their sidewalls. We find that the effective diffusion length at 550°C amounts to 12 nm for the surface adatoms and is more than 5,000 nm for the sidewall adatoms. Supersaturations of surface and sidewall adatoms are also estimated. The obtained results show the importance of sidewall adatoms in the MBE growth of NWs, neglected in a number of earlier studies.

  3. Growth of Inclined GaAs Nanowires by Molecular Beam Epitaxy: Theory and Experiment.

    Science.gov (United States)

    Zhang, X; Dubrovskii, V G; Sibirev, N V; Cirlin, G E; Sartel, C; Tchernycheva, M; Harmand, J C; Glas, F

    2010-07-24

    The growth of inclined GaAs nanowires (NWs) during molecular beam epitaxy (MBE) on the rotating substrates is studied. The growth model provides explicitly the NW length as a function of radius, supersaturations, diffusion lengths and the tilt angle. Growth experiments are carried out on the GaAs(211)A and GaAs(111)B substrates. It is found that 20° inclined NWs are two times longer in average, which is explained by a larger impingement rate on their sidewalls. We find that the effective diffusion length at 550°C amounts to 12 nm for the surface adatoms and is more than 5,000 nm for the sidewall adatoms. Supersaturations of surface and sidewall adatoms are also estimated. The obtained results show the importance of sidewall adatoms in the MBE growth of NWs, neglected in a number of earlier studies.

  4. Crack growth simulation in heterogeneous material by S-FEM and comparison with experiments

    Directory of Open Access Journals (Sweden)

    Masanori Kikuchi

    2015-10-01

    Full Text Available Fully automatic fatigue crack growth simulation system is developed using S-version FEM (SFEM. This system is extended to fracture in heterogeneous material. In the heterogeneous material, crack tip stress field becomes mixed mode condition, and crack growth path is affected by inhomogeneous materials and mixed mode conditions. Stress Intensity Factors (SIF in mixed mode condition are evaluated using Virtual Crack Closure Method (VCCM. Criteria for crack growth amount and crack growth path are used based on these SIFs, and growing crack configurations are obtained. Three crack growth problems are simulated. One is crack growth in bi-materila made of CFRP plate and Aluminum alloy. Initial crack is located in CFRP plate, and grows toward Aluminum alloy. Crack growing direction changes and results are compared with experimental one. Second problem is crack growth in bimaterial made of PMMA and Aluminum alloy. Initial crack is located in PMMA plate and parallel to phase boundary. By cahnging loading conditions, several cases are simulated and compared with experimental ones. In the experiment, crack grows into pahse boundary and grow along it. This case is simulated precisely, and the effect of pahse boundary is discussed. Last case is Stress Corrosion Cracking (SCC at Hot-Leg Safe-End of Pressurized Water Rreactor. This location is made of many kinds of steels by welding. In some steel, SCC does not occur and in other steel, SCC is accelerated. As a result, small surface crack grows in complicated manner.

  5. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  6. Dendritic branch intersections are structurally regulated targets for efficient axonal wiring and synaptic clustering.

    Directory of Open Access Journals (Sweden)

    Monika Pinchas

    Full Text Available Synaptic clustering on dendritic branches enhances plasticity, input integration and neuronal firing. However, the mechanisms guiding axons to cluster synapses at appropriate sites along dendritic branches are poorly understood. We searched for such a mechanism by investigating the structural overlap between dendritic branches and axons in a simplified model of neuronal networks--the hippocampal cell culture. Using newly developed software, we converted images of meshes of overlapping axonal and dendrites into topological maps of intersections, enabling quantitative study of overlapping neuritic geometry at the resolution of single dendritic branch-to-branch and axon-to-branch crossings. Among dendro-dendritic crossing configurations, it was revealed that the orientations through which dendritic branches cross is a regulated attribute. While crossing angle distribution among branches thinner than 1 µm appeared to be random, dendritic branches 1 µm or wider showed a preference for crossing each other at angle ranges of either 50°-70° or 80°-90°. It was then found that the dendro-dendritic crossings themselves, as well as their selective angles, both affected the path of axonal growth. Axons displayed 4 fold stronger tendency to traverse within 2 µm of dendro-dendritic intersections than at farther distances, probably to minimize wiring length. Moreover, almost 70% of the 50°-70° dendro-denritic crossings were traversed by axons from the obtuse angle's zone, whereas only 15% traversed through the acute angle's zone. By contrast, axons showed no orientation restriction when traversing 80°-90° crossings. When such traverse behavior was repeated by many axons, they converged in the vicinity of dendro-dendritic intersections, thereby clustering their synaptic connections. Thus, the vicinity of dendritic branch-to-branch crossings appears to be a regulated structure used by axons as a target for efficient wiring and as a preferred site for

  7. Modeling of primary and secondary dendrites in a Cu-6 Wt Pct Sn alloy

    Science.gov (United States)

    Tiedje, N.; Hansen, P. N.; Pedersen, A. S.

    1996-12-01

    Microstructure of gas-atomized CuSn6 particles has been investigated using scanning electron microscopy (SEM), and it is shown that the dendrite arm spacing (DAS) is related to the particle diameter ( d) so that DAS=0.19 d 0.72. Formation of microstructures in the particles are modeled using a numerical solidification model. This model concerns tips of cells and dendrites, but in the present investigation, it is, in a simple manner, extended to comprise whole cells and dendrites. Furthermore, ripening of dendrite arms is taken into consideration. It is found that for increasing growth rates there is a transition from dendrites to cells when the growth velocity approaches the diffusional velocity in the melt, i.e., when the Peclet number is equal to one. It is also shown that both primary stem spacing and dendrite spacing are related to the ratio between the volume in the liquid where there is solute diffusion and to the surface area of the cells and dendrites (D/A). The relation between spacing and D/A is the same for cells and dendrites, indicating that the spacing selection is controlled purely by solute diffusion in the melt.

  8. Macrophages as APC and the dendritic cell myth.

    Science.gov (United States)

    Hume, David A

    2008-11-01

    Dendritic cells have been considered an immune cell type that is specialized for the presentation of Ag to naive T cells. Considerable effort has been applied to separate their lineage, pathways of differentiation, and effectiveness in Ag presentation from those of macrophages. This review summarizes evidence that dendritic cells are a part of the mononuclear phagocyte system and are derived from a common precursor, responsive to the same growth factors (including CSF-1), express the same surface markers (including CD11c), and have no unique adaptation for Ag presentation that is not shared by other macrophages.

  9. Ablation Front Rayleigh-Taylor Growth Experiments in Spherically Convergent Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Glendinning, S.G.; Cherfils, C.; Colvin, J.; Divol, L.; Galmiche, D.; Haan, S.; Marinak, M.M.; Remington, B.A.; Richard, A.L.; Wallace, R.

    1999-11-03

    Experiments were performed on the Nova laser, using indirectly driven capsules mounted in cylindrical gold hohlraums, to measure the Rayleigh-Taylor growth at the ablation front by time-resolved radiography. Modulations were preformed on the surface of Ge-doped plastic capsules. With initial modulations of 4 {micro}m, growth factors of about 6 in optical depth were seen, in agreement with simulations using the radiation hydrocode FCI2. With initial modulations of 1 {micro}m, growth factors of about 100-150 in optical depth were seen. The Rayleigh-Taylor (RT) instability at the ablation front in an inertial confinement fusion capsule has been the subject of considerable investigation. Much of this research has been concentrated on planar experiments, in which RT growth is inferred from radiography. The evolution is somewhat different in a converging geometry; the spatial wavelength decreases (affecting the onset of nonlinear saturation), and the shell thickens and compresses rather than decompressing as in a planar geometry. In a cylindrically convergent geometry, the latter effect is proportional to the radius, while in spherically convergent geometry, the latter effect is proportional to the radius squared. Experiments were performed on the Nova and Omega lasers in cylindrical geometry (using both direct and indirect drive) and have been performed in spherical geometry using direct drive.

  10. Optimal Current Transfer in Dendrites

    Science.gov (United States)

    Bird, Alex D.

    2016-01-01

    Integration of synaptic currents across an extensive dendritic tree is a prerequisite for computation in the brain. Dendritic tapering away from the soma has been suggested to both equalise contributions from synapses at different locations and maximise the current transfer to the soma. To find out how this is achieved precisely, an analytical solution for the current transfer in dendrites with arbitrary taper is required. We derive here an asymptotic approximation that accurately matches results from numerical simulations. From this we then determine the diameter profile that maximises the current transfer to the soma. We find a simple quadratic form that matches diameters obtained experimentally, indicating a fundamental architectural principle of the brain that links dendritic diameters to signal transmission. PMID:27145441

  11. Electrical advantages of dendritic spines.

    Directory of Open Access Journals (Sweden)

    Allan T Gulledge

    Full Text Available Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations.

  12. Simultaneous patch-clamping and calcium imaging in developing dendrites.

    Science.gov (United States)

    Kleindienst, Thomas; Lohmann, Christian

    2014-03-01

    Calcium imaging has been used extensively to explore the role of action potential (AP) firing in the development of neuronal structure and synaptic function because increases in intracellular calcium ([Ca(2+)]i) reliably and, within a certain range, linearly reflect neuronal spiking activity. Patterns of APs in individual cells can be deduced from calcium recordings, which have typically been performed at the level of cell bodies. However, neurons are particularly susceptible to phototoxicity when they are illuminated at the soma. Furthermore, for some imaging experiments (e.g., those that address the interactions between dendrites and axons during synapse formation), the cell body of a given neuron may simply not be in the field of view. In these situations, it would be helpful to determine the spiking patterns of a neuron from the calcium activity in its subcellular compartments such as stretches of dendrites or axons. Here, we describe an approach for determining the relationship between AP firing and dendritic calcium transients by simultaneously imaging calcium transients in small dendritic stretches of hippocampal pyramidal neurons in slice cultures from neonatal rats and recording spiking activity with whole-cell patch-clamp recordings in these neurons. These experiments allow us to correlate the electrophysiological spiking pattern with the accompanying changes in the calcium concentration in individual dendritic segments.

  13. SUBTYPE CHARACTERICS OF DENDRITIC CELLS FROM PERIPHERAL BLOOD OF PATIENTS WITH RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    S. A. Falaleeva

    2013-01-01

    Full Text Available Abstract. Characteristics of myeloid and plasmacytoid dendritic cells from peripheral blood were studied in healthy donors and patients with rheumatoid arthritis (RA. We evaluated relative amounts of dendritic cell by their subtypes, degree of their maturity, and ability to respond to the maturation factors (toll-like receptor 4, 7 and 8 agonists. The results of in vitro experiments have shown that the patients with rheumatoid arthritis exhibited a significant reduction in numbers of plasmacytoid dendritic cells from peripheral blood. A sufficient decrease in CD83, CD80 expression on dendritic cell subtypes in RA patients was significantly less, than in healthy donors. In patients with RA, a significant increase in the number of CCR7-expressing plasmacytoid dendritic cells was shown in peripheral blood. In stimulated cultures, maturation of dendritic cells expressing maturation markers (CD83, CD80, CCR7 proved to be increased up to normal values. It should be noted that the counts of plasmacytoid dendritic cells in peripheral blood of RA patients expressing CCR7 was significantly higher than among healthy donors. Meanwhile, expression of CD83 and CD80 increased tovalues of healthy donors.Hence, we have found a significant reduction in relative counts of blood-derived myeloid and plasmacytoid dendritic cells expressing markers of mature dendritic cells (CD83, CD80 in patients with rheumatoid arthritis. Upon stimulated in vitro maturation, the counts of myeloid and plasmacytoid dendritic cells expressing CD83 and CD80 increased to the values corresponding to those of control group. RA patients showed significantly higher numbers of plasmacytoid dendritic cells expressing CCR7. This could indicate some changes in functional activity of dendritic cells in peripheral blood of patients with RA.

  14. The role of dendritic non-linearities in single neuron computation

    Directory of Open Access Journals (Sweden)

    Boris Gutkin

    2014-05-01

    Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.

  15. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity

    Directory of Open Access Journals (Sweden)

    Michael J. Molumby

    2016-05-01

    Full Text Available Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs, have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron’s dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  16. Structure defect prediction of single crystal turbine blade by dendrite envelope tracking model

    Institute of Scientific and Technical Information of China (English)

    WANG Tong-min; Itsuo OHNAKA; Hideyuki YASUDA; SU Yan-qing; GUO Jing-jie

    2006-01-01

    The structure defects such as stray grains during unidirectional solidification can severely reduce the performance of single crystal turbine blades. A dendrite envelope tracking model is developed for predicting the structure defects of unidirectional solidification turbine blade. The normal vector of dendrite envelope is estimated by the gradient of dendrite volume fraction,and the growth velocity of the dendrite envelope (dendrite tips) is calculated with considering the anisotropy of grain growth. The solute redistribution at dendrite envelope is calculated by introducing an effective solute partition coefficient. Simulation tests show that the solute-build-up due to the rejection at envelope greatly affects grain competition and consequently solidification structure. The model is applied to predict the structure defects (e.g. stray grain) of single crystal turbine blade during unidirectional solidification. The results show that the developed model is reliable and has the following abilities: reproduce the growth competition among the different-preferential-direction grains:predict the stray grain formation:simulate the structure evolution (single crystal or dendrite grains).

  17. Effect of sample diameter on primary dendrite spacing of directionally solidified Al-4%Cu alloy

    Institute of Scientific and Technical Information of China (English)

    QU Min; LIU Lin; TANG Feng-tao; ZHANG Jun; FU Heng-zhi

    2009-01-01

    The relationship between primary dendrite arm spacing and sample diameter was studied during directional solidification for Al-4%Cu (mass fraction) alloy. It is shown that primary dendrite spacing is decreased with the decrease of the sample diameter at given growth rate. By regressing the relationship between primary dendrite arm spacing and the growth rate, the primary dendrite arm spacing complies with 461.76v-0.53, 417.92v-0.28 and 415.83v-0.25 for the sample diameter of 1.8, 3.5 and 7.2 mm, respectively. The primary dendrite spacing, growth rate and thermal gradient for different sample diameters comply with 28.77v-0.35G-0.70, 23.17v-0.35G-0.70 and 23.84v-0.35G-0.70, respectively. They are all consistent with the theoretical model , and b1/a1=2. By analyzing the experimental results with classical models, it is shown that KURZ-FISHER model fits for the primary dendrite spacing in smaller sample diameters with weaker thermosolute convection. Whereas TRIVEDI model is suitable for describing primary dendrite arm spacing with a larger diameter (d>2 mm) where convection should be considered.

  18. Experiences of mentoring influences on the personal and professional growth of Hispanic registered nurses.

    Science.gov (United States)

    Egues, Aida L

    2013-01-01

    The purpose of this qualitative descriptive study was to explore the meaning of the experiences of mentoring influences on the personal and professional growth of Hispanic registered nurses (RNs). Focus group methodology was employed in the New York City metropolitan area with monolingual English or bilingual English/Spanish RNs (N = 20) who perceived themselves to be at all levels of practice. The findings offer a summary of the experiences of mentoring for the 20 Hispanic RNs that includes little advancement support; hesitancy to being mentored; dependency on the self for personal and professional growth; and educational, practice, and socioeconomic barriers. This study suggests that mentoring of Hispanic nurses needs to be reexamined to improve and sustain a culture of mentoring that may enhance the education, recruitment, and retention of Hispanic RNs.

  19. Hydrodynamic growth experiments with the 3-D, “native-roughness” modulations on NIF

    Science.gov (United States)

    Smalyuk, V. A.; Weber, S. V.; Casey, D.; Clark, D. S.; Coppari, F.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W.; Landen, O.; Nikroo, A.; Robey, H. F.; Weber, C. R.

    2016-05-01

    Hydrodynamic instability growth experiments with threedimensional (3-D) surface-roughness modulations were performed on plastic (CH) shell spherical implosions at the National Ignition Facility (NIF). The initial capsule outer-surface roughness was similar to the standard specifications (“native roughness”) used in a majority of implosions on NIF. At a convergence ratio of ∼3, the measured tent modulations were close to those predicted by 3-D simulations (within ∼15-20%), while measured 3-D, broadband modulations were ∼3-4 times larger than those simulated based on the growth of the known imposed initial surface modulations. One of the hypotheses to explain the results is based on the increased instability amplitudes due to modulations of the oxygen content in the bulk of the capsule. These new experiments results have prompted looking for ways to reduce UV light exposure during target fabrication.

  20. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy

    Science.gov (United States)

    Cho, Nam-Hyuk; Cheong, Taek-Chin; Min, Ji Hyun; Wu, Jun Hua; Lee, Sang Jin; Kim, Daehong; Yang, Jae-Seong; Kim, Sanguk; Kim, Young Keun; Seong, Seung-Yong

    2011-10-01

    Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide-zinc oxide core-shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle-antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle-antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

  1. Phase field modeling for dendritic morphology transition and micro-segregation in multi-component alloys

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    By using the phase field model for the solidification of multi-component alloys and coupling with real thermodynamic data, the dendritic morphology transition and the dendritic micro-segregation of Ni-Al-Nb ternary alloys are simulated in two cases, i.e., varying the alloy composition at a fixed under-cooling and varying the undercooling at a fixed alloy composition. The simulated results indicate that with the increase of the dimensionless undercooling U (U=ΔT/ΔT0, where ΔT is the undercooling and ΔT0 the temperature interval between the solidus and liquidus), the dendritic morphology transfers from dendritic to globular growth in both cases. As to the dendritic micro-segregation, both cases present a regularity of increasing at first and then decreasing.

  2. Phase field modeling for dendritic morphology transition and micro-segregation in multi-component alloys

    Institute of Scientific and Technical Information of China (English)

    WANG JinCheng; ZHANG YuXiang; YANG YuJuan; LI JunJie; YANG GenCang

    2009-01-01

    By using the phase field model for the solidification of multi-component alloys and coupling with real thermodynamic data, the dendritic morphology transition and the dendritic micro-segregation of Ni-AI-Nb ternary alloys are simulated in two cases, i.e., varying the alloy composition at a fixed under-cooling and varying the undercooling at a fixed alloy composition. The simulated results indicate that with the increase of the dimensionless undercooling U (U=△T/△T0, where △Tis the undercooUng and △T0 the temperature interval between the solidus and liquidus), the dendritic morphology transfers from dendritic to globular growth in both cases. As to the dendritic micro-segregation, both cases present a regularity of increasing at first and then decreasing.

  3. Utilizing ARC EMCS Seedling Cassettes as Highly Versatile Miniature Growth Chambers for Model Organism Experiments

    Science.gov (United States)

    Freeman, John L.; Steele, Marianne K.; Sun, Gwo-Shing; Heathcote, David; Reinsch, S.; DeSimone, Julia C.; Myers, Zachary A.

    2014-01-01

    The aim of our ground testing was to demonstrate the capability of safely putting specific model organisms into dehydrated stasis, and to later rehydrate and successfully grow them inside flight proven ARC EMCS seedling cassettes. The ARC EMCS seedling cassettes were originally developed to support seedling growth during space flight. The seeds are attached to a solid substrate, launched dry, and then rehydrated in a small volume of media on orbit to initiate the experiment. We hypothesized that the same seedling cassettes should be capable of acting as culture chambers for a wide range of organisms with minimal or no modification. The ability to safely preserve live organisms in a dehydrated state allows for on orbit experiments to be conducted at the best time for crew operations and more importantly provides a tightly controlled physiologically relevant growth experiment with specific environmental parameters. Thus, we performed a series of ground tests that involved growing the organisms, preparing them for dehydration on gridded Polyether Sulfone (PES) membranes, dry storage at ambient temperatures for varying periods of time, followed by rehydration. Inside the culture cassettes, the PES membranes were mounted above blotters containing dehydrated growth media. These were mounted on stainless steel bases and sealed with plastic covers that have permeable membrane covered ports for gas exchange. The results showed we were able to demonstrate acceptable normal growth of C.elegans (nematodes), E.coli (bacteria), S.cerevisiae (yeast), Polytrichum (moss) spores and protonemata, C.thalictroides (fern), D.discoideum (amoeba), and H.dujardini (tardigrades). All organisms showed acceptable growth and rehydration in both petri dishes and culture cassettes initially, and after various time lengths of dehydration. At the end of on orbit ISS European Modular Cultivation System experiments the cassettes could be frozen at ultra-low temperatures, refrigerated, or chemically

  4. Excessive astrocyte-derived neurotrophin-3 contributes to the abnormal neuronal dendritic development in a mouse model of fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Qi Yang

    Full Text Available Fragile X syndrome (FXS is a form of inherited mental retardation in humans that results from expansion of a CGG repeat in the Fmr1 gene. Recent studies suggest a role of astrocytes in neuronal development. However, the mechanisms involved in the regulation process of astrocytes from FXS remain unclear. In this study, we found that astrocytes derived from a Fragile X model, the Fmr1 knockout (KO mouse which lacks FMRP expression, inhibited the proper elaboration of dendritic processes of neurons in vitro. Furthermore, astrocytic conditioned medium (ACM from KO astrocytes inhibited proper dendritic growth of both wild-type (WT and KO neurons. Inducing expression of FMRP by transfection of FMRP vectors in KO astrocytes restored dendritic morphology and levels of synaptic proteins. Further experiments revealed elevated levels of the neurotrophin-3 (NT-3 in KO ACM and the prefrontal cortex of Fmr1 KO mice. However, the levels of nerve growth factor (NGF, brain-derived neurotrophic factor (BDNF, glial cell-derived neurotrophic factor (GDNF, and ciliary neurotrophic factor (CNTF were normal. FMRP has multiple RNA-binding motifs and is involved in translational regulation. RNA-binding protein immunoprecipitation (RIP showed the NT-3 mRNA interacted with FMRP in WT astrocytes. Addition of high concentrations of exogenous NT-3 to culture medium reduced the dendrites of neurons and synaptic protein levels, whereas these measures were ameliorated by neutralizing antibody to NT-3 or knockdown of NT-3 expression in KO astrocytes through short hairpin RNAs (shRNAs. Prefrontal cortex microinjection of WT astrocytes or NT-3 shRNA infected KO astrocytes rescued the deficit of trace fear memory in KO mice, concomitantly decreased the NT-3 levels in the prefrontal cortex. This study indicates that excessive NT-3 from astrocytes contributes to the abnormal neuronal dendritic development and that astrocytes could be a potential therapeutic target for FXS.

  5. Excessive astrocyte-derived neurotrophin-3 contributes to the abnormal neuronal dendritic development in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Yang, Qi; Feng, Bin; Zhang, Kun; Guo, Yan-yan; Liu, Shui-bing; Wu, Yu-mei; Li, Xiao-qiang; Zhao, Ming-gao

    2012-01-01

    Fragile X syndrome (FXS) is a form of inherited mental retardation in humans that results from expansion of a CGG repeat in the Fmr1 gene. Recent studies suggest a role of astrocytes in neuronal development. However, the mechanisms involved in the regulation process of astrocytes from FXS remain unclear. In this study, we found that astrocytes derived from a Fragile X model, the Fmr1 knockout (KO) mouse which lacks FMRP expression, inhibited the proper elaboration of dendritic processes of neurons in vitro. Furthermore, astrocytic conditioned medium (ACM) from KO astrocytes inhibited proper dendritic growth of both wild-type (WT) and KO neurons. Inducing expression of FMRP by transfection of FMRP vectors in KO astrocytes restored dendritic morphology and levels of synaptic proteins. Further experiments revealed elevated levels of the neurotrophin-3 (NT-3) in KO ACM and the prefrontal cortex of Fmr1 KO mice. However, the levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and ciliary neurotrophic factor (CNTF) were normal. FMRP has multiple RNA-binding motifs and is involved in translational regulation. RNA-binding protein immunoprecipitation (RIP) showed the NT-3 mRNA interacted with FMRP in WT astrocytes. Addition of high concentrations of exogenous NT-3 to culture medium reduced the dendrites of neurons and synaptic protein levels, whereas these measures were ameliorated by neutralizing antibody to NT-3 or knockdown of NT-3 expression in KO astrocytes through short hairpin RNAs (shRNAs). Prefrontal cortex microinjection of WT astrocytes or NT-3 shRNA infected KO astrocytes rescued the deficit of trace fear memory in KO mice, concomitantly decreased the NT-3 levels in the prefrontal cortex. This study indicates that excessive NT-3 from astrocytes contributes to the abnormal neuronal dendritic development and that astrocytes could be a potential therapeutic target for FXS.

  6. Turtle functions downstream of Cut in differentially regulating class specific dendrite morphogenesis in Drosophila.

    Directory of Open Access Journals (Sweden)

    Mikolaj J Sulkowski

    Full Text Available BACKGROUND: Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has been substantial progress in understanding the molecular mechanisms of dendrite morphogenesis, the specification of class-specific dendritic arbors remains largely unexplained. Furthermore, the presence of numerous regulators suggests that they must work in concert. However, presently, few genetic pathways regulating dendrite development have been defined. METHODOLOGY/PRINCIPAL FINDINGS: The Drosophila gene turtle belongs to an evolutionarily conserved class of immunoglobulin superfamily members found in the nervous systems of diverse organisms. We demonstrate that Turtle is differentially expressed in Drosophila da neurons. Moreover, MARCM analyses reveal Turtle acts cell autonomously to exert class specific effects on dendritic growth and/or branching in da neuron subclasses. Using transgenic overexpression of different Turtle isoforms, we find context-dependent, isoform-specific effects on mediating dendritic branching in class II, III and IV da neurons. Finally, we demonstrate via chromatin immunoprecipitation, qPCR, and immunohistochemistry analyses that Turtle expression is positively regulated by the Cut homeodomain transcription factor and via genetic interaction studies that Turtle is downstream effector of Cut-mediated regulation of da neuron dendrite morphology. CONCLUSIONS/SIGNIFICANCE: Our findings reveal that Turtle proteins differentially regulate the acquisition of class-specific dendrite morphologies. In addition, we have established a

  7. Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment.

    Directory of Open Access Journals (Sweden)

    Patrick Kaiser

    2014-02-01

    Full Text Available In vivo, antibiotics are often much less efficient than ex vivo and relapses can occur. The reasons for poor in vivo activity are still not completely understood. We have studied the fluoroquinolone antibiotic ciprofloxacin in an animal model for complicated Salmonellosis. High-dose ciprofloxacin treatment efficiently reduced pathogen loads in feces and most organs. However, the cecum draining lymph node (cLN, the gut tissue, and the spleen retained surviving bacteria. In cLN, approximately 10%-20% of the bacteria remained viable. These phenotypically tolerant bacteria lodged mostly within CD103⁺CX₃CR1⁻CD11c⁺ dendritic cells, remained genetically susceptible to ciprofloxacin, were sufficient to reinitiate infection after the end of the therapy, and displayed an extremely slow growth rate, as shown by mathematical analysis of infections with mixed inocula and segregative plasmid experiments. The slow growth was sufficient to explain recalcitrance to antibiotics treatment. Therefore, slow-growing antibiotic-tolerant bacteria lodged within dendritic cells can explain poor in vivo antibiotic activity and relapse. Administration of LPS or CpG, known elicitors of innate immune defense, reduced the loads of tolerant bacteria. Thus, manipulating innate immunity may augment the in vivo activity of antibiotics.

  8. Novel murine dendritic cell lines: a powerful auxiliary tool for dendritic cell research

    Directory of Open Access Journals (Sweden)

    Silvia A Fuertes Marraco

    2012-11-01

    Full Text Available Research in vitro facilitates discovery, screening and pilot experiments, often preceding research in vivo. Several technical difficulties render Dendritic Cell (DC research particularly challenging, including the low frequency of DC in vivo, thorough isolation requirements, and the vulnerability of DC ex vivo. Critically, there is not as yet a widely accepted human or murine DC line and in vitro systems of DC research are limited. In this study, we report the generation of new murine DC lines, named MutuDC, originating from cultures of splenic CD8α conventional DC (cDC tumors. By direct comparison to normal WT splenic cDC subsets, we describe the phenotypic and functional features of the MutuDC lines and show that they have retained all the major features of their natural counterpart in vivo, the splenic CD8α cDC. These features include expression of surface markers Clec9A, DEC205, and CD24, positive response to TLR3 and TLR9 but not TLR7 stimuli, secretion of cytokines and chemokines upon activation, as well as cross-presentation capacity. In addition to the close resemblance to normal splenic CD8α cDC, a major advantage is the ease of derivation and maintenance of the MutuDC lines, using standard culture medium and conditions, importantly without adding supplementary growth factors or maturation-inducing stimuli to the medium. Furthermore, genetically modified MutuDC lines have been successfully obtained either by lentiviral transduction or by culture of DC tumors originating from genetically modified mice.In view of the current lack of stable and functional DC lines, these novel murine DC lines have the potential to serve as an important auxiliary tool for DC research.

  9. Conditional Knockout of Breast Carcinoma Amplified Sequence 2 (BCAS2) in Mouse Forebrain Causes Dendritic Malformation via β-catenin

    Science.gov (United States)

    Huang, Chu-Wei; Chen, Yi-Wen; Lin, Yi-Rou; Chen, Po-Han; Chou, Meng-Hsuan; Lee, Li-Jen; Wang, Pei-Yu; Wu, June-Tai; Tsao, Yeou-Ping; Chen, Show-Li

    2016-01-01

    Breast carcinoma amplified sequence 2 (BCAS2) is a core component of the hPrP19 complex that controls RNA splicing. Here, we performed an exon array assay and showed that β-catenin is a target of BCAS2 splicing regulation. The regulation of dendrite growth and morphology by β-catenin is well documented. Therefore, we generated conditional knockout (cKO) mice to eliminate the BCAS2 expression in the forebrain to investigate the role of BCAS2 in dendrite growth. BCAS2 cKO mice showed a microcephaly-like phenotype with a reduced volume in the dentate gyrus (DG) and low levels of learning and memory, as evaluated using Morris water maze analysis and passive avoidance, respectively. Golgi staining revealed shorter dendrites, less dendritic complexity and decreased spine density in the DG of BCAS2 cKO mice. Moreover, the cKO mice displayed a short dendrite length in newborn neurons labeled by DCX, a marker of immature neurons, and BrdU incorporation. To further examine the mechanism underlying BCAS2-mediated dendritic malformation, we overexpressed β-catenin in BCAS2-depleted primary neurons and found that the dendritic growth was restored. In summary, BCAS2 is an upstream regulator of β-catenin gene expression and plays a role in dendrite growth at least partly through β-catenin. PMID:27713508

  10. Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging

    Directory of Open Access Journals (Sweden)

    Kohara Keigo

    2005-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF, which is sorted into a regulated secretory pathway of neurons, is supposed to act retrogradely through dendrites on presynaptic neurons or anterogradely through axons on postsynaptic neurons. Depending on which is the case, the pattern and direction of trafficking of BDNF in dendrites and axons are expected to be different. To address this issue, we analyzed movements of green fluorescent protein (GFP-tagged BDNF in axons and dendrites of living cortical neurons by time-lapse imaging. In part of the experiments, the expression of BDNF tagged with cyan fluorescent protein (CFP was compared with that of nerve growth factor (NGF tagged with yellow fluorescent protein (YFP, to see whether fluorescent protein-tagged BDNF is expressed in a manner specific to this neurotrophin. Results We found that BDNF tagged with GFP or CFP was expressed in a punctated manner in dendrites and axons in about two-thirds of neurons into which plasmid cDNAs had been injected, while NGF tagged with GFP or YFP was diffusely expressed even in dendrites in about 70% of the plasmid-injected neurons. In neurons in which BDNF-GFP was expressed as vesicular puncta in axons, 59 and 23% of the puncta were moving rapidly in the anterograde and retrograde directions, respectively. On the other hand, 64% of BDNF-GFP puncta in dendrites did not move at all or fluttered back and forth within a short distance. The rest of the puncta in dendrites were moving relatively smoothly in either direction, but their mean velocity of transport, 0.47 ± 0.23 (SD μm/s, was slower than that of the moving puncta in axons (0.73 ± 0.26 μm/s. Conclusion The present results show that the pattern and velocity of the trafficking of fluorescence protein-tagged BDNF are different between axons and dendrites, and suggest that the anterograde transport in axons may be the dominant stream of BDNF to release sites.

  11. Dendrite Suppression by Shock Electrodeposition in Charged Porous Media

    Science.gov (United States)

    Han, Ji-Hyung; Wang, Miao; Bai, Peng; Brushett, Fikile R.; Bazant, Martin Z.

    2016-06-01

    It is shown that surface conduction can stabilize electrodeposition in random, charged porous media at high rates, above the diffusion-limited current. After linear sweep voltammetry and impedance spectroscopy, copper electrodeposits are visualized by scanning electron microscopy and energy dispersive spectroscopy in two different porous separators (cellulose nitrate, polyethylene), whose surfaces are modified by layer-by-layer deposition of positive or negative charged polyelectrolytes. Above the limiting current, surface conduction inhibits growth in the positive separators and produces irregular dendrites, while it enhances growth and suppresses dendrites behind a deionization shock in the negative separators, also leading to improved cycle life. The discovery of stable uniform growth in the random media differs from the non-uniform growth observed in parallel nanopores and cannot be explained by classic quasi-steady “leaky membrane” models, which always predict instability and dendritic growth. Instead, the experimental results suggest that transient electro-diffusion in random porous media imparts the stability of a deionization shock to the growing metal interface behind it. Shock electrodeposition could be exploited to enhance the cycle life and recharging rate of metal batteries or to accelerate the fabrication of metal matrix composite coatings.

  12. Coding and decoding with dendrites.

    Science.gov (United States)

    Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota

    2014-02-01

    Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The effect of material properties on growth rates of folding and boudinage: Experiments with wax models

    Science.gov (United States)

    Neurath, C.; Smith, R. B.

    The growth of unstable structures was studied experimentally in layered wax models. The rheological properties of the two wax types were determined independently by a series of cylinder compression tests. Both waxes enhibited (1) a non-Newtonian stress vs strain-rate relationship (2) strain softening and (3) temperature-dependent viscosity. The stress-strain-rate relationships approximated a power-law, with stress exponents of 5 for the microcrystalline wax and 1.8 for paraffin wax. Blocks of paraffin with a single embedded layer of microcrystalline wax were deformed in two-dimensional pure shear with the layer oriented either parallel to the compressive strain axis so that it shortened and folded, or perpendicular to that axis so that it would stretch and boundinage would form. The growth rates of tiny initial disturbances were measured. The growth rates for folding and boudinage were much higher than could be accounted for by theories assuming Newtonian material properties. Theories taking non-Newtonian behaviour into account (Smith, R. B. 1975. Bull. geol. Soc. Am.86, 1601-1609; Fletcher, R. C. 1974. Am. J. Sci.274, 1029-1043) better describe the folding growth rates. Boudinage, however, grew almost three times faster than would be predicted even by existing non-Newtonian theory. A possible reason for this discrepancy is that the waxes do not exhibit steady-state creep as assumed in the theory. We, therefore, extend the theory to include strain-softening. The crucial step in this theory is the use of a scalar measure of the deformation as a state variable in the constitutive law. In this way the isotropic manifestation of strain-softening can be taken into account. The analysis shows that strain-softening can lead to greatly increased boudinage growth rates while having little influence on the growth rates of folds, which is in agreement with the experiments.

  14. [Control locus, stress resistance and personal growth of the participants in experiment Mars-500].

    Science.gov (United States)

    Solcova, I; Vinokhodova, A G

    2013-01-01

    The article deals with positive personal transformations in a simulated space mission. The investigation was focused on the aspects of control locus, stamina, proactive behavior to overcome challenges, and stress-related personal growth. Besides, ingenious psychophysiological techniques designed to select Russian cosmonauts were used for assessing stress-resistance and ability to control own emotions voluntarily. Experiment Mars-500 simulated the basic features of a mission to Mars. The crew consisted of 6 males 27 to 38 years of age who volunteered to spend 520 days in isolation and confinement in the IBMP experimental facility (Moscow). To detect personality changes, the volunteers were tested before the experiment and after its completion. According to the test results, the participants commonly demonstrated the ability to see the bright side of the Mars-500 adversities, which most often was caused by their social growth. Positive changes were particularly pronounced in the crewmembers who possessed a better ability to control own emotions. The simulated challenges were also beneficial for personal growth of the volunteers.

  15. Preparation of dendritic nanostructures of silver and their characterization for electroreduction.

    Science.gov (United States)

    Qin, Xia; Miao, Zhiying; Fang, Yuxin; Zhang, Di; Ma, Jia; Zhang, Lu; Chen, Qiang; Shao, Xueguang

    2012-03-20

    Silver nanostructures of different morphologies including well-defined dendrites were synthesized on an Au substrate by a simple surfactant-free method without using any template. The morphology of the material was investigated by field-emission transmission electron microscopy and scanning electron microscopy. The crystal nature of the dendritic nanostructure was revealed from their X-ray diffraction and electron diffraction patterns. Effects of applied potential, electrolysis time, and the solution concentration were studied. The possible formation mechanism of the dendritic morphology was discussed from the aspects of kinetics and thermodynamics based on the experiment results. The H(2)O(2) electroreduction ability of the dendritic materials was characterized. Use of silver dendrite-modified electrode as H(2)O(2) sensor was also demonstrated.

  16. Non-Markovian Model for Transport and Reactions of Particles in Spiny Dendrites

    Science.gov (United States)

    Fedotov, Sergei; Méndez, Vicenç

    2008-11-01

    Motivated by the experiments [Santamaria , Neuron 52, 635 (2006)NERNET0896-627310.1016/j.neuron.2006.10.025] that indicated the possibility of subdiffusive transport of molecules along dendrites of cerebellar Purkinje cells, we develop a mesoscopic model for transport and chemical reactions of particles in spiny dendrites. The communication between spines and a parent dendrite is described by a non-Markovian random process and, as a result, the overall movement of particles can be subdiffusive. A system of integrodifferential equations is derived for the particles densities in dendrites and spines. This system involves the spine-dendrite interaction term which describes the memory effects and nonlocality in space. We consider the impact of power-law waiting time distributions on the transport of biochemical signals and mechanism of the accumulation of plasticity-inducing signals inside spines.

  17. Fabrication of 2D and 3D dendritic nanoarchitectures of CdS

    Institute of Scientific and Technical Information of China (English)

    GU Li

    2008-01-01

    The controlled preparation of two-dimensional (2D) and three-dimensional (3D) dendritic nanostructures of CdS was reported. 2D dendritic patterns are obtained through the self-assembly of nanoparticles under the entropy-driven force. 3D dendritic needle-like nanocrystals are prepared through an aqueous solution synthesis regulated by oleic acid molecules. Their growth mechanism is presumed to be the selective binding of OA molecules onto growing crystal planes. Techniques such as SEM, TEM, XRD, and FT-IR were employed to characterize the morphologies and structures of the obtained products.

  18. Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    2001-09-04

    This numeric data package provides data sets, and accompanying documentation, on site characterization, system performance, weather, species composition, and growth for the Throughfall Displacement Experiment, which was established in the Walker Branch Watershed of East Tennessee to provide data on the responses of forests to altered precipitation regimes. The specific data sets include soil water content and potential, coarse fraction of the soil profile, litter layer temperature, soil temperature, monthly weather, daily weather, hourly weather, species composition of trees and saplings, mature tree and sapling annual growth, and relative leaf area index. Fortran and SAS{trademark} access codes are provided to read the ASCII data files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).

  19. Dendritic Immunotherapy Improvement for an Optimal Control Murine Model

    Directory of Open Access Journals (Sweden)

    J. C. Rangel-Reyes

    2017-01-01

    Full Text Available Therapeutic protocols in immunotherapy are usually proposed following the intuition and experience of the therapist. In order to deduce such protocols mathematical modeling, optimal control and simulations are used instead of the therapist’s experience. Clinical efficacy of dendritic cell (DC vaccines to cancer treatment is still unclear, since dendritic cells face several obstacles in the host environment, such as immunosuppression and poor transference to the lymph nodes reducing the vaccine effect. In view of that, we have created a mathematical murine model to measure the effects of dendritic cell injections admitting such obstacles. In addition, the model considers a therapy given by bolus injections of small duration as opposed to a continual dose. Doses timing defines the therapeutic protocols, which in turn are improved to minimize the tumor mass by an optimal control algorithm. We intend to supplement therapist’s experience and intuition in the protocol’s implementation. Experimental results made on mice infected with melanoma with and without therapy agree with the model. It is shown that the dendritic cells’ percentage that manages to reach the lymph nodes has a crucial impact on the therapy outcome. This suggests that efforts in finding better methods to deliver DC vaccines should be pursued.

  20. Regulation of Cajal-Retzius cell on the apical dendrite growth of pyramidal cell and himppocampal lamination%Cajal-Retzius细胞调节锥体细胞顶树突发育及海马片层化的形成

    Institute of Scientific and Technical Information of China (English)

    邹建玲; 刘青颖; 吴萍; 邓锦波

    2011-01-01

    目的 探讨Cajal-Retzius(CR)细胞与海马锥体细胞顶树突发育以及海马片层化形成的关系.方法 利用DiI示踪法标记槽通路和穿通通路,并采用微管蛋白(tubulin)、神经元核抗原(NeuN)和Reelin免疫荧光染色法,对120例小鼠苔藓纤维的发生、锥体细胞顶树突的生长以及海马分子层Reelin阳性的CR细胞分布进行观察.结果 槽通路和穿通通路由内嗅皮质发出,分布于槽区和海马分子层,在槽区和海马本部分子层存在大量Reelin阳性细胞,提示Reelin阳性的神经细胞可能参与神经纤维的寻径.随着小鼠的发育,海马锥体细胞顶树突逐步生长,并向分子层伸入,构成海马内分子层;内分子层逐渐增宽,占据了光辉层和放射层.而外分子层(腔隙分子层)内含丰富的穿通纤维,其位置与 Reelin阳性的CR细胞所在部位极为一致,提示两者有密切关系.结论 Reelin阳性的CR细胞对槽通路、穿通通路的神经纤维寻径起着指导作用.此外,CR细胞的分布和发育特点提示,CR细胞对锥体细胞顶树突发育、海马片层化和区域化的形成起重要作用.%Objective In order to understand how Cajal-Retzius cells are involved in the regulation to the apical dendrite growth of pyramidal cell and hippocampal lamination. Methods With Dil tracing, the, alvear path and perforant path were visualized in 120 mice at various ages. The apical dendrite growth of pyramidal cells, the histogenesis of mossy fibers and the distribution of Reelin positive cells were studied with tubulin, neuronal nuclei and reelin immunofluorescent labeling. Results Alvear path and perforant path were started from entorhinal cortex, and they distributed in alveus and molecular layer of hippocampus. There were numerous Reelin positive cells in the alvear area and hippocampal molecular layer, suggesting those reelin positive cells were involved in the path-finding. With age increasing, the apical dendrites of pyramidal

  1. Primary Dendrite Array Morphology: Observations from Ground-based and Space Station Processed Samples

    Science.gov (United States)

    Tewari, Surendra; Rajamure, Ravi; Grugel, Richard; Erdmann, Robert; Poirier, David

    2012-01-01

    Influence of natural convection on primary dendrite array morphology during directional solidification is being investigated under a collaborative European Space Agency-NASA joint research program, "Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST)". Two Aluminum-7 wt pct Silicon alloy samples, MICAST6 and MICAST7, were directionally solidified in microgravity on the International Space Station. Terrestrially grown dendritic monocrystal cylindrical samples were remelted and directionally solidified at 18 K/cm (MICAST6) and 28 K/cm (MICAST7). Directional solidification involved a growth speed step increase (MICAST6-from 5 to 50 micron/s) and a speed decrease (MICAST7-from 20 to 10 micron/s). Distribution and morphology of primary dendrites is currently being characterized in these samples, and also in samples solidified on earth under nominally similar thermal gradients and growth speeds. Primary dendrite spacing and trunk diameter measurements from this investigation will be presented.

  2. Primary Dendrite Array: Observations from Ground-Based and Space Station Processed Samples

    Science.gov (United States)

    Tewari, Surendra N.; Grugel, Richard N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    Influence of natural convection on primary dendrite array morphology during directional solidification is being investigated under a collaborative European Space Agency-NASA joint research program, Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST). Two Aluminum-7 wt pct Silicon alloy samples, MICAST6 and MICAST7, were directionally solidified in microgravity on the International Space Station. Terrestrially grown dendritic monocrystal cylindrical samples were remelted and directionally solidified at 18 K per centimeter (MICAST6) and 28 K per centimeter (MICAST7). Directional solidification involved a growth speed step increase (MICAST6-from 5 to 50 millimeters per second) and a speed decrease (MICAST7-from 20 to 10 millimeters per second). Distribution and morphology of primary dendrites is currently being characterized in these samples, and also in samples solidified on earth under nominally similar thermal gradients and growth speeds. Primary dendrite spacing and trunk diameter measurements from this investigation will be presented.

  3. Dendritic solidification and thermal expansion of refractory Nb-Zr alloys investigated by electrostatic levitation

    Science.gov (United States)

    Yang, S. J.; Hu, L.; Wang, L.; Wei, B.

    2017-05-01

    The dendritic growth and thermal expansion of isomorphous refractory Nb-5%Zr, Nb-10%Zr, and Nb-15%Zr alloys were studied by electrostatic levitation technique. The obtained maximum undercoolings for the three alloys were 534 (0.2 T L), 498 (0.19 T L), and 483 K (0.18 T L), respectively. Within these undercooling ranges, the dendritic growth velocities of the three alloys all exhibited power laws, and achieved 38.5, 34.0, and 27.1 m s-1 at each maximum undercooling. The microstructures were characterized by coarse dendrites at small undercooling, while they transformed into refined dendrites under large undercooling condition. In addition, the measured thermal expansion coefficients of solid Nb-Zr alloys increased linearly with temperature. The values at liquid state were more than double of those at solid state, which also displayed linear dependence on temperature.

  4. Dendritic cells star in Vancouver

    OpenAIRE

    Klechevsky, Eynav; Kato, Hiroki; Sponaas, Anne-Marit

    2005-01-01

    The fast-moving field of dendritic cell (DC) biology is hard to keep pace with. Here we report on advances from the recent Keystone Symposium, “Dendritic Cells at the Center of Innate and Adaptive Immunity,” organized in Vancouver, BC on Feb. 1–7, 2005 by Anne O'Garra, Jacques Banchereau, and Alan Sher. New insights into the molecular mechanisms of DC function and their influence on immune regulation, their role in infectious and autoimmune disease, and new clinical applications are highlight...

  5. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    LENUS (Irish Health Repository)

    Michielsen, Adriana J

    2011-01-01

    Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  6. Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB.

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    Full Text Available BACKGROUND: Projection neurons of mammalian olfactory bulb (OB, mitral and tufted cells, have dendrites whose morphologies are specifically differentiated for efficient odor information processing. The apical dendrite extends radially and arborizes in single glomerulus where it receives primary input from olfactory sensory neurons that express the same odor receptor. The lateral dendrites extend horizontally in the external plexiform layer and make reciprocal dendrodendritic synapses with granule cells, which moderate mitral/tufted cell activity. The molecular mechanisms regulating dendritic development of mitral/tufted cells is one of the unsolved important problems in the olfactory system. Here, we focused on TrkB receptors to test the hypothesis that neurotrophin-mediate mechanisms contributed to dendritic differentiation of OB mitral/tufted cells. PRINCIPAL FINDINGS: With immunohistochemical analysis, we found that the TrkB neurotrophin receptor is expressed by both apical and lateral dendrites of mitral/tufted cells and that expression is evident during the early postnatal days when these dendrites exhibit their most robust growth and differentiation. To examine the effect of TrkB activation on mitral/tufted cell dendritic development, we cultured OB neurons. When BDNF or NT4 were introduced into the cultures, there was a significant increase in the number of primary neurites and branching points among the mitral/tufted cells. Moreover, BDNF facilitated filopodial extension along the neurites of mitral/tufted cells. SIGNIFICANCE: In this report, we show for the first time that TrkB activation stimulates the dendritic branching of mitral/tufted cells in developing OB. This suggests that arborization of the apical dendrite in a glomerulus is under the tight regulation of TrkB activation.

  7. The growth of public debt in Italy: past experience, perspectives and policy problems

    Directory of Open Access Journals (Sweden)

    L. SPAVENTA

    2013-12-01

    Full Text Available The work surveys the Italian experience with reference to growth and public debt. It does not seek to test conflicting views, as the effects of some financial and policy innovations are too recent and some data is of poor quality. Rather, its more limited scope is to draw on past experience and, more importantly, assess future prospects in order to discuss some problems regarding both fiscal and monetary policy. The author examines debt formation with reference to borrowing requirements, their composition and their adjusted measure, before taking into consideration financing policies pursued by the authorities  and the changes in the composition, ownership and cost of debt. Finally, possible future developments and some connected policy problems are examined.

  8. The growth of public debt in Italy: past experience, perspectives and policy problems

    Directory of Open Access Journals (Sweden)

    Lugi Spaventa

    2013-09-01

    Full Text Available The work surveys the Italian experience with reference to growth and public debt. It does not seek to test conflicting views, as the effects of some financial and policy innovations are too recent and some data is of poor quality. Rather, its more limited scope is to draw on past experience and, more importantly, assess future prospects in order to discuss some problems regarding both fiscal and monetary policy. The author examines debt formation with reference to borrowing requirements, their composition and their adjusted measure, before taking into consideration financing policies pursued by the authorities and the changes in the composition, ownership and cost of debt. Finally, possible future developments and some connected policy problems are examined.

  9. Phototropism experiments in microgravity-the Seedling Growth project in the EMCS on the ISS

    Science.gov (United States)

    Kiss, John; Edelmann, Richard; Herranz, Raul; Medina, Francisco Javier; Millar, Katherine

    The microgravity environment aboard orbiting spacecraft has provided a unique laboratory to explore important topics in basic plant biology. Our group has utilized the European Modular Cultivation System (EMCS) aboard the International Space Station (ISS) to study plant growth, development, tropisms, and gene expression in a series of spaceflight experiments. The most current project performed on the ISS was termed Seeding Growth-1 (SG-1) which builds on the previous TROPI (for tropisms) experiments. TROPI-1 was the first EMCS experiment, and we discovered a novel red-light-based phototropism in hypocotyls of seedlings grown in microgravity (Millar et al. 2010). In TROPI-2, our experiments were extended to reduced gravity levels and found that 0.1-0.3 g can attenuate the red-light response (Kiss et al. 2012). In addition, we performed gene profiling studies and noted that approximately 280 genes that were differentially regulated at least two-fold in the space samples compared to the ground controls (Correll et al. 2013). Major technical and operational changes in SG-1 (launched in March 2013) compared to the TROPI experiments include: improvements in lighting conditions within the EMCS to optimize the environment for phototropism studies and the use of infrared illumination to provide high-quality images of the seedlings. In SG-1, the red-light-based phototropism in roots and hypocotyls of seedlings that was noted in TROPI-2 was confirmed and now can be more precisely characterized based on the improvements in procedures. As we move forward, the SG-2 experiments (to be launched in 2014), in addition to a continued focus on phototropism, will consider the cell cycle as well as the growth and proliferation of plant cells in microgravity (Matía et al. 2010). Furthermore, the lessons learned from sequential experiments from TROPI-1 to TROPI-2 to SG-1 can provide insights to other researchers developing space experiments in plant biology. References: Correll M.J., T

  10. Factors driving mortality and growth at treeline: a 30-year experiment of 92 000 conifers.

    Science.gov (United States)

    Barbeito, Ignacio; Dawes, Melissa A; Rixen, Christian; Senn, Josef; Bebi, Peter

    2012-02-01

    Understanding the interplay between environmental factors contributing to treeline formation and how these factors influence different life stages remains a major research challenge. We used an afforestation experiment including 92 000 trees to investigate the spatial and temporal dynamics of tree mortality and growth at treeline in the Swiss Alps. Seedlings of three high-elevation conifer species (Larix decidua, Pinus mugo ssp. uncinata, and Pinus cembra) were systematically planted along an altitudinal gradient at and above the current treeline (2075 to 2230 m above sea level [a.s.l.]) in 1975 and closely monitored during the following 30 years. We used decision-tree models and generalized additive models to identify patterns in mortality and growth along gradients in elevation, snow duration, wind speed, and solar radiation, and to quantify interactions between the different variables. For all three species, snowmelt date was always the most important environmental factor influencing mortality, and elevation was always the most important factor for growth over the entire period studied. Individuals of all species survived at the highest point of the afforestation for more than 30 years, although mortality was greater above 2160 m a.s.l., 50-100 m above the current treeline. Optimal conditions for height growth differed from those for survival in all three species: early snowmelt (ca. day of year 125-140 [where day 1 is 1 January]) yielded lowest mortality rates, but relatively later snowmelt (ca. day 145-150) yielded highest growth rates. Although snowmelt and elevation were important throughout all life stages of the trees, the importance of radiation decreased over time and that of wind speed increased. Our findings provide experimental evidence that tree survival and height growth require different environmental conditions and that even small changes in the duration of snow cover, in addition to changes in temperature, can strongly impact tree survival and

  11. CD1c+ blood dendritic cells have Langerhans cell potential.

    Science.gov (United States)

    Milne, Paul; Bigley, Venetia; Gunawan, Merry; Haniffa, Muzlifah; Collin, Matthew

    2015-01-15

    Langerhans cells (LCs) are self-renewing in the steady state but repopulated by myeloid precursors after injury. Human monocytes give rise to langerin-positive cells in vitro, suggesting a potential precursor role. However, differentiation experiments with human lineage-negative cells and CD34(+) progenitors suggest that there is an alternative monocyte-independent pathway of LC differentiation. Recent data in mice also show long-term repopulation of the LC compartment with alternative myeloid precursors. Here we show that, although monocytes are able to express langerin, when cultured with soluble ligands granulocyte macrophage colony-stimulating factor (GM-CSF), transforming growth factor β (TGFβ), and bone morphogenetic protein 7 (BMP7), CD1c(+) dendritic cells (DCs) become much more LC-like with high langerin, Birbeck granules, EpCAM, and E-cadherin expression under the same conditions. These data highlight a new potential precursor function of CD1c(+) DCs and demonstrate an alternative pathway of LC differentiation that may have relevance in vivo.

  12. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Liang, Shuhua, E-mail: liangxaut@gmail.com; Yang, Qing; Wang, Xianhui

    2016-11-30

    Highlights: • Nano- or micro-scale fractal dendritic copper (FDC) was synthesized by electroless immersing of Cu-Al alloys in CuCl{sub 2} + HCl. • FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. • Nanoscale Cu{sub 2}O was found at the edge of FDC. Nanoporous copper (NPC) can also be obtained by using Cu{sub 17}Al{sub 83} alloy. • The potential difference between CuAl{sub 2} and α-Al phase and the replacement reaction in multiphase solution are key factors. - Abstract: Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl{sub 2} + HCl solution. Compared to Cu{sub 40}Al{sub 60} and Cu{sub 45}Al{sub 55} alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu{sub 17}Al{sub 83} alloy as the starting alloy. The growth direction of the FDC is <110>, and all angles between the trunks and branches are 60°. Nanoscale Cu{sub 2}O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu{sub 17}Al{sub 83} alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl{sub 2} intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  13. Hydraulic Fracture Growth in a Layered Formation based on Fracturing Experiments and Discrete Element Modeling

    Science.gov (United States)

    Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li

    2017-09-01

    Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.

  14. Cellular automaton model with MeshTV interface reconstruction technique for alloy dendrite growth%基于MeshTV界面重构算法的二元合金自由枝晶生长元胞自动机模型

    Institute of Scientific and Technical Information of China (English)

    魏雷; 林鑫; 王猛; 黄卫东

    2012-01-01

    本文基于MeshTV界面重构算法,发展了二元合金凝固自由枝晶生长的元胞自动机(cellular automaton,CA)模型.通过采用MeshTV界面重构算法,在细化的界面元胞内重构出了固液界面的位置.在此基础上,发展了一种同时适合描述纯物质与合金凝固界面生长的动力学模型.与非界面重构的CA模型相比,本文所发展的模型可以在较大的网格尺寸下实现模型的收敛,同时网格各向异性不明显,且能够反映界面能各向异性参数ε对自由枝晶生长的影响.在ε=0.02时,通过与描述自由枝晶生长的LGK理论模型相比较,发现计算的枝晶尖端速度与LGK理论模型的预测符合较好,而计算的枝晶尖端半径比LGK理论预测值大于约20%.%In this paper, cellular automata (CA) model for free dendritic growth of alloy is presented, in which the interface cell is refined by MeshTV interface reconstruction algorithm. In the present CA model, the growth kinetic for both pure material and alloy is used. The effect of interfacial energy anisotropy parameter e is validated in the CA model. The dendrite tip growth velocity and tip radius are compared with those of the LGK theoretical model, when e = 0.02.

  15. Ten years' clinical experience with biosimilar human growth hormone: a review of efficacy data.

    Science.gov (United States)

    López-Siguero, Juan Pedro; Pfäffle, Roland; Chanson, Philippe; Szalecki, Mieczyslaw; Höbel, Nadja; Zabransky, Markus

    2017-01-01

    In 2006, the European Medicines Agency (EMA) approved Omnitrope(®) as a biosimilar recombinant human growth hormone (rhGH), on the basis of comparable quality, safety, and efficacy to the reference medicine (Genotropin(®), Pfizer). Data continue to be collected on the long-term efficacy of biosimilar rhGH from several on-going postapproval studies. Particular topics of interest include efficacy in indications granted on the basis of extrapolation, and whether efficacy of growth hormone treatment is affected when patients are changed to biosimilar rhGH from other rhGH products. Data from clinical development studies and 10 years of postapproval experience affirm the clinical efficacy and effectiveness of biosimilar rhGH across all approved indications. In addition, the decade of experience with biosimilar rhGH since it was approved in Europe confirms the scientific validity of the biosimilar pathway and the approval process. Concerns about clinical effect in extrapolated indications, and also about the impact of changing from other rhGH preparations, have been alleviated. Biosimilar rhGH is an effective treatment option for children who require therapy with rhGH.

  16. The presence of cortical neurons in striatal-cortical co-cultures alters the effects of dopamine and BDNF on Medium Spiny Neuron dendritic development

    Directory of Open Access Journals (Sweden)

    Rachel D Penrod

    2015-07-01

    Full Text Available Medium spiny neurons (MSNs are the major striatal neuron and receive synaptic input from both glutamatergic and dopaminergic afferents. These synapses are made on MSN dendritic spines, which undergo density and morphology changes in association with numerous disease and experience-dependent states. Despite wide interest in the structure and function of mature MSNs, relatively little is known about MSN development. Furthermore, most in vitro studies of MSN development have been done in simple striatal cultures that lack any type of non-autologous synaptic input, leaving open the question of how MSN development is affected by a complex environment that includes other types of neurons, glia, and accompanying secreted and cell-associated cues. Here we characterize the development of MSNs in striatal-cortical co-culture, including quantitative morphological analysis of dendritic arborization and spine development, describing progressive changes in density and morphology of developing spines. Overall, MSN growth is much more robust in the striatal-cortical co-culture compared to striatal mono-culture. Inclusion of dopamine in the co-culture further enhances MSN dendritic arborization and spine density, but the effects of dopamine on dendritic branching are only significant at later times in development. In contrast, exogenous Brain Derived Neurotrophic Factor (BDNF has only a minimal effect on MSN development in the co-culture, but significantly enhances MSN dendritic arborization in striatal mono-culture. Importantly, inhibition of NMDA receptors in the co-culture significantly enhances the effect of exogenous BDNF, suggesting that the efficacy of BDNF depends on the cellular environment. Combined, these studies identify specific periods of MSN development that may be particularly sensitive to perturbation by external factors and demonstrate the importance of studying MSN development in a complex signaling environment.

  17. Dendritic web - A viable material for silicon solar cells

    Science.gov (United States)

    Seidensticker, R. G.; Scudder, L.; Brandhorst, H. W., Jr.

    1975-01-01

    The dendritic web process is a technique for growing thin silicon ribbon from liquid silicon. The material is suitable for solar cell fabrication and, in fact, cells fabricated on web material are equivalent in performance to cells fabricated on Czochralski-grown material. A recently concluded study has delineated the thermal requirements for silicon web crucibles, and a detailed conceptual design has been developed for a laboratory growth apparatus.

  18. Evidence that dendritic mitochondria negatively regulate dendritic branching in pyramidal neurons in the neocortex.

    Science.gov (United States)

    Kimura, Toshiya; Murakami, Fujio

    2014-05-14

    The precise branching patterns of dendritic arbors have a profound impact on information processing in individual neurons and the brain. These patterns are established by positive and negative regulation of the dendritic branching. Although the mechanisms for positive regulation have been extensively investigated, little is known about those for negative regulation. Here, we present evidence that mitochondria located in developing dendrites are involved in the negative regulation of dendritic branching. We visualized mitochondria in pyramidal neurons of the mouse neocortex during dendritic morphogenesis using in utero electroporation of a mitochondria-targeted fluorescent construct. We altered the mitochondrial distribution in vivo by overexpressing Mfn1, a mitochondrial shaping protein, or the Miro-binding domain of TRAK2 (TRAK2-MBD), a truncated form of a motor-adaptor protein. We found that dendritic mitochondria were preferentially targeted to the proximal portion of dendrites only during dendritic morphogenesis. Overexpression of Mfn1 or TRAK2-MBD depleted mitochondria from the dendrites, an effect that was accompanied by increased branching of the proximal portion of the dendrites. This dendritic abnormality cannot be accounted for by changes in the distribution of membrane trafficking organelles since the overexpression of Mfn1 did not alter the distributions of the endoplasmic reticulum, Golgi, or endosomes. Additionally, neither did these constructs impair neuronal viability or mitochondrial function. Therefore, our results suggest that dendritic mitochondria play a critical role in the establishment of the precise branching pattern of dendritic arbors by negatively affecting dendritic branching.

  19. In situ growth experiments of reef-building cold-water corals: The good, the bad and the ugly

    Science.gov (United States)

    Lartaud, F.; Meistertzheim, A. L.; Peru, E.; Le Bris, N.

    2017-03-01

    The ecological study of corals in their habitat is essential to determine the effects of global change and to develop strategies for reef conservation. Based on mark and recovery experiments, we investigated skeletal growth patterns of two reef-building cold-water coral species, Lophelia pertusa and Madrepora oculata, in the Lacaze-Duthiers canyon in the northwestern Mediterranean Sea. Coral fragments were collected, stained and deployed for short-term (2.5 months) and long-term (15 months) growth experiments at two sites located 4.5 km and 6.8 km from the canyon head. The analysis of distinct growth parameters (budding, new polyp growth and linear extension of the coral fragments) revealed that growth patterns are consistent among branches of different sizes, but discrepancies arose from the different types of staining used. Calcein appeared more suitable than alizarin red, which strongly limited growth by delaying coral recovery, for short-term experiments at least. Both species grew rapidly when redeployed in their habitat. Effects of long-term experiments could not be observed because corals were exposed to harmful environmental stress, particularly the lethal effect of sedimentation on the fragments. Despite limited in situ deployment, the growth analysis from the short-term experiment highlighted species-specific responses according to the location along a longitudinal gradient in the canyon and were likely related to the local environmental conditions. Consistent with the observed species distributions, M. oculata showed optimal growth at the site closer to the canyon head compared with L. pertusa, which had optimal growth at the deeper site. In situ experiments are difficult to conduct in deep-sea ecosystems, but with the use of remotely operated vehicles (ROVs), such a simple approach may be of interest to managers of cold-water coral ecosystems.

  20. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    Science.gov (United States)

    Wang, Ying; Liang, Shuhua; Yang, Qing; Wang, Xianhui

    2016-11-01

    Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl2 + HCl solution. Compared to Cu40Al60 and Cu45Al55 alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu17Al83 alloy as the starting alloy. The growth direction of the FDC is , and all angles between the trunks and branches are 60°. Nanoscale Cu2O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu17Al83 alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl2 intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  1. An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting.

    Science.gov (United States)

    Furuya, S; Makino, A; Hirabayashi, Y

    1998-11-01

    We report here a novel cell culture protocol which facilitates in vitro survival and dendritic differentiation of cerebellar Purkinje cells in a monolayer, mixed culture setting. We found that the type of culture medium is a critical factor for the maintenance of these cells. Purkinje cells present in the single cell suspension of embryonic rat cerebellum were best maintained in a medium based on Dulbecco's modified Eagle's medium (DMEM)/F-12 without the addition of known neurotrophic factors. These cells maintained in DMEM/F-12-based media displayed an approximately 2.5-3.5-fold increase in survival compared with cells maintained in the widely used Basal Medium Eagle's (BME)-based serum-free culture medium with the same supplements. This novel protocol permits not only enhanced survival but also accelerated, improved dendritic differentiation of these cells. Purkinje cells developed highly branched spiny dendrites by 14-16 days in vitro, which matches the time course of the dendritic growth of these cells in vivo. The Purkinje cells expressed metabotropic glutamate receptor 1alpha in the cell bodies and branched dendrites, and the intradendritic calcium concentration increased when trans-ACPD, a selective agonist of this receptor, was applied. This novel protocol allows the development of functional branched dendrites and therefore is useful for electrophysiological and ion-imaging studies on dendrites of Purkinje cells grown in vitro.

  2. FoxO regulates microtubule dynamics and polarity to promote dendrite branching in Drosophila sensory neurons.

    Science.gov (United States)

    Sears, James C; Broihier, Heather T

    2016-10-01

    The size and shape of dendrite arbors are defining features of neurons and critical determinants of neuronal function. The molecular mechanisms establishing arborization patterns during development are not well understood, though properly regulated microtubule (MT) dynamics and polarity are essential. We previously found that FoxO regulates axonal MTs, raising the question of whether it also regulates dendritic MTs and morphology. Here we demonstrate that FoxO promotes dendrite branching in all classes of Drosophila dendritic arborization (da) neurons. FoxO is required both for initiating growth of new branches and for maintaining existing branches. To elucidate FoxO function, we characterized MT organization in both foxO null and overexpressing neurons. We find that FoxO directs MT organization and dynamics in dendrites. Moreover, it is both necessary and sufficient for anterograde MT polymerization, which is known to promote dendrite branching. Lastly, FoxO promotes proper larval nociception, indicating a functional consequence of impaired da neuron morphology in foxO mutants. Together, our results indicate that FoxO regulates dendrite structure and function and suggest that FoxO-mediated pathways control MT dynamics and polarity.

  3. Slit and Robo regulate dendrite branching and elongation of space-filling neurons in Drosophila.

    Science.gov (United States)

    Dimitrova, Svetla; Reissaus, André; Tavosanis, Gaia

    2008-12-01

    Space-filling neurons extensively sample their receptive fields with fine dendritic branches. In this study we show that a member of the conserved Robo receptor family, Robo, and its ligand Slit regulate the dendritic differentiation of space-filling neurons. Loss of Robo or Slit function leads to faster elongating and less branched dendrites of the complex and space-filling class IV multi-dendritic dendrite-arborization (md-da) neurons in the Drosophila embryonic peripheral nervous system, but not of the simpler class I neurons. The total dendrite length of Class IV neurons is not modified in robo or slit mutant embryos. Robo mediates this process cell-autonomously. Upon Robo over-expression in md-da neurons the dendritic tree is simplified and time-lapse analysis during larval stages indicates that this is due to reduction in the number of newly formed branches. We propose that Slit, through Robo, provides an extrinsic signal to coordinate the growth rate and the branching level of space-filling neurons, thus allowing them to appropriately cover their target field.

  4. Structural and optical properties of solid-state synthesized Au dendritic structures

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, A. [Dipartimento di Fisica ed Astronomia - Università di Catania, via S. Sofia 64, 95123 Catania (Italy); MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy); Ruffino, F., E-mail: francesco.ruffino@ct.infn.it [Dipartimento di Fisica ed Astronomia - Università di Catania, via S. Sofia 64, 95123 Catania (Italy); MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy); Romano, L. [Dipartimento di Fisica ed Astronomia - Università di Catania, via S. Sofia 64, 95123 Catania (Italy); MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy); Boninelli, S. [MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy); Reitano, R.; Piccitto, G. [Dipartimento di Fisica ed Astronomia - Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Grimaldi, M.G. [Dipartimento di Fisica ed Astronomia - Università di Catania, via S. Sofia 64, 95123 Catania (Italy); MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy)

    2014-03-01

    Graphical abstract: - Highlights: • Au dendritic structures were produced on surfaces. • The chemical and structural properties of the dendritic structures are presented. • The optical properties of the dendritic structures are presented. • The ability of the dendritic structures to serve as light scattering centers is presented. - Abstract: Au dendrites (Au Ds) are synthesized, on various substrates, by a simple physical methodology involving the deposition of a thin Au film on a Si surface followed by thermal processes at high temperatures (>1273 K) in an inert ambient (N{sub 2}), using fast heating and cooling rates (1273 K/min). Microscopic analyses reveal the evolution, thanks to the thermal processes, of the Au film from a continuous coating to dendritic structures covering the entire sample surface. In particular, transmission electron microscopy analyses indicate that, below the Au surface, the dendritic structures consist of Si atoms originating from the substrate. Furthermore, optical characterizations reveal the ability of the Au Ds to serve as scattering centers in the infrared region. Finally, on the basis of the experimental observations, a phenomenological model for the growth of the Au Ds is proposed.

  5. Serum inducible kinase is a positive regulator of cortical dendrite development and is required for BDNF-promoted dendritic arborization

    Institute of Scientific and Technical Information of China (English)

    Shun-Ling Guo; Guo-He Tan; Shuai Li; Xue-Wen Cheng; Ya Zhou; Yun-Fang Jia; Hui Xiong; Jiong Tao; Zhi-Qi Xiong

    2012-01-01

    Serum inducible kinase (SNK),also known as (p)olo-(l)ike (k)inase 2 (PLK2),is a known regulator of mitosis,synaptogenesis and synaptic homeostasis.However,its role in early cortical development is unknown.Herein,we show that snk is expressed in the cortical plate from embryonic day 14,but not in the ventricular/subventricular zones (VZ/SVZ),and SNK protein localizes to the soma and dendrites of cultured immature cortical neurons.Loss of SNK impaired dendritic but not axonal arborization in a dose-dependent manner and overexpression had opposite effects,both in vitro and in vivo.Overexpression of SNK also caused abnormal branching of the leading process of migrating cortical neurons in electroporated cortices.The kinase activity was necessary for these effects.Extracellular signalregulated kinase (ERK) pathway activity downstream of brain-derived neurotrophic factor (BDNF) stimulation led to increases in SNK protein expression via transcriptional regulation,and this upregulation was necessary for the growth-promoting effect of BDNF on dendritic arborization.Taken together,our results indicate that SNK is essential for dendrite morphogenesis in cortical neurons.

  6. Dendrite Array Disruption by Bubbles during Re-melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.

    2012-01-01

    As part of the Pore Formation and Mobility Investigation (PFMI), Succinonitrile Water alloys consisting of aligned dendritic arrays were re-melted prior to conducting directional solidification experiments in the microgravity environment aboard the International Space Station. Thermocapillary convection initiated by bubbles at the solid-liquid interface during controlled melt back of the alloy was observed to disrupt the initial dendritic alignment. Disruption ranged from detaching large arrays to the transport of small dendrite fragments at the interface. The role of bubble size and origin is discussed along with subsequent consequences upon reinitiating controlled solidification.

  7. Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber

    Science.gov (United States)

    Corey, Kenneth A.

    1996-01-01

    Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop

  8. Corrosion of copper and authigenic sulfide mineral growth in hydrothermal bentonite experiments

    Science.gov (United States)

    Caporuscio, F. A.; Palaich, S. E. M.; Cheshire, M. C.; Jové Colón, C. F.

    2017-03-01

    The focus of this experimental work is to characterize interaction of bentonite with possible used-fuel waste container materials. Experiments were performed up to 300 °C at 150-160 bars for five to six weeks. Bentonite was saturated with a 1900 ppm K-Ca-Na-Cl-bearing water with Cu-foils. Copper rapidly degrades into chalcocite (CuS2) and minor covellite (CuS) in the presence of H2S. Chalcocite growth and corrosion pit depths were measured for four different experimental runs yielding corrosion rates between 8.8 and 116 μm/yr depending on duration of experiment, brine composition, and clay type (bentonite vs. Opalinus Clay). Results of this research show that although pit-corrosion is demonstrated on Cu substrates, experiments show that the reactions that ensue, and the formation of minerals that develop, are extraordinarily slow. This supports the use of Cu in nuclide-containment systems as a possible engineered barrier system material.

  9. Multiscale study of bacterial growth: Experiments and model to understand the impact of gas exchange on global growth

    Science.gov (United States)

    Lalanne-Aulet, David; Piacentini, Adalberto; Guillot, Pierre; Marchal, Philippe; Moreau, Gilles; Colin, Annie

    2015-11-01

    Using a millifluidics and macroscale setup, we study quantitatively the impact of gas exchange on bacterial growth. In millifluidic environments, the permeability of the incubator materials allows an unlimited oxygen supply by diffusion. Moreover, the efficiency of diffusion at small scales makes the supply instantaneous in comparison with the cell division time. In hermetic closed vials, the amount of available oxygen is low. The growth curve has the same trend but is quantitatively different from the millifluidic situation. The analysis of all the data allows us to write a quantitative modeling enabling us to capture the entire growth process.

  10. "Getting sick has been good to me, not bad": understanding the experience of growth in face of adversity

    NARCIS (Netherlands)

    S. Hoppe

    2009-01-01

    In the literature and public opinion chronic illness is mostly presented as a negative experience. However, this article shows that people can experience their illness also in a positive way. Posttraumatic growth and adversity-activated-development are concepts, which derive from psychology and desc

  11. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    Science.gov (United States)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  12. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    Science.gov (United States)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  13. Sexual experience promotes adult neurogenesis in the hippocampus despite an initial elevation in stress hormones.

    Directory of Open Access Journals (Sweden)

    Benedetta Leuner

    Full Text Available Aversive stressful experiences are typically associated with increased anxiety and a predisposition to develop mood disorders. Negative stress also suppresses adult neurogenesis and restricts dendritic architecture in the hippocampus, a brain region associated with anxiety regulation. The effects of aversive stress on hippocampal structure and function have been linked to stress-induced elevations in glucocorticoids. Normalizing corticosterone levels prevents some of the deleterious consequences of stress, including increased anxiety and suppressed structural plasticity in the hippocampus. Here we examined whether a rewarding stressor, namely sexual experience, also adversely affects hippocampal structure and function in adult rats. Adult male rats were exposed to a sexually-receptive female once (acute or once daily for 14 consecutive days (chronic and levels of circulating glucocorticoids were measured. Separate cohorts of sexually experienced rats were injected with the thymidine analog bromodeoxyuridine in order to measure cell proliferation and neurogenesis in the hippocampus. In addition, brains were processed using Golgi impregnation to assess the effects of sexual experience on dendritic spines and dendritic complexity in the hippocampus. Finally, to evaluate whether sexual experience alters hippocampal function, rats were tested on two tests of anxiety-like behavior: novelty suppressed feeding and the elevated plus maze. We found that acute sexual experience increased circulating corticosterone levels and the number of new neurons in the hippocampus. Chronic sexual experience no longer produced an increase in corticosterone levels but continued to promote adult neurogenesis and stimulate the growth of dendritic spines and dendritic architecture. Chronic sexual experience also reduced anxiety-like behavior. These findings suggest that a rewarding experience not only buffers against the deleterious actions of early elevated

  14. Experiment requirements and implementation plan (Erip) for semiconductor materials growth in low-G environment

    Science.gov (United States)

    Crouch, R. K.; Fripp, A. L.; Debnam, W. J.; Clark, I. O.

    1983-01-01

    The MEA-2 A facility was used to test the effect of the low gravity environment on suppressing convective mixing in the growth of Pb(1-x)Sn(x)Te crystals. The need to eliminate convection, the furnace characteristics and operation that will be required for successful experimental implementation, and to the level that is presently known, the measured physical properties of the Pb(1-x)Sn(x)Te system were discussed. In addition, a brief background of the present and potential utilization of Pb(1-x)Sn(x)Te is given. Additional experiments are anticipated in future MEA-A, improved MEA and other dedicated materials processing in space flight apparatus.

  15. Optimal Design for Informative Protocols in Xenograft Tumor Growth Inhibition Experiments in Mice.

    Science.gov (United States)

    Lestini, Giulia; Mentré, France; Magni, Paolo

    2016-09-01

    Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were (i) to evaluate the importance of including measurements during tumor regrowth and (ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules, and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e., control versus treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e., "short" and "long" studies, respectively. In long studies, measurements could be taken up to 6 g of tumor weight, whereas in short studies the experiment was stopped 3 days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected.

  16. Enhancement of basolateral amygdaloid neuronal dendritic arborization following Bacopa monniera extract treatment in adult rats

    Directory of Open Access Journals (Sweden)

    Venkata Ramana Vollala

    2011-01-01

    Full Text Available OBJECTIVE: In the ancient Indian system of medicine, Ayurveda, Bacopa monniera is classified as Medhya rasayana, which includes medicinal plants that rejuvenate intellect and memory. Here, we investigated the effect of a standardized extract of Bacopa monniera on the dendritic morphology of neurons in the basolateral amygdala, a region that is concerned with learning and memory. METHODS: The present study was conducted on 2¹/2-month-old Wistar rats. The rats were divided into 2-, 4- and 6-week treatment groups. Rats in each of these groups were further divided into 20 mg/kg, 40 mg/kg and 80 mg/kg dose groups (n = 8 for each dose. After the treatment period, treated rats and age-matched control rats were subjected to spatial learning (T-maze and passive avoidance tests. Subsequently, these rats were killed by decapitation, the brains were removed, and the amygdaloid neurons were impregnated with silver nitrate (Golgi staining. Basolateral amygdaloid neurons were traced using camera lucida, and dendritic branching points (a measure of dendritic arborization and dendritic intersections (a measure of dendritic length were quantified. These data were compared with the data from the age-matched control rats. RESULTS: The results showed an improvement in spatial learning performance and enhanced memory retention in rats treated with Bacopa monniera extract. Furthermore, a significant increase in dendritic length and the number of dendritic branching points was observed along the length of the dendrites of the basolateral amygdaloid neurons of rats treated with 40 mg/kg and 80 mg/kg of Bacopa monniera (BM for longer periods of time (i.e., 4 and 6 weeks. CONCLUSION: We conclude that constituents present in Bacopa monniera extract have neuronal dendritic growth-stimulating properties.

  17. The experience of acculturative stress-related growth from immigrants’ perspectives

    Directory of Open Access Journals (Sweden)

    Junhyoung Kim

    2013-09-01

    Full Text Available Previous literature has mainly focused on the positive effects of stress associated with disability and illness, called stress-related growth. Little research has explored positive changes as a result of acculturative stress among a group of immigrants. In particular, older Asian immigrants may experience a high level of stress related to acculturation because they may face more challenges to adapt to and navigate a new culture. This study was designed to capture the characteristics of stress-related growth associated with acculturative stress. Using in-depth interviews among 13 older Korean immigrants, three main themes associated with the stress-coping strategies were identified: (a the development of mental toughness, (b engagement in meaningful activities, and (c promotion of cultural understanding. These themes indicate that by following the stressful acculturation process, participants developed a better understanding of the new culture, engaged in various leisure activities, and enhanced mental strength. This finding provides information on how immigrants deal with acculturative stress and have positive psychological changes, which results in a sense of happiness and psychological well-being.

  18. The experience of acculturative stress-related growth from immigrants’ perspectives

    Science.gov (United States)

    Kim, Junhyoung; Kim, Hakjun

    2013-01-01

    Previous literature has mainly focused on the positive effects of stress associated with disability and illness, called stress-related growth. Little research has explored positive changes as a result of acculturative stress among a group of immigrants. In particular, older Asian immigrants may experience a high level of stress related to acculturation because they may face more challenges to adapt to and navigate a new culture. This study was designed to capture the characteristics of stress-related growth associated with acculturative stress. Using in-depth interviews among 13 older Korean immigrants, three main themes associated with the stress-coping strategies were identified: (a) the development of mental toughness, (b) engagement in meaningful activities, and (c) promotion of cultural understanding. These themes indicate that by following the stressful acculturation process, participants developed a better understanding of the new culture, engaged in various leisure activities, and enhanced mental strength. This finding provides information on how immigrants deal with acculturative stress and have positive psychological changes, which results in a sense of happiness and psychological well-being. PMID:24070225

  19. Applying shot boundary detection for automated crystal growth analysis during in situ transmission electron microscope experiments

    Energy Technology Data Exchange (ETDEWEB)

    Moeglein, W. A.; Griswold, R.; Mehdi, B. L.; Browning, N. D.; Teuton, J.

    2017-01-03

    In-situ (scanning) transmission electron microscopy (S/TEM) is being developed for numerous applications in the study of nucleation and growth under electrochemical driving forces. For this type of experiment, one of the key parameters is to identify when nucleation initiates. Typically the process of identifying the moment that crystals begin to form is a manual process requiring the user to perform an observation and respond accordingly (adjust focus, magnification, translate the stage etc.). However, as the speed of the cameras being used to perform these observations increases, the ability of a user to “catch” the important initial stage of nucleation decreases (there is more information that is available in the first few milliseconds of the process). Here we show that video shot boundary detection (SBD) can automatically detect frames where a change in the image occurs. We show that this method can be applied to quickly and accurately identify points of change during crystal growth. This technique allows for automated segmentation of a digital stream for further analysis and the assignment of arbitrary time stamps for the initiation of processes that are independent of the user’s ability to observe and react.

  20. Identification of Accretion as Grain Growth Mechanism in Astrophysically Relevant Water&ice Dusty Plasma Experiment

    Science.gov (United States)

    Marshall, Ryan S.; Chai, Kil-Byoung; Bellan, Paul M.

    2017-03-01

    The grain growth process in the Caltech water–ice dusty plasma experiment has been studied using a high-speed camera and a long-distance microscope lens. It is observed that (i) the ice grain number density decreases fourfold as the average grain major axis increases from 20 to 80 μm, (ii) the major axis length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge resulting in strong mutual repulsion and this, combined with the fractal character of the ice grains, prevents them from agglomerating. In order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains, the volumetric packing factor (i.e., ratio of the actual volume to the volume of a circumscribing ellipsoid) of the ice grains must be less than ∼0.1 depending on the exact relative velocity of the grains in question. Thus, it is concluded that direct accretion of water molecules is very likely to dominate the observed ice grain growth.

  1. Disruption of an Aligned Dendritic Network by Bubbles During Re-Melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2012-01-01

    The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.

  2. DENDRITE REFINING AND EUTECTIC TRANSFORMATION BEHAVIOR OF NICKEL-BASE SINGLE CRYSTAL (NBSC) SUPERALLOY

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Because of the low temperature gradient and growth rate, the microstructure of the conventional single crystal superalloy made by HRS processing is coarse dendrite with well developed sidebranches and has serious segregation. With the help of the high temperature gradient directional solidification equipment (HGDS), the solidification cooling rate is greatly increased. Study on microstructure of the Ni-base single crystal superalloy solidified at much higher cooling rate shows that the dendrite arm spacing is highly refined, of which the primary dendrite arm spacing can be made to be 38μm, just as 1/10 as that by conventional HRS processing. With the increase of the cooling rate, the amount of the eutectic increases and then decreases. In the superfine columnar dendrite, the amount of γ/γ′eutectic is much fewer and its size is very small. This is useful to homogenize the microsegregation and improve the property of the material.

  3. DIXDC1 Phosphorylation and Control of Dendritic Morphology Are Impaired by Rare Genetic Variants

    Directory of Open Access Journals (Sweden)

    Vickie Kwan

    2016-11-01

    Full Text Available The development of neural connectivity is essential for brain function, and disruption of this process is associated with autism spectrum disorders (ASDs. DIX domain containing 1 (DIXDC1 has previously been implicated in neurodevelopmental disorders, but its role in postnatal brain function remains unknown. Using a knockout mouse model, we determined that DIXDC1 is a regulator of excitatory neuron dendrite development and synapse function in the cortex. We discovered that MARK1, previously linked to ASDs, phosphorylates DIXDC1 to regulate dendrite and spine development through modulation of the cytoskeletal network in an isoform-specific manner. Finally, rare missense variants in DIXDC1 were identified in ASD patient cohorts via genetic sequencing. Interestingly, the variants inhibit DIXDC1 isoform 1 phosphorylation, causing impairment to dendrite and spine growth. These data reveal that DIXDC1 is a regulator of cortical dendrite and synaptic development and provide mechanistic insight into morphological defects associated with neurodevelopmental disorders.

  4. Dendritic cells and contact dermatitis.

    Science.gov (United States)

    Sasaki, Yoshinori; Aiba, Setsuya

    2007-10-01

    Contact dermatitis is a biological response to simple chemicals in the skin. Although it is well known that allergic contact dermatitis is mediated by the immune system, it is still uncertain whether it is a kind of protective response or it is simply an unnecessary response. We have demonstrated the following: (1) haptens activate Langerhans cells in the initiation phase of murine allergic contact dermatitis in vivo, (2) haptens activate human monocyte-derived dendritic cells in vitro, (3) the activation of dendritic cells by haptens is primarily mediated by the activation of p38 mitogen-activated protein kinase (MAPK), and (4) the activation of p38 MAPK is mediated by stimulation related to an imbalance of intracellular redox. Based on these observations, we will discuss the biological significance of contact dermatitis. In addition, we will review some up-to-date findings on Langerhans cell biology.

  5. Lipid dynamics at dendritic spines.

    Science.gov (United States)

    Dotti, Carlos Gerardo; Esteban, Jose Antonio; Ledesma, María Dolores

    2014-01-01

    Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity.

  6. A Model of Cytotoxic T Antitumor Activation Stimulated by Pulsed Dendritic Cells

    Science.gov (United States)

    Pennisi, Marzio; Pappalardo, Francesco; Chiacchio, Ferdinando; Motta, Santo

    2011-09-01

    We present a preliminary ODE model to sketch the immune response of cytotoxic T cells against cancer through the use of pulsed autologous dendritic cells. The model is partially based on data coming from experiments that are presently in progress in the wet lab of our collaborators, but it can be applied in principle to different tumors. To this end, we show the immune response of cytotoxic T cells stimulated by autologous dendritic cells for different cancers.

  7. Microtubules in Dendritic Spine Development

    OpenAIRE

    2008-01-01

    It is generally believed that only the actin cytoskeleton resides in dendritic spines and controls spine morphology and plasticity. Here we report that microtubules (MTs) are present in spines and that shRNA knockdown of the MT-plus end binding protein EB3 significantly reduces spine formation. Furthermore, stabilization and inhibition of MTs by low doses of taxol and nocodazole enhance and impair spine formation elicited by BDNF, respectively. Therefore, MTs play an important role in the con...

  8. Melanoma immunotherapy: dendritic cell vaccines

    OpenAIRE

    Lozada-Requena, Ivan; Laboratorios de Inmunología #108, Laboratorio de investigación y Desarrollo, Facultad de Ciencieas y Filosofía, Universidad Cayetano Heredia. Lima, Perú Empresa de Investigación y Desarrollo en Cáncer (EMINDES) SAC. Lima, Perú.; Núñez, César; Empresa de Investigación y Desarrollo en Cáncer (EMINDES) SAC. Lima, Perú.; Aguilar, José Luis; Laboratorios de Inmunología #108, Laboratorio de investigación y Desarrollo, Facultad de Ciencieas y Filosofía, Universidad Cayetano Heredia. Lima, Perú.

    2015-01-01

    This is a narrative review that shows accessible information to the scientific community about melanoma and immunotherapy.Dendritic cells have the ability to participate in innate and adaptive immunity, but are not unfamiliar to the immune evasion oftumors. Knowing the biology and role has led to generate in vitro several prospects of autologous cell vaccines against diversetypes of cancer in humans and animal models. However, given the low efficiency they have shown, we must implementstrateg...

  9. A comparison of least squares and conditional maximum likelihood estimators under volume endpoint censoring in tumor growth experiments.

    Science.gov (United States)

    Roy Choudhury, Kingshuk; O'Sullivan, Finbarr; Kasman, Ian; Plowman, Greg D

    2012-12-20

    Measurements in tumor growth experiments are stopped once the tumor volume exceeds a preset threshold: a mechanism we term volume endpoint censoring. We argue that this type of censoring is informative. Further, least squares (LS) parameter estimates are shown to suffer a bias in a general parametric model for tumor growth with an independent and identically distributed measurement error, both theoretically and in simulation experiments. In a linear growth model, the magnitude of bias in the LS growth rate estimate increases with the growth rate and the standard deviation of measurement error. We propose a conditional maximum likelihood estimation procedure, which is shown both theoretically and in simulation experiments to yield approximately unbiased parameter estimates in linear and quadratic growth models. Both LS and maximum likelihood estimators have similar variance characteristics. In simulation studies, these properties appear to extend to the case of moderately dependent measurement error. The methodology is illustrated by application to a tumor growth study for an ovarian cancer cell line.

  10. The rodent Four-jointed ortholog Fjx1 regulates dendrite extension.

    Science.gov (United States)

    Probst, Barbara; Rock, Rebecca; Gessler, Manfred; Vortkamp, Andrea; Püschel, Andreas W

    2007-12-01

    The extrinsic and intrinsic factors that regulate the size and complexity of dendritic arborizations are still poorly understood. Here we identify Fjx1, the rodent ortholog of the Drosophila planar cell polarity (PCP) protein Four-jointed (Fj), as a new inhibitory factor that regulates dendrite extension. The Drosophila gene four-jointed (fj) has been suggested to provide directional information in wing discs, but the mechanism how it acts is only poorly understood and the function of its mammalian homolog Fjx1 remains to be investigated. We analyzed the phenotype of a null mutation for mouse Fjx1. Homozygous Fjx1 mutants show an abnormal morphology of dendritic arbors in the hippocampus. In cultured hippocampal neurons from Fjx1 mutant mice, loss of Fjx1 resulted in an increase in dendrite extension and branching. Addition of Fjx1 to cultures of dissociated hippocampal neurons had the opposite effect and reduced the length of dendrites and decreased dendritic branching. Rescue experiments with cultured neurons showed that Fjx1 can act both cell-autonomously and non-autonomously. Our results identify Fjx1 as a new inhibitory factor that regulates dendrite extension.

  11. Spike-Timing–Dependent Synaptic Plasticity and Synaptic Democracy in Dendrites

    Science.gov (United States)

    Gidon, Albert; Segev, Idan

    2009-01-01

    We explored in a computational study the effect of dendrites on excitatory synapses undergoing spike-timing–dependent plasticity (STDP), using both cylindrical dendritic models and reconstructed dendritic trees. We show that even if the initial strength, gpeak, of distal synapses is augmented in a location independent manner, the efficacy of distal synapses diminishes following STDP and proximal synapses would eventually dominate. Indeed, proximal synapses always win over distal synapses following linear STDP rule, independent of the initial synaptic strength distribution in the dendritic tree. This effect is more pronounced as the dendritic cable length increases but it does not depend on the dendritic branching structure. Adding a small multiplicative component to the linear STDP rule, whereby already strong synapses tend to be less potentiated than depressed (and vice versa for weak synapses) did partially “save” distal synapses from “dying out.” Another successful strategy for balancing the efficacy of distal and proximal synapses following STDP is to increase the upper bound for the synaptic conductance (gmax) with distance from the soma. We conclude by discussing an experiment for assessing which of these possible strategies might actually operate in dendrites. PMID:19357339

  12. Spike-timing-dependent synaptic plasticity and synaptic democracy in dendrites.

    Science.gov (United States)

    Gidon, Albert; Segev, Idan

    2009-06-01

    We explored in a computational study the effect of dendrites on excitatory synapses undergoing spike-timing-dependent plasticity (STDP), using both cylindrical dendritic models and reconstructed dendritic trees. We show that even if the initial strength, g(peak), of distal synapses is augmented in a location independent manner, the efficacy of distal synapses diminishes following STDP and proximal synapses would eventually dominate. Indeed, proximal synapses always win over distal synapses following linear STDP rule, independent of the initial synaptic strength distribution in the dendritic tree. This effect is more pronounced as the dendritic cable length increases but it does not depend on the dendritic branching structure. Adding a small multiplicative component to the linear STDP rule, whereby already strong synapses tend to be less potentiated than depressed (and vice versa for weak synapses) did partially "save" distal synapses from "dying out." Another successful strategy for balancing the efficacy of distal and proximal synapses following STDP is to increase the upper bound for the synaptic conductance (g(max)) with distance from the soma. We conclude by discussing an experiment for assessing which of these possible strategies might actually operate in dendrites.

  13. Increased proximal bifurcation of CA1 pyramidal apical dendrites in sema3A mutant mice.

    Science.gov (United States)

    Nakamura, Fumio; Ugajin, Kozue; Yamashita, Naoya; Okada, Takako; Uchida, Yutaka; Taniguchi, Masahiko; Ohshima, Toshio; Goshima, Yoshio

    2009-10-10

    Semaphorin-3A (Sema3A) is an attractive guidance molecule for cortical apical dendrites. To elucidate the role of Sema3A in hippocampal dendritic formation, we examined the Sema3A expression pattern in the perinatal hippocampal formation and analyzed hippocampal dendrites of the brains from young adult sema3A mutant mice. Sema3A protein was predominantly expressed in the hippocampal plate and the inner marginal zone at the initial period of apical dendritic growth. Neuropilin-1 and plexin-A, the receptor components for Sema3A, were also localized in the same regions. The Golgi impregnation method revealed that in wildtype mice more than 90% of hippocampal CA1 pyramidal neurons extended a single trunk or apical trunks bifurcated in stratum radiatum. Seven percent of the pyramidal neurons showed proximal bifurcation of apical trunks in stratum pyramidale or at the border of the stratum pyramidale and stratum radiatum. In sema3A mutant mice, proximally bifurcated apical dendrites were increased to 32%, while the single apical dendritic pyramidal neurons were decreased. We designate this phenotype in sema3A mutant mice as "proximal bifurcation." In the dissociated culture system, approximately half of the hippocampal neurons from wildtype mice resembled pyramidal neurons, which possess a long, thick, and tapered dendrite. In contrast, only 30% of the neurons from sema3A mutants exhibited pyramidal-like morphology. Proximal bifurcation of CA1 pyramidal neurons was also increased in the mutant mice of p35, an activator of cyclin-dependent kinase 5 (Cdk5). Thus, Sema3A may facilitate the initial growth of CA1 apical dendrites via the activation of p35/Cdk5, which may in turn signal hippocampal development.

  14. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    LiWu; AleksandarDakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived calls. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors, some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Fit3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse. Cellular & Molecular Immunology. 2004;1(2):112-118.

  15. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    Li Wu; Aleksandar Dakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived cells. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors,some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Flt3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse.

  16. Reconstructing cosmic growth with kSZ observations in the era of Stage IV experiments

    CERN Document Server

    Alonso, David; Bull, Philip; Ferreira, Pedro G

    2016-01-01

    Future ground-based CMB experiments will generate competitive large-scale structure datasets by precisely characterizing CMB secondary anisotropies over a large fraction of the sky. We describe a method for constraining the growth rate of structure to sub-1% precision out to $z\\approx 1$, using a combination of galaxy cluster peculiar velocities measured using the kinetic Sunyaev-Zel'dovich (kSZ) effect, and the velocity field reconstructed from galaxy redshift surveys. We consider only thermal SZ-selected cluster samples, which will consist of $\\mathcal{O}(10^4-10^5)$ sources for Stage 3 and 4 CMB experiments respectively. Three different methods for separating the kSZ effect from the primary CMB are compared, including a novel blind "constrained realization" method that improves signal-to-noise by a factor of $\\sim 2$ over a commonly-used aperture photometry technique. Measurements of the integrated tSZ $y$-parameter are used to break the kSZ velocity-optical depth degeneracy, and the effects of including C...

  17. Brain composition in Heliconius butterflies, posteclosion growth and experience-dependent neuropil plasticity.

    Science.gov (United States)

    Montgomery, Stephen H; Merrill, Richard M; Ott, Swidbert R

    2016-06-15

    Behavioral and sensory adaptations are often reflected in the differential expansion of brain components. These volumetric differences represent changes in cell number, size, and/or connectivity, which may denote changes in the functional and evolutionary relationships between different brain regions, and between brain composition and behavioral ecology. Here we describe the brain composition of two species of Heliconius butterflies, a long-standing study system for investigating ecological adaptation and speciation. We confirm a previous report of a striking volumetric expansion of the mushroom body, and explore patterns of differential posteclosion and experience-dependent plasticity between different brain regions. This analysis uncovers age- and experience-dependent posteclosion mushroom body growth comparable to that in foraging Hymenoptera, but also identifies plasticity in several other neuropils. An interspecific analysis indicates that Heliconius display a remarkably large investment in mushroom bodies for a lepidopteran, and indeed rank highly compared to other insects. Our analyses lay the foundation for future comparative and experimental analyses that will establish Heliconius as a valuable case study in evolutionary neurobiology.

  18. Active dendrites enhance neuronal dynamic range.

    Directory of Open Access Journals (Sweden)

    Leonardo L Gollo

    2009-06-01

    Full Text Available Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB. Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range.

  19. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites.

    Science.gov (United States)

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E

    2016-03-18

    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.

  20. The influence of melt convection on dendritic spacing of downward unsteady-state directionally solidified Sn-Pb alloys

    Directory of Open Access Journals (Sweden)

    José Eduardo Spinelli

    2006-03-01

    Full Text Available Microstructures are the strategic link between materials processing and materials behavior. A dendritic structure is the most frequently observed pattern of solidified alloys. The microstructural scales of dendrites, such as primary and secondary arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, determine the properties of cast structures. In this work, the influence of thermosolutal convection on dendrite arm spacings is experimentally examined in the downward vertical unsteady-state directional solidification of Sn-Pb hypoeutectic alloys. The experimental observations are compared not only with the main predictive theoretical models for dendritic spacings but also with experimental results obtained for Sn-Pb alloys solidified vertically upwards. Primary dendritic arm spacings have been affected by the direction of growth, decreasing in conditions of downward vertical solidification when compared with those grown vertically upwards. Further, the unsteady-state lambda1 predictive models did not generate the experimental observations.

  1. Analogue experiments of salt flow and pillow growth due basement faulting and differential loading

    Science.gov (United States)

    Warsitzka, M.; Kley, J.; Kukowski, N.

    2014-07-01

    Basement faulting is widely acknowledged as a potential trigger for salt flow and the growth of salt structures in salt-bearing extensional basins. In this study, dynamically scaled analogue experiments were designed to examine the evolution of salt pillows and the kinematics of salt flow due to a short pulse of basement faulting and a long-lasting phase of successive sedimentation. Experiments performed in the framework of this study consist of viscous silicone putty to simulate ductile rock salt, and a PVC-beads-quartz sand mixture representing a brittle supra-salt layer. In order to derive 2-D incremental displacement and strain patterns, the analogue experiments were monitored by an optical image correlation system (Particle Imaging Velocimetry). By varying layer thicknesses and extension rates, the influence of these parameters on the kinematics of salt flow were tested. Model results reveal that significant strain is triggered in the viscous layer by minor basement faulting. During basement extension downward flow occurs in the viscous layer above the basement fault tip. In contrast, upward flow takes place during post-extensional sedimentation. Lateral redistribution of the viscous material during post-extensional sedimentation is associated with subsidence above the footwall block and uplift adjacent to the basement faults leading to the formation of pillow structures (primary pillows). Decoupled cover faulting and the subsidence of peripheral sinks adjacent to the primary pillow causes the formation of additional pillow structures at large distance from the basement fault (secondary pillows). Experimental results demonstrate that the development of salt pillows can be triggered by basement extension, but requires a phase of tectonic quiescence. The potential for pillow growth and the displacement rate in the viscous layer increase with increasing thickness of the viscous layer and increasing extension rate, but decrease with increasing thickness of the

  2. Colored visible light metamaterials based on random dendritic cells

    CERN Document Server

    Song, K; Liu, B Q; Zhao, X P

    2011-01-01

    Optical metamaterials(OMs) at visible wavelengths have been extensively developed. OMs reported presently are all composed of periodic structure, and fabricated by top-down approaches. Here, the colored visible light frequencies metamaterials composed of double layer array disordered and geometrical variational dendritic cells are demonstrated, fabricating by a novel bottom-up approach. The experiment demonstrated that the OMs composed of random silver dendritic cells caused the appearance of multiple transmission passbands at red and yellow light frequencies. The slab focusing experiment reveals a clear point image in the range of half-wavelength with an intensity of 5% higher than that of the light source. Proposed colored OMs will open a new way to prepare the cloak and the perfect lens suitable for optical frequency.

  3. Dendritic Cells, New Tools for Vaccination

    Science.gov (United States)

    2003-01-01

    Review Dendritic cells , new tools for vaccination Jesus Colino, Clifford M. Snapper * Department of Pathology, Uniformed Services University of the...2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved. Keywords: Vaccines; Immunotherapy; Dendritic cells 1. Introduction During...DATE 2003 2. REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Dendritic cells , new tools for vaccination 5a

  4. Growth and Morphology of Supercritical Fluids, a Fluid Physics Experiment Conducted on Mir, Complete

    Science.gov (United States)

    Wilkinson, R. Allen

    2001-01-01

    The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center and under the guidance of U.S. principal investor Professor Hegseth of the University of New Orleans and three French coinvestigators: Daniel Beysens, Yves Garrabos, and Carole Chabot. The GMSF experiments were concluded in early 1999 on the Russian space station Mir. The experiments spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) applied to the sample. The French-built ALICE II facility was used for these experiments. It allows tightly thermostated (left photograph) samples (right photograph) to be controlled and viewed/measured. Its diagnostics include interferometry, shadowgraph, high-speed pressure measurements, and microscopy. Data were logged on DAT tapes, and PCMCIA cards and were returned to Earth only after the mission was over. The ground-breaking near critical boiling experiment has yielded the most results with a paper published in Physical Review Letters (ref. 1). The boiling work also received press in Science Magazine (ref. 2). This work showed that, in very compressible near-critical two-phase pure fluids, a vapor bubble was induced to temporarily overheat during a rapid heating of the sample wall. The temperature rise in the vapor was 23-percent higher than the rise in the driving container wall. The effect is due to adiabatic compression of the vapor bubble by the rapid expansion of fluid near the boundary during heatup. Thermal diffusivity is low near the

  5. Dendritic Morphology Simulation Using the Phase Field Method

    Institute of Scientific and Technical Information of China (English)

    张光跃; 荆涛; 柳百成

    2003-01-01

    Dendritic morphology was simulated using a macro- and micro-coupled method. Since the microstructure of a whole casting cannot be easily analyzed, a scheme was developed to calculate the temperature of the whole casting with the microstructure analyzed by selecting one cell in the central region of the casting. The heterogeneous nucleation was described using a Gaussian distribution with the dendritic growth controlled by the solution of the phase field equation. The initial temperature distribution in the microdomain was obtained by interpolating the cell temperatures near the selected cell with the interface undercooling assumed to be the sum of thermal, solute, and curvature effects. The solute distribution was calculated from the mixed solute conservation equation with noise introduced to produce the side branches. The simulation results agree well with experimental results.

  6. Growth phase-dependent UV-C resistance of Bacillus subtilis: data from a short-term evolution experiment.

    Science.gov (United States)

    Wassmann, Marko; Moeller, Ralf; Reitz, Günther; Rettberg, Petra

    2011-11-01

    After 700 generations of a short-term evolution experiment with Bacillus subtilis 168, two strains were isolated, the UV-adapted strain MW01 and the UV-unexposed control strain DE69, and chosen for UV-C radiation resistance studies with respect to growth phase. The ancestral strain from the evolution experiment was used as reference for comparative purposes. Cells of the UV-adapted strain showed significant differences in their physiology (growth behavior, doubling time, cell density, and sporulation capacity) and were more resistant to UV in all monitored stages. These findings implicate the evolution to an increased UV radioresistance was not limited to a specific growth phase and led to reduced growth dynamics, compared with those obtained from the ancestral and the control strain.

  7. Low Power Dendritic Computation for Wordspotting

    Directory of Open Access Journals (Sweden)

    Stephen Nease

    2013-05-01

    Full Text Available In this paper, we demonstrate how a network of dendrites can be used to build the state decoding block of a wordspotter similar to a Hidden Markov Model (HMM classifier structure. We present simulation and experimental data for a single line dendrite and also experimental results for a dendrite-based classifier structure. This work builds on previously demonstrated building blocks of a neural network: the channel, synapses and dendrites using CMOS circuits. These structures can be used for speech and pattern recognition. The computational efficiency of such a system is >10 MMACs/μW as compared to Digital Systems which perform 10 MMACs/mW.

  8. Neoplasms derived from plasmacytoid dendritic cells.

    Science.gov (United States)

    Facchetti, Fabio; Cigognetti, Marta; Fisogni, Simona; Rossi, Giuseppe; Lonardi, Silvia; Vermi, William

    2016-02-01

    Plasmacytoid dendritic cell neoplasms manifest in two clinically and pathologically distinct forms. The first variant is represented by nodular aggregates of clonally expanded plasmacytoid dendritic cells found in lymph nodes, skin, and bone marrow ('Mature plasmacytoid dendritic cells proliferation associated with myeloid neoplasms'). This entity is rare, although likely underestimated in incidence, and affects predominantly males. Almost invariably, it is associated with a myeloid neoplasm such as chronic myelomonocytic leukemia or other myeloid proliferations with monocytic differentiation. The concurrent myeloid neoplasm dominates the clinical pictures and guides treatment. The prognosis is usually dismal, but reflects the evolution of the associated myeloid leukemia rather than progressive expansion of plasmacytoid dendritic cells. A second form of plasmacytoid dendritic cells tumor has been recently reported and described as 'blastic plasmacytoid dendritic cell neoplasm'. In this tumor, which is characterized by a distinctive cutaneous and bone marrow tropism, proliferating cells derive from immediate CD4(+)CD56(+) precursors of plasmacytoid dendritic cells. The diagnosis of this form can be easily accomplished by immunohistochemistry, using a panel of plasmacytoid dendritic cells markers. The clinical course of blastic plasmacytoid dendritic cell neoplasm is characterized by a rapid progression to systemic disease via hematogenous dissemination. The genomic landscape of this entity is currently under intense investigation. Recurrent somatic mutations have been uncovered in different genes, a finding that may open important perspectives for precision medicine also for this rare, but highly aggressive leukemia.

  9. The effect of isolation on reproduction and growth of Pseudosuccinea columella (Pulmonata: Lymnaeidae: a snail-conditioned water experiment

    Directory of Open Access Journals (Sweden)

    Gutiérrez Alfredo

    2002-01-01

    Full Text Available A snail-conditioned water experiment was conducted in Pseudosuccinea columella to test the possible role of a chemical interaction between snails on the diminished growth and fecundity rates found for snails raised in pairs compared to those raised in complete isolation. The results permit to discard the hypothesis of an inhibition of growth and reproduction between snails due to factors released into the water.

  10. A role for sodium and chloride in kainic acid-induced beading of inhibitory interneuron dendrites.

    Science.gov (United States)

    Al-Noori, S; Swann, J W

    2000-01-01

    Excitotoxic injury of the dendrites of inhibitory interneurons could lead to decreases in their synaptic activation and explain subsequent local circuit hyperexcitability and epilepsy. A hallmark of dendrotoxicity, at least in principal neurons of the hippocampus and cortex, is focal or varicose swellings of dendritic arbors. In experiments reported here, transient (1h) exposure of hippocampal explant cultures to kainic acid produced marked focal swellings of the dendrites of parvalbumin-immunoreactive pyramidal basket cells in a highly reproducible and dose-dependent manner. At 5mM kainic acid, more than half of the immunopositive apical dendrites in area CA(1) had a beaded appearance. However, the somal volumes of these cells were unaltered by the same treatment. The presence of focal swellings was reversible with kainate washout and was not accompanied by interneuronal cell death. In contrast, exposure to much higher concentrations (300mM) of kainic acid resulted in the total loss of parvalbumin-positive interneurons from explants. Surprisingly, kainic acid-induced dendritic beading does not appear to be mediated by extracellular calcium. Beading was unaltered in the presence of N-methyl-D-aspartate receptor antagonists, the L-type calcium channel antagonist, nimodipine, cadmium, or by removing extracellular calcium. However, blockade of voltage-gated sodium channels by either tetrodotoxin or lidocaine abolished dendritic beading, while the activation of existing voltage-gated sodium channels by veratridine mimicked the kainic acid-induced dendritic beading. Finally, the removal of extracellular chloride prevented the kainic acid-induced dendritic beading.Thus, we suggest that the movement of Na(+) and Cl(-), rather than Ca(2+), into cells underlies the focal swellings of interneuron dendrites in hippocampus.

  11. Growing from experience: an exploratory study of posttraumatic growth in adolescent refugees

    Directory of Open Access Journals (Sweden)

    Marieke Sleijpen

    2016-02-01

    Full Text Available Objective: The aim of this study was to explore perceived posttraumatic growth (PTG and its associations with potentially traumatic events (PTEs, dispositional optimism, perceived social support, posttraumatic stress disorder (PTSD symptoms, and satisfaction with life (SWL among adolescent refugees and asylum seekers. Method: A cross-sectional design was employed including 111 refugees, aged 12–17, that were recruited from asylum seeker centres throughout the Netherlands. Measurements included the revised Posttraumatic Growth Inventory for Children, Children's Impact of Event Scale, Multidimensional Scale of Perceived Social Support, The Life Orientation Test, and the Satisfaction with Life Scale. Results: Participants reported mean PTG scores (20.2 indicating an average response of some perceived change, while reporting high levels of PTSD symptoms (30.6. PTG and PTSD symptoms were not related with each other (r=0.07, p=0.50. PTG was positively associated with dispositional optimism (r=0.41, p<0.01 and social support (r=0.43, p<0.01. A hierarchical regression analysis demonstrated that dispositional optimism (β=0.33; p<0.05 and social support (β=0.27; p<0.05 positively predicted PTG, explaining 22% of the PTG variance above demographic variables and PTEs. PTG was also positively related with SWL (r=0.37, p<0.01. Conclusions: Perceived PTG and PTSD symptoms appear to be independent constructs, which co-occur in adolescent refugees and asylum seekers. The relationship between PTG and mental health remains inconclusive; PTG was positively related to SWL and not associated with PTSD symptoms. Longitudinal research is required to determine causality between PTG and mental health in this refugee population confronted with many traumatic experiences and challenging migration tasks.

  12. Fe-SAPONITE and Chlorite Growth on Stainless Steel in Hydrothermal Engineered Barrier Experiments

    Science.gov (United States)

    Cheshire, M. C.; Caporuscio, F. A.; McCarney, M.

    2012-12-01

    The United States recently has initiated the Used Fuel Disposition campaign to evaluate various generic geological repositories for the disposal of high-level, spent nuclear fuel within environments ranging from hard-rock, salt/clay, to deep borehole settings. Previous work describing Engineered Barrier Systems (EBS) for repositories focused on low temperature and pressure conditions. The focus of this experimental work is to characterize the stability and alteration of a bentonite-based EBS with different waste container materials in brine at higher heat loads and pressures. All experiments were run at ~150 bar and 125 to 300 C for ~1 month. Unprocessed bentonite from Colony, Wyoming was used in the experiments as the clay buffer material. The redox conditions for each system were buffered along the magnetite-iron oxygen fugacity univariant curve using Fe3O4 and Feo filings. A K-Na-Ca-Cl-based salt solution was chosen to replicate deep groundwater compositions. The experimental mixtures were 1) salt solution-clay; 2) salt solution -clay-304 stainless steel; and 3) salt solution -clay-316 stainless steel with a water/bentonite ratio of ~9. Mineralogy and aqueous geochemistry of each experiment was evaluated to monitor the reactions that took place. No smectite illitization was observed in these reactions. However, it appears that K-smectite was produced, possibly providing a precursor to illitization. It is unclear whether reaction times were sufficient for bentonite illitization at 212 and 300 C or whether conditions conducive to illite formation were obtained. The more notable clay mineral reactions occurred at the stainless steel surfaces. Authigenic chlorite and Fe-saponite grew with their basal planes near perpendicular to the steel plate, forming a 10 - 40 μm thick 'corrosion' layer. Partial dissolution of the steel plates was the likely iron source for chlorite/saponite formation; however, dissolution of the Feo/Fe3O4 may also have acted as an iron source

  13. Interfacial wave theory for dendritic structure of a growing needle crystal. I - Local instability mechanism. II - Wave-emission mechanism at the turning point

    Science.gov (United States)

    Xu, Jian-Jun

    1989-01-01

    The complicated dendritic structure of a growing needle crystal is studied on the basis of global interfacial wave theory. The local dispersion relation for normal modes is derived in a paraboloidal coordinate system using the multiple-variable-expansion method. It is shown that the global solution in a dendrite growth process incorporates the morphological instability factor and the traveling wave factor.

  14. Dendritic cells combined with anti-GITR antibody produce antitumor effects in osteosarcoma.

    Science.gov (United States)

    Kawano, Masanori; Tanaka, Kazuhiro; Itonaga, Ichiro; Iwasaki, Tatsuya; Miyazaki, Masashi; Ikeda, Shinichi; Tsumura, Hiroshi

    2015-10-01

    We attempted to enhance the antitumor effects of tumor lysate-pulsed dendritic cells by eliminating regulatory T cells. The combinatorial effects of dendritic cells and agonist anti-glucocorticoid-induced tumor necrosis factor receptor (anti-GITR) antibodies were investigated with respect to enhancement of the systemic immune response, elimination of regulatory T cells, and inhibition of tumor growth. To determine whether the combination of dendritic cells and anti‑GITR antibodies could enhance systemic immune responses and inhibit primary tumor growth in a murine osteosarcoma (LM8) model. We established the following 4 groups of C3H mice (20 mice in total): i), control IgG-treated mice; ii), tumor lysate-pulsed dendritic cell‑treated mice; iii), agonist anti-GITR antibody-treated mice; and iv), agonist anti-GITR antibody- and tumor lysate-pulsed dendritic cell‑treated mice.The mice that received the agonist anti-GITR antibodies and tumor lysate-pulsed dendritic cells displayed inhibited primary growth, prolonged life time, reduced numbers of regulatory T lymphocytes in the spleen, elevated serum interferon-γ levels, increased number of CD8+ T lymphocytes. The mice that received combined therapy had reduced level of immunosuppressive cytokines in tumor tissue and serum. Combining agonist anti-GITR antibodies with tumor lysate-pulsed dendritic cells enhanced the systemic immune response. These findings provide further support for the continued development of agonist anti-GITR antibodies as an immunotherapeutic strategy for osteosarcoma. We suggest that our proposed immunotherapy could be developed further to improve osteosarcoma treatment.

  15. Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments.

    Science.gov (United States)

    Burrows, Nathan D; Harvey, Samantha; Idesis, Fred A; Murphy, Catherine J

    2017-02-28

    Since the development of simple, aqueous protocols for the synthesis of anisotropic metal nanoparticles, research into many promising, valuable applications of gold nanorods has grown considerably, but a number of challenges remain, including gold-particle yield, robustness to minor impurities, and precise control of gold nanorod surface chemistry. Herein we present the results of a composite fractional factorial series of experiments designed to screen seven additional potential avenues of control and to understand the seed-mediated silver-assisted synthesis of gold nanorods. These synthesis variables are the amount of sodium borohydride used and the rate of stirring when producing seed nanoparticles, the age of and the amount of seeds added, the reaction temperature, the amounts of silver nitrate and ascorbic acid added, and the age of the reduced growth solution before seed nanoparticles are added to initiate rod formation. This statistical experimental design and analysis method, besides determining which experimental variables are important and which are not when synthesizing gold nanorods (and quantifying their effects), gives further insight into the mechanism of growth by measuring the degree to which variables interact with each other by mapping out their mechanistic connections. This work demonstrates that when forming gold nanorods by the reduction of auric ions by ascorbic acid onto seed nanoparticles, ascorbic acid determines how much gold is reduced, and the amount of seeds determine how it is divided, yet both influence the intrinsic growth rates, in both width and length, of the forming nanorods. Furthermore, this work shows that the reduction of gold proceeds via direct reduction on the surface of seeds and not through a disproportionation reaction. Further control over the length of gold nanorods can be achieved by tuning the amount of silver nitrate or the reaction temperature. This work shows that silver does not directly influence rod length or

  16. Physical and bacterial controls on inorganic nutrients and dissolved organic carbon during a sea ice growth and decay experiment

    DEFF Research Database (Denmark)

    Zhou, J.; Delille, B.; Kaartokallio, H.

    2014-01-01

    We investigated how physical incorporation, brine dynamics and bacterial activity regulate the distribution of inorganic nutrients and dissolved organic carbon (DOC) in artificial sea ice during a 19-day experiment that included periods of both ice growth and decay. The experiment was performed...... temperatures and bulk ice salinities, we derived the brine volume fractions, brine salinities and Rayleigh numbers. The temporal evolution of these physical parameters indicates that there was two main stages in the brine dynamics: bottom convection during ice growth, and brine stratification during ice decay...

  17. Ten years of clinical experience with biosimilar human growth hormone: a review of safety data.

    Science.gov (United States)

    Borrás Pérez, Maria Victoria; Kriström, Berit; Romer, Tomasz; Walczak, Mieczyslaw; Höbel, Nadja; Zabransky, Markus

    2017-01-01

    Safety concerns for recombinant human growth hormone (rhGH) treatments include impact on cancer risk, impact on glucose homeostasis, and the formation of antibodies to endogenous/exogenous GH. Omnitrope(®) (biosimilar rhGH) was approved by the European Medicines Agency in 2006, with approval granted on the basis of comparable quality, safety, and efficacy to the reference medicine (Genotropin(®)). Additional concerns that may exist in relation to biosimilar rhGH include safety in indications granted on the basis of extrapolation and the impact of changing to biosimilar rhGH from other rhGH treatments. A substantial data set is available to fully understand the safety profile of biosimilar rhGH, which includes data from its clinical development studies and 10 years of post-approval experience. As of June 2016, 106,941,419 patient days (292,790 patient-years) experience has been gathered for biosimilar rhGH. Based on the available data, there have been no unexpected or unique adverse events related to biosimilar rhGH treatment. There is no increased risk of cancer, adverse glucose homeostasis, or immunogenic response with biosimilar rhGH compared with the reference medicine and other rhGH products. The immunogenicity of biosimilar rhGH is also similar to that of the reference and other rhGH products. Physicians should be reassured that rhGH products have a good safety record when used for approved indications and at recommended doses, and that the safety profile of biosimilar rhGH is in keeping with that of other rhGH products.

  18. Dendrite Spacing Selection during Directional Solidification of Pivalic Acid-Ethanol System

    Institute of Scientific and Technical Information of China (English)

    Myung-Jin Suk; Young-Min Park; Youn-Che Kim

    2008-01-01

    Unidirectional solidification of pivalic acid (PVA)-ethanol (Eth) mixture was performed to examine whether an allowable range of primary dendrite spacing definitely exists at a given growth velocity and how the range is history-dependent. PVA-0.59 wt pct Eth was unidirectionally solidified in the range of growth velocity 0.5-64 μm/s at the temperature gradient of 2.3 K/mm. Sequential change in growth velocity was imposed to determine the upper and lower limits for the allowable range of stable spacing. An allowable range of the steady state primary spacing was observed at a given growth velocity, and the extent of the range seems to be dependent on the degree to which step-increase or step-decrease in growth velocity is accomplished. As the degree of sequential change in growth velocity increases, the history-dependence of the selection for the primary dendrite spacing tends to disappear.

  19. EBSD Characterization of Dendrites in Synthetic and Natural Rocks

    Science.gov (United States)

    Hammer, J. E.; Tiley, J.; Shiveley, A.; Knox, S.; Viswanathan, G.

    2011-12-01

    Arborescent crystals in igneous rocks are associated with extreme crystallization environments: the protoplanary disk (chondrules), Earth's ultramafic Archean mantle (komatiite), and terrestrial submarine-erupted lavas (pillow basalts), although the role of morphological instabilities in more mundane settings such as magma reservoirs of modern oceanic islands is increasingly appreciated (see Welsch et al., V16). Fundamentals of dendrite formation are presumably well understood: branching morphologies belie crystal growth conditions in which the driving force for solidification produces a kinetic roughening transition, transforming an atomically smooth crystal-liquid interface into a rough, adhesive interface capable of extremely rapid advancement. However, not since photomicrograhic advances made possible close observations of snow crystals (Nakaya 1936), has there been a more promising set of analytical tools to characterize dendrites in natural and synthetic materials in pursuit of new insights. We are investigating clinopyroxene (cpx) in the quenched top of Fe-rich tholeiitic lava (Munro Township, Northeast Ontario; Fig. 1) and a synthetic basalt of similar character (Hammer 2006) with electron backscatter diffraction (EBSD), 3D reconstruction of optical serial sections, and TEM. Here we report intriguing phenomena observed with EBSD common to both samples. Severe thinning of dendrite trunks and repeated tip splitting destroys the self-similarity associated with classical dendrites and instead presages 'seaweed' morphology. Split tips manifest incremental trajectory deflections, producing gently arched trunks (Fig. 1A) as well as tightly curved (r, producing distinctive misorientation maps and pole figures (Fig. 1C). Parallel branches exhibit similar rotational trajectories, carving parallel arcs in the pole figure. The high incidence of side branching and tip splitting is consistent with very rapid growth velocity, associated with extremely high kinetic

  20. The development of endometriosis in a murine model is dependent on the presence of dendritic cells.

    Science.gov (United States)

    Pencovich, Niv; Luk, Janelle; Hantisteanu, Shay; Hornstein, Mark D; Fainaru, Ofer

    2014-04-01

    Endometriosis is a common condition associated with pelvic pain and infertility. This study group has previously shown that supplementation of dendritic cells led to enhancement of endometriosis lesion growth and angiogenesis. This study determined whether endometriosis is dependent on the presence of endogenous dendritic cells. Surgical induction of endometriosis was performed in CD11c⁺ DTR/GFP transgenic (Tg) female mice in which dendritic cells were ablated upon injection of diphtheria toxin (DT). Mice were allocated into four groups (n=5 each): group I, wild-type mice treated with vehicle; group II, wild-type mice treated with DT; group III, Tg mice treated with DT; and group IV, Tg mice treated with vehicle. After 10 days, mice were killed and endometriosis lesions were analysed by flow cytometry. DT treatment led to ablation of dendritic cells in spleens and endometriosis lesions in Tg mice while no ablation was observed in controls. Corresponding to dendritic cell ablation, endometriosis lesions in group III were ∼5-fold smaller than in the control groups (ANOVA Pdendritic cells. Therapies designed to inhibit dendritic cell infiltration as possible treatments for endometriosis warrant further study.

  1. ARADISH - Development of a Standardized Plant Growth Chamber for Experiments in Gravitational Biology Using Ground Based Facilities

    Science.gov (United States)

    Schüler, Oliver; Krause, Lars; Görög, Mark; Hauslage, Jens; Kesseler, Leona; Böhmer, Maik; Hemmersbach, Ruth

    2016-06-01

    Plant development strongly relies on environmental conditions. Growth of plants in Biological Life Support Systems (BLSS), which are a necessity to allow human survival during long-term space exploration missions, poses a particular problem for plant growth, as in addition to the traditional environmental factors, microgravity (or reduced gravity such as on Moon or Mars) and limited gas exchange hamper plant growth. Studying the effects of reduced gravity on plants requires real or simulated microgravity experiments under highly standardized conditions, in order to avoid the influence of other environmental factors. Analysis of a large number of biological replicates, which is necessary for the detection of subtle phenotypical differences, can so far only be achieved in Ground Based Facilities (GBF). Besides different experimental conditions, the usage of a variety of different plant growth chambers was a major factor that led to a lack of reproducibility and comparability in previous studies. We have developed a flexible and customizable plant growth chamber, called ARAbidopsis DISH (ARADISH), which allows plant growth from seed to seedling, being realized in a hydroponic system or on Agar. By developing a special holder, the ARADISH can be used for experiments with Arabidopsis thaliana or a plant with a similar habitus on common GBF hardware, including 2D clinostats and Random Positioning Machines (RPM). The ARADISH growth chamber has a controlled illumination system of red and blue light emitting diodes (LED), which allows the user to apply defined light conditions. As a proof of concept we tested a prototype in a proteomic experiment in which plants were exposed to simulated microgravity or a 90° stimulus. We optimized the design and performed viability tests after several days of growth in the hardware that underline the utility of ARADISH in microgravity research.

  2. Effects of Applied Electric Current on the Tip Radius and the Universal Amplitude Coefficient of a Single Growing Dendrite

    Science.gov (United States)

    Nasresfahani, Mohammad Reza; Niroumand, Behzad; Kermanpur, Ahmad; Raeissi, Mehdi

    2016-09-01

    Modification of solidification structures by applying electric current has been the subject of interest in recent years. However, the exact relationships between the dendrite growth parameters and the current density are not yet clear. The dendrite tip geometry is an important growth parameter which can be characterized using the dendrite tip radius and the universal amplitude coefficient. In this paper, the dendrite tip shape was investigated in the absence and presence of an electric field using a transparent model material, i.e. the succinonitrile-acetone alloy. The results showed that both dendrite tip radius and universal amplitude coefficient increased by increasing the applied current density. The increase in the tip radius was attributed to the Joule heat produced at the solid-liquid interface which reduced the interface undercooling. The increase in the universal amplitude coefficient was postulated to be due to the changes in the distribution coefficient of the alloy system which would result in higher solute concentration in front of the solid-liquid interface. Owing to the increased universal amplitude coefficient, more prominent dendritic fins were observed at dendrites tips under electric current.

  3. Modeling of Cell/Dendrite Transition During Directional Solidification of Ti-AI Alloy Using Cellular Automaton Method

    Institute of Scientific and Technical Information of China (English)

    WANG Kuang-fei; LI Bang-sheng; MI Guo-fa; GUO Jing-jie; FU Heng-zhi

    2008-01-01

    Solute diffusion controlled solidification model was used to simulate the initial stage cellular to dendrite transition of Ti44AI alloys during directional solidification at different velocities. The simulation results show that during this process, a mixed structure composed of cells and dendrites was observed, where secondary dendrites are absent at facing surface with parallel closely spaced dendrites, which agrees with the previous experimental observa-tion. The dendrite spacings are larger than cellular spacings at a given rate, and the columnar grain spacing sharply increases to a maximum as solidification advance to coexistence zone. In addition, simulation also revealed that decreasing the numbers of the seed causes the trend of unstable dendrite transition to increase. Finally, the main influence factors affecting cell/dendrite transition were analyzed, which could be the change of growth rates resulting in slight fluctuations of liquid composition occurred at growth front. The simulation results are in reasonable agreement with the results of previous theoretical models and experimental observation at low cooling rates.

  4. Pressure and temperature dependence of growth and morphology of Escherichia coli: Experiments and Stochastic Model

    CERN Document Server

    Kumar, Pradeep

    2012-01-01

    We have investigated the growth of Escherichia coli E.coli, a mesophilic bacterium, as a function of pressure $P$ and temperature $T$. E.coli can grow and divide in a wide range of pressure (1-400atm) and temperature ($23-40^{\\circ}$C). For $T>30^{\\circ}$ C, the division time of E.coli increases exponentially with pressure and exhibit a departure from exponential behavior at pressures between 250-400 atm for all the temperatures studied in our experiments. For $T<30^{\\circ}$ C, the division time shows an anomalous dependence on pressure -- first decreases with increasing pressure and then increases upon further increase of pressure. The sharp change in division time is followed by a sharp change in phenotypic transition of E. Coli at high pressures where bacterial cells switch to an elongating cell type. We propose a model that this phenotypic changes in bacteria at high pressures is an irreversible stochastic process whereas the switching probability to elongating cell type increases with increasing press...

  5. Pressure and temperature dependence of growth and morphology of Escherichia coli: experiments and stochastic model.

    Science.gov (United States)

    Kumar, Pradeep; Libchaber, Albert

    2013-08-06

    We have investigated the growth of Escherichia coli, a mesophilic bacterium, as a function of pressure (P) and temperature (T). Escherichia coli can grow and divide in a wide range of pressure (1-400 atm) and temperature (23-40°C). For T > 30°C, the doubling time of E. coli increases exponentially with pressure and exhibits a departure from exponential behavior at pressures between 250 and 400 atm for all the temperatures studied in our experiments. The sharp change in doubling time is followed by a sharp change in phenotypic transition of E. coli at high pressures where bacterial cells switch to an elongating cell type. We propose a model that this phenotypic change in bacteria at high pressures is an irreversible stochastic process, whereas the switching probability to elongating cell type increases with increasing pressure. The model fits well the experimental data. We discuss our experimental results in the light of structural and thus functional changes in proteins and membranes.

  6. Ignition and growth modeling of detonation reaction zone experiments on single crystals of PETN and HMX

    Science.gov (United States)

    White, Bradley W.; Tarver, Craig M.

    2017-01-01

    It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.

  7. Analogue experiments of salt flow and pillow growth due to basement faulting and differential loading

    Science.gov (United States)

    Warsitzka, M.; Kley, J.; Kukowski, N.

    2015-01-01

    Salt flow in sedimentary basins is mainly driven by differential loading and can be described by the concept of hydraulic head. A hydraulic head in the salt layer can be imposed by vertically displacing the salt layer (elevation head) or the weight of overburden sediments (pressure head). Basement faulting in salt-bearing extensional basins is widely acknowledged as a potential trigger for hydraulic heads and the growth of salt structures. In this study, scaled analogue experiments were designed to examine the kinematics of salt flow during the early evolution of a salt structure triggered by basement extension. In order to distinguish flow patterns driven by elevation head or by pressure head, we applied a short pulse of basement extension, which was followed by a long-lasting phase of sedimentation. During the experiments viscous silicone putty simulated ductile rock salt, and a PVC-beads/quartz-sand mixture was used to simulate a brittle supra-salt layer. In order to derive 2-D incremental displacement and strain patterns, the analogue experiments were monitored using an optical image correlation system (particle imaging velocimetry). By varying layer thicknesses and extension rates, the influence of these parameters on the kinematics of salt flow were tested. Model results reveal that significant flow can be triggered in the viscous layer by small-offset basement faulting. During basement extension downward flow occurs in the viscous layer above the basement fault tip. In contrast, upward flow takes place during post-extensional sediment accumulation. Flow patterns in the viscous material are characterized by channelized Poiseuille-type flow, which is associated with subsidence in regions of "salt" expulsion and surface uplift in regions of inflation of the viscous material. Inflation of the viscous material eventually leads to the formation of pillow structures adjacent to the basement faults (primary pillows). The subsidence of peripheral sinks adjacent to

  8. A Case of Plasmacytoid Dendritic Cell Leukemia

    Directory of Open Access Journals (Sweden)

    Köpeczi Judit Beáta

    2013-04-01

    Full Text Available Introduction: Plasmacytoid dendritic cell leukemia is a rare subtype of acute leukemia, which has recently been established as a distinct pathologic entity that typically follows a highly aggressive clinical course in adults. The aim of this report is to present a case of plasmacytoid dendritic cell leukemia due to its rarity and difficulty to recognize and diagnose it.

  9. Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yaohui; Qian, Jiangfeng; Xu, Wu; Russell, Selena M.; Chen, Xilin; Nasybulin, Eduard; Bhattacharya, Priyanka; Engelhard, Mark H.; Mei, Donghai; Cao, Ruiguo; Ding, Fei; Cresce, Arthur V.; Xu, Kang; Zhang, Jiguang

    2014-12-10

    Suppressing lithium (Li) dendrite growth is one of the most critical challenges for the development of Li metal batteries. We recently proposed a novel self-healing electrostatic shield (SHES) mechanism which can fundamentally change the Li deposition behavior and lead to the growth of dendrite-free Li films. Here, we report for the first time that the as-deposited dendrite-free Li films grown with assistance of SHES additive are actually composed of highly-aligned and compacted Li nanorods with hemispherical tips. Both surface and cross sectional morphology evolution of the Li films during repeated Li deposition/stripping processes were systematically investigated. A new model has been established to explain the formation and evolution of the Li nanorods. A fundamental understanding on the internal structure and evolution of Li metal films may lead to new approaches to stabilize the long term cycling stability of Li metal anode.

  10. Early events in axon/dendrite polarization.

    Science.gov (United States)

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure.

  11. In vivo blockade of neural activity alters dendritic development of neonatal CA1 pyramidal cells.

    Science.gov (United States)

    Groc, Laurent; Petanjek, Zdravko; Gustafsson, Bengt; Ben-Ari, Yehezkel; Hanse, Eric; Khazipov, Roustem

    2002-11-01

    During development, neural activity has been proposed to promote neuronal growth. During the first postnatal week, the hippocampus is characterized by an oscillating neural network activity and a rapid neuronal growth. In the present study we tested in vivo, by injecting tetanus toxin into the hippocampus of P1 rats, whether this neural activity indeed promotes growth of pyramidal cells. We have previously shown that tetanus toxin injection leads to a strong reduction in the frequency of spontaneous GABA and glutamatergic synaptic currents, and to a complete blockade of the early neural network activity during the first postnatal week. Morphology of neurobiotin-filled CA1 pyramidal cells was analyzed at the end of the first postnatal week (P6-10). In activity-reduced neurons, the total length of basal dendritic tree was three times less than control. The number, but not the length, of basal dendritic branches was affected. The growth impairment was restricted to the basal dendrites. The apical dendrite, the axons, or the soma grew normally during activity deprivation. Thus, the in vivo neural activity in the neonate hippocampus seems to promote neuronal growth by initiating novel branches.

  12. Allelopathic effects of Alexandrium tamarense on other algae: evidence from mixed growth experiments

    DEFF Research Database (Denmark)

    Tillmann, Urban; Hansen, Per Juel

    2009-01-01

    The effect of 2 strains (Alex2 and Alex5) of the marine red tide dinoflagellate Alexandrium tamarense on 10 other planktonic algal target species common in temperate waters was studied in mixed growth experiments under nutrient-rich conditions. In a comparative approach, the 2 strains of A. tamar...

  13. Light and Plants. A Series of Experiments Demonstrating Light Effects on Seed Germination, Plant Growth, and Plant Development.

    Science.gov (United States)

    Downs, R. J.; And Others

    A brief summary of the effects of light on plant germination, growth and development, including photoperiodism and pigment formation, introduces 18 experiments and demonstrations which illustrate aspects of these effects. Detailed procedures for each exercise are given, the expected results outlined, and possible sources of difficulty discussed.…

  14. More Ideas for Monitoring Biological Experiments with the BBC Computer: Absorption Spectra, Yeast Growth, Enzyme Reactions and Animal Behaviour.

    Science.gov (United States)

    Openshaw, Peter

    1988-01-01

    Presented are five ideas for A-level biology experiments using a laboratory computer interface. Topics investigated include photosynthesis, yeast growth, animal movements, pulse rates, and oxygen consumption and production by organisms. Includes instructions specific to the BBC computer system. (CW)

  15. Overview of the Tusas Code for Simulation of Dendritic Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Amelia J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Newman, Christopher Kyle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Francois, Marianne M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-07

    The aim of this project is to conduct a parametric investigation into the modeling of two dimensional dendrite solidification, using the phase field model. Specifically, we use the Tusas code, which is for coupled heat and phase-field simulation of dendritic solidification. Dendritic solidification, which may occur in the presence of an unstable solidification interface, results in treelike microstructures that often grow perpendicular to the rest of the growth front. The interface may become unstable if the enthalpy of the solid material is less than that of the liquid material, or if the solute is less soluble in solid than it is in liquid, potentially causing a partition [1]. A key motivation behind this research is that a broadened understanding of phase-field formulation and microstructural developments can be utilized for macroscopic simulations of phase change. This may be directly implemented as a part of the Telluride project at Los Alamos National Laboratory (LANL), through which a computational additive manufacturing simulation tool is being developed, ultimately to become part of the Advanced Simulation and Computing Program within the U.S. Department of Energy [2].

  16. The plane-to-cellular-to-dendrite transition of the shape of the crystallization front during the crystallization of Al–Cu alloys

    Directory of Open Access Journals (Sweden)

    VESNA RADOJEVIC

    2006-03-01

    Full Text Available The evolution of the crystallization front from a planar to a dendritic one as a function of the GL/(Rc0 parameter was investigated during the crystallization of Al–Cu alloys by the vertical Bridgman method. Six series of alloyswith different initial compositions of Cu were solidified at different growth rates. A mathematical model for the heat transfer during vertical Bridgmen crystal growth was developed. The model was solved using the finite element method. The temperature gradient in the melt at the beginning of crystal growth was calculated using the obtainedmodel. Discrete stages of the crystallization front were identified in the experiments, as the ratio GL/(Rc0 decreased.

  17. CXCR4(+) dendritic cells promote angiogenesis during embryo implantation in mice.

    Science.gov (United States)

    Barrientos, Gabriela; Tirado-González, Irene; Freitag, Nancy; Kobelt, Peter; Moschansky, Petra; Klapp, Burghard F; Thijssen, Victor L J L; Blois, Sandra M

    2013-04-01

    Early pregnancy is characterized by decidual adaption to the developing embryo involving angiogenesis and vascular growth. Failure of decidual vascular expansion is linked to diseases of pregnancy. Dendritic cells (DC) have been associated with vascular growth during early gestation, though it is unknown whether their capacity to modulate angiogenesis is ubiquitous to all DC subsets. Here, we show that DC normally found associated with the decidual vasculature co-express the C-X-C chemokine receptor type 4 (CXCR4). In addition, we demonstrate that impaired homing of CXCR4(+)DC during early gestation provoked a disorganized decidual vasculature with impaired spiral artery remodeling later in gestation. In contrast, adoptive transfer experiments provided evidence that CXCR4(+)DC are able to rescue early pregnancy by normalizing decidual vascular growth and delivery of pro-angiogenic factors, which results in adequate remodeling of the spiral arteries during placental development. Taken together, our results indicate an important role of CXCR4(+)DC in the regulation of decidual angiogenesis and highlight the importance of the CXCL12/CXCR4 pathway during this process, suggesting that this may represent a key pathway to evaluate during pregnancy pathologies associated with impaired vascular expansion.

  18. Atomic Aggregation Processes in the Early Stages of Pt/Pt(111) Growth

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Guo-Ce; ZHU Xiao-Bin; WANG Wei

    2000-01-01

    The atomic aggregation processes in the early stages of Pt/Pt(111) growth are studied by using kinetic Monte Carlo simulations. Our results show that the average neighbor coordination number of the atoms in a cluster is a function of temperature, agreeing well with the experiment observations of scanning tunneling microscopy. The influence of diffusion barriers of various atomic processes on the morphology of islands is also studied. Different morphologies of the islands (dendritic, fractal, or compact islands) are found.

  19. Experiment Requirements and Implementation Plan (ERIP) for semiconductor materials growth in low-G environment experiment no. MPS-77F087

    Science.gov (United States)

    Crouch, R. K.; Fripp, A. L.; Debnam, W. J.; Clark, I. O.

    1981-01-01

    Crystals of the intermetallic compound Pb1-xSnxTe will be grown in furnaces on the Space Shuttle. The reasons for conducting this growth in space, the program of investigation to develop the space experiment and the requirements that are placed on the Space Shuttle furnace are discussed. Also included are relevent thermophysical properties of Pb1-xSnxTe to the degree which they are known.

  20. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn; Zhang, Wendong, E-mail: wdzhang@tyut.edu.cn; Li, Gang; Hu, Jie [Micro and Nano-system Research Centre, College of Information Engineering, Taiyuan University of Technology, 030024, Taiyuan (China); Zhou, Zhaoying, E-mail: zhouzy@mail.tsinghua.edu.cn; Yang, Xing; Dong, Hualai [MEMS Laboratory, Department of Precision Instruments, Tsinghua University, 100084, Beijing (China)

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

  1. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Science.gov (United States)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo; Zhang, Wendong; Zhou, Zhaoying; Yang, Xing; Dong, Hualai; Li, Gang; Hu, Jie

    2014-03-01

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

  2. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Directory of Open Access Journals (Sweden)

    Jianlong Ji

    2014-03-01

    Full Text Available Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM, energy dispersive X-ray spectrometer (EDS, transmission electron microscopy (TEM and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS activity, using 4-mercaptopyridine (4-MP as model molecules.

  3. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment.

    Science.gov (United States)

    Chen, Xin; Wu, Chunhua; Tang, Jianjun; Hu, Shuijin

    2005-07-01

    A sand culture experiment was conducted to investigate whether mycorrhizal colonization and mycorrhizal fungal vesicular numbers were influenced by metal lead, and whether mycorrhizae enhance host plants tolerance to metal lead. Metal lead was applied as Pb(NO3)2 in solution at three levels (0, 300 and 600 mg kg(-1) sand). Five mycorrhizal host plant species, Kummerowia striata (Thunb.) Schindl, Ixeris denticulate L., Lolium perenne L., Trifolium repens L. and Echinochloa crusgalli var. mitis were used to examine Pb-mycorrhizal interactions. The arbuscular mycorrhizal inoculum consisted of mixed spores of mycorrhizal fungal species directly isolated from orchard soil. Compared to the untreated control, both Pb concentrations reduced mycorrhizal colonization by 3.8-70.4%. Numbers of AM fungal vesicles increased by 13.2-51.5% in 300 mg Pb kg(-1) sand but decreased by 9.4-50.9% in 600 mg Pb kg(-1) sand. Mycorrhizae significantly enhanced Pb accumulation both in shoot by 10.2-85.5% and in root by 9.3-118.4%. Mycorrhizae also enhanced shoot biomass and shoot P concentration under both Pb concentrations. Root/shoot ratios of Pb concentration were higher in highly mycorrhizal plant species (K.striata, I. denticulate, and E. crusgalli var. mitis) than that in poorly mycorrhizal ones (L. perenne and T. repens,). Mycorrhizal inoculation increased the root/shoot ratio of Pb concentration of highly mycorrhizal plant species by 7.6-57.2% but did not affect the poorly mycorrhizal ones. In the treatments with 300 Pb mg kg(-1) sand, plant species with higher vesicular numbers tended to show higher root/shoot ratios of the Pb concentration. We suggest that under an elevated Pb condition, mycorrhizae could promote plant growth by increasing P uptake and mitigate Pb toxicity by sequestrating more Pb in roots.

  4. Regulatory multitasking of tolerogenic dendritic cells – lessons taken from Vitamin D3-treated tolerogenic dendritic cells

    Directory of Open Access Journals (Sweden)

    Tatjana eNikolic

    2013-05-01

    Full Text Available Tolerogenic dendritic cells (DCs work through silencing of differentiated antigen-specific T cells, activation and expansion of naturally occurring T regulatory cells (Tregs, transfer of regulatory properties to T cells and the differentiation of naïve T cells into Tregs. Due to an operational definition based on T cell activation assays, the identity of tolerogenic DCs has been a matter of debate and it need not represent a specialized DC subset. Human tolerogenic DCs generated in vitro using inhibitory cytokines, growth factors, natural immunomodulators or genetic manipulation have been effective and several of these tolerogenic DCs are currently being tested for clinical use. Ex vivo generated tolerogenic DCs reduce activation of naïve T cells using various means, promote a variety of regulatory T cells and most importantly, frequently show stable inhibitory phenotypes upon repetitive maturation with inflammatory factors. Yet, tolerogenic DCs differ with respect to the phenotype or the number of regulatory mechanisms they employ to modulate the immune system. In our experience, tolerogenic DCs generated using the biologically active form of vitamin D (VD3-DCs, alone or combined with dexamethasone are proficient in their immunoregulatory functions. These tolerogenic DCs show a stable maturation-resistant semi-mature phenotype with low expression of activating co-stimulatory molecules, no production of the IL-12 family of cytokines and high expression of inhibitory molecules and IL-10. VD3-DCs induce increased apoptosis of effector T cells and induce antigen-specific regulatory T cells, which work through linked suppression ensuring infectious tolerance. Lessons learned on VD3-DCs help understanding the contribution of different pattern recognition receptors (PRRs and secondary signals to the tolerogenic function and how a cross-talk between DCs and T cells translates into immune regulation.

  5. Near-isothermal furnace for in situ and real time X-ray radiography solidification experiments

    Energy Technology Data Exchange (ETDEWEB)

    Becker, M., E-mail: maike.becker@dlr.de; Dreißigacker, C.; Klein, S.; Kargl, F. [Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln (Germany)

    2015-06-15

    In this paper, we present a newly developed near-isothermal X-ray transparent furnace for in situ imaging of solidification processes in thin metallic samples. We show that the furnace is ideally suited to study equiaxed microstructure evolution and grain interaction. To observe the growth dynamics of equiaxed dendritic structures, a minimal temperature gradient across the sample is required. A uniform thermal profile inside a circular sample is achieved by positioning the sample in the center of a cylindrical furnace body surrounded by a circular heater arrangement. Performance tests with the hypo-eutectic Al-15wt.%Cu and the near-eutectic Al-33wt.%Cu alloys validate the near-isothermal character of the sample environment. Controlled cooling rates of less than 0.5 K min{sup −1} up to 10 K min{sup −1} can be achieved in a temperature range of 720 K–1220 K. Integrated in our rotatable laboratory X-ray facility, X-RISE, the furnace provides a large field of view of 10.5 mm in diameter and a high spatial resolution of ∼4 μm. With the here presented furnace, equiaxed dendrite growth models can be rigorously tested against experiments on metal alloys by, e.g., enabling dendrite growth velocities to be determined as a function of undercooling or solutal fields in front of the growing dendrite to be measured.

  6. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance.

    Science.gov (United States)

    Steinman, Ralph M; Hawiger, Daniel; Liu, Kang; Bonifaz, Laura; Bonnyay, David; Mahnke, Karsten; Iyoda, Tomonori; Ravetch, Jeffrey; Dhodapkar, Madhav; Inaba, Kayo; Nussenzweig, Michel

    2003-04-01

    The avoidance of autoimmunity requires mechanisms to actively silence or tolerize self reactive T cells in the periphery. During infection, dendritic cells are not only capturing microbial antigens, but also are processing self antigens from dying cells as well as innocuous environmental proteins. Since the dendritic cells are maturing in response to microbial and other stimuli, peptides will be presented from both noxious and innocuous antigens. Therefore it would be valuable to have mechanisms whereby dendritic cells, prior to infection, establish tolerance to those self and environmental antigens that can be processed upon pathogen encounter. In the steady state, prior to acute infection and inflammation, dendritic cells are in an immature state and not fully differentiated to carry out their known roles as inducers of immunity. These immature cells are not inactive, however. They continuously circulate through tissues and into lymphoid organs, capturing self antigens as well as innocuous environmental proteins. Recent experiments have provided direct evidence that antigen-loaded immature dendritic in vivo silence T cells either by deleting them or by expanding regulatory T cells. In this way, it is proposed that the immune system overcomes at least some of the risk of developing autoimmunity and chronic inflammation. It is proposed that dendritic cells play a major role in defining immunologic self, not only centrally in the thymus but also in the periphery.

  7. Ultra-fast in-situ X-ray studies of evolving columnar dendrites in solidifying steel weld pools

    Science.gov (United States)

    Mirihanage, W. U.; Di Michiel, M.; Mathiesen, R. H.

    2015-06-01

    High-brilliance polychromatic synchrotron radiation has been used to conduct in-situ studies of the solidification microstructure evolution during simulated welding. The welding simulations were realized by rapidly fusing ∼ 5 mm spot in Fe-Cr-Ni steel. During the solid- liquid-solid phase transformations, a section of the weld pool was placed in an incident 50-150 keV polychromatic synchrotron X-ray beam, in a near-horizontal position at a very low inclination angle. Multiple high-resolution 2D detectors with very high frame rates were utilized to capture time resolved X-ray diffraction data from suitably oriented solid dendrites evolving in the weld pool. Comprehensive analysis of the diffraction data revealed individual and overall dendritic growth characteristics and relevant melt and solid flow dynamics during weld pool solidification, which was completed within 1.5 s. Columnar dendrite tip velocities were estimated from the experimental data and during early stages of solidification were exceeded 4 mm/s. The most remarkable observation revealed through the time-resolved reciprocal space observations are correlated to significant tilting of columnar type dendrites at their root during solidification, presumably caused by convective currents in the weld pool. When the columnar dendrite tilting are transformed to respective metric linear tilting velocities at the dendrite tip; tilting velocities are found to be in the same order of magnitude as the columnar tip growth velocities, suggesting a highly transient nature of growth conditions.

  8. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  9. Does Foreign Direct Investment Affect Green Growth? Evidence from China’s Experience

    Directory of Open Access Journals (Sweden)

    Shujing Yue

    2016-02-01

    Full Text Available Foreign Direct Investment (FDI not only affects the economic growth but also affects the environmental protection of the host country. With China’s background of pursuing green growth, we need to consider the performance of FDI from the economic and environmental benefit aspects. On this basis, using slacks-based measure directional distance function (SBMDDF to build up green growth efficiency, economic efficiency and environmental efficiency indexes, empirical research on FDI in 104 Chinese cities from 2004 to 2011 has shown that: (1 Different cities have differences in their green growth efficiency. Shenzhen city is always efficient in green economic growth. (2 Overall, FDI is positive on Chinese cities’ green growth. (3 When the green growth efficiency is broken down into economic efficiency and environmental efficiency, FDI promotes China’s economic green growth through both environmental benefits and economic benefits. (4 The effect of FDI differs in different sectors. FDI in the emission-intensive sector promotes green efficiency mainly through the improvement of economic efficiency. FDI in the non-emission-intensive sector promotes economic efficiency, environmental efficiency and green efficiency.

  10. Lipid-laden dendritic cells fail to function

    Institute of Scientific and Technical Information of China (English)

    Philip C Calder

    2010-01-01

    @@ Dendritic cells(DCs)are professional antigen-acquiring,-processing and-presenting cells[1-4].As such,DCs form the key link between the innate and acquired immune responses playing a role in host defence and in immune tolerance[1-4].Accordingly,defects in the ability of DCs to function can lead to increased susceptibility to infection,loss of tolerance,autoimmunity and tumour growth[1-4].Sub-classes of DCs are defined and discriminated by the expression of different cell surface markers.

  11. Flight Experiments of Physical Vapor Transport of ZnSe: Growth of Crystals in Various Convective Conditions

    Science.gov (United States)

    Su, Ching-Hua

    2015-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). The flight experiment will conduct crystal growths of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT). The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds, especially the effects of different growth orientations related to gravity direction on the grown crystals.

  12. Dendritic potassium channels in hippocampal pyramidal neurons.

    Science.gov (United States)

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  13. Soil Type Affects Pinus ponderosa var. scopulorum (Pinaceae Seedling Growth in Simulated Drought Experiments

    Directory of Open Access Journals (Sweden)

    Alexander J. Lindsey

    2013-07-01

    Full Text Available Premise of the study: Effects of drought stress and media type interactions on growth of Pinus ponderosa var. scopulorum germinants were investigated. Methods and Results: Soil properties and growth responses under drought were compared across four growth media types: two native soils (dolomitic limestone and granite, a soil-less industry standard conifer medium, and a custom-mixed conifer medium. After 35 d of growth, the seedlings under drought stress (reduced watering produced less shoot and root biomass than watered control seedlings. Organic media led to decreased root biomass, but increased root length and shoot biomass relative to the mineral soils. Conclusions: Media type affected root-to-shoot biomass partitioning of P. ponderosa var. scopulorum, which may influence net photosynthetic rates, growth, and long-term seedling survival. Further work should examine how specific soil properties like bulk density and organic matter influence biomass allocation in greenhouse studies.

  14. Dendrite Development Regulated by the Schizophrenia-Associated Gene FEZ1 Involves the Ubiquitin Proteasome System

    Directory of Open Access Journals (Sweden)

    Yasuhito Watanabe

    2014-04-01

    Full Text Available Downregulation of the schizophrenia-associated gene DISC1 and its interacting protein FEZ1 positively regulates dendrite growth in young neurons. However, little is known about the mechanism that controls these molecules during neuronal development. Here, we identify several components of the ubiquitin proteasome system and the cell-cycle machinery that act upstream of FEZ1. We demonstrate that the ubiquitin ligase cell division cycle 20/anaphase-promoting complex (Cdc20/APC controls dendrite growth by regulating the degradation of FEZ1. Furthermore, dendrite growth is modulated by BubR1, whose known function so far has been restricted to control Cdc20/APC activity during the cell cycle. The modulatory function of BubR1 is dependent on its acetylation status. We show that BubR1 is deacetylated by Hdac11, thereby disinhibiting the Cdc20/APC complex. Because dendrite growth is affected both in hippocampal dentate granule cells and olfactory bulb neurons upon modifying expression of these genes, we conclude that the proposed mechanism governs neuronal development in a general fashion.

  15. A facilitator of leisure activities for stress-related growth experience among middle-aged Korean women with depression.

    Science.gov (United States)

    Kim, Junhyoung; Kim, Jung-Hyun

    2014-01-01

    Leisure may serve as a coping resource following negative life events that facilitate positive changes. Previous studies on leisure have mainly focused on stress-related growth among individuals living in Western cultures. This study aimed to capture the role of leisure involvement as a facilitator of stress-related growth among middle-aged Korean women with depression. Three main themes were identified as an outcome of participation in leisure activities: (a) strengthening meaningful relationships, (b) improving positive emotions, and (c) facilitating personal strength. By participating in leisure activities, individuals with depression may develop the ability to cope with stress and experience positive changes.

  16. Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism.

    Science.gov (United States)

    Chapleau, Christopher A; Larimore, Jennifer L; Theibert, Anne; Pozzo-Miller, Lucas

    2009-09-01

    The process of axonal and dendritic development establishes the synaptic circuitry of the central nervous system (CNS) and is the result of interactions between intrinsic molecular factors and the external environment. One growth factor that has a compelling function in neuronal development is the neurotrophin brain-derived neurotrophic factor (BDNF). BDNF participates in axonal and dendritic differentiation during embryonic stages of neuronal development, as well as in the formation and maturation of dendritic spines during postnatal development. Recent studies have also implicated vesicular trafficking of BDNF via secretory vesicles, and both secretory and endosomal trafficking of vesicles containing synaptic proteins, such as neurotransmitter and neurotrophin receptors, in the regulation of axonal and dendritic differentiation, and in dendritic spine morphogenesis. Several genes that are either mutated or deregulated in neurodevelopmental disorders associated with mental retardation have now been identified, and several mouse models of these disorders have been generated and characterized. Interestingly, abnormalities in dendritic and synaptic structure are consistently observed in human neurodevelopmental disorders associated with mental retardation, and in mouse models of these disorders as well. Abnormalities in dendritic and synaptic differentiation are thought to underlie altered synaptic function and network connectivity, thus contributing to the clinical outcome. Here, we review the roles of BDNF and vesicular trafficking in axonal and dendritic differentiation in the context of dendritic and axonal morphological impairments commonly observed in neurodevelopmental disorders associated with mental retardation.

  17. Non-linear dendrites can tune neurons

    Directory of Open Access Journals (Sweden)

    Romain Daniel Cazé

    2014-03-01

    Full Text Available A signature of visual, auditory, and motor cortices is the presence of neurons tuned to distinct features of the environment. While neuronal tuning can be observed in most brain areas, its origin remains enigmatic, and new calcium imaging data complicate this problem. Dendritic calcium signals, in a L2/3 neuron from the mouse visual cortex, display a wide range of tunings that could be different from the neuronal tuning (Jia et al 2010. To elucidate this observation we use multi-compartmental models of increasing complexity, from a binary to a realistic biophysical model of L2/3 neuron. These models possess non-linear dendritic subunits inside which the result of multiple excitatory inputs is smaller than their arithmetic sum. While dendritic non-linear subunits are ad-hoc in the binary model, non-linearities in the realistic model come from the passive saturation of synaptic currents. Because of these non-linearities our neuron models are scatter sensitive: the somatic membrane voltage is higher when presynaptic inputs target different dendrites than when they target a single dendrite. This spatial bias in synaptic integration is, in our models, the origin of neuronal tuning. Indeed, assemblies of presynaptic inputs encode the stimulus property through an increase in correlation or activity, and only the assembly that encodes the preferred stimulus targets different dendrites. Assemblies coding for the non-preferred stimuli target single dendrites, explaining the wide range of observed tunings and the possible difference between dendritic and somatic tuning. We thus propose, in accordance with the latest experimental observations, that non-linear integration in dendrites can generate neuronal tuning independently of the coding regime.

  18. The effect of natural and forced melt convection on dendritic solidification in Ga-In alloys

    Science.gov (United States)

    Shevchenko, N.; Roshchupkina, O.; Sokolova, O.; Eckert, S.

    2015-05-01

    The directional solidification of Ga-25 wt%In alloys within a Hele-Shaw cell was visualized by means of X-ray radioscopy. The experimental investigations are especially focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected at the solid-liquid interface leading to an unstable density stratification. Forced convection was produced by a rotating wheel with two parallel disks containing at their inner sides a set of permanent NdFeB magnets with alternating polarization. The direction of forced melt flow is almost horizontal at the solidification front whereas local flow velocities in the range between 0.1 and 1.0 mm/s were achieved by controlling the rotation speed of the magnetic wheel. Melt flow induces various effects on the grain morphology primarily caused by the convective transport of solute. Our observations show a facilitation of the growth of primary trunks or lateral branches, suppression of side branching, dendrite remelting and fragmentation. The manifestation of all phenomena depends on the dendrite orientation, local direction and intensity of the flow. The forced flow eliminates the solutal plumes and damps the local fluctuations of solute concentration. It provokes a preferential growth of the secondary arms at the upstream side of the primary dendrite arms, whereas the high solute concentration at the downstream side of the dendrites can inhibit the formation of secondary branches completely. Moreover, the flow changes the inclination angle of the dendrites and the angle between primary trunks and secondary arms.

  19. Dendritic tellurides acting as antioxidants

    Institute of Scientific and Technical Information of China (English)

    XU Huaping; WANG Yapei; WANG Zhiqiang; LIU Junqiu; Mario Smet; Wim Dehaen

    2006-01-01

    We have described the synthesis of a series of poly(aryl ether) dendrimers with telluride in the core and oligo(ethylene oxide) chains at the periphery which act as glutathione peroxidase (GPx) mimics. These series of compounds were well characterized by 1H-NMR, 13C-NMR and ESI-MS. Using different ROOH (H2O2, cumene hydroperoxide) for testing the antioxidizing properties of these compounds, we have found that from generation 0 to 2, the activity of the dendritic GPx mimics first decreased and then increased. This can be explained on the basis of a greater steric hindrance, going from generation 0 to 1, and stronger binding interactions going from generation 1 to 2. In other words, there exists a balance between binding interactions and steric hindrance that may optimize the GPx activity.

  20. Fate mapping of dendritic cells

    Directory of Open Access Journals (Sweden)

    Barbara Ursula Schraml

    2015-05-01

    Full Text Available Dendritic cells (DCs are a heterogeneous group of mononuclear phagocytes with versatile roles in immunity. They are classified predominantly based on phenotypic and functional properties, namely their stellate morphology, expression of the integrin CD11c and major histocompatibility class II molecules, as well as their superior capacity to migrate to secondary lymphoid organs and stimulate naïve T cells. However, these attributes are not exclusive to DCs and often change within inflammatory or infectious environments. This led to debates over cell identification and questioned even the mere existence of DCs as distinct leukocyte lineage. Here, we review experimental approaches taken to fate map DCs and discuss how these have shaped our understanding of DC ontogeny and lineage affiliation. Considering the ontogenetic properties of DCs will help to overcome the inherent shortcomings of purely phenotypic- and function-based approaches to cell definition and will yield a more robust way of DC classification.

  1. Dendritic Cells for Anomaly Detection

    CERN Document Server

    Greensmith, Julie; Aickelin, Uwe

    2010-01-01

    Artificial immune systems, more specifically the negative selection algorithm, have previously been applied to intrusion detection. The aim of this research is to develop an intrusion detection system based on a novel concept in immunology, the Danger Theory. Dendritic Cells (DCs) are antigen presenting cells and key to the activation of the human signals from the host tissue and correlate these signals with proteins know as antigens. In algorithmic terms, individual DCs perform multi-sensor data fusion based on time-windows. The whole population of DCs asynchronously correlates the fused signals with a secondary data stream. The behaviour of human DCs is abstracted to form the DC Algorithm (DCA), which is implemented using an immune inspired framework, libtissue. This system is used to detect context switching for a basic machine learning dataset and to detect outgoing portscans in real-time. Experimental results show a significant difference between an outgoing portscan and normal traffic.

  2. Dynamical theory and experiments on GaAs nanowire growth for photovoltaic applications

    DEFF Research Database (Denmark)

    Krogstrup, Peter

    cells, as it requires control and an in-depth understanding of complex growth kinetics controlling the nanowire crystal formation and dopant incorporation. This thesis is concerned with the growth of self catalyzed GaAs based semiconductor nanowires on silicon substrates in a molecular beam epitaxy...... with a formulation of a theoretical framework which can serve as a basis to model and understand the dynamics of III-V nanowire growth via the ‘vapor-liquid-solid’ method. The formalism is based on principles from transition state kinetics driven by a Gibbs free energy minimization process. The crystallization...

  3. Nanocrystallization kinetics under instantaneous growth approximation: Experiments and cellular automata simulations

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, J.S.; Millan, M.; Conde, C.F.; Conde, A. [Departamento de Fisica de la Materia Condensada, Universidad de Sevilla-ICMSE, P.O. Box 1065, 41080 Sevilla (Spain)

    2010-05-15

    Nanocrystallization kinetics is analyzed in the frame of instantaneous growth approximation, which implies that the time required for a crystallite to reach its final size is negligible with respect to the time required for the nanocrystallization process. This approach strongly simplifies the kinetic analysis and allows us to obtain the nucleation rate from both isothermal and non-isothermal nanocrystallization processes. Moreover, as no constraining mechanism is considered but the absence of growth, the results could be discussed in the frame of Johnson-Mehl-Avrami-Kolmogorov theory with a growth index equal to zero. Cellular automata simulations are in agreement with the observed kinetics and microstructure. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Growth directions of microstructures in directional solidification of crystalline materials.

    Science.gov (United States)

    Deschamps, J; Georgelin, M; Pocheau, A

    2008-07-01

    In directional solidification, as the solidification velocity increases, the growth direction of cells or dendrites rotates from the direction of the thermal gradient to that of a preferred cristalline orientation. Meanwhile, their morphology varies with important implications for microsegregation. Here, we experimentally document the growth directions of these microstructures in a succinonitrile alloy in the whole accessible range of directions, velocities, and spacings. For this, we use a thin sample made of a single crystal on which the direction of the thermal gradient can be changed. This allows a fine monitoring of the misorientation angle between thermal gradient and preferred crystalline orientation. Data analysis shows evidence of an internal symmetry which traces back to a scale invariance of growth directions with respect to a Péclet number. This enables the identification of the relationship between growth directions and relevant variables, in fair agreement with experiment. Noticeable variations of growth directions with misorientation angles are evidenced and linked to a single parameter.

  5. A stepwise procedure for isolation of murine bone marrow and generation of dendritic cells

    Directory of Open Access Journals (Sweden)

    Alka Madaan

    2014-02-01

    Full Text Available Bone marrow derived Dendritic cells (BMDCs are routinely employed in cell based assays to evaluate immunomodulatory and anti-inflammatory activities. Hence, simplified, stepwise, defined and standardized methods are required for isolation of bone marrow cells from mice, propagating them in presence of growth factors and obtaining high and reproducible yields of BMDCs. Here, we describe a detailed, stepwise protocol with pictorial representation to isolate bone marrow from mouse femur and development of dendritic cells. Mouse bone marrow cells are cultured in presence of granulocyte-macrophage colony stimulating factor (GM-CSF for 6 days to generate BMDCs.

  6. Growing from experience : an exploratory study of posttraumatic growth in adolescent refugees

    NARCIS (Netherlands)

    Sleijpen, Marieke; Haagen, Joris; Mooren, Trudy; Kleber, Rolf J

    2016-01-01

    OBJECTIVE: The aim of this study was to explore perceived posttraumatic growth (PTG) and its associations with potentially traumatic events (PTEs), dispositional optimism, perceived social support, posttraumatic stress disorder (PTSD) symptoms, and satisfaction with life (SWL) among adolescent refug

  7. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 1; Growth Hormone Regulation Synthesis and Secretion in Microgravity

    Science.gov (United States)

    Hymer, W. C.; Grindeland, R.; Vale, W.; Sawchenko, P.; Ilyina-Kakueva, E. I.

    1994-01-01

    Changes in the musculoskeletal, immune, vascular, and endocrine system of the rat occur as a result of short-term spaceflight. Since pituitary gland growth hormone (GH) plays a role in the control of these systems, and since the results of an earlier spaceflight mission (Spacelab 3, 1985) showed that GH cell function was compromised in a number of post-flight tests, we repeated and extended the 1985 experiment in two subsequent spaceflights: the 12.5 day mission of Cosmos 1887 (in 1987) and the 14 day mission of Cosmos 2044 (in 1989). The results of these later two flight experiments are the subject of this report. They document repeatable and significant changes in the GH cell system of the spaceflown rat in several post-flight tests.

  8. Phenomenological incorporation of nonlinear dendritic integration using integrate-and-fire neuronal frameworks.

    Directory of Open Access Journals (Sweden)

    Douglas Zhou

    Full Text Available It has been discovered recently in experiments that the dendritic integration of excitatory glutamatergic inputs and inhibitory GABAergic inputs in hippocampus CA1 pyramidal neurons obeys a simple arithmetic rule as V(S(Exp ≈ V(E(Exp + V(I(Exp + kV(E(Exp V(I(Exp, where V(S(Exp, V(E(Exp and V(I(Exp are the respective voltage values of the summed somatic potential, the excitatory postsynaptic potential (EPSP and the inhibitory postsynaptic potential measured at the time when the EPSP reaches its peak value. Moreover, the shunting coefficient k in this rule only depends on the spatial location but not the amplitude of the excitatory or inhibitory input on the dendrite. In this work, we address the theoretical issue of how much the above dendritic integration rule can be accounted for using subthreshold membrane potential dynamics in the soma as characterized by the conductance-based integrate-and-fire (I&F model. Then, we propose a simple I&F neuron model that incorporates the spatial dependence of the shunting coefficient k by a phenomenological parametrization. Our analytical and numerical results show that this dendritic-integration-rule-based I&F (DIF model is able to capture many experimental observations and it also yields predictions that can be used to verify the validity of the DIF model experimentally. In addition, the DIF model incorporates the dendritic integration effects dynamically and is applicable to more general situations than those in experiments in which excitatory and inhibitory inputs occur simultaneously in time. Finally, we generalize the DIF neuronal model to incorporate multiple inputs and obtain a similar dendritic integration rule that is consistent with the results obtained by using a realistic neuronal model with multiple compartments. This generalized DIF model can potentially be used to study network dynamics that may involve effects arising from dendritic integrations.

  9. Effect of total resource allocation effect and economic growth:Chinese experience of 1978-2004

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The analytical method of total resource reallocation effet is an evolution of the analytical method of the factors of economic growth.Since the marketization reform in China in 1978,market mechanism has played a more and moreimportant role in resource allocation,and Chinese economy has developed greatly,which is called"the Chinese Miracle".This paper arialVzes the economic growth in China from 1978 to 2004 with the analytical method of total resource reallocation effect.The result shows that the annual growth Fate of total resource reallocation effect was 0.2%,which was 5.1% of the comprehensive productivity and 0.21%of the grass output growth,i.e. the total resource allocation played a weak role in the economic growth in China.When analyzing it in Chenets's multinational model,we find that Chinese comprehensive productivity growth rate was bigher than that in all the income phases of the model,but the total resource allocation effect was obviously lower than that in all the income phases of the model.It indicates that the total resource allocation in China has a great potential,and that to accelerate marketization reform is one of the important issues for Chinese economic development.

  10. Modeling Island-Growth Capture Zone Distributions (CZD) with the Generalized Wigner Distribution (GWD): New Developments in Theory and Experiment

    Science.gov (United States)

    Pimpinelli, Alberto; Einstein, T. L.; González, Diego Luis; Sathiyanarayanan, Rajesh; Hamouda, Ajmi Bh.

    2011-03-01

    Earlier we showed [PRL 99, 226102 (2007)] that the CZD in growth could be well described by P (s) = asβ exp (-bs2) , where s is the CZ area divided by its average value. Painstaking simulations by Amar's [PRE 79, 011602 (2009)] and Evans's [PRL 104, 149601 (2010)] groups showed inadequacies in our mean field Fokker-Planck argument relating β to the critical nucleus size. We refine our derivation to retrieve their β ~ i + 2 [PRL 104, 149602 (2010)]. We discuss applications of this formula and methodology to experiments on Ge/Si(001) and on various organics on Si O2 , as well as to kinetic Monte Carlo studies homoepitaxial growth on Cu(100) with codeposited impurities of different sorts. In contrast to theory, there can be significant changes to β with coverage. Some experiments also show temperature dependence. Supported by NSF-MRSEC at UMD, Grant DMR 05-20471.

  11. Psychosocial experiences of breast cancer survivors involved in a dragon boat program: exploring links to positive psychological growth.

    Science.gov (United States)

    Sabiston, Catherine M; McDonough, Meghan H; Crocker, Peter R E

    2007-08-01

    This study explored psychosocial experiences of breast cancer survivors involved in dragon boat programs. Twenty women (M(age) = 58.69, SD = 6.85) were interviewed for 45-60 min about their experiences as members of survivor dragon boat teams. Interviews were analyzed using constructivist grounded theory methods. The dragon boat program facilitated social support from women with common challenges and a shared understanding of survivorship. It also provided opportunities to (re)gain a sense of personal control, develop new identities as athletes, and overcome physical challenges. Together these elements contributed to positive psychological growth and linked to the literature on posttraumatic growth. Future physical activity interventions targeting breast cancer survivors may benefit from developing strategies that share key characteristics of dragon boating.

  12. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth

    OpenAIRE

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-01-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In cont...

  13. Dendritic cells are stressed out in tumor.

    Science.gov (United States)

    Maj, Tomasz; Zou, Weiping

    2015-09-01

    A recently paper published in Cell reports that dendritic cells (DCs) are dysfunctional in the tumor environment. Tumor impairs DC function through induction of endoplasmic reticulum stress response and subsequent disruption of lipid metabolic homeostasis.

  14. Dendritic ion channelopathy in acquired epilepsy

    Science.gov (United States)

    Poolos, Nicholas P.; Johnston, Daniel

    2012-01-01

    Summary Ion channel dysfunction or “channelopathy” is a proven cause of epilepsy in the relatively uncommon genetic epilepsies with Mendelian inheritance. But numerous examples of acquired channelopathy in experimental animal models of epilepsy following brain injury have also been demonstrated. Our understanding of channelopathy has grown due to advances in electrophysiology techniques that have allowed the study of ion channels in the dendrites of pyramidal neurons in cortex and hippocampus. The apical dendrites of pyramidal neurons comprise the vast majority of neuronal surface membrane area, and thus the majority of the neuronal ion channel population. Investigation of dendritic ion channels has demonstrated remarkable plasticity in ion channel localization and biophysical properties in epilepsy, many of which produce hyperexcitability and may contribute to the development and maintenance of the epileptic state. Here we review recent advances in dendritic physiology and cell biology, and their relevance to epilepsy. PMID:23216577

  15. Dendritic ion channelopathy in acquired epilepsy.

    Science.gov (United States)

    Poolos, Nicholas P; Johnston, Daniel

    2012-12-01

    Ion channel dysfunction or "channelopathy" is a proven cause of epilepsy in the relatively uncommon genetic epilepsies with Mendelian inheritance. But numerous examples of acquired channelopathy in experimental animal models of epilepsy following brain injury have also been demonstrated. Our understanding of channelopathy has grown due to advances in electrophysiology techniques that have allowed the study of ion channels in the dendrites of pyramidal neurons in cortex and hippocampus. The apical dendrites of pyramidal neurons comprise the vast majority of neuronal surface membrane area, and thus the majority of the neuronal ion channel population. Investigation of dendritic ion channels has demonstrated remarkable plasticity in ion channel localization and biophysical properties in epilepsy, many of which produce hyperexcitability and may contribute to the development and maintenance of the epileptic state. Herein we review recent advances in dendritic physiology and cell biology, and their relevance to epilepsy. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  16. Artificial Dendritic Cells: Multi-faceted Perspectives

    CERN Document Server

    Greensmith, Julie

    2009-01-01

    Dendritic cells are the crime scene investigators of the human immune system. Their function is to correlate potentially anomalous invading entities with observed damage to the body. The detection of such invaders by dendritic cells results in the activation of the adaptive immune system, eventually leading to the removal of the invader from the host body. This mechanism has provided inspiration for the development of a novel bio-inspired algorithm, the Dendritic Cell Algorithm. This algorithm processes information at multiple levels of resolution, resulting in the creation of information granules of variable structure. In this chapter we examine the multi-faceted nature of immunology and how research in this field has shaped the function of the resulting Dendritic Cell Algorithm. A brief overview of the algorithm is given in combination with the details of the processes used for its development. The chapter is concluded with a discussion of the parallels between our understanding of the human immune system a...

  17. “Dermal dendritic cells” comprise two distinct populations: CD1+ dendritic cells and CD209+ macrophages

    OpenAIRE

    Ochoa,Maria Teresa; Loncaric, Anya; Krutzik, Stephan R.; Becker, Todd C.; Modlin, Robert L.

    2008-01-01

    A key cell type of the resident skin immune system is the dendritic cell, which in normal skin is located in two distinct microanatomical compartments: Langerhans cells (LC) mainly in the epidermis and dermal dendritic cells (DDC) in the dermis. Here, the lineage of dermal dendritic cells was investigated using monoclonal antibodies and immunohistology. We provide evidence that “dermal dendritic cells” comprise at least two major phenotypic populations of dendritic appearing cells: immature D...

  18. Phase-field model of isothermal solidification with multiple grain growth

    Institute of Scientific and Technical Information of China (English)

    Feng Li; Wang Zhi-Ping; Zhu Chang-Sheng; Lu Yang

    2009-01-01

    This paper develops a new phase-field model for equiaxed dendrite growth of multiple grains in multicomponent alloys based on the Ginzberg-Landau theory and phase-field model of a single grain. Taking Al-Cu and Al-Cu-Mg alloys for example, it couples the concentration field and simulates the dendrite growth process of multiple grains during isothermal solidification. The result of the simulation shows dendrite competitive growth of multiple grains, and is reapplied to the process of dendrite growth in practical solidification.

  19. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment.

    Science.gov (United States)

    Grossman, Jake J; Cavender-Bares, Jeannine; Hobbie, Sarah E; Reich, Peter B; Montgomery, Rebecca A

    2017-07-20

    Over the last two decades, empirical work has established that higher biodiversity can lead to greater primary productivity; however, the importance of different aspects of biodiversity in contributing to such relationships is rarely elucidated. We assessed the relative importance of species richness, phylogenetic diversity, functional diversity, and identity of neighbors for stem growth three years after seedling establishment in a tree diversity experiment in eastern Minnesota. Generally, we found that community-weighted means of key functional traits (including mycorrhizal association, leaf nitrogen and calcium, and waterlogging tolerance) as well as species richness were strong, independent predictors of stem biomass growth. More phylogenetically diverse communities did not consistently produce more biomass than expected, and the trait values or diversity of individual functional traits better predicted biomass production than did a multidimensional functional diversity metric. Furthermore, functional traits and species richness best predicted growth at the whole-plot level (12 m(2) ), whereas neighborhood composition best predicted growth at the focal tree level (0.25 m(2) ). The observed effects of biodiversity on growth appear strongly driven by positive complementary effects rather than by species-specific selection effects, suggesting that synergistic species' interactions rather than the influence of a few important species may drive overyielding. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Trauma-exposed firefighters: relationships among posttraumatic growth, posttraumatic stress, resource availability, coping and critical incident stress debriefing experience.

    Science.gov (United States)

    Sattler, David N; Boyd, Bill; Kirsch, Julie

    2014-12-01

    This project examines protective factors associated with resilience/posttraumatic growth and risk factors associated with posttraumatic stress among firefighters exposed to critical incidents. The participants were 286 (257 men and 29 women) volunteer and paid firefighters in Whatcom County, Washington. Participants completed an anonymous survey asking about demographics, critical incident exposure, posttraumatic stress symptoms, posttraumatic growth, resource availability, coping, occupational stress and critical incident stress debriefing experience. Most participants had significant critical incident exposure, and about half had attended critical incident stress debriefing sessions. Posttraumatic growth was associated with being female, critical incident exposure, critical incident stress debriefing attendance, posttraumatic stress symptoms (negative association), occupational support, occupation satisfaction, occupational effort, problem-focused coping, emotion-focused coping and personal characteristic resources. Posttraumatic stress symptoms were positively associated with years of firefighting, burnout, occupational effort and disengagement coping and negatively associated with critical incident stress debriefing attendance, posttraumatic growth, social support, internal locus of control, personal characteristic resources, energy resources and condition resources. The findings support conservation of resources stress theory and show that the maintenance and acquisition of resources can offset losses and facilitate resilience/posttraumatic growth. Implications of the findings for enhancing firefighter resources, facilitating resilience and minimizing occupational stressors are discussed. © 2014 John Wiley & Sons, Ltd.

  1. Is green economy achievable through championing green growth? A local government experience from Zambia

    Directory of Open Access Journals (Sweden)

    Phiri Rodgers

    2016-03-01

    Full Text Available The need to enhance environmental sustainability, sustainable development and growth that takes into account the well-being of the people and nature because of the increased production and consumption of goods and services is the major driver to the introduction of green economy in Zambia and countries in southern Africa. This article examines the extent to which local government in Zambia has embraced green growth and green economy and critically analyses the concept of green economy and green growth. This study is based on a review of planning and policy documents, a household questionnaire survey and interviews with various institutions, planners and rural development organisations. A number of policies implemented at the local government level were analysed and reflected upon irrespective of whether they contain the components of green growth and green economy and the extent to which they contribute to attaining green economy. The article argues that the need for economic diversification is important as far as green economy is concerned. The article recommends the need to invest in research and development in order to find more carbon-free economic activities. The conclusion is that local government is key to achieving green growth and green economy, because it is involved at all levels, from policy formulation to implementation.

  2. Growth of the peritrich epibiont Zoothamnium intermedium Precht, 1935 (Ciliophora, Peritrichia estimated from laboratory experiments

    Directory of Open Access Journals (Sweden)

    LRP. Utz

    Full Text Available Peritrich ciliates are commonly found colonizing living substrates. Although this a well known phenomenon, biological aspects of this relationship need to be studied in more detail. Assessment of growth rates in peritrichs has been the subject of very few studies. Only species in the genera Carchesium Ehrenberg, 1830 and Vorticella Linnaeus, 1767 had their growth rates evaluated in the field and in the laboratory. In the present study, growth, colonization (colonies/host, and proliferation (zooids/colony rates of the peritrich epibiont Zoothamnium intermedium Precht, 1935 attached to the calanoid copepod Acartia tonsa Dana 1848 were evaluated in the laboratory in two food regimes: bacteria only, and algal based diet. Results showed that growth, colonization, and proliferation rates were similar for both diets. Maximum growth rates obtained for Z. intermedium was 0.85 and 0.83 per day, for bacteria and algae respectively. Maximum colonization rates were 0.5 per day for both diets, and the maximum proliferation rates were 0.44 and 0.42 per day for bacteria and algae respectively. These results demonstrate that Z. intermedium is able to grow at the same rate of other peritrichs on bacterial and algal based diets.

  3. Growth of the peritrich epibiont Zoothamnium intermedium Precht, 1935 (Ciliophora, Peritrichia) estimated from laboratory experiments.

    Science.gov (United States)

    Utz, L R P

    2008-05-01

    Peritrich ciliates are commonly found colonizing living substrates. Although this a well known phenomenon, biological aspects of this relationship need to be studied in more detail. Assessment of growth rates in peritrichs has been the subject of very few studies. Only species in the genera Carchesium Ehrenberg, 1830 and Vorticella Linnaeus, 1767 had their growth rates evaluated in the field and in the laboratory. In the present study, growth, colonization (colonies/host), and proliferation (zooids/colony) rates of the peritrich epibiont Zoothamnium intermedium Precht, 1935 attached to the calanoid copepod Acartia tonsa Dana 1848 were evaluated in the laboratory in two food regimes: bacteria only, and algal based diet. Results showed that growth, colonization, and proliferation rates were similar for both diets. Maximum growth rates obtained for Z. intermedium was 0.85 and 0.83 per day, for bacteria and algae respectively. Maximum colonization rates were 0.5 per day for both diets, and the maximum proliferation rates were 0.44 and 0.42 per day for bacteria and algae respectively. These results demonstrate that Z. intermedium is able to grow at the same rate of other peritrichs on bacterial and algal based diets.

  4. Free energy and dendritic self-organisation

    Directory of Open Access Journals (Sweden)

    Stefan J Kiebel

    2011-10-01

    Full Text Available In this paper, we pursue recent observations that, through selective dendritic filtering, single neurons respond to specific sequences of presynaptic inputs. We try to provide a principled and mechanistic account of this selectivity by applying the free energy principle to a dendrite that is immersed in its neuropil or environment. We assume that neurons self-organize to minimise a free energy bound on the self-information or surprise of presynaptic inputs that are sampled. We model this as a selective pruning of dendritic spines that are expressed on a dendritic branch. This pruning occurs when the optimized postsynaptic gain falls below a threshold. Crucially, postsynaptic gain is itself optimized with respect to free energy. Pruning suppresses free energy as the dendrite selects presynaptic signals that conform to its expectations, specified by a generative model implicit in its intracellular kinetics. Not only does this provide a principled account of how neurons organize and selectively sample the myriad of potential presynaptic inputs they are exposed to, but it also connects the optimization of elemental neuronal (dendritic processing to generic (surprise or evidence-based schemes in statistics and machine learning, such as Bayesian model selection and automatic relevance determination.

  5. Synaptic Control of Secretory Trafficking in Dendrites

    Directory of Open Access Journals (Sweden)

    Cyril Hanus

    2014-06-01

    Full Text Available Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK. Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.

  6. Temporal effects of thyroid hormone (TH) and decabrominated diphenyl ether (BDE209) on Purkinje cell dendrite arborization.

    Science.gov (United States)

    Ibhazehiebo, K; Koibuchi, N

    2012-06-07

    Thyroid hormones (TH) 3,3',4-tri-iodothyronine (T3) and 3,3',4,4'-tetra-iodothyronine (T4) plays crucial role in cerebellar development. Deficiency of TH consistently results in aberrant growth and development of the cerebellum including reduced growth and branching of the Purkinje cells. In rodents, the critical period of thyroid hormone action on cerebellum development is within the first two to three weeks, after which thyroid hormone replacement cannot fully reverse abnormal cerebellar development induced by thyroid hormone insult. Decabrominated diphenyl ether (BDE209) is an industrial reagent used as an additive flame retardant to reduce flammability of various commercial and household produce. BDE209 has bio-accumulative potential and is neurotoxic. Previously, we have shown that T4 (10-8 M) induced extensive dendrite arborization of Purkinje cells and low dose BDE209 (10-10 M) remarkably suppressed TH-induced Purkinje cell dendrite arborization. In the present study, we show that the critical period for TH-induced Purkinje cell growth and dendrite arborization in culture is much earlier than reported in animal models. Also, we show for the first time that low dose BDE209 suppressed TH-induced dendrite arborization in a time-dependent manner. Taken together, our study indicates that hypothyroidism and exposure to BDE209 during critical stage of cerebellar development can lead to impaired Purkinje cell growth and dendrite arborization and may consequently disrupt normal cerebellar functions.

  7. Ground based experiments on the growth and characterization of L-Arginine Phosphate (LAP) crystals

    Science.gov (United States)

    Rao, S. M.; Cao, C.; Batra, A. K.; Lal, R. B.; Mookherji, T. K.

    1991-01-01

    L-Arginine Phosphate (LAP) is a new nonlinear optical material with higher efficiency for harmonic generation compared to KDP. Crystals of LAP were grown in the laboratory from supersaturated solutions by temperature lowering technique. Investigations revealed the presence of large dislocation densities inside the crystals which are observed to produce refractive index changes causing damage at high laser powers. This is a result of the convection during crystal growth from supersaturated solutions. It is proposed to grow these crystals in a diffusion controlled growth condition under microgravity environment and compare the crystals grown in space with those grown on ground. Physical properties of the solutions needed for modelling of crystal growth are also presented.

  8. Dynamical theory and experiments on GaAs nanowire growth for photovoltaic applications

    DEFF Research Database (Denmark)

    Krogstrup, Peter

    The geometry of nanowire solar cells provides many potential advantages compared to planar solar cells, such as reduced reflection, built-in light concentration due to absorption resonances, improved band gap tuning for multi-junction devices and an increased defect tolerance. Moreover, the use...... cells, as it requires control and an in-depth understanding of complex growth kinetics controlling the nanowire crystal formation and dopant incorporation. This thesis is concerned with the growth of self catalyzed GaAs based semiconductor nanowires on silicon substrates in a molecular beam epitaxy...... such as in-situ x-ray characterization of growing nanowires and growth of advanced photovoltaic structures and finally photovoltaic characterization of both lying and standing single nanowire devices are presented. All the different kind of single NW solar cell devices show an enormous potential as light...

  9. Density dependent growth in adult brown frogs Rana arvalis and Rana temporaria - A field experiment

    Science.gov (United States)

    Loman, Jon; Lardner, Björn

    2009-11-01

    In species with complex life cycles, density regulation can operate on any of the stages. In frogs there are almost no studies of density effects on the performance of adult frogs in the terrestrial habitat. We therefore studied the effect of summer density on the growth rate of adult frogs during four years. Four 30 by 30 m plots in a moist meadow were used. In early summer, when settled after post-breeding migration, frogs ( Rana arvalis and Rana temporaria that have a very similar ecology and potentially compete) were enclosed by erecting a fence around the plots. Frogs were captured, measured, marked and partly relocated to create two high density and two low density plots. In early autumn the frogs were again captured and their individual summer growth determined. Growth effects were evaluated in relation to two density measures: density by design (high/low manipulation), and actual (numerical) density. R. arvalis in plots with low density by design grew faster than those in high density plots. No such effect was found for R. temporaria. For none of the species was growth related to actual summer density, determined by the Lincoln index and including the density manipulation. The result suggests that R. arvalis initially settled according to an ideal free distribution and that density had a regulatory effect (mediated through growth). The fact that there were no density effects on R. temporaria (and a significant difference in its response to that of R. arvalis) suggests it is a superior competitor to R. arvalis during the terrestrial phase. There were no density effects on frog condition index, suggesting that the growth rate modifications may actually be an adaptive trait of R. arvalis. The study demonstrates that density regulation may be dependent on resources in frogs' summer habitat.

  10. A consensual qualitative research analysis of the experience of inmate hospice caregivers: Posttraumatic growth while incarcerated.

    Science.gov (United States)

    Depner, Rachel M; Grant, Pei C; Byrwa, David J; Breier, Jennifer M; Lodi-Smith, Jennifer; Kerr, Christopher W; Luczkiewicz, Debra L

    2017-04-01

    A growing number of correctional facilities train inmates to provide end-of-life care for dying inmates. This study explores the phenomenological perspective of inmate-caregivers participating in an inmate-facilitated hospice program (IFHP) with regard to meaning and purpose in life, attitudes on death and dying, and perceived personal impact of participation. Twenty-two inmate-caregivers were interviewed at a maximum-security state correctional facility in the United States. The interviews were transcribed verbatim and analyzed using the Consensual Qualitative Research Methodology. Results suggest that participating in an IFHP may facilitate personal growth and transformation that mirrors the tenets of posttraumatic growth.

  11. Modeling of aluminum-silicon irregular eutectic growth by cellular automaton model

    Directory of Open Access Journals (Sweden)

    Rui Chen

    2016-03-01

    Full Text Available Due to the extensive application of Al-Si alloys in the automotive and aerospace industries as structural components, an understanding of their microstructural formation, such as dendrite and (Al+Si eutectic, is of great importance to control the desirable microstructure, so as to modify the performance of castings. Since previous major themes of microstructural simulation are dendrite and regular eutectic growth, few efforts have been paid to simulate the irregular eutectic growth. Therefore, a multiphase cellular automaton (CA model is developed and applied to simulate the time-dependent Al-Si irregular eutectic growth. Prior to model establishment, related experiments were carried out to investigate the influence of cooling rate and Sr modification on the growth of eutectic Si. This CA model incorporates several aspects, including growth algorithms and nucleation criterion, to achieve the competitive and cooperative growth mechanism for nonfaceted-faceted Al-Si irregular eutectic. The growth kinetics considers thermal undercooling, constitutional undercooling, and curvature undercooling, as well as the anisotropic characteristic of eutectic Si growth. The capturing rule takes into account the effects of modification on the silicon growth behaviors. The simulated results indicate that for unmodified alloy, the higher eutectic undercooling results in the higher eutectic growth velocity, and a more refined eutectic microstructure as well as narrower eutectic lamellar spacing. For modified alloy, the eutectic silicon tends to be obvious fibrous morphology and the morphology of eutectic Si is determined by both chemical modifier and cooling rate. The predicted microstructure of Al-7Si alloy under different solidification conditions shows that this proposed model can successfully reproduce both dendrite and eutectic microstructures.

  12. Modeling of aluminum-silicon irregular eutectic growth by cellular automaton model

    Institute of Scientific and Technical Information of China (English)

    Rui Chen; Qing-yan Xu; Bai-cheng Liu

    2016-01-01

    Due to the extensive application of Al-Si aloys in the automotive and aerospace industries as structural components, an understanding of their microstructural formation, such as dendrite and (Al+Si) eutectic, is of great importance to control the desirable microstructure, so as to modify the performance of castings. Since previous major themes of microstructural simulation are dendrite and regular eutectic growth, few efforts have been paid to simulate the irregular eutectic growth. Therefore, a multiphase celular automaton (CA) model is developed and applied to simulate the time-dependent Al-Si irregular eutectic growth. Prior to model establishment, related experiments were carried out to investigate the inlfuence of cooling rate and Sr modiifcation on the growth of eutectic Si. This CA model incorporates several aspects, including growth algorithms and nucleation criterion, to achieve the competitive and cooperative growth mechanism for nonfaceted-faceted Al-Si irregular eutectic. The growth kinetics considers thermal undercooling, constitutional undercooling, and curvature undercooling, as wel as the anisotropic characteristic of eutectic Si growth. The capturing rule takes into account the effects of modiifcation on the silicon growth behaviors. The simulated results indicate that for unmodiifed aloy, the higher eutectic undercooling results in the higher eutectic growth velocity, and a more reifned eutectic microstructure as wel as narrower eutectic lamelar spacing. For modiifed aloy, the eutectic silicon tends to be obvious ifbrous morphology and the morphology of eutectic Si is determined by both chemical modiifer and cooling rate. The predicted microstructure of Al-7Si aloy under different solidiifcation conditions shows that this proposed model can successfuly reproduce both dendrite and eutectic microstructures.

  13. On the Basis of Synaptic Integration Constancy during Growth of a Neuronal Circuit

    Science.gov (United States)

    De-La-Rosa Tovar, Adriana; Mishra, Prashant K.; De-Miguel, Francisco F.

    2016-01-01

    We studied how a neuronal circuit composed of two neuron types connected by chemical and electrical synapses maintains constant its integrative capacities as neurons grow. For this we combined electrophysiological experiments with mathematical modeling in pairs of electrically-coupled Retzius neurons from postnatal to adult leeches. The electrically-coupled dendrites of both Retzius neurons receive a common chemical input, which produces excitatory postsynaptic potentials (EPSPs) with varying amplitudes. Each EPSP spreads to the soma, but also crosses the electrical synapse to arrive at the soma of the coupled neuron. The leak of synaptic current across the electrical synapse reduces the amplitude of the EPSPs in proportion to the coupling ratio. In addition, summation of EPSPs generated in both neurons generates the baseline action potentials of these serotonergic neurons. To study how integration is adjusted as neurons grow, we first studied the characteristics of the chemical and electrical connections onto the coupled dendrites of neuron pairs with soma diameters ranging from 21 to 75 μm. Then by feeding a mathematical model with the neuronal voltage responses to pseudorandom noise currents we obtained the values of the coupling ratio, the membrane resistance of the soma (rm) and dendrites (rdend), the space constant (λ) and the characteristic dendritic length (L = l/λ). We found that the EPSPs recorded from the somata were similar regardless on the neuron size. However, the amplitude of the EPSPs and the firing frequency of the neurons were inversely proportional to the coupling ratio of the neuron pair, which also was independent from the neuronal size. This data indicated that the integrative constancy relied on the passive membrane properties. We show that the growth of Retzius neurons was compensated by increasing the membrane resistance of the dendrites and therefore the λ value. By solely increasing the dendrite resistance this circuit maintains

  14. ON THE BASIS OF SYNAPTIC INTEGRATION CONSTANCY DURING GROWTH OF A NEURONAL CIRCUIT

    Directory of Open Access Journals (Sweden)

    Adriana De la Rosa

    2016-08-01

    Full Text Available We studied how a neuronal circuit composed of two neuron types connected by chemical and electrical synapses maintains constant its integrative capacities as neurons grow. For this we combined electrophysiological experiments with mathematical modeling in pairs of electrically-coupled Retzius neurons from postnatal to adult leeches. The electrically-coupled dendrites of both Retzius neurons receive a common chemical input, which produces EPSPs with varying amplitudes. Each EPSP spreads to the soma, but also crosses the electrical synapse to arrive at the soma of the coupled neuron. The leak of synaptic current across the electrical synapse reduces the amplitude of the EPSPs in proportion to the coupling ratio. In addition, summation of EPSPs generated in both neurons generates the baseline action potentials of these serotonergic neurons. To study how integration is adjusted as neurons grow we first studied the characteristics of the chemical and electrical connections onto the coupled dendrites of neuron pairs with soma diameters ranging from 21 to 75 µm. Then by feeding a mathematical model with the neuronal voltage responses to pseudorandom noise currents we obtained the values of the coupling ratio, the membrane resistance of the soma (rm and dendrites (rdend, the space constant (λ and the characteristic dendritic length (L=l/λ . We found that the EPSPs recorded from the somata were similar regardless on the neuron size. However, the amplitude of the EPSPs and the firing frequency of the neurons were inversely proportional to the coupling ratio of the neuron pair, which also was independent form the neuronal size. This data indicated that the inte