WorldWideScience

Sample records for dendritic cells bmdc

  1. Natural IgM switches the function of LPS activated murine bone marrow dendritic cells (BMDC) to a “regulatory” DC that suppresses innate inflammation1

    OpenAIRE

    Lobo, Peter I.; Schlegel, Kailo H.; Bajwa, Amandeep; Huang, Liping; Kurmaeva, Elvira; Wang, Binru; Ye, Hong; Tedder, Thomas F.; Kinsey, Gilbert R.; Okusa, Mark D.

    2015-01-01

    We have previously shown that polyclonal natural IgM protects mice from renal IRI by inhibiting the reperfusion inflammatory response. We hypothesized that a potential mechanism involved IgM modulation of dendritic cells as we observed high IgM binding to splenic DC. To test this hypothesis, we pre-treated BMDC with polyclonal murine or human IgM prior to LPS activation and demonstrate that 0.5 × 106 IgM/LPS pretreated BMDC, when injected into WT-B6 mice, 24 hours before renal ischemia, prote...

  2. Glucocorticoid-Induced TNFR family Related gene (GITR) enhances dendritic cell activity.

    Science.gov (United States)

    Ronchetti, Simona; Nocentini, Giuseppe; Petrillo, Maria Grazia; Bianchini, Rodolfo; Sportoletti, Paolo; Bastianelli, Alessandra; Ayroldi, Emira M; Riccardi, Carlo

    2011-03-30

    Glucocorticoid-Induced TNFR family Related gene (GITR), a Tumor Necrosis Factor Receptor Superfamily (TNFRSF) member involved in immune/inflammatory processes, has been previously shown to regulate T cell activation. To study GITR role in antigen presenting cells, we evaluated the capability of bone marrow derived dendritic cells (BMDC) from GITR(-/-) mice to stimulate the activation of CD4(+)CD25(-) T lymphocytes. We found that GITR(-/-) BMDC are weaker stimulators of T cell proliferation than GITR(+/+) BMDC, either in syngenic or allogenic BMDC/T cell co-cultures. Expression of GITR in GITR(-/-) BMDC restored their ability to activate T cells while GITR silencing in GITR(+/+) BMDC inhibited the capability to stimulate T cells. GITR(-/-) BMDC showed a reduced production of the pro-inflammatory cytokine IL-6 and an increased production of the anti-inflammatory cytokine IL-10. Notably, co-culture of CD4(+)CD25(-) cells with GITR(-/-) BMDC originated FoxP3(+) cells, secreting IL-10 and TGF-β. Finally, in vivo injection of GITR(-/-) OVA-loaded BMDC led to a lower cell number and a lower activated cell number in draining lymph nodes than in GITR(+/+) OVA-loaded BMDC injected mice. Together, these results indicate that GITR plays a role in regulating BMDC activity.

  3. Dendritic Cell

    OpenAIRE

    Sevda Söker

    2005-01-01

    Dendritic cells, a member of family of antigen presenting cells, are most effective cells in the primary immune response. Dendritic cells originated from dendron, in mean of tree in the Greek, because of their long and elaborate cytoplasmic branching processes. Dendritic cells constitute approximately 0.1 to 1 percent of the blood’s mononuclear cell. Dendritic cells are widely distributed, and specialized for antigen capture and T cell stimulation. In this article, structures and functions of...

  4. Effect of adenovirus gene transfer vectors on the immunologic functions of mouse dendritic cells.

    Science.gov (United States)

    Korst, Robert J; Mahtabifard, Ali; Yamada, Reiko; Crystal, Ronald G

    2002-03-01

    To address the effect of adenovirus (Ad) gene transfer vector transduction on the diverse functions of dendritic cells, we used an Ad vector encoding no transgene (AdNull) to transduce mouse bone-marrow-derived dendritic cells (BMDC). Initial experiments using an Ad vector encoding a marker gene (AdGFP, jellyfish green fluorescent protein) showed that the optimal ratio of infectious Ad particles to each cell was 100, when both transgene expression and resultant BMDC viability were taken into account. Exposure to AdNull resulted in upregulation of both surface activation markers (CD40, MHC class II, B7.1, B7.2, ICAM-1) and IL-12 expression by BMDC. AdNull activation of BMDC was observed in multiple strains of mice. Despite this, AdNull-transduced BMDC displayed only modestly impaired antigen uptake ability, as demonstrated in macropinocytosis and phagocytosis assays, in vitro. However, Ad-modified BMDC migrated to regional lymph nodes five times more efficiently than sham-transduced BMDC in vivo. In addition, Ad transduction significantly enhanced the ability of BMDC to present a model peptide antigen to T-lymphocyte hybridoma cells at low BMDC:T cell ratios. We conclude that Ad modification, in and of itself, induces a state of activation in mouse BMDC. This activation, albeit mild compared with that induced by other stimuli, produces measurable effects of the specific immunological functions of these antigen-presenting cells.

  5. Activation of naïve NK cells in response to Listeria monocytogenes requires IL-18 and contact with infected dendritic cells1

    OpenAIRE

    Humann, Jessica; Lenz, Laurel L.

    2010-01-01

    The mechanisms for NK cell activation during infection by intracellular bacterial pathogens are not clearly defined. To dissect how Listeria monocytogenes infection elicits NK cell activation, we evaluated the requirements for activation of naïve splenic NK cells by infected bone marrow-derived dendritic cells (BMDC). We found that NK cell activation in this setting required infection of BMDC by live wild-type bacteria. NK cells were not activated when BMDC were infected with a live hemolysin...

  6. Characterization of Bone Marrow-Derived Dendritic Cells Developed in Serum-Free Media and their Ability to Prevent Type 1 Diabetes in Nonobese Diabetic Mice

    OpenAIRE

    Looney, Ben M; Chernatynskaya, Anna V.; Clare-Salzler, Michael J.; Xia, Chang-Qing

    2014-01-01

    Dendritic cells (DC) have been investigated as a cell-based therapy for Type 1 Diabetes (T1D). BM-DC expanded ex vivo with GM-CSF and IL-4 is typically cultured with fetal bovine serum (FBS). The effect of FBS on NOD BM-DC has not been extensively studied. In the present study we compare BM-DC generated in serum-free culture media (X-VIVO20; FBS−) with BM-DC generated in media containing 10% FBS (RPMI1640/10%FBS; FBS+). We show that FBS− BM-DC display a phenotype and cytokine-producing profil...

  7. A key role for PTP1B in dendritic cell maturation, migration, and T cell activation.

    Science.gov (United States)

    Martin-Granados, Cristina; Prescott, Alan R; Le Sommer, Samantha; Klaska, Izabela P; Yu, Tian; Muckersie, Elizabeth; Giuraniuc, Claudiu V; Grant, Louise; Delibegovic, Mirela; Forrester, John V

    2015-12-01

    Dendritic cells (DC) are the major antigen-presenting cells bridging innate and adaptive immunity, a function they perform by converting quiescent DC to active, mature DC with the capacity to activate naïve T cells. They do this by migrating from the tissues to the T cell area of the secondary lymphoid tissues. Here, we demonstrate that myeloid cell-specific genetic deletion of PTP1B (LysM PTP1B) leads to defects in lipopolysaccharide-driven bone marrow-derived DC (BMDC) activation associated with increased levels of phosphorylated Stat3. We show that myeloid cell-specific PTP1B deletion also causes decreased migratory capacity of epidermal DC, as well as reduced CCR7 expression and chemotaxis to CCL19 by BMDC. PTP1B deficiency in BMDC also impairs their migration in vivo. Further, immature LysM PTP1B BMDC display fewer podosomes, increased levels of phosphorylated Src at tyrosine 527, and loss of Src localization to podosome puncta. In co-culture with T cells, LysM PTP1B BMDC establish fewer and shorter contacts than control BMDC. Finally, LysM PTP1B BMDC fail to present antigen to T cells as efficiently as control BMDC. These data provide first evidence for a key regulatory role for PTP1B in mediating a central DC function of initiating adaptive immune responses in response to innate immune cell activation.

  8. Natural IgM Switches the Function of Lipopolysaccharide-Activated Murine Bone Marrow-Derived Dendritic Cells to a Regulatory Dendritic Cell That Suppresses Innate Inflammation.

    Science.gov (United States)

    Lobo, Peter I; Schlegel, Kailo H; Bajwa, Amandeep; Huang, Liping; Kurmaeva, Elvira; Wang, Binru; Ye, Hong; Tedder, Thomas F; Kinsey, Gilbert R; Okusa, Mark D

    2015-12-01

    We have previously shown that polyclonal natural IgM protects mice from renal ischemia/reperfusion injury (IRI) by inhibiting the reperfusion inflammatory response. We hypothesized that a potential mechanism involved IgM modulation of dendritic cells (DC), as we observed high IgM binding to splenic DC. To test this hypothesis, we pretreated bone marrow-derived DC (BMDC) with polyclonal murine or human IgM prior to LPS activation and demonstrated that 0.5 × 10(6) IgM/LPS-pretreated BMDC, when injected into wild-type C57BL/6 mice 24 h before renal ischemia, protect mice from developing renal IRI. We show that this switching of LPS-activated BMDC to a regulatory phenotype requires modulation of BMDC function that is mediated by IgM binding to nonapoptotic BMDC receptors. Regulatory BMDC require IL-10 and programmed death 1 as well as downregulation of CD40 and p65 NF-κB phosphorylation to protect in renal IRI. Blocking the programmed death ligand 1 binding site just before i.v. injection of IgM/LPS-pretreated BMDC or using IL-10 knockout BMDC fails to induce protection. Similarly, IgM/LPS-pretreated BMDC are rendered nonprotective by increasing CD40 expression and phosphorylation of p65 NF-κB. How IgM/LPS regulatory BMDC suppress in vivo ischemia-induced innate inflammation remains to be determined. However, we show that suppression is dependent on other in vivo regulatory mechanisms in the host, that is, CD25(+) T cells, B cells, IL-10, and circulating IgM. There was no increase in Foxp3(+) regulatory T cells in the spleen either before or after renal IRI. Collectively, these findings show that natural IgM anti-leukocyte Abs can switch BMDC to a regulatory phenotype despite the presence of LPS that ordinarily induces BMDC maturation.

  9. Cryptococcus neoformans activates bone marrow-derived conventional dendritic cells rather than plasmacytoid dendritic cells and down-regulates macrophages.

    Science.gov (United States)

    Siegemund, Sabine; Alber, Gottfried

    2008-04-01

    Induction of IL-12 and IL-23 is essential for protective immunity against Cryptococcusneoformans. The contribution of dendritic cells vs. macrophages to IL-12/23 production in response to C. neoformans infection is unclear. Activation of conventional bone marrow-derived dendritic cells (BMDC), plasmacytoid BMDC, and bone marrow-derived macrophages (BMMPhi) was assessed by analyzing cytokine responses and the expression of MHC-II, CD86, and CD80 in each cell type. Cryptococcus neoformans induced the release of IL-12/23p40 by BMDC, but not by BMMPhi, in a TLR2- and TLR4-independent but MyD88-dependent manner. Conventional BMDC rather than plasmacytoid BMDC up-regulated MHC-II and CD86, while BMMPhi down-regulated MHC-II and CD86 in response to C. neoformans. The up-regulation of MHC-II and CD86 on BMDC required MyD88. Our data point to conventional DC as critical IL-12/23-producing antigen-presenting cells during cryptococcosis.

  10. Rat bone marrow-derived dendritic cells, but not ex vivo dendritic cells, secrete nitric oxide and can inhibit T-cell proliferation.

    Science.gov (United States)

    Powell, Timothy J; Jenkins, Chris D; Hattori, Ryuichi; MacPherson, G Gordon

    2003-06-01

    The relationships between different dendritic cell (DC) populations are not clearly established. In particular, it is not known how DC generated in vitro relate to those identified in vivo. Here we have characterized rat bone marrow-derived DC (BMDC) and compared them with DC isolated from spleen (SDC) and pseudo-afferent lymph (LDC). BMDC express typical DC markers and are mostly OX41 positive and CD4 negative. In contrast to ex vivo DC, some BMDC express Fc receptors. FcR+ and FcR- BMDC express similar levels of major histocompatibility complex class II molecules (MHC) and are B7 positive, but some FcR- BMDC express high levels of B7. In contrast to freshly isolated or cultured ex vivo SDC and LDC, both BMDC subpopulations can express inducible nitric oxide synthase (iNOS) and can secrete nitric oxide (NO) in amounts similar to those secreted by peritoneal macrophages. Despite expressing MHC class II and B7, FcR+ BMDC stimulate only a very weak MLR and inhibit stimulation by FcR- BMDC and ex vivo DC. Inhibition is only partially NO dependent. FcR+ BMDC are not macrophages, as judged by adherence and phagocytosis. Both subpopulations are able to present antigen to primed T cells in vitro and are able to prime naïve CD4 T cells in vivo. However, unlike SDC, BMDC are unable to stimulate cytotoxic T-lymphocyte (CTL) responses to a minor histocompatibility antigen. Thus, BMDC show marked differences to ex vivo DC and their relationship to those of in vivo DC populations, to date, is unclear.

  11. [Inflammatory dendritic cells].

    Science.gov (United States)

    Segura, Elodie; Amigorena, Sebastian

    2014-01-01

    Dendritic cells are a rare and heterogeneous population of professional antigen-presenting cells. Several murine dendritic cell subpopulations have been identified that differ in their phenotype and functional properties. In the steady state, committed dendritic cell precursors differentiate into lymphoid organ-resident dendritic cells and migratory tissue dendritic cells. During inflammation appears an additional dendritic cell subpopulation that has been termed « inflammatory dendritic cells ». Inflammatory dendritic cells differentiate in situ from monocytes recruited to the site of inflammation. Here, we discuss how mouse inflammatory dendritic cells differ from macrophages and from other dendritic cell populations. Finally, we review recent work on human inflammatory dendritic cells.

  12. Lycium barbarum polysaccharides regulate phenotypic and functional maturation of murine dendritic cells.

    Science.gov (United States)

    Zhu, Jie; Zhao, Lu-Hang; Zhao, Xiao-Ping; Chen, Zhi

    2007-06-01

    Lycium barbarum polysaccharides (LBPs) have been known to have a variety of immunomodulatory functions including activation of T cells, B cells and NK cells. Dendritic cells (DC) are potent antigen-presenting cells that play pivotal roles in the initiation of the primary immune response. However, little is known about the immunomodulatory effects of LBPs on murine bone marrow derived dendritic cells (BMDC). In the present study, the effects of LBPs on the phenotypic and functional maturation of murine BMDC were investigated in vitro. Compared to the BMDC that were only subjected to treatment with RPMI1640, the co-expression of I-A/I-E, CD11c and secretion of IL-12 p40 by BMDC stimulated with LBPs (100 microg/ml) were increased. In addition, the endocytosis of FITC-dextran by LBPs-treated BMDC (100 microg/ml) was impaired, whereas the activation of proliferation of allogenic lymphocytes by BMDC was enhanced. Our results strongly suggest that LBPs are capable of promoting both the phenotypic and functional maturation of murine BMDC in vitro.

  13. 1,25-dihydroxyvitamin D3 conditioned CD11c+ dendritic cells are effective initiators of CNS autoimmune disease

    Directory of Open Access Journals (Sweden)

    Dario eBesusso

    2015-11-01

    Full Text Available Dendritic cells (DC play a crucial role in regulating T cell activation. Due to their capacity to shape the immune response, tolerogenic DC have been used to treat autoimmune diseases. In this study we examined whether 1,25 dihydroxyvitamin D3 conditioned bone marrow derived DC (VitD-BMDC were able to limit the development of autoimmune pathology in experimental autoimmune encephalomyelitis (EAE. We found that VitD-BMDC had lower expression of MHC class II and co-stimulatory molecules and were less effective at priming autoreactive T cells in-vitro. Using our recently described BMDC driven model of EAE, we demonstrated that VitD-BMDC had a significantly reduced ability to initiate EAE. We found that the impaired ability of VitD-BMDC to initiate EAE was not due to T cell tolerisation. Instead, we discovered that the addition of 1,25(OH2D3 to BMDC cultures resulted in a significant reduction in the proportion of CD11c+ cells. Purified CD11c+VitD-BMDC were significantly less effective at priming T cells in-vitro yet were similarly capable of initiating EAE as vehicle treated CD11c+BMDC. This study demonstrates that in-vitro assays of DC function can be a poor predictor of in-vivo behaviour and that CD11c+VitD-BMDC are highly effective initiators of an autopathogenic T cell response.

  14. 1,25-Dihydroxyvitamin D3-Conditioned CD11c+ Dendritic Cells are Effective Initiators of CNS Autoimmune Disease.

    Science.gov (United States)

    Besusso, Dario; Saul, Louise; Leech, Melanie D; O'Connor, Richard A; MacDonald, Andrew S; Anderton, Stephen M; Mellanby, Richard J

    2015-01-01

    Dendritic cells (DC) play a crucial role in regulating T cell activation. Due to their capacity to shape the immune response, tolerogenic DC have been used to treat autoimmune diseases. In this study, we examined whether 1,25 dihydroxyvitamin D3-conditioned bone marrow-derived DC (VitD-BMDC) were able to limit the development of autoimmune pathology in experimental autoimmune encephalomyelitis (EAE). We found that VitD-BMDC had lower expression of MHC class II and co-stimulatory molecules and were less effective at priming autoreactive T cells in vitro. Using our recently described BMDC-driven model of EAE, we demonstrated that VitD-BMDC had a significantly reduced ability to initiate EAE. We found that the impaired ability of VitD-BMDC to initiate EAE was not due to T cell tolerization. Instead, we discovered that the addition of 1,25(OH)2D3 to BMDC cultures resulted in a significant reduction in the proportion of CD11c+ cells. Purified CD11c+ VitD-BMDC were significantly less effective at priming T cells in vitro yet were similarly capable of initiating EAE as vehicle-treated CD11c+ BMDC. This study demonstrates that in vitro assays of DC function can be a poor predictor of in vivo behavior and that CD11c+ VitD-BMDC are highly effective initiators of an autopathogenic T cell response.

  15. Freezing and thawing of murine bone marrow-derived dendritic cells does not alter their immunophenotype and antigen presentation characteristics.

    Science.gov (United States)

    Mendoza, L; Bubeník, J; Indrová, M; Bieblová, J; Vonka, V; Símová, J

    2002-01-01

    The aim of this paper was to assess whether the BMDC after freezing and thawing are capable to retain the immunophenotype and antigen-presenting capacity. BMDC were generated from bone marrow precursor cells as described previously by culturing the cells in medium containing GM-CSF and IL-4. Afterwards, the cells were harvested, counted and used for phenotyping and priming of syngeneic spleen cells. For cryopreservation, the BMDC were frozen in the presence of 10% of dimethylsulphoxide (DMSO) and 90% foetal calf serum. Forty to fifty percent of both samples, frozen/thawed as well as fresh BMDC, exhibited characteristic DC morphology, and the DC obtained from the frozen/thawed samples expressed a similar level of MHC class I-, MHC class II-, CD80-, CD86-, CD11c-, CD11b-, CD54- and CD205-molecule as fresh DC. To examine the in vitro priming effect of cryopreserved BMDC on syngeneic non-adherent murine C57BL/6 (B6) spleen cells, the BMDC were thawed, pulsed with the lysate prepared from HPV 16-associated tumour MK16 and used for 3H-thymidine assay. The findings of the experiments indicate that fresh as well as cryopreserved murine BMDC preparations pulsed with tumour lysate were efficient to prime the mitogenic activity of syngeneic non-adherent splenocytes. Taken together, the results suggest that frozen/thawed BMDC are morphologically, phenotypically and functionally comparable with fresh BMDC and can be used for construction of dendritic cell-based tumour vaccines.

  16. Specific activation of dendritic cells enhances clearance of Bacillus anthracis following infection.

    Science.gov (United States)

    Thompson, Iain J T; Mann, Elizabeth R; Stokes, Margaret G; English, Nicholas R; Knight, Stella C; Williamson, Diane

    2014-01-01

    Dendritic cells are potent activators of the immune system and have a key role in linking innate and adaptive immune responses. In the current study we have used ex vivo pulsed bone marrow dendritic cells (BMDC) in a novel adoptive transfer strategy to protect against challenge with Bacillus anthracis, in a murine model. Pre-pulsing murine BMDC with either recombinant Protective Antigen (PA) or CpG significantly upregulated expression of the activation markers CD40, CD80, CD86 and MHC-II. Passive transfusion of mice with pulsed BMDC, concurrently with active immunisation with rPA in alum, significantly enhanced (pBMDC, demonstrated 100% survival following lethal B. anthracis challenge and had significantly enhanced (p<0.05) bacterial clearance within 2 days, compared with mice vaccinated with rPA and alum alone.

  17. High-affinity uptake of kynurenine and nitric oxide-mediated inhibition of indoleamine 2,3-dioxygenase in bone marrow-derived myeloid dendritic cells.

    Science.gov (United States)

    Hara, Toshiaki; Ogasawara, Nanako; Akimoto, Hidetoshi; Takikawa, Osamu; Hiramatsu, Rie; Kawabe, Tsutomu; Isobe, Ken-Ichi; Nagase, Fumihiko

    2008-02-15

    Indoleamine 2,3-dioxygenase (IDO)-initiated tryptophan metabolism along the kynurenine (Kyn) pathway in some dendritic cells (DC) such as plasmacytoid DC (pDC) regulates T-cell responses. It is unclear whether bone marrow-derived myeloid DC (BMDC) express functional IDO. The IDO expression was examined in CD11c(+)CD11b(+) BMDC differentiated from mouse bone marrow cells using GM-CSF. CpG oligodeoxynucleotides (CpG) induced the expression of IDO protein with the production of nitric oxide (NO) in BMDC in cultures for 24h. In the enzyme assay using cellular extracts of BMDC, the IDO activity of BMDC stimulated with CpG was enhanced by the addition of a NO synthase (NOS) inhibitor, suggesting that IDO activity was suppressed by NO production. On the other hand, the concentration of Kyn in the culture supernatant of BMDC was not increased by stimulation with CpG. Exogenously added Kyn was taken up by BMDC independently of CpG stimulation and NO production, and the uptake of Kyn was inhibited by a transport system L-specific inhibitor or high concentrations of tryptophan. The uptake of tryptophan by BMDC was markedly lower than that of Kyn. In conclusion, IDO activity in BMDC is down-regulated by NO production, whereas BMDC strongly take up exogenous Kyn.

  18. Burkholderia pseudomallei enhances maturation of bone marrow-derived dendritic cells.

    Science.gov (United States)

    Williams, Natasha L; Kloeze, Eveline; Govan, Brenda L; Körner, Heinrich; Ketheesan, Natkunam

    2008-12-01

    T-cell activation is essential for protection against Burkholderia pseudomallei infection. Using bone marrow-derived dendritic cells (BMDC) isolated from partially resistant C57BL/6 and susceptible BALB/c mice, the degree of BMDC activation in the presence of B. pseudomallei was investigated. Maturation, cytokine production and internalization of B. pseudomallei by BMDC was assessed in response to infection with a highly virulent and a low-virulent clinical isolate. Maturation was determined by identifying the up-regulation of cell-surface markers CD11c and CD86. IL-1beta and IL-12p40 expression were assessed by reverse-transcriptase PCR. The uptake of B. pseudomallei by BMDC was measured using an internalization assay. This study demonstrated that B. pseudomallei isolates stimulate the maturation of BMDC to the same degree regardless of virulence. However, maturation of BMDC was significantly increased in BALB/c mice compared with C57BL/6 mice. Additionally, the uptake of B. pseudomallei by BMDC was significantly greater with the highly virulent isolate compared with the low-virulent isolate. Expression of IL-12 and IL-1beta following infection with B. pseudomallei was up-regulated. The differences observed may have implications in the development of an effective immune response to B. pseudomallei.

  19. G1-4A, a polysaccharide from Tinospora cordifolia induces peroxynitrite dependent killer dendritic cell (KDC) activity against tumor cells.

    Science.gov (United States)

    Pandey, Vipul K; Amin, Prayag J; Shankar, Bhavani S

    2014-12-01

    Dendritic cells (DC) play a central role in the development of an adaptive immune response against tumor. In addition to its role in antigen presentation, DC also possesses cytotoxic activity against tumor cells. We have earlier shown phenotypic and functional maturation of bone marrow derived dendritic cells (BMDC) by G1-4A, an arabinogalactan derived from Tinospora cordifolia. In this study, we have investigated the killer phenotype of BMDC matured in the presence of G1-4A, [mBMDC (G1-4A)] on tumor cells. We have observed several fold increase in killing of tumor cells by mBMDC (G1-4A). The tumoricidal activity was not specific to syngeneic tumors cells but could kill xenogenic tumors also. Nitric oxide released by mBMDC (G1-4A) generates peroxynitrite in tumor cells and is responsible for killing of target cells. This killing was completely abrogated by inducible nitric oxide synthase (iNOS) inhibitor 1400W and NADPH oxidase inhibitor apocyanin. The killed target cells are phagocytosed by BMDC which further activate syngeneic cytotoxic T cells. These results thus show that G1-4A treated mBMDC acquire killer phenotype along with maturation which plays an important role in activation of cytotoxic T cells.

  20. Prophylactic, therapeutic and anti-metastatic effects of BMDC and DC lines in mice carrying HPV 16-associated tumours.

    Science.gov (United States)

    Mendoza, L; Bubeník, J; Símová, J; Jandlová, T; Vonka, V; Mikysková, R

    2003-07-01

    Oncogenic, moderately immunogenic MK16/1/IIIABC (MK16) cells were previously established by co-transfection of HPV 16 E6/E7 and activated H-ras oncogene DNA into C57BL/6 kidney cells. Subcutaneous transplantation of the MK16 cells produced progressively growing neoplasms which metastasized spontaneously to lungs. In this communication we report that prophylactic administration of bone marrow-derived dendritic cells (BMDC) as well as dendritic cell (DC) lines DC2.4 and JAWS II at the site of subsequent MK16 tumour transplants inhibited tumour growth and reduced the number of lung metastases. Similarly, in therapeutic experiments, administration of BMDC and DC lines at the site of the growing MK16 tumours or at the site of MK16 tumour residua after surgery inhibited tumour growth. Both BMDC-based vaccines and vaccines based on DC lines had also an antimetastatic effect. These results indicate that the DC line-based vaccines, which represent a standard, well-characterized and more homogeneous material, technically easier to prepare than the fresh BMDC-based vaccines, can be utilized for therapy of surgical minimal residual disease in HPV 16-associated neoplasms and are prospective for relevant clinical trials.

  1. Chlamydia muridarum infection subverts dendritic cell function to promote Th2 immunity and airways hyperreactivity.

    Science.gov (United States)

    Kaiko, Gerard E; Phipps, Simon; Hickey, Danica K; Lam, Chuan En; Hansbro, Philip M; Foster, Paul S; Beagley, Kenneth W

    2008-02-15

    There is strong epidemiological evidence that Chlamydia infection can lead to exacerbation of asthma. However, the mechanism(s) whereby chlamydial infection, which normally elicits a strong Th type 1 (Th1) immune response, can exacerbate asthma, a disease characterized by dominant Th type 2 (Th2) immune responses, remains unclear. In the present study, we show that Chlamydia muridarum infection of murine bone marrow-derived dendritic cells (BMDC) modulates the phenotype, cytokine secretion profile, and Ag-presenting capability of these BMDC. Chlamydia-infected BMDC express lower levels of CD80 and increased CD86 compared with noninfected BMDC. When infected with Chlamydia, BMDC secrete increased TNF-alpha, IL-6, IL-10, IL-12, and IL-13. OVA peptide-pulsed infected BMDC induced significant proliferation of transgenic CD4(+) DO11.10 (D10) T cells, strongly inhibited IFN-gamma secretion by D10 cells, and promoted a Th2 phenotype. Intratracheal transfer of infected, but not control noninfected, OVA peptide-pulsed BMDC to naive BALB/c mice, which had been i.v. infused with naive D10 T cells, resulted in increased levels of IL-10 and IL-13 in bronchoalveolar lavage fluid. Recipients of these infected BMDC showed significant increases in airways resistance and decreased airways compliance compared with mice that had received noninfected BMDC, indicative of the development of airways hyperreactivity. Collectively, these data suggest that Chlamydia infection of DCs allows the pathogen to deviate the induced immune response from a protective Th1 to a nonprotective Th2 response that could permit ongoing chronic infection. In the setting of allergic airways inflammation, this infection may then contribute to exacerbation of the asthmatic phenotype.

  2. CXCR5-transduced bone marrow-derived dendritic cells traffic to B cell zones of lymph nodes and modify antigen-specific immune responses.

    Science.gov (United States)

    Wu, Meng-Tse; Hwang, Sam T

    2002-05-15

    Skin-derived migratory dendritic cells (DC), in contrast to bone marrow-derived DC (BMDC), express CXCR5, respond to the chemokine CXC ligand 13 (CXCL13) in vitro, and are capable of migrating to B cell zones (BCZ) in lymph nodes (LN) in vivo. Herein, we analyzed the surface phenotype of skin-derived migratory DC and found that 15-35% of MHC class II(high) cells showed high levels of expression of CXCR5 but expressed low levels of DEC205, a suggested characteristic of dermal-type DC in mice. To study the effects of CXCR5 on the trafficking dynamics of DC, we stably expressed CXCR5 in BMDC by retroviral gene transduction. CXCR5 was detected by flow cytometry on transduced cells, which responded to CXCL13 in vitro in chemotaxis assays (3-fold over nontransduced BMDC, p BMDC were observed in BCZ of draining LN. Mice were vaccinated with CXCR5- and vector-BMDC that were pulsed with keyhole limpet hemocyanin (KLH) to induce Ag-specific cellular and humoral immune responses. Mice injected with CXCR5-BMDC (vs vector-BMDC) demonstrated marginally less footpad swelling in response to intradermal injection of KLH. Interestingly, significantly higher levels of KLH-specific IgG (p BMDC compared with mice immunized with vector-transduced BMDC. Thus, CXCR5 is predominantly expressed by dermal-type DC. Moreover, CXCR5 directs BMDC to BCZ of LN in vivo and modifies Ag-specific immune responses induced by BMDC vaccination.

  3. Cell-extrinsic effects of tumor ER stress imprint myeloid dendritic cells and impair CD8⁺ T cell priming.

    Science.gov (United States)

    Mahadevan, Navin R; Anufreichik, Veronika; Rodvold, Jeffrey J; Chiu, Kevin T; Sepulveda, Homero; Zanetti, Maurizio

    2012-01-01

    Tumor-infiltrating myeloid cells, such as dendritic cells (BMDC), are key regulators of tumor growth. However, the tumor-derived signals polarizing BMDC to a phenotype that subverts cell-mediated anti-tumor immunity have yet to be fully elucidated. Addressing this unresolved problem we show that the tumor unfolded protein response (UPR) can function in a cell-extrinsic manner via the transmission of ER stress (TERS) to BMDC. TERS-imprinted BMDC upregulate the production of pro-inflammatory, tumorigenic cytokines but also the immunosuppressive enzyme arginase. Importantly, they downregulate cross-presentation of high-affinity antigen and fail to effectively cross-prime CD8(+) T cells, causing T cell activation without proliferation and similarly dominantly suppress cross-priming by bystander BMDC. Lastly, TERS-imprinted BMDC facilitate tumor growth in vivo with fewer tumor-infiltrating CD8(+) T cells. In sum, we demonstrate that tumor-borne ER stress imprints ab initio BMDC to a phenotype that recapitulates several of the inflammatory/suppressive characteristics ascribed to tumor-infiltrating myeloid cells, highlighting the tumor UPR as a critical controller of anti-tumor immunity and a new target for immune modulation in cancer.

  4. Cell-extrinsic effects of tumor ER stress imprint myeloid dendritic cells and impair CD8⁺ T cell priming.

    Directory of Open Access Journals (Sweden)

    Navin R Mahadevan

    Full Text Available Tumor-infiltrating myeloid cells, such as dendritic cells (BMDC, are key regulators of tumor growth. However, the tumor-derived signals polarizing BMDC to a phenotype that subverts cell-mediated anti-tumor immunity have yet to be fully elucidated. Addressing this unresolved problem we show that the tumor unfolded protein response (UPR can function in a cell-extrinsic manner via the transmission of ER stress (TERS to BMDC. TERS-imprinted BMDC upregulate the production of pro-inflammatory, tumorigenic cytokines but also the immunosuppressive enzyme arginase. Importantly, they downregulate cross-presentation of high-affinity antigen and fail to effectively cross-prime CD8(+ T cells, causing T cell activation without proliferation and similarly dominantly suppress cross-priming by bystander BMDC. Lastly, TERS-imprinted BMDC facilitate tumor growth in vivo with fewer tumor-infiltrating CD8(+ T cells. In sum, we demonstrate that tumor-borne ER stress imprints ab initio BMDC to a phenotype that recapitulates several of the inflammatory/suppressive characteristics ascribed to tumor-infiltrating myeloid cells, highlighting the tumor UPR as a critical controller of anti-tumor immunity and a new target for immune modulation in cancer.

  5. Rapamycin increases RSV RNA levels and survival of RSV-infected dendritic cell depending on T cell contact.

    Science.gov (United States)

    do Nascimento de Freitas, Deise; Gassen, Rodrigo Benedetti; Fazolo, Tiago; Souza, Ana Paula Duarte de

    2016-10-01

    The macrolide rapamycin inhibits mTOR (mechanist target of rapamycin) function and has been broadly used to unveil the role of mTOR in immune responses. Inhibition of mTOR on dendritic cells (DC) can influence cellular immune response and the survival of DC. RSV is the most common cause of hospitalization in infants and is a high priority candidate to vaccine development. In this study we showed that rapamycin treatment on RSV-infected murine bone marrow-derived DC (BMDC) decreases the frequency of CD8(+)CD44(high) T cells. However, inhibition of mTOR on RSV-infected BMDC did not modify the activation phenotype of these cells. RSV-RNA levels increase when infected BMDC were treated with rapamycin. Moreover, we observed that rapamycin diminishes apoptosis cell death of RSV-infected BMDC co-culture with T cells and this effect was abolished when the cells were co-cultured in a transwell system that prevents cell-to-cell contact or migration. Taken together, these data indicate that rapamycin treatment present a toxic effect on RSV-infected BMDC increasing RSV-RNA levels, affecting partially CD8 T cell differentiation and also increasing BMDC survival in a mechanism dependent on T cell contact.

  6. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells.

    Science.gov (United States)

    Wilson, Jeffrey M; Ross, William G; Agbai, Oma N; Frazier, Renea; Figler, Robert A; Rieger, Jayson; Linden, Joel; Ernst, Peter B

    2009-04-15

    The endogenous purine nucleoside adenosine is an important antiinflammatory mediator that contributes to the control of CD4(+) T cell responses. While adenosine clearly has direct effects on CD4(+) T cells, it remains to be determined whether actions on APC such as dendritic cells (DC) are also important. In this report we characterize DC maturation and function in BMDC stimulated with LPS in the presence or absence of the nonselective adenosine receptor agonist NECA (5'-N-ethylcarboxamidoadenosine). We found that NECA inhibited TNF-alpha and IL-12 in a concentration-dependent manner, whereas IL-10 production was increased. NECA-treated BMDC also expressed reduced levels of MHC class II and CD86 and were less effective at stimulating CD4(+) T cell proliferation and IL-2 production compared with BMDC exposed to vehicle control. Based on real-time RT-PCR, the A(2A) adenosine receptor (A(2A)AR) and A(2B)AR were the predominant adenosine receptors expressed in BMDC. Using adenosine receptor subtype selective antagonists and BMDC derived from A(2A)AR(-/-) and A(2B)AR(-/-)mice, it was shown that NECA modulates TNF-alpha, IL-12, IL-10, and CD86 responses predominantly via A(2B)AR. These data indicate that engagement of A(2B)AR modifies murine BMDC maturation and suggest that adenosine regulates CD4(+) T cell responses by selecting for DC with impaired immunogencity.

  7. Temporary elimination of IL-10 enhanced the effectiveness of cyclophosphamide and BMDC-based therapy by decrease of the suppressor activity of MDSCs and activation of antitumour immune response.

    Science.gov (United States)

    Rossowska, Joanna; Anger, Natalia; Kicielińska, Jagoda; Pajtasz-Piasecka, Elżbieta; Bielawska-Pohl, Aleksandra; Wojas-Turek, Justyna; Duś, Danuta

    2015-03-01

    The antitumour activity of the dendritic cell (DC)-based cellular vaccines is greatly reduced in hostile tumour microenvironment. Therefore, there are many attempts to eliminate or neutralize both suppressor cells and cytokines. The aim of the investigation was to verify if temporary elimination of IL-10 just before injection of bone marrow-derived DCs (BMDCs) enhance the antitumour activity of applied vaccines and help to overcome the immunosuppressive tumour barrier. Mice bearing colon carcinoma MC38 were given single dose of cyclophosphamide (CY) followed by alternate injections of anti-IL-10 antibodies and BMDC-based vaccines consisted of BMDCs stimulated with MC38 tumour antigen (BMDC/TAg) or the combination of BMDC/TAg with BMDCs transduced with IL-12 genes (BMDC/IL-12). The high tumour growth inhibition was observed in mice treated with CY+anti-IL-10+BMDC/TAg as well as CY±anti-IL-10+BMDC/TAg+BMDC/IL-12. However, the mechanisms of action of particular treatment schemes were diversified. Generally, it was observed that application of anti-IL-10 Abs reduced suppressor activity of myeloid-derived suppressor cells (MDSCs). However, anti-IL-10 Abs in combination with diversely composed BMDC-based vaccines induced different components of an antitumour response. The high cytotoxic activity of spleen-derived NK cells and increased influx of these cells into tumours of mice treated with CY+anti-IL-10+BMDC/TAg indicate that mice from the group developed strong NK-dependent response. Whereas, application of anti-IL-10 Abs just before injection of BMDC/TAg+BMDC/IL-12 did not enhanced NK cell activity. Furthermore, it significantly impaired effectiveness of therapy composed of CY+BMDC/TAg+BMDC/IL-12 vaccine in induction of Th1 type immune response. Taken together, our results indicate that temporary elimination of IL-10 is an important and effective way to decrease the immune suppression associated with MDSCs activity and represents a useful strategy for successful

  8. Immunomodulatory properties of oat and barley β-glucan populations on bone marrow derived dendritic cells

    NARCIS (Netherlands)

    Rosch, Christiane; Meijerink, Marjolein; Delahaije, Roy J.B.M.; Taverne, Nico; Gruppen, Harry; Wells, Jerry M.; Schols, Henk A.

    2016-01-01

    Specific structures of oat and barley β(1,3)(1,4)-glucans induced different in vitro immunomodulatory effects in bone marrow derived dendritic cells (BMDC) from TLR2/4 knock out mice. All barley β-glucan fractions induced larger amounts of cytokines in BMDCs than their oat equivalents. The particula

  9. Autocrine interferon priming in macrophages but not dendritic cells results in enhanced cytokine and chemokine production after coronavirus infection.

    Science.gov (United States)

    Zhou, Haixia; Zhao, Jincun; Perlman, Stanley

    2010-10-19

    Coronaviruses efficiently inhibit interferon (IFN) induction in nonhematopoietic cells and conventional dendritic cells (cDC). However, IFN is produced in infected macrophages, microglia, and plasmacytoid dendritic cells (pDC). To begin to understand why IFN is produced in infected macrophages, we infected bone marrow-derived macrophages (BMM) and as a control, bone marrow-derived DC (BMDC) with the coronavirus mouse hepatitis virus (MHV). As expected, BMM but not BMDC expressed type I IFN. IFN production in infected BMM was nearly completely dependent on signaling through the alpha/beta interferon (IFN-α/β) receptor (IFNAR). Several IFN-dependent cytokines and chemokines showed the same expression pattern, with enhanced production in BMM compared to BMDC and dependence upon signaling through the IFNAR. Exogenous IFN enhanced IFN-dependent gene expression in BMM at early times after infection and in BMDC at all times after infection but did not stimulate expression of molecules that signal through myeloid differentiation factor 88 (MyD88), such as tumor necrosis factor (TNF). Collectively, our results show that IFN is produced at early times postinfection (p.i.) in MHV-infected BMM, but not in BMDC, and primes expression of IFN and IFN-responsive genes. Further, our results also show that BMM are generally more responsive to MHV infection, since MyD88-dependent pathways are also activated to a greater extent in these cells than in BMDC.

  10. Matrix metalloproteinase-9-deficient dendritic cells have impaired migration through tracheal epithelial tight junctions.

    Science.gov (United States)

    Ichiyasu, Hidenori; McCormack, Joanne M; McCarthy, Karin M; Dombkowski, David; Preffer, Frederic I; Schneeberger, Eveline E

    2004-06-01

    When sampling inhaled antigens, dendritic cells (DC) must penetrate the tight junction (TJ) barrier while maintaining the TJ seal. In matrix metalloproteinase (MMP)-9-deficient mice, in vivo experiments suggest that migration of DC into air spaces is impaired. To examine the underlying mechanisms, we established a well-defined in vitro model using mouse tracheal epithelial cells and mouse bone marrow DC (BMDC). Transmigration was elicited with either macrophage inflammatory protein (MIP)-1alpha or MIP-3beta in a time-dependent manner. Control MMP-9(+/+) BMDC cultured with granulocyte macrophage-colony-stimulating factor for 7 d showed a 30-fold greater transepithelial migration toward MIP-3beta than MIP-1alpha, indicating a more mature DC phenotype. MMP-9(-/-) BMDC as well as MMP-9(+/+) BMDC in the presence of the MMP inhibitor GM6001, although showing a similar preference for MIP-3beta, were markedly impaired in their ability to traverse the epithelium. Expression levels of CCR5 and CCR7, however, were similar in both MMP-9(-/-) and MMP-9(+/+) BMDC. Expression of the integral TJ proteins, occludin and claudin-1, were examined in BMDC before and after transepithelial migration. Interestingly, occludin but not claudin-1 was degraded following transepithelial migration in both MMP-9(-/-) and control BMDC. In addition, there was a > 2-fold increase in claudin-1 expression in MMP-9(-/-) as compared with control BMDC. These observations indicate that occludin and claudin-1 are differentially regulated and suggest that the lack of MMP-9 may affect claudin-1 turnover.

  11. Activation of the inflammasome and enhanced migration of microparticle-stimulated dendritic cells to the draining lymph node.

    Science.gov (United States)

    Meraz, Ismail M; Melendez, Brenda; Gu, Jianhua; Wong, Stephen T C; Liu, Xuewu; Andersson, Helen A; Serda, Rita E

    2012-07-02

    Porous silicon microparticles presenting pathogen-associated molecular patterns mimic pathogens, enhancing internalization of the microparticles and activation of antigen presenting dendritic cells. We demonstrate abundant uptake of microparticles bound by the TLR-4 ligands LPS and MPL by murine bone marrow-derived dendritic cells (BMDC). Labeled microparticles induce concentration-dependent production of IL-1β, with inhibition by the caspase inhibitor Z-VAD-FMK supporting activation of the NLRP3-dependent inflammasome. Inoculation of BALB/c mice with ligand-bound microparticles induces a significant increase in circulating levels of IL-1β, TNF-α, and IL-6. Stimulation of BMDC with ligand-bound microparticles increases surface expression of costimulatory and MHC molecules, and enhances migration of BMDC to the draining lymph node. LPS-microparticles stimulate in vivo C57BL/6 BMDC and OT-1 transgenic T cell interactions in the presence of OVA SIINFEKL peptide in lymph nodes, with intact nodes imaged using two-photon microscopy. Formation of in vivo and in vitro immunological synapses between BMDC, loaded with OVA peptide and LPS-microparticles, and OT-1 T cells are presented, as well as elevated intracellular interferon gamma levels in CD8(+) T cells stimulated by BMDC carrying peptide-loaded microparticles. In short, ligand-bound microparticles enhance (1) phagocytosis of microparticles; (2) BMDC inflammasome activation and upregulation of costimulatory and MHC molecules; (3) cellular migration of BMDC to lymphatic tissue; and (4) cellular interactions leading to T cell activation in the presence of antigen.

  12. Modulation of dendritic cell function and immune response by cysteine protease inhibitor from murine nematode parasite Heligmosomoides polygyrus.

    Science.gov (United States)

    Sun, Yanxia; Liu, Guiyun; Li, Zhaotao; Chen, Yue; Liu, Yunfeng; Liu, Boyu; Su, Zhong

    2013-04-01

    Modulation and suppression of the immune response of the host by nematode parasites have been reported extensively and the cysteine protease inhibitor (CPI or cystatin) is identified as one of the major immunomodulators. In the present study, we cloned and produced recombinant CPI protein from the murine nematode parasite Heligmosomoides polygyrus (rHp-CPI) and investigated its immunomodulatory effects on dendritic cell (DC) function and immune responses in mice. Bone-marrow-derived CD11c(+) DC (BMDC) that were exposed to rHp-CPI during the differentiation stage showed reduced MHC-II molecule expression compared with BMDC that were generated in normal culture conditions. The BMDC generated in the presence of rHp-CPI also exhibited reduced expression of CD40, CD86 and MHC-II molecules and reduced interleukin-6 and tumour necrosis factor-α cytokine production when stimulated with Toll-like receptor ligand CpG. Activation of BMDC generated in normal conditions induced by lipopolysaccharide and CpG was also suppressed by rHp-CPI, as shown by reduced co-stimulatory molecule expression and cytokine production. Furthermore, BMDC treated with rHp-CPI before ovalbumin (OVA) antigen pulsing induced a weaker proliferation response and less interferon-γ production of OVA-specific CD4(+) T cells compared with BMDC without rHp-CPI pre-treatment. Adoptive transfer of rHp-CPI-treated and OVA-loaded BMDC to mice induced significantly lower levels of antigen-specific antibody response than the BMDC loaded with antigen alone. These results demonstrated that the CPI from nematode parasites is able to modulate differentiation and activation stages of BMDC. It also interferes with antigen and MHC-II molecule processing and Toll-like receptor signalling pathway, resulting in functionally deficient DC that induce a suboptimum immune response.

  13. Comparative analysis of canine monocyte- and bone-marrow-derived dendritic cells.

    Science.gov (United States)

    Ricklin Gutzwiller, Meret Elisabeth; Moulin, Hervé Raphaël; Zurbriggen, Andreas; Roosje, Petra; Summerfield, Artur

    2010-01-01

    Dendritic cells (DC) represent a heterogeneous cell family of major importance for innate immune responses against pathogens and antigen presentation during infection, cancer, allergy and autoimmunity. The aim of the present study was to characterize canine DC generated in vitro with respect to their phenotype, responsiveness to toll-like receptor (TLR) ligands and T-cell stimulatory capacity. DC were derived from monocytes (MoDC) and from bone marrow hematopoietic cells cultured with either Flt3-ligand (FL-BMDC) or with GM-CSF (GM-BMDC). All three methods generated cells with typical DC morphology that expressed CD1c, CD11c and CD14, similar to macrophages. However, CD40 was only found on DC, CD206 on MPhi and BMDC, but not on monocytes and MoDC. CD1c was not found on monocytes but on all in vitro differentiated cells. FL-BMDC and GM-BMDC were partially positive for CD4 and CD8. CD45RA was expressed on a subset of FL-BMDC but not on MoDC and GM-BMDC. MoDC and FL-DC responded well to TLR ligands including poly-IC (TLR2), Pam3Cys (TLR3), LPS (TLR4) and imiquimod (TLR7) by up-regulating MHC II and CD86. The generated DC and MPhi showed a stimulatory capacity for lymphocytes, which increased upon maturation with LPS. Taken together, our results are the basis for further characterization of canine DC subsets with respect to their role in inflammation and immune responses.

  14. Processing of the Bovine Spongiform Encephalopathy-Specific Prion Protein by Dendritic Cells

    Science.gov (United States)

    Rybner-Barnier, Catherine; Jacquemot, Catherine; Cuche, Céline; Doré, Grégory; Majlessi, Laleh; Gabellec, Marie-Madeleine; Moris, Arnaud; Schwartz, Olivier; Di Santo, James; Cumano, Ana; Leclerc, Claude; Lazarini, Françoise

    2006-01-01

    Dendritic cells (DC) are suspected to be involved in transmissible spongiform encephalopathies, including bovine spongiform encephalopathy (BSE). We detected the disease-specific, protease-resistant prion protein (PrPbse) in splenic DC purified by magnetic cell sorting 45 days after intraperitoneal inoculation of BSE prions in immunocompetent mice. We showed that bone marrow-derived DC (BMDC) from wild-type or PrP-null mice acquired both PrPbse and prion infectivity within 2 h of in vitro culture with a BSE inoculum. BMDC cleared PrPbse within 2 to 3 days of culture, while BMDC infectivity was only 10-fold diminished between days 1 and 6 of culture, suggesting that the infectious unit in BMDC is not removed at the same rate as PrPbse is removed from these cells. Bone marrow-derived plasmacytoid DC and bone marrow-derived macrophages (BMM) also acquired and degraded PrPbse when incubated with a BSE inoculum, with kinetics very similar to those of BMDC. PrPbse capture is probably specific to antigen-presenting cells since no uptake of PrPbse was observed when splenic B or T lymphocytes were incubated with a BSE inoculum in vitro. Lipopolysaccharide activation of BMDC or BMM prior to BSE infection resulted in an accelerated breakdown of PrPbse. Injected by the intraperitoneal route, BMDC were not infectious for alymphoid recombination-activated gene 20/common cytokine γ chain-deficient mice, suggesting that these cells are not capable of directly propagating BSE infectivity to nerve endings. PMID:16641258

  15. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis.

    Science.gov (United States)

    Pastille, Eva; Didovic, Sonja; Brauckmann, Daniela; Rani, Meenakshi; Agrawal, Hemant; Schade, F Ulrich; Zhang, Yang; Flohé, Stefanie B

    2011-01-15

    Murine polymicrobial sepsis is associated with a sustained reduction of dendritic cell (DC) numbers in lymphoid organs and with a dysfunction of DC that is considered to mediate the chronic susceptibility of post-septic mice to secondary infections. We investigated whether polymicrobial sepsis triggered an altered de novo formation and/or differentiation of DC in the bone marrow. BrdU labeling experiments indicated that polymicrobial sepsis did not affect the formation of splenic DC. DC that differentiated from bone marrow (bone marrow-derived DC [BMDC]) of post-septic mice released enhanced levels of IL-10 but did not show an altered phenotype in comparison with BMDC from sham mice. Adoptive transfer experiments of BMDC into naive mice revealed that BMDC from post-septic mice impaired Th1 priming but not Th cell expansion and suppressed the innate immune defense mechanisms against Pseudomonas bacteria in the lung. Accordingly, BMDC from post-septic mice inhibited the release of IFN-γ from NK cells that are critical for the protection against Pseudomonas. Additionally, sepsis was associated with a loss of resident DC in the bone marrow. Depletion of resident DC from bone marrow of sham mice led to the differentiation of BMDC that were impaired in Th1 priming similar to BMDC from post-septic mice. Thus, in response to polymicrobial sepsis, DC precursor cells in the bone marrow developed into regulatory DC that impaired Th1 priming and NK cell activity and mediated immunosuppression. The absence of resident DC in the bone marrow after sepsis might have contributed to the modulation of DC differentiation.

  16. Processing of the bovine spongiform encephalopathy-specific prion protein by dendritic cells.

    Science.gov (United States)

    Rybner-Barnier, Catherine; Jacquemot, Catherine; Cuche, Céline; Doré, Grégory; Majlessi, Laleh; Gabellec, Marie-Madeleine; Moris, Arnaud; Schwartz, Olivier; Di Santo, James; Cumano, Ana; Leclerc, Claude; Lazarini, Françoise

    2006-05-01

    Dendritic cells (DC) are suspected to be involved in transmissible spongiform encephalopathies, including bovine spongiform encephalopathy (BSE). We detected the disease-specific, protease-resistant prion protein (PrP(bse)) in splenic DC purified by magnetic cell sorting 45 days after intraperitoneal inoculation of BSE prions in immunocompetent mice. We showed that bone marrow-derived DC (BMDC) from wild-type or PrP-null mice acquired both PrP(bse) and prion infectivity within 2 h of in vitro culture with a BSE inoculum. BMDC cleared PrP(bse) within 2 to 3 days of culture, while BMDC infectivity was only 10-fold diminished between days 1 and 6 of culture, suggesting that the infectious unit in BMDC is not removed at the same rate as PrP(bse) is removed from these cells. Bone marrow-derived plasmacytoid DC and bone marrow-derived macrophages (BMM) also acquired and degraded PrP(bse) when incubated with a BSE inoculum, with kinetics very similar to those of BMDC. PrP(bse) capture is probably specific to antigen-presenting cells since no uptake of PrP(bse) was observed when splenic B or T lymphocytes were incubated with a BSE inoculum in vitro. Lipopolysaccharide activation of BMDC or BMM prior to BSE infection resulted in an accelerated breakdown of PrP(bse). Injected by the intraperitoneal route, BMDC were not infectious for alymphoid recombination-activated gene 2(0)/common cytokine gamma chain-deficient mice, suggesting that these cells are not capable of directly propagating BSE infectivity to nerve endings.

  17. Analysis of maturation states of rat bone marrow-derived dendritic cells using an improved culture technique.

    Science.gov (United States)

    Grauer, Oliver; Wohlleben, Gisela; Seubert, Silvia; Weishaupt, Andreas; Kämpgen, Eckhart; Gold, Ralf

    2002-04-01

    In this study, we examined in more detail the development of rat bone marrow-derived dendritic cells (BMDC). A two-stage culture system was used to propagate BMDC from rat bone marrow precursors. BMDC developed within clusters of proliferating cells after repetitive addition of rat granulocyte/macrophage colony-stimulating factor and rat interleukin (IL)-4 at a concentration of 5 ng/ml to the cultures. Fluorescence-activated cell sorter analysis performed at an early stage of development (day 6) revealed an immature phenotype with intermediate levels of major histocompatibility complex (MHC) class II expression and low levels of the costimulator molecules CD80 and CD86. Upon further culture, a strong upregulation of MHC class II, costimulatory and adhesion molecules could be observed, whereas macrophage marker antigens were downregulated. Late-stage BMDC (day 10) showed a high expression of MHC class I and II, ICAM-1, Ox62 and CD11c, and revealed a split pattern of B7-1 and B7-2. The cell yield was about 40% of the initially plated bone marrow cells with 80% MHC class II-high and less than 20% MHC class II-low positive cells. Full maturation of rat BMDC (day 12) with an almost uniform expression of B7 was achieved by subsequent subculture and further stimulation with rat tumour necrosis factor alpha (TNF-alpha), lipopolysaccharide (LPS) or soluble CD40 ligand (CD40L). Analysis of the cell supernatant revealed a strong IL-12 production after LPS or CD40L, and to a lesser extent after TNF-alpha stimulation. Additionally, LPS-treated, but not CD40L-treated BMDC secreted TNF-alpha into the supernatant. Early-stage BMDC sufficiently triggered a T cell receptor (TCR) downregulation, but did not stimulate naive T cells in an allogeneic mixed leukocyte reaction (MLR) and revealed a low stimulatory capacity in an antigen-specific T cell assay. In contrast, late-stage BMDC and especially fully mature BMDC strongly induced TCR internalisation, elicited high T cell responses

  18. Carbon black nanoparticles promote the maturation and function of mouse bone marrow-derived dendritic cells.

    Science.gov (United States)

    Koike, Eiko; Takano, Hirohisa; Inoue, Ken-Ichiro; Yanagisawa, Rie; Kobayashi, Takahiro

    2008-09-01

    Particulate matter including carbon black (CB) nanoparticles can enhance antigen-related inflammation and immunoglobulin production in vivo. Dendritic cells (DC) as antigen-presenting cells (APC) are the most capable inducers of immune responses. The present study was designed to determine whether CB nanoparticles affect the maturation/activation and function of DC in vitro. DC were differentiated from bone marrow (BM) cells of BALB/c mice by culture with granulocyte macrophage colony stimulating factor (GM-CSF). At day 8 of culture, BM-derived DC (BMDC) were exposed to CB nanoparticles with a diameter of 14nm or 56nm for 24h. The expression of major histocompatibility complex (MHC) class II, DEC205, CD80, and CD86 (maturation/activation markers of BMDC) was measured by flow cytometry. BMDC function was evaluated by an allogeneic mixed lymphocyte reaction (MLR) assay. CB nanoparticles significantly increased the expression of DEC205 and CD86 in BMDC and tended to increase MHC class II and CD80 expression; however, a size-dependent effect was not observed. On the other hand, BMDC-mediated MLR was significantly enhanced by the CB nanoparticles and the enhancement was greater by 14nm CB nanoparticles than by 56nm CB nanoparticles. Taken together, CB nanoparticles can promote the maturation/activation and function of BMDC, which could be related to their effects on allergic diseases and/or responses. In addition, BMDC-mediated MLR might be useful assay for in vitro screening for adjuvant activity of environmental toxicants.

  19. H2-M3-restricted CD8+ T cells induced by peptide-pulsed dendritic cells confer protection against Mycobacterium tuberculosis.

    Science.gov (United States)

    Doi, Takehiko; Yamada, Hisakata; Yajima, Toshiki; Wajjwalku, Worawidh; Hara, Toshiro; Yoshikai, Yasunobu

    2007-03-15

    One of the oligopolymorphic MHC class Ib molecules, H2-M3, presents N-formylated peptides derived from bacteria. In this study, we tested the ability of an H2-M3-binding peptide, TB2, to induce protection in C57BL/6 mice against Mycobacterium tuberculosis. Immunization with bone marrow-derived dendritic cell (BMDC) pulsed with TB2 or a MHC class Ia-binding peptide, MPT64(190-198) elicited an expansion of Ag-specific CD8+ T cells in the spleen and the lung. The number of TB2-specific CD8+ T cells reached a peak on day 6, contracted with kinetics similar to MPT64(190-198)-specific CD8+ T cells and was maintained at an appreciable level for at least 60 days. The TB2-specific CD8+ T cells produced less effector cytokines but have stronger cytotoxic activity than MPT64(190-198)-specific CD8+ T cells. Mice immunized with TB2-pulsed BMDC as well as those with MPT64(190-198)-pulsed BMDC showed significant protection against an intratracheal challenge with M. tuberculosis H37Rv. However, histopathology of the lung in mice immunized with TB2-pulsed BMDC was different from mice immunized with MPT64(190-198)-pulsed BMDC. Our results suggest that immunization with BMDC pulsed with MHC class Ib-restricted peptides would be a useful vaccination strategy against M. tuberculosis.

  20. Activation of the Inflammasome and Enhanced Migration of Microparticle-Stimulated Dendritic Cells to the Draining Lymph Node

    OpenAIRE

    Meraz, Ismail M.; Melendez, Brenda; Gu, Jianhua; Wong, Stephen T. C.; Liu, Xuewu; Andersson, Helen A.; Serda, Rita E.

    2012-01-01

    Porous silicon microparticles presenting pathogen-associated molecular patterns mimic pathogens, enhancing internalization of the microparticles and activation of antigen presenting dendritic cells. We demonstrate abundant uptake of microparticles bound by the TLR-4 ligands LPS and MPL by murine bone marrow-derived dendritic cells (BMDC). Labeled microparticles induce concentration-dependent production of IL-1β, with inhibition by the caspase inhibitor Z-VAD-FMK supporting activation of the N...

  1. Mouse dendritic cells pulsed with capsular polysaccharide induce resistance to lethal pneumococcal challenge: roles of T cells and B cells.

    Directory of Open Access Journals (Sweden)

    Noam Cohen

    Full Text Available Mice are exceedingly sensitive to intra-peritoneal (IP challenge with some virulent pneumococci (LD50 = 1 bacterium. To investigate how peripheral contact with bacterial capsular polysaccharide (PS antigen can induce resistance, we pulsed bone marrow dendritic cells (BMDC of C57BL/6 mice with type 4 or type 3 PS, injected the BMDC intra-foot pad (IFP and challenged the mice IP with supra-lethal doses of pneumococci. We examined the responses of T cells and B cells in the draining popliteal lymph node and measured the effects on the bacteria in the peritoneum and blood. We now report that: 1 The PS co-localized with MHC molecules on the BMDC surface; 2 PS-specific T and B cell proliferation and IFNγ secretion was detected in the draining popliteal lymph nodes on day 4; 3 Type-specific resistance to lethal IP challenge was manifested only after day 5; 4 Type-specific IgM and IgG antibodies were detected in the sera of only some of the mice, but B cells were essential for resistance; 5 Control mice vaccinated with a single injection of soluble PS did not develop a response in the draining popliteal lymph node and were not protected; 6 Mice injected with unpulsed BMDC also did not resist challenge: In unprotected mice, pneumococci entered the blood shortly after IP inoculation and multiplied exponentially in both blood and peritoneum killing the mice within 20 hours. Mice vaccinated with PS-pulsed BMDC trapped the bacteria in the peritoneum. The trapped bacteria proliferated exponentially IP, but died suddenly at 18-20 hours. Thus, a single injection of PS antigen associated with intact BMDC is a more effective vaccine than the soluble PS alone. This model system provides a platform for studying novel aspects of PS-targeted vaccination.

  2. Mouse dendritic cells pulsed with capsular polysaccharide induce resistance to lethal pneumococcal challenge: roles of T cells and B cells.

    Science.gov (United States)

    Cohen, Noam; Margalit, Raanan; Pevsner-Fischer, Meirav; Yona, Simon; Jung, Steffen; Eisenbach, Lea; Cohen, Irun R

    2012-01-01

    Mice are exceedingly sensitive to intra-peritoneal (IP) challenge with some virulent pneumococci (LD50 = 1 bacterium). To investigate how peripheral contact with bacterial capsular polysaccharide (PS) antigen can induce resistance, we pulsed bone marrow dendritic cells (BMDC) of C57BL/6 mice with type 4 or type 3 PS, injected the BMDC intra-foot pad (IFP) and challenged the mice IP with supra-lethal doses of pneumococci. We examined the responses of T cells and B cells in the draining popliteal lymph node and measured the effects on the bacteria in the peritoneum and blood. We now report that: 1) The PS co-localized with MHC molecules on the BMDC surface; 2) PS-specific T and B cell proliferation and IFNγ secretion was detected in the draining popliteal lymph nodes on day 4; 3) Type-specific resistance to lethal IP challenge was manifested only after day 5; 4) Type-specific IgM and IgG antibodies were detected in the sera of only some of the mice, but B cells were essential for resistance; 5) Control mice vaccinated with a single injection of soluble PS did not develop a response in the draining popliteal lymph node and were not protected; 6) Mice injected with unpulsed BMDC also did not resist challenge: In unprotected mice, pneumococci entered the blood shortly after IP inoculation and multiplied exponentially in both blood and peritoneum killing the mice within 20 hours. Mice vaccinated with PS-pulsed BMDC trapped the bacteria in the peritoneum. The trapped bacteria proliferated exponentially IP, but died suddenly at 18-20 hours. Thus, a single injection of PS antigen associated with intact BMDC is a more effective vaccine than the soluble PS alone. This model system provides a platform for studying novel aspects of PS-targeted vaccination.

  3. Microparticulate β-glucan vaccine conjugates phagocytized by dendritic cells activate both naïve CD4 and CD8 T cells in vitro.

    Science.gov (United States)

    Berner, Vanessa K; duPre, Sally A; Redelman, Doug; Hunter, Kenneth W

    2015-01-01

    Microparticulate β-glucan (MG) conjugated to vaccine antigen has been shown to serve as an effective adjuvant in vivo. To further study antigen presentation by MG:vaccine conjugates, bone marrow-derived dendritic cells (BMDC) were treated with MG conjugated to ovalbumin (OVA), then interacted with splenocytes from DO11.10 transgenic mice expressing an OVA peptide-specific T cell receptor. BMDC treated with MG:OVA induced significantly higher numbers of activated (CD25+CD69+) OVA-specific CD4+ T cells than BMDC treated with OVA alone. BMDC treated with MG:OVA upregulated CD86 and CD40 expression as well as MG alone, indicating that conjugation of OVA does not alter the immunostimulatory capacity of MG. Activation of CD8+ OVA-specific OT-1 cells showed that MG:OVA is also capable of enhancing cross-presentation by BMDC to CD8+ cytotoxic T cells. These results show that MG acts as an adjuvant to enhance antigen presentation by dendritic cells to naïve, antigen-specific CD4 and CD8 T cells.

  4. Proapoptotic chemotherapeutic drugs induce noncanonical processing and release of IL-1β via caspase-8 in dendritic cells.

    Science.gov (United States)

    Antonopoulos, Christina; El Sanadi, Caroline; Kaiser, William J; Mocarski, Edward S; Dubyak, George R

    2013-11-01

    The identification of noncanonical (caspase-1-independent) pathways for IL-1β production has unveiled an intricate interplay between inflammatory and death-inducing signaling platforms. We found a heretofore unappreciated role for caspase-8 as a major pathway for IL-1β processing and release in murine bone marrow-derived dendritic cells (BMDC) costimulated with TLR4 agonists and proapoptotic chemotherapeutic agents such as doxorubicin (Dox) or staurosporine (STS). The ability of Dox to stimulate release of mature (17-kDa) IL-1β was nearly equivalent in wild-type (WT) BMDC, Casp1(-/-)Casp11(-/-) BMDC, WT BMDC treated with the caspase-1 inhibitor YVAD, and BMDC lacking the inflammasome regulators ASC, NLRP3, or NLRC4. Notably, Dox-induced production of mature IL-1β was temporally correlated with caspase-8 activation in WT cells and greatly suppressed in Casp8(-/-)Rip3(-/-) or Trif(-/-) BMDC, as well as in WT BMDC treated with the caspase-8 inhibitor, IETD. Similarly, STS stimulated robust IL-1β processing and release in Casp1(-/-)Casp11(-/-) BMDC that was IETD sensitive. These data suggest that TLR4 induces assembly of caspase-8-based signaling complexes that become licensed as IL-1β-converting enzymes in response to Dox and STS. The responses were temporally correlated with downregulation of cellular inhibitor of apoptosis protein 1, suggesting suppressive roles for this and likely other inhibitor of apoptosis proteins on the stability and/or proteolytic activity of the caspase-8 platforms. Thus, proapoptotic chemotherapeutic agents stimulate the caspase-8-mediated processing and release of IL-1β, implicating direct effects of such drugs on a noncanonical inflammatory cascade that may modulate immune responses in tumor microenvironments.

  5. Modulation of murine bone marrow-derived dendritic cells and B-cells by MCS-18 a natural product isolated from Helleborus purpurascens.

    Science.gov (United States)

    Littmann, Leonie; Rössner, Susanne; Kerek, Franz; Steinkasserer, Alexander; Zinser, Elisabeth

    2008-01-01

    MCS-18, a natural product isolated from Helleborus purpurascens has been shown to have several beneficial effects in inflammatory and autoimmune disorders. However, very little is known regarding the immuno-modulatory capacity of MCS-18 in respect to murine bone marrow-derived dendritic cells (BM-DC) and B-cells. Thus, in the present study we examined the effect of MCS-18 on murine BM-DC and B-cells. Interestingly MCS-18 inhibited the expression of important DC-specific molecules and lead to an impaired T-cell stimulation capacity. In addition, MCS-18 also reduced B-cell proliferation and immunoglobulin production.

  6. Specific activation of dendritic cells enhances clearance of Bacillus anthracis following infection.

    Directory of Open Access Journals (Sweden)

    Iain J T Thompson

    Full Text Available Dendritic cells are potent activators of the immune system and have a key role in linking innate and adaptive immune responses. In the current study we have used ex vivo pulsed bone marrow dendritic cells (BMDC in a novel adoptive transfer strategy to protect against challenge with Bacillus anthracis, in a murine model. Pre-pulsing murine BMDC with either recombinant Protective Antigen (PA or CpG significantly upregulated expression of the activation markers CD40, CD80, CD86 and MHC-II. Passive transfusion of mice with pulsed BMDC, concurrently with active immunisation with rPA in alum, significantly enhanced (p<0.001 PA-specific splenocyte responses seven days post-immunisation. Parallel studies using ex vivo DCs expanded from human peripheral blood and activated under the same conditions as the murine DC, demonstrated that human DCs had a PA dose-related significant increase in the markers CD40, CD80 and CCR7 and that the increases in CD40 and CD80 were maintained when the other activating components, CpG and HK B. anthracis were added to the rPA in culture. Mice vaccinated on a single occasion intra-muscularly with rPA and alum and concurrently transfused intra-dermally with pulsed BMDC, demonstrated 100% survival following lethal B. anthracis challenge and had significantly enhanced (p<0.05 bacterial clearance within 2 days, compared with mice vaccinated with rPA and alum alone.

  7. The peptide sequence of diacyl lipopeptides determines dendritic cell TLR2-mediated NK activation.

    Science.gov (United States)

    Azuma, Masahiro; Sawahata, Ryoko; Akao, Yuusuke; Ebihara, Takashi; Yamazaki, Sayuri; Matsumoto, Misako; Hashimoto, Masahito; Fukase, Koichi; Fujimoto, Yukari; Seya, Tsukasa

    2010-09-02

    Natural killer (NK) cells are lymphocyte effectors that are activated to control certain microbial infections and tumors. Many NK-activating and regulating receptors are involved in regulating NK cell function. In addition, activation of naïve NK cells is fundamentally triggered by cytokines or myeloid dendritic cells (mDC) in various modes. In this study, we synthesized 16 S-[2,3-bis(palmitoyl)propyl]cysteine (Pam2Cys) lipopeptides with sequences designed from lipoproteins of Staphylococcus aureus, and assessed their functional properties using mouse (C57BL/6) bone marrow-derived DC (BMDC) and NK cells. NK cell activation was evaluated by three criteria: IFN-gamma production, up-regulation of NK activation markers and cytokines, and NK target (B16D8 cell) cytotoxicity. The diacylated lipopeptides acted as TLR2 ligands, inducing up-regulation of CD25/CD69/CD86, IL-6, and IL-12p40, which represent maturation of BMDC. Strikingly, the Pam2Cys lipopeptides induced mouse NK cell activation based on these criteria. Cell-cell contact by Pam2Cys peptide-stimulated BMDC and NK cells rather than soluble mediators released by stimulated BMDC induced activation of NK cells. For most lipopeptides, the BMDC TLR2/MyD88 pathway was responsible for driving NK activation, while some slightly induced direct activation of NK cells via the TLR2/MyD88 pathway in NK cells. The potential for NK activation was critically regulated by the peptide primary sequence. Hydrophobic or proline-containing sequences proximal to the N-terminal lipid moiety interfered with the ability of lipopeptides to induce BMDC-mediated NK activation. This mode of NK activation is distinctly different from that induced by polyI:C, which is closely associated with type I IFN-inducing pathways of BMDC. These results imply that the MyD88 pathway of BMDC governs an alternative NK-activating pathway in which the peptide sequence of TLR2-agonistic lipopeptides critically affects the potential for NK activation.

  8. The peptide sequence of diacyl lipopeptides determines dendritic cell TLR2-mediated NK activation.

    Directory of Open Access Journals (Sweden)

    Masahiro Azuma

    Full Text Available Natural killer (NK cells are lymphocyte effectors that are activated to control certain microbial infections and tumors. Many NK-activating and regulating receptors are involved in regulating NK cell function. In addition, activation of naïve NK cells is fundamentally triggered by cytokines or myeloid dendritic cells (mDC in various modes. In this study, we synthesized 16 S-[2,3-bis(palmitoylpropyl]cysteine (Pam2Cys lipopeptides with sequences designed from lipoproteins of Staphylococcus aureus, and assessed their functional properties using mouse (C57BL/6 bone marrow-derived DC (BMDC and NK cells. NK cell activation was evaluated by three criteria: IFN-gamma production, up-regulation of NK activation markers and cytokines, and NK target (B16D8 cell cytotoxicity. The diacylated lipopeptides acted as TLR2 ligands, inducing up-regulation of CD25/CD69/CD86, IL-6, and IL-12p40, which represent maturation of BMDC. Strikingly, the Pam2Cys lipopeptides induced mouse NK cell activation based on these criteria. Cell-cell contact by Pam2Cys peptide-stimulated BMDC and NK cells rather than soluble mediators released by stimulated BMDC induced activation of NK cells. For most lipopeptides, the BMDC TLR2/MyD88 pathway was responsible for driving NK activation, while some slightly induced direct activation of NK cells via the TLR2/MyD88 pathway in NK cells. The potential for NK activation was critically regulated by the peptide primary sequence. Hydrophobic or proline-containing sequences proximal to the N-terminal lipid moiety interfered with the ability of lipopeptides to induce BMDC-mediated NK activation. This mode of NK activation is distinctly different from that induced by polyI:C, which is closely associated with type I IFN-inducing pathways of BMDC. These results imply that the MyD88 pathway of BMDC governs an alternative NK-activating pathway in which the peptide sequence of TLR2-agonistic lipopeptides critically affects the potential for NK

  9. Toll-like receptor 4 is not required for the full maturation of dendritic cells or for the degradation of Gram-negative bacteria.

    Science.gov (United States)

    Rescigno, Maria; Urbano, Matteo; Rimoldi, Monica; Valzasina, Barbara; Rotta, Gianluca; Granucci, Francesca; Ricciardi-Castagnoli, Paola

    2002-10-01

    Toll-like receptor 4 (TLR4) has been recently associated with cellular responses to lipopolysaccharide (LPS), and mice mutated in tlr4, such as C57BL/10ScCr or C3H/HeJ mice, become hyporesponsive to LPS. In this study, we have analyzed the capacity of bone marrow-derived dendritic cells (BMDC) from C57BL/10ScCr (ScCr-BMDC) or C3H/HeJ (HeJ-BMDC) mice to respond to LPS or to Gram-negative bacteria. We show that ScCr- or HeJ-BMDC are insensitive to LPS, but can mature in response to live and killed Gram-negative bacteria. Interestingly, only ScCr-BMDC but not HeJ-BMDC, stimulated with bacteria, have reduced capacity to produce pro- and anti-inflammatory cytokines as compared to BMDC from control mice, probably due to genetic defects unrelated to the tlr4 mutation. Nevertheless, ScCr-BMDC and ScCr BM-macrophages (BM-Mphi) phagocytose Salmonella typhimurium similarly to control cells, indicating that TLR4 is not compulsory for bacterial uptake. Moreover, BM-Mphi, but not BM-DC from B10ScCr or C3H/HeJ mice, are impaired in their capacity to kill intracellular bacteria and to produce NO as compared to wild type controls. However, the bacteria killing property of BM-Mphi is completely restored by pretreating the cells with IFN-gamma. Hence, TLR4 plays different roles in DC versus Mphi.

  10. Nocardia brasiliensis Induces Formation of Foamy Macrophages and Dendritic Cells In Vitro and In Vivo

    Science.gov (United States)

    Meester, Irene; Rosas-Taraco, Adrian Geovanni; Salinas-Carmona, Mario Cesar

    2014-01-01

    Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC)-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM) or DC (BMDC) were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection. PMID:24936860

  11. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Irene Meester

    Full Text Available Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM or DC (BMDC were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE. Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  12. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Science.gov (United States)

    Meester, Irene; Rosas-Taraco, Adrian Geovanni; Salinas-Carmona, Mario Cesar

    2014-01-01

    Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC)-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM) or DC (BMDC) were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  13. Accelerated differentiation of bone marrow-derived dendritic cells in atopic prone mice.

    Science.gov (United States)

    Koike, Eiko; Takano, Hirohisa; Inoue, Ken-Ichiro; Yanagisawa, Rie

    2008-12-20

    NC/Nga mice are atopic prone mice that can be an animal model for human atopic dermatitis (AD). Dendritic cells (DC) as professional antigen-presenting cells (APC) are the most capable inducers of immune responses. The present study using BALB/c, C57BL/6J, and NC/Nga male mice investigated whether differentiation and function of DC were associated with atopic prone. Bone marrow-derived DC (BMDC) were differentiated by culture with granulocyte macrophage colony stimulating factor (GM-CSF). At days 0, 6, and 8 of culture with GM-CSF, the expression of MHC class II, co-stimulatory molecules (CD80, CD86), and of DC markers (CD11c, DEC205) was measured by flow cytometry. Antigen-presenting activity of BMDC and cytokine production were measured by ELISA. The cell numbers and the expression of MHC class II, co-stimulatory molecules, and of DC markers on BMDC from NC/Nga mice were significantly larger than those from BALB/c and C57BL/6J mice. Antigen-presenting activity of BMDC was significantly greater in NC/Nga and C57BL/6J mice than in BALB/c mice. BMDC-stimulated IFN-gamma production from T-cells was significantly lower in NC/Nga or BALB/c mice than in C57BL/6J mice, whereas IL-4 production was significantly greater in NC/Nga and C57BL/6J mice than in BALB/c mice. Taken together, GM-CSF-stimulated differentiation of BMDC was more accelerated in atopic prone NC/Nga mice than in the other strains of mice. The enhancement of differentiation and function of DC caused by genetic background may be related, at least partly, to the induction or aggravation of allergic/atopic diseases.

  14. The role of dendritic cells in the generation of CD4(+) CD25(HI) Foxp3(+) T cells induced by amino acid copolymers.

    Science.gov (United States)

    Kawamoto, Norio; Ohnishi, Hidenori; Kondo, Naomi; Strominger, Jack L

    2013-01-01

    The effects of the amino acid copolymers used in the therapy of experimental autoimmune encephalomyelitis, poly(Y,E,A,K)(n) (Copaxone(®)) and poly(Y,F,A,K)(n), on murine myeloid cells have been investigated. After administration of these copolymers to mice, increases in several splenic myeloid cell populations were observed, including CD11b(+) CD11c(+) dendritic cells. The latter were the major splenic cell type that secreted CCL22 (macrophage-derived chemokine) on stimulation with amino acid copolymers. CCL22 secretion was also stimulated from bone marrow-derived dendritic cells (BMDC) generated with GM-CSF in much larger amounts than from bone marrow-derived macrophages generated with M-CSF. Moreover, CCL22 secretion could also be obtained using BMDC generated from two different types of MHC II(-/-) mice, indicating that an innate immune receptor is involved. Finally, incubation of these BMDC or splenic dendritic cells with naive CD4(+) CD25(-) T cells resulted in formation of CD4(+) CD25(HI) Foxp3 T cells (~25% of which were Foxp3(+)). The number of these regulatory cells was doubled by pretreatment of BMDC with amino acid copolymers.

  15. Sphingosine 1-Phosphate Receptor 3-Deficient Dendritic Cells Modulate Splenic Responses to Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Bajwa, Amandeep; Huang, Liping; Kurmaeva, Elvira; Gigliotti, Joseph C; Ye, Hong; Miller, Jacqueline; Rosin, Diane L; Lobo, Peter I; Okusa, Mark D

    2016-04-01

    The plasticity of dendritic cells (DCs) permits phenotypic modulation ex vivo by gene expression or pharmacologic agents, and these modified DCs can exert therapeutic immunosuppressive effects in vivo through direct interactions with T cells, either inducing T regulatory cells (T(REG)s) or causing anergy. Sphingosine 1-phosphate (S1P) is a sphingolipid and the natural ligand for five G protein-coupled receptors (S1P1, S1P2, S1P3, S1P4, and S1P5), and S1PR agonists reduce kidney ischemia-reperfusion injury (IRI) in mice. S1pr3(-/-)mice are protected from kidney IRI, because DCs do not mature. We tested the therapeutic advantage of S1pr3(-/-) bone marrow-derived dendritic cell (BMDC) transfers in kidney IRI. IRI produced a rise in plasma creatinine (PCr) levels in mice receiving no cells (NCs) and mice pretreated with wild-type (WT) BMDCs. However, S1pr3(-/-) BMDC-pretreated mice were protected from kidney IRI. S1pr3(-/-) BMDC-pretreated mice had significantly higher numbers of splenic T(REG)s compared with NC and WT BMDC-pretreated mice. S1pr3(-/-) BMDCs did not attenuate IRI in splenectomized, Rag-1(-/-), or CD11c(+) DC-depleted mice. Additionally, S1pr3(-/-) BMDC-dependent protection required CD169(+)marginal zone macrophages and the macrophage-derived chemokine CCL22 to increase splenic CD4(+)Foxp3(+) T(REG)s. Pretreatment with S1pr3(-/-) BMDCs also induced T(REG)-dependent protection against IRI in an allogeneic mouse model. In summary, adoptively transferred S1pr3(-/-) BMDCs prevent kidney IRI through interactions within the spleen and expansion of splenic CD4(+)Foxp3(+) T(REG)s. We conclude that genetically induced deficiency of S1pr3 in allogenic BMDCs could serve as a therapeutic approach to prevent IRI-induced AKI.

  16. P2X7R activation drives distinct IL-1 responses in dendritic cells compared to macrophages

    OpenAIRE

    Englezou, Pavlos C.; Rothwell, Simon W.; Ainscough, Joseph S.; Brough, David; Landsiedel, Robert; Verkhratsky, Alexei; Kimber, Ian; Dearman, Rebecca J

    2015-01-01

    The P2X7R is a functionally distinct member of the P2X family of non-selective cation channels associated with rapid activation of the inflammasome complex and signalling interleukin (IL)-1β release in macrophages. The main focus of this investigation was to compare P2X7R-driven IL-1 production by primary murine bone marrow derived dendritic cells (BMDC) and macrophages (BMM). P2X7R expression in murine BMDC and BMM at both transcriptional (P2X7A variant) and protein levels was demonstrated....

  17. Diazotization of kynurenine by acidified nitrite secreted from indoleamine 2,3-dioxygenase-expressing myeloid dendritic cells.

    Science.gov (United States)

    Hara, Toshiaki; Yamakura, Fumiyuki; Takikawa, Osamu; Hiramatsu, Rie; Kawabe, Tsutomu; Isobe, Ken-Ichi; Nagase, Fumihiko

    2008-03-20

    Indoleamine 2,3-dioxygenase (IDO)-initiated tryptophan metabolism along the kynurenine (Kyn) pathway regulates T-cell responses in some dendritic cells (DC) such as plasmacytoid DC. A Kyn assay using HPLC showed that samples were frequently deproteinized with trichloroacetic acid (TCA). In the present study, bone marrow-derived myeloid DC (BMDC) were differentiated from mouse bone marrow cells with GM-CSF. CpG oligodeoxynucleotides (CpG) induced the expression of IDO protein with NO production in BMDC cultured for 24 h. The concentrations of Kyn in the culture supernatants were not increased by stimulation with CpG but rather decreased by based on the Kyn assay after deproteinization with TCA. The level of Kyn exogenously added into the cell-free culture supernatant of BMDC stimulated with CpG was severely decreased by deproteinization with TCA but not methanol, and the decrease was prevented when BMDC was stimulated with CpG in the presence of a NOS inhibitor. Under acidic conditions, Kyn reacted with nitrite produced by BMDC, and generated a new compound that was not detected by Ehrlich reagent reacting with the aromatic amino residue of Kyn. An analysis by mass spectrometry showed the new compound to be a diazotization form of Kyn. In conclusion, the deproteinization of samples by acidic treatment should be avoided for the Kyn assay when NO is produced.

  18. Rabies virus infection induces type I interferon production in an IPS-1 dependent manner while dendritic cell activation relies on IFNAR signaling.

    Science.gov (United States)

    Faul, Elizabeth J; Wanjalla, Celestine N; Suthar, Mehul S; Gale, Michael; Wirblich, Christoph; Schnell, Matthias J

    2010-07-22

    As with many viruses, rabies virus (RABV) infection induces type I interferon (IFN) production within the infected host cells. However, RABV has evolved mechanisms by which to inhibit IFN production in order to sustain infection. Here we show that RABV infection of dendritic cells (DC) induces potent type I IFN production and DC activation. Although DCs are infected by RABV, the viral replication is highly suppressed in DCs, rendering the infection non-productive. We exploited this finding in bone marrow derived DCs (BMDC) in order to differentiate which pattern recognition receptor(s) (PRR) is responsible for inducing type I IFN following infection with RABV. Our results indicate that BMDC activation and type I IFN production following a RABV infection is independent of TLR signaling. However, IPS-1 is essential for both BMDC activation and IFN production. Interestingly, we see that the BMDC activation is primarily due to signaling through the IFNAR and only marginally induced by the initial infection. To further identify the receptor recognizing RABV infection, we next analyzed BMDC from Mda-5-/- and RIG-I-/- mice. In the absence of either receptor, there is a significant decrease in BMDC activation at 12h post infection. However, only RIG-I-/- cells exhibit a delay in type I IFN production. In order to determine the role that IPS-1 plays in vivo, we infected mice with pathogenic RABV. We see that IPS-1-/- mice are more susceptible to infection than IPS-1+/+ mice and have a significantly increased incident of limb paralysis.

  19. Serum amyloid A inhibits dendritic cell apoptosis to induce glucocorticoid resistance in CD4(+) T cells.

    Science.gov (United States)

    Ather, J L; Fortner, K A; Budd, R C; Anathy, V; Poynter, M E

    2013-09-05

    Mediators produced by the airway epithelium control the activation, recruitment, and survival of pulmonary dendritic cells (DC) that present antigen to CD4(+) T cells during the genesis and exacerbation of allergic asthma. The epithelial-derived acute phase protein, serum amyloid A (SAA), induces DC maturation and TH17 polarization. TH17 responses are associated with severe forms of allergic asthma that are poorly controlled by corticosteroids. We sought to determine whether SAA would enhance the survival of DC during serum starvation and could then contribute to the development of a glucocorticoid-resistant phenotype in CD4(+) T cells. Bone marrow-derived dendritic cells (BMDC) that were serum starved in the presence of SAA were protected from activation of caspase-3 and released less lactate dehydrogenase. In comparison with untreated serum-starved BMDC, treatment with SAA downregulated mRNA expression of the pro-apoptotic molecule Bim, increased production of the pro-survival heat shock protein 70 (HSP70), and induced secretion of pro-inflammatory cytokines. SAA-treated BMDC that were serum starved for 48 h remained capable of presenting antigen and induced OTII CD4(+) T cells to secrete IL-17A, IL-17F, IL-21, IL-22, and IFNγ in the presence of ovalbumin. IL-17A, IL-17F, IL-21, and IFNγ production occurred even when the CD4(+) T cells were treated with dexamethasone (Dex), whereas glucocorticoid treatment abolished cytokine secretion by T cells cocultured with untreated serum-starved BMDC. Measurement of Dex-responsive gene expression demonstrated CD4(+) T cells as the target of glucocorticoid hyperresponsiveness manifest as a consequence of BMDC stimulation by SAA. Finally, allergic airway disease induced by SAA and antigen inhalation was unresponsive to Dex treatment. Our results indicate that apo-SAA affects DC to both prolong their viability and increase their inflammatory potential under apoptosis-inducing conditions. These findings reveal mechanisms

  20. P2X7R activation drives distinct IL-1 responses in dendritic cells compared to macrophages.

    Science.gov (United States)

    Englezou, Pavlos C; Rothwell, Simon W; Ainscough, Joseph S; Brough, David; Landsiedel, Robert; Verkhratsky, Alexei; Kimber, Ian; Dearman, Rebecca J

    2015-08-01

    The P2X(7)R is a functionally distinct member of the P2X family of non-selective cation channels associated with rapid activation of the inflammasome complex and signalling interleukin (IL)-1β release in macrophages. The main focus of this investigation was to compare P2X(7)R-driven IL-1 production by primary murine bone marrow derived dendritic cells (BMDC) and macrophages (BMM). P2X(7)R expression in murine BMDC and BMM at both transcriptional (P2X(7)A variant) and protein levels was demonstrated. Priming with lipopolysaccharide (LPS) and receptor activation with adenosine triphosphate (ATP) resulted in markedly enhanced IL-1 (α and β) secretion in BMDC compared with BMM. In both cell types IL-1 production was profoundly inhibited with a P2X(7)R-specific inhibitor (A-740003) demonstrating that this release is predominantly a P2X(7)R-dependent process. These data also suggest that P2X(7)R and caspase-1 activation drive IL-1α release from BMDC. Both cell types expressed constitutively the gain-of-function P2X(7)K as well as the full P2X(7)A variant at equivalent levels. LPS priming reduced significantly levels of P2X(7)A but not P2X(7)K transcripts in both BMDC and BMM. P2X(7)R-induced pore formation, assessed by YO-PRO-1 dye uptake, was greater in BMDC, and these cells were protected from cell death. These data demonstrate that DC and macrophages display distinct patterns of cytokine regulation, particularly with respect to IL-1, as a consequence of cell-type specific differences in the physicochemical properties of the P2X(7)R. Understanding the cell-specific regulation of these cytokines is essential for manipulating such responses in health and disease.

  1. Production of IL-12, IL-23 and IL-27p28 by bone marrow-derived conventional dendritic cells rather than macrophages after LPS/TLR4-dependent induction by Salmonella Enteritidis.

    Science.gov (United States)

    Siegemund, Sabine; Schütze, Nicole; Freudenberg, Marina A; Lutz, Manfred B; Straubinger, Reinhard K; Alber, Gottfried

    2007-01-01

    Induction of the interleukin-12 (IL-12) cytokine family comprising IL-12, IL-23, IL-27, and IL-12p40 by intracellular pathogens is required for orchestration of cell-mediated immune responses. Macrophages (MPhi) have been shown to be a source of IL-12 following TLR4-dependent activation by Salmonella (S.). In this study another antigen-presenting cell type, the conventional dendritic cell (cDC), was analyzed and its cytokine responses compared with those of MPhi. We generated bone marrow-derived conventional dendritic cells (BMDC) and macrophages (BMMPhi) by incubating murine bone marrow cells with supernatants containing granulocyte/macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF), respectively. Stimulation of BMDC and BMMPhi with S. enterica serovar Enteritidis (SE) or LPS resulted in the release of IL-12 and IL-23 by BMDC but not by BMMPhi. Furthermore, BMDC secreted approx. 20-fold more IL-12p40 and IL-27p28 than BMMPhi. However, BMDC and BMMPhi produced similar levels of IL-10. Using BMDC originating from wild-type (wt), TLR2(def) and TLR4(def) mice, we show that in BMDC the induction of IL-12, IL-23, and IL-27p28 by SE is dependent on TLR4, whereas low-level production of p40 is also mediated by pattern recognition receptors (PRR) other than TLR4. Interestingly, LPS- and SE-provoked responses of BMDC were remarkably similar indicating that LPS is the primary danger molecule of SE. Taken together, our results point to cDC rather than MPhi as the major producers of the IL-12 family members during in vitro infection with SE. The mechanisms of recognition of SE, however, appear to be the same for cDC and MPhi.

  2. A Key Role for Inhibins in Dendritic Cell Maturation and Function.

    Science.gov (United States)

    Olguín-Alor, Roxana; de la Fuente-Granada, Marisol; Bonifaz, Laura C; Antonio-Herrera, Laura; García-Zepeda, Eduardo A; Soldevila, Gloria

    2016-01-01

    Inhibins are members of the TGFβ superfamily, which regulate many cellular processes including differentiation, proliferation, survival and apoptosis. Although initially described as hormones regulating the hypothalamus-pituitary-gonadal axis, based on their ability to antagonize Activins, our group has recently reported that they play a role in thymocyte differentiation and survival, as well as in thymic stromal cell maturation and nTreg generation. Here, we used Inhibin knock out mice (Inhα-/-) to investigate the role of Inhibins in peripheral dendritic cell maturation and function. We first demonstrated that LPS treated Inhα+/+ bone marrow derived dendritic cells (BMDC) were capable to produce significant levels of Inhibin A. Interestingly, Inhα-/- BMDC showed reduced MHCII and CD86 upregulation and increased PD-L1 expression in response to LPS compared to Inhα+/+, which correlated with reduced ability to induce proliferation of allogeneic T cells. The "semi-mature" phenotype displayed by Inhα-/- mBMDC correlated with increased levels of IL-10 and slightly decreased IL-6 production after LPS stimulation. In addition, Inhα-/- mBMDC showed impaired migration towards CCL19 and CCL21, assessed by in vitro chemotaxis and in vivo competitive homing experiments, despite their normal CCR7 expression. Furthermore, in vivo LPS-induced DC maturation was also diminished in Inhα-/- mice, specially within the LC (CD207+ CD11b+ CD103-) subpopulation. Finally, analysis of delayed type hypersensitivity responses in Inhα-/- mice, showed reduced ear swelling as a result of reduced cellular infiltration in the skin, correlating with impaired homing of CD207+ DCs to the draining lymph nodes. In summary, our data demonstrate for the first time that Inhibins play a key role in peripheral DC maturation and function, regulating the balance between immunity and tolerance.

  3. A Key Role for Inhibins in Dendritic Cell Maturation and Function

    Science.gov (United States)

    Olguín-Alor, Roxana; de la Fuente-Granada, Marisol; Bonifaz, Laura C.; Antonio-Herrera, Laura; García-Zepeda, Eduardo A.; Soldevila, Gloria

    2016-01-01

    Inhibins are members of the TGFβ superfamily, which regulate many cellular processes including differentiation, proliferation, survival and apoptosis. Although initially described as hormones regulating the hypothalamus-pituitary-gonadal axis, based on their ability to antagonize Activins, our group has recently reported that they play a role in thymocyte differentiation and survival, as well as in thymic stromal cell maturation and nTreg generation. Here, we used Inhibin knock out mice (Inhα-/-) to investigate the role of Inhibins in peripheral dendritic cell maturation and function. We first demonstrated that LPS treated Inhα+/+ bone marrow derived dendritic cells (BMDC) were capable to produce significant levels of Inhibin A. Interestingly, Inhα-/- BMDC showed reduced MHCII and CD86 upregulation and increased PD-L1 expression in response to LPS compared to Inhα+/+, which correlated with reduced ability to induce proliferation of allogeneic T cells. The “semi-mature” phenotype displayed by Inhα-/- mBMDC correlated with increased levels of IL-10 and slightly decreased IL-6 production after LPS stimulation. In addition, Inhα-/- mBMDC showed impaired migration towards CCL19 and CCL21, assessed by in vitro chemotaxis and in vivo competitive homing experiments, despite their normal CCR7 expression. Furthermore, in vivo LPS-induced DC maturation was also diminished in Inhα-/- mice, specially within the LC (CD207+ CD11b+ CD103-) subpopulation. Finally, analysis of delayed type hypersensitivity responses in Inhα-/- mice, showed reduced ear swelling as a result of reduced cellular infiltration in the skin, correlating with impaired homing of CD207+ DCs to the draining lymph nodes. In summary, our data demonstrate for the first time that Inhibins play a key role in peripheral DC maturation and function, regulating the balance between immunity and tolerance. PMID:27936218

  4. Regulation of the expression of nitric oxide synthase by Leishmania mexicana amastigotes in murine dendritic cells.

    Science.gov (United States)

    Wilkins-Rodríguez, Arturo A; Escalona-Montaño, Alma Reyna; Aguirre-García, Magdalena; Becker, Ingeborg; Gutiérrez-Kobeh, Laila

    2010-11-01

    In mammalian hosts, Leishmania parasites are obligatory intracellular organisms that invade macrophages (M phi) and dendritic cells (DC). In M phi, the production of nitric oxide (NO) catalyzed by the inducible nitric oxide synthase (iNOS) has been implicated as a major defense against Leishmania infection. The modulation of this microbicidal mechanism by different species of Leishmania has been well studied in M phi. Although DC are permissive for infection with Leishmania both in vivo and in vitro, the effect of this parasite in the expression of iNOS and NO production in these cells has not been established. To address this issue, we analyzed the regulation of iNOS by Leishmania mexicana amastigotes in murine bone marrow-derived dendritic cells (BMDC) stimulated with LPS and IFN-gamma. We show that the infection of BMDC with amastigotes down regulated NO production and diminished iNOS protein levels in cells stimulated with LPS alone or in combination with IFN-gamma. The reduction in iNOS protein levels and NO production did not correlate with a decrease in iNOS mRNA expression, suggesting that the parasite affects post-transcriptional events of NO synthesis. Although amastigotes were able to reduce NO production in BMDC, the interference with this cytotoxic mechanism was not sufficient to permit the survival of L. mexicana. At 48 h post-infection, BMDC stimulated with LPS+IFN-gamma were able to eliminate the parasites. These results are the first to identify the regulation of iNOS by L. mexicana amastigotes in DC.

  5. Brucella discriminates between mouse dendritic cell subsets upon in vitro infection.

    Science.gov (United States)

    Papadopoulos, Alexia; Gagnaire, Aurélie; Degos, Clara; de Chastellier, Chantal; Gorvel, Jean-Pierre

    2016-01-01

    Brucella is a Gram-negative bacterium responsible for brucellosis, a worldwide re-emerging zoonosis. Brucella has been shown to infect and replicate within Granulocyte macrophage colony-stimulating factor (GMCSF) in vitro grown bone marrow-derived dendritic cells (BMDC). In this cell model, Brucella can efficiently control BMDC maturation. However, it has been shown that Brucella infection in vivo induces spleen dendritic cells (DC) migration and maturation. As DCs form a complex network composed by several subpopulations, differences observed may be due to different interactions between Brucella and DC subsets. Here, we compare Brucella interaction with several in vitro BMDC models. The present study shows that Brucella is capable of replicating in all the BMDC models tested with a high infection rate at early time points in GMCSF-IL15 DCs and Flt3l DCs. GMCSF-IL15 DCs and Flt3l DCs are more activated than the other studied DC models and consequently intracellular bacteria are not efficiently targeted to the ER replicative niche. Interestingly, GMCSF-DC and GMCSF-Flt3l DC response to infection is comparable. However, the key difference between these 2 models concerns IL10 secretion by GMCSF DCs observed at 48 h post-infection. IL10 secretion can explain the weak secretion of IL12p70 and TNFα in the GMCSF-DC model and the low level of maturation observed when compared to GMCSF-IL15 DCs and Flt3l DCs. These models provide good tools to understand how Brucella induce DC maturation in vivo and may lead to new therapeutic design using DCs as cellular vaccines capable of enhancing immune response against pathogens.

  6. Effect of pimecrolimus vs. corticosteroids on murine bone marrow-derived dendritic cell differentiation, maturation and function.

    Science.gov (United States)

    Krummen, Mathias B W; Varga, Georg; Steinert, Meike; Stuetz, Anton; Luger, Thomas A; Grabbe, Stephan

    2006-01-01

    Pimecrolimus (SDZ ASM981) is a non-steroid member of calcineurin inhibitors recently developed for the treatment of inflammatory skin diseases. In this study, we compared the effect of pimecrolimus and corticosteroids on the differentiation, maturation and function of murine bone marrow-derived dendritic cells (BM-DC). We added pimecrolimus at concentrations of 5-500 ng/ml or 0.5 ng/ml mometasone furoate at different timepoints to the BM-DC culture and checked (i) the number of matured cells, (ii) the expression of activation markers, (iii) the release of cytokines and (iv) the stimulatory capacity of the resulting BM-DC in vivo. Even at the highest concentration, pimecrolimus treatment resulted in only modest effects. In the pimecrolimus-treated culture, we observed a decrease in the numbers of matured cells but no significant effects on the expression of activation markers. The release of some inflammatory cytokines was reduced, but the stimulatory capacity in vivo was not affected. In contrast, mometasone furoate has pronounced effects on BM-DC at a concentration ten to 1000 times lower than those used with pimecrolimus. Furthermore, topical treatment of mice with clobetasole cream 0.05% resulted in almost complete depletion of splenic DC and a severe hyposplenia, while high-dose oral pimecrolimus treatment did not show any effects on the spleen or on splenic DC. These results support that pimecrolimus, unlike corticosteroids, has little effects on dendritic cells. To the best of our knowledge, this is the first study of this type with use of BM-DC.

  7. Lactobacillus gasseri SBT2055 Induces TGF-β Expression in Dendritic Cells and Activates TLR2 Signal to Produce IgA in the Small Intestine

    Science.gov (United States)

    Ono-Ohmachi, Aiko; Ukibe, Ken; Ogawa, Akihiro; Moriya, Tomohiro; Kadooka, Yukio; Shiozaki, Takuya; Nakagawa, Hisako; Nakayama, Yosuke; Miyazaki, Tadaaki

    2014-01-01

    Probiotic bacteria provide benefits in enhancing host immune responses and protecting against infection. Induction of IgA production by oral administration of probiotic bacteria in the intestine has been considered to be one reason for this beneficial effect, but the mechanisms of the effect are poorly understood. Lactobacillus gasseri SBT2055 (LG2055) is a probiotic bacterium with properties such as bile tolerance, ability to improve the intestinal environment, and it has preventive effects related to abdominal adiposity. In this study, we have found that oral administration of LG2055 induced IgA production and increased the rate of IgA+ cell population in Peyer's patch and in the lamina propria of the mouse small intestine. The LG2055 markedly increased the amount of IgA in a co-culture of B cells and bone marrow derived dendritic cells (BMDC), and TLR2 signal is critical for it. In addition, it is demonstrated that LG2055 stimulates BMDC to promote the production of TGF-β, BAFF, IL-6, and IL-10, all critical for IgA production from B cells. Combined stimulation of B cells with BAFF and LG2055 enhanced the induction of IgA production. Further, TGF-β signal was shown to be critical for LG2055-induced IgA production in the B cell and BMDC co-culture system, but TGF-β did not induce IgA production in a culture of only B cells stimulated with LG2055. Furthermore, TGF-β was critical for the production of BAFF, IL-6, IL-10, and TGF-β itself from LG2055-stimulated BMDC. These results demonstrate that TGF-β was produced by BMDC stimulated with LG2055 and it has an autocrine/paracrine function essential for BMDC to induce the production of BAFF, IL-6, and IL-10. PMID:25144744

  8. Lactobacillus gasseri SBT2055 induces TGF-β expression in dendritic cells and activates TLR2 signal to produce IgA in the small intestine.

    Science.gov (United States)

    Sakai, Fumihiko; Hosoya, Tomohiro; Ono-Ohmachi, Aiko; Ukibe, Ken; Ogawa, Akihiro; Moriya, Tomohiro; Kadooka, Yukio; Shiozaki, Takuya; Nakagawa, Hisako; Nakayama, Yosuke; Miyazaki, Tadaaki

    2014-01-01

    Probiotic bacteria provide benefits in enhancing host immune responses and protecting against infection. Induction of IgA production by oral administration of probiotic bacteria in the intestine has been considered to be one reason for this beneficial effect, but the mechanisms of the effect are poorly understood. Lactobacillus gasseri SBT2055 (LG2055) is a probiotic bacterium with properties such as bile tolerance, ability to improve the intestinal environment, and it has preventive effects related to abdominal adiposity. In this study, we have found that oral administration of LG2055 induced IgA production and increased the rate of IgA(+) cell population in Peyer's patch and in the lamina propria of the mouse small intestine. The LG2055 markedly increased the amount of IgA in a co-culture of B cells and bone marrow derived dendritic cells (BMDC), and TLR2 signal is critical for it. In addition, it is demonstrated that LG2055 stimulates BMDC to promote the production of TGF-β, BAFF, IL-6, and IL-10, all critical for IgA production from B cells. Combined stimulation of B cells with BAFF and LG2055 enhanced the induction of IgA production. Further, TGF-β signal was shown to be critical for LG2055-induced IgA production in the B cell and BMDC co-culture system, but TGF-β did not induce IgA production in a culture of only B cells stimulated with LG2055. Furthermore, TGF-β was critical for the production of BAFF, IL-6, IL-10, and TGF-β itself from LG2055-stimulated BMDC. These results demonstrate that TGF-β was produced by BMDC stimulated with LG2055 and it has an autocrine/paracrine function essential for BMDC to induce the production of BAFF, IL-6, and IL-10.

  9. Lactobacillus gasseri SBT2055 induces TGF-β expression in dendritic cells and activates TLR2 signal to produce IgA in the small intestine.

    Directory of Open Access Journals (Sweden)

    Fumihiko Sakai

    Full Text Available Probiotic bacteria provide benefits in enhancing host immune responses and protecting against infection. Induction of IgA production by oral administration of probiotic bacteria in the intestine has been considered to be one reason for this beneficial effect, but the mechanisms of the effect are poorly understood. Lactobacillus gasseri SBT2055 (LG2055 is a probiotic bacterium with properties such as bile tolerance, ability to improve the intestinal environment, and it has preventive effects related to abdominal adiposity. In this study, we have found that oral administration of LG2055 induced IgA production and increased the rate of IgA(+ cell population in Peyer's patch and in the lamina propria of the mouse small intestine. The LG2055 markedly increased the amount of IgA in a co-culture of B cells and bone marrow derived dendritic cells (BMDC, and TLR2 signal is critical for it. In addition, it is demonstrated that LG2055 stimulates BMDC to promote the production of TGF-β, BAFF, IL-6, and IL-10, all critical for IgA production from B cells. Combined stimulation of B cells with BAFF and LG2055 enhanced the induction of IgA production. Further, TGF-β signal was shown to be critical for LG2055-induced IgA production in the B cell and BMDC co-culture system, but TGF-β did not induce IgA production in a culture of only B cells stimulated with LG2055. Furthermore, TGF-β was critical for the production of BAFF, IL-6, IL-10, and TGF-β itself from LG2055-stimulated BMDC. These results demonstrate that TGF-β was produced by BMDC stimulated with LG2055 and it has an autocrine/paracrine function essential for BMDC to induce the production of BAFF, IL-6, and IL-10.

  10. Protease-activated receptor 2 activation of myeloid dendritic cells regulates allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Dienger Krista

    2011-09-01

    Full Text Available Abstract Background A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2; however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear. Methods Mice (wild type and PAR-2-deficient were sensitized using German cockroach (GC feces (frass, the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production, serum IgE levels and airway hyperresponsiveness (AHR were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry. Results Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice

  11. The Comparison of Biologic Characteristics between Mice Embryonic Stem Cells and Bone Marrow Derived Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Junfeng Liu; Zhixu He; Dong Shen; Jin Huang; Haowen Wang

    2009-01-01

    OBJECTIVE This research was to induce dendritic cells (DCs)from mice embryonic stem cells and bone marrow mononuclear cells in vitro, and then compare the biologic characteristics of them.METHODS Embryonic stem cells (ESCs) suspending cultured in petri dishes were induced to generate embryonic bodies (EBs).Fourteen-day well-developed EBs were transferred to histological culture with the same medium and supplemented 25 ng/ml GM-CSF and 25 ng/ml IL-3. In the next 2 weeks, there were numerous immature DCs outgrown. Meantime, mononuclear cells isolated from mice bone marrow were induced to derive dendritic cells by supplementing 25 ng/ml GM-CSF and 25 ng/ml IL-4, and then the morphology, phenotype and function of both dendritic cells from different origins were examined.RESULTS Growing mature through exposure to lipopolysaccharide (LPS), both ESC-DCs and BM-DCs exhibited dramatic veils of cytoplasm and extensive dendrites on their surfaces, highly expressed CD11c, MHC-Ⅱ and CD86 with strong capacity to stimulate primary T cell responses in mixed leukocyte reaction (MLR).CONCLUSION ESC-DC has the same biologic characteristics as BM-DC, and it provides a new, reliable source for the functional research of DC and next produce corresponding anti-tumor vaccine.

  12. Age-associated changes in microRNA expression in bone marrow derived dendritic cells.

    Science.gov (United States)

    Park, Seungbum; Kang, Soowon; Min, Kyung Hoon; Woo Hwang, Kwang; Min, Hyeyoung

    2013-01-01

    MiRNAs have shown to regulate aging process at the level of cellular senescence, tissue aging, and lifespan of whole organism. Given that many miRNAs also function as important regulators of hematopoietic system as well as aging process, it is highly likely that miRNAs would be involved in the changes of myeloid function and differentiation during aging. Therefore, here we examine differential expression of miRNAs in aged myeloid lineage cells and assess if altered miRNA expression pattern would reflect the change of miRNA targets and related function. We demonstrated that the expressions of myelogenic miRNAs such as miR-155, miR-223, miR-146a, miR-146b, miR-132, miR-142-5p, and miR-142-3p were increased in aged bone marrow derived dendritic cells (BMDC) under normal and activated conditions. We also observed that the expressions of IRAK1 and TRAF6, the targets of miR-146a, and DC-SIGN, a target of miR-155 were diminished while miR-146a and miR-155 were augmented during aging. In addition, we found that the production of pro-inflammatory cytokines, which is mediated by the activation of NF-kB pathway via IRAK1 and TRAF6, was greatly reduced in aged BMDC. Taken together, our data reveal that age-associated changes occur in miRNA expression in BMDC, and this altered miRNA expression affects miRNA target expression and compromises BMDC function such as cytokine production during aging.

  13. Rabies virus infection induces type I interferon production in an IPS-1 dependent manner while dendritic cell activation relies on IFNAR signaling.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Faul

    Full Text Available As with many viruses, rabies virus (RABV infection induces type I interferon (IFN production within the infected host cells. However, RABV has evolved mechanisms by which to inhibit IFN production in order to sustain infection. Here we show that RABV infection of dendritic cells (DC induces potent type I IFN production and DC activation. Although DCs are infected by RABV, the viral replication is highly suppressed in DCs, rendering the infection non-productive. We exploited this finding in bone marrow derived DCs (BMDC in order to differentiate which pattern recognition receptor(s (PRR is responsible for inducing type I IFN following infection with RABV. Our results indicate that BMDC activation and type I IFN production following a RABV infection is independent of TLR signaling. However, IPS-1 is essential for both BMDC activation and IFN production. Interestingly, we see that the BMDC activation is primarily due to signaling through the IFNAR and only marginally induced by the initial infection. To further identify the receptor recognizing RABV infection, we next analyzed BMDC from Mda-5-/- and RIG-I-/- mice. In the absence of either receptor, there is a significant decrease in BMDC activation at 12h post infection. However, only RIG-I-/- cells exhibit a delay in type I IFN production. In order to determine the role that IPS-1 plays in vivo, we infected mice with pathogenic RABV. We see that IPS-1-/- mice are more susceptible to infection than IPS-1+/+ mice and have a significantly increased incident of limb paralysis.

  14. Enhanced antigen uptake by dendritic cells induced by the B pentamer of the type II heat-labile enterotoxin LT-IIa requires engagement of TLR2.

    Science.gov (United States)

    Lee, Chang Hoon; Nawar, Hesham F; Mandell, Lorrie; Liang, Shuang; Hajishengallis, George; Connell, Terry D

    2010-05-07

    The potent mucosal adjuvant properties of the type II heat-labile enterotoxin LT-IIa of Escherichia coli are dependent upon binding of the B pentamer of the enterotoxin (LT-IIa-B(5)) to ganglioside receptors on immunocompetent cells. To evaluate the immunomodulatory activities of LT-IIa-B(5), in vitro experiments employing bone marrow-derived dendritic cells (BMDC) were performed. Uptake of OVA-FITC, a model antigen (Ag), was enhanced by treatment of BMDC with LT-IIa-B5, but not by treatment of cells with the B pentamer of cholera toxin (CTB). Expression of co-stimulatory molecules (CD40, CD80, CD86, and MHC-II) and cytokines (IL-12p40, TNF-alpha, and IFN-gamma) was increased in BMDC treated with LT-IIa-B(5). The capacity of LT-IIa-B(5) to enhance Ag uptake and to induce expression of co-stimulatory receptors and cytokines by BMDC was dependent upon expression of TLR2 by the cell. Increased Ag uptake induced by LT-IIa-B(5) was correlated with increased Ag-specific proliferation of CD4(+) T cells in an in vitro syngeneic DO11.10 CD4(+) T cell proliferation assay. These experiments confirm that LT-IIa-B(5) exhibits potent immunomodulatory properties which may be exploitable as a non-toxic mucosal adjuvant.

  15. SHARPIN is essential for cytokine production, NF-κB signaling, and induction of Th1 differentiation by dendritic cells.

    Science.gov (United States)

    Wang, Zhe; Sokolovska, Anna; Seymour, Rosemarie; Sundberg, John P; Hogenesch, Harm

    2012-01-01

    Spontaneous mutations of the Sharpin (SHANK-associated RH domain-interacting protein, other aliases: Rbckl1, Sipl1) gene in mice result in systemic inflammation that is characterized by chronic proliferative dermatitis and dysregulated secretion of T helper1 (Th1) and Th2 cytokines. The cellular and molecular mechanisms underlying this inflammatory phenotype remain elusive. Dendritic cells may contribute to the initiation and progression of the phenotype of SHARPIN-deficient mice because of their pivotal role in innate and adaptive immunity. Here we show by flow cytometry that SHARPIN- deficiency did not alter the distribution of different DC subtypes in the spleen. In response to TOLL-like receptor (TLR) agonists LPS and poly I:C, cultured bone marrow-derived dendritic cells (BMDC) from WT and mutant mice exhibited similar increases in expression of co-stimulatory molecules CD40, CD80, and CD86. However, stimulated SHARPIN-deficient BMDC had reduced transcription and secretion of pro-inflammatory mediators IL6, IL12P70, GMCSF, and nitric oxide. Mutant BMDC had defective activation of NF-κB signaling, whereas the MAPK1/3 (ERK1/2) and MAPK11/12/13/14 (p38 MAP kinase isoforms) and TBK1 signaling pathways were intact. A mixed lymphocyte reaction showed that mutant BMDC only induced a weak Th1 immune response but stimulated increased Th2 cytokine production from allogeneic naïve CD4(+) T cells. In conclusion, loss of Sharpin in mice significantly affects the immune function of DC and this may partially account for the systemic inflammation and Th2-biased immune response.

  16. SHARPIN is essential for cytokine production, NF-κB signaling, and induction of Th1 differentiation by dendritic cells.

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    Full Text Available Spontaneous mutations of the Sharpin (SHANK-associated RH domain-interacting protein, other aliases: Rbckl1, Sipl1 gene in mice result in systemic inflammation that is characterized by chronic proliferative dermatitis and dysregulated secretion of T helper1 (Th1 and Th2 cytokines. The cellular and molecular mechanisms underlying this inflammatory phenotype remain elusive. Dendritic cells may contribute to the initiation and progression of the phenotype of SHARPIN-deficient mice because of their pivotal role in innate and adaptive immunity. Here we show by flow cytometry that SHARPIN- deficiency did not alter the distribution of different DC subtypes in the spleen. In response to TOLL-like receptor (TLR agonists LPS and poly I:C, cultured bone marrow-derived dendritic cells (BMDC from WT and mutant mice exhibited similar increases in expression of co-stimulatory molecules CD40, CD80, and CD86. However, stimulated SHARPIN-deficient BMDC had reduced transcription and secretion of pro-inflammatory mediators IL6, IL12P70, GMCSF, and nitric oxide. Mutant BMDC had defective activation of NF-κB signaling, whereas the MAPK1/3 (ERK1/2 and MAPK11/12/13/14 (p38 MAP kinase isoforms and TBK1 signaling pathways were intact. A mixed lymphocyte reaction showed that mutant BMDC only induced a weak Th1 immune response but stimulated increased Th2 cytokine production from allogeneic naïve CD4(+ T cells. In conclusion, loss of Sharpin in mice significantly affects the immune function of DC and this may partially account for the systemic inflammation and Th2-biased immune response.

  17. Pro-apoptotic Chemotherapeutic Drugs Induce Non-canonical Processing and Release of IL-1β via Caspase-8 in Dendritic Cells#

    OpenAIRE

    Antonopoulos, Christina; El Sanadi, Caroline; Kaiser, William J.; Mocarski, Edward S.; Dubyak, George R.

    2013-01-01

    The identification of non-canonical (caspase-1 independent) pathways for IL-1β production has unveiled an intricate interplay between inflammatory and death-inducing signaling platforms. We found a heretofore unappreciated role for caspase-8 as a major pathway for IL-1β processing and release in murine bone marrow-derived dendritic cells (BMDC) co-stimulated with TLR4 agonists and pro-apoptotic chemotherapeutic agents such as doxorubicin (Dox) or staurosporine (STS). The ability of Dox to sti...

  18. Donor bone marrow-derived dendritic cells prolong corneal allograft survival and promote an intragraft immunoregulatory milieu.

    Science.gov (United States)

    O'Flynn, Lisa; Treacy, Oliver; Ryan, Aideen E; Morcos, Maurice; Cregg, Marese; Gerlach, Jared; Joshi, Lokesh; Nosov, Mikhail; Ritter, Thomas

    2013-11-01

    Investigations into cell therapies for application in organ transplantation have grown. Here, we describe the ex vivo generation of donor bone marrow-derived dendritic cells (BMDCs) and glucocorticoid-treated BMDCs with potent immunomodulatory properties for application in allogeneic transplantation. BMDCs were treated with dexamethasone (Dexa) to induce an immature, maturation-resistant phenotype. BMDC and Dexa BMDC phenotype, antigen presenting cell function, and immunomodulatory properties were fully characterized. Both populations display significant immunomodulatory properties, including, but not limited to, a significant increase in mRNA expression of programmed death-ligand 1 and indoleamine 2,3-dioxygenase. BMDCs and Dexa BMDCs display a profound impaired capacity to stimulate allogeneic lymphocytes. Moreover, in a fully MHC I/II mismatched rat corneal transplantation model, injection of donor-derived, untreated BMDC or Dexa BMDCs (1 × 10(6) cells, day -7) significantly prolonged corneal allograft survival without the need for additional immunosuppression. Although neovascularization was not reduced and evidence of donor-specific alloantibody response was detected, a significant reduction in allograft cellular infiltration combined with a significant increase in the ratio of intragraft FoxP3-expressing regulatory cells was observed. Our comprehensive analysis demonstrates the novel cellular therapeutic approach and significant effect of donor-derived, untreated BMDCs and Dexa BMDCs in preventing corneal allograft rejection.

  19. The Deterministic Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    The Dendritic Cell Algorithm is an immune-inspired algorithm orig- inally based on the function of natural dendritic cells. The original instantiation of the algorithm is a highly stochastic algorithm. While the performance of the algorithm is good when applied to large real-time datasets, it is difficult to anal- yse due to the number of random-based elements. In this paper a deterministic version of the algorithm is proposed, implemented and tested using a port scan dataset to provide a controllable system. This version consists of a controllable amount of parameters, which are experimented with in this paper. In addition the effects are examined of the use of time windows and variation on the number of cells, both which are shown to influence the algorithm. Finally a novel metric for the assessment of the algorithms output is introduced and proves to be a more sensitive metric than the metric used with the original Dendritic Cell Algorithm.

  20. Dendritic cells star in Vancouver

    OpenAIRE

    Klechevsky, Eynav; Kato, Hiroki; Sponaas, Anne-Marit

    2005-01-01

    The fast-moving field of dendritic cell (DC) biology is hard to keep pace with. Here we report on advances from the recent Keystone Symposium, “Dendritic Cells at the Center of Innate and Adaptive Immunity,” organized in Vancouver, BC on Feb. 1–7, 2005 by Anne O'Garra, Jacques Banchereau, and Alan Sher. New insights into the molecular mechanisms of DC function and their influence on immune regulation, their role in infectious and autoimmune disease, and new clinical applications are highlight...

  1. Bone marrow-derived dendritic cells.

    Science.gov (United States)

    Roney, Kelly

    2013-01-01

    While much is understood about dendritic cells and their role in the immune system, the study of these cells is critical to gain a more complete understanding of their function. Dendritic cell isolation from mouse body tissues can be difficult and the number of cells isolated small. This protocol describes the growth of large number of dendritic cells from the culture of mouse bone marrow cells. The dendritic cells grown in culture facilitate experiments that may require large number of dendritic cells without great expense or use of large number of mice.

  2. IRAK-M expression limits dendritic cell activation and proinflammatory cytokine production in response to Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Jessica Shiu

    Full Text Available Helicobacter pylori (H. pylori infects the gastric mucosa and persists for the life of the host. Bacterial persistence may be due to the induction of regulatory T cells (Tregs whichmay have protective effects against other diseases such as asthma. It has been shown that H. pylori modulates the T cell response through dendritic cell reprogramming but the molecular pathways involved are relatively unknown. The goal of this study was to identify critical elements of dendritic cell (DC activation and evaluate potential influence on immune activation. Microarray analysis was used to demonstrate limited gene expression changes in H. pylori stimulated bone marrow derived DCs (BMDCs compared to the BMDCs stimulated with E. coli. IRAK-M, a negative regulator of TLR signaling, was upregulated and we selectedit for investigation of its role in modulating the DC and T cell responses. IRAK-M(-/- and wild type BMDC were compared for their response to H. pylori. Cells lacking IRAK-M produced significantly greater amounts of proinflammatory MIP-2 and reduced amounts of immunomodulatory IL-10 than wild type BMDC. IRAK-M(-/- cells also demonstrated increased MHC II expression upon activation. However, IRAK-M(-/- BMDCs were comparable to wild type BMDCs in inducing T-helper 17 (TH17 and Treg responses as demonstrated in vitro using BMDC CD4+ T cells co-culture assays,and in vivo though the adoptive transfer of CD4(+ FoxP3-GFP T cells into H. pylori infected IRAK-M(-/- mice. These results suggest that H. pylori infection leads to the upregulation of anti-inflammatory molecules like IRAK-M and that IRAK-M has a direct impact on innate functions in DCs such as cytokine and costimulation molecule upregulation but may not affect T cell skewing.

  3. Hoxb8 conditionally immortalised macrophage lines model inflammatory monocytic cells with important similarity to dendritic cells.

    Science.gov (United States)

    Rosas, Marcela; Osorio, Fabiola; Robinson, Matthew J; Davies, Luke C; Dierkes, Nicola; Jones, Simon A; Reis e Sousa, Caetano; Taylor, Philip R

    2011-02-01

    We have examined the potential to generate bona fide macrophages (MØ) from conditionally immortalised murine bone marrow precursors. MØ can be derived from Hoxb8 conditionally immortalised macrophage precursor cell lines (MØP) using either M-CSF or GM-CSF. When differentiated in GM-CSF (GM-MØP) the resultant cells resemble GM-CSF bone marrow-derived dendritic cells (BMDC) in morphological phenotype, antigen phenotype and functional responses to microbial stimuli. In spite of this high similarity between the two cell types and the ability of GM-MØP to effectively present antigen to a T-cell hybridoma, these cells are comparatively poor at priming the expansion of IFN-γ responses from naïve CD4(+) T cells. The generation of MØP from transgenic or genetically aberrant mice provides an excellent opportunity to study the inflammatory role of GM-MØP, and reduces the need for mouse colonies in many studies. Hence differentiation of conditionally immortalised MØPs in GM-CSF represents a unique in vitro model of inflammatory monocyte-like cells, with important differences from bone marrow-derived dendritic cells, which will facilitate functional studies relating to the many 'sub-phenotypes' of inflammatory monocytes.

  4. Dendritic cells and contact dermatitis.

    Science.gov (United States)

    Sasaki, Yoshinori; Aiba, Setsuya

    2007-10-01

    Contact dermatitis is a biological response to simple chemicals in the skin. Although it is well known that allergic contact dermatitis is mediated by the immune system, it is still uncertain whether it is a kind of protective response or it is simply an unnecessary response. We have demonstrated the following: (1) haptens activate Langerhans cells in the initiation phase of murine allergic contact dermatitis in vivo, (2) haptens activate human monocyte-derived dendritic cells in vitro, (3) the activation of dendritic cells by haptens is primarily mediated by the activation of p38 mitogen-activated protein kinase (MAPK), and (4) the activation of p38 MAPK is mediated by stimulation related to an imbalance of intracellular redox. Based on these observations, we will discuss the biological significance of contact dermatitis. In addition, we will review some up-to-date findings on Langerhans cell biology.

  5. Melanoma immunotherapy: dendritic cell vaccines

    OpenAIRE

    Lozada-Requena, Ivan; Laboratorios de Inmunología #108, Laboratorio de investigación y Desarrollo, Facultad de Ciencieas y Filosofía, Universidad Cayetano Heredia. Lima, Perú Empresa de Investigación y Desarrollo en Cáncer (EMINDES) SAC. Lima, Perú.; Núñez, César; Empresa de Investigación y Desarrollo en Cáncer (EMINDES) SAC. Lima, Perú.; Aguilar, José Luis; Laboratorios de Inmunología #108, Laboratorio de investigación y Desarrollo, Facultad de Ciencieas y Filosofía, Universidad Cayetano Heredia. Lima, Perú.

    2015-01-01

    This is a narrative review that shows accessible information to the scientific community about melanoma and immunotherapy.Dendritic cells have the ability to participate in innate and adaptive immunity, but are not unfamiliar to the immune evasion oftumors. Knowing the biology and role has led to generate in vitro several prospects of autologous cell vaccines against diversetypes of cancer in humans and animal models. However, given the low efficiency they have shown, we must implementstrateg...

  6. Echinacea pupurea extracts modulate murine dendritic cell fate and function

    Science.gov (United States)

    Benson, Jenna M.; Pokorny, Amanda J.; Rhule, Ava; Wenner, Cynthia A.; Kandhi, Vamsikrishna; Cech, Nadja B.; Shepherd, David M.

    2010-01-01

    Echinacea is a top-selling herbal remedy that purportedly acts as an immunostimulant. However, the specific immunomodulatory effects of Echinacea remain to be elucidated. We focused on defining the effects of Echinacea purpurea extracts in dendritic cells (DCs), which generate innate and adaptive immune responses. We hypothesized that E. purpurea extracts would enhance murine bone marrow-derived DC (BMDC) activation leading to increased immune responses. The fate and function of DCs from C57Bl/6 mice was evaluated following 48 h exposure to E. purpurea root and leaf extracts. Flow cytometry revealed that the polysaccharide-rich root extract increased the expression of MHC class II, CD86, and CD54 surface biomarkers whereas the alkylamide-rich leaf extract inhibited expression of these molecules. Production of IL-6 and TNF-α increased in a concentration-dependent manner with exposure to the root, but not leaf, extract. In contrast, the leaf but not root extract inhibited the enzymatic activity of cyclooxygenase-2. While both extracts decreased the uptake of ovalbumin by BMDCs, the leaf but not root extract inhibited the antigen-specific activation of naïve CD4+ T cells from OT II/Thy1.1 mice. Collectively, these results suggest that E. purpurea can be immunostimulatory, immunosuppressive, and/or anti-inflammatory depending on the portion of the plant and extraction method. PMID:20149833

  7. Echinacea purpurea extracts modulate murine dendritic cell fate and function.

    Science.gov (United States)

    Benson, Jenna M; Pokorny, Amanda J; Rhule, Ava; Wenner, Cynthia A; Kandhi, Vamsikrishna; Cech, Nadja B; Shepherd, David M

    2010-05-01

    Echinacea is a top-selling herbal remedy that purportedly acts as an immunostimulant. However, the specific immunomodulatory effects of Echinacea remain to be elucidated. We focused on defining the effects of Echinacea purpurea extracts in dendritic cells (DCs), which generate innate and adaptive immune responses. We hypothesized that E. purpurea extracts would enhance murine bone marrow-derived DC (BMDC) activation leading to increased immune responses. The fate and function of DCs from C57Bl/6 mice was evaluated following 48h exposure to E. purpurea root and leaf extracts. Flow cytometry revealed that the polysaccharide-rich root extract increased the expression of MHC class II, CD86, and CD54 surface biomarkers whereas the alkylamide-rich leaf extract inhibited expression of these molecules. Production of IL-6 and TNF-alpha increased in a concentration-dependent manner with exposure to the root, but not leaf, extract. In contrast, the leaf but not root extract inhibited the enzymatic activity of cyclooxygenase-2. While both extracts decreased the uptake of ovalbumin by BMDCs, the leaf but not root extract inhibited the antigen-specific activation of naïve CD4(+) T cells from OT II/Thy1.1 mice. Collectively, these results suggest that E. purpurea can be immunostimulatory, immunosuppressive, and/or anti-inflammatory depending on the portion of the plant and extraction method. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. The signalling imprints of nanoparticle uptake by bone marrow derived dendritic cells.

    Science.gov (United States)

    Karlson, Tanya De L; Kong, Ying Ying; Hardy, Charles L; Xiang, Sue Dong; Plebanski, Magdalena

    2013-05-01

    Nanoparticles (NP) possess remarkable adjuvant and carrier capacity, therefore are used in the development of various vaccine formulations. Our previous studies demonstrated that inert non-toxic 40-50 nm polystyrene NP (PS-NP) can promote strong CD8 T cell and antibody responses to the antigen, in the absence of observable inflammatory responses. Furthermore, instillation of PS-NP inhibited the development of allergic airway inflammation by induction of an immunological imprint via modulation of dendritic cell (DC) function without inducing oxidative stress in the lungs in mice. This is in contrast to many studies which show that a variety of ambient and man-made NP promote lung immunopathology, raising concerns generally about the safe use of NPs in biomedicine. Most NPs are capable of inducing inflammatory pathways in DC largely mediated by signalling via the extracellular signal-regulated kinase 1/2 (ERK). Herein, we investigate whether PS-NPs also activate ERK in DC in vitro. Our data show that PS-NP do not induce ERK activation in two different types of bone marrow derived (BM) DC cultures (expanded with GM-CSF or with GM-CSF together with IL-4). The absence of such signalling was not due to lack of PS-NP uptake by BM-DC as confirmed by confocal microscopy and flow cytometry. The process of NP uptake by DC usually initiates ERK signalling, suggesting an unusual uptake pathway may be engaged by PS-NPs. Indeed, data herein showns that uptake of PS-NP by BM-DC was substantially inhibited by phorbol myristate acetate (PMA) but not cytochalasin D (CCD), suggesting an uptake pathway utilising caveole for PS-NP. Together these data show that BM-DC take up PS-NP via a caveole-dependent pathway which does not trigger ERK signalling which may explain their efficient uptake by DC, without the concomitant activation of conventional inflammatory pathways.

  9. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    Li Wu; Aleksandar Dakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived cells. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors,some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Flt3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse.

  10. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    LiWu; AleksandarDakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived calls. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors, some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Fit3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse. Cellular & Molecular Immunology. 2004;1(2):112-118.

  11. Inhibitory effects of rat bone marrow-derived dendritic cells on naïve and alloantigen-specific CD4+ T cells: a comparison between dendritic cells generated with GM-CSF plus IL-4 and dendritic cells generated with GM-CSF plus IL-10

    Directory of Open Access Journals (Sweden)

    Ulrichs Karin

    2009-01-01

    Full Text Available Abstract Background Unlike mouse immature bone marrow (BM-derived dendritic cells (DC, rat immature BMDC have not been thoroughly characterised in vitro for the mechanisms underlying their suppressive effect. To better characterise these mechanisms we therefore analysed the phenotypes and immune inhibitory properties of rat BMDC generated with GM-CSF plus IL-4 (= IL-4 DC and with GM-CSF plus IL-10 (= IL-10 DC. Results Both IL-4 DC and IL-10 DC exhibited lower surface expression of MHC class II and costimulatory molecules than mature splenic DC. They had a strong inhibitory effect on responsive T cells in vitro and despite their weak function as antigen-presenting cells they induced anergic T cells. However, only anergic T cells induced by IL-4 DC had a suppressive effect on responsive T cells. Induction of suppressive/tolerogenic T cells by IL-4 DC required direct contact between antigen-specific T cells and IL-4 DC. In addition, IL-4 DC and IL-10 DC prolonged allograft survival in an antigen-specific manner. Conclusion A unique phenotype of immature BMDC was isolated from the cultures. The mechanisms underlying the suppressive effect may be caused by their inability to deliver adequate costimulatory signals for T-cell activation. In addition, IL-4 DC but not IL-10 DC induce anergic T cells with suppressive function. This indicates that IL-4 DC and IL-10 DC may differ in the quality of their costimulation although no differences in the surface expression of costimulatory molecules were found.

  12. Dendritic Cells, New Tools for Vaccination

    Science.gov (United States)

    2003-01-01

    Review Dendritic cells , new tools for vaccination Jesus Colino, Clifford M. Snapper * Department of Pathology, Uniformed Services University of the...2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved. Keywords: Vaccines; Immunotherapy; Dendritic cells 1. Introduction During...DATE 2003 2. REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Dendritic cells , new tools for vaccination 5a

  13. Neoplasms derived from plasmacytoid dendritic cells.

    Science.gov (United States)

    Facchetti, Fabio; Cigognetti, Marta; Fisogni, Simona; Rossi, Giuseppe; Lonardi, Silvia; Vermi, William

    2016-02-01

    Plasmacytoid dendritic cell neoplasms manifest in two clinically and pathologically distinct forms. The first variant is represented by nodular aggregates of clonally expanded plasmacytoid dendritic cells found in lymph nodes, skin, and bone marrow ('Mature plasmacytoid dendritic cells proliferation associated with myeloid neoplasms'). This entity is rare, although likely underestimated in incidence, and affects predominantly males. Almost invariably, it is associated with a myeloid neoplasm such as chronic myelomonocytic leukemia or other myeloid proliferations with monocytic differentiation. The concurrent myeloid neoplasm dominates the clinical pictures and guides treatment. The prognosis is usually dismal, but reflects the evolution of the associated myeloid leukemia rather than progressive expansion of plasmacytoid dendritic cells. A second form of plasmacytoid dendritic cells tumor has been recently reported and described as 'blastic plasmacytoid dendritic cell neoplasm'. In this tumor, which is characterized by a distinctive cutaneous and bone marrow tropism, proliferating cells derive from immediate CD4(+)CD56(+) precursors of plasmacytoid dendritic cells. The diagnosis of this form can be easily accomplished by immunohistochemistry, using a panel of plasmacytoid dendritic cells markers. The clinical course of blastic plasmacytoid dendritic cell neoplasm is characterized by a rapid progression to systemic disease via hematogenous dissemination. The genomic landscape of this entity is currently under intense investigation. Recurrent somatic mutations have been uncovered in different genes, a finding that may open important perspectives for precision medicine also for this rare, but highly aggressive leukemia.

  14. Fate mapping of dendritic cells

    Directory of Open Access Journals (Sweden)

    Barbara Ursula Schraml

    2015-05-01

    Full Text Available Dendritic cells (DCs are a heterogeneous group of mononuclear phagocytes with versatile roles in immunity. They are classified predominantly based on phenotypic and functional properties, namely their stellate morphology, expression of the integrin CD11c and major histocompatibility class II molecules, as well as their superior capacity to migrate to secondary lymphoid organs and stimulate naïve T cells. However, these attributes are not exclusive to DCs and often change within inflammatory or infectious environments. This led to debates over cell identification and questioned even the mere existence of DCs as distinct leukocyte lineage. Here, we review experimental approaches taken to fate map DCs and discuss how these have shaped our understanding of DC ontogeny and lineage affiliation. Considering the ontogenetic properties of DCs will help to overcome the inherent shortcomings of purely phenotypic- and function-based approaches to cell definition and will yield a more robust way of DC classification.

  15. A Case of Plasmacytoid Dendritic Cell Leukemia

    Directory of Open Access Journals (Sweden)

    Köpeczi Judit Beáta

    2013-04-01

    Full Text Available Introduction: Plasmacytoid dendritic cell leukemia is a rare subtype of acute leukemia, which has recently been established as a distinct pathologic entity that typically follows a highly aggressive clinical course in adults. The aim of this report is to present a case of plasmacytoid dendritic cell leukemia due to its rarity and difficulty to recognize and diagnose it.

  16. Dendritic web silicon for solar cell application

    Science.gov (United States)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  17. Helicobacter pylori impairs murine dendritic cell responses to infection.

    Directory of Open Access Journals (Sweden)

    Ya-Hui Wang

    Full Text Available BACKGROUND: Helicobacter pylori, a human pathogen associated with chronic gastritis, peptic ulcer and gastric malignancies, is generally viewed as an extracellular microorganism. Here, we show that H. pylori replicates in murine bone marrow derived-dendritic cells (BMDCs within autophagosomes. METHODOLOGY/PRINCIPAL FINDINGS: A 10-fold increase of CFU is found between 2 h and 6 h p.i. in H. pylori-infected BMDCs. Autophagy is induced around the bacterium and participates at late time points of infection for the clearance of intracellular H. pylori. As a consequence of infection, LC3, LAMP1 and MHC class II molecules are retained within the H. pylori-containing vacuoles and export of MHC class II molecules to cell surface is blocked. However, formalin-fixed H. pylori still maintain this inhibitory activity in BMDC derived from wild type mice, but not in from either TLR4 or TLR2-deficient mice, suggesting the involvement of H. pylori-LPS in this process. TNF-alpha, IL-6 and IL-10 expression was also modulated upon infection showing a TLR2-specific dependent IL-10 secretion. No IL-12 was detected favoring the hypothesis of a down modulation of DC functions during H. pylori infection. Furthermore, antigen-specific T cells proliferation was also impaired upon infection. CONCLUSIONS/SIGNIFICANCE: H. pylori can infect and replicate in BMDCs and thereby affects DC-mediated immune responses. The implication of this new finding is discussed for the biological life cycle of H. pylori in the host.

  18. Choose your models wisely: how different murine bone marrow-derived dendritic cell protocols influence the success of nanoparticulate vaccines in vitro.

    Science.gov (United States)

    Dewitte, Heleen; Verbeke, Rein; Breckpot, Karine; Vandenbroucke, Roosmarijn E; Libert, Claude; De Smedt, Stefaan C; Lentacker, Ine

    2014-12-10

    Dendritic cell (DC)-based cancer vaccination has shown great potential in cancer immunotherapy. As a result, novel nanoparticles aiming to load DCs with tumor antigens are being developed and evaluated in vitro. For this, murine bone marrow-derived DCs (BM-DCs) are most commonly used as model DCs. However, many different protocols exist to generate these cells. Therefore, we investigated to what extent different BM-DC culture protocols impact on the immunobiology of the cells, as well as their response to particulate antigens. We evaluated 4 different BM-DC protocols with 2 main variables: bovine serum and cytokine combinations. Our results show distinct differences in yield, phenotypical maturation status and the production of immune stimulatory and immune suppressive cytokines by the different BM-DCs. Importantly, we demonstrate that the antigen-loading of these different BM-DCs via transfection with mRNA lipoplexes results in large differences in transfection efficiency as well as in the capacity of mRNA-transfected BM-DCs to stimulate antigen-specific T cells. Thus, it is clear that the BM-DC model can have significant confounding effects on the evaluation of novel nanoparticulate vaccines. To take this into account when testing novel particulate antigen-delivery systems in BM-DC models, we propose to (1) perform a thorough immunological characterization of the BM-DCs and to (2) not only judge a particle's potential for cancer vaccination based on transfection efficiency, but also to include an evaluation of functional end-points such as T cell activation.

  19. Dendritic Cells for Anomaly Detection

    CERN Document Server

    Greensmith, Julie; Aickelin, Uwe

    2010-01-01

    Artificial immune systems, more specifically the negative selection algorithm, have previously been applied to intrusion detection. The aim of this research is to develop an intrusion detection system based on a novel concept in immunology, the Danger Theory. Dendritic Cells (DCs) are antigen presenting cells and key to the activation of the human signals from the host tissue and correlate these signals with proteins know as antigens. In algorithmic terms, individual DCs perform multi-sensor data fusion based on time-windows. The whole population of DCs asynchronously correlates the fused signals with a secondary data stream. The behaviour of human DCs is abstracted to form the DC Algorithm (DCA), which is implemented using an immune inspired framework, libtissue. This system is used to detect context switching for a basic machine learning dataset and to detect outgoing portscans in real-time. Experimental results show a significant difference between an outgoing portscan and normal traffic.

  20. The intracellular pharmacodynamics of siRNA is responsible for the low gene silencing activity of siRNA-loaded nanoparticles in dendritic cells.

    Science.gov (United States)

    Nakamura, Takashi; Fujiwara, Yuki; Warashina, Shota; Harashima, Hideyoshi

    2015-10-15

    The delivery of small interfering RNA (siRNA) to dendritic cells (DCs) is a challenging issue for siRNA-loaded lipid nanoparticles. The cause of this difficulty is unknown. The findings reported herein indicate that the rate-limiting step in gene silencing using siRNA-loaded lipid nanoparticles in DCs, as evidenced by a quantitative analysis of each process in siRNA delivery between mouse bone marrow derived DC (BMDC) and other cell lines, was not associated with the actual delivery of siRNA. A gene silencing of only 50% was observed in BMDC, even when a high dose was used. Contrary to our expectation, the interval between cellular uptake and the delivery of siRNA to the cytosol was not responsible for the low gene silencing. Meanwhile, a drastic difference was found in the relationship between the efficiency of gene silencing and the amount of intracellular intact siRNA. This fact indicates that the processes after cytosolic delivery of siRNA, namely the intracellular pharmacodynamics (PD) of siRNA, appear to be the rate-limiting step in gene silencing in BMDC. The findings reported here demonstrate the importance of the intracellular PD of siRNA delivered to cytosol in the development of siRNA delivery systems for gene silencing in DCs.

  1. Pivotal Role of PGE2 and IL-10 in the Cross-Regulation of Dendritic Cell-Derived Inflammatory Mediators

    Institute of Scientific and Technical Information of China (English)

    Hedi Harizi; Norbert Gualde

    2006-01-01

    Exposure to pathogens induces antigen-presenting cells (APC) such as macrophages and dendritic cells (DC) to produce various endogenous mediators, including arachidonic acid (AA)-derived eicosanoids, cytokines, and nitric oxide (NO). Many secreted products of activated APC can act by themselves in an autocrine manner and modulate their function. Moreover, the cross-interaction between endogenous bioactive molecules regulates the function of professional APC with important consequences for their ability to activate and sustain immune and inflammatory responses, and to regulate immune homeostasis. Although neglected for many years when compared to their role in cardiovascular homeostasis, cancer and inflammation, the importance of eicosanoids in immunology is becoming more defined. The role of prostaglandin (PG) E2 (PGE2), one of the best known and most well studied eicosanoids,is of particular interest. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. Uniquely among haematopoietic cytokines, interleukin-10 (IL-10) is a pleiotropic molecule that displays both immunostimulatory and immunoregulatory activities. IL-10 has attached much attention because of its anti-inflammatory properties. It modulates expression of cytokines, soluble mediators and cell surface molecules by cells of myeloid origin, particularly macrophages and DC. We previously reported that PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. BM-DC may be considered as an important model to study complex interactions between endogenous mediators, and autocrine IL-10 plays a pivotal role in the crossregulation of AA-derived lipid mediators, cytokines, and NO, with critical effects on immune and inflammatory responses. Cellular & Molecular Immunology. 2006;3(4):271-277.

  2. Dendritic cells are stressed out in tumor.

    Science.gov (United States)

    Maj, Tomasz; Zou, Weiping

    2015-09-01

    A recently paper published in Cell reports that dendritic cells (DCs) are dysfunctional in the tumor environment. Tumor impairs DC function through induction of endoplasmic reticulum stress response and subsequent disruption of lipid metabolic homeostasis.

  3. Targeting vaccines to dendritic cells.

    Science.gov (United States)

    Foged, Camilla; Sundblad, Anne; Hovgaard, Lars

    2002-03-01

    Dendritic cells (DC) are specialized antigen presenting cells (APC) with a remarkable ability to take up antigens and stimulate major histocompatibility complex (MHC)-restricted specific immune responses. Recent discoveries have shown that their role in initiating primary immune responses seems to be far superior to that of B-cells and macrophages. DC are localized at strategic places in the body at sites used by pathogens to enter the organism, and are thereby in an optimal position to capture antigens. In general, vaccination strategies try to mimic the invasiveness of the pathogens. DC are considered to play a central role for the provocation of primary immune responses by vaccination. A rational way of improving the potency and safety of new and already existing vaccines could therefore be to direct vaccines specifically to DC. There is a need for developing multifunctional vaccine drug delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC.

  4. Differential activation of dendritic cells by Mycobacterium tuberculosis Beijing genotype.

    Science.gov (United States)

    Reyes-Martínez, Juana Elizabeth; Nieto-Patlán, Erik; Nieto-Patlán, Alejandro; Gonzaga-Bernachi, Job; Santos-Mendoza, Teresa; Serafín-López, Jeanet; Chávez-Blanco, Alma; Sandoval-Montes, Claudia; Flores-Romo, Leopoldo; Estrada-Parra, Sergio; Estrada-García, Iris; Chacón-Salinas, Rommel

    2014-01-01

    Mycobacterium tuberculosis (Mtb) inhibits dendritric cells (DC) function in order to delay T cell response. Furthermore, there is increasing evidence that genetic diversity of Mtb strains can affect their interaction with the immune system. Beijing genotype has attracted attention because of its high prevalence and multi-drug resistance. Although it is known that this genotype is hypervirulent and differentially activates macrophages when compared to other genotypes, little is known about its interaction with DC. In order to address this issue, murine bone marrow derived DC (BMDC) were stimulated with soluble extracts (SE) from BCG, H37Rv, Canetti and Beijing genotypes. We observed that unlike other mycobacteria strains, SE-Beijing was unable to induce maturation of DC as assessed by cell surface MHC-II expression. DC stimulated with SE-Beijing failed to produce IL-12 and TNF-α, but did secrete IL-10. Interestingly, SE-Beijing induced CCR7 and PDL-1 on BMDC, but did not induce the expression of CD86. When BMDC stimulated with SE-Beijing were used to activate CD4+ cells they were unable to induce a Th1 response when compared with less virulent genotypes. These results indicate that Beijing is able to modulate DC activation and function, which may be related to the pathogenesis induced by this genotype.

  5. Selective uptake of cylindrical poly(2-oxazoline) brush-antiDEC205 antibody-OVA antigen conjugates into DEC-positive dendritic cells and subsequent T-cell activation.

    Science.gov (United States)

    Bühler, Jasmin; Gietzen, Sabine; Reuter, Anika; Kappel, Cinja; Fischer, Karl; Decker, Sandra; Schäffel, David; Koynov, Kaloian; Bros, Matthias; Tubbe, Ingrid; Grabbe, Stephan; Schmidt, Manfred

    2014-09-22

    To achieve specific cell targeting by various receptors for oligosaccharides or antibodies, a carrier must not be taken up by any of the very many different cells and needs functional groups prone to clean conjugation chemistry to derive well-defined structures with a high biological specificity. A polymeric nanocarrier is presented that consists of a cylindrical brush polymer with poly-2-oxazoline side chains carrying an azide functional group on each of the many side chain ends. After click conjugation of dye and an anti-DEC205 antibody to the periphery of the cylindrical brush polymer, antibody-mediated specific binding and uptake into DEC205(+) -positive mouse bone marrow-derived dendritic cells (BMDC) was observed, whereas binding and uptake by DEC205(-) negative BMDC and non-DC was essentially absent. Additional conjugation of an antigen peptide yielded a multifunctional polymer structure with a much stronger antigen-specific T-cell stimulatory capacity of pretreated BMDC than application of antigen or polymer-antigen conjugate.

  6. Artificial Dendritic Cells: Multi-faceted Perspectives

    CERN Document Server

    Greensmith, Julie

    2009-01-01

    Dendritic cells are the crime scene investigators of the human immune system. Their function is to correlate potentially anomalous invading entities with observed damage to the body. The detection of such invaders by dendritic cells results in the activation of the adaptive immune system, eventually leading to the removal of the invader from the host body. This mechanism has provided inspiration for the development of a novel bio-inspired algorithm, the Dendritic Cell Algorithm. This algorithm processes information at multiple levels of resolution, resulting in the creation of information granules of variable structure. In this chapter we examine the multi-faceted nature of immunology and how research in this field has shaped the function of the resulting Dendritic Cell Algorithm. A brief overview of the algorithm is given in combination with the details of the processes used for its development. The chapter is concluded with a discussion of the parallels between our understanding of the human immune system a...

  7. Effect of Polyporus umbellatus polysaccharides on activation of murine bone marrow dendritic cells via Toll-like receptor 4%猪苓多糖通过Toll样受体4对小鼠骨髓来源树突状细胞作用研究

    Institute of Scientific and Technical Information of China (English)

    李心群; 许文

    2011-01-01

    Objective To explore the mechanism of immunomodulatory activity of Polyporus umbellatus polysaccharides (PPS) on murine bone marrow dendritic cells (BMDC). Methods BMDC phenotype and the function indexes were observed by 3H-TdR incorporation, ELISA, and flow cytometry. Results Compared with the negative group, PPS could increase the co-expression of CD llc and CD86 molecules on dendritic cells (DC) surface and the production of IL-12 and IL-10 in a dose-dependent manner. PPS also enhanced matured BMDC capacity of T cell initial activation and decreased phagocytosis of BMDC. Anti-Toll-like receptor 4 (TLR4), but not anti-TLR2 or complement receptor 3 (CR3) monoclonal antibodies inhibited PPS-induced production of IL-12 p40 and blocked the combination between fluorescence-labeled PPS (f-PPS) and BMDC. Conclusion The data demonstrate that PPS could promote the activation of murine BMDC via TLR4 and maturation of immunomodulationy activity.%目的 研究猪苓多糖(Potyporus umbellatus polysaccharides,PPS)活化小鼠骨髓来源树突状细胞(bone marrow dendritic cells,BMDC)功能调节的作用机制,进一步阐明PPS的免疫学活性机制.方法 以3H-TdR掺入法、ELISA及流式细胞术检测BMDC表型和功能的各项指标.结果 PPS刺激小鼠BMDC表达CD11c、CD86及白细胞介素-12、-10(IL-12、IL-10)产生,并且具有剂量依赖效应.另外,较阴性对照组,经PPS诱导成熟的BMDC其活化初始T细胞的能力显著提高而吞噬能力显著下降.抗小鼠Toll样受体4(TLR4)单抗可抑制PPS刺激BMDC产生IL-12 p40及阻断荧光标记猪苓多糖(fluorescence-labeled PPS,f-PPS)与BMDC的结合,而抗TLR2及补体受体3(CR3)单抗却无此效应.结论 PPS可经TLR4 活化小鼠BMDC发挥免疫调节活性.

  8. Infection of nonhost species dendritic cells in vitro with an attenuated myxoma virus induces gene expression that predicts its efficacy as a vaccine vector.

    Science.gov (United States)

    Top, S; Foulon, E; Pignolet, B; Deplanche, M; Caubet, C; Tasca, C; Bertagnoli, S; Meyer, G; Foucras, G

    2011-12-01

    Recombinant myxoma virus (MYXV) can be produced without a loss of infectivity, and its highly specific host range makes it an ideal vaccine vector candidate, although careful examination of its interaction with the immune system is necessary. Similar to rabbit bone marrow-derived dendritic cells (BM-DCs), ovine dendritic cells can be infected by SG33, a MYXV vaccine strain, and support recombinant antigen expression. The frequency of infected cells in the nonhost was lower and the virus cycle was abortive in these cell types. Among BM-DC subpopulations, Langerhans cell-like DCs were preferentially infected at low multiplicities of infection. Interestingly, ovine BM-DCs remained susceptible to MYXV after maturation, although apoptosis occurred shortly after infection as a function of the virus titer. When gene expression was assessed in infected BM-DC cultures, type I interferon (IFN)-related and inflammatory genes were strongly upregulated. DC gene expression profiles were compared with the profiles produced by other poxviruses in interaction with DCs, but very few commonalities were found, although genes that were previously shown to predict vaccine efficacy were present. Collectively, these data support the idea that MYXV permits efficient priming of adaptive immune responses and should be considered a promising vaccine vector along with other poxviruses.

  9. Dendritic cells in melanoma - immunohistochemical study and research trends.

    Science.gov (United States)

    Nedelcu, Roxana Ioana; Ion, Daniela Adriana; Holeab, Cosmin Adrian; Cioplea, Mirela Daniela; Brînzea, Alice; Zurac, Sabina Andrada

    2015-01-01

    Cutaneous dendritic cells play multiple physiological roles and are involved in various pathophysiological processes. Research studies of dendritic cells abound in the medical literature. Nevertheless, the role of dendritic cells in melanoma regression phenomenon is not completely understood. We conducted a scientometric analysis in order to highlight the current state on research regarding dendritic cells and melanoma. We also performed an immunohistochemical study, using specific markers for dendritic cells (CD1a, langerin). We evaluated the frequency and distribution of dendritic cells in areas of tumor regression compared to the areas of inflammatory infiltrate of melanoma without regression. The immunohistochemical study we performed revealed that dendritic cells are more frequent in the regressed areas, comparing with non-regressed ones. In regressed areas, dendritic cells have a predominant nodular pattern (19 cases), followed by diffuse isolate pattern (eight cases) and mixed pattern (diffuse and nodular) (three cases). In melanoma without regression, most cases presented a diffuse pattern (27 cases) of dendritic cells distribution. In conclusion, our immunohistochemical study stressed differences between frequency and distribution of dendritic cells located in the melanoma with regression and melanoma without regression. These data suggest that dendritic cells are involved in the regression phenomenon. Following the literature analysis we obtained, we observed that dendritic cells profile in melanoma with regression was poorly studied. Insights into antitumor immune response and dendritic cells may be essential for the understanding of the potential prognostic role of dendritic cells in melanoma and for the development of new promising therapeutic strategies for melanoma.

  10. A Human Trypanosome Suppresses CD8+ T Cell Priming by Dendritic Cells through the Induction of Immune Regulatory CD4+ Foxp3+ T Cells

    Science.gov (United States)

    Ersching, Jonatan; Basso, Alexandre Salgado; Kalich, Vera Lucia Garcia; Bortoluci, Karina Ramalho

    2016-01-01

    Although CD4+ Foxp3+ T cells are largely described in the regulation of CD4+ T cell responses, their role in the suppression of CD8+ T cell priming is much less clear. Because the induction of CD8+ T cells during experimental infection with Trypanosoma cruzi is remarkably delayed and suboptimal, we raised the hypothesis that this protozoan parasite actively induces the regulation of CD8+ T cell priming. Using an in vivo assay that eliminated multiple variables associated with antigen processing and dendritic cell activation, we found that injection of bone marrow-derived dendritic cells exposed to T. cruzi induced regulatory CD4+ Foxp3+ T cells that suppressed the priming of transgenic CD8+ T cells by peptide-loaded BMDC. This newly described suppressive effect on CD8+ T cell priming was independent of IL-10, but partially dependent on CTLA-4 and TGF-β. Accordingly, depletion of Foxp3+ cells in mice infected with T. cruzi enhanced the response of epitope-specific CD8+ T cells. Altogether, our data uncover a mechanism by which T. cruzi suppresses CD8+ T cell responses, an event related to the establishment of chronic infections. PMID:27332899

  11. A Human Trypanosome Suppresses CD8+ T Cell Priming by Dendritic Cells through the Induction of Immune Regulatory CD4+ Foxp3+ T Cells.

    Directory of Open Access Journals (Sweden)

    Jonatan Ersching

    2016-06-01

    Full Text Available Although CD4+ Foxp3+ T cells are largely described in the regulation of CD4+ T cell responses, their role in the suppression of CD8+ T cell priming is much less clear. Because the induction of CD8+ T cells during experimental infection with Trypanosoma cruzi is remarkably delayed and suboptimal, we raised the hypothesis that this protozoan parasite actively induces the regulation of CD8+ T cell priming. Using an in vivo assay that eliminated multiple variables associated with antigen processing and dendritic cell activation, we found that injection of bone marrow-derived dendritic cells exposed to T. cruzi induced regulatory CD4+ Foxp3+ T cells that suppressed the priming of transgenic CD8+ T cells by peptide-loaded BMDC. This newly described suppressive effect on CD8+ T cell priming was independent of IL-10, but partially dependent on CTLA-4 and TGF-β. Accordingly, depletion of Foxp3+ cells in mice infected with T. cruzi enhanced the response of epitope-specific CD8+ T cells. Altogether, our data uncover a mechanism by which T. cruzi suppresses CD8+ T cell responses, an event related to the establishment of chronic infections.

  12. The role of dendritic cells in cancer

    DEFF Research Database (Denmark)

    Hansen, Morten; Andersen, Mads Hald

    2017-01-01

    Though present in low numbers, dendritic cells (DCs) are recognized as major players in the control of cancer by adaptive immunity. The roles of cytotoxic CD8+ T-cells and Th1 helper CD4+ T-cells are well-documented in murine models of cancer and associated with a profound prognostic impact when...... treatment regimens against cancer....

  13. Dendritic cells in peripheral tolerance and immunity

    DEFF Research Database (Denmark)

    Gad, Monika; Claesson, Mogens Helweg; Pedersen, Anders Elm

    2003-01-01

    Dendritic cells capable of influencing immunity exist as functionally distinct subsets, T cell-tolerizing and T cell-immunizing subsets. The present paper reviews how these subsets of DCs develop, differentiate and function in vivo and in vitro at the cellular and molecular level. In particular...

  14. Tumor cells prevent mouse dendritic cell maturation induced by TLR ligands.

    Science.gov (United States)

    Idoyaga, Juliana; Moreno, José; Bonifaz, Laura

    2007-08-01

    Tumor cells can evade the immune system through several mechanisms, one of which is to block DC maturation. It has been suggested that signaling via Toll-like receptors (TLR) may be involved in the induction of prophylactic anti-cancer immunity and in the treatment of established tumors. In the present study we found that high numbers of tumor cells interfere with BMDC activation induced by the TLR ligands LPS and poly IC. Tumor cells blocked TLR3- and TLR4-mediated induction of MHCII and the co-stimulatory molecules CD40 and CD86, as well as the cytokines IL-12, TNF-alpha and IL-6. Importantly, tumor cells induced inhibitory molecules (B7-DC, B7-H1 and CD80) on spleen DC in vivo and on BMDC, even in the presence of TLR ligands. Moreover, after a long exposure with tumor cells, purified BMDC were unable to respond to a second challenge with TLR ligands. The failure of tumor exposed-BMDC to express co-stimulatory molecules and cytokines in the presence of TLR ligands has implications for the future development of DC-based cancer immune therapies using TLR ligands as adjuvants for the activation of DC.

  15. Dendritic Cells Stimulated by Cationic Liposomes.

    Science.gov (United States)

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola

    2016-01-01

    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy.

  16. T cell activation by bone marrow-derived dendritic cells pulsed with WobA-/- Brucella suis%负载布氏菌 WboA-/-S2株的树突状细胞对淋巴结T细胞的活化作用

    Institute of Scientific and Technical Information of China (English)

    曹志然; 张雷芳; 王蓓; 丁家波; 戎瑞雪; 闫伟娇; 王婷; 毛开荣; 王家鑫

    2012-01-01

    目的:研究猪种布氏菌WboA-/-S2株对骨髓源性树突状细胞(BMDC)的生物学特性及启动T细胞应答能力的影响.方法:用粗糙型布氏菌WboA-/-S2株负载 BALB/c 小鼠的BMDC,并以光滑型S2株作为对照,采用瑞氏-姬姆萨染色观察细胞形态学变化并计算吞噬率;用固体培养基涂布法测定负载后不同时间点细胞的载菌量;用ELISA检测负载后不同时间点 BMDC分泌IL-12和TNF-α的量以及与淋巴结T细胞共培养上清中IFN-γ和IL-4的含量.结果:BMDC对WboA-/-S2株的吞噬率高于对S2株的吞噬率(P<0.05),负载1小时BMDC的载菌量明显高于负载S2株的载菌量(P<0.05),但在24小时,WboA-/-S2株负载BMDC的载菌量明显低于S2株负载组(P<0.05).WboA-/-S2株负载BMDC不同时间点上清中IL-12和TNF-α含量明显高于S2株负载组(P<0.05).且负载WboA-/-S2株的BMDC 刺激T细胞所产生的IFN-γ量均明显高于S2株(P<0.05).结论:WboA-/-S2株较S2株更易被 BMDC 吞噬和杀死,其活化 BMDC、诱导T细胞应答的能力也明显强于S2株.%Objective: To investigate the effects of WboA-/- S2 strain of Brucella suis on biological characteristics of murine bone marrow-derived dendritic cells (BMDC) and their abilities to initiate T cells response. Methods: BMDC were pulsed by rough WboA -/- S2 strains in vitro and S2 strains acted as control. Wright-Giemsa stain was used to observed the cell morphologic changes and calculated the phagocytic ratios. Microbial loads of pulsed cells were measured by the solid mediumat at different time points. The su-pernatants of Brucella-pulsed BMDC at different time points were collected and IL-12, TNF-α were analyzed by ELISA. The IFN-γ and IL-4 levels in the supernatants of T cells co-cultured with Brucella-pulsed BMDC at different time points were detected by ELISA. Results : Phagocytic rates of BMDC pulsed by WboA-/-S2 were higher than those of pulsed by S2 strains ( P < 0. 05) ,and the microbial load of BMDC pulsed

  17. Detecting Danger: The Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Cayzer, Steve

    2010-01-01

    The Dendritic Cell Algorithm (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders in the form of pathogens. In this research, and abstract model of DC behaviour is developed and subsequently used to form an algorithm, the DCA. The abstraction process was facilitated through close collaboration with laboratory- based immunologists, who performed bespoke experiments, the results of which are used as an integral part of this algorithm. The DCA is a population based algorithm, with each agent in the system represented as an 'artificial DC'. Each DC has the ability to combine multiple data streams and can add context to data suspected as anomalous. In this chapter the abstraction process and details of the resultant algorithm are given. The algorithm is applied to numerous intrusion detection problems in computer security including the detection of p...

  18. ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS

    Science.gov (United States)

    The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...

  19. Infection of Dendritic Cells by the Maedi-Visna Lentivirus

    OpenAIRE

    Ryan, Susanna; Tiley, Laurence; McConnell, Ian; Blacklaws, Barbara

    2000-01-01

    The early stages of lentivirus infection of dendritic cells have been studied in an in vivo model. Maedi-visna virus (MVV) is a natural pathogen of sheep with a tropism for macrophages, but the infection of dendritic cells has not been proven, largely because of the difficulties of definitively distinguishing the two cell types. Afferent lymphatic dendritic cells from sheep have been phenotypically characterized and separated from macrophages. Dendritic cells purified from experimentally infe...

  20. In Situ Observation of Cell-to-Dendrite Transition

    Institute of Scientific and Technical Information of China (English)

    PAN Xiu-Hong; HONG Yong; JIN Wei-Qing

    2005-01-01

    @@ The cell-to-dendrite transition of succinonitrile melt suspended on a loop-shaped Pt heater is observed in real time by a differential interference microscope coupled with Schlieren technique. The transition is divided into two parts: a dendrite coalition process and a subsequent dendrite elimination process. Firstly the dendrites from the same cell are united into a single dendrite. Secondly the competitive growth of dendrites from different cells leads to the elimination of dendrites. The two processes can be understood when involving crystallographic orientation. In addition, the tip velocity and primary spacing of a cell/dendrite are also measured. It turns out that the primary spacing has a significant jump, whereas the growth velocity has no abrupt change during the cell-to-dendrite transition.

  1. Maturation of dendritic cells by pullulan promotes anti-cancer effect

    Science.gov (United States)

    Xu, Li; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-01-01

    Previous studies have demonstrated that pullulan, a polysaccharide purified from Aureobasidium pullulans, has immune-stimulatory effects on T and B cells. Moreover, pullulan has been used as a carrier in the delivery of the antigen (Ag) peptide to lymphoid tissues. However, the in vivo effect of pullulan on dendritic cells (DC) has not been well characterized. In this study, we assessed the effect of pullulan on DC activation and anti-cancer immunity. The results showed that the pullulan treatment up-regulated co-stimulatory molecule expression and enhanced pro-inflammatory cytokine production in bone marrow-derived DCs (BMDC) in vitro and in spleen DCs in vivo. Moreover, the combination of ovalbumin (OVA) and pullulan induced OVA antigen-specific T cell activations in vivo. In tumor-bearing mice, pullulan induced the maturation of DCs in spleen and tumor draining lymph node (drLN), and promoted the OVA-specific T cell activation and migration of the T cells into the tumor. In addition, the combination of OVA and pullulan inhibited B16-OVA tumor growth and liver metastasis. The combination of tyrosinase-related protein 2 (TRP2) peptide and pullulan treatment also suppressed B16 melanoma growth. Thus, the results demonstrated that pullulan enhanced DC maturation and function, and it acted as an adjuvant in promoting Ag-specific immune responses in mice. Thus, pullulan could be a new and useful adjuvant for use in therapeutic cancer vaccines. PMID:27341129

  2. Regulation of Toll-like receptor 5 gene expression and function on mucosal dendritic cells.

    Directory of Open Access Journals (Sweden)

    Ting Feng

    Full Text Available Toll-like receptor (TLR 5 has been shown to maintain intestinal homeostasis and regulate host defense against enterobacterial infection. However, how TLR5 expression is regulated and its function in the intestine have not been fully elucidated. Here we demonstrate that mucosal dendritic cells (DCs, but not splenic DCs, express high levels of TLR5 protein. Alternatively spliced Tlr5 transcripts were identified but it did not explain the selective expression of TLR5 on mucosal DCs. Treatment with various bacterial ligands downregulated BMDC TLR5 expression, while retinoic acid and host stromal cell-derived signals promoted TLR5 expression in a TGF-β-independent mechanism. Signaling through TLR5 restrained regulatory T (Treg cell generation, and accordingly, TLR5(-/- mice displayed increased frequencies of Foxp3(+ Treg cells in the intestinal lamina propria. Our data indicate that bacterial and host factors differentially regulate DC TLR5 expression. TLR5 signaling regulates immune responses towards the microbiota via modulation of the Treg/effector T cell balance.

  3. Macrophages, Dendritic Cells, and Regression of Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jonathan E. Feig

    2012-07-01

    Full Text Available Atherosclerosis is the number one cause of death in the Western world. It results from the interaction between modified lipoproteins and monocyte-derived cells such as macrophages, dendritic cells, T cells, and other cellular elements of the arterial wall. This inflammatory process can ultimately lead to the development of complex lesions, or plaques, that protrude into the arterial lumen. Ultimately, plaque rupture and thrombosis can occur leading to the clinical complications of myocardial infarction or stroke. Although each of the cell types plays roles in the pathogenesis of atherosclerosis, in this review, the focus will be primarily on the monocyte derived cells- macrophages and dendritic cells. The roles of these cell types in atherogenesis will be highlighted. Finally, the mechanisms of atherosclerosis regression as it relates to these cells will be discussed.

  4. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Science.gov (United States)

    Wu, You Kure; Fujishima, Kazuto; Kengaku, Mineko

    2015-01-01

    Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s) from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  5. Listeria monocytogenes protein fraction induces dendritic cells maturation and T helper 1 immune responses.

    Directory of Open Access Journals (Sweden)

    Azad Saei

    2014-02-01

    Full Text Available Fully mature dendritic cells (DCs play pivotal role in inducing immune responses and converting naïve T lymphocytes into functional Th1 cells. We aimed to evaluate Listeria Monocytogenes-derived protein fractions to induce DC maturation and stimulating T helper (Th1 immune responses.In the present study, we fractionated Listeria Monocytogenes-derived proteins by adding of ammonium sulfate in a stepwise manner. DCs were also generated from C57BL/6 mice bone marrow precursor cells. Then, the effects of protein fractions on bone marrow derived DC (BMDC maturation were evaluated. In addition, we assessed the capacity of activated DCs to induce cytokine production and proliferation of lymphocytes.Listeria-derived protein fractions induced fully mature DCs expressing high costimulatory molecules such as CD80, CD86 and CD40. DCs that were activated by selected F3 fraction had low capacity to uptake exogenous antigens while secreted high levels of Interleukine (IL-12. Moreover, lymphocytes cultured with activated BMDCs produced high amounts of IFN-γ and showed higher proliferation than control. Listeria derived protein fractions differently influenced DC maturation.In conclusion, Listeria protein activated-BMDCs can be used as a cell based vaccine to induce anti-tumor immune responses.

  6. CLIC1 regulates dendritic cell antigen processing and presentation by modulating phagosome acidification and proteolysis

    Directory of Open Access Journals (Sweden)

    Kanin Salao

    2016-05-01

    Full Text Available Intracellular chloride channel protein 1 (CLIC1 participates in inflammatory processes by regulating macrophage phagosomal functions such as pH and proteolysis. Here, we sought to determine if CLIC1 can regulate adaptive immunity by actions on dendritic cells (DCs, the key professional antigen presenting cells. To do this, we first generated bone marrow-derived DCs (BMDCs from germline CLIC1 gene-deleted (CLIC1−/− and wild-type (CLIC1+/+ mice, then studied them in vitro and in vivo. We found phagocytosis triggered cytoplasmic CLIC1 translocation to the phagosomal membrane where it regulated phagosomal pH and proteolysis. Phagosomes from CLIC1−/− BMDCs displayed impaired acidification and proteolysis, which could be reproduced if CLIC1+/+, but not CLIC1−/− cells, were treated with IAA94, a CLIC family ion channel blocker. CLIC1−/− BMDC displayed reduced in vitro antigen processing and presentation of full-length myelin oligodendrocyte glycoprotein (MOG and reduced MOG-induced experimental autoimmune encephalomyelitis. These data suggest that CLIC1 regulates DC phagosomal pH to ensure optimal processing of antigen for presentation to antigen-specific T-cells. Further, they indicate that CLIC1 is a novel therapeutic target to help reduce the adaptive immune response in autoimmune diseases.

  7. Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity.

    Directory of Open Access Journals (Sweden)

    Atsushi Otsuka

    Full Text Available The role of mast cells (MCs in contact hypersensitivity (CHS remains controversial. This is due in part to the use of the MC-deficient Kit (W/Wv mouse model, since Kit (W/Wv mice congenitally lack other types of cells as a result of a point mutation in c-kit. A recent study indicated that the intronic enhancer (IE for Il4 gene transcription is essential for MCs but not in other cell types. The aim of this study is to re-evaluate the roles of MCs in CHS using mice in which MCs can be conditionally and specifically depleted. Transgenic Mas-TRECK mice in which MCs are depleted conditionally were newly generated using cell-type specific gene regulation by IE. Using this mouse, CHS and FITC-induced cutaneous DC migration were analyzed. Chemotaxis assay and cytoplasmic Ca²⁺ imaging were performed by co-culture of bone marrow-derived MCs (BMMCs and bone marrow-derived dendritic cells (BMDCs. In Mas-TRECK mice, CHS was attenuated when MCs were depleted during the sensitization phase. In addition, both maturation and migration of skin DCs were abrogated by MC depletion. Consistently, BMMCs enhanced maturation and chemotaxis of BMDC in ICAM-1 and TNF-α dependent manners Furthermore, stimulated BMDCs increased intracellular Ca²⁺ of MC upon direct interaction and up-regulated membrane-bound TNF-α on BMMCs. These results suggest that MCs enhance DC functions by interacting with DCs in the skin to establish the sensitization phase of CHS.

  8. Dendritic Cells Endocytose Bacillus Anthracis Spores: Implications for Anthrax Pathogenesis

    Science.gov (United States)

    2007-11-02

    Dendritic Cells Endocytose Bacillus anthracis Spores: Implications for Anthrax Pathogenesis1 Katherine C. Brittingham,* Gordon Ruthel,* Rekha G...germination and dissemination of spores. Found in high frequency throughout the respiratory track, dendritic cells (DCs) routinely take up foreign...COVERED - 4. TITLE AND SUBTITLE Dendritic cells endocytose Bacillus anthracis spores: implications for anthrax pathogenesis, The Journal of

  9. SH2 domain–containing adaptor protein B expressed in dendritic cells is involved in T-cell homeostasis by regulating dendritic cell–mediated Th2 immunity

    Science.gov (United States)

    2017-01-01

    Purpose The Src homology 2 domain–containing adaptor protein B (SHB) is widely expressed in immune cells and acts as an important regulator for hematopoietic cell function. SHB silencing induces Th2 immunity in mice. SHB is also involved in T-cell homeostasis in vivo. However, SHB has not yet been studied and addressed in association with dendritic cells (DCs). Materials and Methods The effects of SHB expression on the immunogenicity of DCs were assessed by Shb gene silencing in mouse bone marrow–derived DCs (BMDCs). After silencing, surface phenotype, cytokine expression profile, and T-cell stimulation capacity of BMDCs were examined. We investigated the signaling pathways involved in SHB expression during BMDC development. We also examined the immunogenicity of SHB-knockdown (SHBKD) BMDCs in a mouse atopic dermatitis model. Results SHB was steadily expressed in mouse splenic DCs and in in vitro–generated BMDCs in both immature and mature stages. SHB expression was contingent on activation of the mitogen- activated protein kinase/Foxa2 signaling pathway during DC development. SHBKD increased the expression of MHC class II and costimulatory molecules without affecting the cytokine expression of BMDCs. When co-cultured with T cells, SHBKD in BMDCs significantly induced CD4+ T-cell proliferation and the expression of Th2 cytokines, while the regulatory T cell (Treg) population was downregulated. In mouse atopic dermatitis model, mice inoculated with SHBKD DCs developed more severe symptoms of atopic dermatitis compared with mice injected with control DCs. Conclusion SHB expression in DCs plays an important role in T-cell homeostasis in vivo by regulating DC-mediated Th2 polarization. PMID:28168174

  10. “Dermal dendritic cells” comprise two distinct populations: CD1+ dendritic cells and CD209+ macrophages

    OpenAIRE

    Ochoa,Maria Teresa; Loncaric, Anya; Krutzik, Stephan R.; Becker, Todd C.; Modlin, Robert L.

    2008-01-01

    A key cell type of the resident skin immune system is the dendritic cell, which in normal skin is located in two distinct microanatomical compartments: Langerhans cells (LC) mainly in the epidermis and dermal dendritic cells (DDC) in the dermis. Here, the lineage of dermal dendritic cells was investigated using monoclonal antibodies and immunohistology. We provide evidence that “dermal dendritic cells” comprise at least two major phenotypic populations of dendritic appearing cells: immature D...

  11. Characterization of chicken dendritic cell markers

    Science.gov (United States)

    Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...

  12. Divergent Effects of Dendritic Cells on Pancreatitis

    Science.gov (United States)

    2015-09-01

    cells, Gr1+ inflammatory monocytes and neutrophils, or TNF production were induced to develop chronic pancreatitis in the context of DC overexpansion...Z. Yao, W. Cao, and Y.J. Liu. 2005. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp...Public reporting burden for this collection of information is estimated to average 1 hour per response , including the time for reviewing instructions

  13. CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion

    DEFF Research Database (Denmark)

    Pedersen, Anders E; Ronchese, Franca

    2007-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and critical for the priming of CD8+ T cells. Therefore the use of these cells as adjuvant cells has been tested in a large number of experimental and clinical vaccination studies, in particular cancer vaccine studies. A number of protocols...

  14. Immunomodulatory Effect of Marine Cembrane-Type Diterpenoids on Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Kao-Jean Huang

    2013-04-01

    Full Text Available Dendritic cells (DCs are antigen presenting cells, which can present antigens to T-cells and play an important role in linking innate and adaptive immunity. DC maturation can be induced by many stimuli, including pro-inflammatory cytokines and bacterial products, such as lipopolysaccharides (LPS. Here, we examined the immunomodulatory effects of marine cembrane compounds, (9E,13E-5-acetoxy-6-hydroxy-9,13-dimethyl-3- methylene-3,3a,4,5,6,7,8,11,12,14a-decahydro-2H-cyclotrideca[b]furan-2-one (1, (9E,13E- 5-acetoxy-6-acetyl-9,13-dimethyl-3-methylene-3,3a,4,5,6,7,8,11,12,14a-decahydro-2H-cyclotrideca[b]furan-2-one (2, lobocrassin B (3, (−14-deoxycrassin (4, cembranolide B (5 and 13-acetoxysarcocrassolide (6 isolated from a soft coral, Lobophytum crassum, on mouse bone marrow-derived dendritic cells (BMDCs. The results revealed that cembrane-type diterpenoids, especially lobocrassin B, effectively inhibited LPS-induced BMDC activation by inhibiting the production of TNF-α. Pre-treatment of BMDCs with Lobocrassin B for 1 h is essential to prohibit the following activation induced by various toll-like receptor (TLR agonists, such as LPS, zymosan, lipoteichoic acid (LTA and Pam2CSK4. Inhibition of NF-κB nuclear translocation by lobocrassin B, which is a key transcription factor for cytokine production in TLR signaling, was evident as assayed by high-content image analysis. Lobocrassin B attenuated DC maturation and endocytosis as the expression levels of MHC class II and the co-stimulatory molecules were downregulated, which may affect the function of DCs to initiate the T-cell responses. Thus, lobocrassin B may have the potential in treatment of immune dysregulated diseases in the future.

  15. Sensitivity of Dendritic Cells to Microenvironment Signals

    Science.gov (United States)

    Motta, Juliana Maria; Rumjanek, Vivian Mary

    2016-01-01

    Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies. PMID:27088097

  16. Sensitivity of Dendritic Cells to Microenvironment Signals

    Directory of Open Access Journals (Sweden)

    Juliana Maria Motta

    2016-01-01

    Full Text Available Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies.

  17. Dendritic Cells for SYN Scan Detection

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    Artificial immune systems have previously been applied to the problem of intrusion detection. The aim of this research is to develop an intrusion detection system based on the function of Dendritic Cells (DCs). DCs are antigen presenting cells and key to activation of the human immune system, behaviour which has been abstracted to form the Dendritic Cell Algorithm (DCA). In algorithmic terms, individual DCs perform multi-sensor data fusion, asynchronously correlating the the fused data signals with a secondary data stream. Aggregate output of a population of cells, is analysed and forms the basis of an anomaly detection system. In this paper the DCA is applied to the detection of outgoing port scans using TCP SYN packets. Results show that detection can be achieved with the DCA, yet some false positives can be encountered when simultaneously scanning and using other network services. Suggestions are made for using adaptive signals to alleviate this uncovered problem.

  18. Plasmacytoid dendritic cell role in cutaneous malignancies.

    Science.gov (United States)

    Saadeh, Dana; Kurban, Mazen; Abbas, Ossama

    2016-07-01

    Plasmacytoid dendritic cells (pDCs) correspond to a specialized dendritic cell population that exhibit plasma cell morphology, express CD4, CD123, HLA-DR, blood-derived dendritic cell antigen-2 (BDCA-2), and Toll-like receptor (TLR)7 and TLR9 within endosomal compartments. Through their production of type I interferons (IFNs) and other pro-inflammatory cytokines, pDCs provide anti-viral resistance and link the innate and adaptive immunity by controlling the function of myeloid DCs, lymphocytes, and natural killer (NK) cells. While lacking from normal skin, pDCs are usually recruited to the skin in several cutaneous pathologies where they appear to be involved in the pathogenesis of several infectious, inflammatory/autoimmune, and neoplastic entities. Among the latter group, pDCs have the potential to induce anti-tumour immunity; however, the complex interaction of pDCs with tumor cells and their micro-environment appears to contribute to immunologic tolerance. In this review, we aim at highlighting the role played by pDCs in cutaneous malignancies with special emphasis on the underlying mechanisms.

  19. Crosstalk between dendritic cell subsets and implications for dendritic cell-based anticancer immunotherapy

    NARCIS (Netherlands)

    Bakdash, G.; Schreurs, I.; Schreibelt, G.; Tel, J.

    2014-01-01

    Dendritic cells (DCs) are a family of professional antigen-presenting cells that have an indispensable role in the initiation of innate and adaptive immune responses against pathogens and tumor cells. The DC family is very heterogeneous. Two main types of naturally occurring DCs circulate in periphe

  20. Dendritic Cells as Danger-Recognizing Biosensors

    Directory of Open Access Journals (Sweden)

    Seokmann Hong

    2009-08-01

    Full Text Available Dendritic cells (DCs are antigen presenting cells that are characterized by a potent capacity to initiate immune responses. DCs comprise several subsets with distinct phenotypes. After sensing any danger(s to the host via their innate immune receptors such as Toll-like receptors, DCs become mature and subsequently present antigens to CD4+ T cells. Since DCs possess the intrinsic capacity to polarize CD4+ helper cells, it is critical to understand the immunological roles of DCs for clinical applications. Here, we review the different DC subsets, their danger-sensing receptors and immunological functions. Furthermore, the cytokine reporter mouse model for studying DC activation is introduced.

  1. TGF-β suppresses β-catenin-dependent tolerogenic activation program in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Bryan Vander Lugt

    Full Text Available The mechanisms that underlie the critical dendritic cell (DC function in maintainance of peripheral immune tolerance are incompletely understood, although the β-catenin signaling pathway is critical for this role. The molecular details by which β-catenin signaling is regulated in DCs are unknown. Mechanical disruption of murine bone marrow-derived DC (BMDC clusters activates DCs while maintaining their tolerogenic potential and this activation is associated with β-catenin signaling, providing a useful model with which to explore tolerance-associated β-catenin signaling in DCs. In this report, we demonstrate novel molecular features of the signaling events that control DC activation in response to mechanical stimulation. Non-canonical β-catenin signaling is an essential component of this tolerogenic activation and is modulated by adhesion molecules, including integrins. This unique β-catenin-dependent signaling pathway is constitutively active at low levels, suggesting that mechanical stimulation is not necessarily required for induction of this unique activation program. We additionally find that the immunomodulatory cytokine TGF-β antagonizes β-catenin in DCs, thereby selectively suppressing signaling associated with tolerogenic DC activation while having no impact on LPS-induced, β-catenin-independent immunogenic activation. These findings provide new molecular insight into the regulation of a critical signaling pathway for DC function in peripheral immune tolerance.

  2. Improvement of human dendritic cell culture for immunotoxicological investigations.

    Science.gov (United States)

    Hymery, N; Sibiril, Y; Parent-Massin, D

    2006-07-01

    A toxic injury such as a decrease in the number of immature dendritic cells caused by a cytotoxic effect or a disturbance in their maturation process can be responsible for immunodepression. There is a need to improve in vitro assays on human dendritic cells used to detect and evaluate adverse effects of xenobiotics. Two aspects were explored in this work: cytotoxic effects of xenobiotics on immature dendritic cells, and the interference of xenobiotics with dendritic cell maturation. Dendritic cells of two different origins were tested. Dendritic cells obtained either from umbilical cord blood CD34(+) cells or, for the first time, from umbilical cord blood monocytes. The cytotoxicity assay on immature dendritic cells has been improved. For the study of the potential adverse effects of xenobiotics on the maturation process of dendritic cells, several parameters were selected such as expression of markers (CD86, CD83, HLA-DR), secretion of interleukins 10 and 12, and proliferation of autologous lymphocytes. The relevance and the efficiency of the protocol applied were tested using two mycotoxins, T-2 toxin and deoxynivalence, DON, which are known to be immunosuppressive, and one phycotoxin, domoic acid, which is known not to have any immunotoxic effect. Assays using umbilical cord monocyte dendritic cell cultures with the protocol defined in this work, which involves a cytotoxicity study followed by evaluation of several markers of adverse effects on the dendritic cell maturation process, revealed their usefulness for investigating xenobiotic immunotoxicity toward immune primary reactions.

  3. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  4. Semiautomated analysis of dendrite morphology in cell culture.

    Science.gov (United States)

    Sweet, Eric S; Langhammer, Chris L; Kutzing, Melinda K; Firestein, Bonnie L

    2013-01-01

    Quantifying dendrite morphology is a method for determining the effect of biochemical pathways and extracellular agents on neuronal development and differentiation. Quantification can be performed using Sholl analysis, dendrite counting, and length quantification. These procedures can be performed on dendrite-forming cell lines or primary neurons grown in culture. In this protocol, we describe the use of a set of computer programs to assist in quantifying many aspects of dendrite morphology, including changes in total and localized arbor complexity.

  5. Protein-bound polysaccharide activates dendritic cells and enhances OVA-specific T cell response as vaccine adjuvant.

    Science.gov (United States)

    Engel, Abbi L; Sun, Guan-Cheng; Gad, Ekram; Rastetter, Lauren R; Strobe, Katie; Yang, Yi; Dang, Yushe; Disis, Mary L; Lu, Hailing

    2013-12-01

    Protein-bound polysaccharide-K (PSK) is a hot water extract from Trametes versicolor mushroom. It has been used traditionally in Asian countries for its immune stimulating and anti-cancer effects. We have recently found that PSK can activate Toll-like receptor 2 (TLR2). TLR2 is highly expressed on dendritic cells (DC), so the current study was undertaken to evaluate the effect of PSK on DC activation and the potential of using PSK as a vaccine adjuvant. In vitro experiments using mouse bone marrow-derived DC (BMDC) demonstrated that PSK induces DC maturation as shown by dose-dependent increase in the expression of CD80, CD86, MHCII, and CD40. PSK also induces the production of multiple inflammatory cytokines by DC, including IL-12, TNF-α, and IL-6, at both mRNA and protein levels. In vivo experiments using PSK as an adjuvant to OVAp323-339 vaccine showed that PSK as adjuvant leads to enlarged draining lymph nodes with higher number of activated DC. PSK also stimulates proliferation of OVA-specific T cells, and induces T cells that produce multiple cytokines, IFN-γ, IL-2, and TNF-α. Altogether, these results demonstrate the ability of PSK to activate DC in vitro and in vivo and the potential of using PSK as a novel vaccine adjuvant.

  6. Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation.

    Directory of Open Access Journals (Sweden)

    Megumi Kaneko

    Full Text Available Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.

  7. Dendritic cells modified by vitamin D

    DEFF Research Database (Denmark)

    Pedersen, Ayako Wakatsuki; Claesson, Mogens Helweg; Zocca, Mai-Britt

    2011-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells of the immune system, express nuclear receptors for 1,25-dihydroxyvitamin D(3) (VD3) and they are one of its main targets. In the presence of VD3, DCs differentiate into a phenotype that resembles semimature DCs, with reduced T cell ...... and the optimal frequency, dose, and route of DC administration to achieve therapeutic effects in humans, adoptive VD3-DC transfer represents one of the most promising approaches to future treatment of autoimmune diseases.......Dendritic cells (DCs), the most potent antigen-presenting cells of the immune system, express nuclear receptors for 1,25-dihydroxyvitamin D(3) (VD3) and they are one of its main targets. In the presence of VD3, DCs differentiate into a phenotype that resembles semimature DCs, with reduced T cell...... costimulatory molecules and hampered IL-12 production. These VD3-modulated DCs induce T cell tolerance in vitro using multiple mechanisms such as rendering T cells anergic, dampening of Th1 responses, and recruiting and differentiating regulatory T cells. Due to their ability to specifically target pathological...

  8. Inducible expression of endomorphins in murine dendritic cells.

    Science.gov (United States)

    Yang, Xiaohuai; Xia, Hui; Chen, Yong; Liu, Xiaofen; Zhou, Cheng; Gao, Qin; Li, Zhenghong

    2012-12-15

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7-8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [(3)H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of µ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of µ-opioid receptors.

  9. Inducible expression of endomorphins in murine dendritic cells

    Institute of Scientific and Technical Information of China (English)

    Xiaohuai Yang; Hui Xia; Yong Chen; Xiaofen Liu; Cheng Zhou; Qin Gao; Zhenghong Li

    2012-01-01

    Bone marrow precursor cells were extracted from C57BL/6J mice aged 7–8 weeks, and dendritic cells were purified using anti-CD11c (a specific marker for dendritic cells) antibody-coated magnetic beads. Immunofluorescence staining revealed that the expression levels of endomorphin-1 and endomorphin-2 were upregulated in dendritic cells activated by lipopolysaccharide. An enzyme immunoassay showed that lipopolysaccharide and other Toll-like receptor ligands promoted the secretion of endomorphin-1 and endomorphin-2 from activated dendritic cells. [3H]-thymidine incorporation demonstrated that endomorphin-1 and endomorphin-2 both inhibited the proliferation of T lymphocyte induced by activated dendritic cells. Furthermore, this immunosuppressive effect was blocked by CTOP, a specific antagonist of μ-opioid receptors. Our experimental findings indicate that activated dendritic cells can induce the expression and secretion of endomorphins, and that endomorphins suppress T lymphocyte proliferation through activation of μ-opioid receptors.

  10. Dendritic Cells in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    Hui Wan; Marcel Dupasquier

    2005-01-01

    Dendritic cells (DC) are crucial cells of the immune system, and bridged the essential connection between innate and adaptive immunity. They reside in the periphery as sentinels where they take up antigens. Upon activation,they migrate to lymphoid organs and present there the processed antigens to T cells, thereby activating them and eliciting a potent immune response. Dendritic cells are bone marrow-derived cells, still big controversies exist about their in vivo development. In vitro, DC can be generated from multiple precursor cells, among them lymphoid and myeloid committed progenitors. Although it remains unknown how DC are generated in vivo,studying the functions of in vitro generated DC results in fundamental knowledge of the DC biology with promising applications for future medicine. Therefore, in this review, we present current protocols for the generation of DC from precursors in vitro. We will do this for the mouse system, where most research occurs and for the human system, where research concentrates on implementing DC biology in disease treatments.

  11. Dendritic Cells in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    HuiWan; MarcelDupasquier

    2005-01-01

    Dendritic cells (DC) are crucial cells of the immune system, and bridged the essential connection between innate and adaptive immunity. They reside in the periphery as sentinels where they take up antigens. Upon activation, they migrate to lymphoid organs and present there the processed antigens to T cells, thereby activating them and eliciting a potent immune response. Dendritic cells are bone marrow-derived cells, still big controversies exist about their in vivo development. In vitro, DC can be generated from multiple precursor cells, among them lymphoid and myeloid committed progenitors. Although it remains unknown how DC are generated in vivo, studying the functions of in vitro generated DC results in fundamental knowledge of the DC biology with promising applications for future medicine. Therefore, in this review, we present current protocols for the generation of DC from precursors in vitro. We will do this for the mouse system, where most research occurs and for the human system, where research concentrates on implementing DC biology in disease treatments. Cellular & Molecular Immunology. 2005;2(1):28-35.

  12. IMMUNE MODULATORY EFFECTS of HUMAN CHORIONIC GONADOTROPIN on DENDRITIC CELLS SUPPORTING FETAL SURVIVAL in MURINE PREGNANCY

    Directory of Open Access Journals (Sweden)

    Dominique Dauven

    2016-11-01

    Full Text Available Dendritic cells (DCs are critically involved in the determination of immunity versus tolerance. Hence, DCs are key regulators of immune responses either favoring or disfavoring fetal survival. Several factors were proposed to modulate DC phenotype and function during preg-nancy. Here, we studied whether the pregnancy hormone human Chorionic Gonadotropin (hCG is involved in DC regulation.In vitro, bone-marrow-derived DCs (BMDCs were stimulated in the presence or absence of urine-purified (uhCG or recombinant hCG (rhCG preparations. Subsequently, BMDC matu-ration was assessed. Cytokine secretion of activated BMDCs and their capability to enforce TH1, TH2, TH17 or Treg cell differentiation was determined after rhCG treatment. Moreover, the in vivo potential of hCG-modulated BMDCs to influence pregnancy outcome, Treg cell number and local cytokine expression was evaluated after adoptive transfer in a murine abor-tion-prone model before and after conception. Both hCG preparations impaired the maturation process of BMDCs. rhCG treatment did nei-ther alter cytokine secretion by BMDCs nor their ability to drive TH1, TH2 or TH17 differen-tiation. rhCG-treated BMDCs augmented the number of Treg cells within the T cell popula-tion. Adoptive transfer of rhCG-treated BMDCs after conception did not influence pregnancy outcome. However, transfer of hCG-treated BMDCs prior to mating had a protective effect on pregnancy. This positive effect was accompanied by increased Treg cell numbers and decidual IL-10 and TGF-β expression. Our results unveil the importance of hCG in retaining DCs in a tolerogenic state, thereby promoting Treg cell increment and supporting fetal survival.

  13. Immune Modulatory Effects of Human Chorionic Gonadotropin on Dendritic Cells Supporting Fetal Survival in Murine Pregnancy

    Science.gov (United States)

    Dauven, Dominique; Ehrentraut, Stefanie; Langwisch, Stefanie; Zenclussen, Ana Claudia; Schumacher, Anne

    2016-01-01

    Dendritic cells (DCs) are critically involved in the determination of immunity vs. tolerance. Hence, DCs are key regulators of immune responses either favoring or disfavoring fetal survival. Several factors were proposed to modulate DC phenotype and function during pregnancy. Here, we studied whether the pregnancy hormone human chorionic gonadotropin (hCG) is involved in DC regulation. In vitro, bone marrow-derived DCs (BMDCs) were stimulated in the presence or absence of urine-purified or recombinant hCG (rhCG) preparations. Subsequently, BMDC maturation was assessed. Cytokine secretion of activated BMDCs and their capability to enforce TH1, TH2, TH17, or Treg cell differentiation was determined after rhCG treatment. Moreover, the in vivo potential of hCG-modulated BMDCs to influence pregnancy outcome, Treg cell number, and local cytokine expression was evaluated after adoptive transfer in a murine abortion-prone model before and after conception. Both hCG preparations impaired the maturation process of BMDCs. rhCG treatment did neither alter cytokine secretion by BMDCs nor their ability to drive TH1, TH2, or TH17 differentiation. rhCG-treated BMDCs augmented the number of Treg cells within the T cell population. Adoptive transfer of rhCG-treated BMDCs after conception did not influence pregnancy outcome. However, transfer of hCG-treated BMDCs prior to mating had a protective effect on pregnancy. This positive effect was accompanied by increased Treg cell numbers and decidual IL-10 and TGF-β expression. Our results unveil the importance of hCG in retaining DCs in a tolerogenic state, thereby promoting Treg cell increment and supporting fetal survival. PMID:27895621

  14. In vitro effects of trichothecenes on human dendritic cells.

    Science.gov (United States)

    Hymery, N; Sibiril, Y; Parent-Massin, D

    2006-09-01

    The aim of this work was to study the in vitro effects of trichothecenes on human dendritic cells. Trichothecenes are mycotoxins produced by fungi such as Fusarium, Myrothecium, and Stachybotrys. Two aspects have been explored in this work: the cytotoxicity of trichothecenes on immature dendritic cells to determine IC 50 (inhibition concentration), and the effects of trichothecenes on dendritic cell maturation process. Two mycotoxins (T-2 and DON) known to be immunotoxic have been tested on a model of monocyte-derived dendritic cells culture. Cytotoxic effects of T-2 toxin and DON on immature dendritic cells showed that DON is less potent than T-2 toxin. The exposure to trichothecenes during dendritic cell maturation upon addition of LPS or TNF-alpha markedly inhibited the up-regulation of maturation markers such as CD-86, HLA-DR and CCR7. Features of LPS or TNF-alpha -mediated maturation of dendritic cells, such as IL-10 and IL-12 secretions and endocytosis, were also impaired in response to trichothecenes treatment. These results suggest trichothecenes have adverse effects on dendritic cells and dendritic cell maturation process.

  15. Immune Monitoring Using mRNA-Transfected Dendritic Cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m......RNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  16. Targeting vaccines to dendritic cells

    DEFF Research Database (Denmark)

    Foged, Camilla; Sundblad, Anne; Hovgaard, Lars

    2002-01-01

    to be far superior to that of B-cells and macrophages. DC are localized at strategic places in the body at sites used by pathogens to enter the organism, and are thereby in an optimal position to capture antigens. In general, vaccination strategies try to mimic the invasiveness of the pathogens. DC...... are considered to play a central role for the provocation of primary immune responses by vaccination. A rational way of improving the potency and safety of new and already existing vaccines could therefore be to direct vaccines specifically to DC. There is a need for developing multifunctional vaccine drug...... delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC....

  17. Fast generation of dendritic cells

    DEFF Research Database (Denmark)

    Kvistborg, P; Bøgh, Marie; Claesson, M H

    2009-01-01

    we have developed fast DC protocol by comparing two different fast DC protocols with SDDC. DC were evaluated by FACS analysis, and the optimal profile was considered: CD14(low), CD80(high), CD83(high), CD86(high), CCR7(high), HLA class I and II(high). FACS profiles were used as the selection criteria...... together with yield and morphology. Two fast DC protocols fulfilled these criteria and were selected for functional analysis. Our results demonstrate that DC generated within 5days or 48h are comparable with SDDC both phenotypically and functionally. However, we found that 48h DC were more susceptible than...... SDDC to the IL-10 inducing stimulus of TLR ligands (R848 and LPS). Thus to determine the clinical relevance of fast DC protocols in cancer settings, small phase I trials should be conducted monitoring regulatory T cells carefully....

  18. Dendritic planarity of Purkinje cells is independent of Reelin signaling.

    Science.gov (United States)

    Kim, Jinkyung; Park, Tae-Ju; Kwon, Namseop; Lee, Dongmyeong; Kim, Seunghwan; Kohmura, Yoshiki; Ishikawa, Tetsuya; Kim, Kyong-Tai; Curran, Tom; Je, Jung Ho

    2015-07-01

    The dendritic planarity of Purkinje cells is critical for cerebellar circuit formation. In the absence of Crk and CrkL, the Reelin pathway does not function resulting in partial Purkinje cell migration and defective dendritogenesis. However, the relationships among Purkinje cell migration, dendritic development and Reelin signaling have not been clearly delineated. Here, we use synchrotron X-ray microscopy to obtain 3-D images of Golgi-stained Purkinje cell dendrites. Purkinje cells that failed to migrate completely exhibited conical dendrites with abnormal 3-D arborization and reduced dendritic complexity. Furthermore, their spines were fewer in number with a distorted morphology. In contrast, Purkinje cells that migrated successfully displayed planar dendritic and spine morphologies similar to normal cells, despite reduced dendritic complexity. These results indicate that, during cerebellar formation, Purkinje cells migrate into an environment that supports development of dendritic planarity and spine formation. While Reelin signaling is important for the migration process, it does not make a direct major contribution to dendrite formation.

  19. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  20. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity

    Directory of Open Access Journals (Sweden)

    Michael J. Molumby

    2016-05-01

    Full Text Available Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs, have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron’s dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  1. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    You Kure Wu

    Full Text Available Hippocampal pyramidal cells and dentate granule cells develop morphologically distinct dendritic arbors, yet also share some common features. Both cell types form a long apical dendrite which extends from the apex of the cell soma, while short basal dendrites are developed only in pyramidal cells. Using quantitative morphometric analyses of mouse hippocampal cultures, we evaluated the differences in dendritic arborization patterns between pyramidal and granule cells. Furthermore, we observed and described the final apical dendrite determination during dendritic polarization by time-lapse imaging. Pyramidal and granule cells in culture exhibited similar dendritic patterns with a single principal dendrite and several minor dendrites so that the cell types were not readily distinguished by appearance. While basal dendrites in granule cells are normally degraded by adulthood in vivo, cultured granule cells retained their minor dendrites. Asymmetric growth of a single principal dendrite harboring the Golgi was observed in both cell types soon after the onset of dendritic growth. Time-lapse imaging revealed that up until the second week in culture, final principal dendrite designation was not stabilized, but was frequently replaced by other minor dendrites. Before dendritic polarity was stabilized, the Golgi moved dynamically within the soma and was repeatedly repositioned at newly emerging principal dendrites. Our results suggest that polarized growth of the apical dendrite is regulated by cell intrinsic programs, while regression of basal dendrites requires cue(s from the extracellular environment in the dentate gyrus. The apical dendrite designation is determined from among multiple growing dendrites of young developing neurons.

  2. Viruses, dendritic cells and the lung

    Directory of Open Access Journals (Sweden)

    Graham Barney S

    2001-06-01

    Full Text Available Abstract The interaction between viruses and dendritic cells (DCs is varied and complex. DCs are key elements in the development of a host response to pathogens such as viruses, but viruses have developed survival tactics to either evade or diminish the immune system that functions to kill and eliminate these micro-organisms. In the present review we summarize current concepts regarding the function of DCs in the immune system, our understanding of how viruses alter DC function to attenuate both the virus-specific and global immune response, and how we may be able to exploit DC function to prevent or treat viral infections.

  3. Metamaterial absorber with random dendritic cells

    Science.gov (United States)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  4. Identification of iGb3 and iGb4 in melanoma B16F10-Nex2 cells and the iNKT cell-mediated antitumor effect of dendritic cells primed with iGb3

    Directory of Open Access Journals (Sweden)

    Almeida Igor C

    2009-12-01

    Full Text Available Abstract Background CD1d-restricted iNKT cells are protective against murine melanoma B16F10-Nex2 growing subcutaneously in syngeneic C57Bl/6 mice as inferred from the fast tumor development in CD1d-KO in comparison with wild type animals. CD1d glycoproteins are related to the class I MHC molecules, and are involved in the presentation, particularly by dentritic cells (DC, of lipid antigens to iNKT cells. In the present work we attempted to identify the endogenous lipid mediator expressed in melanoma cells inducing such immunesurveillance response and study the possibility of protecting animals challenged with tumor cells with lipid-primed DC. Results Crude cytosolic and membrane fractions from in vivo growing melanoma contained iNKT-stimulating substances. Lipids were then extracted from these cells and one of the fractions (i.e. F3A was shown to prime bone marrow-derived dendritic cells (BMDC to stimulate iNKT murine hybridoma (DN32D3 cells to produce IL-2. The active fraction was analyzed by electrospray ionization-mass spectrometry (ESI-LIT-MS and both iGb3 and iGb4 were identified along with GM3. When iGb3 was incubated with BMDC and tested with DN32D3 cells, IL-2 was equally produced indicating iNKT cell activation. GM3 consistently inhibited this response. To assess the antitumor response-induced by iGb3, a cytotoxicity assay in vitro was used with [3H]-thymidine labeled B16F10-Nex2 cells. At target/effector (iGb3-activated iNKT cell ratio of 100-1-100-4 tumor cell lysis was shown. The antitumor activity in vivo was tested in mice challenged i.v. with B16F10-Nex2 cells and treated with iGb3- or α-galactosylceramide-primed DCs. A 4-fold lower tumor load in the lungs was observed with either treatment. Conclusion Our results show the expression of globo and isoglobohexosylceramides in murine melanoma B16F10-Nex2. The expression of iGb3 and its precursor, iGb4, on tumor cells may prime an effective iNKT cell-dependent antitumor response

  5. Recombinant Sj16 from Schistosoma japonicum contains a functional N-terminal nuclear localization signal necessary for nuclear translocation in dendritic cells and interleukin-10 production.

    Science.gov (United States)

    Sun, Xi; Yang, Fan; Shen, Jia; Liu, Zhen; Liang, Jinyi; Zheng, Huanqin; Fung, Mingchiu; Wu, Zhongdao

    2016-12-01

    Sj16 is a Schistosoma japonicum-derived protein (16 kDa in molecular weight) that has been identified as an immune modulation molecule, but the mechanisms of modulation of immune responses are not known. In this report, we aimed to investigate the host immune regulation mechanism by recombinant Sj16 (rSj16) and thus illuminate the molecular mechanism of immune evasion by S. japonicum. The effect of rSj16 and rSj16 mutants on the biology of dendritic cells (DCs) was assessed by examining DC maturation, cytokine production, and expression of surface markers by flow cytometry and enzyme-linked immunosorbent assay. We found that rSj16 significantly stimulated interleukin (IL)-10 production and inhibited LPS-induced bone marrow-derived dendrite cell (BMDC) maturation in a dose-dependent manner. By using antibody neutralization experiments and IL-10-deficient (knockout) mice, we confirmed that the inhibitory effect of rSj16 on LPS-induced BMDCs is due to its induction of IL-10 production. To understand how rSj16 induces the production of IL-10, we analyzed the protein sequence and revealed two potential nuclear localization signals (NLS) in Sj16. The N-terminal NLS (NLS1) is both necessary and sufficient for translocation of rSj16 to the nucleus of BMDCs and is important for subsequent induction of IL-10 production and the inhibition of BMDC maturation by rSj16. The results of our study concluded that the ability of rSj16 to inhibit DC functions is IL-10 dependent which is operated by IL-10R signal pathway. This study also confirmed that NLS is an important domain associated with increased production of IL-10. Our findings will extend the current understanding on host-schistosome relationship and provide insight about bottleneck of parasitic control.

  6. In vivo evidence for dendritic cell lysis by NK cells

    OpenAIRE

    Ferlazzo, Guido

    2012-01-01

    By using an experimental model of anticancer vaccination, we have recently lent support to the assumption, so far only sustained by in vitro data, that natural killer cells can restrain less immunogenic, allegedly tolerogenic, dendritic cells (DCs). This in vivo selection of immunogenic DCs appears to depend on perforin and to be associated with a more protective tumor-specific T lymphocyte response.

  7. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  8. Human plasmacytoid dendritic cells: from molecules to intercellular communication network

    NARCIS (Netherlands)

    Mathan, T.S.M.; Figdor, C.G.; Buschow, S.I.

    2013-01-01

    Plasmacytoid dendritic cells (pDCs) are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presentin

  9. Di-(2-ethylhexyl) phthalate affects immune cells from atopic prone mice in vitro.

    Science.gov (United States)

    Koike, Eiko; Inoue, Ken-ichiro; Yanagisawa, Rie; Takano, Hirohisa

    2009-05-02

    Phthalate esters as plasticizers have been widespread in the environment and may be associated with development of allergic diseases such as asthma and atopic dermatitis. However, the underlying mechanisms have not been fully elucidated. The present study investigated the effects of di-(2-ethylhexyl) phthalate (DEHP) on immune cells from atopic prone NC/Nga mice in vitro. Bone marrow-derived dendritic cells (BMDC) as a professional antigen-presenting cell and splenocytes as mixture of immune cells were used. BMDC were differentiated by culture with granulocyte macrophage-colony stimulating factor (GM-CSF) in the presence of DEHP (0.1-10microM) for 6 days. In another experiments, BMDC were differentiated by culture with GM-CSF for 8 days then these BMDC were exposed to DEHP (0.1-100microM) for 24h. Splenocytes were exposed to DEHP for 24h (0.1-100microM) or 72h (0.1-1000nM). After the culture, the phenotypic markers and the function of BMDC and splenocytes were evaluated. BMDC differentiated in the presence of DEHP showed enhancement in the expression of MHC class II, CD86, CD11c and DEC205, and in their antigen-presenting activity. On the other hand, the function of the differentiated BMDC was not activated by DEHP although DEHP partly enhanced their expression of DEC205. DEHP-exposed splenocytes showed increases in their TCR and CD3 expression, interleukin-4 production, and antigen-stimulated proliferation. These results demonstrate that DEHP enhances BMDC differentiation but not activation and also enhances Th2 response in splenocytes from atopic prone mice. The enhancement might contribute to the aggravating effect of DEHP on allergic disorders.

  10. Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Tedesco, Gianni

    2010-01-01

    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when the algorithm was applied to anomaly detection for the detection of port scans. The results show the Dendritic Cell Algorithm is sucessful at detecting port scans.

  11. The Modulatory Effect of 15d-PGJ2 in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Thaís Soares Farnesi-de-Assunção

    2014-05-01

    Full Text Available The PPAR-γ ligands, in special 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2, negatively regulate the cells of innate and adaptative immune system and present excellent results in different models of inflammatory diseases. These findings support the notion that PPAR-γ ligands may be used as therapeutic agents in different diseases. Although PPAR-γ is expressed in different cells and tissues including dendritic cells (DC, few studies have evaluated the effects of these ligands on DCs. Thus, in this study we evaluated the effect of 15d-PGJ2 on DC surface molecule expression, including MHC-II, CD80, and CD86. In addition, we quantified cytokine production in the presence of 15d-PGJ2 or rosiglitazone. Expression of the surface molecules was measured by flow cytometry and cytokines production was measured by ELISA in supernatant of BMDC cultures. The results suggest that 15d-PGJ2 reduced the expression of costimulatory molecules (CD80 and CD86, without altering MCH-class II expression. Furthermore the natural PPAR-γ agonist significantly reduced levels of proinflammatory cytokines (IL-12, IFN-γ, and TNF-α and appears to also reduce IL-1β levels. Rosiglitazone reduced the expression of these cytokines albeit to a lesser extent. These data suggest the idea that 15d-PGJ2 could be a therapeutic strategy in diseases where DCs play a crucial role, due to its ability to reduce costimulatory molecules expression and modulate the inflammatory environment.

  12. Modulation of tolerogenic dendritic cells and autoimmunity.

    Science.gov (United States)

    Kim, Sun Jung; Diamond, Betty

    2015-05-01

    A key function of dendritic cells (DCs) is to induce either immune tolerance or immune activation. Many new DC subsets are being recognized, and it is now clear that each DC subset has a specialized function. For example, different DC subsets may express different cell surface molecules and respond differently to activation by secretion of a unique cytokine profile. Apart from intrinsic differences among DC subsets, various immune modulators in the microenvironment may influence DC function; inappropriate DC function is closely related to the development of immune disorders. The most exciting recent advance in DC biology is appreciation of human DC subsets. In this review, we discuss functionally different mouse and human DC subsets both in lymphoid organs and non-lymphoid organs, the molecules that regulate DC function, and the emerging understanding of the contribution of DCs to autoimmune diseases.

  13. Triggering of dendritic cell apoptosis by xanthohumol.

    Science.gov (United States)

    Xuan, Nguyen Thi; Shumilina, Ekaterina; Gulbins, Erich; Gu, Shuchen; Götz, Friedrich; Lang, Florian

    2010-07-01

    Xanthohumol, a flavonoid from beer with anticancer activity is known to trigger apoptosis in a variety of tumor cells. Xanthohumol further has anti-inflammatory activity. However, little is known about the effect of xanthohumol on survival and function of immune cells. The present study thus addressed the effect of xanthohumol on dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. To this end, mouse bone marrow-derived DCs were treated with xanthohumol with subsequent assessment of enzymatic activity of acid sphingomyelinase (Asm), ceramide formation determined with anti-ceramide antibodies in FACS and immunohistochemical analysis, caspase activity utilizing FITC conjugated anti-active caspase 8 or caspase 3 antibodies in FACS and by Western blotting, DNA fragmentation by determining the percentage of cells in the sub-G1 phase and cell membrane scrambling by annexin V binding in FACS analysis. As a result, xanthohumol stimulated Asm, enhanced ceramide formation, activated caspases 8 and 3, triggered DNA fragmentation and led to cell membrane scrambling, all effects virtually absent in DCs from gene targeted mice lacking functional Asm or in wild-type cells treated with sphingomyelinase inhibitor amitriptyline. In conclusion, xanthohumol stimulated Asm leading to caspase activation and apoptosis of bone marrow-derived DCs.

  14. A novel cell subset:Interferon-producing killer dendritic cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells(IKDCs).IKDCs not only secret type I and type II interferons to recognize and kill tumor cells effectively, but also express MHC-II molecules to present antigens.Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.

  15. CD56 marks human dendritic cell subsets with cytotoxic potential

    NARCIS (Netherlands)

    Roothans, D.; Smits, E.; Lion, E.; Tel, J.; Anguille, S.

    2013-01-01

    Human plasmacytoid and myeloid dendritic cells (DCs), when appropriately stimulated, can express the archetypal natural killer (NK)-cell surface marker CD56. In addition to classical DC functions, CD56+ DCs are endowed with an unconventional cytotoxic capacity.

  16. The p50 Subunit of NF-κB Orchestrates Dendritic Cell Lifespan and Activation of Adaptive Immunity

    Science.gov (United States)

    Larghi, Paola; Porta, Chiara; Riboldi, Elena; Totaro, Maria Grazia; Carraro, Lorenzo; Orabona, Ciriana; Sica, Antonio

    2012-01-01

    Dendritic cells play a central role in keeping the balance between immunity and immune tolerance. A key factor in this equilibrium is the lifespan of DC, as its reduction restrains antigen availability leading to termination of immune responses. Here we show that lipopolysaccharide-driven DC maturation is paralleled by increased nuclear levels of p50 NF-κB, an event associated with DC apoptosis. Lack of p50 in murine DC promoted increased lifespan, enhanced level of maturation associated with increased expression of the proinflammatory cytokines IL-1, IL-18 and IFN-β, enhanced capacity of activating and expanding CD4+ and CD8+ T cells in vivo and decreased ability to induce differentiation of FoxP3+ regulatory T cells. In agreement, vaccination of melanoma-bearing mice with antigen-pulsed LPS-treated p50−/− BM-DC boosted antitumor immunity and inhibition of tumor growth. We propose that nuclear accumulation of the p50 NF-κB subunit in DC, as occurring during lipopolysaccharide-driven maturation, is a homeostatic mechanism tuning the balance between uncontrolled activation of adaptive immunity and immune tolerance. PMID:23049782

  17. Harnessing dendritic cells in inflammatory skin diseases.

    Science.gov (United States)

    Chu, Chung-Ching; Di Meglio, Paola; Nestle, Frank O

    2011-02-01

    The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-derived molecules or selectively modulate DC subsets is a convincing strategy to tackle inflammatory skin diseases. In this review we discuss recent advances underlining the functional specialization of skin DCs and discuss the potential implication for future DC-based therapeutic strategies.

  18. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  19. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum

    OpenAIRE

    Ziegler, A; Everett, H.; Hamza, E; Garbani, M; Gerber, V.; Marti, E; Steinbach, F

    2016-01-01

    Background: Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including horses. ...

  20. Macrophages and Dendritic Cells: Partners in Atherogenesis.

    Science.gov (United States)

    Cybulsky, Myron I; Cheong, Cheolho; Robbins, Clinton S

    2016-02-19

    Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.

  1. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  2. Derivation and Utilization of Functional CD8(+) Dendritic Cell Lines.

    Science.gov (United States)

    Pigni, Matteo; Ashok, Devika; Acha-Orbea, Hans

    2016-01-01

    It is notoriously difficult to obtain large quantities of non-activated dendritic cells ex vivo. For this reason, we produced and characterized a mouse model expressing the large T oncogene under the CD11c promoter (Mushi mice), in which CD8α(+) dendritic cells transform after 4 months. We derived a variety of stable cell lines from these primary lines. These cell lines reproducibly share with freshly isolated dendritic cells most surface markers, mRNA and protein expression, and all tested biological functions. Cell lines can be derived from various strains and knockout mice and can be easily transduced with lentiviruses. In this article, we describe the derivation, culture, and lentiviral transduction of these dendritic cell lines.

  3. Caspase-2-dependent dendritic cell death, maturation, and priming of T cells in response to Brucella abortus infection.

    Directory of Open Access Journals (Sweden)

    Xinna Li

    Full Text Available Smooth virulent Brucella abortus strain 2308 (S2308 causes zoonotic brucellosis in cattle and humans. Rough B. abortus strain RB51, derived from S2308, is a live attenuated cattle vaccine strain licensed in the USA and many other countries. Our previous report indicated that RB51, but not S2308, induces a caspase-2-dependent apoptotic and necrotic macrophage cell death. Dendritic cells (DCs are professional antigen presenting cells critical for bridging innate and adaptive immune responses. In contrast to Brucella-infected macrophages, here we report that S2308 induced higher levels of apoptotic and necrotic cell death in wild type bone marrow-derived DCs (WT BMDCs than RB51. The RB51 and S2308-induced BMDC cell death was regulated by caspase-2, indicated by the minimal cell death in RB51 and S2308-infected BMDCs isolated from caspase-2 knockout mice (Casp2KO BMDCs. More S2308 bacteria were taken up by Casp2KO BMDCs than wild type BMDCs. Higher levels of S2308 and RB51 cells were found in infected Casp2KO BMDCs compared to infected WT BMDCs at different time points. RB51-infected wild type BMDCs were mature and activated as shown by significantly up-regulated expression of CD40, CD80, CD86, MHC-I, and MHC-II. RB51 induced the production of cytokines TNF-α, IL-6, IFN-γ and IL12/IL23p40 in infected BMDCs. RB51-infected WT BMDCs also stimulated the proliferation of CD4(+ and CD8(+ T cells compared to uninfected WT BMDCs. However, the maturation, activation, and cytokine secretion are significantly impaired in Casp2KO BMDCs infected with RB51 or Salmonella (control. S2308-infected WT and Casp2KO BMDCs were not activated and could not induce cytokine production. These results demonstrated that virulent smooth strain S2308 induced more apoptotic and necrotic dendritic cell death than live attenuated rough vaccine strain RB51; however, RB51, but not its parent strain S2308, induced caspase-2-mediated DC maturation, cytokine production, antigen

  4. Iron acquisition by Mycobacterium tuberculosis residing within myeloid dendritic cells.

    Science.gov (United States)

    Olakanmi, Oyebode; Kesavalu, Banurekha; Abdalla, Maher Y; Britigan, Bradley E

    2013-12-01

    The pathophysiology of Mycobacterium tuberculosis (M.tb) infection is linked to the ability of the organism to grow within macrophages. Lung myeloid dendritic cells are a newly recognized reservoir of M.tb during infection. Iron (Fe) acquisition is critical for M.tb growth. In vivo, extracellular Fe is chelated to transferrin (TF) and lactoferrin (LF). We previously reported that M.tb replicating in human monocyte-dervied macrophages (MDM) can acquire Fe bound to TF, LF, and citrate, as well as from the MDM cytoplasm. Access of M.tb to Fe may influence its growth in macrophages and dendritic cells. In the present work we confirmed the ability of different strains of M.tb to grow in human myeloid dendritic cells in vitro. Fe acquired by M.tb replicating within dendritic cells from externally added Fe chelates varied with the Fe chelate present in the external media: Fe-citrate > Fe-LF > Fe-TF. Fe acquisition rates from each chelate did not vary over 7 days. M.tb within dendritic cells also acquired Fe from the dendritic cell cytoplasm, with the efficiency of Fe acquisition greater from cytoplasmic Fe sources, regardless of the initial Fe chelate from which that cytoplasmic Fe was derived. Growth and Fe acquisition results with human MDM were similar to those with dendritic cells. M.tb grow and replicate within myeloid dendritic cells in vitro. Fe metabolism of M.tb growing in either MDM or dendritic cells in vitro is influenced by the nature of Fe available and the organism appears to preferentially access cytoplasmic rather than extracellular Fe sources. Whether these in vitro data extend to in vivo conditions should be examined in future studies.

  5. Effects of augmenting the migratory ability of mouse BMDC on immunotherapy

    Institute of Scientific and Technical Information of China (English)

    Xun Zhu; Linlin Zhen; Wei Zheng; Xuanyi Wang; Zhengyan Wu

    2006-01-01

    Objective: Being antigen-presenting cells, dendritic cells(DCs) transport captured antigen from peripheral tissues to T cell zone of lymph nodes via lymphatic vessels. This migration is essential for the presentation of antigen that leads to priming of effector T cell responses. In this study, we tried to promote the migratory ability of mouse bone marrow-derived dendritic cells (BMDCs) loaded with antigen of breast cancer, and its immunological effect in vivo. Methods: After being loaded with breast carcinoma antigen, BMDCs were cultured with medium containing PGE2, LTC4, or Bryo-1 respectively. Phenotypic changes, CCR7 expression, chemotaxis assay, mixed lymphocyte response, specific T lymphocyte cytotoxicity assay and anti-tumor immune efficacy of BMDCs were observed. Results: PGE2 and LTC4 promoted maturation, CCR7 expression and migratory ability of BMDCs compared with control group in vitro. In vivo PGE2 and LTC4 group vaccines were more efficient on suppressing growth of mouse breast cancer than other groups. However Bryo-1 only enhanced BMDCs maturation. Conclusion: Because the effect of specific CTL in vitro had no difference, we suggested that migration of dendritic cells to lymph nodes maybe answered for the better anti-tumor immunological response induced by PGE2 or LTC4 in vivo.

  6. Enhanced activation of dendritic cells by autologous apoptotic microvesicles in MRL/lpr mice.

    Science.gov (United States)

    Dieker, Jürgen; Hilbrands, Luuk; Thielen, Astrid; Dijkman, Henry; Berden, Jo H; van der Vlag, Johan

    2015-04-16

    Systemic lupus erythematosus is associated with a persistent circulation of modified autoantigen-containing apoptotic debris that might be capable of breaking tolerance. We aimed to evaluate apoptotic microvesicles obtained from lupus or control mice for the presence of apoptosis-associated chromatin modifications and for their capacity to stimulate dendritic cells (DC) from lupus and control mice. Apoptotic microvesicles were in vitro generated from splenocytes, and ex vivo isolated from plasma of both MRL/lpr lupus mice and normal BALB/c mice. Microvesicles were analyzed using flow cytometry. Bone marrow-derived (BM)-DC cultured from MRL/lpr or BALB/c mice were incubated with microvesicles and CD40 expression and cytokine production were determined as measure of activation. Microvesicles derived from apoptotic splenocytes or plasma of MRL/lpr mice contained more modified chromatin compared to microvesicles of BALB/c mice, and showed enhanced activation of DC, either from MRL/lpr or BALB/c mice, and consecutively an enhanced DC-mediated activation of splenocytes. The content of apoptosis-modified chromatin in microvesicles of apoptotic splenocytes correlated with their potency to induce interleukin-6 (IL-6) production by DC. Microvesicle-activated MRL/lpr DC showed a significant higher production of IL-6 and tumor growth factor-β (TGF-β) compared to BALB/c DC, and were more potent in the activation of splenocytes. Apoptotic microvesicles from MRL/lpr mice are more potent activators of DC, and DC from MRL/lpr mice appear relatively more sensitive to activation by apoptotic microvesicles. Our findings indicate that aberrations at the level of apoptotic microvesicles and possibly DC contribute to the autoimmune response against chromatin in MRL/lpr mice.

  7. Transcriptional profiling of dendritic cells matured in different osmolarities

    Directory of Open Access Journals (Sweden)

    Federica Chessa

    2016-03-01

    Full Text Available Tissue-specific microenvironments shape the fate of mononuclear phagocytes [1–3]. Interstitial osmolarity is a tissue biophysical parameter which considerably modulates the phenotype and function of dendritic cells [4]. In the present report we provide a detailed description of our experimental workflow and bioinformatic analysis applied to our gene expression dataset (GSE72174, aiming to investigate the influence of different osmolarity conditions on the gene expression signature of bone marrow-derived dendritic cells. We established a cell culture system involving murine bone marrow cells, cultured under different NaCl-induced osmolarity conditions in the presence of the dendritic cell growth factor GM-CSF. Gene expression analysis was applied to mature dendritic cells (day 7 developed in different osmolarities, with and without prior stimulation with the TLR2/4 ligand LPS.

  8. Metabolism Is Central to Tolerogenic Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Wen Jing Sim

    2016-01-01

    Full Text Available Immunological tolerance is a fundamental tenant of immune homeostasis and overall health. Self-tolerance is a critical component of the immune system that allows for the recognition of self, resulting in hyporeactivity instead of immunogenicity. Dendritic cells are central to the establishment of dominant immune tolerance through the secretion of immunosuppressive cytokines and regulatory polarization of T cells. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Recent studies have demonstrated that dendritic cell maturation leads to a shift toward a glycolytic metabolic state and preferred use of glucose as a carbon source. In contrast, tolerogenic dendritic cells favor oxidative phosphorylation and fatty acid oxidation. This dichotomous metabolic reprogramming of dendritic cells drives differential cellular function and plays a role in pathologies, such as autoimmune disease. Pharmacological alterations in metabolism have promising therapeutic potential.

  9. Follicular Dendritic Cell Sarcoma of the Abdomen: the Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae Wook; Lee, Soon Jin; Song, Hye Jong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-04-15

    Follicular dendritic cell sarcoma is a rare neoplasm that originates from follicular dendritic cells in lymphoid follicles. This disease usually involves the lymph nodes, and especially the head and neck area. Rarely, extranodal sites may be affected, including tonsil, the oral cavity, liver, spleen and the gastrointestinal tract. We report here on the imaging findings of follicular dendritic cell sarcoma of the abdomen that involved the retroperitoneal lymph nodes and colon. It shows as a well-defined, enhancing homogenous mass with internal necrosis and regional lymphadenopathy.

  10. Dendritic cells and their role in periodontal disease.

    Science.gov (United States)

    Wilensky, A; Segev, H; Mizraji, G; Shaul, Y; Capucha, T; Shacham, M; Hovav, A-H

    2014-03-01

    T cells, particularly CD4+ T cells, play a central role in both progression and control of periodontal disease, whereas the contribution of the various CD4+ T helper subsets to periodontal destruction remains controversial, the activation, and regulation of these cells is orchestrated by dendritic cells. As sentinels of the oral mucosa, dendritic cells encounter and capture oral microbes, then migrate to the lymph node where they regulate the differentiation of CD4+ T cells. It is thus clear that dendritic cells are of major importance in the course of periodontitis, as they hold the immunological cues delivered by the pathogen and the surrounding environment, allowing them to induce destructive immunity. In recent years, advanced immunological techniques and new mouse models have facilitated in vivo studies that have provided new insights into the developmental and functional aspects of dendritic cells. This progress has also benefited the characterization of oral dendritic cells, as well as to their function in periodontitis. Here, we provide an overview of the various gingival dendritic cell subsets and their distribution, while focusing on their role in periodontal bone loss.

  11. Tumor's other immune targets: dendritic cells.

    Science.gov (United States)

    Esche, C; Lokshin, A; Shurin, G V; Gastman, B R; Rabinowich, H; Watkins, S C; Lotze, M T; Shurin, M R

    1999-08-01

    The induction of apoptosis in T cells is one of several mechanisms by which tumors escape immune recognition. We have investigated whether tumors induce apoptosis in dendritic cells (DC) by co-culture of murine or human DC with different tumor cell lines for 4-48 h. Analysis of DC morphological features, JAM assay, TUNEL, caspase-3-like and transglutaminase activity, Annexin V binding, and DNA fragmentation assays revealed a time- and dose-dependent induction of apoptosis in DC by tumor-derived factors. This finding is both effector and target specific. The mechanism of tumor-induced DC apoptosis involved regulation of Bcl-2 and Bax expression. Double staining of both murine and human tumor tissues confirmed that tumor-associated DC undergo apoptotic death in vivo. DC isolated from tumor tissue showed significantly higher levels of apoptosis as determined by TUNEL assay when compared with DC isolated from spleen. These findings demonstrate that tumors induce apoptosis in DC and suggest a new mechanism of tumor escape from immune recognition. DC protection from apoptosis will lead to improvement of DC-based immunotherapies for cancer and other immune diseases.

  12. Differential Gene Expression in Thrombomodulin (TM; CD141)+ and TM− Dendritic Cell Subsets

    OpenAIRE

    Masaaki Toda; Zhifei Shao; Yamaguchi, Ken D.; Takehiro Takagi; Corina N D'Alessandro-Gabazza; Osamu Taguchi; Hugh Salamon; Leung, Lawrence L. K.; Gabazza, Esteban C.; John Morser

    2013-01-01

    Previously we have shown in a mouse model of bronchial asthma that thrombomodulin can convert immunogenic conventional dendritic cells into tolerogenic dendritic cells while inducing its own expression on their cell surface. Thrombomodulin(+) dendritic cells are tolerogenic while thrombomodulin(-) dendritic cells are pro-inflammatory and immunogenic. Here we hypothesized that thrombomodulin treatment of dendritic cells would modulate inflammatory gene expression. Murine bone marrow-derived de...

  13. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh

    2006-01-01

    CD163 and CD91 are scavenging receptors with highly increased expression during the differentiation of monocytes into the anti-inflammatory macrophage phenotype. In addition, CD91 is expressed in monocyte-derived dendritic cells (MoDCs), where the receptor is suggested to be important for interna......CD163 and CD91 are scavenging receptors with highly increased expression during the differentiation of monocytes into the anti-inflammatory macrophage phenotype. In addition, CD91 is expressed in monocyte-derived dendritic cells (MoDCs), where the receptor is suggested to be important...... for internalization of CD91-targeted antigens to be presented on the dendritic cell surface for T-cell stimulation. Despite their overlap in functionality, the expression of CD91 and CD163 has never been compared and the expression of CD163 in the monocyte-dendritic cell lineage is not yet characterized. CD163...

  14. High Physiological Concentrations of Progesterone Reverse Estradiol-Mediated Changes in Differentiation and Functions of Bone Marrow Derived Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Fangming Xiu

    Full Text Available Female sex steroids, estradiol (E2 and progesterone (P4, play a key role in regulating immune responses in women, including dendritic cell (DC development, and functions. Although the two hormones co-occur in the body of women throughout the reproductive years, no studies have explored their complex combinatorial effects on DCs, given their ability to regulate each other's actions. We examined murine bone marrow derived dendritic cells (BMDC differentiation and functions, in the presence of a wide range of physiological concentrations of each hormone, as well as the combination of the two hormones. E2 (10(-12 to 10(-8M enhanced the differentiation of CD11b+CD11c+ DCs from BM precursor cells, and promoted the expression of CD40 and MHC Class-II, in a dose-dependent manner. In contrast, P4 (10(-9 to 10(-5M inhibited DC differentiation, but only at the highest concentrations. These effects on BMDCs were observed both in the presence or absence of LPS. When both hormones were combined, higher concentrations of P4, at levels seen in pregnancy (10(-6M reversed the E2 effects, regardless of the concentration of E2, especially in the absence of LPS. Functionally, antigen uptake was decreased and pro-inflammatory cytokines, IL-12, IL-1 and IL-6 production by CD11b+CD11c+ DCs, was increased in the presence of E2 and these effects were reversed by high concentrations of P4. Our results demonstrate the distinct effects of E2 and P4 on differentiation and functions of bone marrow myeloid DCs. The dominating effect of higher physiological concentrations of P4 provides insight into how DC functions could be modulated during pregnancy.

  15. Infection of chicken bone marrow mononuclear cells with subgroup J avian leukosis virus inhibits dendritic cell differentiation and alters cytokine expression.

    Science.gov (United States)

    Liu, Di; Qiu, Qianqian; Zhang, Xu; Dai, Manman; Qin, Jianru; Hao, Jianjong; Liao, Ming; Cao, Weisheng

    2016-10-01

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus known to induce tumor formation and immunosuppression in infected chickens. One of the organs susceptible to ALV-J is the bone marrow, from which specialized antigen-presenting cells named dendritic cells (BM-DCs) are derived. Notably, these cells possess the unique ability to induce primary immune responses. In the present study, a method of cultivating and purifying DCs from chicken bone marrow in vitro was established to investigate the effects of ALV-J infection on BM-DC differentiation or generation. The results indicated that ALV-J not only infects the chicken bone marrow mononuclear cells but also appears to inhibit the differentiation and maturation of BM-DCs and to trigger apoptosis. Moreover, substantial reductions in the mRNA expression of TLR1, TLR2, TLR3, MHCI, and MHCII and in cytokine production were detected in the surviving BM-DCs following ALV-J infection. These findings indicate that ALV-J infection disrupts the process of bone marrow mononuclear cell differentiation into BM-DCs likely via altered antigen presentation, resulting in a downstream immune response in affected chickens.

  16. Polymyxin B inadequately quenches the effects of contaminating lipopolysaccharide on murine dendritic cells.

    Directory of Open Access Journals (Sweden)

    Graham A Tynan

    Full Text Available Dendritic cell (DC activation is commonly used as a measure of the immunomodulatory potential of candidate exogenous and endogenous molecules. Residual lipopolysaccharide (LPS contamination is a recurring theme and the potency of LPS is not always fully appreciated. To address this, polymyxin B (PmB is often used to neutralise contaminating LPS. However, the limited capacity of this antibiotic to successfully block these effects is neglected. Therefore, this study aimed to determine the minimum LPS concentration required to induce murine bone marrow-derived dendritic cell (BMDC maturation and cytokine secretion and to assess the ability of PmB to inhibit these processes. LPS concentrations as low as 10 pg/ml and 20 pg/ml induced secretion of interleukin (IL-6 and tumor necrosis factor (TNF-α respectively, while a concentration of 50 pg/ml promoted secretion of IL-12p40. A much higher threshold exists for IL-12p70 as an LPS concentration of 500 pg/ml was required to induce secretion of this cytokine. The efficacy of PmB varied substantially for different cytokines but this antibiotic was particularly limited in its ability to inhibit LPS-induced secretion of IL-6 and TNF-α. Furthermore, an LPS concentration of 50 pg/ml was sufficient to promote DC expression of costimulatory molecules and PmB was limited in its capacity to reverse this process when LPS concentrations of greater than 20 ng/ml were used. There is a common perception that LPS is heat resistant. However, heat treatment attenuated the ability of low concentrations of LPS to induce secretion of IL-6 and IL-12p40 by BMDCs, thus suggesting that heat-inactivation of protein preparations is also an ineffective control for discounting potential LPS contamination. Finally, LPS concentrations of less than 10 pg/ml were incapable of promoting secretion of IL-6 independently but could synergise with heat-labile enterotoxin (LT to promote IL-6, indicating that reducing contaminating endotoxin

  17. Mycobacterium avium subspecies impair dendritic cell maturation.

    Science.gov (United States)

    Basler, Tina; Brumshagen, Christina; Beineke, Andreas; Goethe, Ralph; Bäumer, Wolfgang

    2013-10-01

    Mycobacterium avium ssp. paratuberculosis (MAP) causes Johne's disease, a chronic, granulomatous enteritis of ruminants. Dendritic cells (DC) of the gut are ideally placed to combat invading mycobacteria; however, little is known about their interaction with MAP. Here, we investigated the interaction of MAP and the closely related M. avium ssp. avium (MAA) with murine DC and the effect of infected macrophages on DC maturation. The infection of DC with MAP or MAA induced DC maturation, which differed to that of LPS as maturation was accompanied by higher production of IL-10 and lower production of IL-12. Treatment of maturing DC with supernatants from mycobacteria-infected macrophages resulted in impaired DC maturation, leading to a semi-mature, tolerogenic DC phenotype expressing low levels of MHCII, CD86 and TNF-α after LPS stimulation. Though the cells were not completely differentiated they responded with an increased IL-10 and a decreased IL-12 production. Using recombinant cytokines we provide evidence that the semi-mature DC phenotype results from a combination of secreted cytokines and released antigenic mycobacterial components of the infected macrophage. Our results indicate that MAP and MAA are able to subvert DC function directly by infecting and indirectly via the milieu created by infected macrophages.

  18. Deciphering dendritic cell heterogenity in immunity

    Directory of Open Access Journals (Sweden)

    Michaël eChopin

    2012-02-01

    Full Text Available Dendritic cells (DCs are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These finding open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle – identification of similar DC populations in mouse and man – now set the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection.

  19. Transcriptional regulation of dendritic cell diversity.

    Science.gov (United States)

    Chopin, Michaël; Allan, Rhys S; Belz, Gabrielle T

    2012-01-01

    Dendritic cells (DCs) are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration, and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These findings open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle - identification of similar DC populations in mouse and man - now sets the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection.

  20. Dendritic Cells, Viruses, and the Development of Atopic Disease

    Directory of Open Access Journals (Sweden)

    Jonathan S. Tam

    2012-01-01

    Full Text Available Dendritic cells are important residents of the lung environment. They have been associated with asthma and other inflammatory diseases of the airways. In addition to their antigen-presenting functions, dendritic cells have the ability to modulate the lung environment to promote atopic disease. While it has long been known that respiratory viral infections associate with the development and exacerbation of atopic diseases, the exact mechanisms have been unclear. Recent studies have begun to show the critical importance of the dendritic cell in this process. This paper focuses on these data demonstrating how different populations of dendritic cells are capable of bridging the adaptive and innate immune systems, ultimately leading to the translation of viral illness into atopic disease.

  1. Activated protein C modulates the proinflammatory activity of dendritic cells

    Directory of Open Access Journals (Sweden)

    Matsumoto T

    2015-05-01

    Full Text Available Takahiro Matsumoto,1,2* Yuki Matsushima,1* Masaaki Toda,1 Ziaurahman Roeen,1 Corina N D'Alessandro-Gabazza,1,5 Josephine A Hinneh,1 Etsuko Harada,1,3 Taro Yasuma,4 Yutaka Yano,4 Masahito Urawa,1,5 Tetsu Kobayashi,5 Osamu Taguchi,5 Esteban C Gabazza1 1Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, 2BONAC Corporation, BIO Factory 4F, Fukuoka, 3Iwade Research Institute of Mycology, 4Department of Endocrinology, Diabetes and Metabolism, 5Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, Japan *These authors contributed equally to this work Background: Previous studies have demonstrated the beneficial activity of activated protein C in allergic diseases including bronchial asthma and rhinitis. However, the exact mechanism of action of activated protein C in allergies is unclear. In this study, we hypothesized that pharmacological doses of activated protein C can modulate allergic inflammation by inhibiting dendritic cells. Materials and methods: Dendritic cells were prepared using murine bone marrow progenitor cells and human peripheral monocytes. Bronchial asthma was induced in mice that received intratracheal instillation of ovalbumin-pulsed dendritic cells. Results: Activated protein C significantly increased the differentiation of tolerogenic plasmacytoid dendritic cells and the secretion of type I interferons, but it significantly reduced lipopolysaccharide-mediated maturation and the secretion of inflammatory cytokines in myeloid dendritic cells. Activated protein C also inhibited maturation and the secretion of inflammatory cytokines in monocyte-derived dendritic cells. Activated protein C-treated dendritic cells were less effective when differentiating naïve CD4 T-cells from Th1 or Th2 cells, and the cellular effect of activated protein C was mediated by its receptors. Mice that received adoptive transfer of activated protein C

  2. Dendritic cell-nerve clusters are sites of T cell proliferation in allergic airway inflammation.

    Science.gov (United States)

    Veres, Tibor Z; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-03-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell-T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2'-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell-cell contacts in a semi-automated fashion. Dendritic cell-T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa.

  3. T Cells Capture Bacteria by Transinfection from Dendritic Cells.

    Science.gov (United States)

    Cruz-Adalia, Aranzazu; Ramírez-Santiago, Guillermo; Torres-Torresano, Mónica; Garcia-Ferreras, Raquel; Veiga Chacón, Esteban

    2016-01-13

    Recently, we have shown, contrary to what is described, that CD4(+) T cells, the paradigm of adaptive immune cells, capture bacteria from infected dendritic cells (DCs) by a process called transinfection. Here, we describe the analysis of the transinfection process, which occurs during the course of antigen presentation. This process was unveiled by using CD4(+) T cells from transgenic OTII mice, which bear a T cell receptor (TCR) specific for a peptide of ovoalbumin (OVAp), which therefore can form stable immune complexes with infected dendritic cells loaded with this specific OVAp. The dynamics of green fluorescent protein (GFP)-expressing bacteria during DC-T cell transmission can be monitored by live-cell imaging and the quantification of bacterial transinfection can be performed by flow cytometry. In addition, transinfection can be quantified by a more sensitive method based in the use of gentamicin, a non-permeable aminoglycoside antibiotic killing extracellular bacteria but not intracellular ones. This classical method has been used previously in microbiology to study the efficiency of bacterial infections. We hereby explain the protocol of the complete process, from the isolation of the primary cells to the quantification of transinfection.

  4. Methionine enkephalin (MENK) improved the functions of bone marrow-derived dendritic cells (BMDCs) loaded with antigen.

    Science.gov (United States)

    Li, Weiwei; Meng, Jingjuan; Li, Xuan; Hua, Hui; Yiming, Meng; Wang, Qiushi; Wang, Enhua; Shan, Fengping

    2012-09-01

    The aim of this investigation is to look at whether MENK could improve antitumor effect of CD8+T cell elicited by BMDCs. We investigated the effects of MENK on the differentiation, maturation, and functions of murine BMDC loaded with Rac-1 antigens (RG) and CTL of tumor specific immune response elicited by the BMDC in vitro and in vivo. The production of cytokine IL-12 and TNF-α secreted by BMDCs in the presence of MENK was assayed with ELISA and key surface markers of CD40, CD86, CD83 and MHC-II on the BMDCs were analyzed with use of flow cytometry (FCM). In addition, the activities to induce CD8+ T cell proliferation, along with displayed cytotoxicity of the CD8+T cells(CTL) by the BMDCs after treatment with MENK were determined with use of FCM as well as MTS. Our results indicated that MENK induced phenotypic and functional maturation of BMDC loaded with RG antigen, as evidenced by higher level of expression of key surface markers and more production of cytokines. Subsequently, the BMDC activated by MENK intensified immune responses mounted by CTL, resulting in stronger antitumor activity. Our results suggest that MENK could be working as an effective immune adjuvant in vaccine preparation for cancer fight and other immune related diseases. We concluded that MENK could be a positive immune modulator in the improved functions of BMDCs loaded with antigen as well as in CD8+T cell mediated anti-tumor responses.

  5. Exosomes derived from dendritic cells improve cardiac function via activation of CD4(+) T lymphocytes after myocardial infarction.

    Science.gov (United States)

    Liu, Haibo; Gao, Wei; Yuan, Jie; Wu, Chaoneng; Yao, Kang; Zhang, Li; Ma, Leilei; Zhu, Jianbing; Zou, Yunzeng; Ge, Junbo

    2016-02-01

    CD4(+) T cell activation plays a key role in facilitating wound healing after myocardial infarction (MI). Exosomes (EXs) secreted from dendritic cells (DCs) can activate T cells in tumor models; however, whether DEXs (DC-EXs) can mediate CD4(+) T cell activation and improve wound healing post-MI remains unknown. This study sought to determine whether DEXs mediate CD4(+) T cell activation and improve cardiac function post-MI in mice. We used supernatants of hypoxic primary or necrotic HL-1 cardiomyocytes to simulate the post-MI cardiomyocyte microenvironment in vitro. Cultured bone marrow-derived DCs (BMDCs) from mice were stimulated with the supernatants of normal (Control group), hypoxic primary or necrotic HL-1 cardiomyocytes (MI group); a subset of BMDCs remained unstimulated (Negative group). DEXs were then isolated from the BMDC supernatants and either incubated with CD4(+) T cells or injected into mice via the tail vein. In this study, we found that the supernatants of both hypoxic primary and necrotic HL-1 cardiomyocytes upregulate DC maturation markers. After the injection of DEXs, a greater number of MI-DEXs are recruited by the mouse spleen and with greater rapidity than control- or negative-DEXs. Confocal imaging and flow cytometry revealed that MI-DEXs exhibited higher uptake by splenic CD4(+) T cells than the control- and negative-DEXs, and this increase was correlated with significantly greater increases in the expression of chemokines and the inflammatory cytokines IFN-γ and TNF by the CD4(+) T cells in vitro and in vivo. In addition, the injection of MI-DEXs improved cardiac function in mice post-MI. These results suggest that DEXs could mediate the activation of CD4(+) T cells through an endocrine mechanism and improve cardiac function post-MI. Our findings provide the basis for a novel strategy for the treatment of MI through the systemic delivery of DEXs.

  6. Organ-derived dendritic cells have differential effects on alloreactive T cells

    OpenAIRE

    Kim, Theo D.; Terwey, Theis H.; Zakrzewski, Johannes L; Suh, David; Kochman, Adam A.; Chen, Megan E.; King, Chris G.; Borsotti, Chiara; Grubin, Jeremy; Smith, Odette M.; Heller, Glenn; Liu, Chen; Murphy, George F.; Alpdogan, Onder; Marcel R. M. van den Brink

    2008-01-01

    Dendritic cells (DCs) are considered critical for the induction of graft-versus-host disease (GVHD) after bone marrow transplantation (BMT). In addition to their priming function, dendritic cells have been shown to induce organ-tropism through induction of specific homing molecules on T cells. Using adoptive transfer of CFSE-labeled cells, we first demonstrated that alloreactive T cells differentially up-regulate specific homing molecules in vivo. Host-type dendritic cells from the GVHD targe...

  7. Kicking off adaptive immunity: the discovery of dendritic cells

    OpenAIRE

    Katsnelson, Alla

    2006-01-01

    In 1973, Ralph Steinman and Zanvil Cohn discovered an unusual looking population of cells with an unprecedented ability to activate naive T cells. Dubbed “dendritic cells,” these cells are now known as the primary instigators of adaptive immunity.

  8. Nomenclature of monocytes and dendritic cells in blood

    NARCIS (Netherlands)

    L. Ziegler-Heitbrock (Loems); P. Ancuta (Petronela); S. Crowe (Suzanne); M. Dalod (Marc); V. Grau (Veronika); D.N. Hart (Derek); P.J. Leenen (Pieter); Y.J. Liu; G. MacPherson (Gordon); G.J. Randolph (Gwendalyn); J. Scherberich (Juergen); J. Schmitz (Juergen); K. Shortman (Ken); S. Sozzani (Silvano); H. Strobl (Herbert); M. Zembala (Marek); J.M. Austyn (Jonathan); M.B. Lutz (Manfred)

    2010-01-01

    textabstractMonocytes and cells of the dendritic cell lineage circulate in blood and eventually migrate into tissue where they further mature and serve various functions, most notably in immune defense. Over recent years these cells have been characterized in detail with the use of cell surface mark

  9. An Fc Gamma Receptor-Mediated Upregulation of the Production of Interleukin 10 by Intravenous Immunoglobulin in Bone-Marrow-Derived Mouse Dendritic Cells Stimulated with Lipopolysaccharide In Vitro

    Directory of Open Access Journals (Sweden)

    Akihiro Fujii

    2013-01-01

    Full Text Available Intravenous immunoglobulin (IVIG, a highly purified immunoglobulin fraction prepared from pooled plasma of several thousand donors, increased anti-inflammatory cytokine IL-10 production, while decreased proinflammatory cytokine IL-12p70 production in bone-marrow-derived mouse dendritic cells (BMDCs stimulated with lipopolysaccharide (LPS. The changes of cytokine production were confirmed with the transcription levels of these cytokines. To study the mechanisms of this bidirectional effect, we investigated changes of intracellular molecules in the LPS-induced signaling pathway and observed that IVIG upregulated ERK1/2 phosphorylation while downregulated p38 MAPK phosphorylation. Using chemical inhibitors specific to protein kinases involved in activation of Fc gamma receptors (FcγRs, which mediate IgG signals, we found that hyperphosphorylation of ERK1/2 and Syk phosphorylation occurred after stimulation of BMDC with LPS and IVIG, and the increasing effect on IL-10 production was abolished by these inhibitors. Furthermore, an antibody specific to FcγRI, one of FcγRs involved in immune activation, inhibited IVIG-induced increases in IL-10 production, but not IL-12p70 decreases, whereas the anti-IL-10 antibody restored the decrease in IL-12p70 induced by IVIG. These findings suggest that IVIG induced the upregulation of IL-10 production through FcγRI activation, and IL-10 was indispensable to the suppressing effect of IVIG on the production of IL-12p70 in LPS-stimulated BMDC.

  10. Adoptive transfer of bone marrow-derived dendritic cells decreases inhibitory and regulatory T-cell differentiation and improves survival in murine polymicrobial sepsis.

    Science.gov (United States)

    Wang, Hong-Wei; Yang, Wen; Gao, Lei; Kang, Jia-Rui; Qin, Jia-Jian; Liu, Yue-Ping; Lu, Jiang-Yang

    2015-05-01

    A decrease in the number of dendritic cells (DCs) is a major cause of post-sepsis immunosuppression and opportunistic infection and is closely associated with poor prognosis. Increasing the number of DCs to replenish their numbers post sepsis can improve the condition. This therapeutic approach could improve recovery after sepsis. Eighty C57BL/6 mice were subjected to sham or caecal ligation and puncture (CLP) surgery. Mice were divided into four groups: (i) Sham + vehicle, (ii) Sham + DC, (iii) CLP + vehicle, and (iv) CLP + DC. Bone-marrow-derived DCs (BMDCs) were administered at 6, 12 and 24 hr after surgery. After 3 days, we assessed serum indices of organ function (alanine aminotransferase, aspartate aminotransferase, creatinine, amylase and lipase), organ tissue histopathology (haematoxylin and eosin staining), cytokine [interferon-γ (IFN-γ), tumour necrosis factor-α, interleukin-12p70 (IL-12p70), IL-6 and IL-10] levels in the serum, programmed death-1 (PD-1) expression on T cells, regulatory T-cell differentiation in the spleen, and the survival rate (monitored for 7 days). BMDC transfer resulted in the following changes: a significant reduction in damage to the liver, kidney and pancreas in the CLP-septic mice as well as in the pathological changes seen in the liver, lung, small intestine and pancreas; significantly elevated levels of the T helper type 1 (Th1) cytokines IFN-γ and IL-12p70 in the serum; decreased levels of the Th2 cytokines IL-6 and IL-10 in the serum; reduced expression of PD-1 molecules on CD4(+) T cells; reduced the proliferation and differentiation of splenic suppressor T cells and CD4(+)  CD25(+)  Foxp3(+) regulatory T cells, and a significant increase in the survival rate of the septic animals. These results show that administration of BMDCs may have modulated the differentiation and immune function of T cells and contributed to alleviate immunosuppression, hence reducing organ damage and mortality post sepsis. Hence

  11. A Model of Dendritic Cell Therapy for Melanoma

    Directory of Open Access Journals (Sweden)

    Ami eRadunskaya

    2013-03-01

    Full Text Available Dendritic cells are a promising immunotherapy tool for boosting an individual's antigen specific immune response to cancer. We develop a mathematical model using differential and delay-differential equations to describe the interactions between dendritic cells, effector-immune cells and tumor cells. We account for the trafficking of immune cells between lymph, blood, and tumor compartments. Our model reflects experimental results both for dendritic-cell trafficking and for immune suppression of tumor growth in mice. In addition, in silico experiments suggest more effective immunotherapy treatment protocols can be achieved by modifying dose location and schedule. A sensitivity analysis of the model reveals which patient-specific parameters have the greatest impact on treatment efficacy.

  12. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  13. Culture and identification of mouse bone marrow-derived dendritic cells in vitro%小鼠骨髓源树突状细胞体外诱导培养及初步鉴定

    Institute of Scientific and Technical Information of China (English)

    刘铮; 代继宏; 符州; 冯琳琳

    2011-01-01

    To establish a method of cultivation and purification of dendritic cells ( DC) from mouse bone marrow in vitro and observe their morphology, recombinant mouse granulocyte and macrophage colony stimulus factor( GM-CSF) and interleukin-4( IL4) induction were used to induce mouse bone marrow cells to form dendritic cells in vitro. After 9 days , the percentage of the cultured DCs was more than 80% with typical morphology of DCs under light microscope. The mature cells had clear marker on their surface. This meant that these used substances could stimulate allogenic mixed lymphocyte proliferation.%用重组小鼠粒细胞-巨噬细胞集落刺激因子(rmGM-CSF)和重组小鼠白细胞介素4(rmIL-4)体外诱导小鼠骨髓细胞分化为树突状细胞,进行形态学变化观察,分析细胞表面分子,刺激T细胞增殖,探讨小鼠骨髓源树突状细胞(BMDC)体外诱导培养并进行初步鉴定.体外培养9d后BMDC可达80%以上m,光镜下可见典型的树突状细胞形态.清楚表达成熟期主要表面标志物,可显著刺激同种异体混合淋巴细胞增殖.获得了较高纯度的BMDC,避免了使用传统磁珠分离方法所带来的成本高,操作复杂,产出率低的弊端,为研究BMDC功能以及运用开展下游实验提供材料.

  14. Macrophages as APC and the dendritic cell myth.

    Science.gov (United States)

    Hume, David A

    2008-11-01

    Dendritic cells have been considered an immune cell type that is specialized for the presentation of Ag to naive T cells. Considerable effort has been applied to separate their lineage, pathways of differentiation, and effectiveness in Ag presentation from those of macrophages. This review summarizes evidence that dendritic cells are a part of the mononuclear phagocyte system and are derived from a common precursor, responsive to the same growth factors (including CSF-1), express the same surface markers (including CD11c), and have no unique adaptation for Ag presentation that is not shared by other macrophages.

  15. Murid herpesvirus-4 exploits dendritic cells to infect B cells.

    Science.gov (United States)

    Gaspar, Miguel; May, Janet S; Sukla, Soumi; Frederico, Bruno; Gill, Michael B; Smith, Christopher M; Belz, Gabrielle T; Stevenson, Philip G

    2011-11-01

    Dendritic cells (DCs) play a central role in initiating immune responses. Some persistent viruses infect DCs and can disrupt their functions in vitro. However, these viruses remain strongly immunogenic in vivo. Thus what role DC infection plays in the pathogenesis of persistent infections is unclear. Here we show that a persistent, B cell-tropic gamma-herpesvirus, Murid Herpesvirus-4 (MuHV-4), infects DCs early after host entry, before it establishes a substantial infection of B cells. DC-specific virus marking by cre-lox recombination revealed that a significant fraction of the virus latent in B cells had passed through a DC, and a virus attenuated for replication in DCs was impaired in B cell colonization. In vitro MuHV-4 dramatically altered the DC cytoskeleton, suggesting that it manipulates DC migration and shape in order to spread. MuHV-4 therefore uses DCs to colonize B cells.

  16. Avian dendritic cells: Phenotype and ontogeny in lymphoid organs.

    Science.gov (United States)

    Nagy, Nándor; Bódi, Ildikó; Oláh, Imre

    2016-05-01

    Dendritic cells (DC) are critically important accessory cells in the innate and adaptive immune systems. Avian DCs were originally identified in primary and secondary lymphoid organs by their typical morphology, displaying long cell processes with cytoplasmic granules. Several subtypes are known. Bursal secretory dendritic cells (BSDC) are elongated cells which express vimentin intermediate filaments, MHC II molecules, macrophage colony-stimulating factor 1 receptor (CSF1R), and produce 74.3+ secretory granules. Avian follicular dendritic cells (FDC) highly resemble BSDC, express the CD83, 74.3 and CSF1R molecules, and present antigen in germinal centers. Thymic dendritic cells (TDC), which express 74.3 and CD83, are concentrated in thymic medulla while interdigitating DC are found in T cell-rich areas of secondary lymphoid organs. Avian Langerhans cells are a specialized 74.3-/MHC II+ cell population found in stratified squamous epithelium and are capable of differentiating into 74.3+ migratory DCs. During organogenesis hematopoietic precursors of DC colonize the developing lymphoid organ primordia prior to immigration of lymphoid precursor cells. This review summarizes our current understanding of the ontogeny, cytoarchitecture, and immunophenotype of avian DC, and offers an antibody panel for the in vitro and in vivo identification of these heterogeneous cell types.

  17. Intratumoral Dendritic Cells and Chemoradiation for the Treatment of Murine Squamous Cell Carcinoma

    OpenAIRE

    Moyer, Jeffrey S.; Li, Ji; Wei, Shuang; Teitz-Tennenbaum, Seagal; Chang, Alfred E

    2008-01-01

    Dendritic cells are potent antigen presenting cells that have been shown to have significant antitumor effects in vitro and in vivo. However, the therapeutic efficacy of dendritic cells as an immunotherapeutic treatment has been limited by both immunologic tolerance and active immunosuppression in the tumor microenvironment. To address this problem, we examined the ability of concurrent systemic chemotherapy and local, fractionated radiation to augment intratumoral dendritic cell injections i...

  18. Involvement of dendritic cells in autoimmune diseases in children

    Directory of Open Access Journals (Sweden)

    Reed Ann M

    2007-07-01

    Full Text Available Abstract Dendritic cells (DCs are professional antigen-presenting cells that are specialized in the uptake of antigens and their transport from peripheral tissues to the lymphoid organs. Over the last decades, the properties of DCs have been intensely studied and much knowledge has been gained about the role of DCs in various diseases and health conditions where the immune system is involved, particularly in cancer and autoimmune disorders. Emerging clues in autoimmune diseases, suggest that dendritic cell dysregulation might be involved in the development of various autoimmune disorders in both adults and children. However, studies investigating a possible contribution of DCs in autoimmune diseases in the pediatric population alone are scanty. The purpose of this review is to give a general overview of the current literature on the relevance of dendritic cells in the most common autoimmune conditions of childhood.

  19. Dendritic cell SIRPα regulates homeostasis of dendritic cells in lymphoid organs.

    Science.gov (United States)

    Washio, Ken; Kotani, Takenori; Saito, Yasuyuki; Respatika, Datu; Murata, Yoji; Kaneko, Yoriaki; Okazawa, Hideki; Ohnishi, Hiroshi; Fukunaga, Atsushi; Nishigori, Chikako; Matozaki, Takashi

    2015-06-01

    Signal regulatory protein α (SIRPα), an immunoglobulin superfamily protein that is expressed predominantly in myeloid lineage cells such as dendritic cells (DCs) or macrophages, mediates cell-cell signaling. In the immune system, SIRPα is thought to be important for homeostasis of DCs, but it remains unclear whether SIRPα intrinsic to DCs is indeed indispensable for such functional role. Thus, we here generated the mice, in which SIRPα was specifically ablated in CD11c(+) DCs (Sirpa(Δ) (DC) ). Sirpa(Δ) (DC) mice manifested a marked reduction of CD4(+) CD8α(-) conventional DCs (cDCs) in the secondary lymphoid organs, as well as of Langerhans cells in the epidermis. Such reduction of cDCs in Sirpa(Δ) (DC) mice was comparable to that apparent with the mice, in which SIRPα was systemically ablated. Expression of SIRPα in DCs was well correlated with that of either endothelial cell-selective adhesion molecule (ESAM) or Epstein-Barr virus-induced molecule 2 (EBI2), both of which were also implicated in the regulation of DC homeostasis. Indeed, ESAM(+) or EBI2(+) cDCs were markedly reduced in the spleen of Sirpa(Δ) (DC) mice. Thus, our results suggest that SIRPα intrinsic to CD11c(+) DCs is essential for homeostasis of cDCs in the secondary lymphoid organs and skin.

  20. Biological effects of lipopolysaccharide, transforming growth factor-β1 on murine bone marrow-derived dendritic cells%脂多糖、转化生长因子-β1对小鼠骨髓来源树突状细胞的生物学作用

    Institute of Scientific and Technical Information of China (English)

    冯琳琳; 代继宏; 符州; 刘铮; 王莉佳; 李欣

    2009-01-01

    目的:探讨加入LPS、TGF-β1体外刺激小鼠骨髓来源树突状细胞(BMDC)的方法及其对生物学特性的作用.方法:GM-CSF和IL-4诱导培养小鼠BMDC 6 d后,分别用培养基(对照组)、LPS、TGF-β1、LPS+TGF-β1,刺激BMDC48 h后进行形态学观察,流式细胞术检测细胞表型CD_(11C)、CD_(80)、CD_(86)、MHC Ⅱ,混合淋巴细胞反应检测其抗原提呈功能,收集上清液用ELISA检测IL-6,IL-12 p70.结果:LPS组具有最典型的成熟样DC形态,CD_(80)、CD_(86)及MHC Ⅱ的表达水平显著升高,混合淋巴细胞反应和分泌IL-4、IL-12 p70能力最强,与对照组,TGF-β1组,LPS+TGF-β1组比较差异具有统计学意义(P<0.05),TGF-β1组成熟样DC形态最不典型,CD_(80)、CD_(86)和MHC Ⅱ的表达水平最低,混合淋巴细胞反应和分泌IL-4、IL-12 p70能力最弱,与对照组,LPS组比较差异具有统计学意义(P<0.05).结论:LPS在DC的分化晚期可以刺激其成熟,并且具有更高的生物学特性,TGF-β1不抑制DC的分化,但可以抑制DC的成熟,从而降低其生物学特性.%AIM: To explore method of stimulating murine bone marrow-derived dendritic cells by lipopolysaccharide(LPS), transforming growth factor-β1 (TGF-β1)and to study their biological character. METHODS: Murine bone marrow-derived dendritic cells were cultivated with cytokine GM-CSF and IL-4 for 6 days, BMDC was stimulated by control, LPS, TGF-β1, LPS +TGF-β1 for 48 hours respectively. Morphological characters of BMDC were observed by a inversed microscope, surface molecules such as CD_(11C), CD_(80), CD_(86)and MHC Ⅱ were detected by flowcytometry, Interleukin-6 and interleukin-12 p70 in co-culture medium was quantified by ELISA. RESULTS: In LPS group it presented the most typical DC morphology with the highest expression of CD_(80), CD_(86) and MHC Ⅱ, the strongest ability in mixed lymphocyte reaction, higher level of IL-6 and IL-12 p70 compared with control, TGF-β1, LPS + TGF-β1 ( P < 0. 05). While in

  1. Phenotype comparison between bone marrow derived dendritic cell and DC2.4 cell stimulated with antigen from Schistosoma japonicum%血吸虫抗原刺激小鼠骨髓来源的树突状细胞与DC2.4细胞的表型比较

    Institute of Scientific and Technical Information of China (English)

    李小红; 曹建平; 汤林华; 王胜军; 成静

    2011-01-01

    目的 研究比较小鼠树突状细胞DC2.4和骨髓来源树突状细胞(bone marrow derived dendritic cell,BMDC)经血吸虫抗原谷胱甘肽转移酶(GST)刺激后表面分子的表达异同.方法 骨髓来源的细胞经白介素4(interleukin 4,IL-4)、粒细胞-巨噬细胞集落刺激因子(granulocyte-macrophage colonystimulating factor,GM-CSF)诱导培养,获得树突状细胞.常规方法培养DC2.4.体外用日本血吸虫抗原GST刺激前述两种细胞,以PBS和脂多糖(lipopolysaccharide,LPS)作对照,流式细胞仪检测细胞表面分子CD40、CDSO、CD86的平均荧光强度,并进行统计学分析.结果 日本血吸虫抗原GST刺激BMDC后,表面分子CD40、CD80、CD86的平均荧光强度依次为100.39、42.38、170.83,与PBS对照组比较,CD40无明显变化,而CD80、CD86表达上调(P<0.01);GST刺激DC2.4后,细胞表面分子CD40、CD80、CD86的平均荧光强度依次为23.73、72.13、59.58,与PBS对照组比较,CD40和CD86表达上调(P<0.01),而CD80变化不明显.结论 DC2.4与BMDC经日本血吸虫抗原刺激后表面分子的表达变化不同.%Objective To compare the phenotypes of bone marrow derived dendritic cell(BMDC)and DC2.4 cell stimulated with GST from Schistosoma japonicum.Methods Bone marrow cells were cultured in the presence of IL-4 and GM-CSF to induce dendritic cells.DC2.4 cells were cultured as routine.Both cells were stimulated with GST and the expressions of CD40,CD80 and CD86 on the cells'surface were analyzed by FACS,using PBS and lipopolysaccharide as controls. Results After stimulating with GST,the means of fluorescence intensity(MFI)for CD40,CD80 and CD86 on BMDC surface were 100.39,42.38 and 170.83,respectively.Compared with PBS control,the MFI of CD80 and CD86 on BMDC,but not CD40,enhanced significantly.The MFIs of CD40.CD80 and CD86 on DC2.4 loaded by GST were 23.73,72.13 and 59.58 respectively.Compared with PBS control,the expressions of CD40 and CD86 enhanced significantly after schistosome

  2. Dendritic Cells in Kidney Transplant Biopsy Samples Are Associated with T Cell Infiltration and Poor Allograft Survival.

    Science.gov (United States)

    Batal, Ibrahim; De Serres, Sacha A; Safa, Kassem; Bijol, Vanesa; Ueno, Takuya; Onozato, Maristela L; Iafrate, A John; Herter, Jan M; Lichtman, Andrew H; Mayadas, Tanya N; Guleria, Indira; Rennke, Helmut G; Najafian, Nader; Chandraker, Anil

    2015-12-01

    Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival.

  3. Phenotypical and functional characterization of clinical-grade dendritic cells.

    NARCIS (Netherlands)

    Vries, I.J.M. de; Adema, G.J.; Punt, C.J.A.; Figdor, C.G.

    2005-01-01

    Dendritic cells (DC) are the most potent antigen-presenting cells and form a promising new treatment modality. Fully activated DC loaded with antigen are very useful in stimulating immune responses, in particular those to combat cancer. Immature DC can either cause immunological tolerance or induce

  4. Dendritic cells and their role in tumor immunosurveillance

    NARCIS (Netherlands)

    Strioga, M.M.; Schijns, V.E.J.C.; Powell, D.J.; Pasukoniene, V.; Dobrovolskiene, N.T.; Michalek, J.

    2013-01-01

    Dendritic cells (DCs) comprise a heterogeneous population of cells that play a key role in initiating, directing and regulating adaptive immune responses, including those critically involved in tumor immunosurveillance. As a riposte to the central role of DCs in the generation of antitumor immune re

  5. Molecular Mechanisms Regulating Human Dendritic Cell Development, Survival and Function

    NARCIS (Netherlands)

    L. van de Laar (Lianne)

    2011-01-01

    textabstractDendritic cells (DC) are professional antigen presenting cells (APC) with a dual function in the immune system. On the one hand, these specialized leukocytes are equipped to alert the immune system to invading pathogens or other danger signals. On the other, DC can promote tolerogenic re

  6. IL-10 control of dendritic cells in the skin

    NARCIS (Netherlands)

    B.E. Clausen (Bjorn); M.J.H. Girard-Madoux (Mathilde)

    2013-01-01

    textabstractInterleukin-10 (IL-10) is a potent immunomodulatory cytokine, whose cellular targets have not yet been precisely identified. Mice bearing a dendritic cell (DC)-specific defect in the IL-10 receptor mice exhibit exaggerated T-cell reactivation in the skin, highlighting a key function of D

  7. The glycosylated Rv1860 protein of Mycobacterium tuberculosis inhibits dendritic cell mediated TH1 and TH17 polarization of T cells and abrogates protective immunity conferred by BCG.

    Science.gov (United States)

    Satchidanandam, Vijaya; Kumar, Naveen; Jumani, Rajiv S; Challu, Vijay; Elangovan, Shobha; Khan, Naseem A

    2014-06-01

    We previously reported interferon gamma secretion by human CD4⁺ and CD8⁺ T cells in response to recombinant E. coli-expressed Rv1860 protein of Mycobacterium tuberculosis (MTB) as well as protection of guinea pigs against a challenge with virulent MTB following prime-boost immunization with DNA vaccine and poxvirus expressing Rv1860. In contrast, a Statens Serum Institute Mycobacterium bovis BCG (BCG-SSI) recombinant expressing MTB Rv1860 (BCG-TB1860) showed loss of protective ability compared to the parent BCG strain expressing the control GFP protein (BCG-GFP). Since Rv1860 is a secreted mannosylated protein of MTB and BCG, we investigated the effect of BCG-TB1860 on innate immunity. Relative to BCG-GFP, BCG-TB1860 effected a significant near total reduction both in secretion of cytokines IL-2, IL-12p40, IL-12p70, TNF-α, IL-6 and IL-10, and up regulation of co-stimulatory molecules MHC-II, CD40, CD54, CD80 and CD86 by infected bone marrow derived dendritic cells (BMDC), while leaving secreted levels of TGF-β unchanged. These effects were mimicked by BCG-TB1860His which carried a 6-Histidine tag at the C-terminus of Rv1860, killed sonicated preparations of BCG-TB1860 and purified H37Rv-derived Rv1860 glycoprotein added to BCG-GFP, but not by E. coli-expressed recombinant Rv1860. Most importantly, BMDC exposed to BCG-TB1860 failed to polarize allogeneic as well as syngeneic T cells to secrete IFN-γ and IL-17 relative to BCG-GFP. Splenocytes from mice infected with BCG-SSI showed significantly less proliferation and secretion of IL-2, IFN-γ and IL-17, but secreted higher levels of IL-10 in response to in vitro restimulation with BCG-TB1860 compared to BCG-GFP. Spleens from mice infected with BCG-TB1860 also harboured significantly fewer DC expressing MHC-II, IL-12, IL-2 and TNF-α compared to mice infected with BCG-GFP. Glycoproteins of MTB, through their deleterious effects on DC may thus contribute to suppress the generation of a TH1- and TH17-dominated

  8. The glycosylated Rv1860 protein of Mycobacterium tuberculosis inhibits dendritic cell mediated TH1 and TH17 polarization of T cells and abrogates protective immunity conferred by BCG.

    Directory of Open Access Journals (Sweden)

    Vijaya Satchidanandam

    2014-06-01

    Full Text Available We previously reported interferon gamma secretion by human CD4⁺ and CD8⁺ T cells in response to recombinant E. coli-expressed Rv1860 protein of Mycobacterium tuberculosis (MTB as well as protection of guinea pigs against a challenge with virulent MTB following prime-boost immunization with DNA vaccine and poxvirus expressing Rv1860. In contrast, a Statens Serum Institute Mycobacterium bovis BCG (BCG-SSI recombinant expressing MTB Rv1860 (BCG-TB1860 showed loss of protective ability compared to the parent BCG strain expressing the control GFP protein (BCG-GFP. Since Rv1860 is a secreted mannosylated protein of MTB and BCG, we investigated the effect of BCG-TB1860 on innate immunity. Relative to BCG-GFP, BCG-TB1860 effected a significant near total reduction both in secretion of cytokines IL-2, IL-12p40, IL-12p70, TNF-α, IL-6 and IL-10, and up regulation of co-stimulatory molecules MHC-II, CD40, CD54, CD80 and CD86 by infected bone marrow derived dendritic cells (BMDC, while leaving secreted levels of TGF-β unchanged. These effects were mimicked by BCG-TB1860His which carried a 6-Histidine tag at the C-terminus of Rv1860, killed sonicated preparations of BCG-TB1860 and purified H37Rv-derived Rv1860 glycoprotein added to BCG-GFP, but not by E. coli-expressed recombinant Rv1860. Most importantly, BMDC exposed to BCG-TB1860 failed to polarize allogeneic as well as syngeneic T cells to secrete IFN-γ and IL-17 relative to BCG-GFP. Splenocytes from mice infected with BCG-SSI showed significantly less proliferation and secretion of IL-2, IFN-γ and IL-17, but secreted higher levels of IL-10 in response to in vitro restimulation with BCG-TB1860 compared to BCG-GFP. Spleens from mice infected with BCG-TB1860 also harboured significantly fewer DC expressing MHC-II, IL-12, IL-2 and TNF-α compared to mice infected with BCG-GFP. Glycoproteins of MTB, through their deleterious effects on DC may thus contribute to suppress the generation of a TH1- and TH

  9. Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins

    NARCIS (Netherlands)

    Bax, Marieke; Garcia-Vallejo, Juan J.; Jang-Lee, Jihye; North, Simon J.; Gilmartin, Tim J.; Hernandez, Gilberto; Crocker, Paul R.; Leffler, Hakon; Head, Steven R.; Haslam, Stuart M.; Dell, Anne; van Kooyk, Yvette

    2007-01-01

    Dendritic cells (DC) are the most potent APC in the organism. Immature dendritic cells (iDC) reside in the tissue where they capture pathogens whereas mature dendritic cells (mDC) are able to activate T cells in the lymph node. This dramatic functional change is mediated by an important genetic repr

  10. Blastic plasmacytoid dendritic cell neoplasm with absolute monocytosis at presentation

    Directory of Open Access Journals (Sweden)

    Jaworski JM

    2015-02-01

    Full Text Available Joseph M Jaworski,1,2 Vanlila K Swami,1 Rebecca C Heintzelman,1 Carrie A Cusack,3 Christina L Chung,3 Jeremy Peck,3 Matthew Fanelli,3 Micheal Styler,4 Sanaa Rizk,4 J Steve Hou1 1Department of Pathology and Laboratory Medicine, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 2Department of Pathology, Mercy Fitzgerald Hospital, Darby, PA, USA; 3Department of Dermatology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 4Department of Hematology/Oncology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA Abstract: Blastic plasmacytoid dendritic cell neoplasm is an uncommon malignancy derived from precursors of plasmacytoid dendritic cells. Nearly all patients present initially with cutaneous manifestations, with many having extracutaneous disease additionally. While response to chemotherapy initially is effective, relapse occurs in most, with a leukemic phase ultimately developing. The prognosis is dismal. While most of the clinical and pathologic features are well described, the association and possible prognostic significance between peripheral blood absolute monocytosis (>1.0 K/µL and blastic plasmacytoid dendritic cell neoplasm have not been reported. We report a case of a 68-year-old man who presented with a rash for 4–5 months. On physical examination, there were multiple, dull-pink, indurated plaques on the trunk and extremities. Complete blood count revealed thrombocytopenia, absolute monocytosis of 1.7 K/µL, and a negative flow cytometry study. Biopsy of an abdominal lesion revealed typical features of blastic plasmacytoid dendritic cell neoplasm. Patients having both hematologic and nonhematologic malignancies have an increased incidence of absolute monocytosis. Recent studies examining Hodgkin and non-Hodgkin lymphoma patients have suggested that this is a negative prognostic factor. The association between

  11. Dendritic cells and immuno-modulation in autoimmune arthritis

    OpenAIRE

    Spiering, R.

    2013-01-01

    The immune system consists of a broad array of immune cells to protect the body against invasive pathogenic microorganisms. Immune responses should however, be tightly controlled to ensure tolerance to the body’s own cells and proteins in order to limit damage to the host own cells and tissue. Autoimmune diseases can arise when the balance between pathogen-driven immunity (inflammatory immune response) and tolerance (regulatory immune response) to self products is dysregulated. Dendritic cell...

  12. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells

    OpenAIRE

    Julio Aliberti

    2016-01-01

    Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response...

  13. Effect of RelB-silenced BMDC pulsed with Tα_(146~162) on immunoreaction of T cells primed with TAChR%RelB基因沉默的髓源树突状细胞负载Tα_(146~162)对TAChR预致敏T细胞免疫反应的影响

    Institute of Scientific and Technical Information of China (English)

    张勇; 杨欢; 肖波; 鲁特飞

    2010-01-01

    目的:探讨RelB基因沉默的髓源树突状细胞(BMDC)负载电鳗乙酰胆碱受体(TAChR)优势肽段Tα_(146~162)在TAChR预致敏C57BL/6小鼠中能否诱导免疫耐受.方法:制备产生RelB siRNA分子的重组慢病毒和对照病毒.慢病毒感染BMDC后,给予LPS刺激,相应的DC命名为DC-siRelB和DC-control.应用实时定量PCR和Western印迹分析细胞中RelB表达,流式细胞仪检测细胞表型,ELISA检测上清白细胞介素(IL)-12水平.36只C57BL/6小鼠随机分为A1,A2,A3,K1,K2,K3共6组.实验前1天,A1~A3组用TAChR+完全福氏佐剂(CFA)致敏;K1~K3组用钥孔戚血清蛋白(KLH)+CFA致敏.第7天,A2和K2组注射Tα_(146~162)脉冲的DC-siRelB;A3和K3组注射Tα_(146~162)脉冲的DC-control;A1和K1组给予PBS.第14天,~3H-TdR掺入法检测淋巴细胞增殖反应.结果:成功构建了含RelBshRNA基因的重组慢病毒,RelB~(siRNA)可显著下调DC中RelB的表达.与DC-control相比,DC-siRelB中CD80,CD86,MHCII表达及IL-12水平显著降低.与A1和A3组相比,A2组TAChR刺激下淋巴细胞增殖反应显著降低(P0.05).K1,K2和K3组在KLH刺激下淋巴细胞增殖反应差异均无统计学意义(P>0.05).结论:慢病毒介导的RelB基因沉默的BMDC可抵制成熟诱导反应并能在TAChR预致敏的C57BL/6小鼠中诱导抗原特异性免疫耐受,为研究其用于治疗重症肌无力奠定了基础.

  14. Dendritic cells control CD4+CD25+ Treg cell suppressor function in vitro through juxtacrine delivery of IL-2.

    Directory of Open Access Journals (Sweden)

    Katarina Kulhankova

    Full Text Available CD4(+CD25(+Foxp3(+ regulatory T cells (Tregs restrict inflammatory responses to self and nonself. Aberrant Treg activity is pathologic: Insufficient Treg activity is implicated in autoimmunity, allergy, and graft-versus-host-disease; overabundant activity is implicated in chronic infection and cancer. Tregs require IL-2 for their expansion and acquisition/execution of suppressor function; however, because Tregs cannot produce IL-2, they depend on IL-2 from an exogenous source. Until now, that IL-2 source had not been established. We asked whether dendritic cells (DCs could supply IL-2 to Tregs and, if so, what was required for that delivery. We used flow cytometry, IL-2 ELISPOT, RT-qPCR, and IL-2 promoter-driven reporter assays to measure intracytoplasmic IL-2, secreted protein, IL-2 message and IL-2 promoter activity in bone marrow-derived (BMDC and splenic DCs. We examined conjugate formation between Tregs, conventional CD4(+ cells, and IL-2-expressing DCs. We measured Treg levels of CD25, Foxp3, and suppressor function after co-culture with IL-2 sufficient and IL-2(-/- DCs. We generated IL-2-mCherry-expressing DCs and used epifluorescence microscopy and flow cytometry to track IL-2 transfer to Tregs and test requirements for transfer. Between 0.7 to 2.4% of DCs constitutively produced IL-2 and diverted IL-2 secretion to Tregs by preferentially forming conjugates with them. Uptake of DC IL-2 by Tregs required cell-cell contact and CD25. Tregs increased levels of CD25 and Foxp3 from baseline and showed greater suppressor function when co-cultured with IL-2-sufficient DCs, but not when co-cultured with IL-2(-/- DCs. Exogenous IL-2, added in excess of 500 U/ml to co-cultures with IL-2(-/- DCs, restored Treg suppressor function. These data support a model of juxtacrine delivery of IL-2 from DCs to Tregs and suggest that a subset of DCs modulates Treg function through controlled, spatial delivery of IL-2. Knowledge of how DCs regulate Tregs should

  15. File list: ALL.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Dendritic_Cells hg19 All antigens Blood Dendritic Cells SRX818200,...96,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.50.AllAg.Dendritic_Cells.bed ...

  16. File list: Oth.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Dendritic_Cells mm9 TFs and others Blood Dendritic Cells SRX122407...RX122577,SRX122506,SRX122505 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.20.AllAg.Dendritic_Cells.bed ...

  17. File list: InP.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Dendritic_Cells mm9 Input control Blood Dendritic Cells SRX122480,...83,SRX667878,SRX667880,SRX667876,SRX667874 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.20.AllAg.Dendritic_Cells.bed ...

  18. File list: His.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Dendritic_Cells mm9 Histone Blood Dendritic Cells SRX835924,SRX835...2835,SRX742821,SRX742837 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.AllAg.Dendritic_Cells.bed ...

  19. File list: ALL.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Dendritic_Cells hg19 All antigens Blood Dendritic Cells SRX818200,...95,SRX818194 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.05.AllAg.Dendritic_Cells.bed ...

  20. File list: His.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Dendritic_Cells mm9 Histone Blood Dendritic Cells SRX835924,SRX835...2836,SRX742837,SRX742834 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.AllAg.Dendritic_Cells.bed ...

  1. File list: Unc.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Dendritic_Cells mm9 Unclassified Blood Dendritic Cells SRX185717,S...RX122424,SRX122426,SRX122422,SRX122425,SRX122427,SRX122423 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.05.AllAg.Dendritic_Cells.bed ...

  2. File list: Pol.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Dendritic_Cells mm9 RNA polymerase Blood Dendritic Cells SRX330713...88,SRX891789 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.10.AllAg.Dendritic_Cells.bed ...

  3. File list: Unc.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Dendritic_Cells mm9 Unclassified Blood Dendritic Cells SRX185717,S...RX122427,SRX122425,SRX122423,SRX122424,SRX122422,SRX122426 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.20.AllAg.Dendritic_Cells.bed ...

  4. File list: ALL.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Dendritic_Cells mm9 All antigens Blood Dendritic Cells SRX122407,S...424,SRX122422,SRX122426 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.20.AllAg.Dendritic_Cells.bed ...

  5. File list: ALL.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Dendritic_Cells mm9 All antigens Blood Dendritic Cells SRX835924,S...575,SRX122519,SRX122577 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.05.AllAg.Dendritic_Cells.bed ...

  6. File list: His.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Dendritic_Cells mm9 Histone Blood Dendritic Cells SRX835924,SRX835...2820,SRX742836,SRX742834 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.AllAg.Dendritic_Cells.bed ...

  7. File list: Unc.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...195,SRX818202,SRX818181,SRX818188,SRX818194,SRX818182 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.10.AllAg.Dendritic_Cells.bed ...

  8. File list: InP.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627427...,SRX627429 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.50.AllAg.Dendritic_Cells.bed ...

  9. File list: Oth.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Dendritic_Cells hg19 TFs and others Blood Dendritic Cells SRX62742...8,SRX627430 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.05.AllAg.Dendritic_Cells.bed ...

  10. File list: InP.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627429...,SRX627427 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.Dendritic_Cells.bed ...

  11. File list: Unc.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...181,SRX818182,SRX818188,SRX818202,SRX818195,SRX818194 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.Dendritic_Cells.bed ...

  12. File list: ALL.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Dendritic_Cells hg19 All antigens Blood Dendritic Cells SRX818200,...94,SRX818182 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.10.AllAg.Dendritic_Cells.bed ...

  13. File list: Unc.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...189,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.Dendritic_Cells.bed ...

  14. File list: Oth.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Dendritic_Cells mm9 TFs and others Blood Dendritic Cells SRX390504...RX122575,SRX122519,SRX122577 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.05.AllAg.Dendritic_Cells.bed ...

  15. File list: InP.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Dendritic_Cells mm9 Input control Blood Dendritic Cells SRX885956,...76,SRX122481,SRX667880,SRX667874,SRX667878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.05.AllAg.Dendritic_Cells.bed ...

  16. File list: Oth.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Dendritic_Cells mm9 TFs and others Blood Dendritic Cells SRX122407...RX708765,SRX041328,SRX041331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.50.AllAg.Dendritic_Cells.bed ...

  17. File list: Unc.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...203,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Dendritic_Cells.bed ...

  18. File list: ALL.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Dendritic_Cells hg19 All antigens Blood Dendritic Cells SRX818200,...96,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.20.AllAg.Dendritic_Cells.bed ...

  19. File list: Pol.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Dendritic_Cells mm9 RNA polymerase Blood Dendritic Cells SRX330713...88,SRX122458 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.50.AllAg.Dendritic_Cells.bed ...

  20. File list: Pol.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Dendritic_Cells mm9 RNA polymerase Blood Dendritic Cells SRX330713...90,SRX891788 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.AllAg.Dendritic_Cells.bed ...

  1. File list: Pol.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Dendritic_Cells mm9 RNA polymerase Blood Dendritic Cells SRX330713...59,SRX891788 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.05.AllAg.Dendritic_Cells.bed ...

  2. File list: InP.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627429...,SRX627427 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.20.AllAg.Dendritic_Cells.bed ...

  3. File list: ALL.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Dendritic_Cells mm9 All antigens Blood Dendritic Cells SRX122407,S...765,SRX041328,SRX041331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.50.AllAg.Dendritic_Cells.bed ...

  4. File list: ALL.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Dendritic_Cells mm9 All antigens Blood Dendritic Cells SRX835924,S...427,SRX122423,SRX122425 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.10.AllAg.Dendritic_Cells.bed ...

  5. File list: Oth.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Dendritic_Cells hg19 TFs and others Blood Dendritic Cells SRX62742...8,SRX627430 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.50.AllAg.Dendritic_Cells.bed ...

  6. File list: His.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Dendritic_Cells mm9 Histone Blood Dendritic Cells SRX835922,SRX835...2837,SRX742836,SRX742834 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.AllAg.Dendritic_Cells.bed ...

  7. File list: InP.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627429...,SRX627427 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.05.AllAg.Dendritic_Cells.bed ...

  8. File list: Oth.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Dendritic_Cells mm9 TFs and others Blood Dendritic Cells SRX122407...RX122520,SRX122522,SRX122577 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.10.AllAg.Dendritic_Cells.bed ...

  9. File list: Unc.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Dendritic_Cells mm9 Unclassified Blood Dendritic Cells SRX185717,S...RX122427,SRX122425,SRX122423,SRX122424,SRX122422,SRX122426 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.50.AllAg.Dendritic_Cells.bed ...

  10. File list: Oth.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Dendritic_Cells hg19 TFs and others Blood Dendritic Cells SRX62742...8,SRX627430 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.10.AllAg.Dendritic_Cells.bed ...

  11. File list: InP.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Dendritic_Cells mm9 Input control Blood Dendritic Cells SRX122480,...82,SRX667878,SRX667880,SRX667876,SRX667874 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.50.AllAg.Dendritic_Cells.bed ...

  12. File list: Unc.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Dendritic_Cells mm9 Unclassified Blood Dendritic Cells SRX122426,S...RX185717,SRX122424,SRX122422,SRX122427,SRX122423,SRX122425 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.10.AllAg.Dendritic_Cells.bed ...

  13. Recognition of enteroinvasive Escherichia coli and Shigella flexneri by dendritic cells: distinct dendritic cell activation states

    Directory of Open Access Journals (Sweden)

    Ana Carolina Ramos Moreno

    2012-02-01

    Full Text Available The innate and adaptive immune responses of dendritic cells (DCs to enteroinvasive Escherichia coli (EIEC infection were compared with DC responses to Shigella flexneri infection. EIEC triggered DCs to produce interleukin (IL-10, IL-12 and tumour necrosis factor (TNF-α, whereas S. flexneri induced only the production of TNF-α. Unlike S. flexneri, EIEC strongly increased the expression of toll like receptor (TLR-4 and TLR-5 in DCs and diminished the expression of co-stimulatory molecules that may cooperate to inhibit CD4+ T-lymphocyte proliferation. The inflammation elicited by EIEC seems to be related to innate immunity both because of the aforementioned results and because only EIEC were able to stimulate DC transmigration across polarised Caco-2 cell monolayers, a mechanism likely to be associated with the secretion of CC chemokine ligands (CCL20 and TNF-α. Understanding intestinal DC biology is critical to unravelling the infection strategies of EIEC and may aid in the design of treatments for infectious diseases.

  14. Slowing down light using a dendritic cell cluster metasurface waveguide

    Science.gov (United States)

    Fang, Z. H.; Chen, H.; Yang, F. S.; Luo, C. R.; Zhao, X. P.

    2016-11-01

    Slowing down or even stopping light is the first task to realising optical information transmission and storage. Theoretical studies have revealed that metamaterials can slow down or even stop light; however, the difficulty of preparing metamaterials that operate in visible light hinders progress in the research of slowing or stopping light. Metasurfaces provide a new opportunity to make progress in such research. In this paper, we propose a dendritic cell cluster metasurface consisting of dendritic structures. The simulation results show that dendritic structure can realise abnormal reflection and refraction effects. Single- and double-layer dendritic metasurfaces that respond in visible light were prepared by electrochemical deposition. Abnormal Goos-Hänchen (GH) shifts were experimentally obtained. The rainbow trapping effect was observed in a waveguide constructed using the dendritic metasurface sample. The incident white light was separated into seven colours ranging from blue to red light. The measured transmission energy in the waveguide showed that the energy escaping from the waveguide was zero at the resonant frequency of the sample under a certain amount of incident light. The proposed metasurface has a simple preparation process, functions in visible light, and can be readily extended to the infrared band and communication wavelengths.

  15. Bone marrow dendritic cells from mice with an altered microbiota provide interleukin 17A-dependent protection against Entamoeba histolytica colitis.

    Science.gov (United States)

    Burgess, Stacey L; Buonomo, Erica; Carey, Maureen; Cowardin, Carrie; Naylor, Caitlin; Noor, Zannatun; Wills-Karp, Marsha; Petri, William A

    2014-11-04

    There is an emerging paradigm that the human microbiome is central to many aspects of health and may have a role in preventing enteric infection. Entamoeba histolytica is a major cause of amebic diarrhea in developing countries. It colonizes the colon lumen in close proximity to the gut microbiota. Interestingly, not all individuals are equally susceptible to E. histolytica infection. Therefore, as the microbiota is highly variable within individuals, we sought to determine if a component of the microbiota could regulate susceptibility to infection. In studies utilizing a murine model, we demonstrated that colonization of the gut with the commensal Clostridia-related bacteria known as segmented filamentous bacteria (SFB) is protective during E. histolytica infection. SFB colonization in this model was associated with elevated cecal levels of interleukin 17A (IL-17A), dendritic cells, and neutrophils. Bone marrow-derived dendritic cells (BMDCs) from SFB-colonized mice had higher levels of IL-23 production in response to stimulation with trophozoites. Adoptive transfer of BMDCs from an SFB(+) to an SFB(-) mouse was sufficient to provide protection against E. histolytica. IL-17A induction during BMDC transfer was necessary for this protection. This work demonstrates that intestinal colonization with a specific commensal bacterium can provide protection during amebiasis in a murine model. Most importantly, this work demonstrates that the microbiome can mediate protection against an enteric infection via extraintestinal effects on bone marrow-derived dendritic cells. Entamoeba histolytica is the causative agent of amebiasis, an infectious disease that contributes significantly to morbidity and mortality due to diarrhea in the developing world. We showed in a murine model that colonization with the commensal members of the Clostridia known as SFB provides protection against E. histolytica and that dendritic cells from SFB-colonized mice alone can recapitulate protection

  16. Semaphorin 7A Promotes Chemokine-Driven Dendritic Cell Migration

    NARCIS (Netherlands)

    van Rijn, Anoek; Paulis, Leonie; te Riet, Joost; Vasaturo, Angela; Reinieren-Beeren, Inge; van der Schaaf, Alie; Kuipers, Arthur J.; Schulte, Luuk P.; Jongbloets, Bart C.; Pasterkamp, R. Jeroen; Figdor, Carl G.; van Spriel, Annemiek B.; Buschow, Sonja I.

    2016-01-01

    Dendritic cell (DC) migration is essential for efficient host defense against pathogens and cancer, as well as for the efficacy of DC-based immunotherapies. However, the molecules that induce the migratory phenotype of DCs are poorly defined. Based on a largescale proteome analysis of maturing DCs,

  17. Lung Dendritic cells: Targets for therapy in allergic disease

    NARCIS (Netherlands)

    B.N.M. Lambrecht (Bart)

    2008-01-01

    textabstractDendritic cells are crucial in determining the functional outcome of allergen encounter in the lung. Antigen presentation by myeloid DCs leads to Th2 sensitization typical of allergic disease, whereas antigen presentation by plasmacytoid DCs serves to dampen inflammation. It is increasin

  18. Harnessing human plasmacytoid dendritic cells as professional APCs

    NARCIS (Netherlands)

    Tel, J.; Leun, A.M. van der; Figdor, C.G.; Torensma, R.; Vries, I.J.M. de

    2012-01-01

    The plasmacytoid dendritic cell (pDC) constitutes a unique DC subset that links the innate and adaptive arm of the immune system. Whereas the unique capability of pDCs to produce large amounts of type I IFNs in response to pathogen recognition is generally accepted,their antigen-presenting function

  19. Migration of dendritic cell based cancer vaccines: in vivo veritas?

    NARCIS (Netherlands)

    Adema, G.J.; Vries, I.J.M. de; Punt, C.J.A.; Figdor, C.G.

    2005-01-01

    Ex vivo generated cancer vaccines based on dendritic cells (DCs) are currently applied in the clinic. The migration of DCs from the tissues to the lymph nodes is tightly controlled and involves many different mediators and their receptors. A recent study demonstrated that the rate of migration of

  20. Multimodal imaging of nanovaccine carriers targeted to human dendritic cells

    NARCIS (Netherlands)

    Cruz, L.J.; Tacken, P.J.; Bonetto, F.J.; Buschow, S.I.; Croes, H.J.E.; Wijers-Rouw, M.J.P.; Vries, I.J.M. de; Figdor, C.G.

    2011-01-01

    Dendritic cells (DCs) are key players in the initiation of adaptive immune responses and are currently exploited in immunotherapy against cancer and infectious diseases. The targeted delivery of nanovaccine particles (NPs) to DCs in vivo is a promising strategy to enhance immune responses. Here, tar

  1. Monocyte-derived dendritic cells in bipolar disorder

    NARCIS (Netherlands)

    Knijff, EM; Ruwhof, C; de Wit, HJ; Kupka, RW; Vonk, R; Akkerhuis, GW; Nolen, WA; Drexhage, HA

    2006-01-01

    Background: Dendritic cells (DC) are key regulators of the immune system, which is compromised in patients with bipolar disorder. We sought to study monocyte-derived DC in bipolar disorder. Methods: Monocytes purified from blood collected from DSM-IV bipolar disorder outpatients (n = 53, 12 without

  2. Interaction of classical swine fever virus with dendritic cells

    NARCIS (Netherlands)

    Carrasco, C.P.; Rigden, R.C.; Vincent, I.E.; Balmelli, C.; Ceppi, M.; Bauhofer, O.; Tache, V.; Hjertner, B.; McNeilly, F.; Gennip, van H.G.P.; McCullough, K.C.; Summerfield, A.

    2004-01-01

    Functional disruption of dendritic cells (DCs) is an important strategy for viral pathogens to evade host defences. Monocytotropic viruses such as classical swine fever virus (CSFV) could employ such a mechanism, since the virus can suppress immune responses and induce apoptosis without infecting ly

  3. 双重保护培养SD大鼠骨髓来源树突状细胞%Double protection for culturing SD rat bone marrow dendritic cells

    Institute of Scientific and Technical Information of China (English)

    陶绍富; 李济宇

    2011-01-01

    目的:深入研究大鼠骨髓来源的树突状细胞的生物学功能,建立一种有效的细胞培养方法.方法:提取大鼠骨髓细胞,采用GM-CSF + IL-4进行体外诱导分化,对最终培养的细胞采用形态、表型、功能综合鉴定.结果:大鼠骨髓细胞培养12 d,光镜下呈现典型的树突状细胞形态.细胞表面分子抗原随着培养时间的延长表达也增加.各时间点分子抗原表达差异有统计学意义(P < 0.05).其中第12天刺激T细胞增殖能力强.结论:该方法是一种经济、实用、有效的体外诱导扩增大鼠骨髓来源树突状细胞的培养方法.%Objective To establish an effective cell culture method for further investigating the hiological f'unction of the rat hone marrow dendritic cells (BMDC). Methods Rat BMDCs were induced by culture of rat bone marrow cells in the presence of both rrCM-CSF and rrIL-4 in vitro. The finally harvested cells were identified for morphology , phenotype and function. Results The final harvest cells displayed a typical dentritic cells morphology under the light microscope after 12 days of culture. The expression of the cell surface antigens increased in a time-dependent manner. Compared the molecular antigen expressions at different time , the difference was significantly (P < 0.05). The capacity of the cultured cells to stimulate reactive T cell proliferation reached peak on the twelfth dav of the culture. Conclusion This culture method is economical, practic:al and effective for induction and expansion of rat BMDC in vitro.

  4. Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Iris J Gonzalez-Leal

    2014-09-01

    Full Text Available Resistance and susceptibility to Leishmania major infection in the murine model is determined by the capacity of the host to mount either a protective Th1 response or a Th2 response associated with disease progression. Previous reports involving the use of cysteine cathepsin inhibitors indicated that cathepsins B (Ctsb and L (Ctsl play important roles in Th1/Th2 polarization during L. major infection in both susceptible and resistant mouse strains. Although it was hypothesized that these effects are a consequence of differential patterns of antigen processing, the mechanisms underlying these differences were not further investigated. Given the pivotal roles that dendritic cells and macrophages play during Leishmania infection, we generated bone-marrow derived dendritic cells (BMDC and macrophages (BMM from Ctsb-/- and Ctsl-/- mice, and studied the effects of Ctsb and Ctsl deficiency on the survival of L. major in infected cells. Furthermore, the signals used by dendritic cells to instruct Th cell polarization were addressed: the expression of MHC class II and co-stimulatory molecules, and cytokine production. We found that Ctsb-/- BMDC express higher levels of MHC class II molecules than wild-type (WT and Ctsl-/- BMDC, while there were no significant differences in the expression of co-stimulatory molecules between cathepsin-deficient and WT cells. Moreover, both BMDC and BMM from Ctsb-/- mice significantly up-regulated the levels of interleukin 12 (IL-12 expression, a key Th1-inducing cytokine. These findings indicate that Ctsb-/- BMDC display more pro-Th1 properties than their WT and Ctsl-/- counterparts, and therefore suggest that Ctsb down-regulates the Th1 response to L. major. Moreover, they propose a novel role for Ctsb as a regulator of cytokine expression.

  5. Cathepsin B in antigen-presenting cells controls mediators of the Th1 immune response during Leishmania major infection.

    Science.gov (United States)

    Gonzalez-Leal, Iris J; Röger, Bianca; Schwarz, Angela; Schirmeister, Tanja; Reinheckel, Thomas; Lutz, Manfred B; Moll, Heidrun

    2014-09-01

    Resistance and susceptibility to Leishmania major infection in the murine model is determined by the capacity of the host to mount either a protective Th1 response or a Th2 response associated with disease progression. Previous reports involving the use of cysteine cathepsin inhibitors indicated that cathepsins B (Ctsb) and L (Ctsl) play important roles in Th1/Th2 polarization during L. major infection in both susceptible and resistant mouse strains. Although it was hypothesized that these effects are a consequence of differential patterns of antigen processing, the mechanisms underlying these differences were not further investigated. Given the pivotal roles that dendritic cells and macrophages play during Leishmania infection, we generated bone-marrow derived dendritic cells (BMDC) and macrophages (BMM) from Ctsb-/- and Ctsl-/- mice, and studied the effects of Ctsb and Ctsl deficiency on the survival of L. major in infected cells. Furthermore, the signals used by dendritic cells to instruct Th cell polarization were addressed: the expression of MHC class II and co-stimulatory molecules, and cytokine production. We found that Ctsb-/- BMDC express higher levels of MHC class II molecules than wild-type (WT) and Ctsl-/- BMDC, while there were no significant differences in the expression of co-stimulatory molecules between cathepsin-deficient and WT cells. Moreover, both BMDC and BMM from Ctsb-/- mice significantly up-regulated the levels of interleukin 12 (IL-12) expression, a key Th1-inducing cytokine. These findings indicate that Ctsb-/- BMDC display more pro-Th1 properties than their WT and Ctsl-/- counterparts, and therefore suggest that Ctsb down-regulates the Th1 response to L. major. Moreover, they propose a novel role for Ctsb as a regulator of cytokine expression.

  6. Tolerogenic dendritic cells for regulatory T cell induction in man

    Directory of Open Access Journals (Sweden)

    Verena eRaker

    2015-11-01

    Full Text Available Dendritic cells are (DC highly specialized professional antigen-presenting cells (APC that regulate immune responses, maintaining the balance between tolerance and immunity. Mechanisms via which they can promote central and peripheral tolerance include clonal deletion, inhibition of memory T cell responses, T cell anergy and induction of regulatory T cells. These properties have led to the analysis of human tolerogenic DC as a therapeutic strategy for induction or re-establishment of tolerance. In the recent years, numerous protocols for the generation of human tolerogenic DC have been developed and their tolerogenic mechanisms, including induction of regulatory T cells, are relatively well understood. Phase I trials have been conducted in autoimmune disease, with results that emphasize the feasibility and safety of treatments with tolerogenic DC. Therefore, the scientific rationale for the use of tolerogenic DC therapy in the fields of transplantation medicine and allergic and autoimmune diseases is strong. This review will give an overview on efforts and protocols to generate human tolerogenic DC with focus on IL-10-modulated DC as inducers of regulatory T cells and discuss their clinical applications and challenges faced in further developing this form of immunotherapy.

  7. Cancer Vaccine by Fusions of Dendritic and Cancer Cells

    OpenAIRE

    Shigeo Koido; Eiichi Hara; Sadamu Homma; Yoshihisa Namiki; Toshifumi Ohkusa; Jianlin Gong; Hisao Tajiri

    2010-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Therefore, their use for the active immunotherapy against cancers has been studied with considerable interest. The fusion of DCs with whole tumor cells represents in many ways an ideal approach to deliver, process, and subsequently present a broad array of tumor-associated antigens, including those yet to be unidentified, in the context of DCs-derived...

  8. Dendritic web - A viable material for silicon solar cells

    Science.gov (United States)

    Seidensticker, R. G.; Scudder, L.; Brandhorst, H. W., Jr.

    1975-01-01

    The dendritic web process is a technique for growing thin silicon ribbon from liquid silicon. The material is suitable for solar cell fabrication and, in fact, cells fabricated on web material are equivalent in performance to cells fabricated on Czochralski-grown material. A recently concluded study has delineated the thermal requirements for silicon web crucibles, and a detailed conceptual design has been developed for a laboratory growth apparatus.

  9. Loss of CD103~+ intestinal dendritic cells during colonic inflammation

    Institute of Scientific and Technical Information of China (English)

    Ulrike; G; Strauch; Nicole; Grunwald; Florian; Obermeier; Sonja; Gürster; Heiko; C; Rath

    2010-01-01

    AIM:To investigate possible differences in dendritic cells(DC)within intestinal tissue of mice before and after induction of colitis. METHODS:Mucosal DC derived from intestinal tissue,as well as from mesenteric lymph nodes and spleen,were analyzed by fluorescence activated cell sorting(FACS) analysis.Supernatants of these cells were analyzed for secretion of different pro-and anti-inflammatory cytokines. Immunohistochemistry and immunofluorescence were performed on cryosections of mucosal tissue derived fro...

  10. Acute myeloid dendritic cell leukaemia with specific cutaneous involvement: a diagnostic challenge.

    Science.gov (United States)

    Ferran, M; Gallardo, F; Ferrer, A M; Salar, A; Pérez-Vila, E; Juanpere, N; Salgado, R; Espinet, B; Orfao, A; Florensa, L; Pujol, R M

    2008-05-01

    Myeloid or type 1 dendritic cell leukaemia is an exceedingly rare haematopoietic neoplasm characterized by a specific immunophenotypic profile close to plasmacytoid dendritic cell and acute myelogenous leukaemia. A 77-year-old man presenting specific cutaneous infiltration by myeloid dendritic cell leukaemia is reported. The clinical features as well as the cutaneous histopathological and immunohistochemical features led to the initial diagnosis of CD4+/CD56+ haematodermic neoplasm. However, extensive immunophenotypic studies performed from peripheral blood blasts disclosed that leukaemic cells expressed myeloid dendritic cell markers, confirming the diagnosis. The diagnostic difficulties of specific cutaneous involvement by myeloid dendritic cell leukaemia on the basis of routine histopathological and immunohistochemical features are highlighted.

  11. Dendritic Cells and HIV-1 Trans-Infection

    Directory of Open Access Journals (Sweden)

    David McDonald

    2010-08-01

    Full Text Available Dendritic cells initiate and sustain immune responses by migrating to sites of pathogenic insult, transporting antigens to lymphoid tissues and signaling immune specific activation of T cells through the formation of the immunological synapse. Dendritic cells can also transfer intact, infectious HIV-1 to CD4 T cells through an analogous structure, the infectious synapse. This replication independent mode of HIV-1 transmission, known as trans-infection, greatly increases T cell infection in vitro and is thought to contribute to viral dissemination in vivo. This review outlines the recent data defining the mechanisms of trans-infection and provides a context for the potential contribution of trans-infection in HIV-1 disease.

  12. Human plasmacytoid dendritic cells: from molecules to intercellular communication network

    Directory of Open Access Journals (Sweden)

    Till Sebastian Manuel Mathan

    2013-11-01

    Full Text Available Plasmacytoid Dendritic Cells (pDCs are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presenting cells (APCs, making them an interesting target for immunotherapy against cancer. However, the modes of action of pDCs are not restricted to antigen presentation and IFN secretion alone. In this review we will highlight a selection of cell surface proteins expressed by human pDCs that may facilitate communication with other immune cells, and we will discuss the implications of these molecules for pDC-driven immune responses.

  13. Dendritic Cell Apoptosis and the Pathogenesis of Dengue

    Directory of Open Access Journals (Sweden)

    Lysangela R. Alves

    2012-11-01

    Full Text Available Dengue viruses and other members of the Flaviviridae family are emerging human pathogens. Dengue is transmitted to humans by Aedes aegypti female mosquitoes. Following infection through the bite, cells of the hematopoietic lineage, like dendritic cells, are the first targets of dengue virus infection. Dendritic cells (DCs are key antigen presenting cells, sensing pathogens, processing and presenting the antigens to T lymphocytes, and triggering an adaptive immune response. Infection of DCs by dengue virus may induce apoptosis, impairing their ability to present antigens to T cells, and thereby contributing to dengue pathogenesis. This review focuses on general mechanisms by which dengue virus triggers apoptosis, and possible influence of DC-apoptosis on dengue disease severity.

  14. Direction selectivity is computed by active dendritic integration in retinal ganglion cells.

    Science.gov (United States)

    Sivyer, Benjamin; Williams, Stephen R

    2013-12-01

    Active dendritic integration is thought to enrich the computational power of central neurons. However, a direct role of active dendritic processing in the execution of defined neuronal computations in intact neural networks has not been established. Here we used multi-site electrophysiological recording techniques to demonstrate that active dendritic integration underlies the computation of direction selectivity in rabbit retinal ganglion cells. Direction-selective retinal ganglion cells fire action potentials in response to visual image movement in a preferred direction. Dendritic recordings revealed that preferred-direction moving-light stimuli led to dendritic spike generation in terminal dendrites, which were further integrated and amplified as they spread through the dendritic arbor to the axon to drive action potential output. In contrast, when light bars moved in a null direction, synaptic inhibition vetoed neuronal output by directly inhibiting terminal dendritic spike initiation. Active dendritic integration therefore underlies a physiologically engaged circuit-based computation in the retina.

  15. 壳聚糖表面修饰PLGA纳米粒对小鼠骨髓系树突细胞交叉递呈的影响%Effects of chitosan coating PLGA nanoparticles on cross-presentation by murine bone marrow-derived dendritic cells

    Institute of Scientific and Technical Information of China (English)

    邹家龙; 罗顺德; 韩瑞玲

    2013-01-01

    OBJECTIVE To investigate the effect of chitosan (CS) coating PLGA nanoparticles on cross-presentation by mu-rine bone marrow-derived dendritic cell (BMDC). METHODS PLGA nanoparitlces were prepared by W1/O/W2 method. A model antigen ovalbumin (OVA) was encapsulated into PLGA nanoparticles, different concentrations of chitosan, 2 mg·mL-1 , 5 mg·mL-1 and 10 mg·mL-1 , were used to surface modify PLGA nanoparticles. The prepared nanoparticles were used to stimulate BMDC. Flow cytometry was used to analyze the expression of surface molecular CD80, CD83, CD86, MHC I and MHC II. The cross-presentation were detect by B3Z T cell. The level of IL-4 and IL12p70 secreted by BMDC were detected by ELISA method. RESULTS Compared with OVA-NPs group, BDMC stimulation with OVA-NPs/CS group led to increase in up-regulation of CD80, CD83 and MHC I, increased secretion of IL-12p70 by BMDC. Furthermore, OVA-NPs/protamine treated BMDC also showed an enhanced cross-presentation to B3Z T cell hybridoma in vitro. CONCLUSION Chitosan coated PLGA nanoparticles could enhance the cross-presentation of encapsulated exogenous antigen, which may be associated with promoting BMDC maturation and MHC I expression.%目的:探讨壳聚糖表面修饰聚乳酸-羟基乙酸共聚物(PLGA)纳米粒对诱导树突细胞交叉递呈的影响.方法:采用复乳法制备包裹模型抗原卵清白蛋白(OVA)的PLGA纳米粒,采用高、中、低3种浓度的壳聚糖(chitosan,CS)进行表面修饰.将纳米粒作用于体外培养的小鼠骨髓系树突细胞(BMDC),用流式细胞仪检测BMDC表面分子CD80,CD83,CD86,MHCI和MHC Ⅱ的表达;B3Z T细胞检测纳米粒被BMDC摄取后引起的交叉递呈反应;并用ELISA法检测BMDC分泌的IL-4和IL-12p70.结果:壳聚糖表面修饰PLGA纳米粒可以促进BMDC表达CD80、CD83和MHC Ⅰ表面分子;增强BMDC对纳米粒包裹OVA的交叉递呈作用;并增加BMDC分泌IL12p70.结论:壳聚糖包覆PLGA纳米粒可以增强BMDC对外源性

  16. Immunohistochemical analysis of small plaque parapsoriasis: involvement of dendritic cells.

    Science.gov (United States)

    Zeybek, N Dilara; Asan, Esin; Erbil, A Hakan; Dagdeviren, Attila

    2008-01-01

    Small plaque parapsoriasis (SPP) is one of the cutaneous T-cell lymphoproliferative disorders. The aim of the present study was to show the antigenic profile of a subset of dendritic cells and lymphocytes in SPP in comparison with normal cells to provide data on the role of these two cell types in the pathogenesis of SPP. Skin biopsy specimens of lesions were obtained from 8 patients with SPP. Biopsies of the healthy skin from 9 control individuals were also analyzed. Immunohistochemistry was performed on the frozen tissue sections to reveal binding of anti-HLA Class II, anti-CD1a, anti-CD4, anti-CD8, anti-CD44, anti-CD45, and anti-CD68 monoclonal antibodies. There was a statistically significant increase in the number of CD1a(+), Langerhans cells (LCs), HLA-DR-immunoreactive and, CD1a-positive dermal dendritic cells and CD68(+) macrophages in the SPP group (p=0.008, 0.008, 0.002 and <0.0009, respectively). The number of lymphocytes positive for CD4, CD8 and CD45 was significantly higher than normal in the SPP group (p=0.015, <0.0009 and <0.0009, respectively). Our study demonstrates that both peptide- and lipid-based antigens are involved in the persistent antigenic exposure in SPP. Dendritic cells play a pivotal role in SPP by presenting antigens by both LC and dermal dendritic cells via MHC Class II and CD1a molecules. The CD68(+) macrophages are thought to be involved in the immune response in this pathology as an antigen-presenting cell.

  17. Two cases of extranodal follicular dendritic cell sarcoma

    Institute of Scientific and Technical Information of China (English)

    王坚; 孔蕴仪; 陆洪芬; 许越香

    2003-01-01

    @@ Follicular dendritic cell (FDC) is an essential component of the nonlymphoid, nonphagocytic immunoaccessory reticulum cells of the peripheral lymphoid tissue.1 Follicular dendritic cell sarcoma (FDCs) are confined largely to the primary and secondary B-cell follicles, where they form a tight interlacing meshwork. They play a role in the capture and presentation of antigens, generation and regulation of immune complexes. FDCs can be recognized morphologically by their indistinct cellular borders, pale eosinophilic cytoplasm, round-to-ovoid nuclei with delicate nuclear membranes and clear-to-vesicular chromatin with inconspicuous or small nucleoli. FDCs are best identified through immunostaining using CD21, CD35, R4/23, KiM4, KiM4p and Ki-FDC1p.

  18. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  19. Molecular Characterization of Dendritic Cell-Derived Exosomes

    OpenAIRE

    Théry, Clotilde; Regnault, Armelle; Garin, Jérôme; Wolfers, Joseph; Zitvogel, Laurence; Ricciardi-Castagnoli, Paola; Raposo, Graça; Amigorena, Sebastian

    1999-01-01

    Exosomes are membrane vesicles secreted by hematopoietic cells upon fusion of late multivesicular endosomes with the plasma membrane. Dendritic cell (DC)-derived exosomes induce potent antitumor immune responses in mice, resulting in the regression of established tumors (Zitvogel, L., A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-Castagnoli, G. Raposo, and S. Amigorena. 1998. Nat. Med. 4:594–600). To unravel the molecular basis of exosome-induced immune stimulation, w...

  20. Modulation of respiratory dendritic cells during Klebsiella pneumonia infection

    OpenAIRE

    Hackstein, Holger; Kranz, Sabine; Lippitsch, Anne; Wachtendorf, Andreas; Kershaw, Olivia; Achim D Gruber; Michel, Gabriela; Lohmeyer, Jürgen; Bein, Gregor; Baal, Nelli; Herold, Susanne

    2013-01-01

    Background: Klebsiella pneumoniae is a leading cause of severe hospital-acquired respiratory tract infections and death but little is known regarding the modulation of respiratory dendritic cell (DC) subsets. Plasmacytoid DC (pDC) are specialized type 1 interferon producing cells and considered to be classical mediators of antiviral immunity. Method: By using multiparameter flow cytometry analysis we have analysed the modulation of respiratory DC subsets after intratracheal Klebsi...

  1. The role of the vascular dendritic cell network in atherosclerosis

    OpenAIRE

    Alberts-Grill, Noah; Denning, Timothy L.; Rezvan, Amir; Jo, Hanjoong

    2013-01-01

    A complex role has been described for dendritic cells (DCs) in the potentiation and control of vascular inflammation and atherosclerosis. Resident vascular DCs are found in the intima of atherosclerosis-prone vascular regions exposed to disturbed blood flow patterns. Several phenotypically and functionally distinct vascular DC subsets have been described. The functional heterogeneity of these cells and their contributions to vascular homeostasis, inflammation, and atherosclerosis are only rec...

  2. Dendritic Cells for Real-Time Anomaly Detection

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    Dendritic Cells (DCs) are innate immune system cells which have the power to activate or suppress the immune system. The behaviour of human of human DCs is abstracted to form an algorithm suitable for anomaly detection. We test this algorithm on the real-time problem of port scan detection. Our results show a significant difference in artificial DC behaviour for an outgoing portscan when compared to behaviour for normal processes.

  3. GK-1 Improves the Immune Response Induced by Bone Marrow Dendritic Cells Loaded with MAGE-AX in Mice with Melanoma

    Directory of Open Access Journals (Sweden)

    Gabriela Piñón-Zárate

    2014-01-01

    Full Text Available The aim of dendritic cell (DC vaccination in cancer is to induce tumor-specific effector T cells that may reduce and control tumor mass. Immunostimulants that could drive a desired immune response are necessary to be found in order to generate a long lasting tumor immune response. GK-1 peptide, derived from Taenia crassiceps, induces not only increase in TNFα, IFNγ, and MCP-1 production in cocultures of DCs and T lymphocytes but also immunological protection against influenza virus. Moreover, the aim of this investigation is the use of GK-1 as a bone marrow DCs (BMDCs immunostimulant targeted with MAGE antigen; thus, BMDC may be used as immunotherapy against murine melanoma. GK-1 induced in BMDCs a meaningful increment of CD86 and IL-12. In addition, the use of BMDCs TNFα/GK-1/MAGE-AX induced the highest survival and the smallest tumors in mice. Besides, the treatment helped to increase CD8 lymphocytes levels and to produce IFNγ in lymph nodes. Moreover, the histopathological analysis showed that BMDCs treated with GK-1/TNFα and loaded with MAGE-AX induced the apparition of more apoptotic and necrotic areas in tumors than in mice without treatment. These results highlight the properties of GK-1 as an immunostimulant of DCs and suggest as a potential candidate the use of this immunotherapy against cancer disease.

  4. GK-1 improves the immune response induced by bone marrow dendritic cells loaded with MAGE-AX in mice with melanoma.

    Science.gov (United States)

    Piñón-Zárate, Gabriela; Herrera-Enríquez, Miguel Ángel; Hernández-Téllez, Beatriz; Jarquín-Yáñez, Katia; Castell-Rodríguez, Andrés Eliú

    2014-01-01

    The aim of dendritic cell (DC) vaccination in cancer is to induce tumor-specific effector T cells that may reduce and control tumor mass. Immunostimulants that could drive a desired immune response are necessary to be found in order to generate a long lasting tumor immune response. GK-1 peptide, derived from Taenia crassiceps, induces not only increase in TNFα, IFNγ, and MCP-1 production in cocultures of DCs and T lymphocytes but also immunological protection against influenza virus. Moreover, the aim of this investigation is the use of GK-1 as a bone marrow DCs (BMDCs) immunostimulant targeted with MAGE antigen; thus, BMDC may be used as immunotherapy against murine melanoma. GK-1 induced in BMDCs a meaningful increment of CD86 and IL-12. In addition, the use of BMDCs TNFα/GK-1/MAGE-AX induced the highest survival and the smallest tumors in mice. Besides, the treatment helped to increase CD8 lymphocytes levels and to produce IFNγ in lymph nodes. Moreover, the histopathological analysis showed that BMDCs treated with GK-1/TNFα and loaded with MAGE-AX induced the apparition of more apoptotic and necrotic areas in tumors than in mice without treatment. These results highlight the properties of GK-1 as an immunostimulant of DCs and suggest as a potential candidate the use of this immunotherapy against cancer disease.

  5. Topographical and biological evidence revealed FTY720-mediated anergy-polarization of mouse bone marrow-derived dendritic cells in vitro.

    Science.gov (United States)

    Zeng, Xiangfeng; Wang, Tong; Zhu, Cairong; Xing, Xiaobo; Ye, Yanxia; Lai, Xinqiang; Song, Bing; Zeng, Yaoying

    2012-01-01

    Abnormal inflammations are central therapeutic targets in numerous infectious and autoimmune diseases. Dendritic cells (DCs) are involved in these inflammations, serving as both antigen presenters and proinflammatory cytokine providers. As an immuno-suppressor applied to the therapies of multiple sclerosis and allograft transplantation, fingolimod (FTY720) was shown to affect DC migration and its crosstalk with T cells. We posit FTY720 can induce an anergy-polarized phenotype switch on DCs in vitro, especially upon endotoxic activation. A lipopolysaccharide (LPS)-induced mouse bone marrow-derived dendritic cell (BMDC) activation model was employed to test FTY720-induced phenotypic changes on immature and mature DCs. Specifically, methods for morphology, nanostructure, cytokine production, phagocytosis, endocytosis and specific antigen presentation studies were used. FTY720 induced significant alterations of surface markers, as well as decline of shape indices, cell volume, surface roughness in LPS-activated mature BMDCs. These phenotypic, morphological and topographical changes were accompanied by FTY720-mediated down-regulation of proinflammatory cytokines, including IL-6, TNF-α, IL-12 and MCP-1. Together with suppressed nitric oxide (NO) production and CCR7 transcription in FTY720-treated BMDCs with or without LPS activation, an inhibitory mechanism of NO and cytokine reciprocal activation was suggested. This implication was supported by the impaired phagocytotic, endocytotic and specific antigen presentation abilities observed in the FTY720-treated BMDCs. In conclusion, we demonstrated FTY720 can induce anergy-polarization in both immature and LPS-activated mature BMDCs. A possible mechanism is FTY720-mediated reciprocal suppression on the intrinsic activation pathway and cytokine production with endpoint exhibitions on phagocytosis, endocytosis, antigen presentation as well as cellular morphology and topography.

  6. Topographical and biological evidence revealed FTY720-mediated anergy-polarization of mouse bone marrow-derived dendritic cells in vitro.

    Directory of Open Access Journals (Sweden)

    Xiangfeng Zeng

    Full Text Available Abnormal inflammations are central therapeutic targets in numerous infectious and autoimmune diseases. Dendritic cells (DCs are involved in these inflammations, serving as both antigen presenters and proinflammatory cytokine providers. As an immuno-suppressor applied to the therapies of multiple sclerosis and allograft transplantation, fingolimod (FTY720 was shown to affect DC migration and its crosstalk with T cells. We posit FTY720 can induce an anergy-polarized phenotype switch on DCs in vitro, especially upon endotoxic activation. A lipopolysaccharide (LPS-induced mouse bone marrow-derived dendritic cell (BMDC activation model was employed to test FTY720-induced phenotypic changes on immature and mature DCs. Specifically, methods for morphology, nanostructure, cytokine production, phagocytosis, endocytosis and specific antigen presentation studies were used. FTY720 induced significant alterations of surface markers, as well as decline of shape indices, cell volume, surface roughness in LPS-activated mature BMDCs. These phenotypic, morphological and topographical changes were accompanied by FTY720-mediated down-regulation of proinflammatory cytokines, including IL-6, TNF-α, IL-12 and MCP-1. Together with suppressed nitric oxide (NO production and CCR7 transcription in FTY720-treated BMDCs with or without LPS activation, an inhibitory mechanism of NO and cytokine reciprocal activation was suggested. This implication was supported by the impaired phagocytotic, endocytotic and specific antigen presentation abilities observed in the FTY720-treated BMDCs. In conclusion, we demonstrated FTY720 can induce anergy-polarization in both immature and LPS-activated mature BMDCs. A possible mechanism is FTY720-mediated reciprocal suppression on the intrinsic activation pathway and cytokine production with endpoint exhibitions on phagocytosis, endocytosis, antigen presentation as well as cellular morphology and topography.

  7. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study

    Directory of Open Access Journals (Sweden)

    Yi Eunhee S

    2010-04-01

    Full Text Available Abstract Background Abnormal immune responses are believed to be highly relevant in the pathogenesis of chronic obstructive pulmonary disease (COPD. Dendritic cells provide a critical checkpoint for immunity by their capacity to both induce and suppress immunity. Although evident that cigarette smoke, the primary cause of COPD, significantly influences dendritic cell functions, little is known about the roles of dendritic cells in the pathogenesis of COPD. Methods The extent of dendritic cell infiltration in COPD tissue specimens was determined using immunohistochemical localization of CD83+ cells (marker of matured myeloid dendritic cells, and CD1a+ cells (Langerhans cells. The extent of tissue infiltration with Langerhans cells was also determined by the relative expression of the CD207 gene in COPD versus control tissues. To determine mechanisms by which dendritic cells accumulate in COPD, complimentary studies were conducted using monocyte-derived human dendritic cells exposed to cigarette smoke extract (CSE, and dendritic cells extracted from mice chronically exposed to cigarette smoke. Results In human COPD lung tissue, we detected a significant increase in the total number of CD83+ cells, and significantly higher amounts of CD207 mRNA when compared with control tissue. Human monocyte-derived dendritic cells exposed to CSE (0.1-2% exhibited enhanced survival in vitro when compared with control dendritic cells. Murine dendritic cells extracted from mice exposed to cigarette smoke for 4 weeks, also demonstrated enhanced survival compared to dendritic cells extracted from control mice. Acute exposure of human dendritic cells to CSE induced the cellular pro-survival proteins heme-oxygenase-1 (HO-1, and B cell lymphoma leukemia-x(L (Bcl-xL, predominantly through oxidative stress. Although activated human dendritic cells conditioned with CSE expressed diminished migratory CCR7 expression, their migration towards the CCR7 ligand CCL21 was not

  8. CD1c+ blood dendritic cells have Langerhans cell potential.

    Science.gov (United States)

    Milne, Paul; Bigley, Venetia; Gunawan, Merry; Haniffa, Muzlifah; Collin, Matthew

    2015-01-15

    Langerhans cells (LCs) are self-renewing in the steady state but repopulated by myeloid precursors after injury. Human monocytes give rise to langerin-positive cells in vitro, suggesting a potential precursor role. However, differentiation experiments with human lineage-negative cells and CD34(+) progenitors suggest that there is an alternative monocyte-independent pathway of LC differentiation. Recent data in mice also show long-term repopulation of the LC compartment with alternative myeloid precursors. Here we show that, although monocytes are able to express langerin, when cultured with soluble ligands granulocyte macrophage colony-stimulating factor (GM-CSF), transforming growth factor β (TGFβ), and bone morphogenetic protein 7 (BMP7), CD1c(+) dendritic cells (DCs) become much more LC-like with high langerin, Birbeck granules, EpCAM, and E-cadherin expression under the same conditions. These data highlight a new potential precursor function of CD1c(+) DCs and demonstrate an alternative pathway of LC differentiation that may have relevance in vivo.

  9. Murine and Human Model Systems for the Study of Dendritic Cell Immunobiology.

    Science.gov (United States)

    Hargadon, Kristian M

    2016-01-01

    Dendritic cells are a population of innate immune cells that possess their own effector functions as well as numerous regulatory properties that shape the activity of other innate and adaptive cells of the immune system. Following their development from either lymphoid or myeloid progenitors, the function of dendritic cells is tightly linked to their maturation and activation status. Differentiation into specialized subsets of dendritic cells also contributes to the diverse immunologic functions of these cells. Because of the key role played by dendritic cells in the regulation of both immune tolerance and activation, significant efforts have been focused on understanding dendritic cell biology. This review highlights the model systems currently available to study dendritic cell immunobiology and emphasizes the advantages and disadvantages to each system in both murine and human settings. In particular, in vitro cell culture systems involving immortalized dendritic cell lines, ex vivo systems for differentiating and expanding dendritic cells from their precursor populations, and systems for expanding, ablating, and manipulating dendritic cells in vivo are discussed. Emphasis is placed on the contribution of these systems to our current understanding of the development, function, and immunotherapeutic applications of dendritic cells, and insights into how these models might be extended in the future to answer remaining questions in the field are discussed.

  10. Therapeutic dendritic-cell vaccine for simian AIDS

    Institute of Scientific and Technical Information of China (English)

    Lu,W; Wu,XX; Lu,YZ; Guo,WZ; Andrieu,JM

    2005-01-01

    An effective immune response against human immunodeficiency virus or simian immunodeficiency virus (SIV) is critical in achieving control of viral replication. Here, we show in SIV-infected rhesus monkeys that an effective and durable SIV-specific cellular and humoral immunity is elicited by a vaccination with chemically inactivated SIV-pulsed dendritic cells. After three immunizations made at two-week intervals, the animals exhibited a 50-fold decrease of SIV DNA and a 1,000-fold decrease of SIV RNA in peripheral blood. Such reduced viral load levels were maintained over the remaining 34 weeks of the study. Molecular and cellular analyses of axillary and inguinal node lymphocytes of vaccinated monkeys revealed a correlation between decreased SIV DNA and RNA levels and increased SIV-specific T-cell responses. Neutralizing antibody responses were augmented and remained elevated. Inactivated whole virus-pulsed dendritic cell vaccines are promising means to control diseases caused by immunodeficiency viruses.

  11. Expression of the Receptor Tyrosine Kinase EphB2 on Dendritic Cells Is Modulated by Toll-Like Receptor Ligation but Is Not Required for T Cell Activation.

    Directory of Open Access Journals (Sweden)

    Patrice N Mimche

    Full Text Available The Eph receptor tyrosine kinases interact with their ephrin ligands on adjacent cells to facilitate contact-dependent cell communication. Ephrin B ligands are expressed on T cells and have been suggested to act as co-stimulatory molecules during T cell activation. There are no detailed reports of the expression and modulation of EphB receptors on dendritic cells, the main antigen presenting cells that interact with T cells. Here we show that mouse splenic dendritic cells (DC and bone-marrow derived DCs (BMDC express EphB2, a member of the EphB family. EphB2 expression is modulated by ligation of TLR4 and TLR9 and also by interaction with ephrin B ligands. Co-localization of EphB2 with MHC-II is also consistent with a potential role in T cell activation. However, BMDCs derived from EphB2 deficient mice were able to present antigen in the context of MHC-II and produce T cell activating cytokines to the same extent as intact DCs. Collectively our data suggest that EphB2 may contribute to DC responses, but that EphB2 is not required for T cell activation. This result may have arisen because DCs express other members of the EphB receptor family, EphB3, EphB4 and EphB6, all of which can interact with ephrin B ligands, or because EphB2 may be playing a role in another aspect of DC biology such as migration.

  12. The Current Immune Function of Hepatic Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Willy Hsu; Shang-An Shu; Eric Gershwin; Zhe-Xiong Lian

    2007-01-01

    While only a small percentage of the liver as dendritic cells, they play a major role in the regulation of liver immunity. Four major types of dendritic cell subsets include myeloid CD8α-B220-, lymphoid CD8α+B220-,plasmacytoid CD8α-B220+, and natural killer dendritic cell with CD8α-B220-NK1.1+ phenotype. Although these subsets have slightly different characteristics, they are all poor na(i)ve T cell stimulators. In exchange for their reduced capacity for allostimulation, hepatic DCs are equipped with an enhanced ability to secrete cytokines in response to TLR stimulation. In addition, they have increased level of phagocytosis. Both of these traits suggest hepatic DC as part of the innate immune system. With such a high rate of exposure to the dietary and commensal antigens, it is important for the hepatic DCs to have an enhanced innate response while maintaining a tolerogenic state to avoid chronic inflammation. Only upon secondary infectivity does the hepatic DC activate memory T cells for rapid eradication of recurring pathogen. On the other hand, overly tolerogenic characteristics of hepatic DC may be responsible for the increase prevalence of autoimmunity or liver malignancies.

  13. Evaluation of two different dendritic cell preparations with BCG reactivity

    Directory of Open Access Journals (Sweden)

    Fol Marek

    2016-01-01

    Full Text Available Dendritic cells (DCs play a key-role in the immune response against intracellular bacterial pathogens, including mycobacteria. Monocyte-derived dendritic cells (MoDCs are considered to behave as inflammatory cell populations. Different immunomagnetic methods (positive and negative can be used to purify monocytes before their in vitro differentiation and their culture behavior can be expected to be different. In this study we evaluated the reactivity of two dendritic cell populations towards the Bacillus Calmette-Guérin (BCG antigen. Monocytes were obtained from the blood of healthy donors, using positive and negative immunomagnetic separation methods. The expression of DC-SIGN, CD86, CD80, HLA-DR and CD40 on MoDCs was estimated by flow cytometry. The level of IL-12p70, IL-10 and TNF-α was measured by ELISA. Neither of the tested methods affected the surface marker expression of DCs. No significant alteration in immunological response, measured by cytokine production, was noted either. After BCG stimulation, the absence of IL-12, but the IL-23 production was observed in both cell preparations. Positive and negative magnetic separation methods are effective techniques to optimize the preparation of monocytes as the source of MoDCs for potential clinical application.

  14. Immunohistochemical patterns of follicular dendritic cell meshwork and Ki-67 in small B-cell lymphomas

    Institute of Scientific and Technical Information of China (English)

    时云飞

    2013-01-01

    Objective To identify the immunohistochemical patterns of follicular dendritic cell(FDC)meshwork and Ki-67labeling index in small B-cell lymphomas(SBLs) and their significance in differential diagnosis.Methods

  15. Novel murine dendritic cell lines: a powerful auxiliary tool for dendritic cell research

    Directory of Open Access Journals (Sweden)

    Silvia A Fuertes Marraco

    2012-11-01

    Full Text Available Research in vitro facilitates discovery, screening and pilot experiments, often preceding research in vivo. Several technical difficulties render Dendritic Cell (DC research particularly challenging, including the low frequency of DC in vivo, thorough isolation requirements, and the vulnerability of DC ex vivo. Critically, there is not as yet a widely accepted human or murine DC line and in vitro systems of DC research are limited. In this study, we report the generation of new murine DC lines, named MutuDC, originating from cultures of splenic CD8α conventional DC (cDC tumors. By direct comparison to normal WT splenic cDC subsets, we describe the phenotypic and functional features of the MutuDC lines and show that they have retained all the major features of their natural counterpart in vivo, the splenic CD8α cDC. These features include expression of surface markers Clec9A, DEC205, and CD24, positive response to TLR3 and TLR9 but not TLR7 stimuli, secretion of cytokines and chemokines upon activation, as well as cross-presentation capacity. In addition to the close resemblance to normal splenic CD8α cDC, a major advantage is the ease of derivation and maintenance of the MutuDC lines, using standard culture medium and conditions, importantly without adding supplementary growth factors or maturation-inducing stimuli to the medium. Furthermore, genetically modified MutuDC lines have been successfully obtained either by lentiviral transduction or by culture of DC tumors originating from genetically modified mice.In view of the current lack of stable and functional DC lines, these novel murine DC lines have the potential to serve as an important auxiliary tool for DC research.

  16. A general principle governs vision-dependent dendritic patterning of retinal ganglion cells.

    Science.gov (United States)

    Xu, Hong-Ping; Sun, Jin Hao; Tian, Ning

    2014-10-15

    Dendritic arbors of retinal ganglion cells (RGCs) collect information over a certain area of the visual scene. The coverage territory and the arbor density of dendrites determine what fraction of the visual field is sampled by a single cell and at what resolution. However, it is not clear whether visual stimulation is required for the establishment of branching patterns of RGCs, and whether a general principle directs the dendritic patterning of diverse RGCs. By analyzing the geometric structures of RGC dendrites, we found that dendritic arbors of RGCs underwent a substantial spatial rearrangement after eye-opening. Light deprivation blocked both the dendritic growth and the branch patterning, suggesting that visual stimulation is required for the acquisition of specific branching patterns of RGCs. We further showed that vision-dependent dendritic growth and arbor refinement occurred mainly in the middle portion of the dendritic tree. This nonproportional growth and selective refinement suggest that the late-stage dendritic development of RGCs is not a passive stretching with the growth of eyes, but rather an active process of selective growth/elimination of dendritic arbors of RGCs driven by visual activity. Finally, our data showed that there was a power law relationship between the coverage territory and dendritic arbor density of RGCs on a cell-by-cell basis. RGCs were systematically less dense when they cover larger territories regardless of their cell type, retinal location, or developmental stage. These results suggest that a general structural design principle directs the vision-dependent patterning of RGC dendrites.

  17. Large-Scale mRNA Transfection of Dendritic Cells by Electroporation in Continuous Flow Systems

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Hansen, Thomas Steen; Met, Özcan

    2016-01-01

    Electroporation is well established for transient mRNA transfection of many mammalian cells, including immune cells such as dendritic cells used in cancer immunotherapy. Therapeutic application requires methods to efficiently electroporate and transfect millions of immune cells in a fast process...... the instrumentation and methods needed for the efficient transfection by electroporation of millions of dendritic cells in one continuous flow process....... with high cell survival. Continuous flow of suspended dendritic cells through a channel incorporating spatially separated microporous meshes with a synchronized electrical pulsing sequence can yield dendritic cell transfection rates of >75 % with survival rates of >90 %. This chapter describes...

  18. The analysis of purkinje cell dendritic morphology in organotypic slice cultures.

    Science.gov (United States)

    Kapfhammer, Josef P; Gugger, Olivia S

    2012-03-21

    Purkinje cells are an attractive model system for studying dendritic development, because they have an impressive dendritic tree which is strictly oriented in the sagittal plane and develops mostly in the postnatal period in small rodents (3). Furthermore, several antibodies are available which selectively and intensively label Purkinje cells including all processes, with anti-Calbindin D28K being the most widely used. For viewing of dendrites in living cells, mice expressing EGFP selectively in Purkinje cells (11) are available through Jackson labs. Organotypic cerebellar slice cultures cells allow easy experimental manipulation of Purkinje cell dendritic development because most of the dendritic expansion of the Purkinje cell dendritic tree is actually taking place during the culture period (4). We present here a short, reliable and easy protocol for viewing and analyzing the dendritic morphology of Purkinje cells grown in organotypic cerebellar slice cultures. For many purposes, a quantitative evaluation of the Purkinje cell dendritic tree is desirable. We focus here on two parameters, dendritic tree size and branch point numbers, which can be rapidly and easily determined from anti-calbindin stained cerebellar slice cultures. These two parameters yield a reliable and sensitive measure of changes of the Purkinje cell dendritic tree. Using the example of treatments with the protein kinase C (PKC) activator PMA and the metabotropic glutamate receptor 1 (mGluR1) we demonstrate how differences in the dendritic development are visualized and quantitatively assessed. The combination of the presence of an extensive dendritic tree, selective and intense immunostaining methods, organotypic slice cultures which cover the period of dendritic growth and a mouse model with Purkinje cell specific EGFP expression make Purkinje cells a powerful model system for revealing the mechanisms of dendritic development.

  19. A comparative study of transfection methods for RNA interference in bone marrow-derived murine dendritic cells

    DEFF Research Database (Denmark)

    Pedersen, Charlotte Demuth; Fang, J J; Pedersen, Anders Elm

    2009-01-01

    that electroporation using the Mouse Nucleofector kit((R)) from Amaxa Biosystems was not an efficient method to transfect BM-DC with siRNA in our hands. Transfection with Santa Cruz Biotechnology reagents resulted in up to 59% FITC-siRNA positive cells, but did not result in effective silencing of CD80 surface...... expression. In contrast, the most effective method was the lipid-based method using the siRNA transfection reagent GeneSilencer((R)) from Genlantis. This protocol resulted in up to 92% FITC-siRNA positive cells after 4 h which declined to 62% and 59% 24 and 48 h post-transfection, respectively....... The transfected BM-DC remained CD11c positive, expressed high MHC class II and intermediate CD40 and were functional as APC. In conclusion, this protocol was effective for manipulation of murine BM-DC function through the use of specific siRNA and such methods can be important for the future study of DC-T cell...

  20. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Der-Yuan Chen

    2013-01-01

    Full Text Available Dendritic cells (DCs play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM, a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS, proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs. These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases.

  1. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    Science.gov (United States)

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  2. Human XCR1+ Dendritic Cells Derived In Vitro from CD34+ Progenitors Closely Resemble Blood Dendritic Cells, Including Their Adjuvant Responsiveness, Contrary to Monocyte-Derived Dendritic Cells

    OpenAIRE

    S. Balan; Ollion, V.; Colletti, N.; Chelbi, R.; Montanana-Sanchis, F.; LIU, H.; Vu Manh, T.-P.; Sanchez, C.; Savoret, J.; Perrot, I.; Doffin, A.-C.; Fossum, E.; Bechlian, D.; Chabannon, C.; Bogen, B

    2014-01-01

    Human monocyte-derived dendritic cell (MoDC) have been used in the clinic with moderately encouraging results. Mouse XCR1+ DC excel at cross-presentation, can be targeted in vivo to induce protective immunity, and share characteristics with XCR1+ human DC. Assessment of the immunoactivation potential of XCR1+ human DC is hindered by their paucity in vivo and by their lack of a well-defined in vitro counterpart. We report in this study a protocol generating both XCR1+ and XCR1− human DC in CD3...

  3. Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila.

    Science.gov (United States)

    Han, Chun; Song, Yuanquan; Xiao, Hui; Wang, Denan; Franc, Nathalie C; Jan, Lily Yeh; Jan, Yuh-Nung

    2014-02-05

    During developmental remodeling, neurites destined for pruning often degenerate on-site. Physical injury also induces degeneration of neurites distal to the injury site. Prompt clearance of degenerating neurites is important for maintaining tissue homeostasis and preventing inflammatory responses. Here we show that in both dendrite pruning and dendrite injury of Drosophila sensory neurons, epidermal cells rather than hemocytes are the primary phagocytes in clearing degenerating dendrites. Epidermal cells act via Draper-mediated recognition to facilitate dendrite degeneration and to engulf and degrade degenerating dendrites. Using multiple dendritic membrane markers to trace phagocytosis, we show that two members of the CD36 family, croquemort (crq) and debris buster (dsb), act at distinct stages of phagosome maturation for dendrite clearance. Our finding reveals the physiological importance of coordination between neurons and their surrounding epidermis, for both dendrite fragmentation and clearance.

  4. Viral piracy: HIV-1 targets dendritic cells for transmission.

    Science.gov (United States)

    Lekkerkerker, Annemarie N; van Kooyk, Yvette; Geijtenbeek, Teunis B H

    2006-04-01

    Dendritic cells (DCs), the professional antigen presenting cells, are critical for host immunity by inducing specific immune responses against a broad variety of pathogens. Remarkably the human immunodeficiency virus-1 (HIV-1) subverts DC function leading to spread of the virus. At an early phase of HIV-1 transmission, DCs capture HIV-1 at mucosal surfaces and transmit the virus to T cells in secondary lymphoid tissues. Capture of the virus on DCs takes place via C-type lectins of which the dendritic cell-specific intercellular adhesion molecule-3 (ICAM-3) grabbing nonintegrin (DC-SIGN) is the best studied. DC-SIGN-captured HIV-1 particles accumulate in CD81(+) multivesicular bodies (MVBs) in DCs and are subsequently transmitted to CD4+ T cells resulting in infection of T cells. The viral cell-to-cell transmission takes place at the DC-T cell interface termed the infectious synapse. Recent studies demonstrate that direct infection of DCs contributes to the transmission to T cells at a later phase. Moreover, the infected DCs may function as cellular reservoirs for HIV-1. This review discusses the different processes that govern viral piracy of DCs by HIV-1, emphasizing the intracellular routing of the virus from capture on the cell surface to egress in the infectious synapse.

  5. Colored visible light metamaterials based on random dendritic cells

    CERN Document Server

    Song, K; Liu, B Q; Zhao, X P

    2011-01-01

    Optical metamaterials(OMs) at visible wavelengths have been extensively developed. OMs reported presently are all composed of periodic structure, and fabricated by top-down approaches. Here, the colored visible light frequencies metamaterials composed of double layer array disordered and geometrical variational dendritic cells are demonstrated, fabricating by a novel bottom-up approach. The experiment demonstrated that the OMs composed of random silver dendritic cells caused the appearance of multiple transmission passbands at red and yellow light frequencies. The slab focusing experiment reveals a clear point image in the range of half-wavelength with an intensity of 5% higher than that of the light source. Proposed colored OMs will open a new way to prepare the cloak and the perfect lens suitable for optical frequency.

  6. Atypical protein kinase C regulates primary dendrite specification of cerebellar Purkinje cells by localizing Golgi apparatus.

    Science.gov (United States)

    Tanabe, Koji; Kani, Shuichi; Shimizu, Takashi; Bae, Young-Ki; Abe, Takaya; Hibi, Masahiko

    2010-12-15

    Neurons have highly polarized structures that determine what parts of the soma elaborate the axon and dendrites. However, little is known about the mechanisms that establish neuronal polarity in vivo. Cerebellar Purkinje cells extend a single primary dendrite from the soma that ramifies into a highly branched dendritic arbor. We used the zebrafish cerebellum to investigate the mechanisms by which Purkinje cells acquire these characteristics. To examine dendritic morphogenesis in individual Purkinje cells, we marked the cell membrane using a Purkinje cell-specific promoter to drive membrane-targeted fluorescent proteins. We found that zebrafish Purkinje cells initially extend multiple neurites from the soma and subsequently retract all but one, which becomes the primary dendrite. In addition, the Golgi apparatus specifically locates to the root of the primary dendrite, and its localization is already established in immature Purkinje cells that have multiple neurites. Inhibiting secretory trafficking through the Golgi apparatus reduces dendritic growth, suggesting that the Golgi apparatus is involved in the dendritic morphogenesis. We also demonstrated that in a mutant of an atypical protein kinase C (aPKC), Prkci, Purkinje cells retain multiple primary dendrites and show disrupted localization of the Golgi apparatus. Furthermore, a mosaic inhibition of Prkci in Purkinje cells recapitulates the aPKC mutant phenotype. These results suggest that the aPKC cell autonomously controls the Golgi localization and thereby regulates the specification of the primary dendrite of Purkinje cells.

  7. Dendritic thickness: a morphometric parameter to classify mouse retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    L.D. Loopuijt

    2007-10-01

    Full Text Available To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37 on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively. Three cells (4.5% were bistratified, having thick dendrites, and the others (95.5% were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40% and 2 groups with inner (50-100% stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.

  8. Receptor-Dependent Coronavirus Infection of Dendritic Cells

    Science.gov (United States)

    Turner, Brian C.; Hemmila, Erin M.; Beauchemin, Nicole; Holmes, Kathryn V.

    2004-01-01

    In several mammalian species, including humans, coronavirus infection can modulate the host immune response. We show a potential role of dendritic cells (DC) in murine coronavirus-induced immune modulation and pathogenesis by demonstrating that the JAW SII DC line and primary DC from BALB/c mice and p/p mice with reduced expression of the murine coronavirus receptor, murine CEACAM1a, are susceptible to murine coronavirus infection by a receptor-dependent pathway. PMID:15113927

  9. Articulation and Clarification of the Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Twycross, Jamie

    2009-01-01

    The Dendritic Cell algorithm (DCA) is inspired by recent work in innate immunity. In this paper a formal description of the DCA is given. The DCA is described in detail, and its use as an anomaly detector is illustrated within the context of computer security. A port scan detection task is performed to substantiate the influence of signal selection on the behaviour of the algorithm. Experimental results provide a comparison of differing input signal mappings.

  10. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-4 (IL-4 stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS and interferon-γ (IFN-γ induction in order to characterize the usefulness of mature DCs (mDCs for immune therapy and to identify biomarkers for assessing the quality of mDCs. Methods Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA expression analysis. Results After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs. Conclusion DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.

  11. Induction and identification of rabbit peripheral blood derived dendritic cells

    Science.gov (United States)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  12. Molecular programming of steady-state dendritic cells: impact on autoimmunity and tumor immune surveillance.

    Science.gov (United States)

    Johnson, Dylan J; Ohashi, Pamela S

    2013-05-01

    Dendritic cells are master regulators of immunity. Immature dendritic cells are essential for maintaining self-tolerance, while mature dendritic cells initiate a variety of specialized immune responses. Dendritic cell quiescence is often viewed as a default state that requires exogenous stimuli to induce maturation. However, recent studies have identified dendritic cell quiescence factors that actively program dendritic cells to an immature state. In the absence of these factors, dendritic cells spontaneously become immunogenic and can induce autoimmune responses. Herein we discuss two such factors, NF-κB1 and A20, that preserve dendritic cell immaturity through their regulation of NF-κB signaling. Loss of either of these factors increases dendritic cell immunogenicity, suggesting that they may be important targets for enhancing dendritic cell-based cancer immunotherapies. Alternatively, defects in molecules critical for maintaining steady-state DCs may provide novel biomarkers that identify patients who have enhanced natural antitumor immunity or that correlate with better responses to various immunotherapies.

  13. Dynamic Range of Vertebrate Retina Ganglion Cells: Importance of Active Dendrites and Coupling by Electrical Synapses

    Science.gov (United States)

    Publio, Rodrigo; Ceballos, Cesar Celis; Roque, Antonio C.

    2012-01-01

    The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions. PMID:23144767

  14. Dynamic range of vertebrate retina ganglion cells: importance of active dendrites and coupling by electrical synapses.

    Science.gov (United States)

    Publio, Rodrigo; Ceballos, Cesar Celis; Roque, Antonio C

    2012-01-01

    The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions.

  15. Suppressing The Growth Of Dendrites In Secondary Li Cells

    Science.gov (United States)

    Davies, Evan D.; Perrone, David E.; Shen, David H.

    1996-01-01

    Proposed technique for suppressing growth of lithium dendrites in rechargeable lithium electrochemical power cells involves periodic interruption of steady charging current with short, high-current discharge pulses. Technique applicable to lithium cells of several different types, including Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/Vo(x), and Li/MnO(2). Cells candidates for use in spacecraft, military, communications, automotive, and other applications in which high-energy-density rechargeable batteries needed.

  16. Dendritic cell-development in steady-state and inflammation

    OpenAIRE

    Schmid, Michael Alexander

    2010-01-01

    Dendritic cells (DC), the major antigen-presenting cells, continuously need to be regenerated from bone marrow (BM) hematopoietic stem and progenitor cells (HSPC). What intermediate progenitors exist on the way to DC generation and what external factors act on these in steady-state and during inflammation, has not been addressed in detail. Flt3L is a non-redundant cytokine in DC development and the generation of DCs was shown to proceed along both Flt3+ common lymphoid and common myeloid prog...

  17. Lipid-laden dendritic cells fail to function

    Institute of Scientific and Technical Information of China (English)

    Philip C Calder

    2010-01-01

    @@ Dendritic cells(DCs)are professional antigen-acquiring,-processing and-presenting cells[1-4].As such,DCs form the key link between the innate and acquired immune responses playing a role in host defence and in immune tolerance[1-4].Accordingly,defects in the ability of DCs to function can lead to increased susceptibility to infection,loss of tolerance,autoimmunity and tumour growth[1-4].Sub-classes of DCs are defined and discriminated by the expression of different cell surface markers.

  18. Targeting dendritic cells in vivo for cancer therapy

    Directory of Open Access Journals (Sweden)

    Irina eCaminschi

    2012-02-01

    Full Text Available Monoclonal antibodies that recognise cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC for induction of immune responses. The encouraging anti-tumour immunity elicited using this immunisation strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialisation of DC-subsets, the immunological outcomes of targeting different DC-subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumour immunity. Finally, we review preclinical experiments and the progress towards targeting human DC in vivo.

  19. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells.

    Science.gov (United States)

    Li, Jianhua; Lu, Erick; Yi, Tangsheng; Cyster, Jason G

    2016-05-05

    T follicular helper (Tfh) cells are a subset of T cells carrying the CD4 antigen; they are important in supporting plasma cell and germinal centre responses. The initial induction of Tfh cell properties occurs within the first few days after activation by antigen recognition on dendritic cells, although how dendritic cells promote this cell-fate decision is not fully understood. Moreover, although Tfh cells are uniquely defined by expression of the follicle-homing receptor CXCR5 (refs 1, 2), the guidance receptor promoting the earlier localization of activated T cells at the interface of the B-cell follicle and T zone has been unclear. Here we show that the G-protein-coupled receptor EBI2 (GPR183) and its ligand 7α,25-dihydroxycholesterol mediate positioning of activated CD4 T cells at the interface of the follicle and T zone. In this location they interact with activated dendritic cells and are exposed to Tfh-cell-promoting inducible co-stimulator (ICOS) ligand. Interleukin-2 (IL-2) is a cytokine that has multiple influences on T-cell fate, including negative regulation of Tfh cell differentiation. We demonstrate that activated dendritic cells in the outer T zone further augment Tfh cell differentiation by producing membrane and soluble forms of CD25, the IL-2 receptor α-chain, and quenching T-cell-derived IL-2. Mice lacking EBI2 in T cells or CD25 in dendritic cells have reduced Tfh cells and mount defective T-cell-dependent plasma cell and germinal centre responses. These findings demonstrate that distinct niches within the lymphoid organ T zone support distinct cell fate decisions, and they establish a function for dendritic-cell-derived CD25 in controlling IL-2 availability and T-cell differentiation.

  20. Inducing Maturation of Monocyte-Derived Dendritic Cells on Human Epithelial Cell Feeder Layer

    Directory of Open Access Journals (Sweden)

    Delirezh N

    2012-02-01

    Full Text Available Background: Nowadays, dendritic cells (DCs have a special place in cancer treatment strategies and they have been used for tumor immunotherapy as they can induce immune response against tumor cells. Researchers have been trying to generate efficient dendritic cells in vitro; therefore, this research was done to generate them for use in research and tumor immunotherapy. Methods: This study took place at Urmia University in 2010-2011 years. In this study plastic adherent monocytes were incubated with granulocyte-macrophage colony stimulating factor (GM-CSF and interleukin-4 (IL-4 for five days. Finally, fully matured and stable DCs were generated by 48 hours of incubation in a monocyte conditioned medium (MCM containing tumor necrosis factor-α (TNF-α and epithelial cells. Phenotypic and functional analysis were carried out by using anti-CD14, anti-CD80, anti-CD86, and anti-CD83 monoclonal antibodies, and by determining their phagocytic activity, mixed lymphocyte reaction (MLR and cytokine production, respectively. Results: Dendritic cells were produced with high levels of surface molecule, i.e. of CD80, CD83, CD86, HLA-DR, expression and low levels of CD14 expression. Dendritic cells showed efficient phagocytosis and ability to stimulate T-lymphocytes. Moreover, dendritic cells could secrete high levels of interleukin-12 (IL-12 cytokine which was depictive of their full maturation. Measurement of the produced cytokines showed the generation of type-1 dendritic cells (DC1. Conclusion: Our study showed that skin epithelial cells could induce maturation of monocyte-derived dendritic cells (DCs. This feeder layer led to the production of efficient dendritic cells with the ability to be used for tumor immunotherapy.

  1. Influence of organophosphate poisoning on human dendritic cells.

    Science.gov (United States)

    Schäfer, Marina; Koppe, Franziska; Stenger, Bernhard; Brochhausen, Christoph; Schmidt, Annette; Steinritz, Dirk; Thiermann, Horst; Kirkpatrick, Charles James; Pohl, Christine

    2013-12-05

    Organophosphourus compounds (OPC, including nerve agents and pesticides) exhibit acute toxicity by inhibition of acetylcholinesterase. Lung affections are frequent complications and a risk factor for death. In addition, epidemiological studies reported immunological alterations after OPC exposure. In our experiments we investigated the effects of organophosphourus pesticides dimethoate and chlorpyrifos on dendritic cells (DC) that are essential for the initial immune response, especially in the pulmonary system. DC, differentiated from the monocyte cell line THP-1 by using various cytokines (IL-4, GM-CSF, TNF-α, Ionomycin), were exposed to organophosphourus compounds at different concentrations for a 24h time period. DC were characterized by flow cytometry and immunofluorescence using typical dendritic cell markers (e.g., CD11c, CD209 and CD83). After OPC exposure we investigated cell death, the secretion profile of inflammatory mediators, changes of DC morphology, and the effect on protein kinase signalling pathways. Our results revealed a successful differentiation of THP-1 into DC. OPC exposure caused a significant concentration-dependent influence on DC: Dendrites of the DC were shortened and damaged, DC-specific cell surface markers (i.e., CD83and CD209) decreased dramatically after chlorpyrifos exposure. Interestingly, the effects caused by dimethoate were in general less pronounced. The organophosphourus compounds affected the release of inflammatory cytokines, such as IL-1ß and IL-8. The anti-inflammatory cytokine IL-10 was significantly down regulated. Protein kinases like the Akt family or ERK, which are essential for cell survival and proliferation, were inhibited by both OPC. These findings indicate that the tested organophosphourus compounds induced significant changes in cell morphology, inhibited anti-inflammatory cytokines and influenced important protein signalling pathways which are involved in regulation of apoptosis. Thus our results highlight

  2. Generation of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b+ dendritic cells.

    Science.gov (United States)

    Linehan, Jonathan L; Dileepan, Thamotharampillai; Kashem, Sakeen W; Kaplan, Daniel H; Cleary, Patrick; Jenkins, Marc K

    2015-10-13

    Intranasal (i.n.) infections preferentially generate Th17 cells. We explored the basis for this anatomic preference by tracking polyclonal CD4(+) T cells specific for an MHC class II-bound peptide from the mucosal pathogen Streptococcus pyogenes. S. pyogenes MHC class II-bound peptide-specific CD4(+) T cells were first activated in the cervical lymph nodes following i.n. inoculation and then differentiated into Th17 cells. S. pyogenes-induced Th17 formation depended on TGF-β1 from dendritic cells and IL-6 from a CD301b(+) dendritic cell subset located in the cervical lymph nodes but not the spleen. Thus, the tendency of i.n. infection to induce Th17 cells is related to cytokine production by specialized dendritic cells that drain this site.

  3. Unique immunomodulatory effects of azelastine on dendritic cells in vitro.

    Science.gov (United States)

    Schumacher, S; Kietzmann, M; Stark, H; Bäumer, W

    2014-11-01

    Allergic contact dermatitis and atopic dermatitis are among the most common inflammatory skin diseases in western countries, and antigen-presenting cells like dendritic cells (DC) are key players in their pathophysiology. Histamine, an important mediator of allergic reactions, influences DC maturation and cytokine secretion, which led us to investigate the immunomodulatory potential of the well-known histamine H1 receptor antagonists: azelastine, olopatadine, cetirizine, and pyrilamine. Unlike other H1 antihistamines, azelastine decreased lipopolysaccharide-induced tumor necrosis factor α and interleukin-12 secretion from murine bone marrow-derived DC. This effect was independent of histamine receptors H1, H2, or H4 and may be linked to inhibition of the nuclear factor kappa B pathway. Moreover, only azelastine reduced proliferation of allogenic T cells in a mixed leukocyte reaction. We then tested topical application of the H1 antihistamines on mice sensitized against toluene-2,4-diisocyanate, a model of Th2-mediated allergic contact dermatitis. In contrast to the in vitro results, all investigated substances were efficacious in reducing allergic ear swelling. Azelastine has unique effects on dendritic cells and T cell interaction in vitro. However, this did not translate into superior in vivo efficacy for Th2-mediated allergic dermatitis, possibly due to the effects of the antihistamines on other cell types involved in skin inflammation. Future research will have to clarify whether these properties are relevant to in vivo models of allergic inflammation with a different T cell polarization.

  4. Dendritic cell podosome dynamics does not depend on the F-actin regulator SWAP-70.

    Directory of Open Access Journals (Sweden)

    Anne Götz

    Full Text Available In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides adhesion and migration, podosomes enable dendritic cells to degrade connective tissue by matrix metalloproteinases. SWAP-70 interacts with RhoGTPases and F-actin and regulates migration of dendritic cells. SWAP-70 deficient osteoclasts are impaired in F-actin-ring formation and bone resorption. In the present study, we demonstrate that SWAP-70 is not required for podosome formation and F-actin turnover in dendritic cells. Furthermore, we found that toll-like receptor 4 ligand induced podosome disassembly and podosome-mediated matrix degradation is not affected by SWAP-70 in dendritic cells. Thus, podosome formation and function in dendritic cells is independent of SWAP-70.

  5. Cross-Presentation in Mouse and Human Dendritic Cells.

    Science.gov (United States)

    Segura, Elodie; Amigorena, Sebastian

    2015-01-01

    Cross-presentation designates the presentation of exogenous antigens on major histocompatibility complex class I molecules and is essential for the initiation of cytotoxic immune responses. It is now well established that dendritic cells (DCs) are the best cross-presenting cells. In this chapter, we will discuss recent advances in our understanding of the molecular mechanisms of cross-presentation. We will also describe the different DC subsets identified in mouse and human, and their functional specialization for cross-presentation. Finally, we will summarize the current knowledge of the role of cross-presentation in pathological situations.

  6. Methamphetamine Enhances HIV-1 Infectivity in Monocyte Derived Dendritic Cells

    OpenAIRE

    2008-01-01

    The US is currently experiencing an epidemic of methamphetamine (Meth) use as a recreational drug. Recent studies also show a high prevalence of HIV-1 infection among Meth users. We report that Meth enhances HIV-1 infectivity of dendritic cells as measured by multinuclear activation of a galactosidase indicator (MAGI) cell assay, p24 assay, and LTR-RU5 amplification. Meth induces increased HIV-1 infection in association with an increase in the HIV-1 coreceptors, CXCR4 and CCR5, and infection ...

  7. Self-antigen presentation by dendritic cells in autoimmunity

    Directory of Open Access Journals (Sweden)

    Ann-Katrin eHopp

    2014-02-01

    Full Text Available The operation of both central and peripheral tolerance ensures the prevention of autoimmune diseases. The maintenance of peripheral tolerance requires self-antigen presentation by professional antigen presenting cells (APCs. Dendritic cells (DCs are considered as major APCs involved in this process. The current review discusses the role of DCs in autoimmune diseases, the various factors involved in the induction and maintenance of tolerogenic DC phenotype and pinpoints their therapeutic capacity as well as potential novel targets for future clinical studies.

  8. SUBTYPE CHARACTERICS OF DENDRITIC CELLS FROM PERIPHERAL BLOOD OF PATIENTS WITH RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    S. A. Falaleeva

    2013-01-01

    Full Text Available Abstract. Characteristics of myeloid and plasmacytoid dendritic cells from peripheral blood were studied in healthy donors and patients with rheumatoid arthritis (RA. We evaluated relative amounts of dendritic cell by their subtypes, degree of their maturity, and ability to respond to the maturation factors (toll-like receptor 4, 7 and 8 agonists. The results of in vitro experiments have shown that the patients with rheumatoid arthritis exhibited a significant reduction in numbers of plasmacytoid dendritic cells from peripheral blood. A sufficient decrease in CD83, CD80 expression on dendritic cell subtypes in RA patients was significantly less, than in healthy donors. In patients with RA, a significant increase in the number of CCR7-expressing plasmacytoid dendritic cells was shown in peripheral blood. In stimulated cultures, maturation of dendritic cells expressing maturation markers (CD83, CD80, CCR7 proved to be increased up to normal values. It should be noted that the counts of plasmacytoid dendritic cells in peripheral blood of RA patients expressing CCR7 was significantly higher than among healthy donors. Meanwhile, expression of CD83 and CD80 increased tovalues of healthy donors.Hence, we have found a significant reduction in relative counts of blood-derived myeloid and plasmacytoid dendritic cells expressing markers of mature dendritic cells (CD83, CD80 in patients with rheumatoid arthritis. Upon stimulated in vitro maturation, the counts of myeloid and plasmacytoid dendritic cells expressing CD83 and CD80 increased to the values corresponding to those of control group. RA patients showed significantly higher numbers of plasmacytoid dendritic cells expressing CCR7. This could indicate some changes in functional activity of dendritic cells in peripheral blood of patients with RA.

  9. The Analysis of Purkinje Cell Dendritic Morphology in Organotypic Slice Cultures

    OpenAIRE

    Kapfhammer, Josef P.; Gugger, Olivia S.

    2012-01-01

    Purkinje cells are an attractive model system for studying dendritic development, because they have an impressive dendritic tree which is strictly oriented in the sagittal plane and develops mostly in the postnatal period in small rodents 3. Furthermore, several antibodies are available which selectively and intensively label Purkinje cells including all processes, with anti-Calbindin D28K being the most widely used. For viewing of dendrites in living cells, mice expressing EGFP selectively i...

  10. The serotonin receptor 5-HT₇R regulates the morphology and migratory properties of dendritic cells.

    Science.gov (United States)

    Holst, Katrin; Guseva, Daria; Schindler, Susann; Sixt, Michael; Braun, Armin; Chopra, Himpriya; Pabst, Oliver; Ponimaskin, Evgeni

    2015-08-01

    Dendritic cells are potent antigen-presenting cells endowed with the unique ability to initiate adaptive immune responses upon inflammation. Inflammatory processes are often associated with an increased production of serotonin, which operates by activating specific receptors. However, the functional role of serotonin receptors in regulation of dendritic cell functions is poorly understood. Here, we demonstrate that expression of serotonin receptor 5-HT7 (5-HT7R) as well as its downstream effector Cdc42 is upregulated in dendritic cells upon maturation. Although dendritic cell maturation was independent of 5-HT7R, receptor stimulation affected dendritic cell morphology through Cdc42-mediated signaling. In addition, basal activity of 5-HT7R was required for the proper expression of the chemokine receptor CCR7, which is a key factor that controls dendritic cell migration. Consistent with this, we observed that 5-HT7R enhances chemotactic motility of dendritic cells in vitro by modulating their directionality and migration velocity. Accordingly, migration of dendritic cells in murine colon explants was abolished after pharmacological receptor inhibition. Our results indicate that there is a crucial role for 5-HT7R-Cdc42-mediated signaling in the regulation of dendritic cell morphology and motility, suggesting that 5-HT7R could be a new target for treatment of a variety of inflammatory and immune disorders.

  11. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite

    DEFF Research Database (Denmark)

    Chen, Wei R; Shen, Gongyu Y; Shepherd, Gordon M

    2002-01-01

    The mitral cell primary dendrite plays an important role in transmitting distal olfactory nerve input from olfactory glomerulus to the soma-axon initial segment. To understand how dendritic active properties are involved in this transmission, we have combined dual soma and dendritic patch...... recordings with computational modeling to analyze action-potential initiation and propagation in the primary dendrite. In response to depolarizing current injection or distal olfactory nerve input, fast Na(+) action potentials were recorded along the entire length of the primary dendritic trunk. With weak......-initiation site reflected an independent thresholding mechanism in the distal dendrite. When strong olfactory nerve excitation was paired with strong inhibition to the mitral cell basal secondary dendrites, a small fast prepotential was recorded at the soma, which indicated that an action potential was initiated...

  12. Dendritic Cell Cancer Vaccines: From the Bench to the Bedside

    Directory of Open Access Journals (Sweden)

    Tamar Katz

    2014-10-01

    Full Text Available The recognition that the development of cancer is associated with acquired immunodeficiency, mostly against cancer cells themselves, and understanding pathways inducing this immunosuppression, has led to a tremendous development of new immunological approaches, both vaccines and drugs, which overcome this inhibition. Both “passive” (e.g. strategies relying on the administration of specific T cells and “active” vaccines (e.g. peptide-directed or whole-cell vaccines have become attractive immunological approaches, inducing cell death by targeting tumor-associated antigens. Whereas peptide-targeted vaccines are usually directed against a single antigen, whole-cell vaccines (e.g. dendritic cell vaccines are aimed to induce robust responsiveness by targeting several tumor-related antigens simultaneously. The combination of vaccines with new immuno-stimulating agents which target “immunosuppressive checkpoints” (anti-CTLA-4, PD-1, etc. is likely to improve and maintain immune response induced by vaccination.

  13. Redefining the role of dendritic cells in periodontics.

    Science.gov (United States)

    Venkatesan, Gomathinayagam; Uppoor, Ashita; Naik, Dilip G

    2013-11-01

    A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells (DCs) are required to explain how this remarkable system is energized and directed. DCs consist of a family of antigen presenting cells, which are bone-marrow-derived cells that patrol all tissues of the body with the possible exceptions of the brain and testes. DCs function to capture bacteria and other pathogens for processing and presentation to T cells in the secondary lymphoid organs. They serve as an essential link between innate and adaptive immune systems and induce both primary and secondary immune responses. As a result of progress worldwide, there is now evidence of a central role for dendritic cells in initiating antigen-specific immunity and tolerance. This review addresses the origins and migration of DCs to target sites, their basic biology and plasticity in playing a key role in periodontal diseases, and finally, selected strategies being pursued to harness its ability to prevent periodontal diseases.

  14. Functional changes of dendritic cells in hypersensivity reactions to amoxicillin

    Directory of Open Access Journals (Sweden)

    C.M.F. Lima

    2010-10-01

    Full Text Available A better understanding of dendritic cell (DC involvement in responses to haptenic drugs is needed, because it represents a possible approach to the development of an in vitro test, which could identify patients prone to drug allergies. There are two main DC subsets: plasmacytoid DC (pDC and myeloid DC (mDC. β-lactams form hapten-carrier conjugates and may provide a suitable model to study DC behavior in drug allergy reactions. It has been demonstrated that drugs interact differently with DC in drug allergic and non-allergic patients, but there are no studies regarding these subsets. Our aim was to assess the functional changes of mDC and pDC harvested from an amoxicillin-hypersensitive 32-year-old woman who experienced a severe maculopapular exanthema as reflected in interleukin-6 (IL-6 production after stimulation with this drug and penicillin. We also aim to demonstrate, for the first time, the feasibility of this method for dendritic cell isolation followed by in vitro stimulation for studies of drug allergy physiopathology. DC were harvested using a double Percoll density gradient, which generates a basophil-depleted cell (BDC suspension. Further, pDC were isolated by blood DC antigen 4-positive magnetic selection and gravity filtration through magnetized columns. After stimulation with amoxicillin, penicillin and positive and negative controls, IL-6 production was measured by ELISA. A positive dose-response curve for IL-6 after stimulation with amoxicillin and penicillin was observed for pDC, but not for mDC or BDC suspension. These preliminary results demonstrate the feasibility of this methodology to expand the knowledge of the effect of dendritic cell activation by drug allergens.

  15. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells

    Directory of Open Access Journals (Sweden)

    Fabian eSalazar

    2013-11-01

    Full Text Available Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells, culminating in mast cell sensitization and triggering. Dendritic cells have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors dendritic cells are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence dendritic cells behaviour through the release of a number of Th2 promoting cytokines. In this review we will summarise current understanding of how allergens are recognised by dendritic cells and epithelial cells and what are the consequences of such interaction in the context of allergic sensitisation and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signalling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitisation hence hindering development or progression of allergic diseases.

  16. Regulatory T cells, dendritic cells and neutrophils in patients with renal cell carcinoma.

    Science.gov (United States)

    Minárik, Ivo; Lašťovička, Jan; Budinský, Vít; Kayserová, Jana; Spíšek, Radek; Jarolím, Ladislav; Fialová, Anna; Babjuk, Marek; Bartůňková, Jiřina

    2013-05-01

    We evaluated dendritic cells (DC), regulatory T lymphocytes (Treg) and neutrophils in 37 patients with newly diagnosed renal cell carcinoma (RCC) in the tumor and peripheral blood (PB) and correlated these parameters with tumor staging (early-T1, 2, late-T3, 4 and metastatic disease). The number of myeloid and plasmacytoid DC in blood of RCC patients was higher than in healthy controls. The percentage of myeloid dendritic cells (mDC) from CD45+ cells in tumors was higher in comparison with peripheral blood irrespective of disease stage. Higher percentage of these cells expressed a maturation marker in the periphery in the early stage (CD83 expressing cells). The number of plasmacytoid dendritic cells (pDC) in PB was similar in both early and late stage groups, but the early group displayed a significantly higher percentage of pDC in tumor cell suspension. Neutrophil counts in the peripheral blood of RCC patients were higher than in healthy controls, but the counts in both tumor stage groups were similar. The proportion of neutrophils from CD45+ cells was higher in late stage tumors. Higher percentage of Treg from CD4+ cells was detected in renal carcinoma tissue in comparison to PB with no difference between stages of the disease. Our results reflect the complex interplay between various cells of the immune system and the tumor microenvironment. Activation of dendritic cell subpopulations at early stages of the disease course is counterbalanced by the early appearance of T regulatory cells both in the periphery and tumor tissue. Later stages are characterized by the accumulation of neutrophils in the tumor. Appropriate timing of anticancer strategies, especially immunotherapy, should take these dynamics of the immune response in RCC patients into account.

  17. Investigating evolutionary conservation of dendritic cell subset identity and functions

    Directory of Open Access Journals (Sweden)

    Thien-Phong eVu Manh

    2015-06-01

    Full Text Available Dendritic cells (DC were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types

  18. GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells

    OpenAIRE

    Greter, Melanie; Helft, Julie; Chow, Andrew; Hashimoto, Daigo; Mortha, Arthur; Agudo-Cantero, Judith; Bogunovic, Milena; Gautier, Emmanuel L.; Miller, Jennifer; Leboeuf, Marylene; Lu, Geming; Aloman, Costica; Brown, Brian D.; Pollard, Jeffrey W.; Xiong, Huabao

    2012-01-01

    GM-CSF (Csf-2) is a critical cytokine for the in vitro generation of dendritic cells (DCs) and is thought to control the development of inflammatory DCs and resident CD103(+) DCs in some tissues. Here we showed that in contrast to the current understanding, Csf-2 receptor acts in the steady state to promote the survival and homeostasis of nonlymphoid tissue-resident CD103(+) and CD11b(+) DCs. Absence of Csf-2 receptor on lung DCs abrogated the induction of CD8(+) T cell immunity after immuniz...

  19. Radiation tolerance of boron doped dendritic web silicon solar cells

    Science.gov (United States)

    Rohatgi, A.

    1980-01-01

    The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.

  20. Immune modulation by dendritic-cell-based cancer vaccines

    Indian Academy of Sciences (India)

    CHAITANYA KUMAR; SAKSHI KOHLI; POONAMALLE PARTHASARATHY BAPSY; ASHOK KUMAR VAID; MINISH JAIN; VENKATA SATHYA SURESH ATTILI; BANDANA SHARAN

    2017-03-01

    The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells bymodulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing therecombinant human immune system components to target the pro-tumour microenvironment or by revitalizing theimmune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review,current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines arediscussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishingtumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy,radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents,might be beneficial to the patient.

  1. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    Science.gov (United States)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  2. Dendritic Cell Regulation by Cannabinoid-Based Drugs

    Directory of Open Access Journals (Sweden)

    Mattias Svensson

    2010-08-01

    Full Text Available Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered. Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases. Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function. Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders. At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC. Dendritic cells are recognized for their critical role in initiating and maintaining immune responses. Therefore, DC are potential targets for cannabinoid-mediated modulation. Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes.

  3. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    NARCIS (Netherlands)

    Berk, L.C.J. van den; Roelofs, H.; Huijs, T.; Siebers-Vermeulen, K.G.C.; Raymakers, R.A.P.; Kogler, G.; Figdor, C.G.; Torensma, R.

    2009-01-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord

  4. GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus.

    Science.gov (United States)

    Klausberger, Thomas

    2009-09-01

    The dendrites of pyramidal cells are active compartments capable of independent computations, input/output transformation and synaptic plasticity. Pyramidal cells in the CA1 area of the hippocampus receive 92% of their GABAergic input onto dendrites. How does this GABAergic input participate in dendritic computations of pyramidal cells? One key to understanding their contribution to dendritic computation lies in the timing of GABAergic input in relation to excitatory transmission, back-propagating action potentials, Ca(2+) spikes and subthreshold membrane dynamics. The issue is further complicated by the fact that dendritic GABAergic inputs originate from numerous distinct sources operating with different molecular machineries and innervating different subcellular domains of pyramidal cell dendrites. The GABAergic input from distinct sources is likely to contribute differentially to dendritic computations. In this review, I describe four groups of GABAergic interneuron according to their expression of parvalbumin, cholecystokinin, axonal arborization density and long-range projections. These four interneuron groups contain at least 12 distinct cell types, which innervate mainly or exclusively the dendrites of CA1 pyramidal cells. Furthermore, I summarize the different spike timing of distinct interneuron types during gamma, theta and ripple oscillations in vivo, and I discuss some of the open questions on how GABAergic input modulates dendritic operations in CA1 pyramidal cells.

  5. Clinical application of dendritic cells in cancer vaccination therapy

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Soot, Mette Line; Buus, Søren

    2003-01-01

    for large-scale generation of dendritic cells for clinical applications has made possible phase I/II studies designed to analyze the toxicity, feasibility and efficacy of this approach. In clinical trials, DC-based vaccination of patients with advanced cancer has in many cases led to immunity...... endpoints, including toxicity and response evaluation. This paper aims to review the technical aspects and clinical impact of vaccination trials, focusing on the generation of DC-based vaccines, evaluation of immunologic parameters and design of clinical trials necessary to meet the need for good laboratory...

  6. The known unknowns of the human dendritic cell network

    Directory of Open Access Journals (Sweden)

    Mélanie eDurand

    2015-03-01

    Full Text Available Dendritic cells (DC initiate and orient immune responses and comprise several subsets that display distinct phenotypes and properties. Most of our knowledge of DC subsets biology is based on mouse studies. In the past few years, the alignment of the human DC network with the mouse DC network has been the focus of much attention. Although comparative phenotypic and transcriptomic analysis have shown a high level of homology between mouse and human DC subsets, significant differences in phenotype and function have also been evidenced. Here we review recent advances in our understanding of the human DC network and discuss some remaining gaps and future challenges of the human DC field.

  7. Dendritic cell-based cancer immunotherapy for colorectal cancer.

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-05-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients.

  8. Functional identification of dendritic cells in the teleost model, rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Bassity, Elizabeth; Clark, Theodore G

    2012-01-01

    Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro.

  9. Functional identification of dendritic cells in the teleost model, rainbow trout (Oncorhynchus mykiss.

    Directory of Open Access Journals (Sweden)

    Elizabeth Bassity

    Full Text Available Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss, with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro.

  10. Exosomes from B cells and Dendritic cells: mechanisms of formation, secretion and targeting

    NARCIS (Netherlands)

    Buschow, S.I.

    2006-01-01

    Many cell types, including dendritic cells (DC) and B cells, secrete small vesicles called exosomes. Exosomes from immune cells are thought to have immuno-regulatory functions but their precise role remains unresolved. The aim of the studies presented in this thesis was to get more insight into the

  11. First Genomic Analysis of Dendritic Cells from Lung and Draining Lymph Nodes in Murine Asthma

    Directory of Open Access Journals (Sweden)

    Thomas Tschernig

    2015-01-01

    Full Text Available Asthma is the consequence of allergic inflammation in the lung compartments and lung-draining lymph nodes. Dendritic cells initiate and promote T cell response and drive it to immunity or allergy. However, their modes of action during asthma are poorly understood. In this study, an allergic inflammation with ovalbumin was induced in 38 mice versus 42 control animals. After ovalbumin aerosol challenge, conventional dendritic cells (CD11c/MHCII/CD8 were isolated from the lungs and the draining lymph nodes by means of magnetic cell sorting followed by fluorescence-activated cell sorting. A comparative transcriptional analysis was performed using gene arrays. In general, many transcripts are up- and downregulated in the CD8− dendritic cells of the allergic inflamed lung tissue, whereas few genes are regulated in CD8+ dendritic cells. The dendritic cells of the lymph nodes also showed minor transcriptional changes. The data support the relevance of the CD8− conventional dendritic cells but do not exclude distinct functions of the small population of CD8+ dendritic cells, such as cross presentation of external antigen. So far, this is the first approach performing gene arrays in dendritic cells obtained from lung tissue and lung-draining lymph nodes of asthmatic-like mice.

  12. The impact of extracellular acidosis on dendritic cell function.

    Science.gov (United States)

    Vermeulen, Mónica Elba; Gamberale, Romina; Trevani, Analía Silvina; Martínez, Diego; Ceballos, Ana; Sabatte, Juan; Giordano, Mirta; Geffner, Jorge Raúl

    2004-01-01

    Dendritic cells (DCs) are the most efficient antigen-presenting cells. They are activated in the periphery by conserved pathogen molecules and by inflammatory mediators produced by a variety of cell types in response to danger signals. It is widely appreciated that inflammatory responses in peripheral tissues are usually associated with the development of acidic microenvironments. Surprisingly, there are relatively few studies directed to analyze the effect of extracellular acidosis on the immune response. We focus on the influence of extracellular acidosis on the function of immature DCs. The results presented here show that acidosis activates DCs. It increases the acquisition of extracellular antigens for MHC class I-restricted presentation and the ability of antigen-pulsed DCs to induce both specific CD8+ CTL and B-cell responses. These findings may have important implications to our understanding of the mechanisms through which DCs sense the presence of infection or inflammation in nonlymphoid tissues.

  13. Apoptosis and systemic autoimmunity: the dendritic cell connection

    Directory of Open Access Journals (Sweden)

    AA Manfredi

    2009-12-01

    Full Text Available Much effort has been devoted in recent years to the events linking recognition and disposal of apoptotic cells to sustained immunity towards the antigens they contain. Programmed death via apoptosis indeed provides most of the raw material the immune system exploits to establish self tolerance, i.e. to learn how to distinguish between self constituents and foreign antigens, belonging to invading pathogens. In parallel, events occurring during cell death may enable a restricted array of molecules endowed with diverse structure, function and intracellular distribution to satisfy the requirement to evoke and maintain autoimmune responses. Dendritic cells (DCs, the most potent antigen presenting cells, appear to play a crucial role. Here we will discuss some of the constrains regulating the access of dying cells’ antigens to DCs, as well as censorship mechanisms that prevent their maturation and the full explication of their antigen presenting function.

  14. Topical vaccination with functionalized particles targeting dendritic cells.

    Science.gov (United States)

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Reiter, Yoran; Baude, Barbara; Dähne, Lars; Patzelt, Alexa; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-08-01

    Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens.

  15. Dendritic Cell-Based Immunotherapy for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Hanka Jähnisch

    2010-01-01

    Full Text Available Dendritic cells (DCs are professional antigen-presenting cells (APCs, which display an extraordinary capacity to induce, sustain, and regulate T-cell responses providing the opportunity of DC-based cancer vaccination strategies. Thus, clinical trials enrolling prostate cancer patients were conducted, which were based on the administration of DCs loaded with tumor-associated antigens. These clinical trials revealed that DC-based immunotherapeutic strategies represent safe and feasible concepts for the induction of immunological and clinical responses in prostate cancer patients. In this context, the administration of the vaccine sipuleucel-T consisting of autologous peripheral blood mononuclear cells including APCs, which were pre-exposed in vitro to the fusion protein PA2024, resulted in a prolonged overall survival among patients with metastatic castration-resistent prostate cancer. In April 2010, sipuleucel-T was approved by the United States Food and Drug Administration for prostate cancer therapy.

  16. Uptake of antigen-antibody complexes by human dendritic cells.

    Science.gov (United States)

    Fanger, N A; Guyre, P M; Graziano, R F

    2001-01-01

    Fc receptors specific for IgG (FcγR) potentiate the immune response by facilitating the interaction between myeloid cells and antibody-coated targets (1-3). Monocyte and neutrophil FcyR engagement can lead to the induction of lytic-type mechanisms associated with innate responses. FcyR triggering can also play a key role in adaptive immune responses. For example, FcyR-directed capture and uptake of antigens (Ag) by dendritic cells (DC) results in processing and presentation to naive Ag-specific T cells, leading to their expansion and maturation into effector T-cell populations. This chapter describes methodology currently in use to explore and manipulate antigen-antibody (Ag-Ab) uptake by FcyR expressed on DC.

  17. Intestinal dendritic cells in the regulation of mucosal immunity

    DEFF Research Database (Denmark)

    Bekiaris, Vasileios; Persson, Emma K.; Agace, William Winston

    2014-01-01

    immune cells within the mucosa must suitably respond to maintain intestinal integrity, while also providing the ability to mount effective immune responses to potential pathogens. Dendritic cells (DCs) are sentinel immune cells that play a central role in the initiation and differentiation of adaptive...... immune responses. In the intestinal mucosa, DCs are located diffusely throughout the intestinal lamina propria, within gut-associated lymphoid tissues, including Peyer's patches and smaller lymphoid aggregates, as well as in intestinal-draining lymph nodes, including mesenteric lymph nodes....... The recognition that dietary nutrients and microbial communities in the intestine influence both mucosal and systemic immune cell development and function as well as immune-mediated disease has led to an explosion of literature in mucosal immunology in recent years and a growing interest in the functionality...

  18. Ebola virus infection induces irregular dendritic cell gene expression.

    Science.gov (United States)

    Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla

    2015-02-01

    Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.

  19. Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation.

    Science.gov (United States)

    Chistiakov, Dimitry A; Sobenin, Igor A; Orekhov, Alexander N; Bobryshev, Yuri V

    2015-06-01

    Myeloid dendritic cells (mDCs) comprise a heterogeneous population of professional antigen-presenting cells, which are responsible for capture, processing, and presentation of antigens on their surface to T cells. mDCs serve as a bridge linking adaptive and innate immune responses. To date, the development of DC lineage in bone marrow is better characterized in mice than in humans. DCs and macrophages share the common myeloid progenitor called macrophage-dendritic cell progenitor (MDP) that gives rise to monocytoid lineage and common DC progenitors (CDPs). CDP in turn gives rise to plasmacytoid DCs and predendritic cells (pre-mDCs) that are common precursor of myeloid CD11b+ and CD8α(+) DCs. The development and commitment of mDCs is regulated by several transcription and hematopoietic growth factors of which CCr7, Zbtb46, and Flt3 represent 'core' genes responsible for development and functional and phenotypic maintenance of mDCs. mDCs were shown to be involved in the pathogenesis of many autoimmune and inflammatory diseases including atherosclerosis. In atherogenesis, different subsets of mDCs could possess both proatherogenic (e.g. proinflammatory) and atheroprotective (e.g. anti-inflammatory and tolerogenic) activities. The proinflammatory role of mDCs is consisted in production of inflammatory molecules and priming proinflammatory subsets of effector T cells. In contrast, tolerogenic mDCs fight against inflammation through arrest of activity of proinflammatory T cells and macrophages and induction of immunosuppressive regulatory T cells. Microenvironmental conditions trigger differentiation of mDCs to acquire proinflammatory or regulatory properties.

  20. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy

    Science.gov (United States)

    Cho, Nam-Hyuk; Cheong, Taek-Chin; Min, Ji Hyun; Wu, Jun Hua; Lee, Sang Jin; Kim, Daehong; Yang, Jae-Seong; Kim, Sanguk; Kim, Young Keun; Seong, Seung-Yong

    2011-10-01

    Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide-zinc oxide core-shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle-antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle-antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.

  1. Ragweed subpollen particles of respirable size activate human dendritic cells.

    Directory of Open Access Journals (Sweden)

    Kitti Pazmandi

    Full Text Available Ragweed (Ambrosia artemisiifolia pollen grains, which are generally considered too large to reach the lower respiratory tract, release subpollen particles (SPPs of respirable size upon hydration. These SPPs contain allergenic proteins and functional NAD(PH oxidases. In this study, we examined whether exposure to SPPs initiates the activation of human monocyte-derived dendritic cells (moDCs. We found that treatment with freshly isolated ragweed SPPs increased the intracellular levels of reactive oxygen species (ROS in moDCs. Phagocytosis of SPPs by moDCs, as demonstrated by confocal laser-scanning microscopy, led to an up-regulation of the cell surface expression of CD40, CD80, CD86, and HLA-DQ and an increase in the production of IL-6, TNF-α, IL-8, and IL-10. Furthermore, SPP-treated moDCs had an increased capacity to stimulate the proliferation of naïve T cells. Co-culture of SPP-treated moDCs with allogeneic CD3(+ pan-T cells resulted in increased secretion of IFN-γ and IL-17 by T cells of both allergic and non-allergic subjects, but induced the production of IL-4 exclusively from the T cells of allergic individuals. Addition of exogenous NADPH further increased, while heat-inactivation or pre-treatment with diphenyleneiodonium (DPI, an inhibitor of NADPH oxidases, strongly diminished, the ability of SPPs to induce phenotypic and functional changes in moDCs, indicating that these processes were mediated, at least partly, by the intrinsic NAD(PH oxidase activity of SPPs. Collectively, our data suggest that inhaled ragweed SPPs are fully capable of activating dendritic cells (DCs in the airways and SPPs' NAD(PH oxidase activity is involved in initiation of adaptive immune responses against innocuous pollen proteins.

  2. Disfunction of the dendritic cells from the aquaporin 5 knockout mice%水通道蛋白5基因对小鼠树突状细胞功能影响的研究

    Institute of Scientific and Technical Information of China (English)

    王桂芳; 唐古生; 董春玲; 沈茜; 白春学

    2008-01-01

    目的 探讨水通道蛋白5(AQP5)基因的表达对小鼠骨髓来源的树突状细胞(bonemarrow-derived dendritic cells,BMDC)分化成熟的影响.方法 分离培养AQP5基因敲除(AQP5-/-)的小鼠及野生型小鼠的BMDC,采用LPS诱导其成熟,采用FACS检测DC表型和内吞作用的变化,采用3H-TdR掺入法检测其对异种淋巴细胞的刺激能力.结果 与野生型小鼠相比,AQP5基因敲除后DC表面共刺激分子CD40、CD80、CD86的表达下降;其内吞能力下降;野生型小鼠来源的DC在与颗粒性蛋白质接触30 min后仍可继续上升,而AQP5-/- 来源的DC在相互作用30 min后内吞能力达到高峰;野生型小鼠来源的DC对异种淋巴细胞的刺激能力远大于AQP5-/-小鼠.结论 AQP5介导的跨膜水转运对于DC功能的正常发挥具有重要意义.其具体信号途径有待进一步研究.%Objective To investigate the effect of aquaporin 5(AQP5)gene to the differentiation and development of bone marrow-deriued dendritic cells(BMDC).Methotis The DCs obtained from the bone marrow of the AQP5-/- and the wild type(WT)mice were cultured and induced to maturation by LPS.The phenotype of the two types DCs were assayed by FACS,and the phagocytosis ability Was assayed by co-incubating with FITC-conjucted ovalbumin.Results Contrast to the DCs from the WT mice,the DCs from the A9P5-/-mice showed reducing positive rate of expression of the co-stimulating molecular such as CD40,CD80.CD86.And the phagoeytosis ability of DCs from the AOP5-/-mice was lower than that of the WT mice.The relationship of the phagncytosis rate to the time from the AOP5-/- mice was different from that of the WT mice.The stimulating ability of the AOP5-/-DCs was lower than that of the WT mice.Conclusion Water transmembrane moving mediated by AQP5 iS very important to the normal function of DCs.The certain mechanism of the signal moleeular is to be determined. Aquaporin 5;Dendritic cell;Gene knockout;Co-stimulating molecular

  3. Dendritic-tumor fusion cells in cancer immunotherapy.

    Science.gov (United States)

    Takakura, Kazuki; Kajihara, Mikio; Ito, Zensho; Ohkusa, Toshifumi; Gong, Jianlin; Koido, Shigeo

    2015-03-01

    A promising area of clinical investigation is the use of cancer immunotherapy to treat cancer patients. Dendritic cells (DCs) operate as professional antigen-presenting cells (APCs) and play a critical role in the induction of antitumor immune responses. Thus, DC-based cancer immunotherapy represents a powerful strategy. One DC-based cancer immunotherapy strategy that has been investigated is the administration of fusion cells generated with DCs and whole tumor cells (DC-tumor fusion cells). The DC-tumor fusion cells can process a broad array of tumor-associated antigens (TAAs), including unidentified molecules, and present them through major histocompatibility complex (MHC) class I and II pathways in the context of co-stimulatory signals. Improving the therapeutic efficacy of DC-tumor fusion cell-based cancer immunotherapy requires increased immunogenicity of DCs and whole tumor cells. We discuss the potential ability of DC-tumor fusion cells to activate antigen-specific T cells and strategies to improve the immunogenicity of DC-tumor fusion cells as anticancer vaccines.

  4. Follicular Dendritic Cells Retain Infectious HIV in Cycling Endosomes.

    Directory of Open Access Journals (Sweden)

    Balthasar A Heesters

    2015-12-01

    Full Text Available Despite the success of antiretroviral therapy (ART, it does not cure Human Immunodeficiency Virus (HIV and discontinuation results in viral rebound. Follicular dendritic cells (FDC are in direct contact with CD4+ T cells and they retain intact antigen for prolonged periods. We found that human FDC isolated from patients on ART retain infectious HIV within a non-degradative cycling compartment and transmit infectious virus to uninfected CD4 T cells in vitro. Importantly, treatment of the HIV+ FDC with a soluble complement receptor 2 purges the FDC of HIV virions and prevents viral transmission in vitro. Our results provide an explanation for how FDC can retain infectious HIV for extended periods and suggest a therapeutic strategy to achieve cure in HIV-infected humans.

  5. Plasmacytoid dendritic cells in antiviral immunity and autoimmunity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Plasmacytoid dendritic cells (pDCs) represent a unique and crucial immune cell population capable of producing large amounts of type I interferons (IFNs) in response to viral infection.The function of pDCs as the professional type I IFN-producing cells is linked to their selective expression of Toll-like receptor 7 (TLR7) and TLR9,which sense viral nucleic acids within the endosomal compartments.Type I IFNs produced by pDCs not only directly inhibit viral replication but also play an essential role in linking the innate and adaptive immune system.The aberrant activation of pDCs by self nucleic acids through TLR signaling and the ongoing production of type I IFNs do occur in some autoimmune diseases.Therefore,pDC may serve as an attractive target for therapeutic manipulations of the immune system to treat viral infectious diseases and autoimmune diseases.

  6. Krebs cycle rewired for macrophage and dendritic cell effector functions.

    Science.gov (United States)

    Ryan, Dylan Gerard; O'Neill, Luke A J

    2017-07-07

    The Krebs cycle is an amphibolic pathway operating in the mitochondrial matrix of all eukaryotic organisms. In response to proinflammatory stimuli, macrophages and dendritic cells undergo profound metabolic remodelling to support the biosynthetic and bioenergetic requirements of the cell. Recently, it has been discovered that this metabolic shift also involves the rewiring of the Krebs cycle to regulate cellular metabolic flux and the accumulation of Krebs cycle intermediates, notably, citrate, succinate and fumarate. Interestingly, a new role for Krebs cycle intermediates as signalling molecules and immunomodulators that dictate the inflammatory response has begun to emerge. This review will discuss the latest developments in Krebs cycle rewiring and immune cell effector functions, with a particular focus on the regulation of cytokine production. © 2017 Federation of European Biochemical Societies.

  7. Imaging Findings of Follicular Dendritic Cell Sarcoma: Report of Four Cases

    Energy Technology Data Exchange (ETDEWEB)

    Long-Hua, Qiu; Xiao-Yuan, Feng [Affi liated HuaShan Hospital, Fudan University, Shanghai (China); Qin, Xiao; Ya-Jia, Gu; Jian, Wang [Affiliated Cancer Hospital, Fudan University, Shanghai (China)

    2011-02-15

    Follicular dendritic cell sarcoma is a rare malignant neoplasm and little is known about its radiological features. We present here four cases of follicular dendritic cell sarcomas and we provide the image characteristics of these tumors to help radiologists recognize this entity when making a diagnosis

  8. Cord blood dendritic cell subsets in African newborns exposed to Plasmodium falciparum in utero.

    NARCIS (Netherlands)

    Breitling, L.P.; Fendel, R.; Mordmueller, B.; Adegnika, A.A.; Kremsner, P.G.; Luty, A.J.F.

    2006-01-01

    Placental Plasmodium falciparum infection affects birth outcomes and sensitizes fetal lymphocytes to parasite antigens. We assessed the influence of maternal P. falciparum infection on fetal myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), analyzing the cord blood of offspring o

  9. Quantification of blood dendritic cells in colorectal cancer patients during the course of disease.

    Science.gov (United States)

    Orsini, Giulia; Legitimo, Annalisa; Failli, Alessandra; Ferrari, Paola; Nicolini, Andrea; Spisni, Roberto; Miccoli, Paolo; Consolini, Rita

    2014-04-01

    Colorectal cancer is a malignancy with poor prognosis that might be associated with defective immune function. The aim of the present study was to investigate circulating dendritic cells in colorectal cancer patients, in order to contribute to elucidate tumor-escape mechanisms and to point out a possible correlation with the clinical condition of the disease. Therefore, we enumerated ex vivo myeloid and plasmacytoid dendritic cells, through multicolor flow cytometry, in 26 colorectal patients and 33 healthy controls. Furthermore we performed several analyses at determined time points in order to define the immunological trend of cancer patients after surgery and other conventional treatments. At the pre-operative time point the absolute number of plasmacytoid dendritic cells in cancer patients was significantly reduced in comparison to controls, this result being mainly referred to stage III-IV patients. The number of myeloid dendritic cells did not show any significant difference compared to healthy controls; interestingly the expression of the tolerogenic antigen CD85k was significantly higher on cancer patients' myeloid dendritic cells than controls'. At the following samplings, circulating dendritic cell absolute number did not show any difference compared to controls. Conclusively the impairment of the number of circulating dendritic cells may represent one of the tumor escape mechanisms occurring in colorectal cancer. These alterations seem to be correlated to cancer progression. Our work sheds light on one of dendritic cell-based tumor immune escape mechanisms. This knowledge may be useful to the development of more effective immunotherapeutic strategies.

  10. Development of Type 1 Diabetes: Monocytes and dendritic cells in the pancreas

    NARCIS (Netherlands)

    J.M.C. Welzen-Coppens (Jojanneke)

    2013-01-01

    textabstractThis thesis focuses on the presence of precursors for dendritic cells and the characterization of dendritic cell subsets in the normal pancreas in mice and humans as well as in the pancreas of the NOD mouse, a type 1 diabetes mouse model. Therefore, we give a short introduction to

  11. Identification of a novel immunoregulatory signaling pathway exploited by M. tuberculosis in dendritic cells

    DEFF Research Database (Denmark)

    Laursen, Janne Marie; Schoof, Erwin; Søndergaard, Jonas Nørskov;

    to the highly sophisticated infectious machinery employed by the bacterium. The dendritic cell (DC) plays a crucial role in shaping the nature of the immune response after exposure to pathogens, and the interaction between M. tuberculosis and the dendritic cell is of profound importance for the course...

  12. Development of Type 1 Diabetes: Monocytes and dendritic cells in the pancreas

    NARCIS (Netherlands)

    J.M.C. Welzen-Coppens (Jojanneke)

    2013-01-01

    textabstractThis thesis focuses on the presence of precursors for dendritic cells and the characterization of dendritic cell subsets in the normal pancreas in mice and humans as well as in the pancreas of the NOD mouse, a type 1 diabetes mouse model. Therefore, we give a short introduction to dendri

  13. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Macoch, Mélinda; Morzadec, Claudie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  14. An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting.

    Science.gov (United States)

    Furuya, S; Makino, A; Hirabayashi, Y

    1998-11-01

    We report here a novel cell culture protocol which facilitates in vitro survival and dendritic differentiation of cerebellar Purkinje cells in a monolayer, mixed culture setting. We found that the type of culture medium is a critical factor for the maintenance of these cells. Purkinje cells present in the single cell suspension of embryonic rat cerebellum were best maintained in a medium based on Dulbecco's modified Eagle's medium (DMEM)/F-12 without the addition of known neurotrophic factors. These cells maintained in DMEM/F-12-based media displayed an approximately 2.5-3.5-fold increase in survival compared with cells maintained in the widely used Basal Medium Eagle's (BME)-based serum-free culture medium with the same supplements. This novel protocol permits not only enhanced survival but also accelerated, improved dendritic differentiation of these cells. Purkinje cells developed highly branched spiny dendrites by 14-16 days in vitro, which matches the time course of the dendritic growth of these cells in vivo. The Purkinje cells expressed metabotropic glutamate receptor 1alpha in the cell bodies and branched dendrites, and the intradendritic calcium concentration increased when trans-ACPD, a selective agonist of this receptor, was applied. This novel protocol allows the development of functional branched dendrites and therefore is useful for electrophysiological and ion-imaging studies on dendrites of Purkinje cells grown in vitro.

  15. Democracy-Independence Trade-Off in Oscillating Dendrites and Its Implications for Grid Cells

    Science.gov (United States)

    Remme, Michiel W.H.; Lengyel, Máté; Gutkin, Boris S.

    2010-01-01

    Summary Dendritic democracy and independence have been characterized for near-instantaneous processing of synaptic inputs. However, a wide class of neuronal computations requires input integration on long timescales. As a paradigmatic example, entorhinal grid fields have been thought to be generated by the democratic summation of independent dendritic oscillations performing direction-selective path integration. We analyzed how multiple dendritic oscillators embedded in the same neuron integrate inputs separately and determine somatic membrane voltage jointly. We found that the interaction of dendritic oscillations leads to phase locking, which sets an upper limit on the timescale for independent input integration. Factors that increase this timescale also decrease the influence that the dendritic oscillations exert on somatic voltage. In entorhinal stellate cells, interdendritic coupling dominates and causes these cells to act as single oscillators. Our results suggest a fundamental trade-off between local and global processing in dendritic trees integrating ongoing signals. PMID:20471355

  16. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Christensen, Hanne

    2007-01-01

    Lactic acid bacteria (LAB) are abundant in the gastrointestinal tract where they continuously regulate the immune system. NK cells are potently activated by dendritic cells (DCs) matured by inflammatory stimuli, and NK cells are present in the gut epithelium and in mesenteric lymph nodes...

  17. Human and murine model cell lines for dendritic cell biology evaluated.

    NARCIS (Netherlands)

    Helden, S.F.G. van; Leeuwen, F.N. van; Figdor, C.G.

    2008-01-01

    Dendritic cells (DCs) are specialized antigen presenting cells that link innate and adaptive immune responses. As key mediators of T cell dependent immunity, DCs are considered primary targets for initiating immune responses in infectious diseases and cancer. Conversely, DCs can also play an importa

  18. Antigen loading on dendritic cells affects the lell function in stimulating T cells.

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To study the effect of antigen loading on dendritic cells (DC). Methods: DCs collected from peripheral blood monocytes were loaded with a tumor antigen from XG-7 cell line. These DCs were then co-cultured with allogeneic T cells and were compared with those DCs without antigen exposure.

  19. Dengue tropism for macrophages and dendritic cells : the host cell effect

    NARCIS (Netherlands)

    Flipse, Jacky; Torres, Silvia; Diosa-Toro, Mayra; van der Ende-Metselaar, Heidi; Herrera-Rodriguez, Jose; Urcuqui-Inchima, Silvio; Huckriede, Anke; Rodenhuis-Zybert, Izabela A; Smit, Jolanda M

    2016-01-01

    Dengue virus infects immune cells, including monocytes, macrophages and dendritic cells (DC). We compared virus infectivity in macrophages and DC, and found that the virus-origin determined the cell tropism of progeny virus. The highest efficiency of re-infection was seen for macrophage-derived deng

  20. Clinical responses in patients with advanced colorectal cancer to a dendritic cell based vaccine

    DEFF Research Database (Denmark)

    Burgdorf, Stefan K; Fischer, Anders; Myschetzky, Peter S

    2008-01-01

    Patients with disseminated colorectal cancer have a poor prognosis. Preliminary studies have shown encouraging results from vaccines based on dendritic cells. The aim of this phase II study was to evaluate the effect of treating patients with advanced colorectal cancer with a cancer vaccine based...... on dendritic cells pulsed with an allogenic tumor cell lysate. Twenty patients with advanced colorectal cancer were consecutively enrolled. Dendritic cells (DC) were generated from autologous peripheral blood mononuclear cells and pulsed with allogenic tumor cell lysate containing high levels of cancer...

  1. Dendritic cell maturation and cross-presentation: timing matters!

    Science.gov (United States)

    Alloatti, Andrés; Kotsias, Fiorella; Magalhaes, Joao Gamelas; Amigorena, Sebastian

    2016-07-01

    As a population, dendritic cells (DCs) appear to be the best cross-presenters of internalized antigens on major histocompatibility complex class I molecules in the mouse. To do this, DCs have developed a number of unique and dedicated means to control their endocytic and phagocytic pathways: among them, the capacity to limit acidification of their phagosomes, to prevent proteolytic degradation, to delay fusion of phagosomes to lysosomes, to recruit ER proteins to phagosomes, and to export phagocytosed antigens to the cytosol. The regulation of phagocytic functions, and thereby of antigen processing and presentation by innate signaling, represents a critical level of integration of adaptive and innate immune responses. Understanding how innate signals control antigen cross-presentation is critical to define effective vaccination strategies for CD8(+) T-cell responses.

  2. Immunological Characterization of Whole Tumour Lysate-Loaded Dendritic Cells for Cancer Immunotherapy.

    Directory of Open Access Journals (Sweden)

    Veronica Rainone

    Full Text Available Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies.We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC, as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras. Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation.Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines.Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer.

  3. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    LENUS (Irish Health Repository)

    Michielsen, Adriana J

    2011-01-01

    Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  4. Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB.

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    Full Text Available BACKGROUND: Projection neurons of mammalian olfactory bulb (OB, mitral and tufted cells, have dendrites whose morphologies are specifically differentiated for efficient odor information processing. The apical dendrite extends radially and arborizes in single glomerulus where it receives primary input from olfactory sensory neurons that express the same odor receptor. The lateral dendrites extend horizontally in the external plexiform layer and make reciprocal dendrodendritic synapses with granule cells, which moderate mitral/tufted cell activity. The molecular mechanisms regulating dendritic development of mitral/tufted cells is one of the unsolved important problems in the olfactory system. Here, we focused on TrkB receptors to test the hypothesis that neurotrophin-mediate mechanisms contributed to dendritic differentiation of OB mitral/tufted cells. PRINCIPAL FINDINGS: With immunohistochemical analysis, we found that the TrkB neurotrophin receptor is expressed by both apical and lateral dendrites of mitral/tufted cells and that expression is evident during the early postnatal days when these dendrites exhibit their most robust growth and differentiation. To examine the effect of TrkB activation on mitral/tufted cell dendritic development, we cultured OB neurons. When BDNF or NT4 were introduced into the cultures, there was a significant increase in the number of primary neurites and branching points among the mitral/tufted cells. Moreover, BDNF facilitated filopodial extension along the neurites of mitral/tufted cells. SIGNIFICANCE: In this report, we show for the first time that TrkB activation stimulates the dendritic branching of mitral/tufted cells in developing OB. This suggests that arborization of the apical dendrite in a glomerulus is under the tight regulation of TrkB activation.

  5. Natural IgM and TLR Agonists Switch Murine Splenic Pan-B to “Regulatory” Cells That Suppress Ischemia-Induced Innate Inflammation via Regulating NKT-1 Cells

    Directory of Open Access Journals (Sweden)

    Peter I. Lobo

    2017-08-01

    Full Text Available Natural IgM anti-leukocyte autoantibodies (IgM-ALAs inhibit inflammation by several mechanisms. Here, we show that pan-B cells and bone marrow-derived dendritic cells (BMDCs are switched to regulatory cells when pretreated ex vivo with IgM. B cells are also switched to regulatory cells when pretreated ex vivo with CpG but not with LPS. Pre-emptive infusion of such ex vivo induced regulatory cells protects C57BL/6 mice from ischemia-induced acute kidney injury (AKI via regulation of in vivo NKT-1 cells, which normally amplify the innate inflammatory response to DAMPS released after reperfusion of the ischemic kidney. Such ex vivo induced regulatory pan-B cells and BMDC express low CD1d and inhibit inflammation by regulating in vivo NKT-1 in the context of low-lipid antigen presentation and by a mechanism that requires costimulatory molecules, CD1d, PDL1/PD1, and IL10. Second, LPS and CpG have opposite effects on induction of regulatory activity in BMDC and B cells. LPS enhances regulatory activity of IgM-pretreated BMDC but negates the IgM-induced regulatory activity in B cells, while CpG, with or without IgM pretreatment, induces regulatory activity in B cells but not in BMDC. Differences in the response of pan-B and dendritic cells to LPS and CpG, especially in the presence of IgM-ALA, may have relevance during infections and inflammatory disorders where there is an increased IgM-ALA and release of TLRs 4 and 9 ligands. Ex vivo induced regulatory pan-B cells could have therapeutic relevance as these easily available cells can be pre-emptively infused to prevent AKI that can occur during open heart surgery or in transplant recipients receiving deceased donor organs.

  6. Natural IgM and TLR Agonists Switch Murine Splenic Pan-B to “Regulatory” Cells That Suppress Ischemia-Induced Innate Inflammation via Regulating NKT-1 Cells

    Science.gov (United States)

    Lobo, Peter I.; Schlegel, Kailo H.; Bajwa, Amandeep; Huang, Liping; Okusa, Mark D.

    2017-01-01

    Natural IgM anti-leukocyte autoantibodies (IgM-ALAs) inhibit inflammation by several mechanisms. Here, we show that pan-B cells and bone marrow-derived dendritic cells (BMDCs) are switched to regulatory cells when pretreated ex vivo with IgM. B cells are also switched to regulatory cells when pretreated ex vivo with CpG but not with LPS. Pre-emptive infusion of such ex vivo induced regulatory cells protects C57BL/6 mice from ischemia-induced acute kidney injury (AKI) via regulation of in vivo NKT-1 cells, which normally amplify the innate inflammatory response to DAMPS released after reperfusion of the ischemic kidney. Such ex vivo induced regulatory pan-B cells and BMDC express low CD1d and inhibit inflammation by regulating in vivo NKT-1 in the context of low-lipid antigen presentation and by a mechanism that requires costimulatory molecules, CD1d, PDL1/PD1, and IL10. Second, LPS and CpG have opposite effects on induction of regulatory activity in BMDC and B cells. LPS enhances regulatory activity of IgM-pretreated BMDC but negates the IgM-induced regulatory activity in B cells, while CpG, with or without IgM pretreatment, induces regulatory activity in B cells but not in BMDC. Differences in the response of pan-B and dendritic cells to LPS and CpG, especially in the presence of IgM-ALA, may have relevance during infections and inflammatory disorders where there is an increased IgM-ALA and release of TLRs 4 and 9 ligands. Ex vivo induced regulatory pan-B cells could have therapeutic relevance as these easily available cells can be pre-emptively infused to prevent AKI that can occur during open heart surgery or in transplant recipients receiving deceased donor organs. PMID:28878768

  7. Mannosylated biodegradable polyethyleneimine for targeted DNA delivery to dendritic cells

    Directory of Open Access Journals (Sweden)

    Sun X

    2012-06-01

    Full Text Available Xun Sun, Simu Chen, Jianfeng Han, Zhirong ZhangKey Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People’s Republic of ChinaBackground: To establish a potential gene-delivery system with the ability to deliver plasmid DNA to dendritic cells (DCs more efficiently and specifically, we designed and synthesized a low-molecular-weight polyethyleneimine and triethyleneglycol polymer (PEI–TEG and a series of its mannosylated derivatives.Methods: PEI–TEG was synthesized from PEI2000 and PEI600 with TEG as the cross-linker. PEI–TEG was then linked to mannose via a phenylisothiocyanate bridge to obtain man-PEI–TEG conjugates. The DNA conveyance abilities of PEI–TEG, man-PEI–TEG, as well as control PEI25k were evaluated by measuring their zeta potential, particle size, and DNA-binding abilities. The in vitro cytotoxicity, cell uptake, and transfection efficiency of these PEI/DNA complexes were examined on the DC2.4 cell line. Finally, a maturation experiment evaluated the effect of costimulatory molecules CD40, CD80, and CD86 on murine bone marrow-derived DCs (BMDCs using flow cytometry.Results: PEI–TEG and man-PEI–TEG were successfully synthesized and were shown to retain the excellent properties of PEI25k for condensing DNA. Compared with PEI–TEG as well as PEI25k, the man-PEI–TEG had less cytotoxicity and performed better in both cellular uptake and transfection assays in vitro. The results of the maturation experiment showed that all the PEI/DNA complexes induced an adequate upregulation of surface markers for DC maturation.Conclusion: These results demonstrated that man-PEI–TEG can be employed as a DC-targeting gene-delivery system.Keywords: dendritic cells, DCs, mannose, polyethyleneimine, PEI, gene delivery

  8. Chemoresistance of human monocyte-derived dendritic cells is regulated by IL-17A.

    Directory of Open Access Journals (Sweden)

    Selma Olsson Åkefeldt

    Full Text Available Dendritic cells initiate adaptive immune responses, leading either to control cancer by effector T cells or to exacerbate cancer by regulatory T cells that inhibit IFN-γ-mediated Th1-type response. Dendritic cells can also induce Th17-type immunity, mediated by IL-17A. However, the controversial role of this cytokine in cancer requires further investigations. We generated dendritic cells from peripheral blood monocytes to investigate lifespan, phenotype and chemoresistance of dendritic cells, treated with IL-17A with or without IFN-γ. Studying the expression of Bcl-2 family members, we demonstrated that dendritic cells constitutively express one pro-survival Bcl-2 member: MCL1. Immature dendritic cells were CD40(lowHLADR(low CD1a(+ MCL1(+, did not express CD14, CD68 or BCL2A1, and displayed a short 2-day lifespan. IL-17A-treated DC exhibited a semi-mature (CD40(high HLADR(low pre-M2 (CCL22(+ CD206(+ CD163(+ IL1RN(+ IL-10(- CXCL10(- IL-12(- mixed (CD1a(+ CD14+ CD68(+ macrophage-dendritic cell phenotype. They efficiently exerted mannose receptor-mediated endocytosis and did not produce superoxide anions, in the absence of TLR engagement. Interestingly, IL-17A promoted a long-term survival of dendritic cells, beyond 12 days, that correlated to BCL2A1 induction, a pro-survival Bcl-2 family member. BCL2A1 transcription was activated by NF-κB, downstream of IL-17A transduction. Thus, immature dendritic cells only express MCL1, whereas IL-17A-treated dendritic cells concomitantly expressed two pro-survival Bcl-2 family members: MCL1 and BCL2A1. These latter developed chemoresistance to 11 of the 17 chemotherapy agents tested. However, high doses of either vinblastine or cytarabine decreased MCL1 expression and induced dendritic cell death. When IL-17A is produced in vivo, administration of anti-IL-17A biotherapy may impair dendritic cell survival by targeting BCL2A1 expression. Consequently, depending on the effector or regulatory role of dendritic

  9. Uptake and intracellular trafficking of superantigens in dendritic cells.

    Directory of Open Access Journals (Sweden)

    María B Ganem

    Full Text Available Bacterial superantigens (SAgs are exotoxins produced mainly by Staphylococcus aureus and Streptococcus pyogenes that can cause toxic shock syndrome (TSS. According to current paradigm, SAgs interact directly and simultaneously with T cell receptor (TCR on the T cell and MHC class II (MHC-II on the antigen-presenting cell (APC, thereby circumventing intracellular processing to trigger T cell activation. Dendritic cells (DCs are professional APCs that coat nearly all body surfaces and are the most probable candidate to interact with SAgs. We demonstrate that SAgs are taken up by mouse DCs without triggering DC maturation. SAgs were found in intracellular acidic compartment of DCs as biologically active molecules. Moreover, SAgs co-localized with EEA1, RAB-7 and LAMP-2, at different times, and were then recycled to the cell membrane. DCs loaded with SAgs are capable of triggering in vitro lymphocyte proliferation and, injected into mice, stimulate T cells bearing the proper TCR in draining lymph nodes. Transportation and trafficking of SAgs in DCs might increase the local concentration of these exotoxins where they will produce the highest effect by promoting their encounter with both MHC-II and TCR in lymph nodes, and may explain how just a few SAg molecules can induce the severe pathology associated with TSS.

  10. Cancer Vaccine by Fusions of Dendritic and Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    2009-01-01

    Full Text Available Dendritic cells (DCs are potent antigen-presenting cells and play a central role in the initiation and regulation of primary immune responses. Therefore, their use for the active immunotherapy against cancers has been studied with considerable interest. The fusion of DCs with whole tumor cells represents in many ways an ideal approach to deliver, process, and subsequently present a broad array of tumor-associated antigens, including those yet to be unidentified, in the context of DCs-derived costimulatory molecules. DCs/tumor fusion vaccine stimulates potent antitumor immunity in the animal tumor models. In the human studies, T cells stimulated by DC/tumor fusion cells are effective in lysis of tumor cells that are used as the fusion partner. In the clinical trials, clinical and immunological responses were observed in patients with advanced stage of malignant tumors after being vaccinated with DC/tumor fusion cells, although the antitumor effect is not as vigorous as in the animal tumor models. This review summarizes recent advances in concepts and techniques that are providing new impulses to DCs/tumor fusions-based cancer vaccination.

  11. Unique proteomic signatures distinguish macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lev Becker

    Full Text Available Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.

  12. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    Science.gov (United States)

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  13. Properties of mouse retinal ganglion cell dendritic growth during postnatal development

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The property of dendritic growth dynamics during development is a subject of intense interest.Here,we investigated the dendritic motility of retinal ganglion cells (RGCs) during different developmental stages,using ex vivo mouse retina explant culture,Semliki Forest Virus transfection and time-lapse observations.The results illustrated that during development,the dendritic motility underwent a change from rapid growth to a relatively stable state,i.e.,at P0 (day of birth),RGC dendrites were in a highly active state,whereas at postnatal 13 (P13) they were more stable,and at P3 and P8,the RGCs were in an intermediate state.At any given developmental stage,RGCs of different types displayed the same dendritic growth rate and extent.Since the mouse is the most popular mammalian model for genetic manipulation,this study provided a methodological foundation for further exploring the regulatory mechanisms of dendritic development.

  14. Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees.

    Science.gov (United States)

    Dobrin, Scott E; Herlihy, J Daniel; Robinson, Gene E; Fahrbach, Susan E

    2011-09-01

    The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells.

  15. Modulation of dendritic cell function by Trichomonas vaginalis-derived secretory products.

    Science.gov (United States)

    Song, Min-Ji; Lee, Jong-Joo; Nam, Young Hee; Kim, Tae-Gyun; Chung, Youn Wook; Kim, Mikyoung; Choi, Ye-Eun; Shin, Myeong Heon; Kim, Hyoung-Pyo

    2015-02-01

    Trichomoniasis caused by the parasitic protozoan Trichomonas vaginalis is the most common sexually transmitted disease in the world. Dendritic cells are antigen presenting cells that initiate immune responses by directing the activation and differentiation of naïve T cells. In this study, we analyzed the effect of Trichomonas vaginalis-derived Secretory Products on the differentiation and function of dendritic cells. Differentiation of bone marrow-derived dendritic cells in the presence of T. vaginalis-derived Secretory Products resulted in inhibition of lipopolysaccharide-induced maturation of dendritic cells, down-regulation of IL-12, and up-regulation of IL-10. The protein components of T. vaginalis-derived Secretory Products were shown to be responsible for altered function of bone marrow- derived dendritic cells. Chromatin immunoprecipitation assay demonstrated that IL-12 expression was regulated at the chromatin level in T. vaginalis-derived Secretory Productstreated dendritic cells. Our results demonstrated that T. vaginalis- derived Secretory Products modulate the maturation and cytokine production of dendritic cells leading to immune tolerance.

  16. Clinical significance of circulating dendritic cells in patients with systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    T. Robak

    1992-01-01

    Full Text Available DENDRITIC cells are a complex group of mainly bone-marrow-derived leukocytes that play a role in autoimmune diseases. The total number of circulating dendritic cells (tDC, and their plasmacytoid dendritic cell (pDC and myeloid dendritic cell (mDC1 and mDC2 subpopulations were assessed using flow cytometry. The number of tDC and their subsets were significantly lower in systemic lupus erythematosus patients than in the control group. The count of tDC and their subsets correlated with the number of T cells. The number of tDC and pDC subpopulation were lower in the patients with lymphopenia and leucopoenia than in the patients without these symptoms. Our data suggest that fluctuations in blood dendritic cell count in systemic lupus erythematosus patients are much more significant in pDC than in mDC, what may be caused by their migration to the sites of inflammation including skin lesions. Positive correlation between dendritic cell number and TCD4+, TCD8+ and CD19+ B cells, testify of their interactions and influence on SLE pathogenesis. The association between dendritic cell number and clinical features seems to be less clear.

  17. Probiotic modulation of dendritic cells and T cell responses in the intestine

    NARCIS (Netherlands)

    Meijerink, M.; Wells, J.

    2010-01-01

    Over the past decade it has become clear that probiotic and commensal interactions with mucosal dendritic cells in the lamina propria or epithelial cells lining the mucosa can modulate specific functions of the mucosal immune system. Innate pattern-recognition receptors such as TLRs, NLRs and CLRs p

  18. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1.

    NARCIS (Netherlands)

    Nolte-'t Hoen, E.N.; Buschow, S.I.; Anderton, S.M.; Stoorvogel, W.; Wauben, M.H.M.

    2009-01-01

    Dendritic cells (DCs) are known to secrete exosomes that transfer membrane proteins, like major histocompatibility complex class II, to other DCs. Intercellular transfer of membrane proteins is also observed during cognate interactions between DCs and CD4(+) T cells. The acquired proteins are functi

  19. Study on biological characters of SGC7901 gastric cancer cell-dendritic cell fusion vaccines

    Institute of Scientific and Technical Information of China (English)

    Kun Zhang; Peng-Fen Gao; Pei-Wu Yu; Yun Rao; Li-Xin Zhou

    2006-01-01

    AIM: To detect the biological characters of the SGC7901 gastric cancer cell-dendritic cell fusion vaccines.METHODS: The suspending living SGC7901 gastric cancer cells and dendritic cells were induced to be fusioned by polyethylene glycol. Pure fusion cells were obtained by selective culture with the HAT/HT culture systems.The fusion cells were counted at different time points of culture and their growth curves were drawn to reflect their proliferative activities. The fusion cells were also cultured in culture medium to investigate whether they could grow into cell clones. MTT method was used to test the stimulating abilities of the fusion cells on T lymphocytes' proliferations. Moreover, the fusion cells were planted into nude mice to observe whether they could grow into new planted tumors in this kind of immunodeficiency animals.RESULTS: The fusion cells had weaker proliferative activity and clone abilities than their parental cells. When they were cultured, the counts of cells did not increase remarkably, nor could they grow into cell clones in culture medium. The fusion cells could not grow into new planted tumors after planted into nude mice. The stimulating abilities of the fusion cells on T lymphocytes' proliferations were remarkably increased than their parental dendritic cells.CONCLUSION: The SGC7901 gastric cancer cell-dendritic cell fusion vaccines have much weaker proliferative abilities than their parental cells, but they keep strong abilities to irritate the T lymphocytes and have no abilities to grow into new planted tumors in immunodeficiency animals. These are the biological basis for their antitumor biotherapies.

  20. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells.

    Science.gov (United States)

    Balan, Sreekumar; Ollion, Vincent; Colletti, Nicholas; Chelbi, Rabie; Montanana-Sanchis, Frédéric; Liu, Hong; Vu Manh, Thien-Phong; Sanchez, Cindy; Savoret, Juliette; Perrot, Ivan; Doffin, Anne-Claire; Fossum, Even; Bechlian, Didier; Chabannon, Christian; Bogen, Bjarne; Asselin-Paturel, Carine; Shaw, Michael; Soos, Timothy; Caux, Christophe; Valladeau-Guilemond, Jenny; Dalod, Marc

    2014-08-15

    Human monocyte-derived dendritic cell (MoDC) have been used in the clinic with moderately encouraging results. Mouse XCR1(+) DC excel at cross-presentation, can be targeted in vivo to induce protective immunity, and share characteristics with XCR1(+) human DC. Assessment of the immunoactivation potential of XCR1(+) human DC is hindered by their paucity in vivo and by their lack of a well-defined in vitro counterpart. We report in this study a protocol generating both XCR1(+) and XCR1(-) human DC in CD34(+) progenitor cultures (CD34-DC). Gene expression profiling, phenotypic characterization, and functional studies demonstrated that XCR1(-) CD34-DC are similar to canonical MoDC, whereas XCR1(+) CD34-DC resemble XCR1(+) blood DC (bDC). XCR1(+) DC were strongly activated by polyinosinic-polycytidylic acid but not LPS, and conversely for MoDC. XCR1(+) DC and MoDC expressed strikingly different patterns of molecules involved in inflammation and in cross-talk with NK or T cells. XCR1(+) CD34-DC but not MoDC efficiently cross-presented a cell-associated Ag upon stimulation by polyinosinic-polycytidylic acid or R848, likewise to what was reported for XCR1(+) bDC. Hence, it is feasible to generate high numbers of bona fide XCR1(+) human DC in vitro as a model to decipher the functions of XCR1(+) bDC and as a potential source of XCR1(+) DC for clinical use.

  1. Dendritic cell targeted vaccines: Recent progresses and challenges.

    Science.gov (United States)

    Chen, Pengfei; Liu, Xinsheng; Sun, Yuefeng; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2016-03-01

    Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches.

  2. Myeloid dendritic cells are potential players in human neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Paola eBossù

    2015-12-01

    Full Text Available Alzheimer’s (AD and Parkinson’s (PD diseases are devastating neurodegenerative disturbances wherein neuroinflammation is a chronic pathogenic process with high therapeutic potential. Major mediators of AD/PD neuroimmune processes are resident immune cells, but immune cells derived from periphery may also participate and to some extent modify neuroinflammation. Specifically, blood borne myeloid cells emerge as crucial components of AD/PD progression and susceptibility. Among these, dendritic cells (DCs are key immune orchestrators and players of brain immune surveillance: we candidate them as potential mediators of both AD and PD and as relevant cell model for unraveling myeloid cell role in neurodegeneration. Hence, we recapitulate and discuss emerging data suggesting that blood-derived DCs play a role in experimental and human neurodegenerative diseases. In humans, in particular, DCs are modified by in vitro culture with neurodegeneration-associated pathogenic factors and dysregulated in AD patients, while the levels of DC precursors are decreased in AD and PD patients’ blood, possibly as an index of their recruitment to the brain. Overall, we emphasize the need to explore the impact of DCs on neurodegeneration to uncover peripheral immune mechanisms of pathogenic importance, recognize potential biomarkers and improve therapeutic approaches for neurodegenerative diseases.

  3. Antithymocyte Globulin Induces a Tolerogenic Phenotype in Human Dendritic Cells.

    Science.gov (United States)

    Roider, Tobias; Katzfuß, Michael; Matos, Carina; Singer, Katrin; Renner, Kathrin; Oefner, Peter J; Dettmer-Wilde, Katja; Herr, Wolfgang; Holler, Ernst; Kreutz, Marina; Peter, Katrin

    2016-12-11

    Antithymocyte globulin (ATG) is used in the prevention of graft-versus-host disease during allogeneic hematopoietic stem cell transplantation. It is generally accepted that ATG mediates its immunosuppressive effect primarily via depletion of T cells. Here, we analyzed the impact of ATG-Fresenius (now Grafalon(®)) on human monocyte-derived dendritic cells (DC). ATG induced a semi-mature phenotype in DC with significantly reduced expression of CD14, increased expression of HLA-DR, and intermediate expression of CD54, CD80, CD83, and CD86. ATG-DC showed an increase in IL-10 secretion but no IL-12 production. In line with this tolerogenic phenotype, ATG caused a significant induction of indoleamine 2,3-dioxygenase expression and a concomitant increase in levels of tryptophan metabolites in the supernatants of DC. Further, ATG-DC did not induce the proliferation of allogeneic T cells in a mixed lymphocyte reaction but actively suppressed the T cell proliferation induced by mature DC. These data suggest that besides its well-known effect on T cells, ATG modulates the phenotype of DC in a tolerogenic way, which might constitute an essential part of its immunosuppressive action in vivo.

  4. Antithymocyte Globulin Induces a Tolerogenic Phenotype in Human Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Tobias Roider

    2016-12-01

    Full Text Available Antithymocyte globulin (ATG is used in the prevention of graft-versus-host disease during allogeneic hematopoietic stem cell transplantation. It is generally accepted that ATG mediates its immunosuppressive effect primarily via depletion of T cells. Here, we analyzed the impact of ATG-Fresenius (now Grafalon® on human monocyte-derived dendritic cells (DC. ATG induced a semi-mature phenotype in DC with significantly reduced expression of CD14, increased expression of HLA-DR, and intermediate expression of CD54, CD80, CD83, and CD86. ATG-DC showed an increase in IL-10 secretion but no IL-12 production. In line with this tolerogenic phenotype, ATG caused a significant induction of indoleamine 2,3-dioxygenase expression and a concomitant increase in levels of tryptophan metabolites in the supernatants of DC. Further, ATG-DC did not induce the proliferation of allogeneic T cells in a mixed lymphocyte reaction but actively suppressed the T cell proliferation induced by mature DC. These data suggest that besides its well-known effect on T cells, ATG modulates the phenotype of DC in a tolerogenic way, which might constitute an essential part of its immunosuppressive action in vivo.

  5. Therapeutic Potential of Tolerogenic Dendritic Cells in IBD: From Animal Models to Clinical Application

    National Research Council Canada - National Science Library

    Cabezón, Raquel; Benítez-Ribas, Daniel

    2013-01-01

    ...) resulting in altered immune responses to harmless microorganisms. Dendritic cells (DCs) are sentinels of immunity, located in peripheral and lymphoid tissues, which are essential for homeostasis of T cell-dependent immune responses...

  6. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses.

    Science.gov (United States)

    Halim, Timotheus Y F; Hwang, You Yi; Scanlon, Seth T; Zaghouani, Habib; Garbi, Natalio; Fallon, Padraic G; McKenzie, Andrew N J

    2016-01-01

    Rapid activation of memory CD4(+) T helper 2 (TH2) cells during allergic inflammation requires their recruitment into the affected tissue. Here we demonstrate that group 2 innate lymphoid (ILC2) cells have a crucial role in memory TH2 cell responses, with targeted depletion of ILC2 cells profoundly impairing TH2 cell localization to the lungs and skin of sensitized mice after allergen re-challenge. ILC2-derived interleukin 13 (IL-13) is critical for eliciting production of the TH2 cell-attracting chemokine CCL17 by IRF4(+)CD11b(+)CD103(-) dendritic cells (DCs). Consequently, the sentinel function of DCs is contingent on ILC2 cells for the generation of an efficient memory TH2 cell response. These results elucidate a key innate mechanism in the regulation of the immune memory response to allergens.

  7. Molecular Mechanisms of Induction of Tolerant and Tolerogenic Intestinal Dendritic Cells in Mice.

    Science.gov (United States)

    Steimle, Alex; Frick, Julia-Stefanie

    2016-01-01

    How does the host manage to tolerate its own intestinal microbiota? A simple question leading to complicated answers. In order to maintain balanced immune responses in the intestine, the host immune system must tolerate commensal bacteria in the gut while it has to simultaneously keep the ability to fight pathogens and to clear infections. If this tender equilibrium is disturbed, severe chronic inflammatory reactions can result. Tolerogenic intestinal dendritic cells fulfil a crucial role in balancing immune responses and therefore creating homeostatic conditions and preventing from uncontrolled inflammation. Although several dendritic cell subsets have already been characterized to play a pivotal role in this process, less is known about definite molecular mechanisms of how intestinal dendritic cells are converted into tolerogenic ones. Here we review how gut commensal bacteria interact with intestinal dendritic cells and why this bacteria-host cell interaction is crucial for induction of dendritic cell tolerance in the intestine. Hereby, different commensal bacteria can have distinct effects on the phenotype of intestinal dendritic cells and these effects are mainly mediated by impacting toll-like receptor signalling in dendritic cells.

  8. Caspases regulate VAMP-8 expression and phagocytosis in dendritic cells.

    Science.gov (United States)

    Ho, Yong Hou Sunny; Cai, Deyu Tarika; Huang, Dachuan; Wang, Cheng Chun; Wong, Siew Heng

    2009-09-18

    During an inflammation and upon encountering pathogens, immature dendritic cells (DC) undergo a maturation process to become highly efficient in presenting antigens. This transition from immature to mature state is accompanied by various physiological, functional and morphological changes including reduction of caspase activity and inhibition of phagocytosis in the mature DC. Caspases are cysteine proteases which play essential roles in apoptosis, necrosis and inflammation. Here, we demonstrate that VAMP-8, (a SNARE protein of the early/late endosomes) which has been shown previously to inhibit phagocytosis in DC, is a substrate of caspases. Furthermore, we identified two putative conserved caspase recognition/cleavage sites on the VAMP-8 protein. Consistent with the up-regulation of VAMP-8 expression upon treatment with caspase inhibitor (CI), immature DC treated with CI exhibits lower phagocytosis activity. Thus, our results highlight the role of caspases in regulating VAMP-8 expression and subsequently phagocytosis during maturation of DC.

  9. Plasmacytoid Dendritic Cells and the Control of Herpesvirus Infections

    Directory of Open Access Journals (Sweden)

    Thomas Baranek

    2009-10-01

    Full Text Available Type-I interferons (IFN-I are cytokines essential for vertebrate antiviral defense, including against herpesviruses. IFN-I have potent direct antiviral activities and also mediate a multiplicity of immunoregulatory functions, which can either promote or dampen antiviral adaptive immune responses. Plasmacytoid dendritic cells (pDCs are the professional producers of IFN-I in response to many viruses, including all of the herpesviruses tested. There is strong evidence that pDCs could play a major role in the initial orchestration of both innate and adaptive antiviral immune responses. Depending on their activation pattern, pDC responses may be either protective or detrimental to the host. Here, we summarize and discuss current knowledge regarding pDC implication in the physiopathology of mouse and human herpesvirus infections, and we discuss how pDC functions could be manipulated in immunotherapeutic settings to promote health over disease.

  10. Functional RNA delivery targeted to dendritic cells by synthetic nanoparticles.

    Science.gov (United States)

    McCullough, Kenneth C; Bassi, Isabelle; Démoulins, Thomas; Thomann-Harwood, Lisa J; Ruggli, Nicolas

    2012-09-01

    Dendritic cells (DCs) are essential to many aspects of immune defense development and regulation. They provide important targets for prophylactic and therapeutic delivery. While protein delivery has had considerable success, RNA delivery is still expanding. Delivering RNA molecules for RNAi has shown particular success and there are reports on successful delivery of mRNA. Central, therein, is the application of cationic entities. Following endocytosis of the delivery vehicle for the RNA, cationic entities should promote vesicular membrane perturbation, facilitating cytosolic release. The present review explains the diversity of DC function in immune response development and control. Promotion of delivered RNA cytosolic release is discussed, relating to immunoprophylactic and therapeutic potential, and DC endocytic machinery is reviewed, showing how DC endocytic pathways influence the handling of internalized material. The potential advantages for application of replicating RNA are presented and discussed, in consideration of their value and development in the near future.

  11. A Model of Cytotoxic T Antitumor Activation Stimulated by Pulsed Dendritic Cells

    Science.gov (United States)

    Pennisi, Marzio; Pappalardo, Francesco; Chiacchio, Ferdinando; Motta, Santo

    2011-09-01

    We present a preliminary ODE model to sketch the immune response of cytotoxic T cells against cancer through the use of pulsed autologous dendritic cells. The model is partially based on data coming from experiments that are presently in progress in the wet lab of our collaborators, but it can be applied in principle to different tumors. To this end, we show the immune response of cytotoxic T cells stimulated by autologous dendritic cells for different cancers.

  12. Cytokine-producing dendritic cells in the pathogenesis of inflammatory skin diseases

    OpenAIRE

    Johnson-Huang, Leanne M.; McNutt, N. Scott; Krueger, James G.; Lowes, Michelle A.

    2009-01-01

    Inflammatory skin diseases can be examined from many viewpoints. In this review, we consider three distinct cutaneous inflammatory diseases from the point of view of their major lesional dendritic cell (DC) subpopulations. The DC populations considered are Langerhans cells, myeloid DCs, and plasmacytoid DCs (pDCs), with specific attention to the presence and role of the inflammatory counterparts of these cells. From such a “dendritic cell-centric” focus, psoriasis, atopic dermatitis (AD), and...

  13. Heat Shock Protein 96 Induces Maturation of Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Chunxia Cao; Wei Yang; Yonglie Chu; Qingguang Liu; Liang Yu; Cheng'en Pan

    2006-01-01

    Objective: Heat shock protein (HSP) has the promiscuous abilities to chaperone and present a broad repertoire of tumor antigens to antigen presenting cells including DCs. In this report, we analyzed the modulation of immature DC by HSP 96 (gp96).Method: Murine bone marrow-derived DC was induced by GM-CSF plus IL-4, which aped the immunostimulatory effects of DC.Cocultured DC and gp96-peptide complexes (gp96-PC) or inactivated H22 cells, the expression of MHC class Ⅱ, CD40, CD80 was quantified by flow cytometry. The concentration of IL-12 and TNF- in culture supernatants were determined by ELISA.[51] Cr release assay was used to test specific cytotoxic T cell. Results: Our study demonstrated that the extent of DC maturation induced by gp96-PC, which was reflected in surface density of costimulatory and MHC Ⅱ molecules, was correlated with the secretion of IL-12 and with the T cellactivating potential in vitro. Conclusion: Heat shock protein 96 could be isolated and purified from H22 cells and could induce maturation of dendritic cell. Our findings might be relevance to the use of DC vaccine in therapy of human tumors.

  14. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany); Hoss, Mareike [Institute of Pathology, Electron Microscopy Facility, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Wong, John Erik, E-mail: John.Wong@avt.rwth-aachen.de [Chemical Process Engineering, RWTH Aachen University, Turmstrasse 46, 52056 Aachen (Germany); DWI – Leibniz Institute for Interactive Materials Research, Forckenbeckstrasse 50, Aachen (Germany); Hieronymus, Thomas, E-mail: thomas.hieronymus@rwth-aachen.de [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany)

    2015-04-15

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3{sup +} DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  15. Characterization of Interleukin-15-Transpresenting Dendritic Cells for Clinical Use

    Directory of Open Access Journals (Sweden)

    J. M. J. Van den Bergh

    2017-01-01

    Full Text Available Personalized dendritic cell- (DC- based vaccination has proven to be safe and effective as second-line therapy against various cancer types. In terms of overall survival, there is still room for improvement of DC-based therapies, including the development of more immunostimulatory DC vaccines. In this context, we redesigned our currently clinically used DC vaccine generation protocol to enable transpresentation of interleukin- (IL- 15 to IL-15Rβγ-expressing cells aiming at boosting the antitumor immune response. In this study, we demonstrate that upon electroporation with both IL-15 and IL-15Rα-encoding messenger RNA, mature DC become highly positive for surface IL-15, without influencing the expression of prototypic mature DC markers and with preservation of their cytokine-producing capacity and their migratory profile. Functionally, we show that IL-15-transpresenting DC are equal if not better inducers of T-cell proliferation and are superior in tumor antigen-specific T-cell activation compared with DC without IL-15 conditioning. In view of the clinical use of DC vaccines, we evidence with a time- and cost-effective manner that clinical grade DC can be safely engineered to transpresent IL-15, hereby gaining the ability to transfer the immune-stimulating IL-15 signal towards antitumor immune effector cells.

  16. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Science.gov (United States)

    Chen, Yin-Peng; Chiao, Chuan-Chin

    2014-01-01

    Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  17. Dendritic Arborization Patterns of Small Juxtaglomerular Cell Subtypes within the Rodent Olfactory Bulb

    Science.gov (United States)

    Bywalez, Wolfgang G.; Ona-Jodar, Tiffany; Lukas, Michael; Ninkovic, Jovica; Egger, Veronica

    2017-01-01

    Within the glomerular layer of the rodent olfactory bulb, numerous subtypes of local interneurons contribute to early processing of incoming sensory information. Here we have investigated dopaminergic and other small local juxtaglomerular cells in rats and mice and characterized their dendritic arborization pattern with respect to individual glomeruli by fluorescent labeling via patching and reconstruction of dendrites and glomerular contours from two-photon imaging data. Dopaminergic neurons were identified in a transgenic mouse line where the expression of dopamine transporter (DAT) was labeled with GFP. Among the DAT+ cells we found a small short-axon cell (SAC) subtype featuring hitherto undescribed dendritic specializations. These densely ramifying structures clasped mostly around somata of other juxtaglomerular neurons, which were also small, non-dopaminergic and to a large extent non-GABAergic. Clasping SACs were observed also in wild-type mice and juvenile rats. In DAT+ SAC dendrites, single backpropagating action potentials evoked robust calcium entry throughout both clasping and non-clasping compartments. Besides clasping SACs, most other small neurons either corresponded to the classical periglomerular cell type (PGCs), which was never DAT+, or were undersized cells with a small dendritic tree and low excitability. Aside from the presence of clasps in SAC dendrites, many descriptors of dendritic morphology such as the number of dendrites and the extent of branching were not significantly different between clasping SACs and PGCs. However, a detailed morphometric analysis in relation to glomerular contours revealed that the dendrites of clasping SACs arborized mostly in the juxtaglomerular space and never entered more than one glomerulus (if at all), whereas most PGC dendrites were restricted to their parent glomerulus, similar to the apical tufts of mitral cells. These complementary arborization patterns might underlie a highly complementary functional

  18. Dendritic differentiation of cerebellar Purkinje cells is promoted by ryanodine receptors expressed by Purkinje and granule cells.

    Science.gov (United States)

    Ohashi, Ryo; Sakata, Shin-ichi; Naito, Asami; Hirashima, Naohide; Tanaka, Masahiko

    2014-04-01

    Cerebellar Purkinje cells have the most elaborate dendritic trees among neurons in the brain. We examined the roles of ryanodine receptor (RyR), an intracellular Ca(2+) release channel, in the dendrite formation of Purkinje cells using cerebellar cell cultures. In the cerebellum, Purkinje cells express RyR1 and RyR2, whereas granule cells express RyR2. When ryanodine (10 µM), a blocker of RyR, was added to the culture medium, the elongation and branching of Purkinje cell dendrites were markedly inhibited. When we transferred small interfering RNA (siRNA) against RyR1 into Purkinje cells using single-cell electroporation, dendritic branching but not elongation of the electroporated Purkinje cells was inhibited. On the other hand, transfection of RyR2 siRNA into granule cells also inhibited dendritic branching of Purkinje cells. Furthermore, ryanodine reduced the levels of brain-derived neurotrophic factor (BDNF) in the culture medium. The ryanodine-induced inhibition of dendritic differentiation was partially rescued when BDNF was exogenously added to the culture medium in addition to ryanodine. Overall, these results suggest that RyRs expressed by both Purkinje and granule cells play important roles in promoting the dendritic differentiation of Purkinje cells and that RyR2 expressed by granule cells is involved in the secretion of BDNF from granule cells.

  19. DMPD: Proximal effects of Toll-like receptor activation in dendritic cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17142025 Proximal effects of Toll-like receptor activation in dendritic cells. Watt...) (.svg) (.html) (.csml) Show Proximal effects of Toll-like receptor activation in dendritic cells. PubmedID... 17142025 Title Proximal effects of Toll-like receptor activation in dendritic ce

  20. Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells

    NARCIS (Netherlands)

    van Elburg, Ronald A. J.; van Ooyen, Arjen

    2010-01-01

    Neurons display a wide range of intrinsic firing patterns. A particularly relevant pattern for neuronal signaling and synaptic plasticity is burst firing, the generation of clusters of action potentials with short interspike intervals. Besides ion-channel composition, dendritic morphology appears to

  1. Novel immunomodulatory effects of adiponectin on dendritic cell functions.

    Science.gov (United States)

    Tsang, Julia Yuen Shan; Li, Daxu; Ho, Derek; Peng, Jiao; Xu, Aimin; Lamb, Jonathan; Chen, Yan; Tam, Paul Kwong Hang

    2011-05-01

    Adiponectin (ADN) is an adipocytokine with anti-inflammatory properties. Although it has been reported that ADN can inhibit the immunostimulatory function of monocytes and macrophages, little is known of its effect on dendritic cells (DC). Recent data suggest that ADN can regulate immune responses. DCs are uniquely specialised antigen presenting cells that play a central role in the initiation of immunity and tolerance. In this study, we have investigated the immuno- modulatory effects of ADN on DC functions. We found that ADN has only moderate effect on the differentiation of murine bone marrow (BM) derived DCs but altered the phenotype of DCs. The expression of major histocompatibilty complex class II (MHCII), CD80 and CD86 on ADN conditioned DCs (ADN-DCs) was lower than that on untreated cells. The production of IL-12p40 was also suppressed in ADN-DCs. Interestingly, ADN treated DCs showed an increase in the expression of the inhibitory molecule, programmed death-1 ligand (PDL-1) compared to untreated cells. In vitro co-culture of ADN-DCs with allogeneic T cells led to a decrease in T cell proliferation and reduction of IL-2 production. Concomitant with that, a higher percentage of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) was detected in co-cultures of T cells and ADN-DCs. Blocking PD-1/PDL-1 pathway could partially restore T cell function. These findings suggest that the immunomodulatory effect of ADN on immune responses could be at least partially be mediated by its ability to alter DC function. The PD-1/PDL-1 pathway and the enhancement of Treg expansion are implicated in the immunomodulatory mechanisms.

  2. Tumor-derived death receptor 6 modulates dendritic cell development.

    Science.gov (United States)

    DeRosa, David C; Ryan, Paul J; Okragly, Angela; Witcher, Derrick R; Benschop, Robert J

    2008-06-01

    Studies in murine models of cancer as well as in cancer patients have demonstrated that the immune response to cancer is often compromised. This paradigm is viewed as one of the major mechanisms of tumor escape. Many therapies focus on employing the professional antigen presenting dendritic cells (DC) as a strategy to overcome immune inhibition in cancer patients. Death receptor 6 (DR6) is an orphan member of the tumor necrosis factor receptor superfamily (TNFRSF21). It is overexpressed on many tumor cells and DR6(-/-) mice display altered immunity. We investigated whether DR6 plays a role in tumorigenesis by negatively affecting the generation of anti-tumor activity. We show that DR6 is uniquely cleaved from the cell surface of tumor cell lines by the membrane-associated matrix metalloproteinase (MMP)-14, which is often overexpressed on tumor cells and is associated with malignancy. We also demonstrate that >50% of monocytes differentiating into DC die when the extracellular domain of DR6 is present. In addition, DR6 affects the cell surface phenotype of the resulting immature DC and changes their cytokine production upon stimulation with LPS/IFN-gamma. The effects of DR6 are mostly amended when these immature DC are matured with IL-1beta/TNF-alpha, as measured by cell surface phenotype and their ability to present antigen. These results implicate MMP-14 and DR6 as a mechanism tumor cells can employ to actively escape detection by the immune system by affecting the generation of antigen presenting cells.

  3. SK2 channel modulation contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells.

    Science.gov (United States)

    Ohtsuki, Gen; Piochon, Claire; Adelman, John P; Hansel, Christian

    2012-07-12

    Small-conductance Ca(2+)-activated K(+) channels (SK channels) modulate excitability and curtail excitatory postsynaptic potentials (EPSPs) in neuronal dendrites. Here, we demonstrate long-lasting plasticity of intrinsic excitability (IE) in dendrites that results from changes in the gain of this regulatory mechanism. Using dendritic patch-clamp recordings from rat cerebellar Purkinje cells, we find that somatic depolarization or parallel fiber (PF) burst stimulation induce long-term amplification of synaptic responses to climbing fiber (CF) or PF stimulation and enhance the amplitude of passively propagated sodium spikes. Dendritic plasticity is mimicked and occluded by the SK channel blocker apamin and is absent in Purkinje cells from SK2 null mice. Triple-patch recordings from two dendritic sites and the soma and confocal calcium imaging studies show that local stimulation limits dendritic plasticity to the activated compartment of the dendrite. This plasticity mechanism allows Purkinje cells to adjust the SK2-mediated control of dendritic excitability in an activity-dependent manner.

  4. Exosomes from B cells and Dendritic cells: mechanisms of formation, secretion and targeting

    OpenAIRE

    Buschow, S.I.

    2006-01-01

    Many cell types, including dendritic cells (DC) and B cells, secrete small vesicles called exosomes. Exosomes from immune cells are thought to have immuno-regulatory functions but their precise role remains unresolved. The aim of the studies presented in this thesis was to get more insight into the factors that determine exosome formation, composition and secretion as well as to learn more about their physiological relevance. Exosomes are equivalent to Luminal Vesicles (LV) of Multi Vesicular...

  5. Candida albicans mannoprotein influences the biological function of dendritic cells.

    Science.gov (United States)

    Pietrella, Donatella; Bistoni, Giovanni; Corbucci, Cristina; Perito, Stefano; Vecchiarelli, Anna

    2006-04-01

    Cell wall components of fungi involved in induction of host immune response are predominantly proteins and glycoproteins, the latter being mainly mannoproteins (MP). In this study we analyse the interaction of the MP from Candida albicans (MP65) with dendritic cells (DC) and demonstrate that MP65 stimulates DC and induces the release of TNF-alpha, IL-6 and the activation of IL-12 gene, with maximal value 6 h post treatment. MP65 induces DC maturation by increasing costimulatory molecules and decreasing CD14 and FcgammaR molecule expression. The latter effect is partly mediated by toll-like receptor 2 (TLR2) and TLR4, and the MyD88-dependent pathway is involved in the process. MP65 enables DC to activate T cell response, its protein core is essential for induction of T cell activation, while its glycosylated portion primarily promotes cytokine production. The mechanisms involved in induction of protective response against C. albicans could be mediated by the MP65 antigen, suggesting that MP65 may be a suitable candidate vaccine.

  6. Role of mucosal dendritic cells in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Jan Hendrik Niess

    2008-01-01

    The gastrointestinal innate and adaptive immune system continuously faces the challenge of potent stimuli from the commensal microflora and food constituents.These local immune responses require a tight control,the outcome of which is in most cases the induction of tolerance.Local T cell immunity is an important compartment of the specific intestinal immune system.T cell reactivity is programmed during the initial stage of its activation by professional presenting cells.Mucosal dendritic cells(DCs)are assumed to play key roles in regulating immune responses in the antigen-rich gastrointestinal environment.Mucosal DCs are a heterogeneous population that can either initiate(innate and adaptive)immune responses,or control intestinal inflammation and maintain tolerance.Defects in this regulation are supposed to lead to the two major forms of inflammatory bowel disease(IBD),Crohn's disease(CD)and ulcerative colitis(UC).This review will discuss the emerging role of mucosal DCs in regulating intestinal inflammation and immune responses.(C)2008 The WJG Press.All rights reserved.

  7. Targeting Dendritic Cell Function during Systemic Autoimmunity to Restore Tolerance

    Directory of Open Access Journals (Sweden)

    Juan P. Mackern-Oberti

    2014-09-01

    Full Text Available Systemic autoimmune diseases can damage nearly every tissue or cell type of the body. Although a great deal of progress has been made in understanding the pathogenesis of autoimmune diseases, current therapies have not been improved, remain unspecific and are associated with significant side effects. Because dendritic cells (DCs play a major role in promoting immune tolerance against self-antigens (self-Ags, current efforts are focusing at generating new therapies based on the transfer of tolerogenic DCs (tolDCs during autoimmunity. However, the feasibility of this approach during systemic autoimmunity has yet to be evaluated. TolDCs may ameliorate autoimmunity mainly by restoring T cell tolerance and, thus, indirectly modulating autoantibody development. In vitro induction of tolDCs loaded with immunodominant self-Ags and subsequent cell transfer to patients would be a specific new therapy that will avoid systemic immunosuppression. Herein, we review recent approaches evaluating the potential of tolDCs for the treatment of systemic autoimmune disorders.

  8. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy.

    Science.gov (United States)

    Anguille, Sébastien; Smits, Evelien L; Bryant, Christian; Van Acker, Heleen H; Goossens, Herman; Lion, Eva; Fromm, Phillip D; Hart, Derek N; Van Tendeloo, Viggo F; Berneman, Zwi N

    2015-10-01

    Although the earliest—rudimentary—attempts at exploiting the immune system for cancer therapy can be traced back to the late 18th Century, it was not until the past decade that cancer immunotherapeutics have truly entered mainstream clinical practice. Given their potential to stimulate both adaptive and innate antitumor immune responses, dendritic cells (DCs) have come under intense scrutiny in recent years as pharmacological tools for cancer immunotherapy. Conceptually, the clinical effectiveness of this form of active immunotherapy relies on the completion of three critical steps: 1) the DCs used as immunotherapeutic vehicles must properly activate the antitumor immune effector cells of the host, 2) these immune effector cells must be receptive to stimulation by the DCs and be competent to mediate their antitumor effects, which 3) requires overcoming the various immune-inhibitory mechanisms used by the tumor cells. In this review, following a brief overview of the pivotal milestones in the history of cancer immunotherapy, we will introduce the reader to the basic immunobiological and pharmacological principles of active cancer immunotherapy using DCs. We will then discuss how current research is trying to define the optimal parameters for each of the above steps to realize the full clinical potential of DC therapeutics. Given its high suitability for immune interventions, acute myeloid leukemia was chosen here to showcase the latest research trends driving the field of DC-based cancer immunotherapy.

  9. Exploration Of The Dendritic Cell Algorithm Using The Duration Calculus

    CERN Document Server

    Gu, Feng; Aickelin, Uwe

    2010-01-01

    As one of the newest members in Artificial Immune Systems (AIS), the Dendritic Cell Algorithm (DCA) has been applied to a range of problems. These applications mainly belong to the field of anomaly detection. However, real-time detection, a new challenge to anomaly detection, requires improvement on the real-time capability of the DCA. To assess such capability, formal methods in the research of rea-time systems can be employed. The findings of the assessment can provide guideline for the future development of the algorithm. Therefore, in this paper we use an interval logic based method, named the Duration Calculus (DC), to specify a simplified single-cell model of the DCA. Based on the DC specifications with further induction, we find that each individual cell in the DCA can perform its function as a detector in real-time. Since the DCA can be seen as many such cells operating in parallel, it is potentially capable of performing real-time detection. However, the analysis process of the standard DCA constrict...

  10. Regulatory multitasking of tolerogenic dendritic cells – lessons taken from Vitamin D3-treated tolerogenic dendritic cells

    Directory of Open Access Journals (Sweden)

    Tatjana eNikolic

    2013-05-01

    Full Text Available Tolerogenic dendritic cells (DCs work through silencing of differentiated antigen-specific T cells, activation and expansion of naturally occurring T regulatory cells (Tregs, transfer of regulatory properties to T cells and the differentiation of naïve T cells into Tregs. Due to an operational definition based on T cell activation assays, the identity of tolerogenic DCs has been a matter of debate and it need not represent a specialized DC subset. Human tolerogenic DCs generated in vitro using inhibitory cytokines, growth factors, natural immunomodulators or genetic manipulation have been effective and several of these tolerogenic DCs are currently being tested for clinical use. Ex vivo generated tolerogenic DCs reduce activation of naïve T cells using various means, promote a variety of regulatory T cells and most importantly, frequently show stable inhibitory phenotypes upon repetitive maturation with inflammatory factors. Yet, tolerogenic DCs differ with respect to the phenotype or the number of regulatory mechanisms they employ to modulate the immune system. In our experience, tolerogenic DCs generated using the biologically active form of vitamin D (VD3-DCs, alone or combined with dexamethasone are proficient in their immunoregulatory functions. These tolerogenic DCs show a stable maturation-resistant semi-mature phenotype with low expression of activating co-stimulatory molecules, no production of the IL-12 family of cytokines and high expression of inhibitory molecules and IL-10. VD3-DCs induce increased apoptosis of effector T cells and induce antigen-specific regulatory T cells, which work through linked suppression ensuring infectious tolerance. Lessons learned on VD3-DCs help understanding the contribution of different pattern recognition receptors (PRRs and secondary signals to the tolerogenic function and how a cross-talk between DCs and T cells translates into immune regulation.

  11. Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells.

    Science.gov (United States)

    Bloss, Erik B; Cembrowski, Mark S; Karsh, Bill; Colonell, Jennifer; Fetter, Richard D; Spruston, Nelson

    2016-03-02

    Neuronal circuit function is governed by precise patterns of connectivity between specialized groups of neurons. The diversity of GABAergic interneurons is a hallmark of cortical circuits, yet little is known about their targeting to individual postsynaptic dendrites. We examined synaptic connectivity between molecularly defined inhibitory interneurons and CA1 pyramidal cell dendrites using correlative light-electron microscopy and large-volume array tomography. We show that interneurons can be highly selective in their connectivity to specific dendritic branch types and, furthermore, exhibit precisely targeted connectivity to the origin or end of individual branches. Computational simulations indicate that the observed subcellular targeting enables control over the nonlinear integration of synaptic input or the initiation and backpropagation of action potentials in a branch-selective manner. Our results demonstrate that connectivity between interneurons and pyramidal cell dendrites is more precise and spatially segregated than previously appreciated, which may be a critical determinant of how inhibition shapes dendritic computation.

  12. Mammal-derived respiratory lipocalin allergens do not exhibit dendritic cell-activating capacity.

    Science.gov (United States)

    Parviainen, S; Kinnunen, T; Rytkönen-Nissinen, M; Nieminen, A; Liukko, A; Virtanen, T

    2013-03-01

    Most mammal-derived respiratory allergens belong to the lipocalin family of proteins. Determinants of their allergenic capacity are still unknown. Innate immune cells, in particular dendritic cells, have been shown to be involved in the allergenicity of some proteins. As recognition by dendritic cells is one of the few plausible mechanisms for the allergenicity of proteins, we wanted to investigate their role in the allergenicity of lipocalin allergens. Therefore, we first incubated human monocyte-derived dendritic cells with immunologically functional recombinant allergens mouse Mus m 1, dog Can f 1 and 2, cow Bos d 2, horse Equ c 1 and natural Bos d 2. Then, the surface marker expression and cytokine production of dendritic cells and their capacity to promote T cell proliferation and Th2 immune deviation in naïve CD4(+) T cells were examined in vitro. We found that near to endotoxin-free lipocalin allergens had no effect on the activation, allostimulatory capacity or cytokine production of dendritic cells. The dendritic cells could not induce immune deviation in naïve CD4(+) T cells. In contrast, lipopolysaccharide activated the dendritic cells efficiently. However, lipocalin allergens were not able to modify the lipopolysaccharide-induced responses. We conclude that an important group of mammal-derived respiratory allergens, lipocalins, appear not to be able to activate dendritic cells, a major component involved in the allergenicity of some proteins. It is conceivable that this incapacity of lipocalin allergens to arouse innate immunity may be associated with their poor capacity to induce a strong T cell response, verified in several studies.

  13. Modulation of Dendritic Cell Responses by Parasites: A Common Strategy to Survive

    Directory of Open Access Journals (Sweden)

    César A. Terrazas

    2010-01-01

    Full Text Available Parasitic infections are one of the most important causes of morbidity and mortality in our planet and the immune responses triggered by these organisms are critical to determine their outcome. Dendritic cells are key elements for the development of immunity against parasites; they control the responses required to eliminate these pathogens while maintaining host homeostasis. However, there is evidence showing that parasites can influence and regulate dendritic cell function in order to promote a more permissive environment for their survival. In this review we will focus on the strategies protozoan and helminth parasites have developed to interfere with dendritic cell activities as well as in the possible mechanisms involved.

  14. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity.

    Science.gov (United States)

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity.

  15. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Sandra Winning

    2016-01-01

    Full Text Available Dendritic cells (DCs are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate immunity.

  16. Effects of inactivated porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells.

    Science.gov (United States)

    Gao, Qi; Zhao, Shanshan; Qin, Tao; Yin, Yinyan; Yu, Qinghua; Yang, Qian

    2016-06-01

    Porcine epidemic diarrhea (PED) is a serious infection in neonatal piglets. As the causative agent of PED, porcine epidemic diarrhea virus (PEDV) results in acute diarrhea and dehydration with high mortality rates in swine. Dendritic cells (DCs) are highly effective antigen-presenting cells to uptake and present viral antigens to T cells, which then initiate a distinct immune response. In this study, our results show that the expression of Mo-DCs surface markers such as SWC3a(+)CD1a(+), SWC3a(+)CD80/86(+) and SWC3a(+)SLA-II-DR(+) is increased after incubation with UV-PEDV for 24h. Mo-DCs incubated with UV-PEDV produce higher levels of IL-12 and INF-γ compared to mock-infected Mo-DCs. Interactions between Mo-DCs and UV-PEDV significantly stimulate T-cell proliferation in vitro. Consistent with these results, there is an enhancement in the ability of porcine intestinal DCs to activate T-cell proliferation in vivo. We conclude that UV-PEDV may be a useful and safe vaccine to trigger adaptive immunity.

  17. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance.

    Science.gov (United States)

    Steinman, Ralph M; Hawiger, Daniel; Liu, Kang; Bonifaz, Laura; Bonnyay, David; Mahnke, Karsten; Iyoda, Tomonori; Ravetch, Jeffrey; Dhodapkar, Madhav; Inaba, Kayo; Nussenzweig, Michel

    2003-04-01

    The avoidance of autoimmunity requires mechanisms to actively silence or tolerize self reactive T cells in the periphery. During infection, dendritic cells are not only capturing microbial antigens, but also are processing self antigens from dying cells as well as innocuous environmental proteins. Since the dendritic cells are maturing in response to microbial and other stimuli, peptides will be presented from both noxious and innocuous antigens. Therefore it would be valuable to have mechanisms whereby dendritic cells, prior to infection, establish tolerance to those self and environmental antigens that can be processed upon pathogen encounter. In the steady state, prior to acute infection and inflammation, dendritic cells are in an immature state and not fully differentiated to carry out their known roles as inducers of immunity. These immature cells are not inactive, however. They continuously circulate through tissues and into lymphoid organs, capturing self antigens as well as innocuous environmental proteins. Recent experiments have provided direct evidence that antigen-loaded immature dendritic in vivo silence T cells either by deleting them or by expanding regulatory T cells. In this way, it is proposed that the immune system overcomes at least some of the risk of developing autoimmunity and chronic inflammation. It is proposed that dendritic cells play a major role in defining immunologic self, not only centrally in the thymus but also in the periphery.

  18. Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins.

    Science.gov (United States)

    Heintz, Tristan G; Eva, Richard; Fawcett, James W

    2016-01-01

    Climbing fibres and parallel fibres compete for dendritic space on Purkinje cells in the cerebellum. Normally, climbing fibres populate the proximal dendrites, where they suppress the multiple small spines typical of parallel fibres, leading to their replacement by the few large spines that contact climbing fibres. Previous work has shown that ephrins acting via EphA4 are a signal for this change in spine type and density. We have used an in vitro culture model in which to investigate the ephrin effect on Purkinje cell dendritic spines and the role of integrins in these changes. We found that integrins α3, α5 and β4 are present in many of the dendritic spines of cultured Purkinje cells. pFAK, the main downstream signalling molecule from integrins, has a similar distribution, although the intenstity of pFAK staining and the percentage of pFAK+ spines was consistently higher in the proximal dendrites. Activating integrins with Mg2+ led to an increase in the intensity of pFAK staining and an increase in the proportion of pFAK+ spines in both the proximal and distal dendrites, but no change in spine length, density or morphology. Blocking integrin binding with an RGD-containing peptide led to a reduction in spine length, with more stubby spines on both proximal and distal dendrites. Treatment of the cultures with ephrinA3-Fc chimera suppressed dendritic spines specifically on the proximal dendrites and there was also a decrease of pFAK in spines on this domain. This effect was blocked by simultaneous activation of integrins with Mn2+. We conclude that Eph/ephrin signaling regulates proximal dendritic spines in Purkinje cells by inactivating integrin downstream signalling.

  19. Spatial modelling of brief and long interactions between T cells and dendritic cells.

    Science.gov (United States)

    Beltman, Joost B; Marée, Athanasius F M; de Boer, Rob J

    2007-06-01

    In the early phases of an immune response, T cells of appropriate antigen specificity become activated by antigen-presenting cells in secondary lymphoid organs. Two-photon microscopy imaging experiments have shown that this stimulation occurs in distinct stages during which T cells exhibit different motilities and interactions with dendritic cells (DCs). In this paper, we utilize the Cellular Potts Model, a model formalism that takes cell shapes and cellular interactions explicitly into account, to simulate the dynamics of, and interactions between, T cells and DCs in the lymph node paracortex. Our three-dimensional simulations suggest that the initial decrease in T-cell motility after antigen appearance is due to "stop signals" transmitted by activated DCs to T cells. The long-lived interactions that occur at a later stage can only be explained by the presence of both stop signals and a high adhesion between specific T cells and antigen-bearing DCs. Furthermore, our results indicate that long-lasting contacts with T cells are promoted when DCs retract dendrites that detect a specific contact at lower velocities than other dendrites. Finally, by performing long simulations (after prior fitting to short time scale data) we are able to provide an estimate of the average contact duration between T cells and DCs.

  20. Dendritic cells a double-edge sword in autoimmune responses

    Directory of Open Access Journals (Sweden)

    Giada eAmodio

    2012-08-01

    Full Text Available Dendritic cells (DC are antigen-presenting cells that play a pivotal role in regulating innate and adaptive immune responses. In autoimmunity, DC act as a double-edged sword since on one hand they initiate adaptive self-reactive responses and on the other they play a pivotal role in promoting and maintaining tolerance. Thus, DC are the most important cells in either triggering self-specific responses or in negatively regulating auto-reactive responses. DC in the steady state or specialized subsets of DC, named tolerogenic DC, are involved in the latter function. Clinical and experimental evidence indicate that prolonged presentation of self-antigens by DC is crucial for the development of destructive autoimmune diseases, and defects in tolerogenic DC functions contribute to eradication of self-tolerance. In recent years, DC have emerged as therapeutic targets for limiting their immunogenicity against self-antigens, while tolerogenic DC have been conceived as therapeutic tools to restore tolerance. The purpose of this review is to give a general overview of the current knowledge on the pathogenic role of DC in patients affected by autoimmune diseases. In addition, the protective role of tolerogenic DC will be addressed. The currently applied strategies to block immune activation or to exploit the tolerogenic potential of DC will be discussed.

  1. GM-CSF alters dendritic cells in autoimmune diseases.

    Science.gov (United States)

    Li, Bao-Zhu; Ye, Qian-Ling; Xu, Wang-Dong; Li, Jie-Hua; Ye, Dong-Qing; Xu, Yuekang

    2013-11-01

    Autoimmune diseases arise from an inappropriate immune response against self components, including macromolecules, cells, tissues, organs etc. They are often triggered or accompanied by inflammation, during which the levels of granulocyte macrophage colony-stimulating factor (GM-CSF) are elevated. GM-CSF is an inflammatory cytokine that has profound impact on the differentiation of immune system cells of myeloid lineage, especially dendritic cells (DCs) that play critical roles in immune initiation and tolerance, and is involved in the pathogenesis of autoimmune diseases. Although GM-CSF was discovered decades ago, recent studies with some new findings have shed an interesting light on the old hematopoietic growth factor. In the inflammatory autoimmune diseases, GM-CSF redirects the normal developmental pathway of DCs, conditions their antigen presentation capacities and endows them with unique cytokine signatures to affect autoimmune responses. Here we review the latest advances in the field, with the aim of demonstrating the effects of GM-CSF on DCs and their influences on autoimmune diseases. The summarized knowledge will help to design DC-based strategies for the treatment of autoimmune diseases.

  2. Vaginal epithelial dendritic cells renew from bone marrow precursors.

    Science.gov (United States)

    Iijima, Norifumi; Linehan, Melissa M; Saeland, Sem; Iwasaki, Akiko

    2007-11-27

    Dendritic cells (DCs) represent key professional antigen-presenting cells capable of initiating primary immune responses. A specialized subset of DCs, the Langerhans cells (LCs), are located in the stratified squamous epithelial layer of the skin and within the mucosal epithelial lining of the vaginal and oral cavities. The vaginal mucosa undergoes cyclic changes under the control of sex hormones, and the renewal characteristics of the vaginal epithelial DCs (VEDCs) remain unknown. Here, we examined the origin of VEDCs. In contrast to the skin epidermal LCs, the DCs in the epithelium of the vagina were found to be repopulated mainly by nonmonocyte bone-marrow-derived precursors, with a half-life of 13 days under steady-state conditions. Upon infection with HSV-2, the Gr-1(hi) monocytes were found to give rise to VEDCs. Furthermore, flow cytometric analysis of the VEDCs revealed the presence of at least three distinct populations, namely, CD11b(+)F4/80(hi), CD11b(+)F4/80(int), and CD11b(-)F4/80(-). Importantly, these VEDC populations expressed CD207 at low levels and had a constitutively more activated phenotype compared with the skin LCs. Collectively, our results revealed mucosa-specific features of the VEDCs with respect to their phenotype, activation status, and homeostatic renewal potential.

  3. Loss of Gadkin Affects Dendritic Cell Migration In Vitro.

    Directory of Open Access Journals (Sweden)

    Hannah Schachtner

    Full Text Available Migration is crucial for the function of dendritic cells (DCs, which act as outposts of the immune system. Upon detection of pathogens, skin- and mucosa-resident DCs migrate to secondary lymphoid organs where they activate T cells. DC motility relies critically on the actin cytoskeleton, which is regulated by the actin-related protein 2/3 (ARP2/3 complex, a nucleator of branched actin networks. Consequently, loss of ARP2/3 stimulators and upstream Rho family GTPases dramatically impairs DC migration. However, nothing is known yet about the relevance of ARP2/3 inhibitors for DC migration. We previously demonstrated that the AP-1-associated adaptor protein Gadkin inhibits ARP2/3 by sequestering it on intracellular vesicles. Consistent with a role of Gadkin in DC physiology, we here report Gadkin expression in bone marrow-derived DCs and show that its protein level and posttranslational modification are regulated upon LPS-induced DC maturation. DCs derived from Gadkin-deficient mice were normal with regards to differentiation and maturation, but displayed increased actin polymerization. While the actin-dependent processes of macropinocytosis and cell spreading were not affected, loss of Gadkin significantly impaired DC migration in vitro, however, in vivo DC migration was unperturbed suggesting the presence of compensatory mechanisms.

  4. Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Sebastian [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany); Fernandes, Fabiana [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Pauwelsstrasse 30, 52074 Aachen (Germany); Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Sanroman, Laura [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany); Hodenius, Michael [Institute for Biomedical Engineering and Helmholtz Institute for Biomedical Engineering, Department of Applied Medical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany); Lang, Claus [Department of Microbiology, Ludwig-Maximillians-University of Munich, Maria-Ward-Str. 1a, 80638 Munich (Germany); Himmelreich, Uwe [In-vivo-NMR-Laboratory, Max-Planck-Institute for Neurological Research, Gleueler Str. 50, 50931 Cologne (Germany); Biomedical NMR Unit, MoSAIC, Faculty of Medicine, KU Leuven, Onderwijs en Navorsing 1, bus 505, 3000 Leuven (Belgium); Schmitz-Rode, Thomas [Institute for Biomedical Engineering and Helmholtz Institute for Biomedical Engineering, Department of Applied Medical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany); Schueler, Dirk [Department of Microbiology, Ludwig-Maximillians-University of Munich, Maria-Ward-Str. 1a, 80638 Munich (Germany); Hoehn, Mathias [In-vivo-NMR-Laboratory, Max-Planck-Institute for Neurological Research, Gleueler Str. 50, 50931 Cologne (Germany)] (and others)

    2009-05-15

    Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3{sup +} stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.

  5. Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Lars A Ormandy; Tim F Greten; Anatol F(a)rber; Tobias Cantz; Susanne Petrykowska; Heiner Wedemeyer; Monique H(o)rning; Frank Lehner; Michael P Manns; Firouzeh Korangy

    2006-01-01

    AIM: To analyze the phenotype and function of dendritic cells (DC) from patients with hepatocellular carcinoma (HCC) in order to understand their role in this disease.METHODS: Myeloid dendritic cells were enumerated in peripheral blood of HCC patients. CD80, CD83, CD86 and HLA-DR expression on naive and stimulated myeloid dendritic cells from peripheral blood were analyzed. Myeloid dendritic cells were isolated from peripheral blood and their function was tested. Phagocytosis was analyzed using FITC-dextran beads, peptide specific stimulation, the capacity to stimulate allogeneic T cells and secretion of cytokines upon poly dI:dC was tested.RESULTS: Myeloid dendritic cells were reduced in patients with HCC. No differences in CD80, CD83, CD86 and HLA-DR expression were found on naive and stimulated myeloid dendritic cells from HCC patients and healthy controls. Normal phagocytosis or stimulation of peptide specific T cells was observed in contrast to an impaired allo-stimulatory capacity and a reduced IL-12 secretion.CONCLUSION: Impaired IL-12 production of mDCs in patients could lead to an impaired stimulatory capacity of naive T cells suggesting that IL-12 directed therapies may enhance tumor specific immune responses in HCC patients.

  6. Monocyte cell surface glycosaminoglycans positively modulate IL-4-induced differentiation toward dendritic cells.

    NARCIS (Netherlands)

    Dekker, E. den; Grefte, S.; Huijs, T.; Dam, G.B. ten; Versteeg, E.M.M.; Berk, L.C.J. van den; Bladergroen, B.A.; Kuppevelt, A.H.M.S.M. van; Figdor, C.G.; Torensma, R.

    2008-01-01

    IL-4 induces the differentiation of monocytes toward dendritic cells (DCs). The activity of many cytokines is modulated by glycosaminoglycans (GAGs). In this study, we explored the effect of GAGs on the IL-4-induced differentiation of monocytes toward DCs. IL-4 dose-dependently up-regulated the expr

  7. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine

    Science.gov (United States)

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-01-01

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4+CD25−Fopx3+) and CD4+ and CD8+ T cells were significantly decreased and increased, respectively. HPV-16-specific CD8+ T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice. PMID:28272545

  8. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine.

    Science.gov (United States)

    Aipire, Adila; Li, Jinyu; Yuan, Pengfei; He, Jiang; Hu, Yelang; Liu, Lu; Feng, Xiaoli; Li, Yijie; Zhang, Fuchun; Yang, Jianhua; Li, Jinyao

    2017-03-08

    Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4(+)CD25(-)Fopx3(+)) and CD4(+) and CD8(+) T cells were significantly decreased and increased, respectively. HPV-16-specific CD8(+) T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice.

  9. Neuromelanin is an immune stimulator for dendritic cells in vitro

    Directory of Open Access Journals (Sweden)

    Oberländer Uwe

    2011-11-01

    Full Text Available Abstract Background Parkinson's disease (PD is characterized at the cellular level by a destruction of neuromelanin (NM-containing dopaminergic cells and a profound reduction in striatal dopamine. It has been shown recently that anti-melanin antibodies are increased in sera of Parkinson patients, suggesting that NM may act as an autoantigen. In this study we tested whether NM is being recognized by dendritic cells (DCs, the major cell type for inducing T- and B-cell responses in vivo. This recognition of NM by DCs is a prerequisite to trigger an adaptive autoimmune response directed against NM-associated structures. Results Murine DCs were treated with NM of substantia nigra (SN from human subjects or with synthetic dopamine melanin (DAM. DCs effectively phagocytized NM and subsequently developed a mature phenotype (CD86high/MHCIIhigh. NM-activated DCs secreted the proinflammatory cytokines IL-6 and TNF-α. In addition, they potently triggered T cell proliferation in a mixed lymphocyte reaction, showing that DC activation was functional to induce a primary T cell response. In contrast, DAM, which lacks the protein and lipid components of NM but mimics the dopamine-melanin backbone of NM, had only very little effect on DC phenotype and function. Conclusions NM is recognized by DCs in vitro and triggers their maturation. If operative in vivo, this would allow the DC-mediated transport and presentation of SN antigens to the adaptive immune system, leading to autoimmmunity in susceptible individuals. Our data provide a rationale for an autoimmune-based pathomechanism of PD with NM as the initial trigger.

  10. Antitumour activities of cytokine-induced killer cells and dendritic cells in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    ZHANG Song; JIANG Shu-juan; ZHANG Cai-qing; WANG Hong-mei; BAI Chun-xue

    2005-01-01

    @@ Solid tumour cells show a resistance to immunological effector cells in vitro.1 The resistance may be one reason why these tumours withstand immunotherapeutic approaches in humans.Dendritic cells (DC) play an important role in the immune response to tumour associated antigens in humans.DC in the periphery capture and process antigens,express lymphocyte costimulatory molecules,migrate to lymphoid organs and secrete cytokines to initiate immune response.

  11. Mesenchymal Stem Cells Inhibit Dendritic Cell Maturation and Their Allosti mulatory Capacity

    Institute of Scientific and Technical Information of China (English)

    Sophie; PACZESNY; Veronique; LATGER; CANNARD; Luc; MARCHAL; Bernard; FOLLIGUET; Jean-Franéois; STOLTZ; Assia; ELJAAFARI

    2005-01-01

    1 IntroductionDendritic cells (DC) are the most potent antigen-presenting cells. They play an important role in both initiation of immunity and maintenance of immune tolerance. In the recent years, they have been used in humans for the treatment of tumors. DCs are very poor in blood; however, they can be generated in vitro from either CD34~+ hematopoietic stem cell precursors or peripheral blood monocytes, by using appropriate cytokines~([1]). However, the microenvironment can influence their differentiatio...

  12. Type I TARPs promote dendritic growth of early postnatal neocortical pyramidal cells in organotypic cultures.

    Science.gov (United States)

    Hamad, Mohammad I K; Jack, Alexander; Klatt, Oliver; Lorkowski, Markus; Strasdeit, Tobias; Kott, Sabine; Sager, Charlotte; Hollmann, Michael; Wahle, Petra

    2014-04-01

    The ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptors (AMPARs) have been implicated in the establishment of dendritic architecture. The transmembrane AMPA receptor regulatory proteins (TARPs) regulate AMPAR function and trafficking into synaptic membranes. In the current study, we employ type I and type II TARPs to modulate expression levels and function of endogenous AMPARs and investigate in organotypic cultures (OTCs) of rat occipital cortex whether this influences neuronal differentiation. Our results show that in early development [5-10 days in vitro (DIV)] only the type I TARP γ-8 promotes pyramidal cell dendritic growth by increasing spontaneous calcium amplitude and GluA2/3 expression in soma and dendrites. Later in development (10-15 DIV), the type I TARPs γ-2, γ-3 and γ-8 promote dendritic growth, whereas γ-4 reduced dendritic growth. The type II TARPs failed to alter dendritic morphology. The TARP-induced dendritic growth was restricted to the apical dendrites of pyramidal cells and it did not affect interneurons. Moreover, we studied the effects of short hairpin RNA-induced knockdown of endogenous γ-8 and showed a reduction of dendritic complexity and amplitudes of spontaneous calcium transients. In addition, the cytoplasmic tail (CT) of γ-8 was required for dendritic growth. Single-cell calcium imaging showed that the γ-8 CT domain increases amplitude but not frequency of calcium transients, suggesting a regulatory mechanism involving the γ-8 CT domain in the postsynaptic compartment. Indeed, the effect of γ-8 overexpression was reversed by APV, indicating a contribution of NMDA receptors. Our results suggest that selected type I TARPs influence activity-dependent dendritogenesis of immature pyramidal neurons.

  13. Mitochondrial fission protein Drp1 regulates mitochondrial transport and dendritic arborization in cerebellar Purkinje cells.

    Science.gov (United States)

    Fukumitsu, Kansai; Hatsukano, Tetsu; Yoshimura, Azumi; Heuser, John; Fujishima, Kazuto; Kengaku, Mineko

    2016-03-01

    Mitochondria dynamically change their shape by repeated fission and fusion in response to physiological and pathological conditions. Recent studies have uncovered significant roles of mitochondrial fission and fusion in neuronal functions, such as neurotransmission and spine formation. However, the contribution of mitochondrial fission to the development of dendrites remains controversial. We analyzed the function of the mitochondrial fission GTPase Drp1 in dendritic arborization in cerebellar Purkinje cells. Overexpression of a dominant-negative mutant of Drp1 in postmitotic Purkinje cells enlarged and clustered mitochondria, which failed to exit from the soma into the dendrites. The emerging dendrites lacking mitochondrial transport remained short and unstable in culture and in vivo. The dominant-negative Drp1 affected neither the basal respiratory function of mitochondria nor the survival of Purkinje cells. Enhanced ATP supply by creatine treatment, but not reduced ROS production by antioxidant treatment, restored the hypomorphic dendrites caused by inhibition of Drp1 function. Collectively, our results suggest that Drp1 is required for dendritic distribution of mitochondria and thereby regulates energy supply in growing dendritic branches in developing Purkinje cells.

  14. Dendritic Cells and Multiple Sclerosis: Disease, Tolerance and Therapy

    Directory of Open Access Journals (Sweden)

    Mohammad G. Mohammad

    2012-12-01

    Full Text Available Multiple sclerosis (MS is a devastating neurological disease that predominantly affects young adults resulting in severe personal and economic impact. The majority of therapies for this disease were developed in, or are beneficial in experimental autoimmune encephalomyelitis (EAE, the animal model of MS. While known to target adaptive anti-CNS immune responses, they also target, the innate immune arm. This mini-review focuses on the role of dendritic cells (DCs, the professional antigen presenting cells of the innate immune system. The evidence for a role for DCs in the appropriate regulation of anti-CNS autoimmune responses and their role in MS disease susceptibility and possible therapeutic utility are discussed. Additionally, the current controversy regarding the evidence for the presence of functional DCs in the normal CNS is reviewed. Furthermore, the role of CNS DCs and potential routes of their intercourse between the CNS and cervical lymph nodes are considered. Finally, the future role that this nexus between the CNS and the cervical lymph nodes might play in site directed molecular and cellular therapy for MS is outlined.

  15. Dendritic Cells as a Pharmacological Target of Traditional Chinese Medicine

    Institute of Scientific and Technical Information of China (English)

    Xin Chen; Lu Yang; O. M. Zack Howard; Joost J. Oppenheim

    2006-01-01

    Dendritic cells (DCs) represent a heterogeneous population of professional antigen-presenting cells (APCs) that play a central role in the initiation and regulation of immune responses. There is considerable evidence that DCs can be used as therapeutic targets for pharmacological modulation of immune responses. Traditional Chines emedicine (TCM) has a long-standing history of using herbal medicine in the treatment of variety of human diseases.Many of the clinical effects of TCM have reportedly been attributed to the up- or down-regulation of immune responses. Accumulating evidence indicates that TCM and its components can interfere with immune responses at the earliest stage by targeting key functions of DCs. Here, we review those published studies of TCM with respect to their effects on immunobiological functions of DCs. Investigations based on both chemical entities derived from TCM as well as TCM herbal mixtures are presented. These studies suggest that various TCM herbal medicines have the capacity to inhibit or promote major functions of DCs, such as differentiation, maturation, cytokine production, survival, antigen uptake and presentation as well as trafficking. These studies have revealed novel biological effects of TCM and documented the utility of this approach to discover novel biological modifier of DC functions derived from natural sources.

  16. On dendritic cell-based therapy for cancers

    Institute of Scientific and Technical Information of China (English)

    Morikazu Onji; Sk. Md. Fazle Akbar

    2005-01-01

    Dendritic cells (DCs), the most prevalent antigen-presenting cell in vivo, had been widely characterized in the last three decades. DCs are present in almost all tissues of the body and play cardinal roles in recognition of microbial agents,autoantigens, allergens and alloantigen. DCs process the microbial agents or their antigens and migrate to lymphoid tissues to present the antigenic peptide to lymphocytes. This leads to activation of antigen-specific lymphocytes. Initially, it was assumed that DCs are principally involved in the induction and maintenance of adaptive immune responses, but now it is evident that DCs also have important roles in innate immunity. These features make DCs very good candidates for therapy against various pathological conditions including malignancies. Initially, DC-based therapy was used in animal models of cancers. Data from these studies inspired considerable optimism and DC-based therapies was started in human cancers 8 years ago. In general,DC-based therapy has been found to be safe in patients with cancers, although few controlled trials have been conducted in this regard. Because the fundamentals principles of human cancers and animal models of cancers are different, the therapeutic efficacy of the ongoing regime of DC-based therapy in cancer patients is not satisfactory. In this review, we covered the various aspects that should be considered for developing better regime of DC-based therapy for human cancers.

  17. Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation.

    Science.gov (United States)

    Pietrella, Donatella; Corbucci, Cristina; Perito, Stefano; Bistoni, Giovanni; Vecchiarelli, Anna

    2005-02-01

    Our previous data show that mannoproteins (MPs) from Cryptococcus neoformans are able to induce protective responses against both C. neoformans and Candida albicans. Here we provide evidence that MPs foster maturation and activation of human dendritic cells (DCs). Maturation was evaluated by the ability of MPs to facilitate expression of costimulatory molecules such as CD40, CD86, CD83, and major histocompatibility complex classes I and II and to inhibit receptors such as CD14, CD16, and CD32. Activation of DCs was measured by the capacity of MPs to promote interleukin-12 and tumor necrosis factor alpha secretion. DC-induced maturation and interleukin-12 induction are largely mediated by engagement of mannose receptors and presume MP internalization and degradation. DC activation leads to IkappaBalpha phosphorylation, which is necessary for nuclear factor kappaB transmigration into the nucleus. MP-loaded DCs are efficient stimulators of T cells and show a remarkable capacity to promote CD4 and CD8 proliferation. In conclusion, we have evidenced a novel regulatory role of MPs that promotes their candidacy as a vaccine against fungi.

  18. Dendritic Cell-Based Vaccine Against Fungal Infection.

    Science.gov (United States)

    Ueno, Keigo; Urai, Makoto; Ohkouchi, Kayo; Miyazaki, Yoshitsugu; Kinjo, Yuki

    2016-01-01

    Several pathogenic fungi, including Cryptococcus gattii, Histoplasma capsulatum, Coccidioides immitis, and Penicillium marneffei, cause serious infectious diseases in immunocompetent humans. However, currently, prophylactic and therapeutic vaccines are not clinically used. In particular, C. gattii is an emerging pathogen and thus far protective immunity against this pathogen has not been well characterized. Experimental vaccines such as component and attenuated live vaccines have been used as tools to study protective immunity against fungal infection. Recently, we developed a dendritic cell (DC)-based vaccine to study protective immunity against pulmonary infection by highly virulent C. gattii strain R265 that was clinically isolated from bronchial washings of infected patients during the Vancouver Island outbreak. In this approach, bone marrow-derived DCs (BMDCs) are pulsed with heat-killed C. gattii and then transferred into mice prior to intratracheal infection. This DC vaccine significantly increases interleukin 17A (IL-17A)-, interferon gamma (IFN-γ)-, and tumor necrosis factor alpha (TNF-α)-producing T cells in the lungs and spleen and ameliorates the pathology, fungal burden, and mortality following C. gattii infection. This approach may result in the development of a new means of controlling lethal fungal infections. In this chapter, we describe the procedures of DC vaccine preparation and murine pulmonary infection model for analysis of immune response against C. gattii.

  19. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  20. Neuropeptides control the dynamic behavior of airway mucosal dendritic cells.

    Science.gov (United States)

    Voedisch, Sabrina; Rochlitzer, Sabine; Veres, Tibor Z; Spies, Emma; Braun, Armin

    2012-01-01

    The airway mucosal epithelium is permanently exposed to airborne particles. A network of immune cells patrols at this interface to the environment. The interplay of immune cells is orchestrated by different mediators. In the current study we investigated the impact of neuronal signals on key functions of dendritic cells (DC). Using two-photon microscopic time-lapse analysis of living lung sections from CD11c-EYFP transgenic mice we studied the influence of neuropeptides on airway DC motility. Additionally, using a confocal microscopic approach, the phagocytotic capacity of CD11c(+) cells after neuropeptide stimulation was determined. Electrical field stimulation (EFS) leads to an unspecific release of neuropeptides from nerves. After EFS and treatment with the neuropeptides vasoactive intestinal peptide (VIP) or calcitonin gene-related peptide (CGRP), airway DC in living lung slices showed an altered motility. Furthermore, the EFS-mediated effect could partially be blocked by pre-treatment with the receptor antagonist CGRP(8-37). Additionally, the phagocytotic capacity of bone marrow-derived and whole lung CD11c(+) cells could be inhibited by neuropeptides CGRP, VIP, and Substance P. We then cross-linked these data with the in vivo situation by analyzing DC motility in two different OVA asthma models. Both in the acute and prolonged OVA asthma model altered neuropeptide amounts and DC motility in the airways could be measured. In summary, our data suggest that neuropeptides modulate key features motility and phagocytosis of mouse airway DC. Therefore altered neuropeptide levels in airways during allergic inflammation have impact on regulation of airway immune mechanisms and therefore might contribute to the pathophysiology of asthma.

  1. Quantitative Determination of Ceramide Molecular Species in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Samar Al Makdessi

    2016-09-01

    Full Text Available Background/Aims: The activation of acid sphingomyelinase by cellular stress or receptors or the de novo synthesis lead to the formation of ceramide (N-acylsphingosine, which in turn modifies the biophysical properties of cellular membrane and greatly amplifies the intensity of the initial signal. Ceramide, which acts by re-organizing a given signalosome rather than being a second messenger, has many functions in infection biology, cancer, cardiovascular syndromes, and immune regulation. Experimental studies on the infection of human cells with different bacterial agents demonstrated the activation of the acid sphingomyelinase/ceramide system. Moreover, the release of ceramide was found to be a requisite for the uptake of the pathogen. Considering the particular importance of the cellular role of ceramide, it was necessary to develop sensitive and accurate methods for its quantification. Methods: Here, we describe a method quantifying ceramide in dendritic cells and defining the different fatty acids (FA bound to sphingosine. The main steps of the method include extraction of total lipids, separation of the ceramide by thin-layer chromatography, derivatization of ceramide-fatty acids (Cer-FA, and quantitation of these acids in their methyl form by gas chromatography on polar capillary columns. The identification of FA was achieved by means of known standards and confirmed by mass spectrometry. Results: FA ranging between C10 and C24 could be detected and quantified. The concentration of the sum of Cer-FA amounted to 14.88 ± 8.98 nmol/106 cells (n=10. Oleic acid, which accounted for approximately half of Cer-FA (7.73 ± 6.52 nmol/106 cells was the predominant fatty acid followed by palmitic acid (3.47 ± 1.54 nmol/106 cells. Conclusion: This highly sensitive method allows the quantification of different molecular species of ceramides.

  2. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    Science.gov (United States)

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  3. Evidence for local dendritic cell activation in pulmonary sarcoidosis

    Directory of Open Access Journals (Sweden)

    Berge Bregje

    2012-04-01

    Full Text Available Abstract Background Sarcoidosis is a granulomatous disease characterized by a seemingly exaggerated immune response against a difficult to discern antigen. Dendritic cells (DCs are pivotal antigen presenting cells thought to play an important role in the pathogenesis. Paradoxically, decreased DC immune reactivity was reported in blood samples from pulmonary sarcoidosis patients. However, functional data on lung DCs in sarcoidosis are lacking. We hypothesized that at the site of disease DCs are mature, immunocompetent and involved in granuloma formation. Methods We analyzed myeloid DCs (mDCs and plasmacytoid DCs (pDCs in broncho-alveolar lavage (BAL and blood from newly diagnosed, untreated pulmonary sarcoidosis patients and healthy controls using 9-color flowcytometry. DCs, isolated from BAL using flowcytometric sorting (mDCs or cultured from monocytes (mo-DCs, were functionally assessed in a mixed leukocyte reaction with naïve allogeneic CD4+ T cells. Using Immunohistochemistry, location and activation status of CD11c+DCs was assessed in mucosal airway biopsies. Results mDCs in BAL, but not in blood, from sarcoidosis patients were increased in number when compared with mDCs from healthy controls. mDCs purified from BAL of sarcoidosis patients induced T cell proliferation and differentiation and did not show diminished immune reactivity. Mo-DCs from patients induced increased TNFα release in co-cultures with naïve allogeneic CD4+ T cells. Finally, immunohistochemical analyses revealed increased numbers of mature CD86+ DCs in granuloma-containing airway mucosal biopsies from sarcoidosis patients. Conclusion Taken together, these finding implicate increased local DC activation in granuloma formation or maintenance in pulmonary sarcoidosis.

  4. Dendritic cell-based immunotherapy for myeloid leukemias.

    Science.gov (United States)

    Schürch, Christian M; Riether, Carsten; Ochsenbein, Adrian F

    2013-12-31

    Acute and chronic myeloid leukemia (AML, CML) are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs). LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD), reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs), may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed, and presented by mature dendritic cells (DCs). Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to "malignant" DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application, and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid leukemias.

  5. Dendritic cell-based immunotherapy for myeloid leukemias

    Directory of Open Access Journals (Sweden)

    Christian Martijn Schürch

    2013-12-01

    Full Text Available Acute and chronic myeloid leukemia (AML, CML are hematologic malignancies arising from oncogene-transformed hematopoietic stem/progenitor cells known as leukemia stem cells (LSCs. LSCs are selectively resistant to various forms of therapy including irradiation or cytotoxic drugs. The introduction of tyrosine kinase inhibitors has dramatically improved disease outcome in patients with CML. For AML, however, prognosis is still quite dismal. Standard treatments have been established more than 20 years ago with only limited advances ever since. Durable remission is achieved in less than 30% of patients. Minimal residual disease (MRD, reflected by the persistence of LSCs below the detection limit by conventional methods, causes a high rate of disease relapses. Therefore, the ultimate goal in the treatment of myeloid leukemia must be the eradication of LSCs. Active immunotherapy, aiming at the generation of leukemia-specific cytotoxic T cells (CTLs, may represent a powerful approach to target LSCs in the MRD situation. To fully activate CTLs, leukemia antigens have to be successfully captured, processed and presented by mature dendritic cells (DCs. Myeloid progenitors are a prominent source of DCs under homeostatic conditions, and it is now well established that LSCs and leukemic blasts can give rise to malignant DCs. These leukemia-derived DCs can express leukemia antigens and may either induce anti-leukemic T cell responses or favor tolerance to the leukemia, depending on co-stimulatory or -inhibitory molecules and cytokines. This review will concentrate on the role of DCs in myeloid leukemia immunotherapy with a special focus on their generation, application and function and how they could be improved in order to generate highly effective and specific anti-leukemic CTL responses. In addition, we discuss how DC-based immunotherapy may be successfully integrated into current treatment strategies to promote remission and potentially cure myeloid

  6. Immunity to pathogens taught by specialized human dendritic cell subsets.

    Directory of Open Access Journals (Sweden)

    Jens A. E. Geginat

    2015-10-01

    Full Text Available Dendritic cells (DC are specialized antigen-presenting cells (APC that have a key role in immune responses, because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and up-regulate MHC molecules and co-stimulatory receptors to activate antigen-specific CD4+ and CD8+ T-cells. It is now well established that DC are not a homogeneous population, but are composed of different subsets with specialized functions in immune responses to specific pathogens. Upon viral infections, plasmacytoid DC (pDC rapidly produce large amounts of IFN-α, which has potent anti-viral functions and activates several other immune cells. However, pDC are not particularly potent APC and induce the tolerogenic cytokine IL-10 in CD4+ T-cells. In contrast, myeloid DC (mDC are very potent APC and possess the unique capacity to prime naïve T-cells and consequently to initiate a primary adaptive immune response. Different subsets of myeloid DC with specialized functions have been identified. In mice, CD8α+ mDC capture antigenic material from necrotic cells, secrete high levels of IL-12, and prime Th1 and cytotoxic T cell responses to control intracellular pathogens. Conversely, CD8α- mDC preferentially prime CD4+ T-cells and promote Th2 or Th17 differentiation. BDCA-3+ mDC2 are the human homologue of CD8α+ mDC, since they share the expression of several key molecules, the capacity to cross-present antigens to CD8+ T-cells and to produce IFN-λ. However, although several features of the DC network are conserved between humans and mice, the expression of several relevant toll-like receptors as well as the production of cytokines that regulate T-cell differentiation are different. Intriguingly, recent data suggests specific roles for human DC subsets in immune responses against individual pathogens. The biology of human DC subsets holds the promise to be exploitable in translational medicine, in particular for the

  7. Dendritic cells in hepatitis C virus infection: key players in the IFNL3-genotype response.

    Science.gov (United States)

    O'Connor, Kate S; George, Jacob; Booth, David; Ahlenstiel, Golo

    2014-12-21

    Recently, single nucleotide polymorphisms, in the vicinity of the interferon lambda 3 (IFNL3) gene have been identified as the strongest predictor of spontaneous and treatment induced clearance of hepatitis C virus (HCV) infection. Since then, increasing evidence has implicated the innate immune response in mediating the IFNL3 genotype effect. Dendritic cells (DCs) are key to the host immune response in HCV infection and their vital role in the IFNL3 genotype effect is emerging. Reports have identified subclasses of DCs, particularly myeloid DC2s and potentially plasmacytoid DCs as the major producers of IFNL3 in the setting of HCV infection. Given the complexities of dendritic cell biology and the conflicting current available data, this review aims to summarize what is currently known regarding the role of dendritic cells in HCV infection and to place it into context of what is know about lambda interferons and dendritic cells in general.

  8. Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells

    Directory of Open Access Journals (Sweden)

    Guosheng Yi

    2017-09-01

    Full Text Available Neural computation is performed by transforming input signals into sequences of action potentials (APs, which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na+ entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na+ entry efficiency of somatic AP. Activating inward Ca2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca2+-activated outward K+ current in dendrites, however, decreases Na+ entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na+ influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption.

  9. The development of endometriosis in a murine model is dependent on the presence of dendritic cells.

    Science.gov (United States)

    Pencovich, Niv; Luk, Janelle; Hantisteanu, Shay; Hornstein, Mark D; Fainaru, Ofer

    2014-04-01

    Endometriosis is a common condition associated with pelvic pain and inferti